WorldWideScience

Sample records for regulate cdc-42 activity

  1. Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation.

    Directory of Open Access Journals (Sweden)

    Kelly E Roney

    Full Text Available Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2(-/- macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2(-/- macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.

  2. Leucine-rich repeat kinase-1 regulates osteoclast function by modulating RAC1/Cdc42 Small GTPase phosphorylation and activation.

    Science.gov (United States)

    Zeng, Canjun; Goodluck, Helen; Qin, Xuezhong; Liu, Bo; Mohan, Subburaman; Xing, Weirong

    2016-10-01

    Leucine-rich repeat kinase-1 (Lrrk1) consists of ankyrin repeats (ANK), leucine-rich repeats (LRR), a GTPase-like domain of Roc (ROC), a COR domain, a serine/threonine kinase domain (KD), and WD40 repeats (WD40). Previous studies have revealed that knockout (KO) of Lrrk1 in mice causes severe osteopetrosis, and a human mutation of Lrrk1 leads to osteosclerotic metaphysial dysplasia. The molecular mechanism by which Lrrk1 regulates osteoclast function is unknown. In this study, we generated a series of Lrrk1 mutants and evaluated their ability to rescue defective bone resorption in Lrrk1-deficient osteoclasts by use of pit formation assays. Overexpression of Lrrk1 or LRR-truncated Lrrk1, but not ANK-truncated Lrrk1, WD40-truncated Lrrk1, Lrrk1-KD, or K651A mutant Lrrk1, rescued bone resorption function of Lrrk1 KO osteoclasts. We next examined whether RAC1/Cdc42 small GTPases are direct substrates of Lrrk1 in osteoclasts. Western blot and pull-down assays revealed that Lrrk1 deficiency in osteoclasts resulted in reduced phosphorylation and activation of RAC1/Cdc42. In vitro kinase assays confirmed that recombinant Lrrk1 phosphorylated RAC1-GST protein, and immunoprecipitation showed that the interaction of Lrrk1 with RAC1 occurred within 10 min after RANKL treatment. Overexpression of constitutively active Q61L RAC1 partially rescued the resorptive function of Lrrk1-deficient osteoclasts. Furthermore, lack of Lrrk1 in osteoclasts led to reduced autophosphorylation of p21 protein-activated kinase-1 at Ser 144 , catalyzed by RAC1/Cdc42 binding and activation. Our data indicate that Lrrk1 regulates osteoclast function by directly modulating phosphorylation and activation of small GTPase RAC1/Cdc42 and that its function depends on ANK, ROC, WD40, and kinase domains. Copyright © 2016 the American Physiological Society.

  3. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis.

    Science.gov (United States)

    Abdallah, Abbas M; Zhou, Xin; Kim, Christine; Shah, Kushani K; Hogden, Christopher; Schoenherr, Jessica A; Clemens, James C; Chang, Henry C

    2013-06-15

    Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Cdc42 regulates cofilin during the establishment of neuronal polarity

    DEFF Research Database (Denmark)

    Garvalov, Boyan K; Flynn, Kevin C; Neukirchen, Dorothee

    2007-01-01

    suppressed ability to form axons both in vivo and in culture. This was accompanied by disrupted cytoskeletal organization, enlargement of the growth cones, and inhibition of filopodial dynamics. Axon formation in the knock-out neurons was rescued by manipulation of the actin cytoskeleton, indicating...... that the effects of Cdc42 ablation are exerted through modulation of actin dynamics. In addition, the knock-outs showed a specific increase in the phosphorylation (inactivation) of the Cdc42 effector cofilin. Furthermore, the active, nonphosphorylated form of cofilin was enriched in the axonal growth cones of wild...

  5. Cdc42-dependent actin dynamics controls maturation and secretory activity of dendritic cells

    DEFF Research Database (Denmark)

    Schulz, Anna M; Stutte, Susanne; Hogl, Sebastian

    2015-01-01

    Cell division cycle 42 (Cdc42) is a member of the Rho guanosine triphosphatase family and has pivotal functions in actin organization, cell migration, and proliferation. To further study the molecular mechanisms of dendritic cell (DC) regulation by Cdc42, we used Cdc42-deficient DCs. Cdc42 defici...

  6. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development

    DEFF Research Database (Denmark)

    Elias, Bertha C; Das, Amrita; Parekh, Diptiben V

    2015-01-01

    The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and main......The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development...

  7. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuefeng [The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhu, Xiaolan; Xu, Wenlin [The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Wang, Dongqing [The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Yan, Jinchuan, E-mail: jiangdalyf2009@126.com [The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China)

    2013-02-15

    Highlights: ► miR-330 was inversely correlated with Cdc42 in colorectal cancer cells. ► Elevated miR-330 suppressed cell proliferation in vivo and in vitro. ► Elevated miR-330 mimicked the effect of Cdc42 knockdown. ► Restoration of Cdc42 could partially attenuate the effects of miR-330. -- Abstract: MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA–mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the best characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression.

  8. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42

    International Nuclear Information System (INIS)

    Li, Yuefeng; Zhu, Xiaolan; Xu, Wenlin; Wang, Dongqing; Yan, Jinchuan

    2013-01-01

    Highlights: ► miR-330 was inversely correlated with Cdc42 in colorectal cancer cells. ► Elevated miR-330 suppressed cell proliferation in vivo and in vitro. ► Elevated miR-330 mimicked the effect of Cdc42 knockdown. ► Restoration of Cdc42 could partially attenuate the effects of miR-330. -- Abstract: MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA–mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the best characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression

  9. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity

    DEFF Research Database (Denmark)

    Burbage, Marianne; Keppler, Selina J; Gasparrini, Francesca

    2015-01-01

    The small Rho GTPase Cdc42, known to interact with Wiskott-Aldrich syndrome (WAS) protein, is an important regulator of actin remodeling. Here, we show that genetic ablation of Cdc42 exclusively in the B cell lineage is sufficient to render mice unable to mount antibody responses. Indeed Cdc42-de...

  10. Synapse Formation in Monosynaptic Sensory–Motor Connections Is Regulated by Presynaptic Rho GTPase Cdc42

    Science.gov (United States)

    Imai, Fumiyasu; Ladle, David R.; Leslie, Jennifer R.; Duan, Xin; Rizvi, Tilat A.; Ciraolo, Georgianne M.; Zheng, Yi

    2016-01-01

    Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory–motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory–motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory–motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro. Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory–motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory–motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro

  11. Inhibition of Cdc42 and Rac1 activities in pheochromocytoma, the adrenal medulla tumor.

    Science.gov (United States)

    Croisé, Pauline; Brunaud, Laurent; Tóth, Petra; Gasman, Stéphane; Ory, Stéphane

    2017-04-03

    Altered Rho GTPase signaling has been linked to many types of cancer. As many small G proteins, Rho GTPases cycle between an active and inactive state thanks to specific regulators that catalyze exchange of GDP into GTP (Rho-GEF) or hydrolysis of GTP into GDP (Rho-GAP). Recent studies have shown that alteration takes place either at the level of Rho proteins themselves (expression levels, point mutations) or at the level of their regulators, mostly RhoGEFs and RhoGAPs. Most reports describe Rho GTPases gain of function that may participate to the tumorigenesis processes. In contrast, we have recently reported that decreased activities of Cdc42 and Rac1 as well as decreased expression of 2 Rho-GEFs, FARP1 and ARHGEF1, correlate with pheochromocytomas, a tumor developing in the medulla of the adrenal gland (Croisé et al., Endocrine Related Cancer, 2016). Here we highlight the major evidence and further study the correlation between Rho GTPases activities and expression levels of ARHGEF1 and FARP1. Finally we also discuss how the decrease of Cdc42 and Rac1 activities may help human pheochromocytomas to develop and comment the possible relationship between FARP1, ARHGEF1 and the 2 Rho GTPases Cdc42 and Rac1 in tumorigenesis.

  12. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    International Nuclear Information System (INIS)

    Wan, Qiaoqiao; Cho, Eunhye; Yokota, Hiroki; Na, Sungsoo

    2013-01-01

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm 2 ) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  13. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qiaoqiao; Cho, Eunhye [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Yokota, Hiroki [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Na, Sungsoo, E-mail: sungna@iupui.edu [Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States)

    2013-04-19

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging. We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate

  14. Phosphatidylserine and GTPase activation control Cdc42 nanoclustering to counter dissipative diffusion.

    Science.gov (United States)

    Sartorel, Elodie; Ünlü, Caner; Jose, Mini; Massoni-Laporte, Aurélie; Meca, Julien; Sibarita, Jean-Baptiste; McCusker, Derek

    2018-04-18

    The anisotropic organization of plasma membrane constituents is indicative of mechanisms that drive the membrane away from equilibrium. However, defining these mechanisms is challenging due to the short spatio-temporal scales at which diffusion operates. Here, we use high-density single protein tracking combined with photoactivation localization microscopy (sptPALM) to monitor Cdc42 in budding yeast, a system in which Cdc42 exhibits anisotropic organization. Cdc42 exhibited reduced mobility at the cell pole, where it was organized in nanoclusters. The Cdc42 nanoclusters were larger at the cell pole than those observed elsewhere in the cell. These features were exacerbated in cells expressing Cdc42-GTP, and were dependent on the scaffold Bem1, which contributed to the range of mobility and nanocluster size exhibited by Cdc42. The lipid environment, in particular phosphatidylserine levels, also played a role in regulating Cdc42 nanoclustering. These studies reveal how the mobility of a Rho GTPase is controlled to counter the depletive effects of diffusion, thus stabilizing Cdc42 on the plasma membrane and sustaining cell polarity. Movie S1 Movie S1 sptPALM imaging of live yeast expressing Pil1-mEOS expressed at the genomic locus. Pil1-mEOS was simultaneously photo-converted with a 405 nm laser and imaged with a 561 nm laser using HiLo illumination. Images were acquired at 20 ms intervals, of which 300 frames are shown at 7 frames per second.

  15. Estrogen and Resveratrol Regulate Rac and Cdc42 Signaling to the Actin Cytoskeleton of Metastatic Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nicolas G. Azios

    2007-02-01

    Full Text Available Estrogen and structurally related molecules play critical roles in breast cancer. We reported that resveratrol (50 µM, an estrogen-like phytosterol from grapes, acts in an antiestrogenic manner in breast cancer cells to reduce cell migration and to induce a global and sustained extension of actin structures called filopodia. Herein, we report that resveratrol-induced filopodia formation is time-dependent and concentration-dependent. In contrast to resveratrol at 50 µM, resveratrol at 5 µM acts in a manner similar to estrogen by increasing lamellipodia, as well as cell migration and invasion. Because Rho GTPases regulate the extension of actin structures, we investigated a role for Rac and Cdc42 in estrogen and resveratrol signaling. Our results demonstrate that 50 µM resveratrol decreases Rac and Cdc42 activity, whereas estrogen and 5 µM resveratrol increase Rac activity in breast cancer cells. MDA-MB-231 cells expressing dominant-negative Cdc42 or dominantnegative Rac retain filopodia response to 50 µM resveratrol. Lamellipodia response to 5 µM resveratrol, estrogen, or epidermal growth factor is inhibited in cells expressing dominant-negative Rac, indicating that Rac regulates estrogen and resveratrol (5 µM signaling to the actin cytoskeleton. These results indicate that signaling to the actin cytoskeleton by low and high concentrations of resveratrol may be differentially regulated by Rac and Cdc42.

  16. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    Directory of Open Access Journals (Sweden)

    Anna Kirjavainen

    2015-03-01

    Full Text Available Hair cells of the organ of Corti (OC of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC, a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  17. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    Directory of Open Access Journals (Sweden)

    Dao Kim-Hien T

    2010-01-01

    Full Text Available Abstract Background The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Methods Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Results Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. Conclusion(s The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas

  18. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    International Nuclear Information System (INIS)

    Appledorn, Daniel M; Dao, Kim-Hien T; O'Reilly, Sandra; Maher, Veronica M; McCormick, J Justin

    2010-01-01

    The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas transformed human cells, including their ability to form tumors in athymic

  19. Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors.

    Science.gov (United States)

    Kast, David J; Yang, Changsong; Disanza, Andrea; Boczkowska, Malgorzata; Madasu, Yadaiah; Scita, Giorgio; Svitkina, Tatyana; Dominguez, Roberto

    2014-04-01

    The Rho family GTPase effector IRSp53 has essential roles in filopodia formation and neuronal development, but its regulatory mechanism is poorly understood. IRSp53 contains a membrane-binding BAR domain followed by an unconventional CRIB motif that overlaps with a proline-rich region (CRIB-PR) and an SH3 domain that recruits actin cytoskeleton effectors. Using a fluorescence reporter assay, we show that human IRSp53 adopts a closed inactive conformation that opens synergistically with the binding of human Cdc42 to the CRIB-PR and effector proteins, such as the tumor-promoting factor Eps8, to the SH3 domain. The crystal structure of Cdc42 bound to the CRIB-PR reveals a new mode of effector binding to Rho family GTPases. Structure-inspired mutations disrupt autoinhibition and Cdc42 binding in vitro and decouple Cdc42- and IRSp53-dependent filopodia formation in cells. The data support a combinatorial mechanism of IRSp53 activation.

  20. Defective homing is associated with altered Cdc42 activity in cells from patients with Fanconi anemia group A

    Science.gov (United States)

    Zhang, Xiaoling; Shang, Xun; Guo, Fukun; Murphy, Kim; Kirby, Michelle; Kelly, Patrick; Reeves, Lilith; Smith, Franklin O.; Williams, David A.

    2008-01-01

    Previous studies showed that Fanconi anemia (FA) murine stem cells have defective reconstitution after bone marrow (BM) transplantation. The mechanism underlying this defect is not known. Here, we report defective homing of FA patient BM progenitors transplanted into mouse models. Using cells from patients carrying mutations in FA complementation group A (FA-A), we show that when transplanted into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) recipient mice, FA-A BM cells exhibited impaired homing activity. FA-A cells also showed defects in both cell-cell and cell-matrix adhesion. Complementation of FA-A deficiency by reexpression of FANCA readily restored adhesion of FA-A cells. A significant decrease in the activity of the Rho GTPase Cdc42 was found associated with these defective functions in patient-derived cells, and expression of a constitutively active Cdc42 mutant was able to rescue the adhesion defect of FA-A cells. These results provide the first evidence that FA proteins influence human BM progenitor homing and adhesion via the small GTPase Cdc42-regulated signaling pathway. PMID:18565850

  1. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases.

    Directory of Open Access Journals (Sweden)

    Tudor I Oprea

    Full Text Available Rho family GTPases (including Rac, Rho and Cdc42 collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID as a structural series. Cheminformatics-based substructure analyses-using the rotationally constrained carboxylate in R-naproxen-led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766 and Cdc42 (CID2950007/ML141 specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid

  2. Microgravity simulation activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis during vasculogenesis

    Directory of Open Access Journals (Sweden)

    Shouli Wang

    2017-12-01

    Full Text Available Gravity plays an important role in normal tissue maintenance. The ability of stem cells to repair tissue loss in space through regeneration and differentiation remains largely unknown. To investigate the impact of microgravity on blood vessel formation from pluripotent stem cells, we employed the embryoid body (EB model for vasculogenesis and simulated microgravity by clinorotation. We first differentiated mouse embryonic stem cells into cystic EBs containing two germ layers and then analyzed vessel formation under clinorotation. We observed that endothelial cell differentiation was slightly reduced under clinorotation, whereas vascular branch morphogenesis was markedly enhanced. EB-derived endothelial cells migrated faster, displayed multiple cellular processes, and had higher Cdc42 and Rac1 activity when subjected to clinorotation. Genetic analysis and rescue experiments demonstrated that Cdc42 but not Rac1 is required for microgravity-induced vascular branch morphogenesis. Furthermore, affinity pull-down assay and mass spectrometry identified Rap1GDS1 to be a Cdc42 guanine nucleotide exchange factor, which was upregulated by clinorotation. shRNA-mediated knockdown of Rap1GDS1 selectively suppressed Cdc42 activation and inhibited both baseline and microgravity-induced vasculogenesis. This was rescued by ectopic expression of constitutively active Cdc42. Taken together, these results support the notion that simulated microgravity activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis.

  3. Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation.

    Directory of Open Access Journals (Sweden)

    Huzoor Akbar

    Full Text Available Cdc42 and Rac1, members of the Rho family of small GTPases, play critical roles in actin cytoskeleton regulation. We have shown previously that Rac1 is involved in regulation of platelet secretion and aggregation. However, the role of Cdc42 in platelet activation remains controversial. This study was undertaken to better understand the role of Cdc42 in platelet activation.We utilized the Mx-cre;Cdc42(lox/lox inducible mice with transient Cdc42 deletion to investigate the involvement of Cdc42 in platelet function. The Cdc42-deficient mice exhibited a significantly reduced platelet count than the matching Cdc42(+/+ mice. Platelets isolated from Cdc42(-/-, as compared to Cdc42(+/+, mice exhibited (a diminished phosphorylation of PAK1/2, an effector molecule of Cdc42, (b inhibition of filopodia formation on immobilized CRP or fibrinogen, (c inhibition of CRP- or thrombin-induced secretion of ATP and release of P-selectin, (d inhibition of CRP, collagen or thrombin induced platelet aggregation, and (e minimal phosphorylation of Akt upon stimulation with CRP or thrombin. The bleeding times were significantly prolonged in Cdc42(-/- mice compared with Cdc42(+/+ mice.Our data demonstrate that Cdc42 is required for platelet filopodia formation, secretion and aggregation and therefore plays a critical role in platelet mediated hemostasis and thrombosis.

  4. Hepatocyte-specific deletion of Cdc42 results in delayed liver regeneration after partial hepatectomy in mice

    DEFF Research Database (Denmark)

    Yuan, Haixin; Zhang, Hong; Wu, Xunwei

    2009-01-01

    Cdc42, a member of the Rho guanosine triphosphatase (GTPase) family, plays important roles in the regulation of the cytoskeleton, cell proliferation, cell polarity, and cellular transport, but little is known about its specific function in mammalian liver. We investigated the function of Cdc42...... in regulating liver regeneration. Using a mouse model with liver-specific knockout of Cdc42 (Cdc42LK), we studied liver regeneration after partial hepatectomy. Histological analysis, immunostaining, and western blot analysis were performed to characterize Cdc42LK livers and to explore the role of Cdc42 in liver...... regeneration. In control mouse livers, Cdc42 became activated between 3 and 24 hours after partial hepatectomy. Loss of Cdc42 led to a significant delay of liver recovery after partial hepatectomy, which was associated with reduced and delayed DNA synthesis indicated by 5-bromo-2'-deoxyuridine staining...

  5. FMNL2 and -3 regulate Golgi architecture and anterograde transport downstream of Cdc42

    DEFF Research Database (Denmark)

    Kage, Frieda; Steffen, Anika; Ellinger, Adolf

    2017-01-01

    The Rho-family small GTPase Cdc42 localizes at plasma membrane and Golgi complex and aside from protrusion and migration operates in vesicle trafficking, endo- and exocytosis as well as establishment and/or maintenance of cell polarity. The formin family members FMNL2 and -3 are actin assembly fa...

  6. Interaction of the Small GTPase Cdc42 with Arginine Kinase Restricts White Spot Syndrome Virus in Shrimp.

    Science.gov (United States)

    Xu, Ji-Dong; Jiang, Hai-Shan; Wei, Tian-Di; Zhang, Ke-Yi; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2017-03-01

    Many types of small GTPases are widely expressed in eukaryotes and have different functions. As a crucial member of the Rho GTPase family, Cdc42 serves a number of functions, such as regulating cell growth, migration, and cell movement. Several RNA viruses employ Cdc42-hijacking tactics in their target cell entry processes. However, the function of Cdc42 in shrimp antiviral immunity is not clear. In this study, we identified a Cdc42 protein in the kuruma shrimp ( Marsupenaeus japonicus ) and named it Mj Cdc42. Mj Cdc42 was upregulated in shrimp challenged by white spot syndrome virus (WSSV). The knockdown of Mj Cdc42 and injection of Cdc42 inhibitors increased the proliferation of WSSV. Further experiments determined that Mj Cdc42 interacted with an arginine kinase ( Mj AK). By analyzing the binding activity and enzyme activity of Mj AK and its mutant, Δ Mj AK, we found that Mj AK could enhance the replication of WSSV in shrimp. Mj AK interacted with the envelope protein VP26 of WSSV. An inhibitor of AK activity, quercetin, could impair the function of Mj AK in WSSV replication. Further study demonstrated that the binding of Mj Cdc42 and Mj AK depends on Cys 271 of Mj AK and suppresses the WSSV replication-promoting effect of Mj AK. By interacting with the active site of Mj AK and suppressing its enzyme activity, Mj Cdc42 inhibits WSSV replication in shrimp. Our results demonstrate a new function of Cdc42 in the cellular defense against viral infection in addition to the regulation of actin and phagocytosis, which has been reported in previous studies. IMPORTANCE The interaction of Cdc42 with arginine kinase plays a crucial role in the host defense against WSSV infection. This study identifies a new mechanism of Cdc42 in innate immunity and enriches the knowledge of the antiviral innate immunity of invertebrates. Copyright © 2017 American Society for Microbiology.

  7. Rsr1 Focuses Cdc42 Activity at Hyphal Tips and Promotes Maintenance of Hyphal Development in Candida albicans

    Science.gov (United States)

    Pulver, Rebecca; Heisel, Timothy; Gonia, Sara; Robins, Robert; Norton, Jennifer; Haynes, Paula

    2013-01-01

    The extremely elongated morphology of fungal hyphae is dependent on the cell's ability to assemble and maintain polarized growth machinery over multiple cell cycles. The different morphologies of the fungus Candida albicans make it an excellent model organism in which to study the spatiotemporal requirements for constitutive polarized growth and the generation of different cell shapes. In C. albicans, deletion of the landmark protein Rsr1 causes defects in morphogenesis that are not predicted from study of the orthologous protein in the related yeast Saccharomyces cerevisiae, thus suggesting that Rsr1 has expanded functions during polarized growth in C. albicans. Here, we show that Rsr1 activity localizes to hyphal tips by the differential localization of the Rsr1 GTPase-activating protein (GAP), Bud2, and guanine nucleotide exchange factor (GEF), Bud5. In addition, we find that Rsr1 is needed to maintain the focused localization of hyphal polarity structures and proteins, including Bem1, a marker of the active GTP-bound form of the Rho GTPase, Cdc42. Further, our results indicate that tip-localized Cdc42 clusters are associated with the cell's ability to express a hyphal transcriptional program and that the ability to generate a focused Cdc42 cluster in early hyphae (germ tubes) is needed to maintain hyphal morphogenesis over time. We propose that in C. albicans, Rsr1 “fine-tunes” the distribution of Cdc42 activity and that self-organizing (Rsr1-independent) mechanisms of polarized growth are not sufficient to generate narrow cell shapes or to provide feedback to the transcriptional program during hyphal morphogenesis. PMID:23223038

  8. Cooperation of Rho family proteins Rac1 and Cdc42 in cartilage development and calcified tissue formation.

    Science.gov (United States)

    Ikehata, Mikiko; Yamada, Atsushi; Fujita, Koji; Yoshida, Yuko; Kato, Tadashi; Sakashita, Akiko; Ogata, Hiroaki; Iijima, Takehiko; Kuroda, Masahiko; Chikazu, Daichi; Kamijo, Ryutaro

    2018-04-20

    Rac1 and Cdc42, Rho family low molecular weight G proteins, are intracellular signaling factors that transmit various information from outside to inside cells. Primarily, they are known to control various biological activities mediated by actin cytoskeleton reorganization, such as cell proliferation, differentiation, and apoptosis. In order to investigate the functions of Rac1 and Cdc42 in bone formation, we prepared cartilage-specific double conditional knockout mice, Rac1 fl/fl ; Cdc42 fl/fl ; Col2-Cre (Rac1: Cdc42 dcKO mice), which died just after birth, similar to Cdc42 fl/fl ; Col2-Cre mice (Cdc42 cKO mice). Our findings showed that the long tubule bone in Rac1: Cdc42 dcKO mice was shorter than that in Rac1 fl/fl ; Col2-Cre mice (Rac1 cKO mice) and Cdc42 cKO mice. Abnormal skeleton formation was also observed and disordered columnar formation in the growth plate of the Rac1: Cdc42 dcKO mice was more severe as compared to the Rac1 cKO and Cdc42 cKO mice. Together, these results suggest that Rac1 and Cdc42 have cooperating roles in regulation of bone development. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Mai [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Kitaguchi, Tetsuya [Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABOIS), Waseda University, 11 Biopolis Way, 05-01/02 Helios, Singapore 138667 (Singapore); Numano, Rika [The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tennpaku-cho, Toyohashi, Aichi 441-8580 (Japan); Ikematsu, Kazuya [Forensic Pathology and Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kakeyama, Masaki [Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Murata, Masayuki; Sato, Ken [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Tsuboi, Takashi, E-mail: takatsuboi@bio.c.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Regulation of exocytosis by Rho GTPase Cdc42. Black-Right-Pointing-Pointer Cdc42 increases the number of fusion events from newly recruited vesicles. Black-Right-Pointing-Pointer Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  10. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    International Nuclear Information System (INIS)

    Sato, Mai; Kitaguchi, Tetsuya; Numano, Rika; Ikematsu, Kazuya; Kakeyama, Masaki; Murata, Masayuki; Sato, Ken; Tsuboi, Takashi

    2012-01-01

    Highlights: ► Regulation of exocytosis by Rho GTPase Cdc42. ► Cdc42 increases the number of fusion events from newly recruited vesicles. ► Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott–Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  11. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    LENUS (Irish Health Repository)

    Krause-Gruszczynska, Malgorzata

    2011-12-28

    Abstract Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-\\/-, integrin-beta1-\\/-, focal adhesion kinase (FAK)-\\/- and Src\\/Yes\\/Fyn-\\/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1\\/2-\\/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker

  12. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    Directory of Open Access Journals (Sweden)

    Krause-Gruszczynska Malgorzata

    2011-12-01

    Full Text Available Abstract Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-/-, integrin-beta1-/-, focal adhesion kinase (FAK-/- and Src/Yes/Fyn-/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1/2-/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker

  13. SU-F-T-675: Down-Regulating the Expression of Cdc42 and Inhibition of Migration of A549 with Combined Treatment of Ionizing Radiation and Sevoflurane

    International Nuclear Information System (INIS)

    Feng, Y; Feng, J; Huang, Z

    2016-01-01

    Purpose: Cdc42 is involved in cell transformation, proliferation, invasion and metastasis of human cancer cells. Cdc42 overexpression has been reported in several types of cancers. This study investigated the combined treatment effects of ionizing radiation and sevoflurane on down-regulating Cdc42 expression and suppressing migration of human adenocarcinoma cell line A549. Methods: Samples of A549 cells with Cdc42 overexpression were created and Cdc42 expression was determined by Western blotting. Increase of migration speed by Cdc42-HA overexpression was confirmed with an initial in-vitro scratch assay. The cells grown in culture media were separated into 2 groups of 6 samples: one for the control and the other was treated with 4% sevoflurane for 5hrs prior to a single-fraction radiation of 4Gy using a 6MV beam. Cell migration speeds of the 2 groups were measured with an initial in-vitro scratch assay. The scratch was created with a pipette tip immediately after treatment and images at 4 post-treatment time points (0h, 3h, 6h, 12h) were acquired. The distance between the two separated sides at 0h was used as reference and subsequent changes of the distance over time was defined as the cell migration speed. Image processing and measurement were performed with an in-house software. The experiment was repeated three times independently to evaluate the repeatability and reliability. Statistical analysis was performed with SPSS 19.0. Results: Western blotting showed the treatment down-regulated Cdc42 overexpression. Quantitative analysis and two-tailed t-test showed that cell migration speed of the treated group was higher than the control group at all time points after treatment (p < 0.02). Conclusion: Combined treatment of 6MV photon and sevoflurane can cause the effects of down-regulating Cdc42 overexpression and decrease of migration speed of A549 cells which provides potential of clinical benefit for the cancer therapy. More investigation is needed to further

  14. SU-F-T-675: Down-Regulating the Expression of Cdc42 and Inhibition of Migration of A549 with Combined Treatment of Ionizing Radiation and Sevoflurane

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y [East Carolina University, Greenville, NC (United States); Feng, J [Tianjin University, Tianjin (China); Huang, Z [East Carolina University, Greenville, NC (United States)

    2016-06-15

    Purpose: Cdc42 is involved in cell transformation, proliferation, invasion and metastasis of human cancer cells. Cdc42 overexpression has been reported in several types of cancers. This study investigated the combined treatment effects of ionizing radiation and sevoflurane on down-regulating Cdc42 expression and suppressing migration of human adenocarcinoma cell line A549. Methods: Samples of A549 cells with Cdc42 overexpression were created and Cdc42 expression was determined by Western blotting. Increase of migration speed by Cdc42-HA overexpression was confirmed with an initial in-vitro scratch assay. The cells grown in culture media were separated into 2 groups of 6 samples: one for the control and the other was treated with 4% sevoflurane for 5hrs prior to a single-fraction radiation of 4Gy using a 6MV beam. Cell migration speeds of the 2 groups were measured with an initial in-vitro scratch assay. The scratch was created with a pipette tip immediately after treatment and images at 4 post-treatment time points (0h, 3h, 6h, 12h) were acquired. The distance between the two separated sides at 0h was used as reference and subsequent changes of the distance over time was defined as the cell migration speed. Image processing and measurement were performed with an in-house software. The experiment was repeated three times independently to evaluate the repeatability and reliability. Statistical analysis was performed with SPSS 19.0. Results: Western blotting showed the treatment down-regulated Cdc42 overexpression. Quantitative analysis and two-tailed t-test showed that cell migration speed of the treated group was higher than the control group at all time points after treatment (p < 0.02). Conclusion: Combined treatment of 6MV photon and sevoflurane can cause the effects of down-regulating Cdc42 overexpression and decrease of migration speed of A549 cells which provides potential of clinical benefit for the cancer therapy. More investigation is needed to further

  15. A crucial role for CDC42 in senescence-associated inflammation and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Takashi K Ito

    Full Text Available Risk factors for atherosclerosis accelerate the senescence of vascular endothelial cells and promote atherogenesis by inducing vascular inflammation. A hallmark of endothelial senescence is the persistent up-regulation of pro-inflammatory genes. We identified CDC42 signaling as a mediator of chronic inflammation associated with endothelial senescence. Inhibition of CDC42 or NF-κB signaling attenuated the sustained up-regulation of pro-inflammatory genes in senescent human endothelial cells. Endothelium-specific activation of the p53/p21 pathway, a key mediator of senescence, also resulted in up-regulation of pro-inflammatory molecules in mice, which was reversed by Cdc42 deletion in endothelial cells. Likewise, endothelial-specific deletion of Cdc42 significantly attenuated chronic inflammation and plaque formation in atherosclerotic mice. While inhibition of NF-κB suppressed the pro-inflammatory responses in acute inflammation, the influence of Cdc42 deletion was less marked. Knockdown of cdc-42 significantly down-regulated pro-inflammatory gene expression and restored the shortened lifespan to normal in mutant worms with enhanced inflammation. These findings indicate that the CDC42 pathway is critically involved in senescence-associated inflammation and could be a therapeutic target for chronic inflammation in patients with age-related diseases without compromising host defenses.

  16. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    International Nuclear Information System (INIS)

    Peng, Ting; Wang, Wei-Na; Gu, Mei-Mei; Xie, Chen-Ying; Xiao, Yu-Chao; Liu, Yuan; Wang, Lei

    2015-01-01

    Highlights: • Cd 2+ induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd 2+ . • DsRNA-suppression of LvCdc42 and MAPKs during Cd 2+ stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd 2+ stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd 2+ . They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses

  17. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ting; Wang, Wei-Na, E-mail: weina63@aliyun.com; Gu, Mei-Mei; Xie, Chen-Ying; Xiao, Yu-Chao; Liu, Yuan; Wang, Lei

    2015-06-15

    Highlights: • Cd{sup 2+} induces Cdc42 and MAPKs pathway related gene of Litopenaeus vannamei up-regulation. • Reduction of THC, increase of ROS production and apoptotic cell rate were observed when the shrimps exposure to Cd{sup 2+}. • DsRNA-suppression of LvCdc42 and MAPKs during Cd{sup 2+} stress reduces the ROS production and apoptosis. • We conclude that LvCdc42 and MAPKs play key roles in Cd{sup 2+} stress responses of shrimps. - Abstract: Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals’ stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps’ responses to Cd{sup 2+}. They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses.

  18. Cdc42 and RhoA reveal different spatio-temporal dynamics upon local stimulation with Semaphorin-3A

    Directory of Open Access Journals (Sweden)

    Federico eIseppon

    2015-08-01

    Full Text Available Small RhoGTPases, such as Cdc42 and RhoA, are key players in integrating external cues and intracellular signaling pathways that regulate growth cone (GC motility. Indeed, Cdc42 is involved in actin polymerization and filopodia formation, whereas RhoA induces GC collapse and neurite retraction through actomyosin contraction. In this study we employed Förster Resonance Energy Transfer (FRET microscopy to study the spatio-temporal dynamics of Cdc42 and RhoA in GCs in response to local Semaphorin-3A stimulation obtained with lipid vesicles filled with Semaphorin-3A and positioned near the selected GC using optical tweezers. We found that Cdc42 and RhoA were activated at the leading edge of NG108-15 neuroblastoma cells during spontaneous cycles of protrusion and retraction, respectively. The release of Semaphorin-3A brought to a progressive activation of RhoA within 30 seconds from the stimulus in the central region of the GC that collapsed and retracted. In contrast, the same stimulation evoked waves of Cdc42 activation propagating away from the stimulated region. A more localized stimulation obtained with Sema3A coated beads placed on the GC, led to Cdc42 active waves that propagated in a retrograde manner with a mean period of 70 seconds, and followed by GC retraction. Therefore, Semaphorin-3A activates both Cdc42 and RhoA with a complex and different spatial-temporal dynamics.

  19. A New Genetically Encoded Single-Chain Biosensor for Cdc42 Based on FRET, Useful for Live-Cell Imaging

    Science.gov (United States)

    Cox, Dianne; Hodgson, Louis

    2014-01-01

    Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized. PMID:24798463

  20. Frequent alterations of SLIT2–ROBO1–CDC42 signalling pathway ...

    Indian Academy of Sciences (India)

    breast cancer; alterations of SLIT2–ROBO1 signalling; active CDC42; ... proportion of four subtypes were tested for molecular alterations of SLIT2, ... reduced expression of phospho Serine-71 CDC42 predicted poor survival of BC patients.

  1. Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo.

    Science.gov (United States)

    Sepúlveda-Ramírez, Silvia P; Toledo-Jacobo, Leslie; Henson, John H; Shuster, Charles B

    2018-05-15

    In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. START-GAP3/DLC3 is a GAP for RhoA and Cdc42 and is localized in focal adhesions regulating cell morphology

    International Nuclear Information System (INIS)

    Kawai, Katsuhisa; Kiyota, Minoru; Seike, Junichi; Deki, Yuko; Yagisawa, Hitoshi

    2007-01-01

    In the human genome there are three genes encoding RhoGAPs that contain the START (steroidogenic acute regulatory protein (StAR)-related lipid transfer)-domain. START-GAP3/DLC3 is a tumor suppressor gene similar to two other human START-GAPs known as DLC1 or DLC2. Although expression of START-GAP3/DLC3 inhibits the proliferation of cancer cells, its molecular function is not well understood. In this study we carried out biochemical characterization of START-GAP3/DLC3, and explored the effects of its expression on cell morphology and intracellular localization. We found that START-GAP3/DLC3 serves as a stimulator of PLCδ1 and as a GAP for both RhoA and Cdc42 in vitro. Moreover, we found that the GAP activity is responsible for morphological changes. The intracellular localization of endogenous START-GAP3/DLC3 was explored by immunocytochemistry and was revealed in focal adhesions. These results indicate that START-GAP3/DLC3 has characteristics similar to other START-GAPs and the START-GAP family seems to share common characteristics

  3. Binding of Cdc42 to phospholipase D1 is important in neurite outgrowth of neural stem cells

    International Nuclear Information System (INIS)

    Yoon, Mee-Sup; Cho, Chan Ho; Lee, Ki Sung; Han, Joong-Soo

    2006-01-01

    We previously demonstrated that phospholipase D (PLD) expression and PLD activity are upregulated during neuronal differentiation. In the present study, employing neural stem cells from the brain cortex of E14 rat embryos, we investigated the role of Rho family GTPases in PLD activation and in neurite outgrowth of neural stem cells during differentiation. As neuronal differentiation progressed, the expression levels of Cdc42 and RhoA increased. Furthermore, Cdc42 and PLD1 were mainly localized in neurite, whereas RhoA was localized in cytosol. Co-immunoprecipitation revealed that Cdc42 was bound to PLD1 during differentiation, whereas RhoA was associated with PLD1 during both proliferation and differentiation. These results indicate that the association between Cdc42 and PLD1 is related to neuronal differentiation. To examine the effect of Cdc42 on PLD activation and neurite outgrowth, we transfected dominant negative Cdc42 (Cdc42N17) and constitutively active Cdc42 (Cdc42V12) into neural stem cells, respectively. Overexpression of Cdc42N17 decreased both PLD activity and neurite outgrowth, whereas co-transfection with Cdc42N17 and PLD1 restored them. On the other hand, Cdc42V12 increased both PLD activity and neurite outgrowth, suggesting that active state of Cdc42 is important in upregulation of PLD activity which is responsible for the increase of neurite outgrowth

  4. RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1.

    Science.gov (United States)

    Meyer Zum Büschenfelde, Uta; Brandenstein, Laura Isabel; von Elsner, Leonie; Flato, Kristina; Holling, Tess; Zenker, Martin; Rosenberger, Georg; Kutsche, Kerstin

    2018-05-01

    RIT1 belongs to the RAS family of small GTPases. Germline and somatic RIT1 mutations have been identified in Noonan syndrome (NS) and cancer, respectively. By using heterologous expression systems and purified recombinant proteins, we identified the p21-activated kinase 1 (PAK1) as novel direct effector of RIT1. We found RIT1 also to directly interact with the RHO GTPases CDC42 and RAC1, both of which are crucial regulators of actin dynamics upstream of PAK1. These interactions are independent of the guanine nucleotide bound to RIT1. Disease-causing RIT1 mutations enhance protein-protein interaction between RIT1 and PAK1, CDC42 or RAC1 and uncouple complex formation from serum and growth factors. We show that the RIT1-PAK1 complex regulates cytoskeletal rearrangements as expression of wild-type RIT1 and its mutant forms resulted in dissolution of stress fibers and reduction of mature paxillin-containing focal adhesions in COS7 cells. This effect was prevented by co-expression of RIT1 with dominant-negative CDC42 or RAC1 and kinase-dead PAK1. By using a transwell migration assay, we show that RIT1 wildtype and the disease-associated variants enhance cell motility. Our work demonstrates a new function for RIT1 in controlling actin dynamics via acting in a signaling module containing PAK1 and RAC1/CDC42, and highlights defects in cell adhesion and migration as possible disease mechanism underlying NS.

  5. Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin

    DEFF Research Database (Denmark)

    Wu, Xunwei; Quondamatteo, Fabio; Lefever, Tine

    2006-01-01

    for differentiation of skin progenitor cells into HF lineage and that it regulates the turnover of beta-catenin. In the absence of Cdc42, degradation of beta-catenin was increased corresponding to a decreased phosphorylation of GSK3beta at Ser 9 and an increased phosphorylation of axin, which is known to be required...... for binding of beta-catenin to the degradation machinery. Cdc42-mediated regulation of beta-catenin turnover was completely dependent on PKCzeta, which associated with Cdc42, Par6, and Par3. These data suggest that Cdc42 regulation of beta-catenin turnover is important for terminal differentiation of HF...

  6. RhoA, Rac1 and Cdc42 differentially regulate aSMA and collagen I expression in mesenchymal stem cells.

    Science.gov (United States)

    Ge, Jianfeng; Burnier, Laurent; Adamopoulou, Maria; Kwa, Mei Qi; Schaks, Matthias; Rottner, Klemens; Brakebusch, Cord

    2018-04-26

    Mesenchymal stem cells (MSC) are suggested to be important progenitors of myofibroblasts in fibrosis. To understand the role of Rho GTPase signaling in TGFβ-induced myofibroblast differentiation of MSC, we generated a novel MSC line and descendants of it lacking functional Rho GTPases and Rho GTPase signaling components. Unexpectedly, our data revealed that Rho GTPase signaling is required for TGFβ-induced expression of αSMA, but not of collagen I α1 (col1a1). While loss of RhoA and Cdc42 reduced αSMA expression, ablation of the Rac1 gene had the opposite effect. Although actin polymerization and MRTFa were crucial for TGFβ-induced αSMA expression, neither Arp2/3 dependent actin polymerization nor cofilin dependent severing and depolymerization of F-actin were required. Instead, F-actin levels were dependent on cell contraction and TGFβ-induced actin polymerisation correlated with increased cell contraction mediated by RhoA and Cdc42. Finally, we observed impaired collagen I secretion in MSC lacking RhoA or Cdc42. These data give novel molecular insights into the role of Rho GTPases in TGFβ signaling and have implications for our understanding of MSC function in fibrosis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Rho GTPase protein Cdc42 is critical for postnatal cartilage development

    International Nuclear Information System (INIS)

    Nagahama, Ryo; Yamada, Atsushi; Tanaka, Junichi; Aizawa, Ryo; Suzuki, Dai; Kassai, Hidetoshi; Yamamoto, Matsuo; Mishima, Kenji; Aiba, Atsu; Maki, Koutaro; Kamijo, Ryutaro

    2016-01-01

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 "f"l"/"f"l; Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 "f"l"/"f"l) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system. The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. - Highlights: • Tamoxifen-induced cartilage specific inactivated Cdc42 mutant mice were generated. • Cdc42 mutant mice were shorter limbs and body. • Severe defects were found in growth plate chondrocytes.

  8. Rho GTPase protein Cdc42 is critical for postnatal cartilage development

    Energy Technology Data Exchange (ETDEWEB)

    Nagahama, Ryo [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan); Department of Orthodontics, School of Dentistry, Showa University, Tokyo (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan); Tanaka, Junichi [Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo (Japan); Aizawa, Ryo [Department of Periodontology, School of Dentistry, Showa University, Tokyo (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan); Kassai, Hidetoshi [Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, Tokyo (Japan); Mishima, Kenji [Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo (Japan); Aiba, Atsu [Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo (Japan); Maki, Koutaro [Department of Orthodontics, School of Dentistry, Showa University, Tokyo (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, Tokyo (Japan)

    2016-02-19

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 {sup fl/fl}; Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 {sup fl/fl}) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system. The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. - Highlights: • Tamoxifen-induced cartilage specific inactivated Cdc42 mutant mice were generated. • Cdc42 mutant mice were shorter limbs and body. • Severe defects were found in growth plate chondrocytes.

  9. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Raman Deep, E-mail: Takhter.Ramandeep@mayo.edu; Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L., E-mail: Marks.david@mayo.edu; Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  10. Frequent alterations of SLIT2–ROBO1–CDC42 signalling pathway ...

    Indian Academy of Sciences (India)

    2016-09-07

    Sep 7, 2016 ... Keywords. breast cancer; alterations of SLIT2–ROBO1 signalling; active CDC42; pSer71-CDC42 . Journal of ... have already been studied in head and neck squamous cell ...... lung, oral, cervical, breast, kidney (Dallol et al.

  11. RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1.

    Directory of Open Access Journals (Sweden)

    Uta Meyer Zum Büschenfelde

    2018-05-01

    Full Text Available RIT1 belongs to the RAS family of small GTPases. Germline and somatic RIT1 mutations have been identified in Noonan syndrome (NS and cancer, respectively. By using heterologous expression systems and purified recombinant proteins, we identified the p21-activated kinase 1 (PAK1 as novel direct effector of RIT1. We found RIT1 also to directly interact with the RHO GTPases CDC42 and RAC1, both of which are crucial regulators of actin dynamics upstream of PAK1. These interactions are independent of the guanine nucleotide bound to RIT1. Disease-causing RIT1 mutations enhance protein-protein interaction between RIT1 and PAK1, CDC42 or RAC1 and uncouple complex formation from serum and growth factors. We show that the RIT1-PAK1 complex regulates cytoskeletal rearrangements as expression of wild-type RIT1 and its mutant forms resulted in dissolution of stress fibers and reduction of mature paxillin-containing focal adhesions in COS7 cells. This effect was prevented by co-expression of RIT1 with dominant-negative CDC42 or RAC1 and kinase-dead PAK1. By using a transwell migration assay, we show that RIT1 wildtype and the disease-associated variants enhance cell motility. Our work demonstrates a new function for RIT1 in controlling actin dynamics via acting in a signaling module containing PAK1 and RAC1/CDC42, and highlights defects in cell adhesion and migration as possible disease mechanism underlying NS.

