Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H
2016-01-01
Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.
Energy Technology Data Exchange (ETDEWEB)
Hemmateenejad, Bahram, E-mail: hemmatb@sums.ac.ir [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of); Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Zare-Shahabadi, Vali [Young Researchers Club, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of); Akhond, Morteza [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of)
2011-10-17
Highlights: {yields} Ant colony systems help to build optimum classification and regression trees. {yields} Using of genetic algorithm operators in ant colony systems resulted in more appropriate models. {yields} Variable selection in each terminal node of the tree gives promising results. {yields} CART-ACS-GA could model the melting point of organic materials with prediction errors lower than previous models. - Abstract: The classification and regression trees (CART) possess the advantage of being able to handle large data sets and yield readily interpretable models. A conventional method of building a regression tree is recursive partitioning, which results in a good but not optimal tree. Ant colony system (ACS), which is a meta-heuristic algorithm and derived from the observation of real ants, can be used to overcome this problem. The purpose of this study was to explore the use of CART and its combination with ACS for modeling of melting points of a large variety of chemical compounds. Genetic algorithm (GA) operators (e.g., cross averring and mutation operators) were combined with ACS algorithm to select the best solution model. In addition, at each terminal node of the resulted tree, variable selection was done by ACS-GA algorithm to build an appropriate partial least squares (PLS) model. To test the ability of the resulted tree, a set of approximately 4173 structures and their melting points were used (3000 compounds as training set and 1173 as validation set). Further, an external test set containing of 277 drugs was used to validate the prediction ability of the tree. Comparison of the results obtained from both trees showed that the tree constructed by ACS-GA algorithm performs better than that produced by recursive partitioning procedure.
Classification and regression trees
Breiman, Leo; Olshen, Richard A; Stone, Charles J
1984-01-01
The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok
2013-02-01
The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm
Recursive Algorithm For Linear Regression
Varanasi, S. V.
1988-01-01
Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.
Quantum algorithm for linear regression
Wang, Guoming
2017-07-01
We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.
Regression algorithm for emotion detection
Berthelon , Franck; Sander , Peter
2013-01-01
International audience; We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor m...
Dynamic travel time estimation using regression trees.
2008-10-01
This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...
Algorithms for Decision Tree Construction
Chikalov, Igor
2011-01-01
The study of algorithms for decision tree construction was initiated in 1960s. The first algorithms are based on the separation heuristic [13, 31] that at each step tries dividing the set of objects as evenly as possible. Later Garey and Graham [28] showed that such algorithm may construct decision trees whose average depth is arbitrarily far from the minimum. Hyafil and Rivest in [35] proved NP-hardness of DT problem that is constructing a tree with the minimum average depth for a diagnostic problem over 2-valued information system and uniform probability distribution. Cox et al. in [22] showed that for a two-class problem over information system, even finding the root node attribute for an optimal tree is an NP-hard problem. © Springer-Verlag Berlin Heidelberg 2011.
A Distributed Spanning Tree Algorithm
DEFF Research Database (Denmark)
Johansen, Karl Erik; Jørgensen, Ulla Lundin; Nielsen, Sven Hauge
We present a distributed algorithm for constructing a spanning tree for connected undirected graphs. Nodes correspond to processors and edges correspond to two-way channels. Each processor has initially a distinct identity and all processors perform the same algorithm. Computation as well...
Algorithms for Decision Tree Construction
Chikalov, Igor
2011-01-01
The study of algorithms for decision tree construction was initiated in 1960s. The first algorithms are based on the separation heuristic [13, 31] that at each step tries dividing the set of objects as evenly as possible. Later Garey and Graham [28
A distributed spanning tree algorithm
DEFF Research Database (Denmark)
Johansen, Karl Erik; Jørgensen, Ulla Lundin; Nielsen, Svend Hauge
1988-01-01
We present a distributed algorithm for constructing a spanning tree for connected undirected graphs. Nodes correspond to processors and edges correspond to two way channels. Each processor has initially a distinct identity and all processors perform the same algorithm. Computation as well as comm...
Regression analysis using dependent Polya trees.
Schörgendorfer, Angela; Branscum, Adam J
2013-11-30
Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.
Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis
Directory of Open Access Journals (Sweden)
Carlos Augusto Zangrando Toneli
2011-09-01
Full Text Available Sub-pixel analysis is capable of generating continuous fields, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation.
Recursive algorithms for phylogenetic tree counting.
Gavryushkina, Alexandra; Welch, David; Drummond, Alexei J
2013-10-28
In Bayesian phylogenetic inference we are interested in distributions over a space of trees. The number of trees in a tree space is an important characteristic of the space and is useful for specifying prior distributions. When all samples come from the same time point and no prior information available on divergence times, the tree counting problem is easy. However, when fossil evidence is used in the inference to constrain the tree or data are sampled serially, new tree spaces arise and counting the number of trees is more difficult. We describe an algorithm that is polynomial in the number of sampled individuals for counting of resolutions of a constraint tree assuming that the number of constraints is fixed. We generalise this algorithm to counting resolutions of a fully ranked constraint tree. We describe a quadratic algorithm for counting the number of possible fully ranked trees on n sampled individuals. We introduce a new type of tree, called a fully ranked tree with sampled ancestors, and describe a cubic time algorithm for counting the number of such trees on n sampled individuals. These algorithms should be employed for Bayesian Markov chain Monte Carlo inference when fossil data are included or data are serially sampled.
Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M
2014-12-01
Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.
Short-term load forecasting with increment regression tree
Energy Technology Data Exchange (ETDEWEB)
Yang, Jingfei; Stenzel, Juergen [Darmstadt University of Techonology, Darmstadt 64283 (Germany)
2006-06-15
This paper presents a new regression tree method for short-term load forecasting. Both increment and non-increment tree are built according to the historical data to provide the data space partition and input variable selection. Support vector machine is employed to the samples of regression tree nodes for further fine regression. Results of different tree nodes are integrated through weighted average method to obtain the comprehensive forecasting result. The effectiveness of the proposed method is demonstrated through its application to an actual system. (author)
Algorithms for optimal dyadic decision trees
Energy Technology Data Exchange (ETDEWEB)
Hush, Don [Los Alamos National Laboratory; Porter, Reid [Los Alamos National Laboratory
2009-01-01
A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.
Huang, C.; Townshend, J.R.G.
2003-01-01
A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.
What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis
Thomas, Emily H.; Galambos, Nora
2004-01-01
To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…
WDM Multicast Tree Construction Algorithms and Their Comparative Evaluations
Makabe, Tsutomu; Mikoshi, Taiju; Takenaka, Toyofumi
We propose novel tree construction algorithms for multicast communication in photonic networks. Since multicast communications consume many more link resources than unicast communications, effective algorithms for route selection and wavelength assignment are required. We propose a novel tree construction algorithm, called the Weighted Steiner Tree (WST) algorithm and a variation of the WST algorithm, called the Composite Weighted Steiner Tree (CWST) algorithm. Because these algorithms are based on the Steiner Tree algorithm, link resources among source and destination pairs tend to be commonly used and link utilization ratios are improved. Because of this, these algorithms can accept many more multicast requests than other multicast tree construction algorithms based on the Dijkstra algorithm. However, under certain delay constraints, the blocking characteristics of the proposed Weighted Steiner Tree algorithm deteriorate since some light paths between source and destinations use many hops and cannot satisfy the delay constraint. In order to adapt the approach to the delay-sensitive environments, we have devised the Composite Weighted Steiner Tree algorithm comprising the Weighted Steiner Tree algorithm and the Dijkstra algorithm for use in a delay constrained environment such as an IPTV application. In this paper, we also give the results of simulation experiments which demonstrate the superiority of the proposed Composite Weighted Steiner Tree algorithm compared with the Distributed Minimum Hop Tree (DMHT) algorithm, from the viewpoint of the light-tree request blocking.
An Algorithm for Fault-Tree Construction
DEFF Research Database (Denmark)
Taylor, J. R.
1982-01-01
An algorithm for performing certain parts of the fault tree construction process is described. Its input is a flow sheet of the plant, a piping and instrumentation diagram, or a wiring diagram of the circuits, to be analysed, together with a standard library of component functional and failure...
A Scalable Local Algorithm for Distributed Multivariate Regression
National Aeronautics and Space Administration — This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer environments. The algorithm can be used for distributed...
An Efficient Local Algorithm for Distributed Multivariate Regression
National Aeronautics and Space Administration — This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer environments. The algorithm is designed for distributed...
Finite Algorithms for Robust Linear Regression
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun
1990-01-01
The Huber M-estimator for robust linear regression is analyzed. Newton type methods for solution of the problem are defined and analyzed, and finite convergence is proved. Numerical experiments with a large number of test problems demonstrate efficiency and indicate that this kind of approach may...
Superquantile Regression: Theory, Algorithms, and Applications
2014-12-01
Highway, Suite 1204, Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1...Navy submariners, reliability engineering, uncertainty quantification, and financial risk management . Superquantile, superquantile regression...Royset Carlos F. Borges Associate Professor of Operations Research Dissertation Supervisor Professor of Applied Mathematics Lyn R. Whitaker Javier
On algorithm for building of optimal α-decision trees
Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail
2010-01-01
The paper describes an algorithm that constructs approximate decision trees (α-decision trees), which are optimal relatively to one of the following complexity measures: depth, total path length or number of nodes. The algorithm uses dynamic
A flexible fuzzy regression algorithm for forecasting oil consumption estimation
International Nuclear Information System (INIS)
Azadeh, A.; Khakestani, M.; Saberi, M.
2009-01-01
Oil consumption plays a vital role in socio-economic development of most countries. This study presents a flexible fuzzy regression algorithm for forecasting oil consumption based on standard economic indicators. The standard indicators are annual population, cost of crude oil import, gross domestic production (GDP) and annual oil production in the last period. The proposed algorithm uses analysis of variance (ANOVA) to select either fuzzy regression or conventional regression for future demand estimation. The significance of the proposed algorithm is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and minimum absolute percentage error (MAPE), whereas previous studies consider the best fitted fuzzy regression model based on MAPE or other relative error results. Second, the proposed model may identify conventional regression as the best model for future oil consumption forecasting because of its dynamic structure, whereas previous studies assume that fuzzy regression always provide the best solutions and estimation. Third, it utilizes the most standard independent variables for the regression models. To show the applicability and superiority of the proposed flexible fuzzy regression algorithm the data for oil consumption in Canada, United States, Japan and Australia from 1990 to 2005 are used. The results show that the flexible algorithm provides accurate solution for oil consumption estimation problem. The algorithm may be used by policy makers to accurately foresee the behavior of oil consumption in various regions.
A recursive algorithm for trees and forests
Guo, Song; Guo, Victor J. W.
2017-01-01
Trees or rooted trees have been generously studied in the literature. A forest is a set of trees or rooted trees. Here we give recurrence relations between the number of some kind of rooted forest with $k$ roots and that with $k+1$ roots on $\\{1,2,\\ldots,n\\}$. Classical formulas for counting various trees such as rooted trees, bipartite trees, tripartite trees, plane trees, $k$-ary plane trees, $k$-edge colored trees follow immediately from our recursive relations.
Greedy algorithm with weights for decision tree construction
Moshkov, Mikhail
2010-12-01
An approximate algorithm for minimization of weighted depth of decision trees is considered. A bound on accuracy of this algorithm is obtained which is unimprovable in general case. Under some natural assumptions on the class NP, the considered algorithm is close (from the point of view of accuracy) to best polynomial approximate algorithms for minimization of weighted depth of decision trees.
Greedy algorithm with weights for decision tree construction
Moshkov, Mikhail
2010-01-01
An approximate algorithm for minimization of weighted depth of decision trees is considered. A bound on accuracy of this algorithm is obtained which is unimprovable in general case. Under some natural assumptions on the class NP, the considered algorithm is close (from the point of view of accuracy) to best polynomial approximate algorithms for minimization of weighted depth of decision trees.
CUDT: A CUDA Based Decision Tree Algorithm
Directory of Open Access Journals (Sweden)
Win-Tsung Lo
2014-01-01
Full Text Available Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture, which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set.
Forest FIRE and FIRE wood : tools for tree automata and tree algorithms
Cleophas, L.G.W.A.; Piskorski, J.; Watson, B.W.; Yli-Jyrä, A.
2009-01-01
Pattern matching, acceptance, and parsing algorithms on node-labeled, ordered, ranked trees ('tree algorithms') are important for applications such as instruction selection and tree transformation/term rewriting. Many such algorithms have been developed. They often are based on results from such
Modeling Trees with a Space Colonization Algorithm
Morell Higueras, Marc
2014-01-01
[CATALÀ] Aquest TFG tracta la implementació d'un algorisme de generació procedural que construeixi una estructura reminiscent a la d'un arbre de clima temperat, i també la implementació del pas de l'estructura a un model tridimensional, acompanyat de l'eina per a visualitzar el resultat i fer-ne l'exportació [ANGLÈS] This TFG consists of the implementation of a procedural generation algorithm that builds a structure reminiscent of that of a temperate climate tree, and also consists of the ...
SYMMETRICAL (AND GENERIC) ALGORITHMS FOR HEIGHT BALANCED TREES
BRON, C
1990-01-01
Most algorithms for height balanced trees (or AVL-trees, after Adelson-Velskii and Landis [1]) suffer from a lack of exploitation of the symmetry of balance restoring operations when insertions and deletions in such tree structures are being made. Either we find algorithms in duplicate (i.e.,
Comparison of Greedy Algorithms for Decision Tree Optimization
Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail
2013-01-01
This chapter is devoted to the study of 16 types of greedy algorithms for decision tree construction. The dynamic programming approach is used for construction of optimal decision trees. Optimization is performed relative to minimal values
Introduction to parallel algorithms and architectures arrays, trees, hypercubes
Leighton, F Thomson
1991-01-01
Introduction to Parallel Algorithms and Architectures: Arrays Trees Hypercubes provides an introduction to the expanding field of parallel algorithms and architectures. This book focuses on parallel computation involving the most popular network architectures, namely, arrays, trees, hypercubes, and some closely related networks.Organized into three chapters, this book begins with an overview of the simplest architectures of arrays and trees. This text then presents the structures and relationships between the dominant network architectures, as well as the most efficient parallel algorithms for
Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
Directory of Open Access Journals (Sweden)
Zhongyi Hu
2013-01-01
Full Text Available Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA based memetic algorithm (FA-MA to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.