  12. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes.

    Science.gov (United States)

    Martinelli, Simone; Krumbach, Oliver H F; Pantaleoni, Francesca; Coppola, Simona; Amin, Ehsan; Pannone, Luca; Nouri, Kazem; Farina, Luciapia; Dvorsky, Radovan; Lepri, Francesca; Buchholzer, Marcel; Konopatzki, Raphael; Walsh, Laurence; Payne, Katelyn; Pierpont, Mary Ella; Vergano, Samantha Schrier; Langley, Katherine G; Larsen, Douglas; Farwell, Kelly D; Tang, Sha; Mroske, Cameron; Gallotta, Ivan; Di Schiavi, Elia; Della Monica, Matteo; Lugli, Licia; Rossi, Cesare; Seri, Marco; Cocchi, Guido; Henderson, Lindsay; Baskin, Berivan; Alders, Mariëlle; Mendoza-Londono, Roberto; Dupuis, Lucie; Nickerson, Deborah A; Chong, Jessica X; Meeks, Naomi; Brown, Kathleen; Causey, Tahnee; Cho, Megan T; Demuth, Stephanie; Digilio, Maria Cristina; Gelb, Bruce D; Bamshad, Michael J; Zenker, Martin; Ahmadian, Mohammad Reza; Hennekam, Raoul C; Tartaglia, Marco; Mirzaa, Ghayda M

    2018-01-17

    Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Primary angle closure glaucoma (PACG) susceptibility gene PLEKHA7 encodes a novel Rac1/Cdc42 GAP that modulates cell migration and blood-aqueous barrier function.

    Science.gov (United States)

    Lee, Mei-Chin; Shei, William; Chan, Anita S; Chua, Boon-Tin; Goh, Shuang-Ru; Chong, Yaan-Fun; Hilmy, Maryam H; Nongpiur, Monisha E; Baskaran, Mani; Khor, Chiea-Chuen; Aung, Tin; Hunziker, Walter; Vithana, Eranga N

    2017-10-15

    PLEKHA7, a gene recently associated with primary angle closure glaucoma (PACG), encodes an apical junctional protein expressed in components of the blood aqueous barrier (BAB). We found that PLEKHA7 is down-regulated in lens epithelial cells and in iris tissue of PACG patients. PLEKHA7 expression also correlated with the C risk allele of the sentinel SNP rs11024102 with the risk allele carrier groups having significantly reduced PLEKHA7 levels compared to non-risk allele carriers. Silencing of PLEKHA7 in human immortalized non-pigmented ciliary epithelium (h-iNPCE) and primary trabecular meshwork cells, which are intimately linked to BAB and aqueous humor outflow respectively, affected actin cytoskeleton organization. PLEKHA7 specifically interacts with GTP-bound Rac1 and Cdc42, but not RhoA, and the activation status of the two small GTPases is linked to PLEKHA7 expression levels. PLEKHA7 stimulates Rac1 and Cdc42 GTP hydrolysis, without affecting nucleotide exchange, identifying PLEKHA7 as a novel Rac1/Cdc42 GAP. Consistent with the regulatory role of Rac1 and Cdc42 in maintaining the tight junction permeability, silencing of PLEKHA7 compromises the paracellular barrier between h-iNPCE cells. Thus, downregulation of PLEKHA7 in PACG may affect BAB integrity and aqueous humor outflow via its Rac1/Cdc42 GAP activity, thereby contributing to disease etiology. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Cdc42-mediated tubulogenesis controls cell specification

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Sand, Fredrik Wolfhagen; Greiner, Thomas Uwe

    2009-01-01

    Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled......, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and later...... for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the Supplemental Data...

  15. The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse

    DEFF Research Database (Denmark)

    Vasyutina, Elena; Martarelli, Benedetta; Brakebusch, Cord

    2009-01-01

    Rac1 and Cdc42 are small G-proteins that regulate actin dynamics and affect plasma membrane protrusion and vesicle traffic. We used conditional mutagenesis in mice to demonstrate that Rac1 and Cdc42 are essential for myoblast fusion in vivo and in vitro. The deficit in fusion of Rac1 or Cdc42 mut...... genetic analysis demonstrates thus that the function of Rac in myoblast fusion is evolutionarily conserved from insects to mammals and that Cdc42, a molecule hitherto not implicated in myoblast fusion, is essential for the fusion of murine myoblasts....

  16. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity.

    Science.gov (United States)

    Schulz, Jana; Franke, Kristin; Frick, Manfred; Schumacher, Stefan

    2016-10-01

    Rho GTPases play prominent roles in the regulation of cytoskeletal reorganization. Many aspects have been elaborated concerning the individual functions of Rho GTPases in distinct signaling pathways leading to cytoskeletal rearrangements. However, major questions have yet to be answered regarding the integration and the signaling hierarchy of different Rho GTPases in regulating the cytoskeleton in fundamental physiological events like neuronal process differentiation. Here, we investigate the roles of the small GTPases Rac1, Cdc42, and RhoG in defining dendritic tree complexity stimulated by the transmembrane epidermal growth factor family member CALEB/NGC. Combining gain-of-function and loss-of-function analysis in primary hippocampal neurons, we find that Rac1 is essential for CALEB/NGC-mediated dendritic branching. Cdc42 reduces the complexity of dendritic trees. Interestingly, we identify the palmitoylated isoform of Cdc42 to adversely affect dendritic outgrowth and dendritic branching, whereas the prenylated Cdc42 isoform does not. In contrast to Rac1, CALEB/NGC and Cdc42 are not directly interconnected in regulating dendritic tree complexity. Unlike Rac1, the Rac1-related GTPase RhoG reduces the complexity of dendritic trees by acting upstream of CALEB/NGC. Mechanistically, CALEB/NGC activates Rac1, and RhoG reduces the amount of CALEB/NGC that is located at the right site for Rac1 activation at the cell membrane. Thus, Rac1, Cdc42, and RhoG perform very specific and non-redundant functions at different levels of hierarchy in regulating dendritic tree complexity induced by CALEB/NGC. Rho GTPases play a prominent role in dendritic branching. CALEB/NGC is a transmembrane member of the epidermal growth factor (EGF) family that mediates dendritic branching, dependent on Rac1. CALEB/NGC stimulates Rac1 activity. RhoG inhibits CALEB/NGC-mediated dendritic branching by decreasing the amount of CALEB/NGC at the plasma membrane. Palmitoylated, but not prenylated form

  17. Cdc42 is crucial for the maturation of primordial cell junctions in keratinocytes independent of Rac1

    DEFF Research Database (Denmark)

    Du, Dan; Pedersen, Esben; Wang, Zhipeng

    2008-01-01

    Cell-cell contacts are crucial for the integrity of all tissues. Contrasting reports have been published about the role of Cdc42 in epithelial cell-cell contacts in vitro. In keratinocytes, it was suggested that Rac1 and not Cdc42 is crucial for the formation of mature epithelial junctions, based...... on dominant negative inhibition experiments. Deletion of the Cdc42 gene in keratinocytes in vivo slowly impaired the maintenance of cell-cell contacts by an increased degradation of beta-catenin. Whether Cdc42 is required for the formation of mature junctions was not tested. We show now that Cdc42-deficient...... immortalized and primary keratinocytes form only punctate primordial cell contacts in vitro, which cannot mature into belt-like junctions. This defect was independent of enhanced degradation of beta-catenin, but correlated to an impaired activation and localization of aPKCzeta in the Cdc42-null keratinocytes...

  18. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Romain Ferru-Clément

    Full Text Available Cystic fibrosis transmembrane conductance regulator (CFTR is a chloride channel that is expressed on the apical plasma membrane (PM of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o- expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.

  19. Coordination by Cdc42 of Actin, Contractility, and Adhesion for Melanoblast Movement in Mouse Skin

    DEFF Research Database (Denmark)

    Woodham, Emma F; Paul, Nikki R; Tyrrell, Benjamin

    2017-01-01

    traverse the dermis to reach the epidermis of the skin and hair follicles. We previously established that Rac1 signals via Scar/WAVE and Arp2/3 to effect pseudopod extension and migration of melanoblasts in skin. Here we show that RhoA is redundant in the melanocyte lineage but that Cdc42 coordinates...... multiple motility systems independent of Rac1. Similar to Rac1 knockouts, Cdc42 null mice displayed a severe loss of pigmentation, and melanoblasts showed cell-cycle progression, migration, and cytokinesis defects. However, unlike Rac1 knockouts, Cdc42 null melanoblasts were elongated and displayed large...... null cells lacked the ability to polarize their Golgi and coordinate motility systems for efficient movement. Loss of Cdc42 de-coupled three main systems: actin assembly via the formin FMNL2 and Arp2/3, active myosin-II localization, and integrin-based adhesion dynamics....

  20. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    Science.gov (United States)

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development

    DEFF Research Database (Denmark)

    Benninger, Yves; Thurnherr, Tina; Pereira, Jorge A

    2007-01-01

    During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue-specific......During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue...

  2. Cdc42 promotes host defenses against fatal infection

    DEFF Research Database (Denmark)

    Lee, Keunwook; Boyd, Kelli L; Parekh, Diptiben V

    2013-01-01

    attempted to specifically delete it in these cells by crossing the Cdc42(fl/fl) mouse with a FSP-1 cre mouse, which is thought to mediate recombination exclusively in fibroblasts. Surprisingly, the FSP-1cre;Cdc42(fl/fl) mice died at 3 weeks of age due to overwhelming suppurative upper airway infections...... showed that in addition to fibroblasts, the FSP-1 cre deleted Cdc42 very efficiently in all leukocytes. Thus, by using this non-specific cre mouse we inadvertently demonstrated the importance of Cdc42 in host protection from lethal infections and suggest a critical role for this small GTPase in innate...

  3. Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2.

    Science.gov (United States)

    Ozdemir, E Sila; Jang, Hyunbum; Gursoy, Attila; Keskin, Ozlem; Li, Zhigang; Sacks, David B; Nussinov, Ruth

    2018-03-09

    IQ motif-containing GTPase-activating proteins (IQGAPs) are scaffolding proteins playing central roles in cell-cell adhesion, polarity, and motility. The Rho GTPases Cdc42 and Rac1, in their GTP-bound active forms, interact with all three human IQGAPs. The IQGAP-Cdc42 interaction promotes metastasis by enhancing actin polymerization. However, despite their high sequence identity, Cdc42 and Rac1 differ in their interactions with IQGAP. Two Cdc42 molecules can bind to the Ex-domain and the RasGAP site of the GTPase-activating protein (GAP)-related domain (GRD) of IQGAP and promote IQGAP dimerization. Only one Rac1 molecule might bind to the RasGAP site of GRD and may not facilitate the dimerization, and the exact mechanism of Cdc42 and Rac1 binding to IQGAP is unclear. Using all-atom molecular dynamics simulations, site-directed mutagenesis, and Western blotting, we unraveled the detailed mechanisms of Cdc42 and Rac1 interactions with IQGAP2. We observed that Cdc42 binding to the Ex-domain of GRD of IQGAP2 (GRD2) releases the Ex-domain at the C-terminal region of GRD2, facilitating IQGAP2 dimerization. Cdc42 binding to the Ex-domain promoted allosteric changes in the RasGAP site, providing a binding site for the second Cdc42 in the RasGAP site. Of note, the Cdc42 "insert loop" was important for the interaction of the first Cdc42 with the Ex-domain. By contrast, differences in Rac1 insert-loop sequence and structure precluded its interaction with the Ex-domain. Rac1 could bind only to the RasGAP site of apo-GRD2 and could not facilitate IQGAP2 dimerization. Our detailed mechanistic insights help decipher how Cdc42 can stimulate actin polymerization in metastasis.

  4. Cdc42 and Tks5: a minimal and universal molecular signature for functional invadosomes.

    Science.gov (United States)

    Di Martino, Julie; Paysan, Lisa; Gest, Caroline; Lagrée, Valérie; Juin, Amélie; Saltel, Frédéric; Moreau, Violaine

    2014-01-01

    Invadosomes are actin-based structures involved in extracellular-matrix degradation. Invadosomes, either known as podosomes or invadopodia, are found in an increasing number of cell types. Moreover, their overall organization and molecular composition may vary from one cell type to the other. Some are constitutive such as podosomes in hematopoietic cells whereas others are inducible. However, they share the same feature, their ability to interact and to degrade the extracellular matrix. Based on the literature and our own experiments, the aim of this study was to establish a minimal molecular definition of active invadosomes. We first highlighted that Cdc42 is the key RhoGTPase involved in invadosome formation in all described models. Using different cellular models, such as NIH-3T3, HeLa, and endothelial cells, we demonstrated that overexpression of an active form of Cdc42 is sufficient to form invadosome actin cores. Therefore, active Cdc42 must be considered not only as an inducer of filopodia, but also as an inducer of invadosomes. Depending on the expression level of Tks5, these Cdc42-dependent actin cores were endowed or not with a proteolytic activity. In fact, Tks5 overexpression rescued this activity in Tks5 low expressing cells. We thus described the adaptor protein Tks5 as a major actor of the invadosome degradation function. Surprisingly, we found that Src kinases are not always required for invadosome formation and function. These data suggest that even if Src family members are the principal kinases involved in the majority of invadosomes, it cannot be considered as a common element for all invadosome structures. We thus define a minimal and universal molecular signature of invadosome that includes Cdc42 activity and Tks5 presence in order to drive the actin machinery and the proteolytic activity of these invasive structures.

  5. Cdc42/N-WASP signaling links actin dynamics to pancreatic β cell delamination and differentiation

    Science.gov (United States)

    Kesavan, Gokul; Lieven, Oliver; Mamidi, Anant; Öhlin, Zarah Löf; Johansson, Jenny Kristina; Li, Wan-Chun; Lommel, Silvia; Greiner, Thomas Uwe; Semb, Henrik

    2014-01-01

    Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked to differentiation remains unknown. Using the developing mouse pancreas as a model system, we show that β cell delamination and differentiation are two independent events, which are controlled by Cdc42/N-WASP signaling. Specifically, we show that expression of constitutively active Cdc42 in β cells inhibits β cell delamination and differentiation. These processes are normally associated with junctional actin and cell-cell junction disassembly and the expression of fate-determining transcription factors, such as Isl1 and MafA. Mechanistically, we demonstrate that genetic ablation of N-WASP in β cells expressing constitutively active Cdc42 partially restores both delamination and β cell differentiation. These findings elucidate how junctional actin dynamics via Cdc42/N-WASP signaling cell-autonomously control not only epithelial delamination but also cell differentiation during mammalian organogenesis. PMID:24449844

  6. The structure of FMNL2-Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation

    Science.gov (United States)

    Kühn, Sonja; Erdmann, Constanze; Kage, Frieda; Block, Jennifer; Schwenkmezger, Lisa; Steffen, Anika; Rottner, Klemens; Geyer, Matthias

    2015-05-01

    Formins are actin polymerization factors that elongate unbranched actin filaments at the barbed end. Rho family GTPases activate Diaphanous-related formins through the relief of an autoregulatory interaction. The crystal structures of the N-terminal domains of human FMNL1 and FMNL2 in complex with active Cdc42 show that Cdc42 mediates contacts with all five armadillo repeats of the formin with specific interactions formed by the Rho-GTPase insert helix. Mutation of three residues within Rac1 results in a gain-of-function mutation for FMNL2 binding and reconstitution of the Cdc42 phenotype in vivo. Dimerization of FMNL1 through a parallel coiled coil segment leads to formation of an umbrella-shaped structure that--together with Cdc42--spans more than 15 nm in diameter. The two interacting FMNL-Cdc42 heterodimers expose six membrane interaction motifs on a convex protein surface, the assembly of which may facilitate actin filament elongation at the leading edge of lamellipodia and filopodia.

  7. Redundant and nonredundant roles for Cdc42 and Rac1 in lymphomas developed in NPM-ALK transgenic mice

    DEFF Research Database (Denmark)

    Choudhari, Ramesh; Minero, Valerio Giacomo; Menotti, Matteo

    2016-01-01

    Increasing evidence suggests that Rho family GTPases could have a critical role in the biology of T-cell lymphoma. In ALK-rearranged anaplastic large cell lymphoma (ALCL), a specific subtype of T-cell lymphoma, the Rho family GTPases Cdc42 and Rac1 are activated by the ALK oncogenic activity. In ...

  8. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro.

    Science.gov (United States)

    Xu, Xiu-Ping; He, Hong-Li; Hu, Shu-Ling; Han, Ji-Bin; Huang, Li-Li; Xu, Jing-Yuan; Xie, Jian-Feng; Liu, Ai-Ran; Yang, Yi; Qiu, Hai-Bo

    2017-07-12

    not Losartan, indicating that FAK activation and F-actin reorganization were downstream of AT2R. These data indicate that Ang II-AT2R regulates human bone marrow MSC migration by signaling through the FAK and RhoA/Cdc42 pathways. This study provides insights into the mechanisms by which MSCs home to injury sites and will enable the rational design of targeted therapies to improve MSC engraftment.

  9. Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall.

    Science.gov (United States)

    Kim, Il Hwan; Wang, Hong; Soderling, Scott H; Yasuda, Ryohei

    2014-07-08

    Cdc42 is a signaling protein important for reorganization of actin cytoskeleton and morphogenesis of cells. However, the functional role of Cdc42 in synaptic plasticity and in behaviors such as learning and memory are not well understood. Here we report that postnatal forebrain deletion of Cdc42 leads to deficits in synaptic plasticity and in remote memory recall using conditional knockout of Cdc42. We found that deletion of Cdc42 impaired LTP in the Schaffer collateral synapses and postsynaptic structural plasticity of dendritic spines in CA1 pyramidal neurons in the hippocampus. Additionally, loss of Cdc42 did not affect memory acquisition, but instead significantly impaired remote memory recall. Together these results indicate that the postnatal functions of Cdc42 may be crucial for the synaptic plasticity in hippocampal neurons, which contribute to the capacity for remote memory recall.

  10. MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 via transforming growth factor β1 to enhance epithelial-mesenchymal transition in breast cancer.

    Science.gov (United States)

    Menezes, Mitchell E; Shen, Xue-Ning; Das, Swadesh K; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B

    2016-12-06

    Epithelial-mesenchymal transition (EMT) is one of the decisive steps regulating cancer invasion and metastasis. However, the molecular mechanisms underlying this transition require further clarification. MDA-9/syntenin (SDCBP) expression is elevated in breast cancer patient samples as well as cultured breast cancer cells. Silencing expression of MDA-9 in mesenchymal metastatic breast cancer cells triggered a change in cell morphology in both 2D- and 3D-cultures to a more epithelial-like phenotype, along with changes in EMT markers, cytoskeletal rearrangement and decreased invasion. Conversely, over expressing MDA-9 in epithelial non-metastatic breast cancer cells instigated a change in morphology to a more mesenchymal phenotype with corresponding changes in EMT markers, cytoskeletal rearrangement and an increase in invasion. We also found that MDA-9 upregulated active levels of known modulators of EMT, the small GTPases RhoA and Cdc42, via TGFβ1. Reintroducing TGFβ1 in MDA-9 silenced cells restored active RhoA and cdc42 levels, modulated cytoskeletal rearrangement and increased invasion. We further determined that MDA-9 interacts with TGFβ1 via its PDZ1 domain. Finally, in vivo studies demonstrated that silencing the expression of MDA-9 resulted in decreased lung metastasis and TGFβ1 re-expression partially restored lung metastases. Our findings provide evidence for the relevance of MDA-9 in mediating EMT in breast cancer and support the potential of MDA-9 as a therapeutic target against metastatic disease.

  11. Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development

    DEFF Research Database (Denmark)

    Wu, Xunwei; Li, Shaohua; Chrostek-Grashoff, Anna

    2007-01-01

    To study the role of Cdc42 in the establishment of epithelial polarity during mammalian development, we generated murine Cdc42-null embryonic stem cells and analyzed peri-implantation development using embryoid bodies (EBs). Mutant EBs developed endoderm and underlying basement membrane, but exhi......To study the role of Cdc42 in the establishment of epithelial polarity during mammalian development, we generated murine Cdc42-null embryonic stem cells and analyzed peri-implantation development using embryoid bodies (EBs). Mutant EBs developed endoderm and underlying basement membrane...

  12. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hiroki [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Nakamura, Seikou [Department of Pharmacognosy, Kyoto Pharmaceutical University, Kyoto (Japan); Chisaki, Yugo [Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto (Japan); Takada, Tetsuya [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Toda, Yuki [Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Kyoto (Japan); Murata, Hiroaki [Department of Orthopedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopedic Surgery, Matsushita Memorial Hospital, Osaka (Japan); Itoh, Kazuyuki [Department of Biology, Osaka Medical Center of Cancer and Cardiovascular Diseases, Osaka (Japan); Yano, Yoshitaka [Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, Kyoto (Japan); Takata, Kazuyuki [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan); Ashihara, Eishi, E-mail: ash@mb.kyoto-phu.ac.jp [Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto (Japan)

    2016-02-26

    Daphnetin, 7,8-dihydroxycoumarin, present in main constituents of Daphne odora var. marginatai, has multiple pharmacological activities including anti-proliferative effects in cancer cells. In this study, using a Transwell system, we showed that daphnetin inhibited invasion and migration of highly metastatic murine osteosarcoma LM8 cells in a dose-dependent manner. Following treatment by daphnetin, cells that penetrated the Transwell membrane were rounder than non-treated cells. Immunofluorescence analysis revealed that daphnetin decreased the numbers of intracellular stress fibers and filopodia. Moreover, daphnetin treatment dramatically decreased the expression levels of RhoA and Cdc42. In summary, the dihydroxycoumarin derivative daphnetin inhibits the invasion and migration of LM8 cells, and therefore represents a promising agent for use against metastatic cancer. - Highlights: • Daphnetin, a coumarin-derivative, inhibited invasion and migration of LM8 cells. • Stress fibers and filopodia were decreased by daphnetin treatment. • Daphnetin decreased RhoA and Cdc42 protein expression.

  13. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression

    International Nuclear Information System (INIS)

    Fukuda, Hiroki; Nakamura, Seikou; Chisaki, Yugo; Takada, Tetsuya; Toda, Yuki; Murata, Hiroaki; Itoh, Kazuyuki; Yano, Yoshitaka; Takata, Kazuyuki; Ashihara, Eishi

    2016-01-01

    Daphnetin, 7,8-dihydroxycoumarin, present in main constituents of Daphne odora var. marginatai, has multiple pharmacological activities including anti-proliferative effects in cancer cells. In this study, using a Transwell system, we showed that daphnetin inhibited invasion and migration of highly metastatic murine osteosarcoma LM8 cells in a dose-dependent manner. Following treatment by daphnetin, cells that penetrated the Transwell membrane were rounder than non-treated cells. Immunofluorescence analysis revealed that daphnetin decreased the numbers of intracellular stress fibers and filopodia. Moreover, daphnetin treatment dramatically decreased the expression levels of RhoA and Cdc42. In summary, the dihydroxycoumarin derivative daphnetin inhibits the invasion and migration of LM8 cells, and therefore represents a promising agent for use against metastatic cancer. - Highlights: • Daphnetin, a coumarin-derivative, inhibited invasion and migration of LM8 cells. • Stress fibers and filopodia were decreased by daphnetin treatment. • Daphnetin decreased RhoA and Cdc42 protein expression.

  14. Podocyte-specific loss of cdc42 leads to congenital nephropathy

    DEFF Research Database (Denmark)

    Scott, Rizaldy P; Hawley, Steve P; Ruston, Julie

    2012-01-01

    in the absence of Cdc42, indicating a disruption of the slit diaphragm. Kidneys from Rac1- and RhoA-mutant mice, however, had normal glomerular morphology and intact foot processes. A nephrin clustering assay suggested that Cdc42 deficiency, but not Rac1 or RhoA deficiency, impairs the polymerization of actin...

  15. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets

    DEFF Research Database (Denmark)

    Pleines, Irina; Eckly, Anita; Elvers, Margitta

    2010-01-01

    formation and exocytosis in various cell types, but its exact function in platelets is not established. Here, we show that the megakaryocyte/platelet-specific loss of Cdc42 leads to mild thrombocytopenia and a small increase in platelet size in mice. Unexpectedly, Cdc42-deficient platelets were able to form...

  16. Cdc42 expression in keratinocytes is required for the maintenance of the basement membrane in skin

    DEFF Research Database (Denmark)

    Wu, Xunwei; Quondamatteo, Fabio; Brakebusch, Cord

    2006-01-01

    , structure and number of hemidesomosomes were not significantly changed in the Cdc42 mutant skin compared with the control mice and no blister formation was observed in mutant skin. These data indicate that Cdc42 in keratinocytes is important for maintenance of the basement membrane of skin....... process, which requires directed secretion, deposition and organization of basement membrane components at the basal side of epithelial cells. In the current study, we analyzed the maintenance of skin basement membrane in mice with a keratinocyte-restricted deletion of the Cdc42 gene. In the absence...

  17. Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways

    DEFF Research Database (Denmark)

    Bosse, Tanja; Ehinger, Julia; Czuchra, Aleksandra

    2007-01-01

    -WASP. Instead, actin polymerization was driven by Arp2/3 complex activation through the WAVE complex downstream of Rac. Together, our data establish an intricate signaling network comprising as key molecules Cdc42 and PI3-kinase, which converge on Rac-mediated actin reorganization essential for Listeria...

  18. Vasoactive intestinal peptide-induced neurite remodeling in human neuroblastoma SH-SY5Y cells implicates the Cdc42 GTPase and is independent of Ras-ERK pathway

    International Nuclear Information System (INIS)

    Alleaume, Celine; Eychene, Alain; Harnois, Thomas; Bourmeyster, Nicolas; Constantin, Bruno; Caigneaux, Evelyne; Muller, Jean-Marc; Philippe, Michel

    2004-01-01

    Vasoactive intestinal peptide (VIP) is known to regulate proliferation or differentiation in normal and tumoral cells. SH-SY5Y is a differentiated cell subclone derived from the SK-N-SH human neuroblastoma cell line and possess all the components for an autocrine action of VIP. In the present study, we investigated the morphological changes and intracellular signaling pathways occurring upon VIP treatment of SH-SY5Y cells. VIP induced an early remodeling of cell projections: a branched neurite network spread out and prominent varicosities developed along neurites. Although activated by VIP, the Ras/ERK pathway was not required for the remodeling process. In contrast, pull-down experiments revealed a strong Cdc42 activation by VIP while expression of a dominant-negative Cdc42 prevented the VIP-induced neurite changes, suggesting an important role for this small GTPase in the process. These data provide the first evidence for a regulation of the activity of Rho family GTPases by VIP and bring new insights in the signaling pathways implicated in neurite remodeling process induced by VIP in neuroblastoma cells

  19. Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

    Directory of Open Access Journals (Sweden)

    Nils Bohmer

    2015-01-01

    Full Text Available Nanomedicine is a rapidly growing field in nanotechnology, which has great potential in the development of new therapies for numerous diseases. For example iron oxide nanoparticles are in clinical use already in the thermotherapy of brain cancer. Although it has been shown, that tumor cells take up these particles in vitro, little is known about the internalization routes. Understanding of the underlying uptake mechanisms would be very useful for faster and precise development of nanoparticles for clinical applications. This study aims at the identification of key proteins, which are crucial for the active uptake of iron oxide nanoparticles by HeLa cells (human cervical cancer as a model cell line. Cells were transfected with specific siRNAs against Caveolin-1, Dynamin 2, Flotillin-1, Clathrin, PIP5Kα and CDC42. Knockdown of Caveolin-1 reduces endocytosis of superparamagnetic iron oxide nanoparticles (SPIONs and silica-coated iron oxide nanoparticles (SCIONs between 23 and 41%, depending on the surface characteristics of the nanoparticles and the experimental design. Knockdown of CDC42 showed a 46% decrease of the internalization of PEGylated SPIONs within 24 h incubation time. Knockdown of Dynamin 2, Flotillin-1, Clathrin and PIP5Kα caused no or only minor effects. Hence endocytosis in HeLa cells of iron oxide nanoparticles, used in this study, is mainly mediated by Caveolin-1 and CDC42. It is shown here for the first time, which proteins of the endocytotic pathway mediate the endocytosis of silica-coated iron oxide nanoparticles in HeLa cells in vitro. In future studies more experiments should be carried out with different cell lines and other well-defined nanoparticle species to elucidate possible general principles.

  20. Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS

    DEFF Research Database (Denmark)

    Thurnherr, Tina; Benninger, Yves; Wu, Xunwei

    2006-01-01

    . This was characterized by the extraordinary enlargement of the inner tongue of the oligodendrocyte process and concomitant formation of a myelin outfolding as a result of abnormal accumulation of cytoplasm in this region. Ablation of Rac1 also resulted in the abnormal accumulation of cytoplasm in the inner tongue...... of the oligodendrocyte process, and we provide genetic evidence that rac1 synergizes with cdc42 in a gene dosage-dependent way to regulate myelination....

  1. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury

    DEFF Research Database (Denmark)

    Blattner, Simone M; Hodgin, Jeffrey B; Nishio, Masashi

    2013-01-01

    -specific deletion of Rac1 prevented foot process effacement. In a long-term model of chronic hypertensive glomerular damage, however, loss of Rac1 led to an exacerbation of albuminuria and glomerulosclerosis. In contrast, mice with podocyte-specific deletion of Cdc42 had severe proteinuria, podocyte foot process...... effacement, and glomerulosclerosis beginning as early as 10 days of age. In addition, slit diaphragm proteins nephrin and podocin were redistributed, and cofilin was dephosphorylated. Cdc42 is necessary for the maintenance of podocyte structure and function, but Rac1 is entirely dispensable in physiological...... steady state. However, Rac1 has either beneficial or deleterious effects depending on the context of podocyte impairment. Thus, our study highlights the divergent roles of Rac1 and Cdc42 function in podocyte maintenance and injury.Kidney International advance online publication, 15 May 2013; doi:10...

  2. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver

    DEFF Research Database (Denmark)

    van Hengel, Jolanda; D'Hooge, Petra; Hooghe, Bart

    2008-01-01

    be required for liver function. METHODS: Mice in which Cdc42 was ablated in hepatocytes and bile duct cells were generated by Cre-loxP technology. Livers were examined by histologic, immunohistochemical, ultrastructural, and serum analysis to define the effect of loss of Cdc42 on liver structure. RESULTS...... of 2 months, the canaliculi between hepatocytes were greatly enlarged, although the tight junctions flanking the canaliculi appeared normal. Regular liver plates were absent. E-cadherin expression pattern and gap junction localization were distorted. Analysis of serum samples indicated cholestasis...

  3. Role of TGF-beta1-independent changes in protein neosynthesis, p38alphaMAPK, and cdc42 in hydrogen peroxide-induced senescence-like morphogenesis

    DEFF Research Database (Denmark)

    Chrétien, Aline; Dierick, Jean-François; Delaive, Edouard

    2008-01-01

    for p38(MAPK) activation, in turn triggering phosphorylation of L-caldesmon and HSP27. Cdc42 was also shown to be mainly responsible for the increase in TGF-beta1 mRNA level observed at 24 h after treatment with H(2)O(2) and onward. This study further clarified the mechanisms of senescence......The role of TGF-beta1 in hydrogen peroxide-induced senescence-like morphogenesis has been described. The aim of this work was to investigate whether TGF-beta1-independent changes in protein synthesis are involved in this morphogenesis and to study possible mechanisms occurring earlier than TGF-beta......1 overexpression. Among the multiple TGF-beta1-independent changes in protein neosynthesis, followed or not by posttranslational modifications, identified by proteomic analysis herein, those of ezrin, L-caldesmon, and HSP27 were particularly studied. Rho-GTPase cdc42 was shown to be responsible...

  4. Cdc42-dependent structural development of auditory supporting cells is required for wound healing at adulthood

    DEFF Research Database (Denmark)

    Anttonen, Tommi; Kirjavainen, Anna; Belevich, Ilya

    2012-01-01

    of a basolateral membrane protein in the apical domain were observed. These defects and changes in aPKCλ/ι expression suggested that apical polarization is impaired. Following a lesion at adulthood, supporting cells with Cdc42 loss-induced maturational defects collapsed and failed to remodel F-actin belts...

  5. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Wu, Xunwei; Meyer, Hannelore

    2005-01-01

    of Cdc42 did not affect filopodium or lamellipodium formation and had no significant influence on the speed of directed migration nor on mitosis. Cdc42-deficient cells displayed a more elongated cell shape and had a reduced area. Furthermore, directionality during migration and reorientation of the Golgi...

  6. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling

    Science.gov (United States)

    Bai, Zhiyong; Grant, Barth D.

    2015-01-01

    Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1–positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42–associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling. PMID:25775511

  7. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice

    DEFF Research Database (Denmark)

    Sakamori, Ryotaro; Das, Soumyashree; Yu, Shiyan

    2012-01-01

    The constant self renewal and differentiation of adult intestinal stem cells maintains a functional intestinal mucosa for a lifetime. However, the molecular mechanisms that regulate intestinal stem cell division and epithelial homeostasis are largely undefined. We report here that the small GTPases...... reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells...... suggest that defects of the stem cell niche can cause MVID. This hypothesis represents a conceptual departure from the conventional view of this disease, which has focused on the affected enterocytes, and suggests stem cell-based approaches could be beneficial to infants with this often lethal condition....

  8. Suppression of chemotaxis by SSeCKS via scaffolding of phosphoinositol phosphates and the recruitment of the Cdc42 GEF, Frabin, to the leading edge.

    Science.gov (United States)

    Ko, Hyun-Kyung; Guo, Li-wu; Su, Bing; Gao, Lingqiu; Gelman, Irwin H

    2014-01-01

    Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the

  9. Two closely related Rho GTPases, Cdc42 and RacA, of the en-dophytic fungus Epichloë festucae have contrasting roles for ROS production and symbiotic infection synchronized with the host plant.

    Science.gov (United States)

    Kayano, Yuka; Tanaka, Aiko; Takemoto, Daigo

    2018-01-01

    Epichloë festucae is an endophytic fungus which systemically colonizes temperate grasses to establish symbiotic associations. Maintaining symptomless infection is a key requirement for endophytes, a feature that distinguishes them from pathogenic fungi. While pathogenic fungi extend their hyphae by tip growth, hyphae of E. festucae systemically colonize the intercellular space of expanding host leaves via a unique mechanism of hyphal intercalary growth. This study reports that two homologous Rho GTPases, Cdc42 and RacA, have distinctive roles in the regulation of E. festucae growth in planta. Here we highlight the vital role of Cdc42 for intercalary hyphal growth, as well as involvement of RacA in regulation of hyphal network formation, and demonstrate the consequences of mutations in these genes on plant tissue infection. Functions of Cdc42 and RacA are mediated via interactions with BemA and NoxR respectively, which are expected components of the ROS producing NOX complex. Symbiotic defects found in the racA mutant were rescued by introduction of a Cdc42 with key amino acids substitutions crucial for RacA function, highlighting the significance of the specific interactions of these GTPases with BemA and NoxR for their functional differentiation in symbiotic infection.

  10. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42

    DEFF Research Database (Denmark)

    Pleines, Irina; Dütting, Sebastian; Cherpokova, Deya

    2013-01-01

    Blood platelets are anuclear cell fragments that are essential for blood clotting. Platelets are produced by bone marrow megakaryocytes (MKs), which extend protrusions, or so-called proplatelets, into bone marrow sinusoids. Proplatelet formation requires a profound reorganization of the MK actin...... normally in vivo but displayed highly abnormal morphology and uncontrolled fragmentation. Consistently, a lack of Rac1/Cdc42 virtually abrogated proplatelet formation in vitro. Strikingly, this phenotype was associated with severely defective tubulin organization, whereas actin assembly and structure were...

  11. Genetic deletion of cdc42 reveals a crucial role for astrocyte recruitment to the injury site in vitro and in vivo

    DEFF Research Database (Denmark)

    Robel, Stefanie; Bardehle, Sophia; Lepier, Alexandra

    2011-01-01

    signals, the small RhoGTPase Cdc42, selectively in mouse astrocytes in vitro and in vivo. We used an in vitro scratch assay as a minimal wounding model and found that astrocytes lacking Cdc42 (Cdc42Δ) were still able to form protrusions, although in a nonoriented way. Consequently, they failed to migrate...... in a directed manner toward the scratch. When animals were injured in vivo through a stab wound, Cdc42Δ astrocytes developed protrusions properly oriented toward the lesion, but the number of astrocytes recruited to the lesion site was significantly reduced. Surprisingly, however, lesions in Cdc42Δ animals...

  12. Stage-specific functions of the small Rho GTPases Cdc42 and Rac1 for adult hippocampal neurogenesis

    DEFF Research Database (Denmark)

    Vadodaria, Krishna C; Brakebusch, Cord; Suter, Ueli

    2013-01-01

    The molecular mechanisms underlying the generation, maturation, and integration of new granule cells generated throughout life in the mammalian hippocampus remain poorly understood. Small Rho GTPases, such as Cdc42 and Rac1, have been implicated previously in neural stem/progenitor cell (NSPC......) proliferation and neuronal maturation during embryonic development. Here we used conditional genetic deletion and virus-based loss-of-function approaches to identify temporally distinct functions for Cdc42 and Rac1 in adult hippocampal neurogenesis. We found that Cdc42 is involved in mouse NSPC proliferation......, initial dendritic development, and dendritic spine maturation. In contrast, Rac1 is dispensable for early steps of neuronal development but is important for late steps of dendritic growth and spine maturation. These results establish cell-autonomous and stage-specific functions for the small Rho GTPases...

  13. Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1

    DEFF Research Database (Denmark)

    Fuchs, Sebastian; Herzog, Dominik; Sumara, Grzegorz

    2009-01-01

    -renewal and proliferation of later stage, but not early migratory NCSCs. This stage-specific requirement for small Rho GTPases is due to changes in NCSCs that, during development, acquire responsiveness to mitogenic EGF acting upstream of both Cdc42 and Rac1. Thus, our data reveal distinct mechanisms for growth control......The neural crest (NC) generates a variety of neural and non-neural tissues during vertebrate development. Both migratory NC cells and their target structures contain cells with stem cell features. Here we show that these populations of neural crest-derived stem cells (NCSCs) are differentially...

  14. A hot-spot mutation in CDC42 (p.Tyr64Cys) and novel phenotypes in the third patient with Takenouchi-Kosaki syndrome.

    Science.gov (United States)

    Motokawa, Midori; Watanabe, Satoshi; Nakatomi, Akiko; Kondoh, Tatsuro; Matsumoto, Tadashi; Morifuji, Kanako; Sawada, Hirotake; Nishimura, Toyoki; Nunoi, Hiroyuki; Yoshiura, Koh-Ichiro; Moriuchi, Hiroyuki; Dateki, Sumito

    2018-03-01

    Takenouchi-Kosaki syndrome (TKS) is a congenital malformation syndrome characterized by severe developmental delay, macrothrombocytopenia, camptodactyly, sensorineural hearing loss, and dysmorphic facial features. Recently, a heterozygous de novo mutation (p.Tyr64Cys) in the CDC42 gene, which encodes a key small GTP-binding protein of the Rho-subfamily, was identified in two unrelated patients with TKS. We herein report a third patient with TKS who had the same heterozygous CDC42 mutation. The phenotype of the patient was very similar to those of the two previously reported patients with TKS; however, she also demonstrated novel clinical manifestations, such as congenital hypothyroidism and immunological disturbance. Thus, despite the heterozygous mutation of CDC42 (p.Tyr64Cys) likely being a hot-spot mutation for TKS, its phenotype may be variable. Further studies and the accumulation of patients with CDC42 mutations are needed to clarify the phenotype in patients with TKS and the pathophysiological roles of the CDC42 mutation.

  15. Piezoelectric ceramic (PZT) modulates axonal guidance growth of rat cortical neurons via RhoA, Rac1, and Cdc42 pathways.

    Science.gov (United States)

    Wen, Jianqiang; Liu, Meili

    2014-03-01

    Electrical stimulation is critical for axonal connection, which can stimulate axonal migration and deformation to promote axonal growth in the nervous system. Netrin-1, an axonal guidance cue, can also promote axonal guidance growth, but the molecular mechanism of axonal guidance growth under indirect electric stimulation is still unknown. We investigated the molecular mechanism of axonal guidance growth under piezoelectric ceramic lead zirconate titanate (PZT) stimulation in the primary cultured cortical neurons. PZT induced marked axonal elongation. Moreover, PZT activated the excitatory postsynaptic currents (EPSCs) by increasing the frequency and amplitude of EPSCs of the cortical neurons in patch clamp assay. PZT downregulated the expression of Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC). Rho GTPase signaling is involved in interactions of Netrin-1 and DCC. PZT activated RhoA. Dramatic decrease of Cdc42 and Rac1 was also observed after PZT treatment. RhoA inhibitor Clostridium botulinum C3 exoenzyme (C3-Exo) prevented the PZT-induced downregulation of Netrin-1 and DCC. We suggest that PZT can promote axonal guidance growth by downregulation of Netrin-1 and DCC to mediate axonal repulsive responses via the Rho GTPase signaling pathway. Obviously, piezoelectric materials may provide a new approach for axonal recovery and be beneficial for clinical therapy in the future.

  16. Sprouty regulates cell migration by inhibiting the activation of Rac1 GTPase

    International Nuclear Information System (INIS)

    Poppleton, Helen M.; Edwin, Francis; Jaggar, Laura; Ray, Ramesh; Johnson, Leonard R.; Patel, Tarun B.

    2004-01-01

    Sprouty (SPRY) protein negatively modulates fibroblast growth factor and epidermal growth factor actions. We showed that human SPRY2 inhibits cell growth and migration in response to serum and several growth factors. Using rat intestinal epithelial (IEC-6) cells, we investigated the involvement of the Rho family of GTPases, RhoA, Rac1, and cdc42 in SPRY2-mediated inhibition of cell migration and proliferation. The ability of TAT-tagged SPRY2 to inhibit proliferation and migration of IEC-6 cells transfected with constitutively active mutants of RhoA(G14V), Rac1(G12V), and cdc42 (F28L) was determined. Constitutively active RhoA(G14V), Rac1(G12V), or cdc42(F28L) did not protect cells from the anti-proliferative actions of TAT-SPRY2. The ability of TAT-hSPRY2 to inhibit migration was not altered by of RhoA(G14V) and cdc42(F28L). However, Rac1(G12V) obliterated the ability of SPRY2 to inhibit cell autonomous or serum-induced migration. Also, the activation of endogenous Rac1 was attenuated by TAT-SPRY2. Thus, SPRY2 mediates its anti-migratory actions by inhibiting Rac1 activation

  17. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration.

    Science.gov (United States)

    Kutys, Matthew L; Yamada, Kenneth M

    2014-09-01

    Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.

  18. Rho Kinase (ROCK) collaborates with Pak to Regulate Actin Polymerization and Contraction in Airway Smooth Muscle.

    Science.gov (United States)

    Zhang, Wenwu; Bhetwal, Bhupal P; Gunst, Susan J

    2018-05-10

    The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and Neuronal-Wiskott-Aldrich Syndrome protein (N-WASp). N-WASP transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor, H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue

  19. Human telomerase activity regulation

    OpenAIRE

    Wojtyla, Aneta; Gladych, Marta; Rubis, Blazej

    2010-01-01

    Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control b...

  20. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals.

    Science.gov (United States)

    Wang, Kefeng; Sun, Yin; Tao, Wei; Fei, Xiang; Chang, Chawnshang

    2017-05-28

    Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Involvement of Chromatin Remodeling Genes and the Rho GTPases RhoB and CDC42 in Ovarian Clear Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Nicolai Skovbjerg Arildsen

    2017-05-01

    Full Text Available ObjectiveOvarian clear cell carcinomas (OCCCs constitute a rare ovarian cancer subtype with distinct clinical features, but may nonetheless be difficult to distinguish morphologically from other subtypes. There is limited knowledge of genetic events driving OCCC tumorigenesis beyond ARID1A, which is reportedly mutated in 30–50% of OCCCs. We aimed to further characterize OCCCs by combined global transcriptional profiling and targeted deep sequencing of a panel of well-established cancer genes. Increased knowledge of OCCC-specific genetic aberrations may help in guiding development of targeted treatments and ultimately improve patient outcome.MethodsGene expression profiling of formalin-fixed, paraffin-embedded (FFPE tissue from a cohort of the major ovarian cancer subtypes (cohort 1; n = 67 was performed using whole-genome cDNA-mediated Annealing, Selection, extension and Ligation (WG-DASL bead arrays, followed by pathway, gene module score, and gene ontology analyses, respectively. A second FFPE cohort of 10 primary OCCCs was analyzed by targeted DNA sequencing of a panel of 60 cancer-related genes (cohort 2. Non-synonymous and non-sense variants affecting single-nucleotide variations and insertions or deletions were further analyzed. A tissue microarray of 43 OCCCs (cohort 3 was used for validation by immunohistochemistry and chromogenic in situ hybridization.ResultsGene expression analyses revealed a distinct OCCC profile compared to other histological subtypes, with, e.g., ERBB2, TFAP2A, and genes related to cytoskeletal actin regulation being overexpressed in OCCC. ERBB2 was, however, not overexpressed on the protein level and ERBB2 amplification was rare in the validation cohort. Targeted deep sequencing revealed non-synonymous variants or insertions/deletions in 11/60 cancer-related genes. Genes involved in chromatin remodeling, including ARID1A, SPOP, and KMT2D were frequently mutated across OCCC tumors.ConclusionOCCCs appear

  2. Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): Identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42

    International Nuclear Information System (INIS)

    Shinjo, K.; Koland, J.G.; Hart, M.J.; Narasimhan, V.; Cerione, R.A.; Johnson, D.I.; Evans, T.