On algorithm for building of optimal α-decision trees
Alkhalid, Abdulaziz
2010-01-01
The paper describes an algorithm that constructs approximate decision trees (α-decision trees), which are optimal relatively to one of the following complexity measures: depth, total path length or number of nodes. The algorithm uses dynamic programming and extends methods described in [4] to constructing approximate decision trees. Adjustable approximation rate allows controlling algorithm complexity. The algorithm is applied to build optimal α-decision trees for two data sets from UCI Machine Learning Repository [1]. © 2010 Springer-Verlag Berlin Heidelberg.
Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees
Directory of Open Access Journals (Sweden)
Chen Xiaoyu
2007-12-01
Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.
A formal analysis of a dynamic distributed spanning tree algorithm
Mooij, A.J.; Wesselink, J.W.
2003-01-01
Abstract. We analyze the spanning tree algorithm in the IEEE 1394.1 draft standard, which correctness has not previously been proved. This algorithm is a fully-dynamic distributed graph algorithm, which, in general, is hard to develop. The approach we use is to formally develop an algorithm that is
Automatic design of decision-tree induction algorithms
Barros, Rodrigo C; Freitas, Alex A
2015-01-01
Presents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning, and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain o
Comparison of greedy algorithms for α-decision tree construction
Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail
2011-01-01
A comparison among different heuristics that are used by greedy algorithms which constructs approximate decision trees (α-decision trees) is presented. The comparison is conducted using decision tables based on 24 data sets from UCI Machine Learning Repository [2]. Complexity of decision trees is estimated relative to several cost functions: depth, average depth, number of nodes, number of nonterminal nodes, and number of terminal nodes. Costs of trees built by greedy algorithms are compared with minimum costs calculated by an algorithm based on dynamic programming. The results of experiments assign to each cost function a set of potentially good heuristics that minimize it. © 2011 Springer-Verlag.
Thomas, Emily H.; Galambos, Nora
To investigate how students' characteristics and experiences affect satisfaction, this study used regression and decision-tree analysis with the CHAID algorithm to analyze student opinion data from a sample of 1,783 college students. A data-mining approach identifies the specific aspects of students' university experience that most influence three…
Virtual machine consolidation enhancement using hybrid regression algorithms
Directory of Open Access Journals (Sweden)
Amany Abdelsamea
2017-11-01
Full Text Available Cloud computing data centers are growing rapidly in both number and capacity to meet the increasing demands for highly-responsive computing and massive storage. Such data centers consume enormous amounts of electrical energy resulting in high operating costs and carbon dioxide emissions. The reason for this extremely high energy consumption is not just the quantity of computing resources and the power inefficiency of hardware, but rather lies in the inefficient usage of these resources. VM consolidation involves live migration of VMs hence the capability of transferring a VM between physical servers with a close to zero down time. It is an effective way to improve the utilization of resources and increase energy efficiency in cloud data centers. VM consolidation consists of host overload/underload detection, VM selection and VM placement. Most of the current VM consolidation approaches apply either heuristic-based techniques, such as static utilization thresholds, decision-making based on statistical analysis of historical data; or simply periodic adaptation of the VM allocation. Most of those algorithms rely on CPU utilization only for host overload detection. In this paper we propose using hybrid factors to enhance VM consolidation. Specifically we developed a multiple regression algorithm that uses CPU utilization, memory utilization and bandwidth utilization for host overload detection. The proposed algorithm, Multiple Regression Host Overload Detection (MRHOD, significantly reduces energy consumption while ensuring a high level of adherence to Service Level Agreements (SLA since it gives a real indication of host utilization based on three parameters (CPU, Memory, Bandwidth utilizations instead of one parameter only (CPU utilization. Through simulations we show that our approach reduces power consumption by 6 times compared to single factor algorithms using random workload. Also using PlanetLab workload traces we show that MRHOD improves
Iron Supplementation and Altitude: Decision Making Using a Regression Tree
Directory of Open Access Journals (Sweden)
Laura A. Garvican-Lewis, Andrew D. Govus, Peter Peeling, Chris R. Abbiss, Christopher J. Gore
2016-03-01
Full Text Available Altitude exposure increases the body’s need for iron (Gassmann and Muckenthaler, 2015, primarily to support accelerated erythropoiesis, yet clear supplementation guidelines do not exist. Athletes are typically recommended to ingest a daily oral iron supplement to facilitate altitude adaptations, and to help maintain iron balance. However, there is some debate as to whether athletes with otherwise healthy iron stores should be supplemented, due in part to concerns of iron overload. Excess iron in vital organs is associated with an increased risk of a number of conditions including cancer, liver disease and heart failure. Therefore clear guidelines are warranted and athletes should be discouraged from ‘self-prescribing” supplementation without medical advice. In the absence of prospective-controlled studies, decision tree analysis can be used to describe a data set, with the resultant regression tree serving as guide for clinical decision making. Here, we present a regression tree in the context of iron supplementation during altitude exposure, to examine the association between pre-altitude ferritin (Ferritin-Pre and the haemoglobin mass (Hbmass response, based on daily iron supplement dose. De-identified ferritin and Hbmass data from 178 athletes engaged in altitude training were extracted from the Australian Institute of Sport (AIS database. Altitude exposure was predominantly achieved via normobaric Live high: Train low (n = 147 at a simulated altitude of 3000 m for 2 to 4 weeks. The remaining athletes engaged in natural altitude training at venues ranging from 1350 to 2800 m for 3-4 weeks. Thus, the “hypoxic dose” ranged from ~890 km.h to ~1400 km.h. Ethical approval was granted by the AIS Human Ethics Committee, and athletes provided written informed consent. An in depth description and traditional analysis of the complete data set is presented elsewhere (Govus et al., 2015. Iron supplementation was prescribed by a sports physician
Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.
Baste, Julien; Paul, Christophe; Sau, Ignasi; Scornavacca, Celine
2017-04-01
In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree-a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes-called the "species tree." One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping-but not identical-sets of labels, is called "supertree." In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time [Formula: see text], where n is the total size of the input.
An optimal algorithm for computing all subtree repeats in trees.
Flouri, T; Kobert, K; Pissis, S P; Stamatakis, A
2014-05-28
Given a labelled tree T, our goal is to group repeating subtrees of T into equivalence classes with respect to their topologies and the node labels. We present an explicit, simple and time-optimal algorithm for solving this problem for unrooted unordered labelled trees and show that the running time of our method is linear with respect to the size of T. By unordered, we mean that the order of the adjacent nodes (children/neighbours) of any node of T is irrelevant. An unrooted tree T does not have a node that is designated as root and can also be referred to as an undirected tree. We show how the presented algorithm can easily be modified to operate on trees that do not satisfy some or any of the aforementioned assumptions on the tree structure; for instance, how it can be applied to rooted, ordered or unlabelled trees.
Algorithmic fault tree construction by component-based system modeling
International Nuclear Information System (INIS)
Majdara, Aref; Wakabayashi, Toshio
2008-01-01
Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)
Ebell, Mark H; Afonso, Anna M; Geocadin, Romergryko G
2013-12-01
To predict the likelihood that an inpatient who experiences cardiopulmonary arrest and undergoes cardiopulmonary resuscitation survives to discharge with good neurologic function or with mild deficits (Cerebral Performance Category score = 1). Classification and Regression Trees were used to develop branching algorithms that optimize the ability of a series of tests to correctly classify patients into two or more groups. Data from 2007 to 2008 (n = 38,092) were used to develop candidate Classification and Regression Trees models to predict the outcome of inpatient cardiopulmonary resuscitation episodes and data from 2009 (n = 14,435) to evaluate the accuracy of the models and judge the degree of over fitting. Both supervised and unsupervised approaches to model development were used. 366 hospitals participating in the Get With the Guidelines-Resuscitation registry. Adult inpatients experiencing an index episode of cardiopulmonary arrest and undergoing cardiopulmonary resuscitation in the hospital. The five candidate models had between 8 and 21 nodes and an area under the receiver operating characteristic curve from 0.718 to 0.766 in the derivation group and from 0.683 to 0.746 in the validation group. One of the supervised models had 14 nodes and classified 27.9% of patients as very unlikely to survive neurologically intact or with mild deficits (Tree models that predict survival to discharge with good neurologic function or with mild deficits following in-hospital cardiopulmonary arrest. Models like this can assist physicians and patients who are considering do-not-resuscitate orders.
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris
2016-09-01
similar performances reaching AUC values 0.783 and 0.779 for traditional Lasso and Tree-Lasso, respectfully. However, information loss of Lasso models is 0.35 bits higher compared to Tree-Lasso model. We propose a method for building predictive models applicable for the detection of readmission risk based on Electronic Health records. Integration of domain knowledge (in the form of ICD-9-CM taxonomy) and a data-driven, sparse predictive algorithm (Tree-Lasso Logistic Regression) resulted in an increase of interpretability of the resulting model. The models are interpreted for the readmission prediction problem in general pediatric population in California, as well as several important subpopulations, and the interpretations of models comply with existing medical understanding of pediatric readmission. Finally, quantitative assessment of the interpretability of the models is given, that is beyond simple counts of selected low-level features. Copyright © 2016 Elsevier B.V. All rights reserved.
U.S. Environmental Protection Agency — Spreadsheets are included here to support the manuscript "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition". This...
Koon, Sharon; Petscher, Yaacov
2015-01-01
The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…
Algorithm for finding minimal cut sets in a fault tree
International Nuclear Information System (INIS)
Rosenberg, Ladislav
1996-01-01
This paper presents several algorithms that have been used in a computer code for fault-tree analysing by the minimal cut sets method. The main algorithm is the more efficient version of the new CARA algorithm, which finds minimal cut sets with an auxiliary dynamical structure. The presented algorithm for finding the minimal cut sets enables one to do so by defined requirements - according to the order of minimal cut sets, or to the number of minimal cut sets, or both. This algorithm is from three to six times faster when compared with the primary version of the CARA algorithm
Susan L. King
2003-01-01
The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...
Hyper-parameter tuning of a decision tree induction algorithm
Mantovani, R.G.; Horváth, T.; Cerri, R.; Vanschoren, J.; de Carvalho, A.C.P.L.F.
2017-01-01
Supervised classification is the most studied task in Machine Learning. Among the many algorithms used in such task, Decision Tree algorithms are a popular choice, since they are robust and efficient to construct. Moreover, they have the advantage of producing comprehensible models and satisfactory
Regression: The Apple Does Not Fall Far From the Tree.
Vetter, Thomas R; Schober, Patrick
2018-05-15
Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.
A new coding algorithm for trees
Balakirsky, V.B.
2002-01-01
We construct a one-to-one mapping between binary vectors of length $n$ and preorder codewords of regular, ordered, oriented, rooted, binary trees having $N \\approx n + 2$ log $n$ nodes. The mappings in both directions can be organized in such a way that complexities of all transformations are
Regression Nodes: Extending attack trees with data from social sciences
Bullee, Jan-Willem; Montoya, L.; Pieters, Wolter; Junger, Marianne; Hartel, Pieter H.
In the field of security, attack trees are often used to assess security vulnerabilities probabilistically in relation to multi-step attacks. The nodes are usually connected via AND-gates, where all children must be executed, or via OR-gates, where only one action is necessary for the attack step to
Taxon ordering in phylogenetic trees by means of evolutionary algorithms
Directory of Open Access Journals (Sweden)
Cerutti Francesco
2011-07-01
Full Text Available Abstract Background In in a typical "left-to-right" phylogenetic tree, the vertical order of taxa is meaningless, as only the branch path between them reflects their degree of similarity. To make unresolved trees more informative, here we propose an innovative Evolutionary Algorithm (EA method to search the best graphical representation of unresolved trees, in order to give a biological meaning to the vertical order of taxa. Methods Starting from a West Nile virus phylogenetic tree, in a (1 + 1-EA we evolved it by randomly rotating the internal nodes and selecting the tree with better fitness every generation. The fitness is a sum of genetic distances between the considered taxon and the r (radius next taxa. After having set the radius to the best performance, we evolved the trees with (λ + μ-EAs to study the influence of population on the algorithm. Results The (1 + 1-EA consistently outperformed a random search, and better results were obtained setting the radius to 8. The (λ + μ-EAs performed as well as the (1 + 1, except the larger population (1000 + 1000. Conclusions The trees after the evolution showed an improvement both of the fitness (based on a genetic distance matrix, then close taxa are actually genetically close, and of the biological interpretation. Samples collected in the same state or year moved close each other, making the tree easier to interpret. Biological relationships between samples are also easier to observe.
A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover
Directory of Open Access Journals (Sweden)
Akpona Okujeni
2014-07-01
Full Text Available Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR, kernel ridge regression (KRR, artificial neural networks (NN, random forest regression (RFR and partial least squares regression (PLSR. Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, grass- and tree-covered areas. SVR and KRR models proved to be stable with regard to the spatial and spectral differences between both images and effectively utilized the higher complexity of the synthetic training mixtures for improving estimates for coarser resolution data. Observed deficiencies mainly relate to known problems arising from spectral similarities or shadowing. The remaining regressors either revealed erratic (NN or limited (RFR and PLSR performances when comprehensively mapping urban land cover. Our findings suggest that the combination of kernel-based regression methods, such as SVR and KRR, with synthetically mixed training data is well suited for quantifying urban land cover from imaging spectrometer data at multiple scales.
The process and utility of classification and regression tree methodology in nursing research.
Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda
2014-06-01
This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.
Algorithms and programs for consequence diagram and fault tree construction
International Nuclear Information System (INIS)
Hollo, E.; Taylor, J.R.
1976-12-01
A presentation of algorithms and programs for consequence diagram and sequential fault tree construction that are intended for reliability and disturbance analysis of large systems. The system to be analyzed must be given as a block diagram formed by mini fault trees of individual system components. The programs were written in LISP programming language and run on a PDP8 computer with 8k words of storage. A description is given of the methods used and of the program construction and working. (author)
Directory of Open Access Journals (Sweden)
Yoonseok Shin
2015-01-01
Full Text Available Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project.