    1990-01-01

    The authors have isolated cDNA clones from a human placental library that code for a low molecular weight GTP-binding protein originally designated G p (also called G25K). This identification is based on comparisons with the available peptide sequences for the purified human G p protein and the use of two highly specific anti-peptide antibodies. The predicted amino acid sequence of the protein is very similar to those of various members of the ras superfamily of low molecular weight GTP-binding proteins, including the N-, Ki-, and Ha-ras proteins (30-35% identical), the rho proteins and the rac proteins. The highest degree of sequence identity (80%) is found with the Saccharomyces cerevisiae cell division-cycle protein CDC42. The human placental gene, which they designate CDC42Hs, complements the cdc42-1 mutation in S. cerevisiae, which suggests that this GTP-binding protein is the human homolog of the yeast protein

  3. ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression

    DEFF Research Database (Denmark)

    Rafn, Bo; Nielsen, Christian Thomas Friberg; Andersen, Sofie Hagel

    2012-01-01

    Aberrant ErbB2 receptor tyrosine kinase activation in breast cancer is strongly linked to an invasive disease. The molecular basis of ErbB2-driven invasion is largely unknown. We show that cysteine cathepsins B and L are elevated in ErbB2 positive primary human breast cancer and function...... as effectors of ErbB2-induced invasion in vitro. We identify Cdc42-binding protein kinase beta, extracellular regulated kinase 2, p21-activated protein kinase 4, and protein kinase C alpha as essential mediators of ErbB2-induced cysteine cathepsin expression and breast cancer cell invasiveness. The identified...

  4. Protein Tyrosine Phosphatase-PEST and β8 Integrin Regulate Spatiotemporal Patterns of RhoGDI1 Activation in Migrating Cells

    Science.gov (United States)

    Lee, Hye Shin; Cheerathodi, Mujeeburahiman; Chaki, Sankar P.; Reyes, Steve B.; Zheng, Yanhua; Lu, Zhimin; Paidassi, Helena; DerMardirossian, Celine; Lacy-Hulbert, Adam; Rivera, Gonzalo M.

    2015-01-01

    Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor β8 integrin that plays essential roles in directional cell motility. β8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell's leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells. PMID:25666508

  5. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings...... of a regulatory effect of the PFC on the emotional control of our actions....

  6. Differential gene expression analysis of tubule forming and non-tubule forming endothelial cells: CDC42GAP as a counter-regulator in tubule formation

    NARCIS (Netherlands)

    Engelse, M.A.; Laurens, N.; Verloop, R.E.; Koolwijk, P.; Hinsbergh, V.W.M. van

    2008-01-01

    The formation of new tubular structures from a quiescent endothelial lining is one of the hallmarks of sprouting angiogenesis. This process can be mimicked in vitro by inducing capillary-like tubular structures in a three-dimensional (3D) fibrin matrix. We aimed to analyze the differential mRNA

  7. Cytoskeletal Regulation by AUTS2 in Neuronal Migration and Neuritogenesis

    Directory of Open Access Journals (Sweden)

    Kei Hori

    2014-12-01

    Full Text Available Mutations in the Autism susceptibility candidate 2 gene (AUTS2, whose protein is believed to act in neuronal cell nuclei, have been associated with multiple psychiatric illnesses, including autism spectrum disorders, intellectual disability, and schizophrenia. Here we show that cytoplasmic AUTS2 is involved in the regulation of the cytoskeleton and neural development. Immunohistochemistry and fractionation studies show that AUTS2 localizes not only in nuclei, but also in the cytoplasm, including in the growth cones in the developing brain. AUTS2 activates Rac1 to induce lamellipodia but downregulates Cdc42 to suppress filopodia. Our loss-of-function and rescue experiments show that a cytoplasmic AUTS2-Rac1 pathway is involved in cortical neuronal migration and neuritogenesis in the developing brain. These findings suggest that cytoplasmic AUTS2 acts as a regulator of Rho family GTPases to contribute to brain development and give insight into the pathology of human psychiatric disorders with AUTS2 mutations.

  8. Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis

    Science.gov (United States)

    Jeyapalan, Zina; Deng, Zhaoqun; Shatseva, Tatiana; Fang, Ling; He, Chengyan; Yang, Burton B.

    2011-01-01

    The non-coding 3′-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3′-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3′-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3′-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3′-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3′-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed. PMID:21149267

  9. Expression of CD44 3'-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis.

    Science.gov (United States)

    Jeyapalan, Zina; Deng, Zhaoqun; Shatseva, Tatiana; Fang, Ling; He, Chengyan; Yang, Burton B

    2011-04-01

    The non-coding 3'-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3'-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3'-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3'-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3'-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3'-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed.

  10. Disruption of the Cdc42/Par6/aPKC or Dlg/Scrib/Lgl Polarity Complex Promotes Epithelial Proliferation via Overlapping Mechanisms.

    Science.gov (United States)

    Schimizzi, Gregory V; Maher, Meghan T; Loza, Andrew J; Longmore, Gregory D

    2016-01-01

    The establishment and maintenance of apical-basal polarity is a defining characteristic and essential feature of functioning epithelia. Apical-basal polarity (ABP) proteins are also tumor suppressors that are targeted for disruption by oncogenic viruses and are commonly mutated in human carcinomas. Disruption of these ABP proteins is an early event in cancer development that results in increased proliferation and epithelial disorganization through means not fully characterized. Using the proliferating Drosophila melanogaster wing disc epithelium, we demonstrate that disruption of the junctional vs. basal polarity complexes results in increased epithelial proliferation via distinct downstream signaling pathways. Disruption of the basal polarity complex results in JNK-dependent proliferation, while disruption of the junctional complex primarily results in p38-dependent proliferation. Surprisingly, the Rho-Rok-Myosin contractility apparatus appears to play opposite roles in the regulation of the proliferative phenotype based on which polarity complex is disrupted. In contrast, non-autonomous Tumor Necrosis Factor (TNF) signaling appears to suppress the proliferation that results from apical-basal polarity disruption, regardless of which complex is disrupted. Finally we demonstrate that disruption of the junctional polarity complex activates JNK via the Rho-Rok-Myosin contractility apparatus independent of the cortical actin regulator, Moesin.

  11. Ablation of p120-Catenin Altering the Activity of Small GTPase in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nan LIU

    2009-05-01

    Full Text Available Background and objective p120-catenin (p120ctn, a member of the Armadillo gene family, has emerged as an important modulator of small GTPase activities. Therefore, it plays novel roles in tumor malignant phenotype, such as invasion and metastasis, whose mechanism are not well clarified yet. The aim of this study is to explore the roles of p120ctn on the regulation of small GTP family members in lung cancer and the effects to lung cancer invasions andmetastasis. Methods After p120ctn was knocked down by siRNA, in vivo and in vitro analysis was applied to investigate the role and possible mechanism of p120ctn in lung cancer, such as Western Blot, pull-down analysis, and nude mice models. Results p120ctn depletion inactivated RhoA, with the the activity of Cdc42 and Rac1 increased, the invasiveness of lung cancer cells was promoted both in vitro and in vivo . Conclusion p120ctn gene knockdown enhances the metastasis of lung cancer cells, probably by altering expression of small GTPase, such as inactivation of RhoA and activation of Cdc42/Rac1.

  12. Rac1 is essential for phospholipase C-gamma2 activation in platelets

    DEFF Research Database (Denmark)

    Pleines, Irina; Elvers, Margitta; Strehl, Amrei

    2008-01-01

    isoenzymes are activated downstream of G protein-coupled receptors (GPCRs), whereas PLCgamma2 is activated downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors, such as the major platelet collagen receptor glycoprotein (GP) VI or CLEC-2. The mechanisms underlying PLC......Platelet activation at sites of vascular injury is triggered through different signaling pathways leading to activation of phospholipase (PL) Cbeta or PLCgamma2. Active PLCs trigger Ca(2+) mobilization and entry, which is a prerequisite for adhesion, secretion, and thrombus formation. PLCbeta...... regulation are not fully understood. An involvement of small GTPases of the Rho family (Rho, Rac, Cdc42) in PLC activation has been proposed but this has not been investigated in platelets. We here show that murine platelets lacking Rac1 display severely impaired GPVI- or CLEC-2-dependent activation...

  13. Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer's disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats.

    Directory of Open Access Journals (Sweden)

    Fei Han

    Full Text Available Alzheimer's disease (AD is a typical hippocampal amnesia and the most common senile dementia. Many studies suggest that cognitive impairments are more closely correlated with synaptic loss than the burden of amyloid deposits in AD progression. To date, there is no effective treatment for this disease. Paeonol has been widely employed in traditional Chinese medicine. This compound improves learning behavior in an animal model; however, the mechanism remains unclear. In this study, Paeononlsilatie sodium (Pa, a derivative of Paeonol, attenuated D-galactose (D-gal and AlCl3-induced behavioral damages in rats based on evaluations of the open field test (OFT, elevated plus maze test (EPMT, and Morris water maze test (MWMT. Pa increased the dendritic complexity and the density of dendritic spines. Correlation analysis indicated that morphological changes in neuronal dendrites are closely correlated with behavioral changes. Pa treatment reduced the production of Aβ, affected the phosphorylation and redistribution of cofilin1 and inhibited rod-like formation in hippocampal neurons. The induction of D-gal and AlCl3 promoted the expression of RAC1/CDC42 expression; however, the tendency of gene expression was inhibited by pretreatment with Pa. Taken together, our results suggest that Pa may represent a novel therapeutic agent for the improvement of cognitive and emotional behaviors and dendritic morphology in an AD animal model.

  14. Visualization of the Activity of Rac1 Small GTPase in a Cell

    International Nuclear Information System (INIS)

    Higashi, Morihiro; Yu, Jianyong; Tsuchiya, Hiroshi; Saito, Teruyoshi; Oyama, Toshinao; Kawana, Hidetada; Kitagawa, Motoo; Tamaru, Jun-ichi; Harigaya, Kenichi

    2010-01-01

    Rho family G proteins including Rac regulate a variety of cellular functions, such as morphology, motility, and gene expression. Here we developed a fluorescence resonance energy transfer-based analysis in which we could monitor the activity of Rac1. To detect fluorescence resonance energy transfer, yellow fluorescent protein fused Rac1 and cyan fluorescent protein fused Cdc42-Rac1-interaction-binding domain of Pak1 protein were used as intermolecular probes of FRET. The fluorophores were separated with linear unmixing method. The fluorescence resonance energy transfer efficiency was measured by acceptor photobleaching assisted assay. With these methods, the Rac1 activity was visualized in a cell. The present findings indicate that this approach is sensitive enough to achieve results similar to those from ratiometric fluorescence resonance energy transfer analysis

  15. Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes

    Science.gov (United States)

    Tiryaki, Volkan Mujdat; Ayres, Virginia M; Khan, Adeel A; Ahmed, Ijaz; Shreiber, David I; Meiners, Sally

    2012-01-01

    Cerebral cortical astrocyte responses to polyamide nanofibrillar scaffolds versus poly-L-lysine (PLL)-functionalized planar glass, unfunctionalized planar Aclar coverslips, and PLL-functionalized planar Aclar surfaces were investigated by atomic force microscopy and immunocytochemistry. The physical properties of the cell culture environments were evaluated using contact angle and surface roughness measurements and compared. Astrocyte morphological responses, including filopodia, lamellipodia, and stress fiber formation, and stellation were imaged using atomic force microscopy and phalloidin staining for F-actin. Activation of the corresponding Rho GTPase regulators was investigated using immunolabeling with Cdc42, Rac1, and RhoA. Astrocytes cultured on the nanofibrillar scaffolds showed a unique response that included stellation, cell–cell interactions by stellate processes, and evidence of depression of RhoA. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family, with demonstrable morphological consequences for cerebral cortical astrocytes. PMID:22915841

  16. Regulation of p21ras activity

    DEFF Research Database (Denmark)

    Lowy, D R; Zhang, K; DeClue, J E

    1992-01-01

    The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control...... mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange....

  17. Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules.

    Science.gov (United States)

    Kenny, Brendan; Ellis, Sarah; Leard, Alan D; Warawa, Jonathan; Mellor, Harry; Jepson, Mark A

    2002-05-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of paediatric diarrhoea and a model for the family of attaching and effacing (A/E) pathogens. A/E pathogens encode a type III secretion system to transfer effector proteins into host cells. The EPEC Tir effector protein acts as a receptor for the bacterial surface protein intimin and is involved in the formation of Cdc42-independent, actin-rich pedestal structures beneath the adhered bacteria. In this paper, we demonstrate that EPEC binding to HeLa cells also induces Tir-independent, cytoskeletal rearrangement evidenced by the early, transient formation of filopodia-like structures at sites of infection. Filopodia formation is dependent on expression of the EPEC Map effector molecule - a protein that targets mitochondria and induces their dysfunction. We show that Map-induced filopodia formation is independent of mitochondrial targeting and is abolished by cellular expression of the Cdc42 inhibitory WASP-CRIB domain, demonstrating that Map has at least two distinct functions in host cells. The transient nature of the filopodia is related to an ability of EPEC to downregulate Map-induced cell signalling that, like pedestal formation, was dependent on both Tir and intimin proteins. The ability of Tir to downregulate filopodia was impaired by disrupting a putative GTPase-activating protein (GAP) motif, suggesting that Tir may possess such a function, with its interaction with intimin triggering this activity. Furthermore, we also found that Map-induced cell signalling inhibits pedestal formation, revealing that the cellular effects of Tir and Map must be co-ordinately regulated during infection. Possible implications of the multifunctional nature of EPEC effector molecules in pathogenesis are discussed.

  18. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  19. Regulation of ROCK Activity in Cancer

    Science.gov (United States)

    Morgan-Fisher, Marie; Wewer, Ulla M.

    2013-01-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  20. Regulation of brain aromatase activity in rats

    International Nuclear Information System (INIS)

    Roselli, C.E.; Ellinwood, W.E.; Resko, J.A.

    1984-01-01

    The distribution and regulation of aromatase activity in the adult rat brain with a sensitive in vitro assay that measures the amount of 3 H 2 O formed during the conversion of [1 beta- 3 H]androstenedione to estrone. The rate of aromatase activity in the hypothalamus-preoptic area (HPOA) was linear with time up to 1 h, and with tissue concentrations up to 5 mgeq/200 microliters incubation mixture. The enzyme demonstrated a pH optimum of 7.4 and an apparent Michaelis-Menten constant (Km) of 0.04 microns. The greatest amount of aromatase activity was found in amygdala and HPOA from intact male rats. The hippocampus, midbrain tegmentum, cerebral cortex, cerebellum, and anterior pituitary all contained negligible enzymatic activity. Castration produced a significant decrease in aromatase activity in the HPOA, but not in the amygdala or cerebral cortex. The HPOAs of male rats contained significantly greater aromatase activity than the HPOAs of female rats. In females, this enzyme activity did not change during the estrous cycle or after ovariectomy. Administration of testosterone to gonadectomized male and female rats significantly enhanced HPOA aromatase activities to levels approximating those found in HPOA from intact males. Therefore, the results suggest that testosterone, or one of its metabolites, is a major steroidal regulator of HPOA aromatase activity in rats

  1. Commission of energy regulation. 2004 activity report

    International Nuclear Information System (INIS)

    2004-01-01

    The commission of energy regulation (CRE) is an independent administrative authority in charge of the control of the operation of gas and electricity markets. This document is the fifth activity report of CRE and covers the July 1, 2003 - June 30, 2004 period, which corresponds to the era of opening of energy markets as a consequence of the enforcement of the June 26, 2003 European directive. In the framework of the stakes made by energy markets liberalization, this document presents the situation of the gas and electricity markets during this period (European framework, regulation of both markets, public utility mission..) and describes CRE's means for the monitoring of these markets. (J.S.)

  2. Mast cell activators as novel immune regulators.

    Science.gov (United States)

    Johnson-Weaver, Brandi; Choi, Hae Woong; Abraham, Soman N; Staats, Herman F

    2018-05-26

    Mast cells are an important cell type of the innate immune system that when activated, play a crucial role in generating protective innate host responses after bacterial and viral infection. Additionally, activated mast cells influence lymph node composition to regulate the induction of adaptive immune responses. The recognition that mast cells play a beneficial role in host responses to microbial infection and induction of adaptive immunity has provided the rationale to evaluate mast cell activators for use as antimicrobials or vaccine adjuvants. This review summarizes the role of mast cell activators in antimicrobial responses while also discussing the use of different classes of mast cell activators as potent vaccine adjuvants that enhance the induction of protective immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Src regulates the activity of SIRT2

    International Nuclear Information System (INIS)

    Choi, You Hee; Kim, Hangun; Lee, Sung Ho; Jin, Yun-Hye; Lee, Kwang Youl

    2014-01-01

    Highlights: • Src decreases the protein levels of Sirt2. • Src inhibitor and knockdown of Src increase the protein levels of Sirt2. • Src interacts with and phosphorylates Sirt2. • Src regulate the activity of Sirt2. - Abstract: SIRT2 is a mammalian member of the Sirtuin family of NAD + -dependent protein deacetylases. The tyrosine kinase Src is involved in a variety of cellular signaling pathways, leading to the induction of DNA synthesis, cell proliferation, and cytoskeletal reorganization. The function of SIRT2 is modulated by post-translational modifications; however, the precise molecular signaling mechanism of SIRT2 through interactions with c-Src has not yet been established. In this study, we investigated the potential regulation of SIRT2 function by c-Src. We found that the protein levels of SIRT2 were decreased by c-Src, and subsequently rescued by the addition of a Src specific inhibitor, SU6656, or by siRNA-mediated knockdown of c-Src. The c-Src interacts with and phosphorylates SIRT2 at Tyr104. c-Src also showed the ability to regulate the deacetylation activity of SIRT2. Investigation on the phosphorylation of SIRT2 suggested that this was the method of c-Src-mediated SIRT2 regulation

  4. Markets, prices and regulation in energetic activities

    International Nuclear Information System (INIS)

    Percebois, Jacques

    2015-09-01

    The author first outlines some fundamental characteristics of the different energy world markets (oil, natural gas, coal, electricity). He outlines their availability, locations, and different main geographical areas. Then, he discusses the relationships between costs and prices in which intervene external costs, taxes, feed-in tariffs, national regulations, incentives for consumers. He discusses the issue of regulation of some energy activities, i.e. how State may or may not intervene on the markets, how competition may influence the market, how activities can thus be divided (production, transport, distribution) with implications and consequences for prices. He finally outlines concerns about the future financing of investments required to face tomorrow's needs

  5. Regulators of Slc4 bicarbonate transporter activity

    Directory of Open Access Journals (Sweden)

    Ian M. Thornell

    2015-06-01

    Full Text Available The Slc4 family of transporters is comprised of anion exchangers (AE1-4, Na-coupled bicarbonate transporters (NCBTs including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2, electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2, and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE, as well as a borate transporter (BTR1. These transporters regulate intracellular pH (pHi and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO3– either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO3– transporter contributes to a cell’s ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s (e.g., Na+ or Cl–. In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both classical and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.

  6. Mutant RBL mast cells defective in Fc epsilon RI signaling and lipid raft biosynthesis are reconstituted by activated Rho-family GTPases.

    Science.gov (United States)

    Field, K A; Apgar, J R; Hong-Geller, E; Siraganian, R P; Baird, B; Holowka, D

    2000-10-01

    Characterization of defects in a variant subline of RBL mast cells has revealed a biochemical event proximal to IgE receptor (Fc epsilon RI)-stimulated tyrosine phosphorylation that is required for multiple functional responses. This cell line, designated B6A4C1, is deficient in both Fc epsilon RI-mediated degranulation and biosynthesis of several lipid raft components. Agents that bypass receptor-mediated Ca(2+) influx stimulate strong degranulation responses in these variant cells. Cross-linking of IgE-Fc epsilon RI on these cells stimulates robust tyrosine phosphorylation but fails to mobilize a sustained Ca(2+) response. Fc epsilon RI-mediated inositol phosphate production is not detectable in these cells, and failure of adenosine receptors to mobilize Ca(2+) suggests a general deficiency in stimulated phospholipase C activity. Antigen stimulation of phospholipases A(2) and D is also defective. Infection of B6A4C1 cells with vaccinia virus constructs expressing constitutively active Rho family members Cdc42 and Rac restores antigen-stimulated degranulation, and active Cdc42 (but not active Rac) restores ganglioside and GPI expression. The results support the hypothesis that activation of Cdc42 and/or Rac is critical for Fc epsilon RI-mediated signaling that leads to Ca(2+) mobilization and degranulation. Furthermore, they suggest that Cdc42 plays an important role in the biosynthesis and expression of certain components of lipid rafts.

  7. Regulation of pokemon 1 activity by sumoylation.

    Science.gov (United States)

    Roh, Hee-Eun; Lee, Min-Nyung; Jeon, Bu-Nam; Choi, Won-Il; Kim, Yoo-Jin; Yu, Mi-Young; Hur, Man-Wook

    2007-01-01

    Pokemon 1 is a proto-oncogenic transcriptional regulator that contains a POZ domain at the N-terminus and four Kruppel-like zinc fingers at the C-terminus. Pokemon 1 plays an important role in adipogenesis, osteogenesis, oncogenesis, and transcription of NF-kB responsive genes. Recent reports have shown that biological activities of transcription factors are regulated by sumolylation. We investigated whether Pokemon 1 is post-translationally modified by sumoylation and whether the modification affects Pokemon 1's transcriptional properties. We found that Pokemon 1 is sumoylated in vitro and in vivo. Upon careful analysis of the amino acid sequence of Pokemon 1, we found ten potential sumoylation sites located at lysines 61, 354, 371, 379, 383, 396, 486, 487, 536 and 539. We mutated each of these amino acids into arginine and tested whether the mutation could affect the transcriptional properties of Pokemon 1 on the Pokemon 1 responsive genes, such as ADH5/FDH and pG5-FRE-Luc. Wild-type Pokemon 1 potently represses transcription of ADH5/FDH. Most of the mutants, however, were weaker transcription repressors and repressed transcription 1.3-3.3 fold less effective. Although potential sumoylation sites were located close to the DNA binding domain or the nuclear localization sequence, the mutations did not alter nuclear localization or DNA binding activity. In addition, on the pG5-FRE-Luc test promoter construct, ectopic SUMO-1 repressed transcription in the presence of Pokemon 1. The sumoylation target lysine residue at amino acid 61, which is located in the middle of the POZ-domain, is important because K61R mutation resulted in a much weaker molecular interaction with corepressors. Our data suggest that Pokemon 1's activity as a transcription factor may involve sumoylation, and that sumoylation might be important in the regulation of transcription by Pokemon 1.

  8. NEA activities in safety and regulation

    International Nuclear Information System (INIS)

    Stadie, K.B.

    1983-01-01

    The NEA programme on Safety and Regulations is briefly reviewed. It encompasses four main areas - nuclear safety technology; nuclear licensing; radiation protection; and waste management - with three principal objectives: to promote exchanges of technical information in order to enlarge the data base for national decision making; to improve co-ordination of national R and D activities with emphasis on international standard problem exercises, and to promote international projects; to develop common technical, administrative and legal approaches to improve compatibility of safety and regulatory practices

  9. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    International Nuclear Information System (INIS)

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-01-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  10. Synapses of Amphids Defective (SAD-A) Kinase Promotes Glucose-stimulated Insulin Secretion through Activation of p21-activated Kinase (PAK1) in Pancreatic β-Cells*

    Science.gov (United States)

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-01-01

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945

  11. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-Cells.

    Science.gov (United States)

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-07-27

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.

  12. Basic principles for regulating nuclear activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The AECB has developed as its mission statement: `To ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment`. This report proposes eleven qualitative principles for regulating nuclear activities whose achievement would satisfy the broad policy enunciated in the statement. They would further provide a basis for the specific regulatory requirements expressed by the AECB in its Regulations and other documents. They would thus represent a connecting link between the policy enunciated in the mission statement and the requirements. The proposed principles are largely concerned with how the allowable risk should be set for members of the public, for industry workers, for society as a whole, and for the environment. In making these recommendations the risks from normal operation of the licensed facility and those from a possible serious accident are considered separately. The distribution of risk between geographic communities and between generations is also addressed in the proposed principles. These are listed in the final section of the report. 23 refs.

  13. Basic principles for regulating nuclear activities

    International Nuclear Information System (INIS)

    1996-03-01

    The AECB has developed as its mission statement: 'To ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment'. This report proposes eleven qualitative principles for regulating nuclear activities whose achievement would satisfy the broad policy enunciated in the statement. They would further provide a basis for the specific regulatory requirements expressed by the AECB in its Regulations and other documents. They would thus represent a connecting link between the policy enunciated in the mission statement and the requirements. The proposed principles are largely concerned with how the allowable risk should be set for members of the public, for industry workers, for society as a whole, and for the environment. In making these recommendations the risks from normal operation of the licensed facility and those from a possible serious accident are considered separately. The distribution of risk between geographic communities and between generations is also addressed in the proposed principles. These are listed in the final section of the report. 23 refs

  14. The protection of acetylcholinesterase inhibitor on β-amyloid-induced injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells

    OpenAIRE

    Shen, Jiao-Ning; Wang, Deng-Shun; Wang, Rui

    2012-01-01

    Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expressio...

  15. Regulation of Metabolic Activity by p53

    Directory of Open Access Journals (Sweden)

    Jessica Flöter

    2017-05-01

    Full Text Available Metabolic reprogramming in cancer cells is controlled by the activation of multiple oncogenic signalling pathways in order to promote macromolecule biosynthesis during rapid proliferation. Cancer cells also need to adapt their metabolism to survive and multiply under the metabolically compromised conditions provided by the tumour microenvironment. The tumour suppressor p53 interacts with the metabolic network at multiple nodes, mostly to reduce anabolic metabolism and promote preservation of cellular energy under conditions of nutrient restriction. Inactivation of this tumour suppressor by deletion or mutation is a frequent event in human cancer. While loss of p53 function lifts an important barrier to cancer development by deleting cell cycle and apoptosis checkpoints, it also removes a crucial regulatory mechanism and can render cancer cells highly sensitive to metabolic perturbation. In this review, we will summarise the major concepts of metabolic regulation by p53 and explore how this knowledge can be used to selectively target p53 deficient cancer cells in the context of the tumour microenvironment.

  16. Legislation on and regulation of nuclear activities

    International Nuclear Information System (INIS)

    1984-05-01

    This work is a compilation of legislative texts and regulations published by the Atomic Energy Commission's Legal Affairs Department (CEA). It provides a comprehensive source of knowledge and information on nuclear energy law. Legislative texts published over the last forty years, are collected and analytically indexed. The publication covers both French regulations and regulations of international organisations such as the International Atomic Energy Agency and Euratom. It is divided into eight different chapters, dealing with regulations relevant to international and national institutions, nuclear installations, third party liability, protection of persons and the environment, etc. A chronological table of the texts of international and national laws is also included in this work. (NEA) [fr

  17. Tyrosine Phosphorylation of Rac1: A Role in Regulation of Cell Spreading

    Science.gov (United States)

    Chang, Fumin; Lemmon, Christopher; Lietha, Daniel; Eck, Michael; Romer, Lewis

    2011-01-01

    Rac1 influences a multiplicity of vital cellular- and tissue-level control functions, making it an important candidate for targeted therapeutics. The activity of the Rho family member Cdc42 has been shown to be modulated by tyrosine phosphorylation at position 64. We therefore investigated consequences of the point mutations Y64F and Y64D in Rac1. Both mutations altered cell spreading from baseline in the settings of wild type, constitutively active, or dominant negative Rac1 expression, and were accompanied by differences in Rac1 targeting to focal adhesions. Rac1-Y64F displayed increased GTP-binding, increased association with βPIX, and reduced binding with RhoGDI as compared with wild type Rac1. Rac1-Y64D had less binding to PAK than Rac1-WT or Rac1-64F. In vitro assays demonstrated that Y64 in Rac1 is a target for FAK and Src. Taken together, these data suggest a mechanism for the regulation of Rac1 activity by non-receptor tyrosine kinases, with consequences for membrane extension. PMID:22163037

  18. Activation and Regulation of Cellular Eicosanoid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Thomas G. Brock

    2007-01-01

    Full Text Available There is a growing appreciation for the wide variety of physiological responses that are regulated by lipid messengers. One particular group of lipid messengers, the eicosanoids, plays a central role in regulating immune and inflammatory responses in a receptor-mediated fashion. These mediators are related in that they are all derived from one polyunsaturated fatty acid, arachidonic acid. However, the various eicosanoids are synthesized by a wide variety of cell types by distinct enzymatic pathways, and have diverse roles in immunity and inflammation. In this review, the major pathways involved in the synthesis of eicosanoids, as well as key points of regulation, are presented.

  19. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Tatsuya Kosaka

    Full Text Available RAGE, receptor for advanced glycation endoproducts (AGE, has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms.

  20. Rac1-dependent recruitment of PAK2 to G 2 phase centrosomes and their roles in the regulation of mitotic entry

    DEFF Research Database (Denmark)

    May, Martin; Schelle, Ilona; Brakebusch, Cord Herbert

    2014-01-01

    -GTPases Rac/Cdc42. In this study, Rac1 (but not RhoA or Cdc42) is presented to associate with the centrosomes from early G 2 phase until prometaphase in a cell cycle-dependent fashion, as evidenced by western blot analysis of prepared centrosomes and by immunolabeling. PAK associates with the G 2/M......-phase centrosomes in a Rac1-dependent fashion. Furthermore, specific inhibition of Rac1 by C. difficile toxinB-catalyzed glucosylation or by knockout results in inhibited activation of PAK1/2, Aurora A, and the CyclinB/Cdk1 complex in late G 2 phase/prophase and delayed mitotic entry. Inhibition of PAK activation...

  1. Regulation of higher-activity NARM wastes by EPA

    International Nuclear Information System (INIS)

    Bandrowski, M.S.

    1988-01-01

    The US Environmental Protection Agency (EPA) is currently developing standards for the disposal of low-level radioactive waste (LLW). As part of this Standard, EPA is including regulations for the disposal of naturally occurring and accelerator-produced radioactive material (NARM) wastes not covered under the Atomic Energy Act (AEA). The regulations will cover only higher-activity NARM wastes, defined as NARM waste with specific activity exceeding two nanocuries per gram. The proposed regulations will specify that NARM wastes exceeding the above limits, except for specific exempted items, must be disposed of in regulated radioactive waste disposal facilities. The proposed EPA regulations for NARM wastes will be discussed, as well as the costs and benefits of the regulation, how it will be implemented by EPA, and the rationale for covering only higher-activity NARM wastes exceeding two nanocuries per gram

  2. Modern aspects of tax regulation of investment activity

    Directory of Open Access Journals (Sweden)

    E.S. Podakov

    2016-03-01

    Full Text Available The article investigates the tax regulation of investment activity in modern conditions. Scientists studied different views about the impact of tax regulations on the investment activity in the country. The author determines that the tax regulation of investment activity involves the use of state mechanisms taxation of certain measures to improve investment conditions. The subject is the state tax regulations, and the object is the investment activity of individual and institutional investors of any form of ownership including organizational and legal forms. Such regulation is performed by using complex special tools. The possible methods of tax stimulation of investment processes are described. The article deals with the current results of tax reform in Ukraine and predicts its possible consequences for agricultural producers. The rating positions of Ukraine according to international organizations are showed. The systematic analysis has been carried out and the impact of differential tax rates, tax exemption for a specified period, reducing the tax base, elimination of double taxation on investment activity in certain areas have been researched. The special instruments of investment activity tax regulation are considered. The options for improving investment activity by introducing effective tax regulation are determined.

  3. Commission for energy regulation - 2012 Activity Report

    International Nuclear Information System (INIS)

    2013-06-01

    After a presentation of the organisation, role and missions of the French Commission for Energy Regulation (CRE), and of its relationship with other institutional actors, this report describes and comments the action of the CRE in the fields of dialogue and transparency. It presents and comments key figures regarding the electricity and gas retail markets. It reports and comments the European reaction to the cold peak of February 2012 (historical peak for consumption and prices, inquiry on the causes of these price peaks, need of a European market). The next part addresses the relationship between electricity grids and territories (solidarity between electricity grids as the basis of the Europe of energy, evolution of French grids to face new needs and to take regional and local dimensions into account). Another part addresses gas infrastructures which are considered as the cornerstone of a good operation for the French market and for the integration of the European energy market (gas world market in 2012, definition of a target model for the gas market by European regulators, evolution of the French market in compliance with the European target model, new tariffs for the use of natural gas transport networks). The report then addresses the development of renewable energies: actions of CRE (bidding, opinion of tariffs), influence of renewable energy development on electricity prices on gross markets, needed evolution of electricity grids. A last part addresses the issues of energy cost, demand management, and struggle against energy poverty

  4. Synergism in regulation of nuclear and radiological activities

    International Nuclear Information System (INIS)

    Buzdugan, A.

    2009-01-01

    In 2006 the reform of nuclear activity regulation in Moldova was initiated. On May 11, 2006, the Parliament of the Republic of Moldova passed the law Nr 111-XVI 'About Safe Accomplishment of Nuclear and Radiological Activity'. On the 23rd of March, 2007 the National Agency for Regulation of Nuclear and Radiological Activities (NARNRA) was founded due to the decree of the Government under the Ministry of Ecology and Natural Resources. Its first objective was elaboration of necessary regulation documents in this field

  5. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    AMPK is a metabolic "master" controller activated in skeletal muscle by exercise in a time and intensity dependent manner, and has been implicated in regulating metabolic pathways in muscle during physical exercise. AMPK signaling in skeletal muscle is regulated by several systemic...... and intracellular factors and the regulation of skeletal muscle AMPK in response to exercise is the focus of this review. Specifically, the role of LKB1 and phosphatase PP2C in nucleotide-dependent activation of AMPK, and ionized calcium in CaMKK-dependent activation of AMPK in working muscle is discussed. We also...

  6. Self-regulation as a type of managerial activity.

    Directory of Open Access Journals (Sweden)

    Anna Algazina

    2017-01-01

    Full Text Available УДК 342.9The subject. In the context of the ongoing administrative reform in the Russian Federation the issue of self-regulation is becoming increasingly important.Introduction of Institute of self-regulation is intended to reduce the degree of state intervention in private spheres of professional activity, to eliminate excessive administrative barriers, reduce government expenditures on regulation and control in their respective areas of operation, which is especially important in the current economic conditions.However, in Russian legal science is no recognized definition of "self-regulation", but a unity of views on the question of the relationship between self-regulation and state regulation of business relations.In this regard, the author attempts to examine the concept of "self-regulation" through the prism of knowledge about public administration.The purpose of the article is to identify the essential features and to articulate the concept of self-regulation by comparing it with other varieties of regulation.Methodology. The methodological basis for the study: general scientific methods (analysis, synthesis, comparison, description; private and academic (interpretation, formal-legal.Results, scope. Based on the analysis allocated in the science of administrative law approaches to the system of public administration justifies the conclusion that the notion "regulation" is specific in relation to the generic concept of "management" and is a kind of management, consisting in the drafting of rules of conduct and sanctions for non-compliance or inadequate performance.In addition, the article highlights the problem of the genesis of self-regulation, building a system of principles of self-regulation, comparison of varieties of self-regulatory organizations among themselves.Conclusions. The comparison of self-regulation other types of regulation (such as state regulation and co-regulation highlighted the essential features of this phenomenon

  7. Endogenous Methanol Regulates Mammalian Gene Activity

    Science.gov (United States)

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  8. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  9. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  10. Regulation of MDM2 Activity by Nucleolin

    Science.gov (United States)

    2007-06-01

    plicated in the binding of HIV particles to CD4 cells. J. Biol. Chem. 273:21988–21997. 8. Carty, M. P., M. Zernik -Kobak, S. McGrath, and K. Dixon. 1994...replication products and not due to repair synthesis (Fig. 3D ). RPARPA2D is therefore functionally active in supporting DNA replication in vitro...Further intermediate RPA2 mutants were designed to roughly follow the phosphor- ylation pathway, as suggested by the data of Zernik -Kobak and colleagues

  11. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.

    Science.gov (United States)

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-06-01

    Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Next-generation sequencing analysis of gene regulation in the rat model of retinopathy of prematurity.

    Science.gov (United States)

    Griffith, Rachel M; Li, Hu; Zhang, Nan; Favazza, Tara L; Fulton, Anne B; Hansen, Ronald M; Akula, James D

    2013-08-01

    The purpose of this study was to identify the genes, biochemical signaling pathways, and biological themes involved in the pathogenesis of retinopathy of prematurity (ROP). Next-generation sequencing (NGS) was performed on the RNA transcriptome of rats with the Penn et al. (Pediatr Res 36:724-731, 1994) oxygen-induced retinopathy model of ROP at the height of vascular abnormality, postnatal day (P) 19, and normalized to age-matched, room-air-reared littermate controls. Eight custom-developed pathways with potential relevance to known ROP sequelae were evaluated for significant regulation in ROP: The three major Wnt signaling pathways, canonical, planar cell polarity (PCP), and Wnt/Ca(2+); two signaling pathways mediated by the Rho GTPases RhoA and Cdc42, which are, respectively, thought to intersect with canonical and non-canonical Wnt signaling; nitric oxide signaling pathways mediated by two nitric oxide synthase (NOS) enzymes, neuronal (nNOS) and endothelial (eNOS); and the retinoic acid (RA) signaling pathway. Regulation of other biological pathways and themes was detected by gene ontology using the Kyoto Encyclopedia of Genes and Genomes and the NIH's Database for Annotation, Visualization, and Integrated Discovery's GO terms databases. Canonical Wnt signaling was found to be regulated, but the non-canonical PCP and Wnt/Ca(2+) pathways were not. Nitric oxide signaling, as measured by the activation of nNOS and eNOS, was also regulated, as was RA signaling. Biological themes related to protein translation (ribosomes), neural signaling, inflammation and immunity, cell cycle, and cell death were (among others) highly regulated in ROP rats. These several genes and pathways identified by NGS might provide novel targets for intervention in ROP.

  13. Next Generation Sequencing Analysis of Gene Regulation in the Rat Model of Retinopathy of Prematurity

    Science.gov (United States)

    Griffith, Rachel M.; Li, Hu; Zhang, Nan; Favazza, Tara L.; Fulton, Anne B.; Hansen, Ronald M.; Akula, James D.

    2013-01-01

    Purpose To identify the genes, biochemical signaling pathways and biological themes involved in the pathogenesis of retinopathy of prematurity (ROP). Methods Next-generation sequencing (NGS) was performed on the RNA transcriptome of rats with the Penn et al. (1994) oxygen-induced retinopathy (OIR) model of ROP at the height of vascular abnormality, postnatal day (P) 19, and normalized to age-matched, room-air-reared littermate controls. Eight custom developed pathways with potential relevance to known ROP sequelae were evaluated for significant regulation in ROP: The three major Wnt signaling pathways, canonical, planar cell polarity (PCP), and Wnt/Ca2+, two signaling pathways mediated by the Rho GTPases RhoA and Cdc42, which are respectively thought to intersect with canonical and noncanonical Wnt signaling, nitric oxide signaling pathways mediated by two nitrox oxide synthase (NOS) enzymes, neuronal (nNOS) and endothelial (eNOS), and the retinoic acid (RA) signaling pathway. Regulation of other biological pathways and themes were detected by gene ontology using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the NIH's Database for Annotation, Visualization and Integrated Discovery (DAVID)'s GO terms databases. Results Canonical Wnt signaling was found to be regulated, but the non-canonical PCP and Wnt/Ca2+ pathways were not. Nitric oxide (NO) signaling, as measured by the activation of nNOS eNOS, was also regulated, as was RA signaling. Biological themes related to protein translation (ribosomes), neural signaling, inflammation and immunity, cell cycle and cell death, were (among others) highly regulated in ROP rats. Conclusions These several genes and pathways identified by NGS might provide novel targets for intervention in ROP. PMID:23775346

  14. Active Power Regulation based on Droop for AC Microgrid

    DEFF Research Database (Denmark)

    Li, Chendan; Coelho, Ernane A. A.; Firoozabadi, Mehdi Savaghebi

    2015-01-01

    In this paper, two different control strategies are proposed to address the active power regulation issue in AC microgrids. The principle of power regulation in the droop controller is firstly introduced. Frequency scheduling and droop gain scheduling on top of droop control is proposed...... to successfully follow the active power command. The limitation of each method is discussed in term of small signal stability and light load sharing, respectively. Discussion on the effects of power command is also given. The simulation is carried out for both the strategies to verify the active power control...

  15. Cloning and differential expression analyses of Cdc42 from sheep

    Directory of Open Access Journals (Sweden)

    Yang Yong-Jie

    2018-03-01

    Full Text Available Introduction: Serological diagnosis of brucellosis is still a great challenge due to the infeasibility of discriminating infected animals from vaccinated ones, so it is necessary to search for diagnostic biomarkers for differential diagnosis of brucellosis.

  16. Developmental regulation of aromatase activity in the rat hypothalamus

    International Nuclear Information System (INIS)

    Lephart, E.D.

    1989-01-01

    The brain of all mammalian species studied thus far contain an enzymatic activity (aromatase) that catalyzes the conversion of androgens to estrogens. The activity is highest during prenatal development and contributes to the establishment of sex differences which determine adult gonadotropin secretion patterns and reproductive behavior. The studies presented in this dissertation represent a systematic effort to elucidate the mechanism(s) that control the initiation of and contribute to maintaining rat hypothalamic aromatase activity during pre- and postnatal development. Aromatase enzyme activity was measured by the 3 H 2 O release assay or by traditional estrogen product isolation. Brain aromatase mRNA was detected by hybridization to a cDNA encoding rat aromatase cytochrome P-450. In both males and females the time of puberty was associated with a decline in hypothalamic aromatase activity. This decline may represent a factor underlying the peri-pubertal decrease in the sensitivity to gonadal steroid feedback that accompanies completion of puberty. The results also indicate that androgens regulate brain aromatase levels during both the prepubertal and peri-pubertal stages of sexual development and that this regulation is transiently lost in young adults. Utilizing a hypothalamic organotypic culture system, aromatase activity in vitro was maintained for as long as two days. The results of studies of a variety of hormonal and metabolic regulators suggest that prenatal aromatase activity is regulated by factor(s) that function independently from the classical cyclic AMP and protein kinase C trans-membrane signaling pathways

  17. Activity-regulated genes as mediators of neural circuit plasticity.

    Science.gov (United States)

    Leslie, Jennifer H; Nedivi, Elly

    2011-08-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  19. Activation of ion transport systems during cell volume regulation

    International Nuclear Information System (INIS)

    Eveloff, J.L.; Warnock, D.G.

    1987-01-01

    This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na + -H + and Cl - -HCO 3 - exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K + and Cl - conductances, a K-Cl cotransport system, or parallel K + -H + and Cl - -HCO 3 - exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca 2+ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na + -H + and Cl - -HCO 3 - exchange systems

  20. Energy Regulation Commission. Activity report. 1 July - 31 December 2008

    International Nuclear Information System (INIS)

    2009-01-01

    After a description of the scope of activities, organisation and operation of the CRE (Commission de Regulation de l'Energie, Energy regulation commission) and of the CorDIS (Comite de reglement des differents et des sanctions de la CRE, CRE's Committee for settlements of controversies and sanctions), this report outlines the importance of the grid manager independence and of the regulation reinforcement for the building up of a domestic energy market. It discusses the role of the regulation authority in the interconnection of European grids, their operation security and supply security, but also in pricing and in investments. It highlights the relationship between the reduction of carbon emission, energy demand management, strengthening of electric grids, financial incentives, and advanced metering systems. It describes how the CRE ensures a good operation of electricity and natural gas markets

  1. Active Inference, homeostatic regulation and adaptive behavioural control.

    Science.gov (United States)

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl

    2015-11-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    Directory of Open Access Journals (Sweden)

    О. Davydova

    2013-11-01

    Full Text Available In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namely, contracts, production sharing agreement, lease, joint venture. Promising areas of application of the PPP identified the transport sector, housing and utilities, energy and tourism sector. The features of cluster formations in the country and the prospects for tourism clusters.

  3. Commission for Energy regulation (CRE) - Activity report June 2004

    International Nuclear Information System (INIS)

    2004-01-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2004 activity report of CRE. Content: A - Opening of the gas and electricity markets for professional customers on 1 July 2004; B - Regulation of the gas market: Gas markets and players (The European environment, The French gas market); Regulation of the gas market (Implementing regulation, Works planned for the coming year; C - Regulation of the electricity market: The electricity markets and players (The European electricity markets, The French electricity market, Monitoring the electricity market); Regulation of the French electricity market (Access to public grid, Cross-border exchanges, Un-bundled accounting principles); The public electricity service in the regulated market (Content of the public service, Public service charges, Electricity production public service financing, Electricity sales tariffs) D - The working of CRE: How CRE exercises its jurisdiction, Tools; E - Appendices: Glossary, Units and conversions, Council of European Energy Regulators, Index of tables and figures

  4. Commission for Energy regulation (CRE) - Activity report June 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2004 activity report of CRE. Content: A - Opening of the gas and electricity markets for professional customers on 1 July 2004; B - Regulation of the gas market: Gas markets and players (The European environment, The French gas market); Regulation of the gas market (Implementing regulation, Works planned for the coming year; C - Regulation of the electricity market: The electricity markets and players (The European electricity markets, The French electricity market, Monitoring the electricity market); Regulation of the French electricity market (Access to public grid, Cross-border exchanges, Un-bundled accounting principles); The public electricity service in the regulated market (Content of the public service, Public service charges, Electricity production public service financing, Electricity sales tariffs) D - The working of CRE: How CRE exercises its jurisdiction, Tools; E - Appendices: Glossary, Units and conversions, Council of European Energy Regulators, Index of tables and figures.

  5. Regulations on environmental data for the petroleum activity

    International Nuclear Information System (INIS)

    1990-01-01

    The publication deals with the regulations on environmental data for the petroleum activity, stipulated by the Norwegian Petroleum Directorate on 1 December 1989 pursuant to Royal Decree of 28 June 1985, cf. Sections 7 and 33, cf. delegation of authority by the Ministry of Local Government and Labour of 28 June 1985. 1 tab

  6. [Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].

    Science.gov (United States)

    Meng, Li; Zhang, Lanwei

    2009-12-01

    To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.

  7. Commission for Energy regulation (CRE) - Activity report june 2008

    International Nuclear Information System (INIS)

    2008-01-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2008 activity report of CRE. Content: A - How CRE works: CRE regulatory authority and organisation: Powers, Organisation; Budget resources; Personnel; B - The Standing Committee for Dispute Settlement and Sanctions (CoRDiS) activity: Admissibility, Authority; C - Building a single European energy market: Overview; Organisation and coordination of the main European regulators (Work carried out collectively by European regulators, Regulator organisation and development, CRE's relations with European Community institutions, Development of CEER activities outside the European Union); CRE's European activities (The contribution of European regulators to the Third Energy Package, Integration of gas markets, Integration of electricity markets, Operation of the European interconnected electricity grid and security of supply, Opening up markets to benefit consumers); European Community activities (The European Commission's proposals for the internal energy market: the Third Energy Package, The European Commission's proposals for fighting climate change: the Climate Package, Infringement

  8. Elevated p21-Activated Kinase 2 Activity Results in Anchorage-Independent Growth and Resistance to Anticancer Drug–Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Jerry W. Marlin

    2009-03-01

    Full Text Available p21-Activated kinase 2 (PAK-2 seems to be a regulatory switch between cell survival and cell death signaling. We have shown previously that activation of full-length PAK-2 by Rac or Cdc42 stimulates cell survival, whereas caspase activation of PAK-2 to the proapoptotic PAK-2p34 fragment is involved in the cell death response. In this study, we present a role of elevated activity of full-length PAK-2 in anchorage-independent growth and resistance to anticancer drug–induced apoptosis of cancer cells. Hs578T human breast cancer cells that have low levels of PAK-2 activity were more sensitive to anticancer drug–induced apoptosis and showed higher levels of caspase activation of PAK-2 than MDA-MB435 and MCF-7 human breast cancer cells that have high levels of PAK-2 activity. To examine the role of elevated PAK-2 activity in breast cancer, we have introduced a conditionally active PAK-2 into Hs578T human breast cells. Conditional activation of PAK-2 causes loss of contact inhibition and anchorage-independent growth of Hs578T cells. Furthermore, conditional activation of PAK-2 suppresses activation of caspase 3, caspase activation of PAK-2, and apoptosis of Hs578T cells in response to the anticancer drug cisplatin. Our data suggest a novel mechanism by which full-length PAK-2 activity controls the apoptotic response by regulating levels of activated caspase 3 and thereby its own cleavage to the proapoptotic PAK-2p34 fragment. As a result, elevated PAK-2 activity interrupts the apoptotic response and thereby causes anchorage-independent survival and growth and resistance to anticancer drug–induced apoptosis.

  9. Tetraspanin CD9 regulates osteoclastogenesis via regulation of p44/42 MAPK activity

    International Nuclear Information System (INIS)

    Yi, TacGhee; Kim, Hye-Jin; Cho, Je-Yoel; Woo, Kyung Mi; Ryoo, Hyun-Mo; Kim, Gwan-Shik; Baek, Jeong-Hwa

    2006-01-01

    Tetraspanin CD9 has been shown to regulate cell-cell fusion in sperm-egg fusion and myotube formation. However, the role of CD9 in osteoclast, another multinucleated cell type, is not still clear. Therefore, we investigated the role of CD9 in osteoclast differentiation. CD9 was expressed in osteoclast lineage cells and its expression level increased during the progression of RANKL-induced osteoclastogenesis. KMC8, a neutralizing antibody specific to CD9, significantly suppressed RANKL-induced multinucleated osteoclast formation and the mRNA expression of osteoclast differentiation marker genes. To define CD9-regulated osteoclastogenic signaling pathway, MAPK pathways were examined. KMC8 induced long-term phosphorylation of p44/42 MAPK, but not of p38 MAPK. Constitutive activation of p44/42 MAPK by overexpressing constitutive-active mutant of MEK1 almost completely blocked osteoclast differentiation. Taken together, these results suggest that CD9 expressed on osteoclast lineage cells might positively regulate osteoclastogenesis via the regulation of p44/42 MAPK activity

  10. Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M.; Abel, Steven M.; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S.; Hansen, Scott D.; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K.; Kuriyan, John; Groves, Jay T.

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. PMID:24994643

  11. Commission for Energy regulation (CRE) - Activity report June 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2007 activity report of CRE. Content: A - Towards a single European energy market: Birth of a single European energy market (Origins of Europe of Energy, Emergence of a European energy policy); Main European Community guiding lines (European governance as regards energy, Guiding principles for the internal energy market); European Community activities (European Commission reports, Electricity and gas Regional Initiatives); Organisation and coordination of European regulators (Joint organisation of European regulators, CRE's relations with European Community institutions); CRE's European activities (Regional integration of gas markets, Regional integration of electricity markets, Operation of the European interconnected electricity grid and security of supply, CRE's other European activities); B - CRE action at national level: Grids/networks and infrastructures (General information, Electricity grids, Regulation of gas networks and infrastructures); Markets (Changes in the regulatory and legislative contexts of electricity and natural gas markets, Electricity markets

  12. Commission for Energy regulation (CRE) - Activity report June 2007

    International Nuclear Information System (INIS)

    2007-01-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2007 activity report of CRE. Content: A - Towards a single European energy market: Birth of a single European energy market (Origins of Europe of Energy, Emergence of a European energy policy); Main European Community guiding lines (European governance as regards energy, Guiding principles for the internal energy market); European Community activities (European Commission reports, Electricity and gas Regional Initiatives); Organisation and coordination of European regulators (Joint organisation of European regulators, CRE's relations with European Community institutions); CRE's European activities (Regional integration of gas markets, Regional integration of electricity markets, Operation of the European interconnected electricity grid and security of supply, CRE's other European activities); B - CRE action at national level: Grids/networks and infrastructures (General information, Electricity grids, Regulation of gas networks and infrastructures); Markets (Changes in the regulatory and legislative contexts of electricity and natural gas markets, Electricity markets, Natural gas

  13. Commission for Energy regulation (CRE) - Activity report June 2005

    International Nuclear Information System (INIS)

    2005-01-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2005 activity report of CRE. Content: A - The opening of the markets in France and in Europe: The opening of the markets one year after 1 July 2004 (An especially important step, Electricity and gas: a common framework with structural differences, The coexistence of market prices and regulated tariffs); The European texts of 26 June 2003 (Texts to give new impetus, Texts to harmonize the role and powers of national regulators, Texts to guarantee the independence of system operators, Texts to ensure transparent and non-discriminatory access to networks, Texts providing for strengthening of interconnections); The outlook for 2007, a fully open market (1 July 2007: a date set by the directives, Priority given to informing and protecting consumers); B - Regulation of the natural gas market: The gas market in the European context (Europe's dependency on imports is increasing, Gas prices increased considerably across the whole of Europe in 2004, The European gas scene continues to be dominated by a small number of players, Gas infrastructures need to be developed in Europe, The new European

  14. Summary of regulation applicable to the gamma-graphy activities

    International Nuclear Information System (INIS)

    2004-04-01

    The regulations relative to the gamma radiography activities concerns in one hand the radioactive sources, and on the other hand the radiation protection of the workers. The necessity of having a person competent in radiation protection and the tasks he or she has to do are described. The training of operators, the medical surveillance, the dosimetry are such obligations. The maintenance of equipment is an other obligation. The last point concerns the transport of radioactive materials. (N.C.)

  15. Sphingosine-1-Phosphate Is a Novel Regulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR Activity.

    Directory of Open Access Journals (Sweden)

    Firhan A Malik

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR attenuates sphingosine-1-phosphate (S1P signaling in resistance arteries and has emerged as a prominent regulator of myogenic vasoconstriction. This investigation demonstrates that S1P inhibits CFTR activity via adenosine monophosphate-activated kinase (AMPK, establishing a potential feedback link. In Baby Hamster Kidney (BHK cells expressing wild-type human CFTR, S1P (1μmol/L attenuates forskolin-stimulated, CFTR-dependent iodide efflux. S1P's inhibitory effect is rapid (within 30 seconds, transient and correlates with CFTR serine residue 737 (S737 phosphorylation. Both S1P receptor antagonism (4μmol/L VPC 23019 and AMPK inhibition (80μmol/L Compound C or AMPK siRNA attenuate S1P-stimluated (i AMPK phosphorylation, (ii CFTR S737 phosphorylation and (iii CFTR activity inhibition. In BHK cells expressing the ΔF508 CFTR mutant (CFTRΔF508, the most common mutation causing cystic fibrosis, both S1P receptor antagonism and AMPK inhibition enhance CFTR activity, without instigating discernable correction. In summary, we demonstrate that S1P/AMPK signaling transiently attenuates CFTR activity. Since our previous work positions CFTR as a negative S1P signaling regulator, this signaling link may positively reinforce S1P signals. This discovery has clinical ramifications for the treatment of disease states associated with enhanced S1P signaling and/or deficient CFTR activity (e.g. cystic fibrosis, heart failure. S1P receptor/AMPK inhibition could synergistically enhance the efficacy of therapeutic strategies aiming to correct aberrant CFTR trafficking.

  16. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    OpenAIRE

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by definition limited by its reference to future developments which cannot empirically be sustained. Experience in the Netherlands—where a law regulating active euthanasia was accepted in April 2001—may shed...

  17. Cooperative activation of transcription by autoimmune regulator AIRE and CBP

    International Nuclear Information System (INIS)

    Pitkaenen, J.; Rebane, A.; Rowell, J.; Murumaegi, A.; Stroebel, P.; Moell, K.; Saare, M.; Heikkilae, J.; Doucas, V.; Marx, A.; Peterson, P.

    2005-01-01

    Autoimmune regulator (AIRE) is a transcriptional regulator that is believed to control the expression of tissue-specific genes in the thymus. Mutated AIRE is responsible for onset of the hereditary autoimmune disease APECED. AIRE is able to form nuclear bodies (NBs) and interacts with the ubiquitous transcriptional coactivator CBP. In this paper, we show that CBP and AIRE synergistically activate transcription on different promoter reporters whereas AIRE gene mutation R257X, found in APECED patients, interferes with this coactivation effect. Furthermore, the overexpression of AIRE and CBP collaboratively enhance endogenous IFNβ mRNA expression. The immunohistochemical studies suggest that CBP, depending on the balance of nuclear proteins, is a component of AIRE NBs. We also show that AIRE NBs are devoid of active chromatin and, therefore, not sites of transcription. In addition, we demonstrate by 3D analyses that AIRE and CBP, when colocalizing, are located spatially differently within AIRE NBs. In conclusion, our data suggest that AIRE activates transcription of the target genes, i.e., autoantigens in collaboration with CBP and that this activation occurs outside of AIRE NBs

  18. The protection of acetylcholinesterase inhibitor on β-amyloid-induced injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells

    Science.gov (United States)

    Shen, Jiao-Ning; Wang, Deng-Shun; Wang, Rui

    2012-01-01

    Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expression. Affymetrix cDNA microarray assay followed by real-time RT-PCR and Western Blotting analysis were used to elucidate and analyze the signaling pathway involved in Aβ and HupA’s effects. The effects of Aβ and HupA on the neurite outgrowth were further confirmed via immunofluorescence staining. Aβ up-regulated the mRNA expressions of NFAT5, LIMK1, EPHA1, NTN4 and RAC2 markedly in SH-SY5Y cells. Co-incubation of Aβ and HupA reversed or decreased the changes of NFAT5, NTN4, RAC2, CDC42 and SEMA4F. HupA treated alone increased NFAT5, LIMK1, NTN4 significantly. Following qRT-PCR validation showed that the correlation of the gene expression ratio between microarray and qRT-PCR is significant. Western blot result showed that the change of CDC42 protein is consistent with the mRNA level while RAC2 is not. The morphological results confirmed that HupA improved, or partly reversed, the Aβ-induced damage of neurite outgrowth. The protective effect of HupA from Aβ induced morphological injury might be correlative to, at least partially, regulating the network of neurite outgrowth related genes. PMID:23119107

  19. The protection of acetylcholinesterase inhibitor on β-amyloid-induced the injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells.

    Science.gov (United States)

    Shen, Jiao-Ning; Wang, Deng-Shun; Wang, Rui

    2012-01-01

    Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expression. Affymetrix cDNA microarray assay followed by real-time RT-PCR and Western Blotting analysis were used to elucidate and analyze the signaling pathway involved in Aβ and HupA's effects. The effects of Aβ and HupA on the neurite outgrowth were further confirmed via immunofluorescence staining. Aβ up-regulated the mRNA expressions of NFAT5, LIMK1, EPHA1, NTN4 and RAC2 markedly in SH-SY5Y cells. Co-incubation of Aβ and HupA reversed or decreased the changes of NFAT5, NTN4, RAC2, CDC42 and SEMA4F. HupA treated alone increased NFAT5, LIMK1, NTN4 significantly. Following qRT-PCR validation showed that the correlation of the gene expression ratio between microarray and qRT-PCR is significant. Western blot result showed that the change of CDC42 protein is consistent with the mRNA level while RAC2 is not. The morphological results confirmed that HupA improved, or partly reversed, the Aβ-induced damage of neurite outgrowth. The protective effect of HupA from Aβ induced morphological injury might be correlative to, at least partially, regulating the network of neurite outgrowth related genes.

  20. Commission for Energy regulation (CRE) - Activity report june 2006

    International Nuclear Information System (INIS)

    2006-01-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2006 activity report of CRE. Content: A - Opening of the electricity and natural gas markets to household consumers on 1 July 2007: CRE at the service of eligible customers (Information for eligible customers, Improved knowledge of non-household customers); Monitoring of the non-discrimination, transparency and independence of system operators (Drafting and distribution of codes of good conduct for system operators, The necessary improvement of system operator independence); Preparing the practical methods of opening: GTE 2007 and GTG 2007 (The necessary simplification of relations between operators and customers, Achieving a greater level of consumer information and protection, The clearly defined stages of the 'customer pathway', Profiling and settlement mechanisms: turning experience feedback from 2004 to good account); Persisting uncertainties and hurdles (The need for a suitable regulatory and legislative platform, Hurdles to the opening of the household market); B - Regulation of the natural gas market: The gas market in the European context (Increasing weight of imports in gas

  1. Commission for Energy regulation (CRE) - Activity report june 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2006 activity report of CRE. Content: A - Opening of the electricity and natural gas markets to household consumers on 1 July 2007: CRE at the service of eligible customers (Information for eligible customers, Improved knowledge of non-household customers); Monitoring of the non-discrimination, transparency and independence of system operators (Drafting and distribution of codes of good conduct for system operators, The necessary improvement of system operator independence); Preparing the practical methods of opening: GTE 2007 and GTG 2007 (The necessary simplification of relations between operators and customers, Achieving a greater level of consumer information and protection, The clearly defined stages of the 'customer pathway', Profiling and settlement mechanisms: turning experience feedback from 2004 to good account); Persisting uncertainties and hurdles (The need for a suitable regulatory and legislative platform, Hurdles to the opening of the household market); B - Regulation of the natural gas market: The gas market in the European context (Increasing weight of

  2. Active pre-filters for dc/dc Boost regulators

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2014-05-01

    Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.

  3. Calcium and cargoes as regulators of myosin 5a activity

    International Nuclear Information System (INIS)

    Sellers, James R.; Thirumurugan, Kavitha; Sakamoto, Takeshi; Hammer, John A.; Knight, Peter J.

    2008-01-01

    Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36 nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins

  4. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Cohen, Stephen Michael

    2017-01-01

    /TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family...... deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor...

  5. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Goalstone, Marc [Department of Medicine, University of Colorado, VA Medical Center, Denver, CO 80220 (United States); Kamath, Vasudeva [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States); Kowluru, Anjaneyulu, E-mail: akowluru@med.wayne.edu [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States)

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  6. Glucose activates prenyltransferases in pancreatic islet β-cells

    International Nuclear Information System (INIS)

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet β-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 β-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the α-subunits of FTase/GGTase-1, but not the β-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  7. Recent development in safety regulation of nuclear fuel cycle activities

    International Nuclear Information System (INIS)

    Kato, S.

    2001-01-01

    Through the effort of deliberation and legislation over five years, Japanese government structure was reformed this January, with the aim of realizing simple, efficient and transparent administration. Under the reform, the Agency for Nuclear and Industrial Safety (ANIS) was founded in the Ministry of Economy, Trade and Industry (METI) to be responsible for safety regulation of energy-related nuclear activities, including nuclear fuel cycle activities, and industrial activities, including explosives, high-pressure gasses and mining. As one of the lessons learned from the JCO criticality accident of September 1999, it was pointed out that the government's inspection function was not enough for fuel fabrication facilities. Accordingly, new statutory regulatory activities were introduced, namely, inspection of observance of safety rules and procedures for all kinds of nuclear operators and periodic inspection of fuel fabrication facilities. In addition, in order to cope with insufficient safety education and training of workers in nuclear facilities, licensees of nuclear facilities are required by law to specify safety education and training for their workers. ANIS is committed to enforce these new regulatory activities effectively and efficiently. In addition, it is going to be prepared, in its capacity as safety regulatory authority, for future development of Japanese fuel cycle activities, including commissioning of JNFL Rokkasho reprocessing plant and possible application for licenses for JNFL MOX fabrication plant and for spent fuel interim storage facilities. (author)

  8. Regulation by magnesium of potato tuber mitochondrial respiratory activities.

    Science.gov (United States)

    Vicente, Joaquim A F; Madeira, Vítor M C; Vercesi, Anibal E

    2004-12-01

    Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and alpha-ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or alpha-ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of alpha-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike alpha-ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.

  9. Dynamic regulation of Drosophila nuclear receptor activity in vivo.

    Science.gov (United States)

    Palanker, Laura; Necakov, Aleksandar S; Sampson, Heidi M; Ni, Ruoyu; Hu, Chun; Thummel, Carl S; Krause, Henry M

    2006-09-01

    Nuclear receptors are a large family of transcription factors that play major roles in development, metamorphosis, metabolism and disease. To determine how, where and when nuclear receptors are regulated by small chemical ligands and/or protein partners, we have used a 'ligand sensor' system to visualize spatial activity patterns for each of the 18 Drosophila nuclear receptors in live developing animals. Transgenic lines were established that express the ligand binding domain of each nuclear receptor fused to the DNA-binding domain of yeast GAL4. When combined with a GAL4-responsive reporter gene, the fusion proteins show tissue- and stage-specific patterns of activation. We show that these responses accurately reflect the presence of endogenous and exogenously added hormone, and that they can be modulated by nuclear receptor partner proteins. The amnioserosa, yolk, midgut and fat body, which play major roles in lipid storage, metabolism and developmental timing, were identified as frequent sites of nuclear receptor activity. We also see dynamic changes in activation that are indicative of sweeping changes in ligand and/or co-factor production. The screening of a small compound library using this system identified the angular psoralen angelicin and the insect growth regulator fenoxycarb as activators of the Ultraspiracle (USP) ligand-binding domain. These results demonstrate the utility of this system for the functional dissection of nuclear receptor pathways and for the development of new receptor agonists and antagonists that can be used to modulate metabolism and disease and to develop more effective means of insect control.

  10. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  11. Regulation of dopamine transporter activity by carboxypeptidase E

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2009-05-01

    Full Text Available Abstract Background The dopamine transporter (DAT plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE, a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.

  12. Pacing and awareness: brain regulation of physical activity.

    Science.gov (United States)

    Edwards, A M; Polman, R C J

    2013-11-01

    The aim of this current opinion article is to provide a contemporary perspective on the role of brain regulatory control of paced performances in response to exercise challenges. There has been considerable recent conjecture as to the role of the brain during exercise, and it is now broadly accepted that fatigue does not occur without brain involvement and that all voluntary activity is likely to be paced at some level by the brain according to individualised priorities and knowledge of personal capabilities. This article examines the role of pacing in managing and distributing effort to successfully accomplish physical tasks, while extending existing theories on the role of the brain as a central controller of performance. The opinion proposed in this article is that a central regulator operates to control exercise performance but achieves this without the requirement of an intelligent central governor located in the subconscious brain. It seems likely that brain regulation operates at different levels of awareness, such that minor homeostatic challenges are addressed automatically without conscious awareness, while larger metabolic disturbances attract conscious awareness and evoke a behavioural response. This supports the view that the brain regulates exercise performance but that the interpretation of the mechanisms underlying this effect have not yet been fully elucidated.

  13. Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK.

    Directory of Open Access Journals (Sweden)

    Steve Pedrini

    2005-01-01

    Full Text Available Statins are widely used cholesterol-lowering drugs that act by inhibiting HMGCoA reductase, the rate-limiting enzyme in cholesterol biosynthesis. Recent evidence suggests that statin use may be associated with a decreased risk for Alzheimer disease, although the mechanisms underlying this apparent risk reduction are poorly understood. One popular hypothesis for statin action is related to the drugs' ability to activate alpha-secretase-type shedding of the alpha-secretase-cleaved soluble Alzheimer amyloid precursor protein ectodomain (sAPP(alpha. Statins also inhibit the isoprenoid pathway, thereby modulating the activities of the Rho family of small GTPases-Rho A, B, and C-as well as the activities of Rac and cdc42. Rho proteins, in turn, exert many of their effects via Rho-associated protein kinases (ROCKs. Several cell-surface molecules are substrates for activated alpha-secretase-type ectodomain shedding, and regulation of shedding typically occurs via activation of protein kinase C or extracellular-signal-regulated protein kinases, or via inactivation of protein phosphatase 1 or 2A. However, the possibility that these enzymes play a role in statin-stimulated shedding has been excluded, leading us to investigate whether the Rho/ROCK1 protein phosphorylation pathway might be involved.We found that both atorvastatin and simvastatin stimulated sAPP(alpha shedding from a neuroblastoma cell line via a subcellular mechanism apparently located upstream of endocytosis. A farnesyl transferase inhibitor also increased sAPP(alpha shedding, as did a dominant negative form of ROCK1. Most conclusively, a constitutively active ROCK1 molecule inhibited statin-stimulated sAPP(alpha shedding.Together, these data suggest that statins exert their effects on shedding of sAPP(alpha from cultured cells, at least in part, by modulation of the isoprenoid pathway and ROCK1.

  14. The regulation of ant colony foraging activity without spatial information.

    Directory of Open Access Journals (Sweden)

    Balaji Prabhakar

    Full Text Available Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.

  15. Rac1 activity regulates proliferation of aggressive metastatic melanoma

    International Nuclear Information System (INIS)

    Bauer, Natalie N.; Chen Yihwen; Samant, Rajeev S.; Shevde, Lalita A.; Fodstad, Oystein

    2007-01-01

    Molecular mechanisms underlying the different capacity of two in vivo selected human melanoma cell variants to form experimental metastases were studied. The doubling times of the FEMX-I and FEMX-V cell sublines in vitro were 15 and 25 h, respectively. The invasive capacity of FEMX-I cells was 8-fold higher than FEMX-V cells, and the time to form approximately 10 mm s.c. tumors in nude mice was 21 versus 35 days. FEMX-I displayed a spindle-like formation in vitro, whereas FEMX-V cells had a rounded shape. Hence, we examined known determinants of cell shape and proliferation, the small GTPases. The four studied showed equal expression in both cell types, but Rac1 activity was significantly decreased in FEMX-V cells. Rac1 stimulates NFκB, and we found that endogenous NFκB activity of FEMX-V cells was 2% of that of FEMX-I cells. Inhibition of Rac1 resulted in blocked NFκB activity. Specific inhibition of either Rac1 or NFκB significantly reduced proliferation and invasion of FEMX-I cells, the more pronounced effects observed with Rac1 inhibition. These data indicate that Rac1 activity in FEMX cells regulates cell proliferation and invasion, in part via its effect on NFκB, signifying Rac1 as a key molecule in melanoma progression and metastasis

  16. Physical Activity Plays an Important Role in Body Weight Regulation

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Chaput

    2011-01-01

    Full Text Available Emerging literature highlights the need to incorporate physical activity into every strategy intended to prevent weight gain as well as to maintain weight loss over time. Furthermore, physical activity should be part of any plan to lose weight. The stimulus of exercise provides valuable metabolic adaptations that improve energy and macronutrient balance regulation. A tight coupling between energy intake and energy expenditure has been documented at high levels of physical exercise, suggesting that exercise may improve appetite control. The regular practice of physical activity has also been reported to reduce the risk of stress-induced weight gain. A more personalized approach is recommended when planning exercise programs in a clinical weight loss setting in order to limit the compensatory changes associated to exercise-induced weight loss. With modern environment promoting overeating and sedentary behavior, there is an urgent need for a concerted action including legislative measures to promote healthy active living in order to curb the current epidemic of chronic diseases.

  17. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  18. Thyroid states regulate subcellular glucose phosphorylation activity in male mice

    Directory of Open Access Journals (Sweden)

    Flavia Letícia Martins Peçanha

    2017-07-01

    Full Text Available The thyroid hormones (THs, triiodothyronine (T3 and thyroxine (T4, are very important in organism metabolism and regulate glucose utilization. Hexokinase (HK is responsible for the first step of glycolysis, catalyzing the conversion of glucose to glucose 6-phosphate. HK has been found in different cellular compartments, and new functions have been attributed to this enzyme. The effects of hyperthyroidism on subcellular glucose phosphorylation in mouse tissues were examined. Tissues were removed, subcellular fractions were isolated from eu- and hyperthyroid (T3, 0.25 μg/g, i.p. during 21 days mice and HK activity was assayed. Glucose phosphorylation was increased in the particulate fraction in soleus (312.4% ± 67.1, n = 10, gastrocnemius (369.2% ± 112.4, n = 10 and heart (142.2% ± 13.6, n = 10 muscle in the hyperthyroid group compared to the control group. Hexokinase activity was not affected in brain or liver. No relevant changes were observed in HK activity in the soluble fraction for all tissues investigated. Acute T3 administration (single dose of T3, 1.25 μg/g, i.p. did not modulate HK activity. Interestingly, HK mRNA levels remained unchanged and HK bound to mitochondria was increased by T3 treatment, suggesting a posttranscriptional mechanism. Analysis of the AKT pathway showed a 2.5-fold increase in AKT and GSK3B phosphorylation in the gastrocnemius muscle in the hyperthyroid group compared to the euthyroid group. Taken together, we show for the first time that THs modulate HK activity specifically in particulate fractions and that this action seems to be under the control of the AKT and GSK3B pathways.

  19. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  20. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells.

    Science.gov (United States)

    DeRose, Robert; Pohlmeyer, Christopher; Umeda, Nobuhiro; Ueno, Tasuku; Nagano, Tetsuo; Kuo, Scot; Inoue, Takanari

    2012-03-09

    Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).

  1. Regulation of ALF promoter activity in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Dan Li

    Full Text Available BACKGROUND: In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter. PRINCIPAL FINDINGS: The promoter from the ALF transcription factor gene was cloned from X. laevis genomic DNA using a PCR-based genomic walking approach. The endogenous ALF gene was characterized by RACE and RT-PCR for transcription start site usage, and by sodium bisulfite sequencing to determine its methylation status in somatic and oocyte tissues. Homology between the X. laevis ALF promoter sequence and those from human, chimpanzee, macaque, mouse, rat, cow, pig, horse, dog, chicken and X. tropicalis was relatively low, making it difficult to use such comparisons to identify putative regulatory elements. However, microinjected promoter constructs were very active in oocytes and the minimal promoter could be narrowed by PCR-mediated deletion to a region as short as 63 base pairs. Additional experiments using a series of site-specific promoter mutants identified two cis-elements within the 63 base pair minimal promoter that were critical for activity. Both elements (A and B were specifically recognized by proteins present in crude oocyte extracts based on oligonucleotide competition assays. The activity of promoter constructs in oocytes and in transfected somatic Xenopus XLK-WG kidney epithelial cells was quite different, indicating that the two cell types are not functionally equivalent and are not interchangeable as assay systems. CONCLUSIONS: Overall the results provide the first detailed characterization of the organization of a germ cell-specific Xenopus promoter and demonstrate the feasibility of using immature frog oocytes as an assay system for dissecting the biochemistry of germ cell gene regulation.

  2. After the slippery slope: Dutch experiences on regulating active euthanasia.

    Science.gov (United States)

    Boer, Theo A

    2003-01-01

    "When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward." If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery slope argument, however, is by definition limited by its reference to future developments which cannot empirically be sustained. Experience in the Netherlands--where a law regulating active euthanasia was accepted in April 2001--may shed light on the strengths as well as the weaknesses of the slippery slope argument in the context of the euthanasia debate. This paper consists of three parts. First, it clarifies the Dutch legislation on euthanasia and explains the cultural context in which it originated. Second, it looks at the argument of the slippery slope. A logical and an empirical version are distinguished, and the latter, though philosophically less interesting, proves to be most relevant in the discussion on euthanasia. Thirdly, it addresses the question whether Dutch experiences in the process of legalizing euthanasia justify the fear of the slippery slope. The conclusion is that Dutch experiences justify some caution.

  3. Regulation of invadopodia formation and activity by CD147

    Science.gov (United States)

    Grass, G. Daniel; Bratoeva, Momka; Toole, Bryan P.

    2012-01-01

    A defining feature of malignant tumor progression is cellular penetration through the basement membrane and interstitial matrices that separate various cellular compartments. Accumulating evidence supports the notion that invasive cells employ specialized structures termed invadopodia to breach these structural barriers. Invadopodia are actin-based, lipid-raft-enriched membrane protrusions containing membrane-type-1 matrix metalloproteinase (MT1-MMP; also known as matrix metalloproteinase 14; MMP14) and several signaling proteins. CD147 (emmprin, basigin), an immunoglobulin superfamily protein that is associated with tumor invasion and metastasis, induces the synthesis of various matrix metalloproteinases in many systems. In this study we show that upregulation of CD147 is sufficient to induce MT1-MMP expression, invasiveness and formation of invadopodia-like structures in non-transformed, non-invasive, breast epithelial cells. We also demonstrate that CD147 and MT1-MMP are in close proximity within these invadopodia-like structures and co-fractionate in membrane compartments with the properties of lipid rafts. Moreover, manipulation of CD147 levels in invasive breast carcinoma cells causes corresponding changes in MT1-MMP expression, invasiveness and invadopodia formation and activity. These findings indicate that CD147 regulates invadopodia formation and activity, probably through assembly of MT1-MMP-containing complexes within lipid-raft domains of the invadopodia. PMID:22389410

  4. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  5. Gonadotropin Regulation of Retinoic Acid Activity in the Testis

    Directory of Open Access Journals (Sweden)

    Seyedmehdi Nourashrafeddin

    2018-02-01

    Full Text Available Initiation of spermatogenesis in primates is triggered at puberty by an increase in gonadotropins; i.e., follicle-stimulating hormone (FSH and luteinizing hormone (LH. Prior to puberty, testis of the monkey contains only undifferentiated germ cells. However, sermatogonial differentiation and spermatogenesis may be initiated prior to puberty after stimulation with exogenous LH and FSH. Retinoic acid (RA signaling is considered to be a major component that drives spermatogonial differentiation. We were interested in evaluating the relative role of LH and FSH, either alone or in combination, in regulating the retinoic acid signaling in monkey testis. Sixteen juvenile male rhesus monkeys (Macaca mulatta were infused with intermittent recombinant single chain human LH (schLH or recombinant human FSH (rhFSH or a combination of both for 11 days. We then analyzed the expression of the several putative RA signaling pathway related genes; i.e. RDH10, RDH11, ALDH1A1, ALDH1A2, CYP26B1, CRABP1, CRABP2, STRA6, STRA8 in the testis after 11 days of stimulation with vehicle, LH, FSH and combination LH/FSH using quantitative real-time PCR (qPCR. The qPCR results analysis showed that administration of gonadotropins affected a significant change in expression of some RA signaling related genes in the monkey testis. The gonadotropins, either alone or in combination dramatically increased expression of CRABP2 (p≤0.001, whereas there was a decrease in ALDH1A2 expression (p≤0.001. Moreover, combined gonadotropin treatment led to the significant decrease in CRABP1 expression (p≤0.05. These findings are the first evidence that the activity of retinoic acid signaling in the monkey testis is regulated through gonadotropins (LH/FSH levels.

  6. Caspase Activation of p21-Activated Kinase 2 Occurs During Cisplatin-Induced Apoptosis of SH-SY5Y Neuroblastoma Cells and in SH-SY5Y Cell Culture Models of Alzheimer’s and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jerry W. Marlin

    2010-04-01

    Full Text Available p21-activated kinase 2 (PAK-2 appears to have a dual function in the regulation of cell survival and cell death. Activation of full-length PAK-2 by the p21 G-proteins Rac or Cdc42 stimulates cell survival. However, PAK-2 is unique among the PAK family because it is also activated through proteolytic cleavage by caspase 3 or similar caspases to generate the constitutively active PAK-2p34 fragment. Caspase activation of PAK-2 correlates with the induction of apoptosis in response to many stimuli and recombinant expression of PAK-2p34 has been shown to stimulate apoptosis in several human cell lines. Here, we show that caspase activation of PAK-2 also occurs during cisplatin-induced apoptosis of SH-SY5Y neuroblastoma cells as well as in SH-SY5Y cell culture models for Alzheimer’s and Parkinson’s disease. Inhibition of mitochondrial complex I or of ubiquitin/proteasome-mediated protein degradation, which both appear to be involved in Parkinson’s disease, induce apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Overexpression of the amyloid precursor protein, which results in accumulation and aggregation of β-amyloid peptide, the main component of β-amyloid plaques in Alzheimer’s disease, also induces apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Expression of the PAK-2 regulatory domain inhibits caspase-activated PAK-2p34 and prevents apoptosis in 293T human embryonic kidney cells, indicating that caspase activation of PAK-2 is directly involved in the apoptotic response. This is the first evidence that caspase activation of PAK-2 correlates with apoptosis in cell culture models of Alzheimer’s and Parkinson’s disease and that selective inhibition of caspase-activated PAK-2p34 could prevent apoptosis.

  7. Regulation of AMP-activated protein kinase by natural and synthetic activators

    Directory of Open Access Journals (Sweden)

    David Grahame Hardie

    2016-01-01

    Full Text Available The AMP-activated protein kinase (AMPK is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.

  8. Harmonisation of regulations on back-end activities - WENRA

    International Nuclear Information System (INIS)

    Hedberg, B.; Theis, S.

    2014-01-01

    The Western European Nuclear Regulators Association (WENRA) was established in 1999. The main objectives at that time were to develop a common approach to nuclear safety in Europe and to provide an independent capability to examine nuclear safety in applicant countries. Two working groups were launched to harmonise safety approaches between countries in Europe, the Reactor Harmonisation Working Group (RHWG) and the Working Group on Waste and Decommissioning (WGWD). In response to the events in Japanese reactors following the tsunami in 2011 WENRA established the contents of the 'NPP stress test'. Recent WENRA activities are concerned with inspection practices and research reactors. The WGWD has to date developed Safety Reference Levels (SRL) reports for decommissioning and storage according to its original mandate (WENRA, 2011, 2012a). WENRA members have experienced a benchmarking process and established national action plans for the modification of their national legal systems and practices according to benchmarking results. WGWD is currently working on developing a SRL report for disposal facilities for radioactive waste. A first draft version with SRLs for disposal was published in November 2012 on WENRA's web page, for comments from stakeholders. This paper presents the current status of development and elaborates on the role of WENRA WGWD work in harmonising approaches in Europe regarding development of the safety case for disposal of spent fuel and radioactive waste. (authors)

  9. Distinct mechanisms regulate Lck spatial organization in activated T cells

    Directory of Open Access Journals (Sweden)

    Natasha eKapoor-Kaushik

    2016-03-01

    Full Text Available Phosphorylation of the T cell receptor (TCR by the kinase Lck is the first detectable signaling event upon antigen engagement. The distribution of Lck within the plasma membrane, its conformational state, kinase activity and protein interactions all contribute to determine how efficiently Lck phosphorylates the engaged TCR. Here we used cross-correlation raster image spectroscopy (ccRICS and photoactivated localization microscopy (PALM to identify two mechanisms of Lck clustering: an intrinsic mechanism of Lck clustering induced by locking Lck in its open conformation, and an extrinsic mechanism of clustering controlled by the phosphorylation of tyrosine 192, which regulates the affinity of Lck SH2 domain. Both mechanisms of clustering were differently affected by the absence of the kinase Zap70 or the adaptor Lat. We further observed that the adaptor TSAd bound to and promoted the diffusion of Lck when it is phosphorylated on tyrosine 192. Our data suggest that while Lck open conformation drives aggregation and clustering, the spatial organization of Lck is further controlled by signaling events downstream of TCR phosphorylation.

  10. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  11. AMP-activated protein kinase phosphorylates CtBP1 and down-regulates its activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan; Choi, Soo-Youn; Kang, Byung-Hee; Lee, Soon-Min [National Creative Research Center for Epigenome Reprogramming Network, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Hyung Soon; Kang, Gum-Yong; Bang, Joo Young [Center for Biomedical Mass Spectrometry, Diatech Korea Co., Ltd., Seoul (Korea, Republic of); Cho, Eun-Jung [National Research Laboratory for Chromatin Dynamics, College of Pharmacy, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Youn, Hong-Duk, E-mail: hdyoun@snu.ac.kr [National Creative Research Center for Epigenome Reprogramming Network, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence and Technology, Seoul National University, Seoul (Korea, Republic of)

    2013-02-01

    Highlights: ► AMPK phosphorylates CtBP1 on serine 158. ► AMPK-mediated phosphorylation of CtBP1 causes the ubiquitination and nuclear export of CtBP1. ► AMPK downregulates the CtBP1-mediated repression of Bax transcription. -- Abstract: CtBP is a transcriptional repressor which plays a significant role in the regulation of cell proliferation and tumor progression. It was reported that glucose withdrawal causes induction of Bax due to the dissociation of CtBP from the Bax promoter. However, the precise mechanism involved in the regulation of CtBP still remains unclear. In this study, we found that an activated AMP-activated protein kinase (AMPK) phosphorylates CtBP1 on Ser-158 upon metabolic stresses. Moreover, AMPK-mediated phosphorylation of CtBP1 (S158) attenuates the repressive function of CtBP1. We also confirmed that triggering activation of AMPK by various factors resulted in an increase of Bax gene expression. These findings provide connections of AMPK with CtBP1-mediated regulation of Bax expression for cell death under metabolic stresses.

  12. A Rewriting Framework and Logic for Activities Subject to Regulations

    Science.gov (United States)

    2015-02-28

    Regulations may be imposed by multiple governmental agencies as well as by institutional policies and protocols. Due to the complexity of both regulations and...positive number and decrements it; (3) A 0-test ri instruction is a branching instruction leading to one state if ri contains zero and to another state... insurance scenario discussed in (LMS09). De Young et al. describe in (DGJ+10) the challenges of formally specifying the temporal properties of regulations

  13. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1.

    Science.gov (United States)

    Furihata, Takashi; Maruyama, Kyonoshin; Fujita, Yasunari; Umezawa, Taishi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-02-07

    bZIP-type transcription factors AREBs/ABFs bind an abscisic acid (ABA)-responsive cis-acting element named ABRE and transactivate downstream gene expression in Arabidopsis. Because AREB1 overexpression could not induce downstream gene expression, activation of AREB1 requires ABA-dependent posttranscriptional modification. We confirmed that ABA activated 42-kDa kinase activity, which, in turn, phosphorylated Ser/Thr residues of R-X-X-S/T sites in the conserved regions of AREB1. Amino acid substitutions of R-X-X-S/T sites to Ala suppressed transactivation activity, and multiple substitution of these sites resulted in almost complete suppression of transactivation activity in transient assays. In contrast, substitution of the Ser/Thr residues to Asp resulted in high transactivation activity without exogenous ABA application. A phosphorylated, transcriptionally active form was achieved by substitution of Ser/Thr in all conserved R-X-X-S/T sites to Asp. Transgenic plants overexpressing the phosphorylated active form of AREB1 expressed many ABA-inducible genes, such as RD29B, without ABA treatment. These results indicate that the ABA-dependent multisite phosphorylation of AREB1 regulates its own activation in plants.

  14. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    International Nuclear Information System (INIS)

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. [ 3 H]PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 μM. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRPγS and GDPβS, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA)

  15. 30 CFR 285.1000 - What activities does this subpart regulate?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What activities does this subpart regulate? 285.1000 Section 285.1000 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... Activities § 285.1000 What activities does this subpart regulate? (a) This subpart provides the general...

  16. Vinculin contributes to Cell Invasion by Regulating Contractile Activation

    Science.gov (United States)

    Mierke, Claudia Tanja

    2008-07-01

    Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.

  17. The small GTPase RhoH is an atypical regulator of haematopoietic cells

    Directory of Open Access Journals (Sweden)

    Kubatzky Katharina F

    2008-09-01

    Full Text Available Abstract Rho GTPases are a distinct subfamily of the superfamily of Ras GTPases. The best-characterised members are RhoA, Rac and Cdc42 that regulate many diverse actions such as actin cytoskeleton reorganisation, adhesion, motility as well as cell proliferation, differentiation and gene transcription. Among the 20 members of that family, only Rac2 and RhoH show an expression restricted to the haematopoietic lineage. RhoH was first discovered in 1995 as a fusion transcript with the transcriptional repressor LAZ3/BCL6. It was therefore initially named translation three four (TTF but later on renamed RhoH due to its close relationship to the Ras/Rho family of GTPases. Since then, RhoH has been implicated in human cancer as the gene is subject to somatic hypermutation and by the detection of RHOH as a translocation partner for LAZ3/BCL6 or other genes in human lymphomas. Underexpression of RhoH is found in hairy cell leukaemia and acute myeloid leukaemia. Some of the amino acids that are crucial for GTPase activity are mutated in RhoH so that the protein is a GTPase-deficient, so-called atypical Rho GTPase. Therefore other mechanisms of regulating RhoH activity have been described. These include regulation at the mRNA level and tyrosine phosphorylation of the protein's unique ITAM-like motif. The C-terminal CaaX box of RhoH is mainly a target for farnesyl-transferase but can also be modified by geranylgeranyl-transferase. Isoprenylation of RhoH and changes in subcellular localisation may be an additional factor to fine-tune signalling. Little is currently known about its signalling, regulation or interaction partners. Recent studies have shown that RhoH negatively influences the proliferation and homing of murine haematopoietic progenitor cells, presumably by acting as an antagonist for Rac1. In leukocytes, RhoH is needed to keep the cells in a resting, non-adhesive state, but the exact mechanism has yet to be elucidated. RhoH has also been

  18. The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction-dependent manner.

    Directory of Open Access Journals (Sweden)

    Aniko Keller-Pinter

    Full Text Available The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs. Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu mutant of syndecan-4 (SDC4. SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1 to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways.