Engineering of Algorithms for Hidden Markov models and Tree Distances
DEFF Research Database (Denmark)
Sand, Andreas
Bioinformatics is an interdisciplinary scientific field that combines biology with mathematics, statistics and computer science in an effort to develop computational methods for handling, analyzing and learning from biological data. In the recent decades, the amount of available biological data has...... speed up all the classical algorithms for analyses and training of hidden Markov models. And I show how two particularly important algorithms, the forward algorithm and the Viterbi algorithm, can be accelerated through a reformulation of the algorithms and a somewhat more complicated parallelization...... contribution to the theoretically fastest set of algorithms presently available to compute two closely related measures of tree distance, the triplet distance and the quartet distance. And I further demonstrate that they are also the fastest algorithms in almost all cases when tested in practice....
A new algorithm to construct phylogenetic networks from trees.
Wang, J
2014-03-06
Developing appropriate methods for constructing phylogenetic networks from tree sets is an important problem, and much research is currently being undertaken in this area. BIMLR is an algorithm that constructs phylogenetic networks from tree sets. The algorithm can construct a much simpler network than other available methods. Here, we introduce an improved version of the BIMLR algorithm, QuickCass. QuickCass changes the selection strategy of the labels of leaves below the reticulate nodes, i.e., the nodes with an indegree of at least 2 in BIMLR. We show that QuickCass can construct simpler phylogenetic networks than BIMLR. Furthermore, we show that QuickCass is a polynomial-time algorithm when the output network that is constructed by QuickCass is binary.
Directory of Open Access Journals (Sweden)
Stefanie M. Herrmann
2013-10-01
Full Text Available Field trees are an integral part of the farmed parkland landscape in West Africa and provide multiple benefits to the local environment and livelihoods. While field trees have received increasing interest in the context of strengthening resilience to climate variability and change, the actual extent of farmed parkland and spatial patterns of tree cover are largely unknown. We used the rule-based predictive modeling tool Cubist® to estimate field tree cover in the west-central agricultural region of Senegal. A collection of rules and associated multiple linear regression models was constructed from (1 a reference dataset of percent tree cover derived from very high spatial resolution data (2 m Orbview as the dependent variable, and (2 ten years of 10-day 250 m Moderate Resolution Imaging Spectrometer (MODIS Normalized Difference Vegetation Index (NDVI composites and derived phenological metrics as independent variables. Correlation coefficients between modeled and reference percent tree cover of 0.88 and 0.77 were achieved for training and validation data respectively, with absolute mean errors of 1.07 and 1.03 percent tree cover. The resulting map shows a west-east gradient from high tree cover in the peri-urban areas of horticulture and arboriculture to low tree cover in the more sparsely populated eastern part of the study area. A comparison of current (2000s tree cover along this gradient with historic cover as seen on Corona images reveals dynamics of change but also areas of remarkable stability of field tree cover since 1968. The proposed modeling approach can help to identify locations of high and low tree cover in dryland environments and guide ground studies and management interventions aimed at promoting the integration of field trees in agricultural systems.
Bianca N.I. Eskelson; Hailemariam Temesgen; Tara M. Barrett
2009-01-01
Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods....
Variable selection in Logistic regression model with genetic algorithm.
Zhang, Zhongheng; Trevino, Victor; Hoseini, Sayed Shahabuddin; Belciug, Smaranda; Boopathi, Arumugam Manivanna; Zhang, Ping; Gorunescu, Florin; Subha, Velappan; Dai, Songshi
2018-02-01
Variable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process. In biomedical research, the purpose of variable selection is to select clinically important and statistically significant variables, while excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it commonly trapped in local optima. The best subset approach can systematically search the entire covariate pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-step approach to the use of GA in variable selection. The R code provided in the text can be extended and adapted to other data analysis needs.
Directory of Open Access Journals (Sweden)
Suduan Chen
2014-01-01
Full Text Available As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.
Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De
2014-01-01
As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.
Comparison of Greedy Algorithms for Decision Tree Optimization
Alkhalid, Abdulaziz
2013-01-01
This chapter is devoted to the study of 16 types of greedy algorithms for decision tree construction. The dynamic programming approach is used for construction of optimal decision trees. Optimization is performed relative to minimal values of average depth, depth, number of nodes, number of terminal nodes, and number of nonterminal nodes of decision trees. We compare average depth, depth, number of nodes, number of terminal nodes and number of nonterminal nodes of constructed trees with minimum values of the considered parameters obtained based on a dynamic programming approach. We report experiments performed on data sets from UCI ML Repository and randomly generated binary decision tables. As a result, for depth, average depth, and number of nodes we propose a number of good heuristics. © Springer-Verlag Berlin Heidelberg 2013.
International Nuclear Information System (INIS)
Janssen, I.; Stebbings, J.H.
1990-01-01
In environmental epidemiology, trace and toxic substance concentrations frequently have very highly skewed distributions ranging over one or more orders of magnitude, and prediction by conventional regression is often poor. Classification and Regression Tree Analysis (CART) is an alternative in such contexts. To compare the techniques, two Pennsylvania data sets and three independent variables are used: house radon progeny (RnD) and gamma levels as predicted by construction characteristics in 1330 houses; and ∼200 house radon (Rn) measurements as predicted by topographic parameters. CART may identify structural variables of interest not identified by conventional regression, and vice versa, but in general the regression models are similar. CART has major advantages in dealing with other common characteristics of environmental data sets, such as missing values, continuous variables requiring transformations, and large sets of potential independent variables. CART is most useful in the identification and screening of independent variables, greatly reducing the need for cross-tabulations and nested breakdown analyses. There is no need to discard cases with missing values for the independent variables because surrogate variables are intrinsic to CART. The tree-structured approach is also independent of the scale on which the independent variables are measured, so that transformations are unnecessary. CART identifies important interactions as well as main effects. The major advantages of CART appear to be in exploring data. Once the important variables are identified, conventional regressions seem to lead to results similar but more interpretable by most audiences. 12 refs., 8 figs., 10 tabs
A fast BDD algorithm for large coherent fault trees analysis
International Nuclear Information System (INIS)
Jung, Woo Sik; Han, Sang Hoon; Ha, Jaejoo
2004-01-01
Although a binary decision diagram (BDD) algorithm has been tried to solve large fault trees until quite recently, they are not efficiently solved in a short time since the size of a BDD structure exponentially increases according to the number of variables. Furthermore, the truncation of If-Then-Else (ITE) connectives by the probability or size limit and the subsuming to delete subsets could not be directly applied to the intermediate BDD structure under construction. This is the motivation for this work. This paper presents an efficient BDD algorithm for large coherent systems (coherent BDD algorithm) by which the truncation and subsuming could be performed in the progress of the construction of the BDD structure. A set of new formulae developed in this study for AND or OR operation between two ITE connectives of a coherent system makes it possible to delete subsets and truncate ITE connectives with a probability or size limit in the intermediate BDD structure under construction. By means of the truncation and subsuming in every step of the calculation, large fault trees for coherent systems (coherent fault trees) are efficiently solved in a short time using less memory. Furthermore, the coherent BDD algorithm from the aspect of the size of a BDD structure is much less sensitive to variable ordering than the conventional BDD algorithm
Parallel Algorithms for Graph Optimization using Tree Decompositions
Energy Technology Data Exchange (ETDEWEB)
Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL; Groer, Christopher S [ORNL
2012-06-01
Although many $\\cal{NP}$-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.