  19. The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction–dependent manner

    Science.gov (United States)

    Keller-Pinter, Aniko; Ughy, Bettina; Domoki, Monika; Pettko-Szandtner, Aladar; Letoha, Tamas; Tovari, Jozsef; Timar, Jozsef

    2017-01-01

    The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1–RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways. PMID:29121646

  20. The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction-dependent manner.

    Science.gov (United States)

    Keller-Pinter, Aniko; Ughy, Bettina; Domoki, Monika; Pettko-Szandtner, Aladar; Letoha, Tamas; Tovari, Jozsef; Timar, Jozsef; Szilak, Laszlo

    2017-01-01

    The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways.

  1. Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses.

    Science.gov (United States)

    Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian

    2015-12-01

    Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity

    International Nuclear Information System (INIS)

    Gomez-Gonzalo, Marta; Benedicto, Ignacio; Carretero, Marta; Lara-Pezzi, Enrique; Maldonado-Rodriguez, Alejandra; Moreno-Otero, Ricardo; Lai, Michael M.C.; Lopez-Cabrera, Manuel

    2004-01-01

    Hepatitis C virus (HCV) core is a viral structural protein; it also participates in some cellular processes, including transcriptional regulation. However, the mechanisms of core-mediated transcriptional regulation remain poorly understood. Oncogenic virus proteins often target p300/CBP, a known co-activator of a wide variety of transcription factors, to regulate the expression of cellular and viral genes. Here we demonstrate, for the first time, that HCV core protein interacts with p300/CBP and enhances both its acetyl-transferase and transcriptional activities. In addition, we demonstrate that nuclear core protein activates the NH 2 -terminal transcription activation domain (TAD) of NF-AT1 in a p300/CBP-dependent manner. We propose a model in which core protein regulates the co-activation function of p300/CBP and activates NF-AT1, and probably other p300/CBP-regulated transcription factors, by a novel mechanism involving the regulation of the acetylation state of histones and/or components of the transcriptional machinery

  3. Flipped Classroom with Problem Based Activities: Exploring Self-Regulated Learning in a Programming Language Course

    Science.gov (United States)

    Çakiroglu, Ünal; Öztürk, Mücahit

    2017-01-01

    This study intended to explore the development of self-regulation in a flipped classroom setting. Problem based learning activities were carried out in flipped classrooms to promote self-regulation. A total of 30 undergraduate students from Mechatronic department participated in the study. Self-regulation skills were discussed through students'…

  4. 15 CFR 922.72 - Prohibited or otherwise regulated activities-Sanctuary-wide.

    Science.gov (United States)

    2010-01-01

    ... activities-Sanctuary-wide. 922.72 Section 922.72 Commerce and Foreign Trade Regulations Relating to Commerce... OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS Channel Islands National Marine Sanctuary § 922.72 Prohibited or otherwise regulated activities—Sanctuary-wide. (a) Except...

  5. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    Science.gov (United States)

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  6. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    Science.gov (United States)

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  7. Regulation of nuclear and radiological activities; Reglementarea activitatilor nucleare si radiologice

    Energy Technology Data Exchange (ETDEWEB)

    Sidorencu, Angela; Vasilieva, Natalia; Buzdugan, Artur; Balan, Ionel [Agentia Nationala de Reglementare a Activitatilor Nucleare si Radiologice, Alecu Russo, 1, MD 2068, Chisinau (Moldova, Republic of)

    2012-08-15

    The paper presents a review of the Moldovan regulatory framework regarding nuclear and radiological activities and of the competence of state regulatory authority - the National Agency for the Regulation of Nuclear and Radiological Activities.

  8. The transcriptional activator GAL4-VP16 regulates the intra ...

    Indian Academy of Sciences (India)

    Activator also reduced the TBP dimer levels both in vitro and in vivo, suggesting the dimer may be a direct target of transcriptional activators. The transcriptional activator facilitated the dimer to monomer transition and activated monomers further to help TBP bind even the weaker TATA boxes stably. The overall stimulatory ...

  9. Robust, synergistic regulation of human gene expression using TALE activators.

    Science.gov (United States)

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  10. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis.

    Directory of Open Access Journals (Sweden)

    Natasha Chaudhary

    2014-04-01

    Full Text Available Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1 and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP studies. In the absence of cavins (and caveolae CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide

  11. The State Regulation of Innovation Activity at the Present Stage

    Directory of Open Access Journals (Sweden)

    Qoqiauri Lamara G.

    2017-06-01

    Full Text Available The article discusses the necessity of state regulation in the field of development of innovations and technologies at the present stage. The main directions of the state innovation policies in developed countries of the world are studied and analyzed. Special attention is paid to the objectives of the national strategy for development of science and innovations and to searching the ways for fulfilling this strategy. Apart from these specific problems, the work considers the issue of the state regulation and support of further introduction of innovations and increase of the so called “entrepreneurial” role of the state.

  12. Self-Regulated Learning and Perceived Health among University Students Participating in Physical Activity Classes

    Science.gov (United States)

    McBride, Ron E.; Altunsöz, Irmak Hürmeriç; Su, Xiaoxia; Xiang, Ping; Demirhan, Giyasettin

    2016-01-01

    The purpose of this study was to explore motivational indicators of self-regulated learning (SRL) and the relationship between self-regulation (SR) and perceived health among university students enrolled in physical activity (PA) classes. One hundred thirty-one Turkish students participating in physical education activity classes at two…

  13. 78 FR 19632 - Special Local Regulations; St. Thomas Carnival Watersport Activities, Charlotte Amalie Harbor; St...

    Science.gov (United States)

    2013-04-02

    ...-AA08 Special Local Regulations; St. Thomas Carnival Watersport Activities, Charlotte Amalie Harbor; St... proposes to establish a special local regulation on the waters of Charlotte Amalie Harbor in St Thomas, USVI during the St. Thomas Carnival Watersport Activities, a high speed boat race. The event is...

  14. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...osine kinases and the regulation of macrophage activation. PubmedID 14726496 Title Receptor tyrosine...rell PH, Morrison AC, Lutz MA. J Leukoc Biol. 2004 May;75(5):731-7. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Receptor tyr

  15. Physical Activity, Self-Regulation, and Early Academic Achievement in Preschool Children

    Science.gov (United States)

    Becker, Derek R.; McClelland, Megan M.; Loprinzi, Paul; Trost, Stewart G.

    2014-01-01

    Research Findings: The present study investigated whether active play during recess was associated with self-regulation and academic achievement in a prekindergarten sample. A total of 51 children in classes containing approximately half Head Start children were assessed on self-regulation, active play, and early academic achievement. Path…

  16. Active Learning and Self-Regulation Enhance Student Teachers' Professional Competences

    Science.gov (United States)

    Virtanen, Päivi; Niemi, Hannele M.; Nevgi, Anne

    2017-01-01

    The study identifies the relationships between active learning, student teachers' self-regulated learning and professional competences. Further, the aim is to investigate how active learning promotes professional competences of student teachers with different self-regulation profiles. Responses from 422 student teachers to an electronic survey…

  17. In vitro production of growth regulators and phosphatase activity by ...

    African Journals Online (AJOL)

    The result showed that the population levels of phosphobacteria were higher in the rhizosphere soil of groundnut plant. Further, all the strains of phosphobacteria were able to produce phytohormones and phosphatase enzyme under in vitro conditions. Keywords: In vitro, phosphobacteria, growth regulators ...

  18. Dynamics of study strategies and teacher regulation in virtual patient learning activities: a cross sectional survey.

    Science.gov (United States)

    Edelbring, Samuel; Wahlström, Rolf

    2016-04-23

    Students' self-regulated learning becomes essential with increased use of exploratory web-based activities such as virtual patients (VPs). The purpose was to investigate the interplay between students' self-regulated learning strategies and perceived benefit in VP learning activities. A cross-sectional study (n = 150) comparing students' study strategies and perceived benefit of a virtual patient learning activity in a clinical clerkship preparatory course. Teacher regulation varied among three settings and was classified from shared to strong. These settings were compared regarding their respective relations between regulation strategies and perceived benefit of the virtual patient activity. Self-regulation learning strategy was generally associated with perceived benefit of the VP activities (rho 0.27, p strategies can increase the value of flexible web-based learning resources to students.

  19. Commission of energy regulation. 2004 activity report; Commission de regulation de l'energie. Rapport d'activite 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The commission of energy regulation (CRE) is an independent administrative authority in charge of the control of the operation of gas and electricity markets. This document is the fifth activity report of CRE and covers the July 1, 2003 - June 30, 2004 period, which corresponds to the era of opening of energy markets as a consequence of the enforcement of the June 26, 2003 European directive. In the framework of the stakes made by energy markets liberalization, this document presents the situation of the gas and electricity markets during this period (European framework, regulation of both markets, public utility mission..) and describes CRE's means for the monitoring of these markets. (J.S.)

  20. Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells.

    Science.gov (United States)

    Baio, Jonathan; Martinez, Aida F; Bailey, Leonard; Hasaniya, Nahidh; Pecaut, Michael J; Kearns-Jonker, Mary

    2018-02-12

    Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth

  1. Activity-Dependent Regulation of Surface Glucose Transporter-3

    OpenAIRE

    Ferreira, Jainne M.; Burnett, Arthur L.; Rameau, Gerald A.

    2011-01-01

    Glucose transporter 3 (GLUT3) is the main facilitative glucose transporter in neurons. Glucose provides neurons with a critical energy source for neuronal activity. However, the mechanism by which neuronal activity controls glucose influx via GLUT3 is unknown. We investigated the influence of synaptic stimulation on GLUT3 surface expression and glucose import in primary cultured cortical and hippocampal neurons. Synaptic activity increased surface expression of GLUT3 leading to an elevation o...

  2. Active Learning and Self-Regulation Enhance Student Teachers’ Professional Competences

    OpenAIRE

    Virtanen, Päivi; Niemi, Hannele M.; Nevgi, Anne

    2017-01-01

    The study identifies the relationships between active learning, student teachers’ self-regulated learning and professional competences. Further, the aim is to investigate how active learning promotes professional competences of student teachers with different self-regulation profiles. Responses from 422 student teachers to an electronic survey were analysed using statistical methods. It was found that the use of active learning methods, such as goal-oriented and intentional learning as well a...

  3. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  4. Regulation of calcium homeostasis in activated human neutrophils ...

    African Journals Online (AJOL)

    Objectives. The objectives of the current study were to: (i) present an integrated model for the restoration of calcium homeostasis in activated human neutrophils based on current knowledge and recent research; and (ii) identify potential targets for the modulation of calcium fluxes in activated neutrophils based on this model ...

  5. Examining "Active" Procrastination from a Self-Regulated Learning Perspective

    Science.gov (United States)

    Cao, Li

    2012-01-01

    This study examined the notion that active procrastinators are a positive type of procrastinators who possess desirable characteristics similar to non-procrastinators, but different from the traditional passive procrastinators. A two-step procedure was followed to categorise university students (N = 125) as active procrastinators, passive…

  6. Recent achievements in regulating nuclear power activities in taiwan

    International Nuclear Information System (INIS)

    Ouyang, M.S.

    2006-01-01

    Full text: The energy resources in Taiwan are very scarce with more than 98% of the fuel sources imported from foreign countries. The nuclear power became essential because of its stability and economy in price. There are six operating nuclear power units in Taiwan, and two more advanced boiling water reactor units under construction. As the country's nuclear power still plays an important role, the Atomic Energy Council (AEC) devotes its great efforts working on reactor safety regulation, radiation protection, nuclear security, nuclear emergency preparedness, nuclear waste management and environmental monitoring. Recent achievements of AEC on the above mentioned topics will be covered in this presentation

  7. Simulated shift work in rats perturbs multiscale regulation of locomotor activity

    Science.gov (United States)

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A. J. L.; Shea, Steven A.; Buijs, Ruud M.; Hu, Kun

    2014-01-01

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. PMID:24829282

  8. Light-regulation of enzyme activity in anacystis nidulans (Richt.).

    Science.gov (United States)

    Duggan, J X; Anderson, L E

    1975-01-01

    The effect of light on the levels of activity of six enzymes which are light-modulated in higher plants was examined in the photosynthetic procaryot Anacystis nidulans. Ribulose-5-phosphate kinase (EC 2.7.1.19) was found to be light-activated in vivo and dithiothreitol-activated in vitro while glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was light-inactivated and dithiothreitol-inactivated. The enzymes fructose-1,6-diphosphate phosphatase (EC 3.1.3.11), sedoheptulose-1,7-diphosphate phosphatase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; EC 1.2.1.13) were not affected by light treatment of the intact algae, but sedoheptulose-diphosphate phosphatase and the glyceraldehyde-3-phosphate dehydrogenases were dithiothreitol-activated in crude extracts. Light apparently controls the activity of the reductive and oxidative pentose phosphate pathway in this photosynthetic procaryot as in higher plants, through a process which probably involves reductive modulation of enzyme activity.

  9. Group I Paks Promote Skeletal Myoblast Differentiation In Vivo and In Vitro

    DEFF Research Database (Denmark)

    Joseph, Giselle A; Lu, Min; Radu, Maria

    2017-01-01

    fusion in Drosophila We report that both Pak1 and Pak2 are activated during mammalian myoblast differentiation. One pathway of activation is initiated by N-cadherin ligation and involves the cadherin coreceptor Cdo with its downstream effector, Cdc42. Individual genetic deletion of Pak1 and Pak2 in mice....... Furthermore, primary myoblasts lacking Pak1 and Pak2 display delayed expression of myogenic differentiation markers and myotube formation. These results identify Pak1 and Pak2 as redundant regulators of myoblast differentiation in vitro and in vivo and as components of the promyogenic Ncad/Cdo/Cdc42 signaling...

  10. Emotion regulation strategies: procedure modeling of J. Gross and cultural activity approach

    Directory of Open Access Journals (Sweden)

    Elena I. Pervichko

    2015-03-01

    Full Text Available The first part of this paper argued the desirability of structural-dynamic model of emotion regulation in the theoretical and methodological framework of cultural activity paradigm with the construction of a psychologically-based typology of emotion regulation strategies in norm and pathology, and also psychological mechanisms enabling the regulation of emotions. This conclusion was based on the analysis of the basic concepts and paradigms in which the issue of emotion regulation is studied: cognitive and psychoanalytic approaches, concept and emotional development of emotional intelligence, cultural activity approach. The paper considers the procedure model of emotion regulation by J. Gross, identifies emotion regulation strategies and evaluates their effectiveness. The possibilities and limitations of the model. Based on the review of the today research the conclusion is arrived at that the existing labels on a wide range of regulatory strategies remain an open issue.The author’s definition of emotion regulation is drawn. Emotion regulation is deemed as a set of mental processes, psychological mechanisms and regulatory strategies that people use to preserve the capacity for productive activities in a situation of emotional stress; to ensure optimal impulse control and emotions; to maintain the excitement at the optimum level. The second part of this paper provides the general description of emotion regulation strategies, the approach to their typology, the psychological mechanisms of emotion regulation that lie in the basis of this typology, i.e. the main elements of the structural-dynamic model of emotion regulation. The work shows theoretical and methodological efficacy of empirical significance of signs and symbols and also personal reflection. The diagnostic system to allow empirically identify a wide range of emotion regulation strategies is suggested. The psychological mechanisms used by the subject to solve the problem of emotional

  11. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.

    Science.gov (United States)

    Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude

    2018-04-01

    Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.

  12. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne

    2009-01-01

    for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import......DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA......, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M...

  13. REGULATION AND SUPERVISION OF BANKING ACTIVITY IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Anisoara Niculina APETRI

    2015-04-01

    Full Text Available The main challenges currently faced by most central banks are generated by the effects of the economic and financial crisis. Thus, at the national, European and international level there is a trend of changing the economic governance structures and improving the regulatory and supervisory policies, focusing on macro-prudential oversight. In the context of changes at the European Union level, the central banks of the Member States become also subject to changes in their carried out actions. The objectives of this research aim mainly at: highlighting the role of the National Bank of Romania in regulating and supervising the banking system in Romania and analyzing the measures implemented by the National Bank of Romania after the crisis so far; identifying the challenges of the National Bank of Romania on the basis of changes operated by European Union at the supervisory framework level.

  14. Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures

    NARCIS (Netherlands)

    Rodriguez, A.; Rey, B.; Clemente, M.; Wrzesien, M.; Alcañiz, M.

    2015-01-01

    Emotional regulation strategies are used by people to influence their emotional responses to external or internal emotional stimuli. The aim of this study is to evaluate the brain activations that are associated with the application of two different emotional regulation strategies (cognitive

  15. Design for mood : Twenty activity-based opportunities to design for mood regulation

    NARCIS (Netherlands)

    Desmet, P.M.A.

    2015-01-01

    This paper introduces a theory-based approach to design for mood regulation. The main proposition is that design can best influence mood by enabling and stimulating people to engage in a broad range of mood-regulating activities. The first part of the manuscript reviews state-of-the art mood-focused

  16. Methodical approaches to development of classification state methods of regulation business activity in fishery

    OpenAIRE

    She Son Gun

    2014-01-01

    Approaches to development of classification of the state methods of regulation of economy are considered. On the basis of the provided review the complex method of state regulation of business activity is reasonable. The offered principles allow improving public administration and can be used in industry concepts and state programs on support of small business in fishery.

  17. USP21 regulates Hippo pathway activity by mediating MARK protein turnover

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Loya, Anand Chainsukh

    2017-01-01

    observed in cancer and often correlates with worse survival. The activity and stability of Hippo pathway components, including YAP/TAZ, AMOT and LATS1/2, are regulated by ubiquitin-mediated protein degradation. Aberrant expression of ubiquitin ligase complexes that regulate the turnover of Hippo components...

  18. Relationship Between Self-Regulation and Balance-Confidence in Active and Inactive Elderly Men

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Hosseini

    2018-01-01

    Conclusion This study confirms that lack of self-regulation in the elderly can lead to decreased physical activity and restrictions. It is suggested that self-regulation should be emphasized in the elderly so that they can overcome their environmental issues and enhance their balance confidence.

  19. Hypothalamic-Pituitary-Adrenal and Sympathetic Nervous System Activity and Children's Behavioral Regulation

    Science.gov (United States)

    Lisonbee, Jared A.; Pendry, Patricia; Mize, Jacquelyn; Gwynn, Eugenia Parrett

    2010-01-01

    Self-regulation ability is an important component of children's academic success. Physiological reactivity may relate to brain activity governing attention and behavioral regulation. Saliva samples collected from 186 preschool children (101 boys, mean age = 53 months, 34% minority) before and after a series of mildly challenging games and again 30…

  20. Interaction Analysis for Supporting Students' Self-Regulation during Blog-Based CSCL Activities

    Science.gov (United States)

    Michailidis, Nikolaos; Kapravelos, Efstathios; Tsiatsos, Thrasyvoulos

    2018-01-01

    Self-regulated learning is an important means of supporting students' self-awareness and self-regulation level so as to enhance their motivation and engagement. Interaction Analysis (IA) contributes to this end, and its use in studying learning dynamics involved in asynchronous Computer-Supported Collaborative Learning (CSCL) activities has…

  1. 75 FR 67094 - Agency Information Collection Activities: CBP Regulations Pertaining to Customs Brokers

    Science.gov (United States)

    2010-11-01

    ... Activities: CBP Regulations Pertaining to Customs Brokers AGENCY: U.S. Customs and Border Protection... collection requirement concerning the: CBP Regulations Pertaining to Customs Brokers (19 CFR Part 111). This... Pertaining to Customs Brokers (19 CFR Part 111). OMB Number: 1651-0034. Form Numbers: CBP Forms 3124 and...

  2. Proposal for regulation of logging activities in oil wells using ionizing radiation sources

    International Nuclear Information System (INIS)

    Hidrowoh, Jacob R.

    2000-01-01

    It covers general aspects of nuclear energy and the suitable legal frame for its application related to oil industry. Besides, a regulation proposal to control logging activities in Ecuador using ionizing radiation sources in oil wells. It was prepared taking into account the Ecuadorian Atomic Energy Commission criteria and international regulations

  3. Gene program-specific regulation of PGC-1{alpha} activity

    DEFF Research Database (Denmark)

    Schmidt, Søren F; Mandrup, Susanne

    2011-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1 α (PGC-1α) activation coordinates induction of the hepatic fasting response through coactivation of numerous transcription factors and gene programs. In the June 15, 2011, issue of Genes & Development, Lustig and colleagues (pp....... 1232-1244) demonstrated that phosphorylation of PGC-1α by the p70 ribosomal protein S6 kinase 1 (S6K1) specifically interfered with the interaction between PGC-1α and HNF4α in liver and blocked the coactivation of the gluconeogenic target genes. This demonstrates how independent fine-tuning of gene...

  4. Young Children's Interest-Oriented Activity and Later Academic Self-Regulation Strategies in Kindergarten

    Science.gov (United States)

    Neitzel, Carin; Alexander, Joyce M.; Johnson, Kathy E.

    2016-01-01

    This study investigated children's interest-based activities in the home during the preschool years and their subsequent academic self-regulation behaviors in school. Children's home activities were tracked for 1 year prior to kindergarten entry. Based on their profiles of activities, children (109) were assigned to one of four interest groups:…

  5. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes

    DEFF Research Database (Denmark)

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer

    2011-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes...

  6. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    International Nuclear Information System (INIS)

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.; Lee, Benhur; Moncman, Carole L.; McCann, Richard O.; Dutch, Rebecca Ellis

    2006-01-01

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1 V12 or Cdc42 V12 could increase cell-cell fusion promoted by the Hendra or SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA L63 decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia

  7. After the Slippery Slope: Dutch Experiences on Regulating Active Euthanasia

    NARCIS (Netherlands)

    Boer, Th.A.

    2003-01-01

    “When a country legalizes active euthanasia, it puts itself on a slippery slope from where it may well go further downward.” If true, this is a forceful argument in the battle of those who try to prevent euthanasia from becoming legal. The force of any slippery-slope argument, however, is by

  8. Regulation of the branchial ciliary activity in the mussel

    NARCIS (Netherlands)

    Dral, A.D.G.

    1977-01-01

    In mussels the movement of the cilia on the gill are basically autonomous and influenced by environmental factors. The branchial nerve has an inhibitory as well as a stimulating effect on the activity of the lateral cilia. The reactions of these cilia to changing temperature and chlorinity in

  9. Active Compound of Zingiber Cassumunar Roxb. Down-Regulates ...

    African Journals Online (AJOL)

    MMPs activities in the culture media were analyzed by zymographic techniques. Dexamethasone was used as the positive control. It was found that compound D at the concentration of 10 - 100 µM significantly decreased the mRNA expressions of MMP-1, -2, -3, and -13 which was induced by IL-1ß (P<0.05) concomitantly ...

  10. BAD and KATP channels regulate neuron excitability and epileptiform activity.

    Science.gov (United States)

    Martínez-François, Juan Ramón; Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L; Danial, Nika N; Yellen, Gary

    2018-01-25

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad ( B CL-2 a gonist of cell d eath) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (K ATP ) channels. Here we investigated the effect of BAD manipulation on K ATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal K ATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal K ATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of K ATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased K ATP channel activity. © 2018, Martínez-François et al.

  11. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    Science.gov (United States)

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. Published by Elsevier B.V.

  12. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    2010-11-01

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  13. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1.

    Science.gov (United States)

    Gaude, H; Aznar, N; Delay, A; Bres, A; Buchet-Poyau, K; Caillat, C; Vigouroux, A; Rogon, C; Woods, A; Vanacker, J-M; Höhfeld, J; Perret, C; Meyer, P; Billaud, M; Forcet, C

    2012-03-22

    LKB1 is a tumor suppressor that is constitutionally mutated in a cancer-prone condition, called Peutz-Jeghers syndrome, as well as somatically inactivated in a sizeable fraction of lung and cervical neoplasms. The LKB1 gene encodes a serine/threonine kinase that associates with the pseudokinase STRAD (STE-20-related pseudokinase) and the scaffolding protein MO25, the formation of this heterotrimeric complex promotes allosteric activation of LKB1. We have previously reported that the molecular chaperone heat shock protein 90 (Hsp90) binds to and stabilizes LKB1. Combining pharmacological studies and RNA interference approaches, we now provide evidence that the co-chaperone Cdc37 participates to the regulation of LKB1 stability. It is known that the Hsp90-Cdc37 complex recognizes a surface within the N-terminal catalytic lobe of client protein kinases. In agreement with this finding, we found that the chaperones Hsp90 and Cdc37 interact with an LKB1 isoform that differs in the C-terminal region, but not with a novel LKB1 variant that lacks a portion of the kinase N-terminal lobe domain. Reconstitution of the two complexes LKB1-STRAD and LKB1-Hsp90-Cdc37 with recombinant proteins revealed that the former is catalytically active whereas the latter is inactive. Furthermore, consistent with a documented repressor function of Hsp90, LKB1 kinase activity was transiently stimulated upon dissociation of Hsp90. Finally, disruption of the LKB1-Hsp90 complex favors the recruitment of both Hsp/Hsc70 and the U-box dependent E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70-interacting protein) that triggers LKB1 degradation. Taken together, our results establish that the Hsp90-Cdc37 complex controls both the stability and activity of the LKB1 kinase. This study further shows that two chaperone complexes with antagonizing activities, Hsp90-Cdc37 and Hsp/Hsc70-CHIP, finely control the cellular level of LKB1 protein.

  14. Niacin and its metabolites as master regulators of macrophage activation.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Naranjo, M Carmen; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J Garcia; Bermudez, Beatriz

    2017-01-01

    Niacin is a broad-spectrum lipid-regulating drug used for clinical therapy of chronic high-grade inflammatory diseases. However, the mechanisms by which either niacin or the byproducts of its catabolism ameliorate these inflammatory diseases are not clear yet. Human circulating monocytes and mature macrophages were used to analyze the effects of niacin and its metabolites (NAM, NUA and 2-Pyr) on oxidative stress, plasticity and inflammatory response by using biochemical, flow cytometry, quantitative real-time PCR and Western blot technologies. Niacin, NAM and 2-Pyr significantly decreased ROS, NO and NOS2 expression in LPS-treated human mature macrophages. Niacin and NAM skewed macrophage polarization toward antiinflammatory M2 macrophage whereas a trend toward proinflammatory M1 macrophage was noted following treatment with NUA. Niacin and NAM also reduced the inflammatory competence of LPS-treated human mature macrophages and promoted bias toward antiinflammatory CD14 + CD16 ++ nonclassical human primary monocytes. This study reveals for the first time that niacin and its metabolites possess antioxidant, reprogramming and antiinflammatory properties on human primary monocytes and monocyte-derived macrophages. Our findings imply a new understanding of the mechanisms by which niacin and its metabolites favor a continuous and gradual plasticity process in the human monocyte/macrophage system. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Substrate Specificity, Membrane Topology, and Activity Regulation of Human Alkaline Ceramidase 2 (ACER2)*

    OpenAIRE

    Sun, Wei; Jin, Junfei; Xu, Ruijuan; Hu, Wei; Szulc, Zdzislaw M.; Bielawski, Jacek; Obeid, Lina M.; Mao, Cungui

    2010-01-01

    Human alkaline ceramidase 2 (ACER2) plays an important role in cellular responses by regulating the hydrolysis of ceramides in cells. Here we report its biochemical characterization, membrane topology, and activity regulation. Recombinant ACER2 was expressed in yeast mutant cells (Δypc1Δydc1) that lack endogenous ceramidase activity, and microsomes from ACER2-expressiong yeast cells were used to biochemically characterize ACER2. ACER2 catalyzed the hydrolysis of various ceramides and followed...

  16. Regulation of drugs affecting striatal cholinergic activity by corticostriatal projections

    International Nuclear Information System (INIS)

    Ladinsky, H.

    1986-01-01

    Research demonstrates that the chronic degeneration of the corticostriatal excitatory pathway makes the cholinergic neurons of the striatum insensitive to the neuropharmacological action of a number of different drugs. Female rats were used; they were killed and after the i.v. infusion of tritium-choline precursor, choline acetyltransferase activity was measured. Striatal noradrenaline, dopamine and serotonin content was measured by electrochemical detection coupled with high pressure liquid chromatography. Uptake of tritium-glutamic acid was estimated. The data were analyzed statistically. It is shown that there is evidence that the effects of a number of drugs capable of depressing cholinergic activity through receptor-mediated responses are operative only if the corticostriatal pathway is integral. Neuropharmacological responses in the brain appear to be the result of an interaction between several major neurotransmitter systems

  17. Cis-regulatory RNA elements that regulate specialized ribosome activity.

    Science.gov (United States)

    Xue, Shifeng; Barna, Maria

    2015-01-01

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

  18. DMPD: Nuclear factor-kappaB: activation and regulation during toll-like receptorsignaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17349209 Nuclear factor-kappaB: activation and regulation during toll-like receptorsignaling. Carmody...uclear factor-kappaB: activation and regulation during toll-like receptorsignaling. Authors Carmody

  19. Self-regulation resources and physical activity participation among adults with type 2 diabetes.

    Science.gov (United States)

    Castonguay, Alexandre; Miquelon, Paule; Boudreau, François

    2018-01-01

    Physical activity plays a crucial role in the prevention and treatment of type 2 diabetes. Therefore, it is important to understand why so few adults with type 2 diabetes regularly engage in physical activity. The role of self-regulation in the context of health-related behavior adherence, especially in terms of physical activity engagement and adherence, has largely been reviewed based on the strength energy model. Building on this line of research, the aim of this theoretical work was to highlight how self-regulation and ego depletion can influence the lower rate of physical activity participation among adults with type 2 diabetes, compared to adults from the general population.

  20. Commission de regulation de l'energie. Activity Report June 2003

    International Nuclear Information System (INIS)

    2003-06-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the June 2003 activity report of CRE. Content: A - Energy markets regulation: a new step; B - Gas market regulation: gas markets and actors, gas market regulation (legal and institutional framework, networks access, methane terminals and modulation services, freedom spaces, European market regulation, gas utility, CRE gas activities and priorities in 2003); C - Electricity market regulation: electricity markets (European markets, operators activity on the French market), French electricity market regulation (public networks access, trans-border power exchanges, EDF's un-bundled accounts audit, market operation), electric utility in the regulated market (public utility content, public utility charges, power generation public utility financing, electricity pre-tax sale tariffs for non-eligible customers); D - CRE operation (means and resources, exercise of its implementing powers, European and international activities); E - Appendixes: Glossary; Units and conversions; Council of European Energy Regulators, Index of figures and tables

  1. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.

    Science.gov (United States)

    Shin, Seoung Woo; Oh, Chang Joo; Kil, In Sup; Park, Jeen-Woo

    2009-04-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.

  2. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  3. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  4. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  5. Legal Instruments of Regulation of Development of Banking Activity in Ukraine

    Directory of Open Access Journals (Sweden)

    Senyshch Pavlo M.

    2014-03-01

    Full Text Available The article considers main approaches to identification of essence of legal instruments of regulation of development of the banking activity, identifies the mechanism of legal regulation of the banking activity and its elements and justifies the system and form of legal regulation of the banking activity in Ukraine. It describes subjects of legal regulation of the banking activity at the international level, which are the Basel Committee on Banking Supervision, European Central Bank, IMF, International Financial Reporting Standards Foundation and others. The article considers specific features of the regulatory requirements of Basel II and Basel III and specific features of their introduction into the banking activity. It describes anti-cyclic measures offered by the Basel Committee, which should facilitate formation of such conditions, under which the banking sector could have a lower level of leverage and stability with respect to influence of system risks. Significant attention is paid to international instruments of regulation of the banking activity, which include the following legal acts: Uniform Rules for Collections, Uniform Customs and Practice for Documentary Credits, and Unified Rules for Loan Guarantees. The article shows that the share of subordinate legal acts is significant in the Ukrainian system of banking regulatory and legal acts since the state cannot operatively react to the changing processes in banking at the legislative level and, that is why, basic provisions on carrying out banking activity should be fixed in law.

  6. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  7. Therapeutic potential of carbohydrates as regulators of macrophage activation.

    Science.gov (United States)

    Lundahl, Mimmi L E; Scanlan, Eoin M; Lavelle, Ed C

    2017-12-15

    It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Reciprocal regulation of LXRα activity by ASXL1 and ASXL2 in lipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ui-Hyun; Seong, Mi-ran [Department of Bioscience and Biotechnology, Institute of Bioscience, BK21 Graduate Program, Sejong University, Seoul 143-747 (Korea, Republic of); Kim, Eun-Joo; Hur, Wonhee; Kim, Sung Woo [Department of Molecular Biology, BK21 Graduate Program, Dankook University, Gyeonggi-do 448-701 (Korea, Republic of); Yoon, Seung Kew [The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University, College of Medicine, Seoul 137-701 (Korea, Republic of); Um, Soo-Jong, E-mail: umsj@sejong.ac.kr [Department of Bioscience and Biotechnology, Institute of Bioscience, BK21 Graduate Program, Sejong University, Seoul 143-747 (Korea, Republic of)

    2014-01-10

    Highlights: •ASXL1 and ASXL2 directly interact with ligand-bound LXRα. •Ligand-induced LXRα activity is repressed by ASXL1 and activated by ASXL2. •ASXL1 and ASXL2 bind to the LXRE of the LXRα target promoter. •ASXL1 and ASXL2 reciprocally regulate lipogenesis in liver cells. -- Abstract: Liver X receptor alpha (LXRα), a member of the nuclear receptor superfamily, plays a pivotal role in hepatic cholesterol and lipid metabolism, regulating the expression of genes associated with hepatic lipogenesis. The additional sex comb-like (ASXL) family was postulated to regulate chromatin function. Here, we investigate the roles of ASXL1 and ASXL2 in regulating LXRα activity. We found that ASXL1 suppressed ligand-induced LXRα transcriptional activity, whereas ASXL2 increased LXRα activity through direct interaction in the presence of the ligand. Chromatin immunoprecipitation (ChIP) assays showed ligand-dependent recruitment of ASXLs to ABCA1 promoters, like LXRα. Knockdown studies indicated that ASXL1 inhibits, while ASXL2 increases, lipid accumulation in H4IIE cells, similar to their roles in transcriptional regulation. We also found that ASXL1 expression increases under fasting conditions, and decreases in insulin-treated H4IIE cells and the livers of high-fat diet-fed mice. Overall, these results support the reciprocal role of the ASXL family in lipid homeostasis through the opposite regulation of LXRα.

  9. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  10. Transposable element activity, genome regulation and human health.

    Science.gov (United States)

    Wang, Lu; Jordan, I King

    2018-03-02

    A convergence of novel genome analysis technologies is enabling population genomic studies of human transposable elements (TEs). Population surveys of human genome sequences have uncovered thousands of individual TE insertions that segregate as common genetic variants, i.e. TE polymorphisms. These recent TE insertions provide an important source of naturally occurring human genetic variation. Investigators are beginning to leverage population genomic data sets to execute genome-scale association studies for assessing the phenotypic impact of human TE polymorphisms. For example, the expression quantitative trait loci (eQTL) analytical paradigm has recently been used to uncover hundreds of associations between human TE insertion variants and gene expression levels. These include population-specific gene regulatory effects as well as coordinated changes to gene regulatory networks. In addition, analyses of linkage disequilibrium patterns with previously characterized genome-wide association study (GWAS) trait variants have uncovered TE insertion polymorphisms that are likely causal variants for a variety of common complex diseases. Gene regulatory mechanisms that underlie specific disease phenotypes have been proposed for a number of these trait associated TE polymorphisms. These new population genomic approaches hold great promise for understanding how ongoing TE activity contributes to functionally relevant genetic variation within and between human populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Nutritive, Post-ingestive Signals Are the Primary Regulators of AgRP Neuron Activity

    Directory of Open Access Journals (Sweden)

    Zhenwei Su

    2017-12-01

    Full Text Available Summary: The brain regulates food intake by processing sensory cues and peripheral physiological signals, but the neural basis of this integration remains unclear. Hypothalamic, agouti-related protein (AgRP-expressing neurons are critical regulators of food intake. AgRP neuron activity is high during hunger and is rapidly reduced by the sight and smell of food. Here, we reveal two distinct components of AgRP neuron activity regulation: a rapid but transient sensory-driven signal and a slower, sustained calorie-dependent signal. We discovered that nutrients are necessary and sufficient for sustained reductions in AgRP neuron activity and that activity reductions are proportional to the calories obtained. This change in activity is recapitulated by exogenous administration of gut-derived satiation signals. Furthermore, we showed that the nutritive value of food trains sensory systems—in a single trial—to drive rapid, anticipatory AgRP neuron activity inhibition. Together, these data demonstrate that nutrients are the primary regulators of AgRP neuron activity. : Su et al. demonstrate that nutrient content in the GI tract is rapidly signaled to hypothalamic neurons activated by hunger. This rapid effect is mediated by three satiation signals that synergistically reduce the activity of AgRP neurons. These findings uncover how hunger circuits in the brain are regulated and raise the possibility that hunger can be pharmacologically controlled. Keywords: calcium imaging, AgRP neurons, calories, satiation signals, sensory regulation, single trial learning, cholecystokinin, CCK, peptide tyrosine tyrosine, PYY, amylin, homeostasis

  12. Analyzing the Impact of Using Optional Activities in Self-Regulated Learning

    Science.gov (United States)

    Ruipérez-Valiente, Jose A.; Muñoz-Merino, Pedro J.; Kloos, Carlos Delgado; Niemann, Katja; Scheffel, Maren; Wolpers, Martin

    2016-01-01

    Self-regulated learning (SRL) environments provide students with activities to improve their learning (e.g., by solving exercises), but they might also provide optional activities (e.g., changing an avatar image or setting goals) where students can decide whether they would like to use or do them and how. Few works have dealt with the use of…

  13. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids

    Directory of Open Access Journals (Sweden)

    Azevedo R.B.

    2001-01-01

    Full Text Available Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%. Removal of the gonads in both males and females (comparison between castrated groups increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48% CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

  14. Successful emotion regulation is predicted by amygdala activity and aspects of personality: A latent variable approach.

    Science.gov (United States)

    Morawetz, Carmen; Alexandrowicz, Rainer W; Heekeren, Hauke R

    2017-04-01

    The experience of emotions and their cognitive control are based upon neural responses in prefrontal and subcortical regions and could be affected by personality and temperamental traits. Previous studies established an association between activity in reappraisal-related brain regions (e.g., inferior frontal gyrus and amygdala) and emotion regulation success. Given these relationships, we aimed to further elucidate how individual differences in emotion regulation skills relate to brain activity within the emotion regulation network on the one hand, and personality/temperamental traits on the other. We directly examined the relationship between personality and temperamental traits, emotion regulation success and its underlying neuronal network in a large sample (N = 82) using an explicit emotion regulation task and functional MRI (fMRI). We applied a multimethodological analysis approach, combing standard activation-based analyses with structural equation modeling. First, we found that successful downregulation is predicted by activity in key regions related to emotion processing. Second, the individual ability to successfully upregulate emotions is strongly associated with the ability to identify feelings, conscientiousness, and neuroticism. Third, the successful downregulation of emotion is modulated by openness to experience and habitual use of reappraisal. Fourth, the ability to regulate emotions is best predicted by a combination of brain activity and personality as well temperamental traits. Using a multimethodological analysis approach, we provide a first step toward a causal model of individual differences in emotion regulation ability by linking biological systems underlying emotion regulation with descriptive constructs. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo

    DEFF Research Database (Denmark)

    Nudelman, Aaron Samuel; DiRocco, Derek P; Lambert, Talley J

    2010-01-01

    Activity-dependent changes in gene-expression are believed to underlie the molecular representation of memory. In this study, we report that in vivo activation of neurons rapidly induces the CREB-regulated microRNA miR-132. To determine if production of miR-132 is regulated by neuronal activity its......, olfactory bulb, and striatum by contextual fear conditioning, odor-exposure, and cocaine-injection, respectively, also increased pri-miR-132. Induction kinetics of pri-miR-132 were monitored and found to parallel those of immediate early genes, peaking at 45 min and returning to basal levels within 2 h...

  16. RhoGDI: multiple functions in the regulation of Rho family GTPase activities

    DEFF Research Database (Denmark)

    Dovas, Athanassios; Couchman, John R

    2005-01-01

    necessary for the correct targeting and regulation of Rho activities by conferring cues for spatial restriction, guidance and availability to effectors. These potential functions are discussed in the context of RhoGDI-associated multimolecular complexes, the newly emerged shuttling capability...... insight as to how RhoGDI exerts its effects on nucleotide binding, the membrane association-dissociation cycling of the GTPase and how these activities are controlled. Despite the initial negative roles attributed to RhoGDI, recent evidence has come to suggest that it may also act as a positive regulator...... of activities....

  17. Resveratrol inhibits Cdk5 activity through regulation of p35 expression

    Directory of Open Access Journals (Sweden)

    Kulkarni Ashok B

    2011-07-01

    Full Text Available Abstract Background We have previously reported that cyclin-dependent kinase 5 (Cdk5 participates in the regulation of nociceptive signaling. Through activation of the ERK1/2 pathway, Tumor Necrosis Factor-α (TNF-α induces expression of Egr-1. This results in the sustained and robust expression of p35, a coactivator of Cdk5, in PC12 cells, thereby increasing Cdk5 kinase activity. The aim of our present study was to test whether resveratrol, a polyphenolic compound with known analgesic activity, can regulate Cdk5/p35 activity. Results Here we used a cell-based assay in which a p35 promoter-luciferase construct was stably transfected in PC12 cells. Our studies demonstrate that resveratrol inhibits p35 promoter activity and also blocks the TNF-α mediated increase in Cdk5 activity in PC12 cells. Resveratrol also inhibits p35 expression and blocks the TNF-α mediated increase in Cdk5 activity in DRG neurons. In the presence of resveratrol, the MEK inhibitor decreased p35 promoter activity, whereas the inhibitors of p38 MAPK, JNK and NF-κB increased p35 promoter activity, indicating that these pathways regulate p35 expression differently. The TNF-α-mediated increase in Egr-1 expression was decreased by resveratrol treatment with a concomitant reduction in p35 expression and protein levels, resulting in reduced Cdk5 kinase activity. Conclusions We demonstrate here that resveratrol regulates p35 promoter activity in PC12 cells and DRG neurons. Most importantly, resveratrol blocks the TNF-α-mediated increase in p35 promoter activity, thereby reducing p35 expression and subsequent Cdk5 kinase activity. This new molecular mechanism adds to the known analgesic effects of resveratrol and confirms the need for identifying new analgesics based on their ability to inhibit Cdk5 activity for effective treatment of pain.

  18. Synergistic Effect of Auto-Activation and Small RNA Regulation on Gene Expression

    Science.gov (United States)

    Xiong, Li-Ping; Ma, Yu-Qiang; Tang, Lei-Han

    2010-09-01

    Auto-activation and small ribonucleic acid (RNA)-mediated regulation are two important mechanisms in controlling gene expression. We study the synergistic effect of these two regulations on gene expression. It is found that under this combinatorial regulation, gene expression exhibits bistable behaviors at the transition regime, while each of these two regulations, if working solely, only leads to monostability. Within the stochastic framework, the base pairing strength between sRNA and mRNA plays an important role in controlling the transition time between on and off states. The noise strength of protein number in the off state approaches 1 and is smaller than that in the on state. The noise strength also depends on which parameters, the feedback strength or the synthesis rate of small RNA, are tuned in switching the gene expression on and off. Our findings may provide a new insight into gene-regulation mechanism and can be applied in synthetic biology.

  19. Synergistic Effect of Auto-Activation and Small RNA Regulation on Gene Expression

    International Nuclear Information System (INIS)

    Li-Ping, Xiong; Yu-Qiang, Ma; Lei-Han, Tang

    2010-01-01

    Auto-activation and small ribonucleic acid (RNA)-mediated regulation are two important mechanisms in controlling gene expression. We study the synergistic effect of these two regulations on gene expression. It is found that under this combinatorial regulation, gene expression exhibits bistable behaviors at the transition regime, while each of these two regulations, if working solely, only leads to monostability. Within the stochastic framework, the base pairing strength between sRNA and mRNA plays an important role in controlling the transition time between on and off states. The noise strength of protein number in the off state approaches 1 and is smaller than that in the on state. The noise strength also depends on which parameters, the feedback strength or the synthesis rate of small RNA, are tuned in switching the gene expression on and off. Our findings may provide a new insight into gene-regulation mechanism and can be applied in synthetic biology

  20. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  1. The Brakeless co-regulator can directly activate and repress transcription in early Drosophila embryos.

    Science.gov (United States)

    Crona, Filip; Holmqvist, Per-Henrik; Tang, Min; Singla, Bhumica; Vakifahmetoglu-Norberg, Helin; Fantur, Katrin; Mannervik, Mattias

    2015-11-01

    The Brakeless protein performs many important functions during Drosophila development, but how it controls gene expression is poorly understood. We previously showed that Brakeless can function as a transcriptional co-repressor. In this work, we perform transcriptional profiling of brakeless mutant embryos. Unexpectedly, the majority of affected genes are down-regulated in brakeless mutants. We demonstrate that genomic regions in close proximity to some of these genes are occupied by Brakeless, that over-expression of Brakeless causes a reciprocal effect on expression of these genes, and that Brakeless remains an activator of the genes upon fusion to an activation domain. Together, our results show that Brakeless can both repress and activate gene expression. A yeast two-hybrid screen identified the Mediator complex subunit Med19 as interacting with an evolutionarily conserved part of Brakeless. Both down- and up-regulated Brakeless target genes are also affected in Med19-depleted embryos, but only down-regulated targets are influenced in embryos depleted of both Brakeless and Med19. Our data provide support for a Brakeless activator function that regulates transcription by interacting with Med19. We conclude that the transcriptional co-regulator Brakeless can either activate or repress transcription depending on context. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Correlation set analysis: detecting active regulators in disease populations using prior causal knowledge

    Directory of Open Access Journals (Sweden)

    Huang Chia-Ling

    2012-03-01

    Full Text Available Abstract Background Identification of active causal regulators is a crucial problem in understanding mechanism of diseases or finding drug targets. Methods that infer causal regulators directly from primary data have been proposed and successfully validated in some cases. These methods necessarily require very large sample sizes or a mix of different data types. Recent studies have shown that prior biological knowledge can successfully boost a method's ability to find regulators. Results We present a simple data-driven method, Correlation Set Analysis (CSA, for comprehensively detecting active regulators in disease populations by integrating co-expression analysis and a specific type of literature-derived causal relationships. Instead of investigating the co-expression level between regulators and their regulatees, we focus on coherence of regulatees of a regulator. Using simulated datasets we show that our method performs very well at recovering even weak regulatory relationships with a low false discovery rate. Using three separate real biological datasets we were able to recover well known and as yet undescribed, active regulators for each disease population. The results are represented as a rank-ordered list of regulators, and reveals both single and higher-order regulatory relationships. Conclusions CSA is an intuitive data-driven way of selecting directed perturbation experiments that are relevant to a disease population of interest and represent a starting point for further investigation. Our findings demonstrate that combining co-expression analysis on regulatee sets with a literature-derived network can successfully identify causal regulators and help develop possible hypothesis to explain disease progression.

  3. Characterization of DNA binding, transcriptional activation, and regulated nuclear association of recombinant human NFATp

    Directory of Open Access Journals (Sweden)

    Seto Anita G

    2000-11-01

    Full Text Available Abstract Background NFATp is one member of a family of transcriptional activators whose nuclear accumulation and hence transcriptional activity is regulated in mammalian cells. Human NFATp exists as a phosphoprotein in the cytoplasm of naive T cells. Upon antigen stimulation, NFATp is dephosphorylated, accumulates in nuclei, and functions to regulate transcription of genes including those encoding cytokines. While the properties of the DNA binding domain of NFATp have been investigated in detail, biochemical studies of the transcriptional activation and regulated association with nuclei have remained unexplored because of a lack of full length, purified recombinant NFATp. Results We developed methods for expressing and purifying full length recombinant human NFATp that has all of the properties known to be associated with native NFATp. The recombinant NFATp binds DNA on its own and cooperatively with AP-1 proteins, activates transcription in vitro, is phosphorylated, can be dephosphorylated by calcineurin, and exhibits regulated association with nuclei in vitro. Importantly, activation by recombinant NFATp in a reconstituted transcription system required regions of the protein outside of the central DNA binding domain. Conclusions We conclude that NFATp is a bona fide transcriptional activator. Moreover, the reagents and methods that we developed will facilitate future studies on the mechanisms of transcriptional activation and nuclear accumulation by NFATp, a member of an important family of transcriptional regulatory proteins.

  4. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    Science.gov (United States)

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  5. Activity-dependent self-regulation of viscous length scales in biological systems

    Science.gov (United States)

    Nandi, Saroj Kumar

    2018-05-01

    The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ . Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system. Remarkably, we find that ℓ , as a function of activity, behaves universally and roughly inversely proportional to the activity of the system. Our theory rationalizes a number of experimental findings on diverse systems, and comparison of our theory with existing experimental data shows good agreement.

  6. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  7. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma.

    Science.gov (United States)

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B; Wu, Chia-Chin; Akdemir, Kadir C; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T; Welch, Heidi C E; Garraway, Levi A; Chin, Lynda

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  8. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B.; Wu, Chia-Chin; Akdemir, Kadir C.; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T.; Welch, Heidi C. E.; Garraway, Levi A.; Chin, Lynda

    2016-01-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  9. Relationship between child care centers' compliance with physical activity regulations and children's physical activity, New York City, 2010.

    Science.gov (United States)

    Stephens, Robert L; Xu, Ye; Lesesne, Catherine A; Dunn, Lillian; Kakietek, Jakub; Jernigan, Jan; Khan, Laura Kettel

    2014-10-16

    Physical activity may protect against overweight and obesity among preschoolers, and the policies and characteristics of group child care centers influence the physical activity levels of children who attend them. We examined whether children in New York City group child care centers that are compliant with the city's regulations on child physical activity engage in more activity than children in centers who do not comply. A sample of 1,352 children (mean age, 3.39 years) served by 110 group child care centers in low-income neighborhoods participated. Children's anthropometric data were collected and accelerometers were used to measure duration and intensity of physical activity. Multilevel generalized linear regression modeling techniques were used to assess the effect of center- and child-level factors on child-level physical activity. Centers' compliance with the regulation of obtaining at least 60 minutes of total physical activity per day was positively associated with children's levels of moderate to vigorous physical activity (MVPA); compliance with the regulation of obtaining at least 30 minutes of structured activity was not associated with increased levels of MVPA. Children in centers with a dedicated outdoor play space available also spent more time in MVPA. Boys spent more time in MVPA than girls, and non-Hispanic black children spent more time in MVPA than Hispanic children. To increase children's level of MVPA in child care, both time and type of activity should be considered. Further examination of the role of play space availability and its effect on opportunities for engaging in physical activity is needed.

  10. Activated H-Ras regulates hematopoietic cell survival by modulating Survivin

    International Nuclear Information System (INIS)

    Fukuda, Seiji; Pelus, Louis M.

    2004-01-01

    Survivin expression and Ras activation are regulated by hematopoietic growth factors. We investigated whether activated Ras could circumvent growth factor-regulated Survivin expression and if a Ras/Survivin axis mediates growth factor independent survival and proliferation in hematopoietic cells. Survivin expression is up-regulated by IL-3 in Ba/F3 and CD34 + cells and inhibited by the Ras inhibitor, farnesylthiosalicylic acid. Over-expression of constitutively activated H-Ras (CA-Ras) in Ba/F3 cells blocked down-modulation of Survivin expression, G 0 /G 1 arrest, and apoptosis induced by IL-3 withdrawal, while dominant-negative (DN) H-Ras down-regulated Survivin. Survivin disruption by DN T34A Survivin blocked CA-Ras-induced IL-3-independent cell survival and proliferation; however, it did not affect CA-Ras-mediated enhancement of S-phase, indicating that the anti-apoptotic activity of CA-Ras is Survivin dependent while its S-phase enhancing effect is not. These results indicate that CA-Ras modulates Survivin expression independent of hematopoietic growth factors and that a CA-Ras/Survivin axis regulates survival and proliferation of transformed hematopoietic cells

  11. Regulation of mitogen-activated protein kinase pathways by the plasma membrane Na+/H+ exchanger, NHE1

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Darborg, Barbara Vasek; Rentsch, Maria Louise

    2006-01-01

    activity is regulated by a three-tiered phosphorelay system, which is in turn regulated by a complex network of signaling events and scaffolding proteins. The ubiquitous plasma membrane Na(+)/H(+) exchanger NHE1 is activated by, and implicated in, the physiological/pathophysiological responses to many...... of the same stimuli that modulate MAPK activity. While under some conditions, NHE1 is regulated by MAPKs, a number of studies have, conversely, implicated NHE1 in the regulation of MAPK activity. Here, we discuss the current evidence indicating the involvement of NHE1 in MAPK regulation, the mechanisms...

  12. Dialectical behavior therapy alters emotion regulation and amygdala activity in patients with borderline personality disorder.

    Science.gov (United States)

    Goodman, Marianne; Carpenter, David; Tang, Cheuk Y; Goldstein, Kim E; Avedon, Jennifer; Fernandez, Nicolas; Mascitelli, Kathryn A; Blair, Nicholas J; New, Antonia S; Triebwasser, Joseph; Siever, Larry J; Hazlett, Erin A

    2014-10-01

    Siever and Davis' (1991) psychobiological framework of borderline personality disorder (BPD) identifies affective instability (AI) as a core dimension characterized by prolonged and intense emotional reactivity. Recently, deficient amygdala habituation, defined as a change in response to repeated relative to novel unpleasant pictures within a session, has emerged as a biological correlate of AI in BPD. Dialectical behavior therapy (DBT), an evidence-based treatment, targets AI by teaching emotion-regulation skills. This study tested the hypothesis that BPD patients would exhibit decreased amygdala activation and improved habituation, as well as improved emotion regulation with standard 12-month DBT. Event-related fMRI was obtained pre- and post-12-months of standard-DBT in unmedicated BPD patients. Healthy controls (HCs) were studied as a benchmark for normal amygdala activity and change over time (n = 11 per diagnostic-group). During each scan, participants viewed an intermixed series of unpleasant, neutral and pleasant pictures presented twice (novel, repeat). Change in emotion regulation was measured with the Difficulty in Emotion Regulation (DERS) scale. fMRI results showed the predicted Group × Time interaction: compared with HCs, BPD patients exhibited decreased amygdala activation with treatment. This post-treatment amygdala reduction in BPD was observed for all three pictures types, but particularly marked in the left hemisphere and during repeated-emotional pictures. Emotion regulation measured with the DERS significantly improved with DBT in BPD patients. Improved amygdala habituation to repeated-unpleasant pictures in patients was associated with improved overall emotional regulation measured by the DERS (total score and emotion regulation strategy use subscale). These findings have promising treatment implications and support the notion that DBT targets amygdala hyperactivity-part of the disturbed neural circuitry underlying emotional dysregulation

  13. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    Science.gov (United States)

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  14. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2006-01-01

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with δ-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol

  15. Regulation of pH in human skeletal muscle: adaptations to physical activity

    DEFF Research Database (Denmark)

    Juel, C

    2008-01-01

    -transport) and describes the contribution of each transport system in pH regulation at rest and during muscle activity. It is reported that the mechanisms involved in pH regulation can undergo adaptational changes in association with physical activity and that these changes are of functional importance....... resonance technique to exercise experiments including blood sampling and muscle biopsies. The present review characterizes the cellular buffering system as well as the most important membrane transport systems involved (Na(+)/H(+) exchange, Na-bicarbonate co-transport and lactate/H(+) co...

  16. Motivation and Behavioral Regulation of Physical Activity in Middle School Students.

    Science.gov (United States)

    Dishman, Rod K; McIver, Kerry L; Dowda, Marsha; Saunders, Ruth P; Pate, Russell R

    2015-09-01

    This study aimed to examine whether intrinsic motivation and behavioral self-regulation are related to physical activity during middle school. Structural equation modeling was applied in cross-sectional and longitudinal tests of self-determination theory. Consistent with theory, hypothesized relations among variables were supported. Integrated regulation and intrinsic motivation were most strongly correlated with moderate-to-vigorous physical activity measured by an accelerometer. Results were independent of a measure of biological maturity. Construct validity and equivalence of measures were confirmed longitudinally between the sixth and seventh grades and between boys and girls, non-Hispanic Black and White children and overweight and normal-weight students. Measures of autonomous motivation (identified, integrated, and intrinsic) were more strongly related to physical activity in the seventh grade than measures of controlled motivation (external and introjected), implying that physical activity became more intrinsically motivating for some girls and boys as they moved through middle school. Nonetheless, change in introjected regulation was related to change in physical activity in the seventh grade, suggesting that internalized social pressures, which can be detrimental to sustained activity and well-being, also became motivating. These results encourage longer prospective studies during childhood and adolescence to clarify how controlled and autonomous motivations for physical activity develop and whether they respond to interventions designed to increase physical activity.

  17. Motivation and Behavioral Regulation of Physical Activity in Middle-School Students

    Science.gov (United States)

    Dishman, Rod K.; McIver, Kerry L; Dowda, Marsha; Saunders, Ruth P.; Pate, Russell R.

    2015-01-01

    Purpose To examine whether intrinsic motivation and behavioral self-regulation are related to physical activity during middle school. Method Structural equation modeling was applied in cross-sectional and longitudinal tests of self-determination theory. Results Consistent with theory, hypothesized relationships among variables were supported. Integrated regulation and intrinsic motivation were most strongly correlated with moderate-to-vigorous physical activity measured by an accelerometer. Results were independent of a measure of biological maturity. Construct validity and equivalence of measures was confirmed longitudinally between 6th and 7th grades and between boys and girls, non-Hispanic black and white children and overweight and normal weight students. Conclusions Measures of autonomous motivation (identified, integrated, and intrinsic) were more strongly related to physical activity in the 7th grade than measures of controlled motivation (external and introjected), implying that physical activity became more intrinsically motivating for some girls and boys as they moved through middle school. Nonetheless, introjected regulation was related to physical activity in 7th grade, suggesting that internalized social pressures, which can be detrimental to sustained activity and well-being, also became motivating. These results encourage longer prospective studies during childhood and adolescence to clarify how controlled and autonomous motivations for physical activity develop and whether they respond to interventions designed to increase physical activity. PMID:25628178

  18. Regulation

    International Nuclear Information System (INIS)

    Ballereau, P.

    1999-01-01

    The different regulations relative to nuclear energy since the first of January 1999 are given here. Two points deserve to be noticed: the decree of the third august 1999 authorizing the national Agency for the radioactive waste management to install and exploit on the commune of Bures (Meuse) an underground laboratory destined to study the deep geological formations where could be stored the radioactive waste. The second point is about the uranium residues and the waste notion. The judgment of the administrative tribunal of Limoges ( 9. july 1998) forbidding the exploitation of a storage installation of depleted uranium considered as final waste and qualifying it as an industrial waste storage facility has been annulled bu the Court of Appeal. It stipulated that, according to the law number 75663 of the 15. july 1965, no criteria below can be applied to depleted uranium: production residue (possibility of an ulterior enrichment), abandonment of a personal property or simple intention to do it ( future use aimed in the authorization request made in the Prefecture). This judgment has devoted the primacy of the waste notion on this one of final waste. (N.C.)

  19. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    International Nuclear Information System (INIS)

    Li Ang; He Meilan; Wang Hui; Qiao Bin; Chen Ping; Gu Hua; Zhang Mengjie; He Shengxiang

    2007-01-01

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-α, IFN-γ), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-κB pathways related with immune response. Our results demonstrated that ATRA suppressed NF-κB activity and prevented IκBα degradation in a dose-dependent way, inhibited IFN-γ production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo

  20. Neural activity to a partner's facial expression predicts self-regulation after conflict

    Science.gov (United States)

    Hooker, Christine I.; Gyurak, Anett; Verosky, Sara; Miyakawa, Asako; Ayduk, Özlem

    2009-01-01

    Introduction Failure to self-regulate after an interpersonal conflict can result in persistent negative mood and maladaptive behaviors. Research indicates that lateral prefrontal cortex (LPFC) activity is related to the regulation of emotional experience in response to lab-based affective challenges, such as viewing emotional pictures. This suggests that compromised LPFC function may be a risk-factor for mood and behavior problems after an interpersonal stressor. However, it remains unclear whether LPFC activity to a lab-based affective challenge predicts self-regulation in real-life. Method We investigated whether LPFC activity to a lab-based affective challenge (negative facial expressions of a partner) predicts self-regulation after a real-life affective challenge (interpersonal conflict). During an fMRI scan, healthy, adult participants in committed, dating relationships (N = 27) viewed positive, negative, and neutral facial expressions of their partners. In an online daily-diary, participants reported conflict occurrence, level of negative mood, rumination, and substance-use. Results LPFC activity in response to the lab-based affective challenge predicted self-regulation after an interpersonal conflict in daily life. When there was no interpersonal conflict, LPFC activity was not related to the change in mood or behavior the next day. However, when an interpersonal conflict did occur, ventral LPFC (VLPFC) activity predicted the change in mood and behavior the next day, such that lower VLPFC activity was related to higher levels of negative mood, rumination, and substance-use. Conclusions Low LPFC function may be a vulnerability and high LPFC function may be a protective factor for the development of mood and behavior problems after an interpersonal stressor. PMID:20004365

  1. Neural activity to a partner's facial expression predicts self-regulation after conflict.

    Science.gov (United States)

    Hooker, Christine I; Gyurak, Anett; Verosky, Sara C; Miyakawa, Asako; Ayduk, Ozlem

    2010-03-01

    Failure to self-regulate after an interpersonal conflict can result in persistent negative mood and maladaptive behaviors. Research indicates that lateral prefrontal cortex (LPFC) activity is related to emotion regulation in response to laboratory-based affective challenges, such as viewing emotional pictures. This suggests that compromised LPFC function may be a risk factor for mood and behavior problems after an interpersonal conflict. However, it remains unclear whether LPFC activity to a laboratory-based affective challenge predicts self-regulation in real life. We investigated whether LPFC activity to a laboratory-based affective challenge (negative facial expressions of a partner) predicts self-regulation after a real-life affective challenge (interpersonal conflict). During a functional magnetic resonance imaging scan, healthy, adult participants in committed relationships (n = 27) viewed positive, negative, and neutral facial expressions of their partners. In a three-week online daily diary, participants reported conflict occurrence, level of negative mood, rumination, and substance use. LPFC activity in response to the laboratory-based affective challenge predicted self-regulation after an interpersonal conflict in daily life. When there was no interpersonal conflict, LPFC activity was not related to mood or behavior the next day. However, when an interpersonal conflict did occur, ventral LPFC (VLPFC) activity predicted mood and behavior the next day, such that lower VLPFC activity was related to higher levels of negative mood, rumination, and substance use. Low LPFC function may be a vulnerability and high LPFC function may be a protective factor for the development of mood and behavior problems after an interpersonal stressor. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Institutional preconditions of socio-ecological-economic regulation of environmental management activities

    Directory of Open Access Journals (Sweden)

    T. A. Plaksunova

    2017-01-01

    Full Text Available The need to regulate environmental management activities of institutional entities arises when it affects the interests of third-party entities or threatened by the ongoing entity manufacturing practices its own resilience, to achieve the main goal. The complexity and diversity of the forms of socio-ecological and ecological-economic issues at different levels of the economic system leads to the development of many directions and views on the expansion of the management process of these levels (global, national, regional, local and techniques from rigid-deklorative state before combination with the market. In this respect, the neoclassical economic theory actively generated new analytical ideas and concept that enables to respond adequately to emerging economic realities. So we can distinguish the following approaches to regulate environmental management activities: T. Malthus and D. Ricardo, revealing issues of social, ecological and economic implications of limited natural resources in the context of the law of diminishing effectiveness and the need to regulate environmental management activities. John. St. Mill and George proved to be ineffective in addressing environmental problems in the industrial economy of the type of the imperfection of the institutions of society, justifying the occurrence of crises protohistoric speculation nature's benefits. A. Pigou developed the theory of externalities, which revealed the need for state regulation of the environmental management activities of economic entities, harmonization of individual and social interests. Research I. Kula, F. Khan and P. Samuelson identified a pattern about the formation of the system of regulation nature-safety activities, not only within individual States but also on a global level. R. Crows have shown that the methods of direct state regulation of nature economic activity is not as good as it seems at first glance and so you should not underestimate the role and potential

  3. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  4. Activization of the Industrial Development on the Platform of Partnership: Measures of State Regulation

    Directory of Open Access Journals (Sweden)

    Anastasia Y. Nikitaeva

    2016-12-01

    Full Text Available Various forms of partnership and interaction of economic actors play an important role in activization of an industrial development, achieving a critical mass, necessary for generation of essential positive results, due to special measures of state regulation. According to this, the factors influencing the choice of measures of state regulation of partner interactions and formation of their complex structure are defined and analysed. On the example of clusters possible roles of the state in formation and development of partner associations of the appropriate type are presented. The potential risks arising in the course of development and implementation of measures of state regulation of integration structures are shown. The sequence of steps for determination of measures of state regulation of development of partnership in the industrial sphere taking into account local specifics is offered in the paper.

  5. Modeling post-transcriptional regulation activity of small non-coding RNAs in Escherichia coli.

    Science.gov (United States)

    Wang, Rui-Sheng; Jin, Guangxu; Zhang, Xiang-Sun; Chen, Luonan

    2009-04-29

    Transcriptional regulation is a fundamental process in biological systems, where transcription factors (TFs) have been revealed to play crucial roles. In recent years, in addition to TFs, an increasing number of non-coding RNAs (ncRNAs) have been shown to mediate post-transcriptional processes and regulate many critical pathways in both prokaryotes and eukaryotes. On the other hand, with more and more high-throughput biological data becoming available, it is possible and imperative to quantitatively study gene regulation in a systematic and detailed manner. Most existing studies for inferring transcriptional regulatory interactions and the activity of TFs ignore the possible post-transcriptional effects of ncRNAs. In this work, we propose a novel framework to infer the activity of regulators including both TFs and ncRNAs by exploring the expression profiles of target genes and (post)transcriptional regulatory relationships. We model the integrated regulatory system by a set of biochemical reactions which lead to a log-bilinear problem. The inference process is achieved by an iterative algorithm, in which two linear programming models are efficiently solved. In contrast to available related studies, the effects of ncRNAs on transcription process are considered in this work, and thus more reasonable and accurate reconstruction can be expected. In addition, the approach is suitable for large-scale problems from the viewpoint of computation. Experiments on two synthesized data sets and a model system of Escherichia coli (E. coli) carbon source transition from glucose to acetate illustrate the effectiveness of our model and algorithm. Our results show that incorporating the post-transcriptional regulation of ncRNAs into system model can mine the hidden effects from the regulation activity of TFs in transcription processes and thus can uncover the biological mechanisms in gene regulation in a more accurate manner. The software for the algorithm in this paper is available

  6. Commission de regulation de l'energie. activity report 2015 - Reference document, 15 years of regulation

    International Nuclear Information System (INIS)

    2016-06-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the June 2015 activity report of CRE. The report comes in two volumes. The first provides comprehensive details of the CRE's activities in 2015, while the second highlights just how far the CRE has come since it was established in 2000. Content: A - Message from the Board; B - The Energy Regulatory Commission: The organisation and missions of CRE (organisation of CRE, missions of CRE, CRE and other institutional actors, CRE consultation and transparency, Human resources and budgetary means; CRE playing a role at the heart of Europe (CRE within ACER and CEER, Cooperation with other regulators; C - CRE and the markets: As part of its monitoring task, CRE assesses the wholesale market (The wholesale energy market has been affected by the significant fall in prices, The European regulation (REMIT) is a legal tool for monitoring the markets at European level, The capacity mechanism has been defined to promote the security of supply at national level); The retail market was growing fast in 2015 (The implementation of the NOME law provides a new legal framework for regulated tariffs

  7. Self-Regulation and Implicit Attitudes Toward Physical Activity Influence Exercise Behavior.

    Science.gov (United States)

    Padin, Avelina C; Emery, Charles F; Vasey, Michael; Kiecolt-Glaser, Janice K

    2017-08-01

    Dual-process models of health behavior posit that implicit and explicit attitudes independently drive healthy behaviors. Prior evidence indicates that implicit attitudes may be related to weekly physical activity (PA) levels, but the extent to which self-regulation attenuates this link remains unknown. This study examined the associations between implicit attitudes and self-reported PA during leisure time among 150 highly active young adults and evaluated the extent to which effortful control (one aspect of self-regulation) moderated this relationship. Results indicated that implicit attitudes toward exercise were unrelated to average workout length among individuals with higher effortful control. However, those with lower effortful control and more negative implicit attitudes reported shorter average exercise sessions compared with those with more positive attitudes. Implicit and explicit attitudes were unrelated to total weekly PA. A combination of poorer self-regulation and negative implicit attitudes may leave individuals vulnerable to mental and physical health consequences of low PA.

  8. Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit Regulators

    Science.gov (United States)

    May, Ryan D.; Garg, Sanjay

    2012-01-01

    Current aircraft engine control logic uses a Min-Max control selection structure to prevent the engine from exceeding any safety or operational limits during transients due to throttle commands. This structure is inherently conservative and produces transient responses that are slower than necessary. In order to utilize the existing safety margins more effectively, a modification to this architecture is proposed, referred to as a Conditionally Active (CA) limit regulator. This concept uses the existing Min-Max architecture with the modification that limit regulators are active only when the operating point is close to a particular limit. This paper explores the use of CA limit regulators using a publicly available commercial aircraft engine simulation. The improvement in thrust response while maintaining all necessary safety limits is demonstrated in a number of cases.

  9. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation.

    Science.gov (United States)

    Khacho, Mireille; Slack, Ruth S

    2017-12-01

    Mitochondria are classically known as the essential energy producers in cells. As such, the activation of mitochondrial metabolism upon cellular differentiation was deemed a necessity to fuel the high metabolic needs of differentiated cells. However, recent studies have revealed a direct role for mitochondrial activity in the regulation of stem cell fate and differentiation. Several components of mitochondrial metabolism and respiration have now been shown to regulate different aspects of stem cell differentiation through signaling, transcriptional, proteomic and epigenetic modulations. In light of these findings mitochondrial metabolism is no longer considered a consequence of cellular differentiation, but rather a key regulatory mechanism of this process. This review will focus on recent progress that defines mitochondria as the epicenters for the regulation of stem cell fate decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Glycogen synthase kinase 3 alpha phosphorylates and regulates the osteogenic activity of Osterix.

    Science.gov (United States)

    Li, Hongyan; Jeong, Hyung Min; Choi, You Hee; Lee, Sung Ho; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl

    2013-05-10

    Osteoblast-specific transcription factor Osterix is a zinc-finger transcription factor that required for osteoblast differentiation and new bone formation. The function of Osterix can be modulated by post-translational modification. Glycogen synthase kinase 3 alpha (GSK3α) is a multifunctional serine/threonine protein kinase that plays a role in the Wnt signaling pathways and is implicated in the control of several regulatory proteins and transcription factors. In the present study, we investigated how GSK3α regulates Osterix during osteoblast differentiation. Wide type GSK3α up-regulated the protein level, protein stability and transcriptional activity of Osterix. These results suggest that GSK3α regulates osteogenic activity of Osterix. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization

    DEFF Research Database (Denmark)

    Prats, Clara; Helge, Jørn W; Nordby, Pernille

    2009-01-01

    Glycogen synthase (GS) is considered the rate-limiting enzyme in glycogenesis but still today there is a lack of understanding on its regulation. We have previously shown phosphorylation-dependent GS intracellular redistribution at the start of glycogen re-synthesis in rabbit skeletal muscle (Prats......, C., Cadefau, J. A., Cussó, R., Qvortrup, K., Nielsen, J. N., Wojtaszewki, J. F., Wojtaszewki, J. F., Hardie, D. G., Stewart, G., Hansen, B. F., and Ploug, T. (2005) J. Biol. Chem. 280, 23165-23172). In the present study we investigate the regulation of human muscle GS activity by glycogen, exercise......, and insulin. Using immunocytochemistry we investigate the existence and relevance of GS intracellular compartmentalization during exercise and during glycogen re-synthesis. The results show that GS intrinsic activity is strongly dependent on glycogen levels and that such regulation involves associated...

  12. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  13. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development

    OpenAIRE

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; Nakayama, Takuya; Shah, Anoop; Grainger, Robert M.; White, Judith M.; DeSimone, Douglas W.

    2011-01-01

    Pericellular proteolysis by ADAM family metalloproteinases has been widely implicated in cell signaling and development. We recently found that Xenopus ADAM13, an ADAM metalloproteinase, is required for activation of canonical Wnt signaling during cranial neural crest (CNC) induction by regulating a novel crosstalk between Wnt and ephrin B (EfnB) signaling pathways (Wei et al., 2010b). In the present study we show that the metalloproteinase activity of ADAM13 also plays important roles in eye...

  14. Regulation of crp gene expression by the catabolite repressor/activator, Cra, in Escherichia coli.

    Science.gov (United States)

    Zhang, Zhongge; Aboulwafa, Mohammad; Saier, Milton H

    2014-01-01

    Growth of E. coli on several carbon sources is dependent on the catabolite repressor/activator (Cra) protein although a Cra consensus DNA-binding site is not present in the control regions of the relevant catabolic operons. We show that Cra regulates growth by activating expression of the crp gene. It thereby mediates catabolite repression of catabolic operons by an indirect mechanism. © 2014 S. Karger AG, Basel.

  15. 14 CFR 1204.1503 - Programs and activities subject to these regulations.

    Science.gov (United States)

    2010-01-01

    ... regulations. 1204.1503 Section 1204.1503 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ADMINISTRATIVE AUTHORITY AND POLICY Intergovernmental Review of National Aeronautics and Space Administration... publishes in the Federal Register a description of the Agency's programs and activities that are subject to...

  16. 75 FR 28276 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Science.gov (United States)

    2010-05-20

    ... Review: Revision. Affected Public: Businesses. Form 434, NAFTA Certificate of Origin: Estimated Number of... Activities: NAFTA Regulations and Certificate of Origin AGENCY: U.S. Customs and Border Protection... Homeland Security has submitted the following information collection request to the Office of Management...

  17. Self-Regulated Learning and Perceived Health among Students Participating in University Physical Activity Classes

    Science.gov (United States)

    McBride, Ron E.; Xiang, Ping

    2013-01-01

    Three hundred and sixty-one students participating in university physical activity classes completed questionnaires assessing perceived health and self-regulated learning. In addition, 20 students (11 men; 9 women) were interviewed about their reasons for enrolling, participation and goals in the class. Results indicated the students endorsed…

  18. A Kinesthetic Activity Using LEGO Bricks and Buckets for Illustrating the Regulation of Blood Sugar

    Science.gov (United States)

    Urschler, Margaret; Meidl, Katherine; Browning, Samantha; Khan, Basima; Milanick, Mark

    2015-01-01

    This article describes how, when first faced with understanding blood sugar regulation, students often resort to simple memorization.Many students would like to get more involved with the conceptual framework but do not know how to start. The authors have developed an activity based on the Modell approach, a "view from the inside." This…

  19. Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members

    Czech Academy of Sciences Publication Activity Database

    Otto, M.; Naumann, Ch.; Brandt, W.; Wasternack, Claus; Hause, B.

    2016-01-01

    Roč. 5, č. 1 (2016), č. článku 3. ISSN 2223-7747 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Activity regulation * Arabidopsis allene oxide cyclase isoforms * Heteromerization Subject RIV: EB - Genetics ; Molecular Biology

  20. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    NARCIS (Netherlands)

    Sjöqvist, M.; Antfolk, D.; Ferraris, S.; Rraklli, V.; Haga, C.; Antila, C.; Mutvei, A.; Imanishi, S.Y.; Holmberg, J.; Jin, S.; Eriksson, J.E.; Lendahl, U.; Sahlgren, C.M.

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick

  1. 15 CFR 20.2 - Programs or activities to which these regulations apply.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Programs or activities to which these regulations apply. 20.2 Section 20.2 Commerce and Foreign Trade Office of the Secretary of Commerce... adopted by an elected, general purpose legislative body which: (i) Provides benefits or assistance to...

  2. Running on Empty: Leptin Signaling in VTA Regulates Reward from Physical Activity.

    Science.gov (United States)

    Chen, Zuxin; Kenny, Paul J

    2015-10-06

    Hunger increases physical activity and stamina to support food-directed foraging behaviors, but underlying mechanisms are unclear. In this issue, Fernandes et al. (2015) show that disruption of leptin-regulated STAT3 signaling in midbrain dopamine neurons increases the rewarding effects of running in mice, which could explain the "high" experienced by endurance runners. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Regulation of activity of the yeast TATA-binding protein through intra ...

    Indian Academy of Sciences (India)

    Unknown

    Abbreviations used: BMH, Bismaleimidohexane; TBP, TATA-binding protein; yTBP, yeast TBP. J. Biosci. | Vol. ... Therefore for full-length TBP, intra-molecular interactions can regulate its activity via a similar ..... simulations (Miaskeiwicz and Ornstein 1996). .... box binding protein (TBP): A molecular dynamics computa-.

  4. 78 FR 78375 - Agency Information Collection Activities: CBP Regulations Pertaining to Customs Brokers

    Science.gov (United States)

    2013-12-26

    ... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: CBP Regulations Pertaining to Customs Brokers Correction In notice document 2013-30220 appearing on page 76851 of the issue of Thursday, December 19, 2013, make the following correction: In the...

  5. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  6. Simultaneous Activation of Iron- and Thiol-Based Sensor-Regulator Systems by Redox-Active Compounds.

    Science.gov (United States)

    Lee, Kang-Lok; Yoo, Ji-Sun; Oh, Gyeong-Seok; Singh, Atul K; Roe, Jung-Hye

    2017-01-01

    Bacteria in natural habitats are exposed to myriad redox-active compounds (RACs), which include producers of reactive oxygen species (ROS) and reactive electrophile species (RES) that alkylate or oxidize thiols. RACs can induce oxidative stress in cells and activate response pathways by modulating the activity of sensitive regulators. However, the effect of a certain compound on the cell has been investigated primarily with respect to a specific regulatory pathway. Since a single compound can exert multiple chemical effects in the cell, its effect can be better understood by time-course monitoring of multiple sensitive regulatory pathways that the compound induces. We investigated the effect of representative RACs by monitoring the activity of three sensor-regulators in the model actinobacterium Streptomyces coelicolor ; SoxR that senses reactive compounds directly through oxidation of its [2Fe-2S] cluster, CatR/PerR that senses peroxides through bound iron, and an anti-sigma factor RsrA that senses RES via disulfide formation. The time course and magnitude of induction of their target transcripts were monitored to predict the chemical activities of each compound in S. coelicolor . Phenazine methosulfate (PMS) was found to be an effective RAC that directly activated SoxR and an effective ROS-producer that induced CatR/PerR with little thiol-perturbing activity. p -Benzoquinone was an effective RAC that directly activated SoxR, with slower ROS-producing activity, and an effective RES that induced the RsrA-SigR system. Plumbagin was an effective RAC that activated SoxR, an effective ROS-producer, and a less agile but effective RES. Diamide was an RES that effectively formed disulfides and a weak RAC that activated SoxR. Monobromobimane was a moderately effective RES and a slow producer of ROS. Interestingly, benzoquinone induced the SigR system by forming adducts on cysteine thiols in RsrA, revealing a new pathway to modulate RsrA activity. Overall, this study showed

  7. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li

    2016-04-29

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  8. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li; Niu, De; Hu, Zi-Liang; Kim, Dae Heon; Jin, Yin Hua; Cai, Bin; Liu, Peng; Miura, Kenji; Yun, Dae-Jin; Kim, Woe-Yeon; Lin, Rongcheng; Jin, Jing Bo

    2016-01-01

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  9. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  10. Inhibition of calmodulin - regulated calcium pump activity in rat brain by toxaphene

    International Nuclear Information System (INIS)

    Trottman, C.H.; Moorthy, K.S.

    1986-01-01

    In vivo effects of toxaphene on calcium pump activity in rat brain synaptosomes was studied. Male Sprague-Dawley rats were dosed with toxaphene at 0,25,50, and 100 mg/kg/day for 3 days and sacrificed 24 h after last dose. Ca 2+ -ATPase activity and 45 Ca uptake were determined in brain P 2 fraction. Toxaphene inhibited both Ca 2+ -ATPase activity and 45 Ca 2+ uptake and the inhibition was dose dependent. Both substrate and Ca 2+ activation kinetics of Ca 2+ -ATPase indicated non-competitive type of inhibition as evidenced by decreased catalytic velocity but not enzyme-substrate affinity. The inhibited Ca 2+ -ATPase activity and Ca 2+ uptake were restored to normal level by exogenously added calmodulin which increased both velocity and affinity. The inhibition of Ca 2+ -ATPase activity and Ca 2+ uptake and restoration by calmodulin suggests that toxaphene may impair active calcium transport mechanisms by decreasing regulator protein calmodulin levels

  11. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation ...of arachidonic acid release and cytosolic phospholipase A2activation. Authors Gij

  12. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors.

    Science.gov (United States)

    McKey, Jennifer; Martire, Delphine; de Santa Barbara, Pascal; Faure, Sandrine

    2016-04-28

    Smooth muscle cell (SMC) plasticity maintains the balance between differentiated SMCs and proliferative mesenchymal progenitors, crucial for muscular tissue homeostasis. Studies on the development of mesenchymal progenitors into SMCs have proven useful in identifying molecular mechanisms involved in digestive musculature plasticity in physiological and pathological conditions. Here, we show that Limb Expression 1 (LIX1) molecularly defines the population of mesenchymal progenitors in the developing stomach. Using in vivo functional approaches in the chick embryo, we demonstrate that LIX1 is a key regulator of stomach SMC development. We show that LIX1 is required for stomach SMC determination to regulate the expression of the pro-proliferative gene YAP1 and mesenchymal cell proliferation. However, as stomach development proceeds, sustained LIX1 expression has a negative impact on further SMC differentiation and this is associated with a decrease in YAP1 activity. We demonstrate that expression of LIX1 must be tightly regulated to allow fine-tuning of the transcript levels and state of activation of the pro-proliferative transcriptional coactivator YAP1 to regulate proliferation rates of stomach mesenchymal progenitors and their differentiation. Our data highlight dual roles for LIX1 and YAP1 and provide new insights into the regulation of cell density-dependent proliferation, which is essential for the development and homeostasis of organs.

  13. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2008-08-01

    Full Text Available Raj Kumar1, William J Calhoun21Division of Gastroenterology; 2Division of Allergy, Pulmonary, Immunology, Critical Care, and Sleep (APICS, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USAAbstract: Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade

  14. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    Directory of Open Access Journals (Sweden)

    Hou Ssu-Yu

    2010-06-01

    Full Text Available Abstract Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors (statins have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin. Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2 formation, and phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP phosphorylation, and endothelial nitric oxide synthase (eNOS expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP

  15. Network feedback regulates motor output across a range of modulatory neuron activity.

    Science.gov (United States)

    Spencer, Robert M; Blitz, Dawn M

    2016-06-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. Copyright © 2016 the American Physiological Society.

  16. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes.

    Directory of Open Access Journals (Sweden)

    Yanmei Zhao

    2018-06-01

    Full Text Available Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating signals. The zipt-7.1 gene is expressed in the germ line and functions in germ cells to promote sperm activation. When expressed in mammalian cells, ZIPT-7.1 mediates zinc transport with high specificity and is predominantly located on internal membranes. Finally, genetic epistasis places zipt-7.1 at the end of the spe-8 sperm activation pathway, and ZIPT-7.1 binds SPE-4, a presenilin that regulates sperm activation. Based on these results, we propose a new model for sperm activation. In spermatids, inactive ZIPT-7.1 is localized to the membranous organelles, which contain higher levels of zinc than the cytoplasm. When sperm activation is triggered, ZIPT-7.1 activity increases, releasing zinc from internal stores. The resulting increase in cytoplasmic zinc promotes the phenotypic changes characteristic of activation. Thus, zinc signaling is a key step in the signal transduction process that mediates sperm activation, and we have identified a zinc transporter that is central to this activation process.

  17. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting.

    Directory of Open Access Journals (Sweden)

    Estibaliz Castillero

    Full Text Available FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.

  18. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    Science.gov (United States)

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    Science.gov (United States)

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  20. Bi-directional astrocytic regulation of neuronal activity within a network

    Directory of Open Access Journals (Sweden)

    Susan Yu Gordleeva

    2012-11-01

    Full Text Available The concept of a tripartite synapse holds that astrocytes can affect both the pre- and postsynaptic compartments through the Ca2+-dependent release of gliotransmitters. Because astrocytic Ca2+ transients usually last for a few seconds, we assumed that astrocytic regulation of synaptic transmission may also occur on the scale of seconds. Here, we considered the basic physiological functions of tripartite synapses and investigated astrocytic regulation at the level of neural network activity. The firing dynamics of individual neurons in a spontaneous firing network was described by the Hodgkin-Huxley model. The neurons received excitatory synaptic input driven by the Poisson spike train with variable frequency. The mean field concentration of the released neurotransmitter was used to describe the presynaptic dynamics. The amplitudes of the excitatory postsynaptic currents (PSCs obeyed the gamma distribution law. In our model, astrocytes depressed the presynaptic release and enhanced the postsynaptic currents. As a result, low frequency synaptic input was suppressed while high frequency input was amplified. The analysis of the neuron spiking frequency as an indicator of network activity revealed that tripartite synaptic transmission dramatically changed the local network operation compared to bipartite synapses. Specifically, the astrocytes supported homeostatic regulation of the network activity by increasing or decreasing firing of the neurons. Thus, the astrocyte activation may modulate a transition of neural network into bistable regime of activity with two stable firing levels and spontaneous transitions between them.

  1. Environment-dependent regulation of spliceosome activity by the LSM2-8 complex in Arabidopsis.

    Science.gov (United States)

    Carrasco-López, Cristian; Hernández-Verdeja, Tamara; Perea-Resa, Carlos; Abia, David; Catalá, Rafael; Salinas, Julio

    2017-07-07

    Spliceosome activity is tightly regulated to ensure adequate splicing in response to internal and external cues. It has been suggested that core components of the spliceosome, such as the snRNPs, would participate in the control of its activity. The experimental indications supporting this proposition, however, remain scarce, and the operating mechanisms poorly understood. Here, we present genetic and molecular evidence demonstrating that the LSM2-8 complex, the protein moiety of the U6 snRNP, regulates the spliceosome activity in Arabidopsis, and that this regulation is controlled by the environmental conditions. Our results show that the complex ensures the efficiency and accuracy of constitutive and alternative splicing of selected pre-mRNAs, depending on the conditions. Moreover, miss-splicing of most targeted pre-mRNAs leads to the generation of nonsense mediated decay signatures, indicating that the LSM2-8 complex also guarantees adequate levels of the corresponding functional transcripts. Interestingly, the selective role of the complex has relevant physiological implications since it is required for adequate plant adaptation to abiotic stresses. These findings unveil an unanticipated function for the LSM2-8 complex that represents a new layer of posttranscriptional regulation in response to external stimuli in eukaryotes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear Regulation Authority (NRA: which controls the regulations for Spent Fuel Interim Storage Facilities). In 2012 fiscal year, JNES carried out dynamic test of spent fuel to examine the integrity of spent fuel under cask drop accidents, and preparation for PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. Some of these tests will be also carried out in 2013 fiscal year and after. (author)

  4. Considerations on Law no. 78/2014 regarding the Regulation of the Volunteering Activity in Romania

    Directory of Open Access Journals (Sweden)

    Tache BOCĂNIALĂ

    2014-08-01

    Full Text Available In this paper we aim at highlighting the progress in the regulation of volunteering activity in Romania through the recent adoption by the Parliament of the Law no. 78/2014 on the regulation of volunteering in Romania. The new legislative act, which replaced Volunteering Law no. 195 / 2001 (republished tries and we believe that it actually succeeds in providing consistent and harmonized solutions at European level to problems of organizations working with volunteers and thus creating a modern legal framework, appropriately adapted to the national and European context in the field of volunteering.

  5. DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses.

    Science.gov (United States)

    Bruneau, Sarah; Nakayama, Hironao; Woda, Craig B; Flynn, Evelyn A; Briscoe, David M

    2013-09-05

    The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution.

  6. Light Controls Cytokinin Signaling via Transcriptional Regulation of Constitutively Active Sensor Histidine Kinase CKI1.

    Science.gov (United States)

    Dobisova, Tereza; Hrdinova, Vendula; Cuesta, Candela; Michlickova, Sarka; Urbankova, Ivana; Hejatkova, Romana; Zadnikova, Petra; Pernisova, Marketa; Benkova, Eva; Hejatko, Jan

    2017-05-01

    In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The cross talk between cytokinin response and light has been known for a long time. However, the molecular mechanism underlying the interaction between light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a LONG PALE HYPOCOTYL ( LPH ) gene whose activity is indispensable for spatiotemporally correct expression of CYTOKININ INDEPENDENT1 ( CKI1 ), encoding the constitutively active sensor His kinase that activates MSP signaling. lph is a new allele of HEME OXYGENASE1 ( HY1 ) that encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertible phytochromes. Our analysis confirmed the light-dependent regulation of the CKI1 expression pattern. We show that CKI1 expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of CKI1 expression, presumably via the phyA-regulated transcription factors (TF) PHYTOCHROME INTERACTING FACTOR3 and CIRCADIAN CLOCK ASSOCIATED1. Changes in CKI1 expression observed in lph / hy1 - 7 and phy mutants correlate with misregulation of MSP signaling, changed cytokinin sensitivity, and developmental aberrations that were previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate a novel role of phyA-dependent CKI1 expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of CKI1 provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Acoustic input and efferent activity regulate the expression of molecules involved in cochlear micromechanics

    Science.gov (United States)

    Lamas, Veronica; Arévalo, Juan C.; Juiz, José M.; Merchán, Miguel A.