Optimal interconnection trees in the plane theory, algorithms and applications
Brazil, Marcus
2015-01-01
This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions. Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees. The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, ...
An Isometric Mapping Based Co-Location Decision Tree Algorithm
Zhou, G.; Wei, J.; Zhou, X.; Zhang, R.; Huang, W.; Sha, H.; Chen, J.
2018-05-01
Decision tree (DT) induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information) as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT) method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT), which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1) The extraction method of exposed carbonate rocks is of high accuracy. (2) The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.
AN ISOMETRIC MAPPING BASED CO-LOCATION DECISION TREE ALGORITHM
Directory of Open Access Journals (Sweden)
G. Zhou
2018-05-01
Full Text Available Decision tree (DT induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT, which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1 The extraction method of exposed carbonate rocks is of high accuracy. (2 The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.
Differential Diagnosis of Erythmato-Squamous Diseases Using Classification and Regression Tree.
Maghooli, Keivan; Langarizadeh, Mostafa; Shahmoradi, Leila; Habibi-Koolaee, Mahdi; Jebraeily, Mohamad; Bouraghi, Hamid
2016-10-01
Differential diagnosis of Erythmato-Squamous Diseases (ESD) is a major challenge in the field of dermatology. The ESD diseases are placed into six different classes. Data mining is the process for detection of hidden patterns. In the case of ESD, data mining help us to predict the diseases. Different algorithms were developed for this purpose. we aimed to use the Classification and Regression Tree (CART) to predict differential diagnosis of ESD. we used the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. For this purpose, the dermatology data set from machine learning repository, UCI was obtained. The Clementine 12.0 software from IBM Company was used for modelling. In order to evaluation of the model we calculate the accuracy, sensitivity and specificity of the model. The proposed model had an accuracy of 94.84% (. 24.42) in order to correct prediction of the ESD disease. Results indicated that using of this classifier could be useful. But, it would be strongly recommended that the combination of machine learning methods could be more useful in terms of prediction of ESD.
Xie, Yang; Schreier, Günter; Chang, David C W; Neubauer, Sandra; Redmond, Stephen J; Lovell, Nigel H
2014-01-01
Healthcare administrators worldwide are striving to both lower the cost of care whilst improving the quality of care given. Therefore, better clinical and administrative decision making is needed to improve these issues. Anticipating outcomes such as number of hospitalization days could contribute to addressing this problem. In this paper, a method was developed, using large-scale health insurance claims data, to predict the number of hospitalization days in a population. We utilized a regression decision tree algorithm, along with insurance claim data from 300,000 individuals over three years, to provide predictions of number of days in hospital in the third year, based on medical admissions and claims data from the first two years. Our method performs well in the general population. For the population aged 65 years and over, the predictive model significantly improves predictions over a baseline method (predicting a constant number of days for each patient), and achieved a specificity of 70.20% and sensitivity of 75.69% in classifying these subjects into two categories of 'no hospitalization' and 'at least one day in hospital'.
Guo, Huey-Ming; Shyu, Yea-Ing Lotus; Chang, Her-Kun
2006-01-01
In this article, the authors provide an overview of a research method to predict quality of care in home health nursing data set. The results of this study can be visualized through classification an regression tree (CART) graphs. The analysis was more effective, and the results were more informative since the home health nursing dataset was analyzed with a combination of the logistic regression and CART, these two techniques complete each other. And the results more informative that more patients' characters were related to quality of care in home care. The results contributed to home health nurse predict patient outcome in case management. Improved prediction is needed for interventions to be appropriately targeted for improved patient outcome and quality of care.
Suchetana, Bihu; Rajagopalan, Balaji; Silverstein, JoAnn
2017-11-15
A regression tree-based diagnostic approach is developed to evaluate factors affecting US wastewater treatment plant compliance with ammonia discharge permit limits using Discharge Monthly Report (DMR) data from a sample of 106 municipal treatment plants for the period of 2004-2008. Predictor variables used to fit the regression tree are selected using random forests, and consist of the previous month's effluent ammonia, influent flow rates and plant capacity utilization. The tree models are first used to evaluate compliance with existing ammonia discharge standards at each facility and then applied assuming more stringent discharge limits, under consideration in many states. The model predicts that the ability to meet both current and future limits depends primarily on the previous month's treatment performance. With more stringent discharge limits predicted ammonia concentration relative to the discharge limit, increases. In-sample validation shows that the regression trees can provide a median classification accuracy of >70%. The regression tree model is validated using ammonia discharge data from an operating wastewater treatment plant and is able to accurately predict the observed ammonia discharge category approximately 80% of the time, indicating that the regression tree model can be applied to predict compliance for individual treatment plants providing practical guidance for utilities and regulators with an interest in controlling ammonia discharges. The proposed methodology is also used to demonstrate how to delineate reliable sources of demand and supply in a point source-to-point source nutrient credit trading scheme, as well as how planners and decision makers can set reasonable discharge limits in future. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems.
Lai, Xinsheng; Zhou, Yuren; Xia, Xiaoyun; Zhang, Qingfu
2017-01-01
The Steiner tree problem (STP) aims to determine some Steiner nodes such that the minimum spanning tree over these Steiner nodes and a given set of special nodes has the minimum weight, which is NP-hard. STP includes several important cases. The Steiner tree problem in graphs (GSTP) is one of them. Many heuristics have been proposed for STP, and some of them have proved to be performance guarantee approximation algorithms for this problem. Since evolutionary algorithms (EAs) are general and popular randomized heuristics, it is significant to investigate the performance of EAs for STP. Several empirical investigations have shown that EAs are efficient for STP. However, up to now, there is no theoretical work on the performance of EAs for STP. In this article, we reveal that the (1+1) EA achieves 3/2-approximation ratio for STP in a special class of quasi-bipartite graphs in expected runtime [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are, respectively, the number of Steiner nodes, the number of special nodes, and the largest weight among all edges in the input graph. We also show that the (1+1) EA is better than two other heuristics on two GSTP instances, and the (1+1) EA may be inefficient on a constructed GSTP instance.
FPGA Hardware Acceleration of a Phylogenetic Tree Reconstruction with Maximum Parsimony Algorithm
BLOCK, Henry; MARUYAMA, Tsutomu
2017-01-01
In this paper, we present an FPGA hardware implementation for a phylogenetic tree reconstruction with a maximum parsimony algorithm. We base our approach on a particular stochastic local search algorithm that uses the Progressive Neighborhood and the Indirect Calculation of Tree Lengths method. This method is widely used for the acceleration of the phylogenetic tree reconstruction algorithm in software. In our implementation, we define a tree structure and accelerate the search by parallel an...