    2015-01-01

    Electromotile activity in auditory outer hair cells (OHCs) is essential for sound amplification. It relies on the highly specialized membrane motor protein prestin, and its interactions with the cytoskeleton. It is believed that the expression of prestin and related molecules involved in OHC electromotility may be dynamically regulated by signals from the acoustic environment. However little is known about the nature of such signals and how they affect the expression of molecules involved in electromotility in OHCs. We show evidence that prestin oligomerization is regulated, both at short and relatively long term, by acoustic input and descending efferent activity originating in the cortex, likely acting in concert. Unilateral removal of the middle ear ossicular chain reduces levels of trimeric prestin, particularly in the cochlea from the side of the lesion, whereas monomeric and dimeric forms are maintained or even increased in particular in the contralateral side, as shown in Western blots. Unilateral removal of the auditory cortex (AC), which likely causes an imbalance in descending efferent activity on the cochlea, also reduces levels of trimeric and tetrameric forms of prestin in the side ipsilateral to the lesion, whereas in the contralateral side prestin remains unaffected, or even increased in the case of trimeric and tetrameric forms. As far as efferent inputs are concerned, unilateral ablation of the AC up-regulates the expression of α10 nicotinic Ach receptor (nAChR) transcripts in the cochlea, as shown by RT-Quantitative real-time PCR (qPCR). This suggests that homeostatic synaptic scaling mechanisms may be involved in dynamically regulating OHC electromotility by medial olivocochlear efferents. Limited, unbalanced efferent activity after unilateral AC removal, also affects prestin and β-actin mRNA levels. These findings support that the concerted action of acoustic and efferent inputs to the cochlea is needed to regulate the expression of major

  8. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1

    OpenAIRE

    Furihata, Takashi; Maruyama, Kyonoshin; Fujita, Yasunari; Umezawa, Taishi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    bZIP-type transcription factors AREBs/ABFs bind an abscisic acid (ABA)-responsive cis-acting element named ABRE and transactivate downstream gene expression in Arabidopsis. Because AREB1 overexpression could not induce downstream gene expression, activation of AREB1 requires ABA-dependent posttranscriptional modification. We confirmed that ABA activated 42-kDa kinase activity, which, in turn, phosphorylated Ser/Thr residues of R-X-X-S/T sites in the conserved regions of AREB1. Amino acid subs...

  9. Active zone proteins are transported via distinct mechanisms regulated by Par-1 kinase.

    Directory of Open Access Journals (Sweden)

    Kara R Barber

    2017-02-01

    Full Text Available Disruption of synapses underlies a plethora of neurodevelopmental and neurodegenerative disease. Presynaptic specialization called the active zone plays a critical role in the communication with postsynaptic neuron. While the role of many proteins at the active zones in synaptic communication is relatively well studied, very little is known about how these proteins are transported to the synapses. For example, are there distinct mechanisms for the transport of active zone components or are they all transported in the same transport vesicle? Is active zone protein transport regulated? In this report we show that overexpression of Par-1/MARK kinase, a protein whose misregulation has been implicated in Autism spectrum disorders (ASDs and neurodegenerative disorders, lead to a specific block in the transport of an active zone protein component- Bruchpilot at Drosophila neuromuscular junctions. Consistent with a block in axonal transport, we find a decrease in number of active zones and reduced neurotransmission in flies overexpressing Par-1 kinase. Interestingly, we find that Par-1 acts independently of Tau-one of the most well studied substrates of Par-1, revealing a presynaptic function for Par-1 that is independent of Tau. Thus, our study strongly suggests that there are distinct mechanisms that transport components of active zones and that they are tightly regulated.

  10. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: bill.dole@novartis.com [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  11. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    International Nuclear Information System (INIS)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-01-01

    Highlights: → Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). → ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. → ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. → Exposure of human adipocytes to fatty acids and (TNFα) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator-activated

  12. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL from Geobacillus kaustophilus HTA426 (GkaP exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.

  13. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Carmen Fernandez-Fernandez

    Full Text Available DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA. We found that the expression of the DnaA(R357A mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.

  14. Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana.

    Science.gov (United States)

    Giuntoli, Beatrice; Shukla, Vinay; Maggiorelli, Federica; Giorgi, Federico M; Lombardi, Lara; Perata, Pierdomenico; Licausi, Francesco

    2017-10-01

    The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions. © 2017 John Wiley & Sons Ltd.

  15. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development

    Science.gov (United States)

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; Nakayama, Takuya; Shah, Anoop; Grainger, Robert M.; White, Judith M.; DeSimone, Douglas W.

    2012-01-01

    Pericellular proteolysis by ADAM family metalloproteinases has been widely implicated in cell signaling and development. We recently found that Xenopus ADAM13, an ADAM metalloproteinase, is required for activation of canonical Wnt signaling during cranial neural crest (CNC) induction by regulating a novel crosstalk between Wnt and ephrin B (EfnB) signaling pathways (Wei et al., 2010b). In the present study we show that the metalloproteinase activity of ADAM13 also plays important roles in eye development in X. tropicalis. Knockdown of ADAM13 results in reduced expression of eye field markers pax6 and rx1, as well as that of the pan-neural marker sox2. Activation of canonical Wnt signaling or inhibition of forward EfnB signaling rescues the eye defects caused by loss of ADAM13, suggesting that ADAM13 functions through regulation of the EfnB-Wnt pathway interaction. Downstream of Wnt, the head inducer Cerberus was identified as an effector that mediates ADAM13 function in early eye field formation. Furthermore, ectopic expression of the Wnt target gene snail2 restores cerberus expression and rescues the eye defects caused by ADAM13 knockdown. Together these data suggest an important role of ADAM13-regulated Wnt activity in eye development in Xenopus. PMID:22227340

  16. Regulation of gene expression by manipulating transcriptional repressor activity using a novel CoSRI technology.

    Science.gov (United States)

    Xu, Yue; Li, Song Feng; Parish, Roger W

    2017-07-01

    Targeted gene manipulation is a central strategy for studying gene function and identifying related biological processes. However, a methodology for manipulating the regulatory motifs of transcription factors is lacking as these factors commonly possess multiple motifs (e.g. repression and activation motifs) which collaborate with each other to regulate multiple biological processes. We describe a novel approach designated conserved sequence-guided repressor inhibition (CoSRI) that can specifically reduce or abolish the repressive activities of transcription factors in vivo. The technology was evaluated using the chimeric MYB80-EAR transcription factor and subsequently the endogenous WUS transcription factor. The technology was employed to develop a reversible male sterility system applicable to hybrid seed production. In order to determine the capacity of the technology to regulate the activity of endogenous transcription factors, the WUS repressor was chosen. The WUS repression motif could be inhibited in vivo and the transformed plants exhibited the wus-1 phenotype. Consequently, the technology can be used to manipulate the activities of transcriptional repressor motifs regulating beneficial traits in crop plants and other eukaryotic organisms. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.

    Science.gov (United States)

    Chaillou, Thomas; Lanner, Johanna T

    2016-12-01

    Reduced oxygen (O 2 ) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O 2 level could affect their activity during muscle regeneration. In this review, we present the idea that O 2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O 2 levels to promote muscle regeneration. Severe hypoxia (≤1% O 2 ) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O 2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. © FASEB.

  18. Developmental programming of energy balance regulation: is physical activity more 'programmable' than food intake?

    Science.gov (United States)

    Zhu, Shaoyu; Eclarinal, Jesse; Baker, Maria S; Li, Ge; Waterland, Robert A

    2016-02-01

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of energy balance are poorly understood, limiting our ability to intervene. Most studies of developmental programming of energy balance have focused on persistent alterations in the regulation of energy intake; energy expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of energy balance appeared to be due to persistent alterations in energy expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of energy balance. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life

  19. Catalase activity prevents exercise-induced up-regulation of vasoprotective proteins in venous tissue.

    Science.gov (United States)

    Dao, Vu Thao-Vi; Floeren, Melanie; Kumpf, Stephanie; Both, Charlotte; Peter, Bärbel; Balz, Vera; Suvorava, Tatsiana; Kojda, Georg

    2011-11-01

    Physical activity induces favourable changes of arterial gene expression and protein activity, although little is known about its effect in venous tissue. Although our understanding of the initiating molecular signals is still incomplete, increased expression of endothelial nitric oxide synthase (eNOS) is considered a key event. This study sought to investigate the effects of two different training protocols on the expression of eNOS and extracellular superoxide dismutase (ecSOD) in venous and lung tissue and to evaluate the underlying molecular mechanisms. C57Bl/6 mice underwent voluntary exercise or forced physical activity. Changes of vascular mRNA and protein levels and activity of eNOS, ecSOD and catalase were determined in aorta, heart, lung and vena cava. Both training protocols similarly increased relative heart weight and resulted in up-regulation of aortic and myocardial eNOS. In striking contrast, eNOS expression in vena cava and lung remained unchanged. Likewise, exercise up-regulated ecSOD in the aorta and in left ventricular tissue but remained unchanged in lung tissue. Catalase expression in lung tissue and vena cava of exercised mice exceeded that in aorta by 6.9- and 10-fold, respectively, suggesting a lack of stimulatory effects of hydrogen peroxide. In accordance, treatment of mice with the catalase inhibitor aminotriazole for 6 weeks resulted in significant up-regulation of eNOS and ecSOD in vena cava. These data suggest that physiological venous catalase activity prevents exercise-induced up-regulation of eNOS and ecSOD. Furthermore, therapeutic inhibition of vascular catalase might improve pulmonary rehabilitation. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  20. Commission de regulation de l'energie. Activity Report 2009

    International Nuclear Information System (INIS)

    2010-01-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2009 activity report of CRE. Content: A - How the CRE works and the activity of the CoRDiS; B - Implementation of the third energy package will strengthen regulation in this sector; C - The regulator contributes to the correct operation of the infrastructures, the interconnection of European grids and security of supplies; D - Regulation: serving investment and quality; E - Renewable energy, advanced metering systems and the grids of the future are all priority means of delivering sustainable development; F - The CRE is contributing to the smooth operation of electricity and gas markets to the benefit of consumers; G - Appendices: 1. Summary of the principal deliberations of the CRE; 2. European and international calendar for 2009; 3. Council of European Energy Regulators (CEER); 4. Glossary; 5. Acronyms; 6. Units and conversions; 7. Index; 8. List of boxes, figures and tables

  1. Iron-Regulated Phospholipase C Activity Contributes to the Cytolytic Activity and Virulence of Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Steven E Fiester

    Full Text Available Acinetobacter baumannii is an opportunistic Gram-negative pathogen that causes a wide range of infections including pneumonia, septicemia, necrotizing fasciitis and severe wound and urinary tract infections. Analysis of A. baumannii representative strains grown in Chelex 100-treated medium for hemolytic activity demonstrated that this pathogen is increasingly hemolytic to sheep, human and horse erythrocytes, which interestingly contain increasing amounts of phosphatidylcholine in their membranes. Bioinformatic, genetic and functional analyses of 19 A. baumannii isolates showed that the genomes of each strain contained two phosphatidylcholine-specific phospholipase C (PC-PLC genes, which were named plc1 and plc2. Accordingly, all of these strains were significantly hemolytic to horse erythrocytes and their culture supernatants tested positive for PC-PLC activity. Further analyses showed that the transcriptional expression of plc1 and plc2 and the production of phospholipase and thus hemolytic activity increased when bacteria were cultured under iron-chelation as compared to iron-rich conditions. Testing of the A. baumannii ATCC 19606T plc1::aph-FRT and plc2::aph isogenic insertion derivatives showed that these mutants had a significantly reduced PC-PLC activity as compared to the parental strain, while testing of plc1::ermAM/plc2::aph demonstrated that this double PC-PLC isogenic mutant expressed significantly reduced cytolytic and hemolytic activity. Interestingly, only plc1 was shown to contribute significantly to A. baumannii virulence using the Galleria mellonella infection model. Taken together, our data demonstrate that both PLC1 and PLC2, which have diverged from a common ancestor, play a concerted role in hemolytic and cytolytic activities; although PLC1 seems to play a more critical role in the virulence of A. baumannii when tested in an invertebrate model. These activities would provide access to intracellular iron stores this pathogen

  2. Immediate early gene activity-regulated cytoskeletal-associated protein regulates estradiol-induced lordosis behavior in female rats.

    Science.gov (United States)

    Christensen, Amy; Dewing, Phoebe; Micevych, Pavel

    2015-01-01

    Sensory feedback is an important component of any behavior, with each instance influencing subsequent activity. Female sexual receptivity is mediated both by the steroid hormone milieu and interaction with the male. We tested the influence of repeated mating on the level of sexual receptivity in ovariectomized rats treated with estradiol benzoate (EB) once every fourth day to mimic the normal phasic changes of circulating estradiol. Females were divided into two groups: naïve, which were tested for lordosis behavior once, and experienced rats, which were tested for lordosis after each EB injection. To monitor the effect of mating, the number of neurons expressing the immediate early gene activity-regulated cytoskeleton-associated protein (Arc) were counted in the mediobasal hypothalamus. Females were unreceptive following the first EB treatment, but the mating induced Arc expression. In naïve rats, each subsequent EB injection increased the levels of sexual receptivity. This ramping was not observed in experienced rats, which achieved only a moderate level of sexual receptivity. However, experienced females treated with EB and progesterone were maximally receptive and did not have Arc expression. To test whether the expression of Arc attenuated lordosis, Arc antisense oligodeoxynucleotides (asODN) were microinjected into experienced females' arcuate nuclei. Arc expression was attenuated, and the experienced EB-treated females achieved maximal sexual receptivity. These results demonstrate that Arc expression in the hypothalamus might influence future sexual receptivity and provides evidence of learning in the arcuate nucleus. The loss of Arc results in unrestrained sexual receptivity. © 2014 Wiley Periodicals, Inc.

  3. Tetraspanin 7 regulates sealing zone formation and the bone-resorbing activity of osteoclasts

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jun-Oh; Lee, Yong Deok; Kim, Haemin; Kim, Min Kyung; Song, Min-Kyoung; Lee, Zang Hee; Kim, Hong-Hee, E-mail: hhbkim@snu.ac.kr

    2016-09-02

    Tetraspanin family proteins regulate morphology, motility, fusion, and signaling in various cell types. We investigated the role of the tetraspanin 7 (Tspan7) isoform in the differentiation and function of osteoclasts. Tspan7 was up-regulated during osteoclastogenesis. When Tspan7 expression was reduced in primary precursor cells by siRNA-mediated gene knock-down, the generation of multinuclear osteoclasts was not affected. However, a striking cytoskeletal abnormality was observed: the formation of the podosome belt structure was inhibited and the microtubular network were disrupted by Tspan7 knock-down. Decreases in acetylated microtubules and levels of phosphorylated Src and Pyk2 in Tspan7 knock-down cells supported the involvement of Tspan7 in cytoskeletal rearrangement signaling in osteoclasts. This cytoskeletal defect interfered with sealing zone formation and subsequently the bone-resorbing activity of mature osteoclasts on dentin surfaces. Our results suggest that Tspan7 plays an important role in cytoskeletal organization required for the bone-resorbing function of osteoclasts by regulating signaling to Src, Pyk2, and microtubules. - Highlights: • Tspan7 expression is up-regulated during osteoclastogenesis. • Tspan7 regulates podosome belt organization in osteoclasts. • Tspan7 is crucial for sealing zone formation and bone-resorption by osteoclasts. • Src and Pyk2 phosphorylation and microtubule acetylation mediate Tspan7 function.

  4. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-04

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. Copyright © 2014, American Association for the Advancement of Science.

  5. Epidermis-type lipoxygenase 3 regulates adipocyte differentiation and peroxisome proliferator-activated receptor gamma activity

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Jørgensen, Claus; Petersen, Rasmus K

    2010-01-01

    preadipocytes. Here, we show that forced expression of eLOX3 or addition of eLOX3 products stimulated adipogenesis under conditions that normally require an exogenous PPAR gamma ligand for differentiation. Hepoxilins, a group of oxidized arachidonic acid derivatives produced by eLOX3, bound to and activated...... PPAR gamma. Production of hepoxilins was increased transiently during the initial stages of adipogenesis. Furthermore, small interfering RNA-mediated or retroviral short hairpin RNA-mediated knockdown of eLOX3 expression abolished differentiation of 3T3-L1 preadipocytes. Finally, we demonstrate...... differentiation has remained enigmatic. Previously, we showed that lipoxygenase (LOX) activity is involved in activation of PPAR gamma during the early stages of adipocyte differentiation. Of the seven known murine LOXs, only the unconventional LOX epidermis-type lipoxygenase 3 (eLOX3) is expressed in 3T3-L1...

  6. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase.

    Science.gov (United States)

    Lu, D; Yang, H; Raizada, M K

    1996-12-01

    Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.

  7. A biomolecular proportional integral controller based on feedback regulations of protein level and activity.

    Science.gov (United States)

    Mairet, Francis

    2018-02-01

    Homeostasis is the capacity of living organisms to keep internal conditions regulated at a constant level, despite environmental fluctuations. Integral feedback control is known to play a key role in this behaviour. Here, I show that a feedback system involving transcriptional and post-translational regulations of the same executor protein acts as a proportional integral (PI) controller, leading to enhanced transient performances in comparison with a classical integral loop. Such a biomolecular controller-which I call a level and activity-PI controller (LA-PI)-is involved in the regulation of ammonium uptake by Escherichia coli through the transporter AmtB. The P II molecules, which reflect the nitrogen status of the cell, inhibit both the production of AmtB and its activity (via the NtrB-NtrC system and the formation of a complex with GlnK, respectively). Other examples of LA-PI controller include copper and zinc transporters, and the redox regulation in photosynthesis. This scheme has thus emerged through evolution in many biological systems, surely because of the benefits it offers in terms of performances (rapid and perfect adaptation) and economy (protein production according to needs).

  8. Involvement of Histidine Residue His382 in pH Regulation of MCT4 Activity.

    Directory of Open Access Journals (Sweden)

    Shotaro Sasaki

    Full Text Available Monocarboxylate transporter 4 (MCT4 is a pH-dependent bi-directional lactate transporter. Transport of lactate via MCT4 is increased by extracellular acidification. We investigated the critical histidine residue involved in pH regulation of MCT4 function. Transport of lactate via MCT4 was measured by using a Xenopus laevis oocyte expression system. MCT4-mediated lactate transport was inhibited by Zn2+ in a pH physiological condition but not in an acidic condition. The histidine modifier DEPC (diethyl pyrocarbonate reduced MCT4 activity but did not completely inactivate MCT4. After treatment with DEPC, pH regulation of MCT4 function was completely knocked out. Inhibitory effects of DEPC were reversed by hydroxylamine and suppressed in the presence of excess lactate and Zn2+. Therefore, we performed an experiment in which the extracellular histidine residue was replaced with alanine. Consequently, the pH regulation of MCT4-H382A function was also knocked out. Our findings demonstrate that the histidine residue His382 in the extracellular loop of the transporter is essential for pH regulation of MCT4-mediated substrate transport activity.

  9. Cyclin D3 interacts with vitamin D receptor and regulates its transcription activity

    International Nuclear Information System (INIS)

    Jian Yongzhi; Yan Jun; Wang Hanzhou; Chen Chen; Sun Maoyun; Jiang Jianhai; Lu Jieqiong; Yang Yanzhong; Gu Jianxin

    2005-01-01

    D-type cyclins are essential for the progression through the G1 phase of the cell cycle. Besides serving as cell cycle regulators, D-type cyclins were recently reported to have transcription regulation functions. Here, we report that cyclin D3 is a new interacting partner of vitamin D receptor (VDR), a member of the superfamily of nuclear receptors for steroid hormones, thyroid hormone, and the fat-soluble vitamins A and D. The interaction was confirmed with methods of yeast two-hybrid system, in vitro binding analysis and in vivo co-immunoprecipitation. Cyclin D3 interacted with VDR in a ligand-independent manner, but treatment of the ligand, 1,25-dihydroxyvitamin D3, strengthened the interaction. Confocal microscopy analysis showed that ligand-activated VDR led to an accumulation of cyclin D3 in the nuclear region. Cyclin D3 up-regulated transcriptional activity of VDR and this effect was counteracted by overexpression of CDK4 and CDK6. These findings provide us a new clue to understand the transcription regulation functions of D-type cyclins

  10. Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway

    Directory of Open Access Journals (Sweden)

    Valentina Rapisarda

    2017-03-01

    Full Text Available Cellular senescence is an important in vivo mechanism that prevents the propagation of damaged cells. However, the precise mechanisms regulating senescence are not well characterized. Here, we find that ITGB3 (integrin beta 3 or β3 is regulated by the Polycomb protein CBX7. β3 expression accelerates the onset of senescence in human primary fibroblasts by activating the transforming growth factor β (TGF-β pathway in a cell-autonomous and non-cell-autonomous manner. β3 levels are dynamically increased during oncogene-induced senescence (OIS through CBX7 Polycomb regulation, and downregulation of β3 levels overrides OIS and therapy-induced senescence (TIS, independently of its ligand-binding activity. Moreover, cilengitide, an αvβ3 antagonist, has the ability to block the senescence-associated secretory phenotype (SASP without affecting proliferation. Finally, we show an increase in β3 levels in a subset of tissues during aging. Altogether, our data show that integrin β3 subunit is a marker and regulator of senescence.

  11. Activation scheme to use performance indicators for the graded regulation on Korean NPPs

    International Nuclear Information System (INIS)

    Hwang, M. J.; Kang, D. I.; Kim, G. R.; Sung, G. Y.

    2003-01-01

    In this paper, we will provide an activation scheme of using performance indicators for graded regulation on Korean Nuclear Power Plants (NPPs). The safe operation of NPPs is the basic objective of nuclear society. To achieve the object, the direction of the regulation is established to regulate the risk of public health and safety. Therefore, it's essential to keep the safety of plants. However, it's not easy to define the appropriate safety level. So, the requirement of performance indicator establishment and framework establishment for safety management has been increased. Performance indicators can provide quantified safety value numerically. Therefore, we can increase the acceptance and trust of the public for safety of NPPs. Also, it helps pridictive regulation through the objective comparison of safety. Moreover, according to the importance of safety, we can allocate the resources effectively and lead an effort for the improvement of safety by comparison among nations and plants. The safety of a plant is affected by not only design but also the quality of operators, appropriate operation, maintenance and test. So, in this paper, we reviewed the application of performance indicators in domestic and foreign countries, and groped for a method to activate the use of performance indicators

  12. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration

    DEFF Research Database (Denmark)

    Lammermann, Tim; Renkawitz, Jorg; Wu, Xunwei

    2009-01-01

    Mature dendritic cells (DCs) moving from the skin to the lymph node are a prototypic example of rapidly migrating amoeboid leukocytes. Interstitial DC migration is directionally guided by chemokines, but independent of specific adhesive interactions with the tissue as well as pericellular proteol...

  13. Rho-family GTPase Cdc42 controls migration of Langerhans cells in vivo

    DEFF Research Database (Denmark)

    Luckashenak, Nancy; Wähe, Anna; Breit, Katharina

    2013-01-01

    Epidermal Langerhans cells (LCs) of the skin represent the prototype migratory dendritic cell (DC) subtype. In the skin, they take up Ag, migrate to the draining lymph nodes, and contribute to Ag transport and immunity. Different depletion models for LCs have revealed contrasting roles and contri...

  14. A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis

    DEFF Research Database (Denmark)

    Dütting, Sebastian; Gaits-Iacovoni, Frederique; Stegner, David

    2017-01-01

    Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown...

  15. Tissue transglutaminase (TG2 activity regulates osteoblast differentiation and mineralization in the SAOS-2 cell line

    Directory of Open Access Journals (Sweden)

    Xiaoxue Yin

    2012-08-01

    Full Text Available Tissue transglutaminase (type II, TG2 has long been postulated to directly promote skeletal matrix calcification and play an important role in ossification. However, limited information is available on the expression, function and modulating mechanism of TG2 during osteoblast differentiation and mineralization. To address these issues, we cultured the well-established human osteosarcoma cell line SAOS-2 with osteo-inductive conditioned medium and set up three time points (culture days 4, 7, and 14 to represent different stages of SAOS-2 differentiation. Osteoblast markers, mineralization, as well as TG2 expression and activity, were then assayed in each stage. Furthermore, we inhibited TG activity with cystamine and then checked SAOS-2 differentiation and mineralization in each stage. The results showed that during the progression of osteoblast differentiation SAOS-2 cells presented significantly high levels of osteocalcin (OC mRNA, bone morphogenetic protein-2 (BMP-2 and collagen I, significantly high alkaline phosphatase (ALP activity, and the increased formation of calcified matrix. With the same tendency, TG2 expression and activity were up-regulated. Furthermore, inhibition of TG activity resulted in a significant decrease of OC, collagen I, and BMP-2 mRNA and of ALP activity and mineralization. This study demonstrated that TG2 is involved in osteoblast differentiation and may play a role in the initiation and regulation of the mineralization processes. Moreover, the modulating effects of TG2 on osteoblasts may be related to BMP-2.

  16. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    International Nuclear Information System (INIS)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J.

    1988-01-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5' flanking region of the gene revealed a perfect TATA box at position -28 to position -23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5' flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk - fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides -305 and +75 of the plasminogen activator inhibitor type 1 gene

  17. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation.

    LENUS (Irish Health Repository)

    Ni Ainle, Fionnuala

    2009-08-20

    Protamine sulfate is a positively charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, prospective randomized trials have shown that protamine administration for heparin neutralization is associated with increased bleeding, particularly after cardiothoracic surgery with cardiopulmonary bypass. The molecular mechanism(s) through which protamine mediates this anticoagulant effect has not been defined. In vivo administration of pharmacologic doses of protamine to BALB\\/c mice significantly reduced plasma thrombin generation and prolonged tail-bleeding time (from 120 to 199 seconds). Similarly, in pooled normal human plasma, protamine caused significant dose-dependent prolongations of both prothrombin time and activated partial thromboplastin time. Protamine also markedly attenuated tissue factor-initiated thrombin generation in human plasma, causing a significant decrease in endogenous thrombin potential (41% +\\/- 7%). As expected, low-dose protamine effectively reversed the anticoagulant activity of unfractionated heparin in plasma. However, elevated protamine concentrations were associated with progressive dose-dependent reduction in thrombin generation. To assess the mechanism by which protamine mediates down-regulation of thrombin generation, the effect of protamine on factor V activation was assessed. Protamine was found to significantly reduce the rate of factor V activation by both thrombin and factor Xa. Protamine mediates its anticoagulant activity in plasma by down-regulation of thrombin generation via a novel mechanism, specifically inhibition of factor V activation.

  18. Commission de regulation de l'energie. Activity report june 2007

    International Nuclear Information System (INIS)

    2007-06-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2007 activity report of CRE. Content: A - Towards a single European energy market: Birth of a single European energy market (Origins of Europe of Energy, Emergence of a European energy policy); Main European Community guiding lines (European governance as regards energy, Guiding principles for the internal energy market); European Community activities (European Commission reports, Electricity and gas Regional Initiatives); Organisation and coordination of European regulators (Joint organisation of European regulators, CRE's relations with European Community institutions); CRE's European activities (Regional integration of gas markets, Regional integration of electricity markets, Operation of the European interconnected electricity grid and security of supply, CRE's other European activities); B - CRE action at national level: Grids/networks and infrastructures (General information, Electricity grids, Regulation of gas networks and infrastructures); Markets (Changes in the regulatory and legislative contexts of electricity and natural gas markets, Electricity markets

  19. Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles.

    Science.gov (United States)

    Kong, Dong; Farmer, Veronica; Shukla, Anil; James, Jana; Gruskin, Richard; Kiriyama, Shigeo; Loncarek, Jadranka

    2014-09-29

    Newly formed centrioles in cycling cells undergo a maturation process that is almost two cell cycles long before they become competent to function as microtubule-organizing centers and basal bodies. As a result, each cell contains three generations of centrioles, only one of which is able to form cilia. It is not known how this long and complex process is regulated. We show that controlled Plk1 activity is required for gradual biochemical and structural maturation of the centrioles and timely appendage assembly. Inhibition of Plk1 impeded accumulation of appendage proteins and appendage formation. Unscheduled Plk1 activity, either in cycling or interphase-arrested cells, accelerated centriole maturation and appendage and cilia formation on the nascent centrioles, erasing the age difference between centrioles in one cell. These findings provide a new understanding of how the centriole cycle is regulated and how proper cilia and centrosome numbers are maintained in the cells.

  20. A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress

    KAUST Repository

    Ritho, Joan

    2015-07-23

    SUMOylation has been implicated in cellular stress adaptation, but its role in regulating liver kinase B1 (LKB1), a major upstream kinase of the energy sensor AMP-activated protein kinase (AMPK), is unknown. Here, we show that energy stress triggers an increase in SUMO1 modification of LKB1, despite a global reduction in both SUMO1 and SUMO2/3 conjugates. During metabolic stress, SUMO1 modification of LKB1 lysine 178 is essential in promoting its interaction with AMPK via a SUMO-interacting motif (SIM) essential for AMPK activation. The LKB1 K178R SUMO mutant had defective AMPK signaling and mitochondrial function, inducing death in energy-deprived cells. These results provide additional insight into how LKB1-AMPK signaling is regulated during energy stress, and they highlight the critical role of SUMOylation in maintaining the cell’s energy equilibrium.

  1. A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress

    KAUST Repository

    Ritho, Joan; Arold, Stefan T.; Yeh, Edward  T.H.

    2015-01-01

    SUMOylation has been implicated in cellular stress adaptation, but its role in regulating liver kinase B1 (LKB1), a major upstream kinase of the energy sensor AMP-activated protein kinase (AMPK), is unknown. Here, we show that energy stress triggers an increase in SUMO1 modification of LKB1, despite a global reduction in both SUMO1 and SUMO2/3 conjugates. During metabolic stress, SUMO1 modification of LKB1 lysine 178 is essential in promoting its interaction with AMPK via a SUMO-interacting motif (SIM) essential for AMPK activation. The LKB1 K178R SUMO mutant had defective AMPK signaling and mitochondrial function, inducing death in energy-deprived cells. These results provide additional insight into how LKB1-AMPK signaling is regulated during energy stress, and they highlight the critical role of SUMOylation in maintaining the cell’s energy equilibrium.

  2. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Blaha, Milan

    2015-01-01

    Roč. 61, č. 6 (2015), s. 495-502 ISSN 0916-8818 R&D Projects: GA MZe(CZ) QJ1510138 Institutional support: RVO:67985904 Keywords : cumulus oocyte complexes * meiosis resumption * mitogen-activated protein kinase 3/1 (MAPK3/1) Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 1.453, year: 2015

  3. Vitamin D Receptor Negatively Regulates Bacterial-Stimulated NF-κB Activity in Intestine

    OpenAIRE

    Wu, Shaoping; Liao, Anne P.; Xia, Yinglin; Li, Yan Chun; Li, Jian-Dong; Sartor, R. Balfour; Sun, Jun

    2010-01-01

    Vitamin D receptor (VDR) plays an essential role in gastrointestinal inflammation. Most investigations have focused on the immune response; however, how bacteria regulate VDR and how VDR modulates the nuclear factor (NF)-κB pathway in intestinal epithelial cells remain unexplored. This study investigated the effects of VDR ablation on NF-κB activation in intestinal epithelia and the role of enteric bacteria on VDR expression. We found that VDR−/− mice exhibited a pro-inflammatory bias. After ...

  4. Replicative Stress Induces Intragenic Transcription of the ASE1 Gene that Negatively Regulates Ase1 Activity

    OpenAIRE

    McKnight, Kelly; Liu, Hong; Wang, Yanchang

    2014-01-01

    Intragenic transcripts initiate within the coding region of a gene, thereby producing shorter mRNAs and proteins. Although intragenic transcripts are widely expressed [1], their role in the functional regulation of genes remains largely unknown. In budding yeast, DNA replication stress activates the S-phase checkpoint that stabilizes replication forks and arrests cells in S-phase with a short spindle [2-4]. When yeast cells were treated with hydroxyurea (HU) to block DNA synthesis and induce ...

  5. Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes

    Directory of Open Access Journals (Sweden)

    Groscurth Peter

    2007-06-01

    Full Text Available Abstract Background Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522 were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. Results In this study we investigated generation of granulysin in lymphokine activated killer (LAK cells and antigen (Listeria specific T-cells. Semiquantitative RT-PCR revealed NKG5 to be the most prominent transcript. It was found to be up-regulated in a time-dependent manner in LAK cells and antigen specific T-cells and their subsets. Two isoforms of 519 mRNA were up-regulated under IL-2 and antigen stimulation. Moreover, two novel transcripts, without any known function, comprising solely parts of the 5 prime region of the primary transcript, were detected. A significant increase of granulysin expressing LAK cells as well as antigen specific T-cells was shown by fluorescence microscopy. On the subset level, increase in CD4+ granulysin expressing cells was found only under antigen stimulation. Immunoblotting showed the 15 kDa form of granulysin to be present in the first week of stimulation either with IL-2 or with bacterial antigen. Substantial processing to the 9 kDa form was detected during the first week in LAK cells and in the second week in antigen specific T-cells. Conclusion This first comprehensive study of granulysin gene regulation in primary cultured human lymphocytes shows that the regulation of granulysin synthesis in response to IL-2 or bacterial antigen stimulation occurs at several levels: RNA expression, extensive alternative splicing and posttranslational processing.

  6. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Directory of Open Access Journals (Sweden)

    Fernando D Villarreal

    Full Text Available Myo-inositol (Ins is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus. Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS and inositol monophosphatase (IMPase, by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1 were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P, mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  7. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation

    OpenAIRE

    Malik, Sohail; Roeder, Robert G.

    2010-01-01

    The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action ...

  8. Direct Ionic Regulation of the Activity of Myo-Inositol Biosynthesis Enzymes in Mozambique Tilapia.

    Science.gov (United States)

    Villarreal, Fernando D; Kültz, Dietmar

    2015-01-01

    Myo-inositol (Ins) is a major compatible osmolyte in many cells, including those of Mozambique tilapia (Oreochromis mossambicus). Ins biosynthesis is highly up-regulated in tilapia and other euryhaline fish exposed to hyperosmotic stress. In this study, enzymatic regulation of two enzymes of Ins biosynthesis, Ins phosphate synthase (MIPS) and inositol monophosphatase (IMPase), by direct ionic effects is analyzed. Specific MIPS and IMPase isoforms from Mozambique tilapia (MIPS-160 and IMPase 1) were selected based on experimental, phylogenetic, and structural evidence supporting their role for Ins biosynthesis during hyperosmotic stress. Recombinant tilapia IMPase 1 and MIPS-160 activity was assayed in vitro at ionic conditions that mimic changes in the intracellular milieu during hyperosmotic stress. The in vitro activities of MIPS-160 and IMPase 1 are highest at alkaline pH of 8.8. IMPase 1 catalytic efficiency is strongly increased during hyperosmolality (particularly for the substrate D-Ins-3-phosphate, Ins-3P), mainly as a result of [Na+] elevation. Furthermore, the substrate-specificity of IMPase 1 towards D-Ins-1-phosphate (Ins-1P) is lower than towards Ins-3P. Because MIPS catalysis results in Ins-3P this results represents additional evidence for IMPase 1 being the isoform that mediates Ins biosynthesis in tilapia. Our data collectively demonstrate that the Ins biosynthesis enzymes are activated under ionic conditions that cells are exposed to during hypertonicity, resulting in Ins accumulation, which, in turn, results in restoration of intracellular ion homeostasis. We propose that the unique and direct ionic regulation of the activities of Ins biosynthesis enzymes represents an efficient biochemical feedback loop for regulation of intracellular physiological ion homeostasis during hyperosmotic stress.

  9. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide.

    OpenAIRE

    Garcia-Morales, P; Minami, Y; Luong, E; Klausner, R D; Samelson, L E

    1990-01-01

    Activation of T cells induces rapid tyrosine phosphorylation on the T-cell receptor zeta chain and other substrates. These phosphorylations can be regulated by a number of protein-tyrosine kinases (ATP: protein-tyrosine O-phosphotransferase, EC 2.7.1.112) and protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48). In this study, we demonstrate that phenylarsine oxide can inhibit tyrosine phosphatases while leaving tyrosine kinase function intact. We use this ...

  10. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    Science.gov (United States)

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug

  11. Novelty-induced activity-regulated cytoskeletal-associated protein (Arc) expression in frontal cortex requires serotonin 2A receptor activation

    DEFF Research Database (Denmark)

    Santini, Martin; Klein, A B; El-Sayed, M

    2011-01-01

    environment. As an output of FC activation we measured expression of activity-regulated cytoskeletal-associated protein (Arc). Novelty-exposure (open-field arena) robustly up-regulated FC Arc mRNA expression (∼160%) in mice compared to home-cage controls. This response was inhibited with the 5-HT(2A...

  12. Novelty-induced activity-regulated cytoskeletal-associated protein (Arc) expression in frontal cortex requires serotonin 2A receptor activation

    DEFF Research Database (Denmark)

    Santini, Martin; Klein, A B; El-Sayed, M

    2011-01-01

    environment. As an output of FC activation we measured expression of activity-regulated cytoskeletal-associated protein (Arc). Novelty-exposure (open-field arena) robustly up-regulated FC Arc mRNA expression (~160%) in mice compared to home-cage controls. This response was inhibited with the 5-HT(2A...

  13. Regulation of Calcitriol Biosynthesis and Activity: Focus on Gestational Vitamin D Deficiency and Adverse Pregnancy Outcomes

    Directory of Open Access Journals (Sweden)

    Andrea Olmos-Ortiz

    2015-01-01

    Full Text Available Vitamin D has garnered a great deal of attention in recent years due to a global prevalence of vitamin D deficiency associated with an increased risk of a variety of human diseases. Specifically, hypovitaminosis D in pregnant women is highly common and has important implications for the mother and lifelong health of the child, since it has been linked to maternal and child infections, small-for-gestational age, preterm delivery, preeclampsia, gestational diabetes, as well as imprinting on the infant for life chronic diseases. Therefore, factors that regulate vitamin D metabolism are of main importance, especially during pregnancy. The hormonal form and most active metabolite of vitamin D is calcitriol. This hormone mediates its biological effects through a specific nuclear receptor, which is found in many tissues including the placenta. Calcitriol synthesis and degradation depend on the expression and activity of CYP27B1 and CYP24A1 cytochromes, respectively, for which regulation is tissue specific. Among the factors that modify these cytochromes expression and/or activity are calcitriol itself, parathyroid hormone, fibroblast growth factor 23, cytokines, calcium and phosphate. This review provides a current overview on the regulation of vitamin D metabolism, focusing on vitamin D deficiency during gestation and its impact on pregnancy outcomes.

  14. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  15. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  16. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins.

    Science.gov (United States)

    Sakai, Miho; Sakamoto, Tomoaki; Saito, Tamio; Matsuoka, Makoto; Tanaka, Hiroshi; Kobayashi, Masatomo

    2003-04-01

    We have cloned two genes for gibberellin (GA) 2-oxidase from rice ( Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA(1) to GA(8) and GA(20) to GA(29)-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice.

  17. An overview of the AECB's strategy for regulating radioactive waste management activities

    International Nuclear Information System (INIS)

    Hamel, P.E.; Smythe, W.D.; Duncan, R.M.; Coady, J.R.

    1982-07-01

    The goal of the Canadian Atomic Energy Control Board in regulating the management of radioactive wastes is to ensure the protection of people and the environment. A program of cooperation with other agencies, identification and adoption of baselines for describing radioactive wastes, development of explicit criteria and requirements, publication of related regulatory documents, establishment of independent consultative processes with technical experts and the public, and maintenance of awareness and compatibility with international activities is underway. Activities related to high-level radioactive waste, uranium mine and mill tailings, low- and medium-level wastes, radioactive effluents from nuclear facilities, and decommissioning and decontamination are described

  18. Deubiquitylating enzyme USP9x regulates hippo pathway activity by controlling angiomotin protein turnover

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Andrejeva, Diana; Gupta, Rajat

    2016-01-01

    /TAZ activity. We demonstrate that USPx regulates ubiquitin-mediated turnover of the YAP inhibitor, Angiomotin. USP9x acts to deubiquitylate Angiomotin at lysine 496, resulting in stabilization of Angiomotin and lower YAP/TAZ activity. USP9x mRNA levels were reduced in several cancers. Clinically, USP9x m......RNA levels were reduced in several cancers with low USPx expression correlating with poor prognosis in renal clear cell carcinoma. Our data indicate that USP9x may be a useful biomarker for renal clear cell carcinoma....

  19. Active cell-matrix coupling regulates cellular force landscapes of cohesive epithelial monolayers

    Science.gov (United States)

    Zhao, Tiankai; Zhang, Yao; Wei, Qiong; Shi, Xuechen; Zhao, Peng; Chen, Long-Qing; Zhang, Sulin

    2018-03-01

    Epithelial cells can assemble into cohesive monolayers with rich morphologies on substrates due to competition between elastic, edge, and interfacial effects. Here we present a molecularly based thermodynamic model, integrating monolayer and substrate elasticity, and force-mediated focal adhesion formation, to elucidate the active biochemical regulation over the cellular force landscapes in cohesive epithelial monolayers, corroborated by microscopy and immunofluorescence studies. The predicted extracellular traction and intercellular tension are both monolayer size and substrate stiffness dependent, suggestive of cross-talks between intercellular and extracellular activities. Our model sets a firm ground toward a versatile computational framework to uncover the molecular origins of morphogenesis and disease in multicellular epithelia.

  20. Abscisic Acid Regulates Inflammation via Ligand-binding Domain-independent Activation of Peroxisome Proliferator-activated Receptor γ*

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J.; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W.; Horne, William T.; Lewis, Stephanie N.; Bevan, David R.; Hontecillas, Raquel

    2011-01-01

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E2 and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation. PMID:21088297

  1. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J; Lu, Pinyi; Climent, Montse; Carbo, Adria; Sobral, Bruno W; Horne, William T; Lewis, Stephanie N; Bevan, David R; Hontecillas, Raquel

    2011-01-28

    Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E(2) and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation.

  2. Active Erk Regulates Microtubule Stability in H-ras-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Rene E. Harrison

    2001-01-01

    Full Text Available Increasing evidence suggests that activated erk regulates cell functions, at least in part, by mechanisms that do not require gene transcription. Here we show that the map kinase, erk, decorates microtubules (MTs and mitotic spindles in both parental and mutant active rastransfected 10T1 /2 fibroblasts and MCF10A breast epithelial cells. Approximately 20% of total cellular erk decorated MTs in both cell lines. A greater proportion of activated erk was associated with MTs in the presence of mutant active H-ras than in parental cells. Activation of erk by the ras pathway coincided with a decrease in the stability of MT, as detected by a stability marker. The MKK1 inhibitor, PD98059 and transfection of a dominant negative MKK1 blocked ras-induced instability of MTs but did not modify the association of erk with MTs or affect MT stability of the parental cells. These results indicate that the subset of active erk kinase that associates with MTs contributes to their instability in the presence of a mutant active ras. The MT-associated subset of active erk likely contributes to the enhanced invasive and proliferative abilities of cells containing mutant active H-ras.

  3. Dimer formation and transcription activation in the sporulation response regulator Spo0A.

    Science.gov (United States)

    Lewis, Richard J; Scott, David J; Brannigan, James A; Ladds, Joanne C; Cervin, Marguerite A; Spiegelman, George B; Hoggett, James G; Barák, Imrich; Wilkinson, Anthony J

    2002-02-15

    The response regulator Spo0A is the master control element in the initiation of sporulation in Bacillus subtilis. Like many other multi-domain response regulators, the latent activity of the effector, C-terminal domain is stimulated by phosphorylation on a conserved aspartic acid residue in the regulatory, N-terminal domain. If a threshold concentration of phosphorylated Spo0A is achieved, the transcription of genes required for sporulation is activated, whereas the genes encoding stationary phase sentinels are repressed, and sporulation proceeds. Despite detailed genetic, biochemical and structural characterisation, it is not understood how the phosphorylation signal in the receiver domain is transduced into DNA binding and transcription activation in the distal effector domain. An obstacle to our understanding of Spo0A function is the uncertainty concerning changes in quaternary structure that accompany phosphorylation. Here we have revisited this question and shown unequivocally that Spo0A forms dimers upon phosphorylation and that the subunit interactions in the dimer are mediated principally by the receiver domain. Purified dimers of two mutants of Spo0A, in which the phosphorylatable aspartic acid residue has been substituted, activate transcription from the spoIIG promoter in vitro, whereas monomers do not. This suggests that dimers represent the activated form of Spo0A. Copyright 2002 Elsevier Science Ltd.

  4. Ornithine decarboxylase regulates the activity and localization of rhoA via polyamination

    International Nuclear Information System (INIS)

    Maekitie, Laura T.; Kanerva, Kristiina; Andersson, Leif C.

    2009-01-01

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme of polyamine synthesis. Polyamines and ODC are connected to cell proliferation and transformation. Resting cells display a low ODC activity while normal, proliferating cells display fluctuations in ODC activity that coincide with changes in the actin cytoskeleton during the cell cycle. Cancerous cells display constitutively elevated ODC activity. Overexpression of ODC in NIH 3T3 fibroblasts induces a transformed phenotype. The cytoskeletal rearrangements during cytokinesis and cell transformation are intimately coupled to the ODC activity but the molecular mechanisms have remained elusive. In this study we investigated how ODC and polyamines influence the organization of the cytoskeleton. Given that the small G-proteins of the rho family are key modulators of the actin cytoskeleton, we investigated the molecular interactions of rhoA with ODC and polyamines. Our results show that transglutaminase-catalyzed polyamination of rhoA regulates its activity. The polyamination status of rhoA crucially influences the progress of the cell cycle as well as the rate of transformation of rat fibroblasts infected with temperature-sensitive v-src. We also show that ODC influences the intracellular distribution of rhoA. These findings provide novel insights into the mechanisms by which ODC and polyamines regulate the dynamics of the cytoskeleton during cell proliferation and transformation

  5. Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes.

    Science.gov (United States)

    Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T

    2011-01-01

    For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.

  6. Activation of the TOR Signalling Pathway by Glutamine Regulates Insect Fecundity.

    Science.gov (United States)

    Zhai, Yifan; Sun, Zhongxiang; Zhang, Jianqing; Kang, Kui; Chen, Jie; Zhang, Wenqing

    2015-05-29

    The target of rapamycin (TOR) positively controls cell growth in response to nutrients such as amino acids. However, research on the specific nutrients sensed by TOR is limited. Glutamine (Gln), a particularly important amino acid involved in metabolism in organisms, is synthesised and catalysed exclusively by glutamine synthetase (GS), and our previous studies have shown that Gln may regulate fecundity in vivo levels of the brown planthopper (BPH) Nilaparvata lugens. Until now, it has remained unclear whether Gln activates or inhibits the TOR signalling pathway. Here, we performed the combined analyses of iTRAQ (isobaric tags for relative and absolute quantification) and DGE (tag-based digital gene expression) data in N. lugens at the protein and transcript levels after GS RNAi, and we found that 52 pathways overlap, including the TOR pathway. We further experimentally demonstrate that Gln activates the TOR pathway by promoting the serine/threonine protein kinase AKT and inhibiting the 5'AMP-activated protein kinase AMPK phosphorylation activity in the pest. Furthermore, TOR regulates the fecundity of N. lugens probably by mediating vitellogenin (Vg) expression. This work is the first report that Gln activates the TOR pathway in vivo.

  7. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression.

    Science.gov (United States)

    Zaim, Merve; Isik, Sevim

    2018-04-25

    DNA topoisomerase IIβ (topo IIβ) is known to regulate neural differentiation by inducing the neuronal genes responsible for critical neural differentiation events such as neurite outgrowth and axon guidance. However, the pathways of axon growth controlled by topo IIβ have not been clarified yet. Microarray results of our previous study have shown that topo IIβ silencing in neural differentiated primary human mesenchymal stem cells (hMSCs) significantly alters the expression pattern of genes involved in neural polarity, axonal growth, and guidance, including Rho-GTPases. This study aims to further analyze the regulatory role of topo IIβ on the process of axon growth via regulation of Rho-GTPases. For this purpose, topo IIβ was silenced in neurally differentiated hMSCs. Cells lost their morphology because of topo IIβ deficiency, becoming enlarged and flattened. Additionally, a reduction in both neural differentiation efficiency and neurite length, upregulation in RhoA and Rock2, downregulation in Cdc42 gene expression were detected. On the other hand, cells were transfected with topo IIβ gene to elucidate the possible neuroprotective effect of topo IIβ overexpression on neural-induced hMSCs. Topo IIβ overexpression prompted all the cells to exhibit neural cell morphology as characterized by longer neurites. RhoA and Rock2 expressions were downregulated, whereas Cdc42 expression was upregulated. Nurr1 expression level correlated with topo IIβ in both topo IIβ-overexpressed and -silenced cells. Furthermore, differential translocation of Rho-GTPases was detected by immunostaining in response to topo IIβ. Our results suggest that topo IIβ deficiency could give rise to neurodegeneration through dysregulation of Rho-GTPases. However, further in-vivo research is needed to demonstrate if re-regulation of Rho GTPases by topo IIβ overexpression could be a neuroprotective treatment in the case of neurodegenerative diseases.

  8. Lens ion transport: from basic concepts to regulation of Na,K-ATPase activity

    Science.gov (United States)

    Delamere, Nicholas A.; Tamiya, Shigeo

    2009-01-01

    In the late 1960s, studies by George Duncan explained many of the basic principles that underlie lens ion homeostasis. The experiments pointed to a permeability barrier close to the surface of the lens and illustrated the requirement for continuous Na,K-ATPase-mediated active sodium extrusion. Without active sodium extrusion, lens sodium and calcium content increases resulting in lens swelling and deterioration of transparency. Later, Duncan's laboratory discovered functional muscarinic and purinergic receptors at the surface of the lens. Recent studies using intact lens suggest purinergic receptors might be involved in short-term regulation of Na,K-ATPase in the epithelium. Purinergic receptor agonists ATP and UTP selectively activate certain Src family tyrosine kinases and stimulate Na,K-ATPase activity. This might represent part of a control mechanism capable of adjusting, perhaps fine tuning, lens ion transport machinery. PMID:18614168

  9. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Directory of Open Access Journals (Sweden)

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  10. Sigma E regulators control hemolytic activity and virulence in a shrimp pathogenic Vibrio harveyi.

    Directory of Open Access Journals (Sweden)

    Pimonsri Rattanama

    Full Text Available Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, V. harveyi and V. vulnificus. We have used transposon mutagenesis to identify genes involved in the hemolytic activity of shrimp-pathogenic V. harveyi strain PSU3316. Out of 1,764 mutants screened, five mutants showed reduced hemolytic activity on sheep blood agar and exhibited virulence attenuation in shrimp (Litopenaeus vannamei. Mutants were identified by comparing transposon junction sequences to a draft of assembly of the PSU3316 genome. Surprisingly none of the disrupted open reading frames or gene neighborhoods contained genes annotated as hemolysins. The gene encoding RseB, a negative regulator of the sigma factor (σ(E, was interrupted in 2 out of 5 transposon mutants, in addition, the transcription factor CytR, a threonine synthetase, and an efflux-associated cytoplasmic protein were also identified. Knockout mutations introduced into the rpoE operon at the rseB gene exhibited low hemolytic activity in sheep blood agar, and were 3-to 7-fold attenuated for colonization in shrimp. Comparison of whole cell extracted proteins in the rseB mutant (PSU4030 to the wild-type by 2-D gel electrophoresis revealed 6 differentially expressed proteins, including two down-regulated porins (OmpC-like and OmpN and an upregulated protease (DegQ which have been associated with σ(E in other organisms. Our study is the first report linking hemolytic activity to the σ(E regulators in pathogenic Vibrio species and suggests expression of this virulence-linked phenotype is governed by multiple regulatory pathways within the V. harveyi.

  11. PTSD Psychotherapy Outcome Predicted by Brain Activation During Emotional Reactivity and Regulation.

    Science.gov (United States)

    Fonzo, Gregory A; Goodkind, Madeleine S; Oathes, Desmond J; Zaiko, Yevgeniya V; Harvey, Meredith; Peng, Kathy K; Weiss, M Elizabeth; Thompson, Allison L; Zack, Sanno E; Lindley, Steven E; Arnow, Bruce A; Jo, Booil; Gross, James J; Rothbaum, Barbara O; Etkin, Amit

    2017-12-01

    Exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD), but many patients do not respond. Brain functions governing treatment outcome are not well characterized. The authors examined brain systems relevant to emotional reactivity and regulation, constructs that are thought to be central to PTSD and exposure therapy effects, to identify the functional traits of individuals most likely to benefit from treatment. Individuals with PTSD underwent functional MRI (fMRI) while completing three tasks assessing emotional reactivity and regulation. Participants were then randomly assigned to immediate prolonged exposure treatment (N=36) or a waiting list condition (N=30). A random subset of the prolonged exposure group (N=17) underwent single-pulse transcranial magnetic stimulation (TMS) concurrent with fMRI to examine whether predictive activation patterns reflect causal influence within circuits. Linear mixed-effects modeling in line with the intent-to-treat principle was used to examine how baseline brain function moderated the effect of treatment on PTSD symptoms. At baseline, individuals with larger treatment-related symptom reductions (compared with the waiting list condition) demonstrated 1) greater dorsal prefrontal activation and 2) less left amygdala activation, both during emotion reactivity; 3) better inhibition of the left amygdala induced by single TMS pulses to the right dorsolateral prefrontal cortex; and 4) greater ventromedial prefrontal/ventral striatal activation during emotional conflict regulation. Reappraisal-related activation was not a significant moderator of the treatment effect. Capacity to benefit from prolonged exposure in PTSD is gated by the degree to which prefrontal resources are spontaneously engaged when superficially processing threat and adaptively mitigating emotional interference, but not when deliberately reducing negative emotionality.

  12. Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity?

    Science.gov (United States)

    Wang, Liwei; Alzayady, Kamil J; Yule, David I

    2016-06-01

    Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are a family of ubiquitously expressed intracellular Ca(2+) release channels. Regulation of channel activity by Ca(2+) , nucleotides, phosphorylation, protein binding partners and other cellular factors is thought to play a major role in defining the specific spatiotemporal characteristics of intracellular Ca(2+) signals. These properties are, in turn, believed pivotal for the selective and specific physiological activation of Ca(2+) -dependent effectors. IP3 Rs are also substrates for the intracellular cysteine proteases, calpain and caspase. Cleavage of the IP3 R has been proposed to play a role in apoptotic cell death by uncoupling regions important for IP3 binding from the channel domain, leaving an unregulated leaky Ca(2+) pore. Contrary to this hypothesis, we demonstrate following proteolysis that N- and C-termini of IP3 R1 remain associated, presumably through non-covalent interactions. Further, we show that complementary fragments of IP3 R1 assemble into tetrameric structures and retain their ability to be regulated robustly by IP3 . While peptide continuity is clearly not necessary for IP3 -gating of the channel, we propose that cleavage of the IP3 R peptide chain may alter other important regulatory events to modulate channel activity. In this scenario, stimulation of the cleaved IP3 R may support distinct spatiotemporal Ca(2+) signals and activation of specific effectors. Notably, in many adaptive physiological events, the non-apoptotic activities of caspase and calpain are demonstrated to be important, but the substrates of the proteases are poorly defined. We speculate that proteolytic fragmentation may represent a novel form of IP3 R regulation, which plays a role in varied adaptive physiological processes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  13. CNS β3-adrenergic receptor activation regulates feeding behavior, white fat browning, and body weight.

    Science.gov (United States)

    Richard, Jennifer E; López-Ferreras, Lorena; Chanclón, Belén; Eerola, Kim; Micallef, Peter; Skibicka, Karolina P; Wernstedt Asterholm, Ingrid

    2017-09-01

    Pharmacological β 3 -adrenergic receptor (β 3 AR) activation leads to increased mitochondrial biogenesis and activity in white adipose tissue (WAT), a process commonly referred to as "browning", and transiently increased insulin release. These effects are associated with improved metabolic function and weight loss. It is assumed that this impact of β 3 AR agonists is mediated solely through activation of β 3 ARs in adipose tissue. However, β 3 ARs are also found in the brain, in areas such as the brain stem and the hypothalamus, which provide multisynaptic innervation to brown and white adipose depots. Thus, contrary to the current adipocentric view, the central nervous system (CNS) may also have the ability to regulate energy balance and metabolism through actions on central β 3 ARs. Therefore, this study aimed to elucidate whether CNS β 3 ARs can regulate browning of WAT and other aspects of metabolic regulation, such as food intake control and insulin release. We found that acute central injection of β 3 AR agonist potently reduced food intake, body weight, and increased hypothalamic neuronal activity in rats. Acute central β 3 AR stimulation was also accompanied by a transient increase in circulating insulin levels. Moreover, subchronic central β 3 AR agonist treatment led to a browning response in both inguinal (IWAT) and gonadal WAT (GWAT), along with reduced GWAT and increased BAT mass. In high-fat, high-sugar-fed rats, subchronic central β 3 AR stimulation reduced body weight, chow, lard, and sucrose water intake, in addition to increasing browning of IWAT and GWAT. Collectively, our results identify the brain as a new site of action for the anorexic and browning impact of β 3 AR activation. Copyright © 2017 the American Physiological Society.

  14. Skin barrier homeostasis in atopic dermatitis: feedback regulation of kallikrein activity.

    Directory of Open Access Journals (Sweden)

    Reiko J Tanaka

    Full Text Available Atopic dermatitis (AD is a widely spread cutaneous chronic disease characterised by sensitive reactions (eg. eczema to normally innocuous elements. Although relatively little is understood about its underlying mechanisms due to its complexity, skin barrier dysfunction has been recognised as a key factor in the development of AD. Skin barrier homeostasis requires tight control of the activity of proteases, called kallikreins (KLKs, whose activity is regulated by a complex network of protein interactions that remains poorly understood despite its pathological importance. Characteristic symptoms of AD include the outbreak of inflammation triggered by external (eg. mechanical and chemical stimulus and the persistence and aggravation of inflammation even if the initial stimulus disappears. These characteristic symptoms, together with some experimental data, suggest the presence of positive feedback regulation for KLK activity by inflammatory signals. We developed simple mathematical models for the KLK activation system to study the effects of feedback loops and carried out bifurcation analysis to investigate the model behaviours corresponding to inflammation caused by external stimulus. The model analysis confirmed that the hypothesised core model mechanisms capture the essence of inflammation outbreak by a defective skin barrier. Our models predicted the outbreaks of inflammation at weaker stimulus and its longer persistence in AD patients compared to healthy control. We also proposed a novel quantitative indicator for inflammation level by applying principal component analysis to microarray data. The model analysis reproduced qualitative AD characteristics revealed by this indicator. Our results strongly implicate the presence and importance of feedback mechanisms in KLK activity regulation. We further proposed future experiments that may provide informative data to enhance the system-level understanding on the regulatory mechanisms of skin barrier

  15. Regulation of Energy Stores and Feeding by Neuronal and Peripheral CREB Activity in Drosophila

    Science.gov (United States)

    Iijima, Koichi; Zhao, LiJuan; Shenton, Christopher; Iijima-Ando, Kanae

    2009-01-01

    The cAMP-responsive transcription factor CREB functions in adipose tissue and liver to regulate glycogen and lipid metabolism in mammals. While Drosophila has a homolog of mammalian CREB, dCREB2, its role in energy metabolism is not fully understood. Using tissue-specific expression of a dominant-negative form of CREB (DN-CREB), we have examined the effect of blocking CREB activity in neurons and in the fat body, the primary energy storage depot with functions of adipose tissue and the liver in flies, on energy balance, stress resistance and feeding behavior. We found that disruption of CREB function in neurons reduced glycogen and lipid stores and increased sensitivity to starvation. Expression of DN-CREB in the fat body also reduced glycogen levels, while it did not affect starvation sensitivity, presumably due to increased lipid levels in these flies. Interestingly, blocking CREB activity in the fat body increased food intake. These flies did not show a significant change in overall body size, suggesting that disruption of CREB activity in the fat body caused an obese-like phenotype. Using a transgenic CRE-luciferase reporter, we further demonstrated that disruption of the adipokinetic hormone receptor, which is functionally related to mammalian glucagon and β-adrenergic signaling, in the fat body reduced CRE-mediated transcription in flies. This study demonstrates that CREB activity in either neuronal or peripheral tissues regulates energy balance in Drosophila, and that the key signaling pathway regulating CREB activity in peripheral tissue is evolutionarily conserved. PMID:20041126

  16. O-GlcNAc transferase regulates transcriptional activity of human Oct4.

    Science.gov (United States)

    Constable, Sandii; Lim, Jae-Min; Vaidyanathan, Krithika; Wells, Lance

    2017-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar modification found on many different classes of nuclear and cytoplasmic proteins. Addition of this modification, by the enzyme O-linked N-acetylglucosamine transferase (OGT), is dynamic and inducible. One major class of proteins modified by O-GlcNAc is transcription factors. O-GlcNAc regulates transcription factor properties through a variety of different mechanisms including localization, stability and transcriptional activation. Maintenance of embryonic stem (ES) cell pluripotency requires tight regulation of several key transcription factors, many of which are modified by O-GlcNAc. Octamer-binding protein 4 (Oct4) is one of the key transcription factors required for pluripotency of ES cells and more recently, the generation of induced pluripotent stem (iPS) cells. The action of Oct4 is modulated by the addition of several post-translational modifications, including O-GlcNAc. Previous studies in mice found a single site of O-GlcNAc addition responsible for transcriptional regulation. This study was designed to determine if this mechanism is conserved in humans. We mapped 10 novel sites of O-GlcNAc attachment on human Oct4, and confirmed a role for OGT in transcriptional activation of Oct4 at a site distinct from that found in mouse that allows distinction between different Oct4 target promoters. Additionally, we uncovered a potential new role for OGT that does not include its catalytic function. These results confirm that human Oct4 activity is being regulated by OGT by a mechanism that is distinct from mouse Oct4. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. CSK negatively regulates nerve growth factor induced neural differentiation and augments AKT kinase activity

    International Nuclear Information System (INIS)

    Dey, Nandini; Howell, Brian W.; De, Pradip K.; Durden, Donald L.

    2005-01-01

    Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation

  18. Aspects on Media Self Regulation Reflected in the Activity of Romanian Journalists

    Directory of Open Access Journals (Sweden)

    Daniela Aurelia Popa

    2011-05-01

    Full Text Available The media organizations in Romania, reticent to the idea to constraint the press freedom, manage to understand the importance of implementing a system of media responsibility. Therefore, the present study is a research in incipient stage that begins with the identification of the initiatives of media self regulation as an alternative to the efforts of enacting press in Romania. The identification of the self regulating system in Romania will be accomplished through the description of the context of development of the media responsibility system in the Romanian journalistic culture and by underlining the self regulation initiatives. For the delineation and establishment of such important self regulation initiatives, the activity of an ethical instance is necessary, for the defense and solving cases of norms contained by the new deontological code. The establishment of such an instance in Romania will represent a viable solution for the development of a more ethical professional environment that confirms the assumption of media responsibility for the adhesion to quality journalistic standards.

  19. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis.

    Science.gov (United States)

    Seo, Pil Joon; Mas, Paloma

    2014-01-01

    The circadian clock is a cellular time-keeper mechanism that regulates biological rhythms with a period of ~24 h. The circadian rhythms in metabolism, physiology, and development are synchronized by environmental cues such as light and temperature. In plants, proper matching of the internal circadian time with the external environment confers fitness advantages on plant survival and propagation. Accordingly, plants have evolved elaborated regulatory mechanisms that precisely control the circadian oscillations. Transcriptional feedback regulation of several clock components has been well characterized over the past years. However, the importance of additional regulatory mechanisms such as chromatin remodeling, protein complexes, protein phosphorylation, and stability is only starting to emerge. The multiple layers of circadian regulation enable plants to properly synchronize with the environmental cycles and to fine-tune the circadian oscillations. This review focuses on the diverse posttranslational events that regulate circadian clock function. We discuss the mechanistic insights explaining how plants articulate a high degree of complexity in their regulatory networks to maintain circadian homeostasis and to generate highly precise waveforms of circadian expression and activity.

  20. Commission de regulation de l'electricite. Activity Report 30 June 2000

    International Nuclear Information System (INIS)

    2000-01-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity market for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity sector, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the June 2000 activity report of CRE. Content: A - Opening of the European electricity market: transposition into French law of the European Directive, access to the European power transportation network, obstacles to market deregulation, segmentation of the European market, deregulation impact on electricity market: the German example, state of the French market openness; B - The first regulation projects: network access, account un-bundling, production opening to competition modalities, studies relative to the creation of an electricity stock-exchange in France; C - The Commission: means, operation. D - Appendixes: Glossary; Units; Council of European Energy Regulators

  1. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    Science.gov (United States)

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Mayi, Therese Hervee; Rigamonti, Elena [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Pattou, Francois [Univ Lille Nord de France, F-59000 Lille (France); Department of Endocrine Surgery, University Hospital, Lille (France); U859 Biotherapies for Diabetes, INSERM, Lille (France); Staels, Bart, E-mail: bart.staels@pasteur-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Chinetti-Gbaguidi, Giulia [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France)

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  3. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development

    Science.gov (United States)

    Pfaff, Miles J.; Xue, Ke; Li, Li; Horowitz, Mark C.; Steinbacher, Derek M.; Eswarakumar, Jacob V.P.

    2017-01-01

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor’s gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231

  4. Zyxin regulates migration of renal epithelial cells through activation of hepatocyte nuclear factor-1β.

    Science.gov (United States)

    Choi, Yun-Hee; McNally, Brian T; Igarashi, Peter

    2013-07-01

    Hepatocyte nuclear factor-1β (HNF-1β) is an epithelial tissue-specific transcription factor that regulates gene expression in the kidney, liver, pancreas, intestine, and other organs. Mutations of HNF-1β in humans produce renal cysts and congenital kidney anomalies. Here, we identify the LIM-domain protein zyxin as a novel binding partner of HNF-1β in renal epithelial cells. Zyxin shuttles to the nucleus where it colocalizes with HNF-1β. Immunoprecipitation of zyxin in leptomycin B-treated cells results in coprecipitation of HNF-1β. The protein interaction requires the second LIM domain of zyxin and two distinct domains of HNF-1β. Overexpression of zyxin stimulates the transcriptional activity of HNF-1β, whereas small interfering RNA silencing of zyxin inhibits HNF-1β-dependent transcription. Epidermal growth factor (EGF) induces translocation of zyxin into the nucleus and stimulates HNF-1β-dependent promoter activity. The EGF-mediated nuclear translocation of zyxin requires activation of Akt. Expression of dominant-negative mutant HNF-1β, knockdown of zyxin, or inhibition of Akt inhibits EGF-stimulated cell migration. These findings reveal a novel pathway by which extracellular signals are transmitted to the nucleus to regulate the activity of a transcription factor that is essential for renal epithelial differentiation.

  5. Regulation of ex vivo tyrosine hydroxylase (TH) activity is not altered by chronic lead (Pb) exposure

    International Nuclear Information System (INIS)

    Lasley, S.M.; Green, M.C.

    1991-01-01

    Previous studies have suggested that chronic Pb exposure results in impaired regulation of CNS dopamine (DA) synthesis in rats. The present study was designed to directly assess TH activity in exposed animals compared to controls, employing a pharmacological model that assesses the functional status of dopaminergic synthesis-modulating autoreceptors. At birth dams received 0.2% Pb acetate in drinking water. Offspring were weaned to and maintained on the same solution until termination at 60 or 120 days. Rats were given saline or a DA agonist (EMD 23448 or CGS 15855A) 45 min before sacrifice followed 15 min later by gamma-butyrolactone (GBL). Regional TH activity was measured by a modification of the tritium release method. DA content was determined by liquid chromatography. The ability of EMD 23448 to prevent the GBL-induced increase in DA content was significantly diminished in caudate-putamen (C-P) of exposed rats compared to controls, similar to previous observations. However, an analogous effect of Pb on TH activity in this drug model was not observed using CGS 15855A in rats either 60 or 120 days of age. These findings suggest that chronic Pb exposure has no effect on autoreceptor-mediated regulation of TH in DA neurons when TH activity is measured ex vivo

  6. ERalpha and ERbeta expression and transcriptional activity are differentially regulated by HDAC inhibitors

    Science.gov (United States)

    Duong, Vanessa; Licznar, Anne; Margueron, Raphaël; Boulle, Nathalie; Busson, Muriel; Lacroix, Matthieu; Katzenellenbogen, Benita S.; Cavaillès, Vincent; Lazennec, Gwendal

    2006-01-01

    The proliferative action of ERα largely accounts for the carcinogenic activity of estrogens. By contrast, recent data show that ERβ displays tumor-suppressor properties, thus supporting the interest to identify compounds which could increase its activity. Here, we show that histone deacetylase inhibitors (HDI) up-regulated ERβ protein levels, whereas it decreased ERα expression. Part of this regulation took place at the mRNA level through a mechanism independent of de novo protein synthesis. In addition, we found that, in various cancer cells, the treatment with different HDI enhanced the ligand-dependent activity of ERβ more strongly than that of ERα. On the other hand, in MDA-MB231 and HeLa cells, the expression of ERs modified the transcriptional response to HDI. The use of deletion mutants of both receptors demonstrated that AF1 domain of the receptors was required. Finally, we show that ERβ expression led to a dramatic increased in the antiproliferative activity of HDI, which correlated with a modification of the transcription of genes involved in cell cycle control by HDI. Altogether, these data demonstrate that the interference of ERβ and HDAC on the control of transcription and cell proliferation constitute a promising approach for cancer therapy. PMID:16158045

  7. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

    Science.gov (United States)

    Matamales, Miriam

    2012-12-19

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  8. Assessment of brain activation regulation in first graders via RAN / RAS test

    Directory of Open Access Journals (Sweden)

    Tatiana V. Akhutina

    2015-03-01

    Full Text Available RAN / RAS test (Rapid Automatized Naming / Rapid Alternating Stimulus has been used successfully used by many psychologists, primarily to predict the risk of dyslexia, as it includes a language component and requires good visual-verbal connections. However, The research demonstrates that the low speed of naming is an effective indicator of neurocognitive problems of information processing as a whole (learning difficulties in general, not just reading difficulties. This can be explained in two ways: disturbance of executive mental control and the difficulties of automatization: the difficulties of the transition from a controlled energy-consuming assignment to a less energy-consuming one. The second interpretation describes the problems of energy resources of cognitive functioning. It is similar to weak maintenance of cortical structures activation. However, using the test mentioned herewith for assessing functions of activation regulation has not been described previously. In terms of the Luria’s three functional units of the brain theory the RAN / RAS test can be considered as sensitive to the weakness of the first unit, whose function is to maintain the activity of cortical structures. So the aim of the research is to prove the possibility of assessing the activation regulation using the RAN / RAS test. This issue is relevant because neuropsychological tools for determining the weakness of Unit I functions are not quite sufficient, while the problem of “energetic” unit ranks first in the frequency of occurrence in children with learning disabilities.

  9. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy

    Science.gov (United States)

    Fry, Christopher S.; Lee, Jonah D.; Jackson, Janna R.; Kirby, Tyler J.; Stasko, Shawn A.; Liu, Honglu; Dupont-Versteegden, Esther E.; McCarthy, John J.; Peterson, Charlotte A.

    2014-01-01

    Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.—Fry, C. S., Lee, J. D., Jackson, J. R., Kirby, T. J., Stasko, S. A., Liu, H., Dupont-Versteegden, E. E., McCarthy, J. J., Peterson, C. A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. PMID:24376025

  10. TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities

    Directory of Open Access Journals (Sweden)

    Sara Montagner

    2016-05-01

    Full Text Available Summary: Dioxygenases of the TET family impact genome functions by converting 5-methylcytosine (5mC in DNA to 5-hydroxymethylcytosine (5hmC. Here, we identified TET2 as a crucial regulator of mast cell differentiation and proliferation. In the absence of TET2, mast cells showed disrupted gene expression and altered genome-wide 5hmC deposition, especially at enhancers and in the proximity of downregulated genes. Impaired differentiation of Tet2-ablated cells could be relieved or further exacerbated by modulating the activity of other TET family members, and mechanistically it could be linked to the dysregulated expression of C/EBP family transcription factors. Conversely, the marked increase in proliferation induced by the loss of TET2 could be rescued exclusively by re-expression of wild-type or catalytically inactive TET2. Our data indicate that, in the absence of TET2, mast cell differentiation is under the control of compensatory mechanisms mediated by other TET family members, while proliferation is strictly dependent on TET2 expression. : The impact of TET enzymes on gene expression and cell function is incompletely understood. Montagner et al. investigate the TET-mediated regulation of mast cell differentiation and function, uncover transcriptional pathways regulated by TET2, and identify both enzymatic activity-dependent and -independent functions of TET2. Keywords: differentiation, DNA hydroxymethylation, epigenetics, mast cells, proliferation, TET

  11. Protein Kinases C-Mediated Regulations of Drug Transporter Activity, Localization and Expression

    Directory of Open Access Journals (Sweden)

    Abdullah Mayati

    2017-04-01

    Full Text Available Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug–drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs in transporter regulations are summarized and discussed. Both solute carrier (SLC and ATP-binding cassette (ABC drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.

  12. Systematic Analysis of the Functions of Lysine Acetylation in the Regulation of Tat Activity.

    Directory of Open Access Journals (Sweden)

    Minghao He

    Full Text Available The Tat protein of HIV-1 has several well-known properties, such as nucleocytoplasmic trafficking, transactivation of transcription, interaction with tubulin, regulation of mitotic progression, and induction of apoptosis. Previous studies have identified a couple of lysine residues in Tat that are essential for its functions. In order to analyze the functions of all the lysine residues in Tat, we mutated them individually to alanine, glutamine, and arginine. Through systematic analysis of the lysine mutants, we discovered several previously unidentified characteristics of Tat. We found that lysine acetylation could modulate the subcellular localization of Tat, in addition to the regulation of its transactivation activity. Our data also revealed that lysine mutations had distinct effects on microtubule assembly and Tat binding to bromodomain proteins. By correlation analysis, we further found that the effects of Tat on apoptosis and mitotic progression were not entirely attributed to its effect on microtubule assembly. Our findings suggest that Tat may regulate diverse cellular activities through binding to different proteins and that the acetylation of distinct lysine residues in Tat may modulate its interaction with various partners.

  13. The regulation of visitors conduction activity in the State System os Brazilian Conservation Units

    Directory of Open Access Journals (Sweden)

    Cristina Alves Nascimento

    2016-08-01

    Full Text Available Beyond to conserving biodiversity, conservation units must promote public use in contact with nature, assisting in increasing the economic resource of the area, approximating the society to nature and promoting their sustainable use. In Brazil, there are rules of the Ministry of Environment and Chico Mendes Institute for Biodiversity Conservation that regulate the conduction of visitors in federal conservation units. Remains to know how the activity is regulated in other spheres of the National Conservation Units System. Therefore, this article purpose to identify the legal basis for the conduction of visitors in the state conservation units and their adherence to guidelines of the Ministry of Environment. The methodology consisted in documentary research and data survey of the legal basis, done through visits to websites and sending e-mails to state management agencies. Adherence to the guidelines of the regulations was done through the evaluation to fulfillment or not from them. Legal basis were found in 18.5% of federal units of Brazil, being that only Espírito Santo and Rio de Janeiro meet almost all of the guideline. The conclusion was that there is a long way to go forward as the creation of rules and procedures that simultaneously encourage visitation accompanied to qualified conductors and biodiversity conservation. It is recommended greater efforts of state management agencies for the development of these legal basis, promoting improvements in desenvolviment of the activity and awareness of society.

  14. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    Science.gov (United States)

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an

  15. Regulation of phase I and phase II steroid metabolism enzymes by PPARα activators

    International Nuclear Information System (INIS)

    Fan Liqun; You Li; Brown-Borg, Holly; Brown, Sherri; Edwards, Robert J.; Corton, J. Christopher

    2004-01-01

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the peroxisome proliferator-activated receptor α (PPARα). Exposure to some PP results in alterations of steroid levels that may be mechanistically linked to adverse effects in reproductive organs. We hypothesized that changes in steroid levels after PP exposure are due to alterations in the levels of P450 enzymes that hydroxylate testosterone and estrogen. In testosterone hydroxylase assays, exposure to the PP, WY-14,643 (WY), gemfibrozil or di-n-butyl phthalate (DBP) led to compound-specific increases in 6β and 16β-testosterone and androstenedione hydroxylase activities and decreases in 16α, 2α-hydroxylase activities by all three PP. The decreases in 16α and 2α-testosterone hydroxylase activity can be attributed to a 2α and 16α- testosterone hydroxylase, CYP2C11, which we previously showed was dramatically down-regulated in these same tissues (Corton et al., 1998; Mol. Pharmacol. 54, 463-473). To explain the increases in 6β- and 16β-testosterone hydroxylase activities, we examined the expression of P450 family members known to carry out these functions. Alterations in the 6β-testosterone hydroxylases CYP3A1, CYP3A2 and the 16β-testosterone hydroxylase, CYP2B1 were observed after exposure to some PP. The male-specific estrogen sulfotransferase was down-regulated in rat liver after exposure to all PP. The mouse 6β-testosterone hydroxylase, Cyp3a11 was down-regulated by WY in wild-type but not PPARα-null mice. In contrast, DEHP increased Cyp3a11 in both wild-type and PPARα-null mice. These studies demonstrate that PP alter the expression and activity of a number of enzymes which regulate levels of sex steroids. The changes in these enzymes may help explain why exposure to some PP leads to adverse effects in endocrine tissues that produce or are the targets of sex hormones

  16. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury.

    Science.gov (United States)

    McDaniel, Kelly; Huang, Li; Sato, Keisaku; Wu, Nan; Annable, Tami; Zhou, Tianhao; Ramos-Lorenzo, Sugeily; Wan, Ying; Huang, Qiaobing; Francis, Heather; Glaser, Shannon; Tsukamoto, Hidekazu; Alpini, Gianfranco; Meng, Fanyin

    2017-07-07

    The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-β (TGF-β) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-β, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Activated Fps/Fes tyrosine kinase regulates erythroid differentiation and survival.

    Science.gov (United States)

    Sangrar, Waheed; Gao, Yan; Bates, Barbara; Zirngibl, Ralph; Greer, Peter A

    2004-10-01

    A substantial body of evidence implicates the cytoplasmic protein tyrosine kinase Fps/Fes in regulation of myeloid differentiation and survival. In this study we wished to determine if Fps/Fes also plays a role in the regulation of erythropoiesis. Mice tissue-specifically expressing a "gain-of-function" mutant fps/fes transgene (fps(MF)) encoding an activated variant of Fps/Fes (MFps), were used to explore the in vivo biological role of Fps/Fes. Erythropoiesis in these mice was assessed by hematological analysis, lineage marker analysis, bone-marrow colony assays, and biochemical approaches. fps(MF) mice displayed reductions in peripheral red cell counts. However, there was an accumulation of immature erythroid precursors, which displayed increased survival. Fps/Fes and the related Fer kinase were both detected in early erythroid progenitors/blasts and in mature red cells. Fps/Fes was also activated in response to erythropoietin (EPO) and stem cell factor (SCF), two critical factors in erythroid development. In addition, increased Stat5A/B activation and reduced Erk1/2 phosphorylation was observed in fps(MF) primary erythroid cells in response to EPO or SCF, respectively. These data support a role for Fps/Fes in regulating the survival and differentiation of erythroid cells through modulation of Stat5A/B and Erk kinase pathways induced by EPO and SCF. The increased numbers and survival of erythroid progenitors from fps(MF) mice, and their differential responsiveness to SCF and EPO, implicates Fps/Fes in the commitment of multilineage progenitors to the erythroid lineage. The anemic phenotype in fps(MF) mice suggests that downregulation of Fps/Fes activity might be required for terminal erythroid differentiation.

  18. Commission de regulation de l'energie. Activity report june 2006

    International Nuclear Information System (INIS)

    2006-06-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2006 activity report of CRE. Content: A - Opening of the electricity and natural gas markets to household consumers on 1 July 2007: CRE at the service of eligible customers (Information for eligible customers, Improved knowledge of non-household customers); Monitoring of the non-discrimination, transparency and independence of system operators (Drafting and distribution of codes of good conduct for system operators, The necessary improvement of system operator independence); Preparing the practical methods of opening: GTE 2007 and GTG 2007 (The necessary simplification of relations between operators and customers, Achieving a greater level of consumer information and protection, The clearly defined stages of the 'customer pathway', Profiling and settlement mechanisms: turning experience feedback from 2004 to good account); Persisting uncertainties and hurdles (The need for a suitable regulatory and legislative platform, Hurdles to the opening of the household market); B - Regulation of the natural gas market: The gas market in the European context (Increasing weight of

  19. Effect of Phosphodiesterase in Regulating the Activity of Lysosomes in the HeLa Cell Line.

    Science.gov (United States)

    Hong, Eun-Seon; Kim, Bit-Na; Kim, Yang-Hoon; Min, Jiho

    2017-02-28

    The transport of lysosomal enzymes into the lysosomes depends on the phosphorylation of their chains and the binding of the phosphorylated residues to mannose-6-phosphate receptors. The efficiency of separation depends more on the phosphodiesterases (PDEs) than on the activity of the phosphorylation of mannose residues and can be determined in vitro. PDEs play important roles in regulation of the activation of lysosomes. The expression of proteins was confirmed by western blotting. All PDE4 series protein expression was reduced in high concentrations of rolipram. As a result of observing the fluorescence intensity after rolipram treatment, the lysosomal enzyme was activated at low concentrations and suppressed at high concentrations. High concentrations of rolipram recovered the original function. Antimicrobial activity was not shown in either 10 or 100 µ concentrations of rolipram in treated HeLa cells in vitro. However, the higher anticancer activity at lower rolipram concentration was shown in lysosomal enzyme treated with 10 µ of rolipram. The anticancer activity was confirmed through cathepsin B and D assay. Tranfection allowed examination of the relationship between PDE4 and lysosomal activity in more detail. Protein expression was confirmed to be reduced. Fluorescence intensity showed decreased activity of lysosomes and ROS in cells transfected with the antisense sequences of PDE4 A, B, C, and D. PDE4A showed anticancer activity, whereas lysosome from cells transfected with the antisense sequences of PDE4 B, C, and D had decreased anticancer activity. These results showed the PDE4 A, B, C, and D are conjunctly related with lysosomal activity.

  20. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    International Nuclear Information System (INIS)

    Heizmann, Beate; Sellars, MacLean; Macias-Garcia, Alejandra; Chan, Susan; Kastner, Philippe

    2016-01-01

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  1. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-01-01

    Full Text Available Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF signaling pathway in early embryoid bodies (EBs. Gcn5−/− EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.

  2. Diacylglycerol Kinases: Regulated Controllers of T Cell Activation, Function, and Development

    Directory of Open Access Journals (Sweden)

    Gary A. Koretzky

    2013-03-01

    Full Text Available Diacylglycerol kinases (DGKs are a diverse family of enzymes that catalyze the conversion of diacylglycerol (DAG, a crucial second messenger of receptor-mediated signaling, to phosphatidic acid (PA. Both DAG and PA are bioactive molecules that regulate a wide set of intracellular signaling proteins involved in innate and adaptive immunity. Clear evidence points to a critical role for DGKs in modulating T cell activation, function, and development. More recently, studies have elucidated factors that control DGK function, suggesting an added complexity to how DGKs act during signaling. This review summarizes the available knowledge of the function and regulation of DGK isoforms in signal transduction with a particular focus on T lymphocytes.

  3. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heizmann, Beate [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Sellars, MacLean [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Macias-Garcia, Alejandra [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Institute for Medical Engineering and Science at MIT, Cambridge, MA 02139 (United States); Chan, Susan, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Kastner, Philippe, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Faculté de Médecine, Université de Strasbourg, Strasbourg (France)

    2016-02-12

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  4. Plasminogen activator inhibitor 1: Mechanisms of its synergistic regulation by growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaoling [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    My research is on the synergistic regulation of PAI-1 by EGF and TGF-β. The mechanism of synergistic regulation of PAI-1 by EGF and TGF-β are addressed. Methods are described for effective identification of RNA accessible sites for antisense oligodexoxynucleotides (ODNs) and siRNA. In this study effective AS-ODN sequences for both Lcn2 and Bcl2 were identified by in vitro tiled microarray studies. Our results suggest that hybridization of ODN arrays to a target mRNA under physiological conditions might be used as a rapid and reliable in vitro method to accurately identify targets on mRNA molecules for effective antisense and potential siRNA activity in vivo.

  5. The regulation of transactivator of transcription on the activity of DNA-PKcs promoter

    International Nuclear Information System (INIS)

    Yang Tianyi; Zhang Shimeng; Qin Xia; Li Bing; Liu Xiaodan; Zhou Pingkun

    2012-01-01

    Objective: To explore the influence of human immunodeficiency virus transactivator of transcription (TAT) on the promoter activity of DNA dependent protein kinase catalytic subunit (DNA-PKcs). Methods: The truncated promoters of DNA-PKcs were cloned by PCR from the template DNA from HeLa genomic DNA, and the pGL3-basic-DNA-PKcs promoter reporter plasmids were constructed. The activity of DNA-PKcs promoters was detected by dual-luciferase reporter assay system. A Lac-repressor and Lacoperator based green fluorescent protein imaging system was used to assay the chromatin remodeling activity. Results: A series of reporter plasmids harboring the truncated promoters of DNA-PKcs from -939 bp to -1 bp were constructed. The sequence of -64 bp to-1 bp was identified as a critical element for the activity of DNA-PKes promoter. TAT can suppress the activity of DNA-PKcs promoter. TAT participates in the regulation of the large scale chromatin relaxation. Ionizing radiation attenuates the activity of TAT played in the chromatin remodeling. Conclusion: TAT represses the promoter activity of DNA repair protein DNA-PKcs, and also play a role of large scale chromatin remodeling which can te attenuated by ionizing radiation. (authors)

  6. Abscisic acid induction of vacuolar H+-ATPase activity in mesembryanthemum crystallinum is developmentally regulated

    Science.gov (United States)

    Barkla; Vera-Estrella; Maldonado-Gama; Pantoja

    1999-07-01

    Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways.

  7. An activator of transcription regulates phage TP901-1 late gene expression

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Pedersen, Margit; Hammer, Karin

    2001-01-01

    bp contains both the promoter and the region necessary for activation by ORF29. The transcriptional start site of the promoter was identified by primer extension to position 13073 on the TP901-1 genome, thus located 87 bp downstream of orf29 in a 580-bp intergenic region between orf29 and orf30....... Furthermore, the region located -85 to -61 bp upstream of the start site was shown to be necessary for promoter activity. During infection, the transcript arising from the late promoter is fully induced at 40 min postinfection, and our results suggest that a certain level of ORF29 must he reached in order...... to activate transcription of the promoter. Several lactococcal bacteriophages encode ORF29 homologous proteins, indicating that late transcription may be controlled by a similar mechanism in these phages. With the identification of this novel regulator, our results suggest that within the P335 group...

  8. The protease inhibitor HAI-2, but not HAI-1, regulates matriptase activation and shedding through prostasin

    DEFF Research Database (Denmark)

    Friis, Stine; Sales, Katiuchia Uzzun; Schafer, Jeffrey Martin

    2014-01-01

    cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase......The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin...... form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating...

  9. Classroom Activities to Engage Students and Promote Critical Thinking about Genetic Regulation of Bacterial Quorum Sensing

    Directory of Open Access Journals (Sweden)

    Kimberly Aebli

    2016-05-01

    Full Text Available We developed an interactive activity to mimic bacterial quorum sensing, and a classroom worksheet to promote critical thinking about genetic regulation of the lux operon. The interactive quorum sensing activity engages students and provides a direct visualization of how population density functions to influence light production in bacteria. The worksheet activity consists of practice problems that require students to apply basic knowledge of the lux operon in order to make predictions about genetic complementation experiments, and students must evaluate how genetic mutations in the lux operon affect gene expression and overall phenotype. The worksheet promotes critical thinking and problem solving skills, and emphasizes the roles of diffusible signaling molecules, regulatory proteins, and structural proteins in quorum sensing.

  10. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    Directory of Open Access Journals (Sweden)

    Philip R Lee

    2009-06-01

    Full Text Available Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.

  11. Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes

    DEFF Research Database (Denmark)

    Hu, Liping; Deeney, Jude T; Nolan, Christopher J

    2005-01-01

    -cells. The mechanisms by which lipolysis is regulated in different tissues is, therefore, of considerable interest. Here, the effects of long-chain acyl-CoA esters (LC-CoA) on lipase activity in islets and adipocytes were compared. Palmitoyl-CoA (Pal-CoA, 1-10 microM) stimulated lipase activity in islets from both....... The inhibitory effect of LC-CoA on adipocyte HSL was dependent on phosphorylation and enhanced by acyl-CoA-binding protein (ACBP). In contrast, the stimulatory effect on islet lipase activity was blocked by ACBP, presumably due to binding and sequestration of LC-CoA. These data suggest the following intertissue...

  12. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation.

    Science.gov (United States)

    Malik, Sohail; Roeder, Robert G

    2010-11-01

    The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.