Outlier detection algorithms for least squares time series regression
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Bent
We review recent asymptotic results on some robust methods for multiple regression. The regressors include stationary and non-stationary time series as well as polynomial terms. The methods include the Huber-skip M-estimator, 1-step Huber-skip M-estimators, in particular the Impulse Indicator Sat...
Risk Factors of Falls in Community-Dwelling Older Adults: Logistic Regression Tree Analysis
Yamashita, Takashi; Noe, Douglas A.; Bailer, A. John
2012-01-01
Purpose of the Study: A novel logistic regression tree-based method was applied to identify fall risk factors and possible interaction effects of those risk factors. Design and Methods: A nationally representative sample of American older adults aged 65 years and older (N = 9,592) in the Health and Retirement Study 2004 and 2006 modules was used.…
Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....
Cohen, Ira L.; Liu, Xudong; Hudson, Melissa; Gillis, Jennifer; Cavalari, Rachel N. S.; Romanczyk, Raymond G.; Karmel, Bernard Z.; Gardner, Judith M.
2016-01-01
In order to improve discrimination accuracy between Autism Spectrum Disorder (ASD) and similar neurodevelopmental disorders, a data mining procedure, Classification and Regression Trees (CART), was used on a large multi-site sample of PDD Behavior Inventory (PDDBI) forms on children with and without ASD. Discrimination accuracy exceeded 80%,…
Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm
Ulbrich, Norbert Manfred
2013-01-01
A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.
A sub-cubic time algorithm for computing the quartet distance between two general trees
DEFF Research Database (Denmark)
Nielsen, Jesper; Kristensen, Anders Kabell; Mailund, Thomas
2011-01-01
Background When inferring phylogenetic trees different algorithms may give different trees. To study such effects a measure for the distance between two trees is useful. Quartet distance is one such measure, and is the number of quartet topologies that differ between two trees. Results We have...... derived a new algorithm for computing the quartet distance between a pair of general trees, i.e. trees where inner nodes can have any degree ≥ 3. The time and space complexity of our algorithm is sub-cubic in the number of leaves and does not depend on the degree of the inner nodes. This makes...... it the fastest algorithm so far for computing the quartet distance between general trees independent of the degree of the inner nodes. Conclusions We have implemented our algorithm and two of the best competitors. Our new algorithm is significantly faster than the competition and seems to run in close...
Two related algorithms for root-to-frontier tree pattern matching
Cleophas, L.G.W.A.; Hemerik, C.; Zwaan, G.
2006-01-01
Tree pattern matching (TPM) algorithms on ordered, ranked trees play an important role in applications such as compilers and term rewriting systems. Many TPM algorithms appearing in the literature are based on tree automata. For efficiency, these automata should be deterministic, yet deterministic
A comparison of regression algorithms for wind speed forecasting at Alexander Bay
CSIR Research Space (South Africa)
Botha, Nicolene
2016-12-01
Full Text Available to forecast 1 to 24 hours ahead, in hourly intervals. Predictions are performed on a wind speed time series with three machine learning regression algorithms, namely support vector regression, ordinary least squares and Bayesian ridge regression. The resulting...
Support Vector Regression and Genetic Algorithm for HVAC Optimal Operation
Directory of Open Access Journals (Sweden)
Ching-Wei Chen
2016-01-01
Full Text Available This study covers records of various parameters affecting the power consumption of air-conditioning systems. Using the Support Vector Machine (SVM, the chiller power consumption model, secondary chilled water pump power consumption model, air handling unit fan power consumption model, and air handling unit load model were established. In addition, it was found that R2 of the models all reached 0.998, and the training time was far shorter than that of the neural network. Through genetic programming, a combination of operating parameters with the least power consumption of air conditioning operation was searched. Moreover, the air handling unit load in line with the air conditioning cooling load was predicted. The experimental results show that for the combination of operating parameters with the least power consumption in line with the cooling load obtained through genetic algorithm search, the power consumption of the air conditioning systems under said combination of operating parameters was reduced by 22% compared to the fixed operating parameters, thus indicating significant energy efficiency.
Buchner, Florian; Wasem, Jürgen; Schillo, Sonja
2017-01-01
Risk equalization formulas have been refined since their introduction about two decades ago. Because of the complexity and the abundance of possible interactions between the variables used, hardly any interactions are considered. A regression tree is used to systematically search for interactions, a methodologically new approach in risk equalization. Analyses are based on a data set of nearly 2.9 million individuals from a major German social health insurer. A two-step approach is applied: In the first step a regression tree is built on the basis of the learning data set. Terminal nodes characterized by more than one morbidity-group-split represent interaction effects of different morbidity groups. In the second step the 'traditional' weighted least squares regression equation is expanded by adding interaction terms for all interactions detected by the tree, and regression coefficients are recalculated. The resulting risk adjustment formula shows an improvement in the adjusted R 2 from 25.43% to 25.81% on the evaluation data set. Predictive ratios are calculated for subgroups affected by the interactions. The R 2 improvement detected is only marginal. According to the sample level performance measures used, not involving a considerable number of morbidity interactions forms no relevant loss in accuracy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-06-01
Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.
Travis Woolley; David C. Shaw; Lisa M. Ganio; Stephen. Fitzgerald
2012-01-01
Logistic regression models used to predict tree mortality are critical to post-fire management, planning prescribed bums and understanding disturbance ecology. We review literature concerning post-fire mortality prediction using logistic regression models for coniferous tree species in the western USA. We include synthesis and review of: methods to develop, evaluate...
Load Balancing Issues with Constructing Phylogenetic Trees using Neighbour-Joining Algorithm
International Nuclear Information System (INIS)
Al Mamun, S M
2012-01-01
Phylogenetic tree construction is one of the most important and interesting problems in bioinformatics. Constructing an efficient phylogenetic tree has always been a research issue. It needs to consider both the correctness and the speed of the tree construction. In this paper, we implemented the neighbour-joining algorithm, using Message Passing Interface (MPI) for constructing the phylogenetic tree. Performance is efficacious, comparing to the best sequential algorithm. From this paper, it would be clear to the researchers that how load balance can make a great effect for constructing phylogenetic trees using neighbour-joining algorithm.
Capacitance Regression Modelling Analysis on Latex from Selected Rubber Tree Clones
International Nuclear Information System (INIS)
Rosli, A D; Baharudin, R; Hashim, H; Khairuzzaman, N A; Mohd Sampian, A F; Abdullah, N E; Kamaru'zzaman, M; Sulaiman, M S
2015-01-01
This paper investigates the capacitance regression modelling performance of latex for various rubber tree clones, namely clone 2002, 2008, 2014 and 3001. Conventionally, the rubber tree clones identification are based on observation towards tree features such as shape of leaf, trunk, branching habit and pattern of seeds texture. The former method requires expert persons and very time-consuming. Currently, there is no sensing device based on electrical properties that can be employed to measure different clones from latex samples. Hence, with a hypothesis that the dielectric constant of each clone varies, this paper discusses the development of a capacitance sensor via Capacitance Comparison Bridge (known as capacitance sensor) to measure an output voltage of different latex samples. The proposed sensor is initially tested with 30ml of latex sample prior to gradually addition of dilution water. The output voltage and capacitance obtained from the test are recorded and analyzed using Simple Linear Regression (SLR) model. This work outcome infers that latex clone of 2002 has produced the highest and reliable linear regression line with determination coefficient of 91.24%. In addition, the study also found that the capacitive elements in latex samples deteriorate if it is diluted with higher volume of water. (paper)
Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.
Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo
2015-08-01
Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.
[Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].
Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao
2016-03-01
Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.
Directory of Open Access Journals (Sweden)
ELİF BULUT
2013-06-01
Full Text Available Partial Least Squares Regression (PLSR is a multivariate statistical method that consists of partial least squares and multiple linear regression analysis. Explanatory variables, X, having multicollinearity are reduced to components which explain the great amount of covariance between explanatory and response variable. These components are few in number and they don’t have multicollinearity problem. Then multiple linear regression analysis is applied to those components to model the response variable Y. There are various PLSR algorithms. In this study NIPALS and PLS-Kernel algorithms will be studied and illustrated on a real data set.
Perceived Organizational Support for Enhancing Welfare at Work: A Regression Tree Model
Giorgi, Gabriele; Dubin, David; Perez, Javier Fiz
2016-01-01
When trying to examine outcomes such as welfare and well-being, research tends to focus on main effects and take into account limited numbers of variables at a time. There are a number of techniques that may help address this problem. For example, many statistical packages available in R provide easy-to-use methods of modeling complicated analysis such as classification and tree regression (i.e., recursive partitioning). The present research illustrates the value of recursive partitioning in the prediction of perceived organizational support in a sample of more than 6000 Italian bankers. Utilizing the tree function party package in R, we estimated a regression tree model predicting perceived organizational support from a multitude of job characteristics including job demand, lack of job control, lack of supervisor support, training, etc. The resulting model appears particularly helpful in pointing out several interactions in the prediction of perceived organizational support. In particular, training is the dominant factor. Another dimension that seems to influence organizational support is reporting (perceived communication about safety and stress concerns). Results are discussed from a theoretical and methodological point of view. PMID:28082924
Directory of Open Access Journals (Sweden)
Shokouh Taghipour Zahir
2013-01-01
Full Text Available Purpose. We sought to investigate the utility of classification and regression trees (CART classifier to differentiate benign from malignant nodules in patients referred for thyroid surgery. Methods. Clinical and demographic data of 271 patients referred to the Sadoughi Hospital during 2006–2011 were collected. In a two-step approach, a CART classifier was employed to differentiate patients with a high versus low risk of thyroid malignancy. The first step served as the screening procedure and was tailored to produce as few false negatives as possible. The second step identified those with the lowest risk of malignancy, chosen from a high risk population. Sensitivity, specificity, positive and negative predictive values (PPV and NPV of the optimal tree were calculated. Results. In the first step, age, sex, and nodule size contributed to the optimal tree. Ultrasonographic features were employed in the second step with hypoechogenicity and/or microcalcifications yielding the highest discriminatory ability. The combined tree produced a sensitivity and specificity of 80.0% (95% CI: 29.9–98.9 and 94.1% (95% CI: 78.9–99.0, respectively. NPV and PPV were 66.7% (41.1–85.6 and 97.0% (82.5–99.8, respectively. Conclusion. CART classifier reliably identifies patients with a low risk of malignancy who can avoid unnecessary surgery.
A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images
Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael
Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute
New algorithm to detect modules in a fault tree for a PSA
International Nuclear Information System (INIS)
Jung, Woo Sik
2015-01-01
A module or independent subtree is a part of a fault tree whose child gates or basic events are not repeated in the remaining part of the fault tree. Modules are necessarily employed in order to reduce the computational costs of fault tree quantification. This paper presents a new linear time algorithm to detect modules of large fault trees. The size of cut sets can be substantially reduced by replacing independent subtrees in a fault tree with super-components. Chatterjee and Birnbaum developed properties of modules, and demonstrated their use in the fault tree analysis. Locks expanded the concept of modules to non-coherent fault trees. Independent subtrees were manually identified while coding a fault tree for computer analysis. However, nowadays, the independent subtrees are automatically identified by the fault tree solver. A Dutuit and Rauzy (DR) algorithm to detect modules of a fault tree for coherent or non-coherent fault tree was proposed in 1996. It has been well known that this algorithm quickly detects modules since it is a linear time algorithm. The new algorithm minimizes computational memory and quickly detects modules. Furthermore, it can be easily implemented into industry fault tree solvers that are based on traditional Boolean algebra, binary decision diagrams (BDDs), or Zero-suppressed BDDs. The new algorithm employs only two scalar variables in Eqs. to that are volatile information. After finishing the traversal and module detection of each node, the volatile information is destroyed. Thus, the new algorithm does not employ any other additional computational memory and operations. It is recommended that this method be implemented into fault tree solvers for efficient probabilistic safety assessment (PSA) of nuclear power plants
New algorithm to detect modules in a fault tree for a PSA
Energy Technology Data Exchange (ETDEWEB)
Jung, Woo Sik [Sejong University, Seoul (Korea, Republic of)
2015-05-15
A module or independent subtree is a part of a fault tree whose child gates or basic events are not repeated in the remaining part of the fault tree. Modules are necessarily employed in order to reduce the computational costs of fault tree quantification. This paper presents a new linear time algorithm to detect modules of large fault trees. The size of cut sets can be substantially reduced by replacing independent subtrees in a fault tree with super-components. Chatterjee and Birnbaum developed properties of modules, and demonstrated their use in the fault tree analysis. Locks expanded the concept of modules to non-coherent fault trees. Independent subtrees were manually identified while coding a fault tree for computer analysis. However, nowadays, the independent subtrees are automatically identified by the fault tree solver. A Dutuit and Rauzy (DR) algorithm to detect modules of a fault tree for coherent or non-coherent fault tree was proposed in 1996. It has been well known that this algorithm quickly detects modules since it is a linear time algorithm. The new algorithm minimizes computational memory and quickly detects modules. Furthermore, it can be easily implemented into industry fault tree solvers that are based on traditional Boolean algebra, binary decision diagrams (BDDs), or Zero-suppressed BDDs. The new algorithm employs only two scalar variables in Eqs. to that are volatile information. After finishing the traversal and module detection of each node, the volatile information is destroyed. Thus, the new algorithm does not employ any other additional computational memory and operations. It is recommended that this method be implemented into fault tree solvers for efficient probabilistic safety assessment (PSA) of nuclear power plants.
The Roots of Inequality: Estimating Inequality of Opportunity from Regression Trees
DEFF Research Database (Denmark)
Brunori, Paolo; Hufe, Paul; Mahler, Daniel Gerszon
2017-01-01
the risk of arbitrary and ad-hoc model selection. Second, they provide a standardized way of trading off upward and downward biases in inequality of opportunity estimations. Finally, regression trees can be graphically represented; their structure is immediate to read and easy to understand. This will make...... the measurement of inequality of opportunity more easily comprehensible to a large audience. These advantages are illustrated by an empirical application based on the 2011 wave of the European Union Statistics on Income and Living Conditions....
International Nuclear Information System (INIS)
Hong, W.-C.
2009-01-01
Accurate forecasting of electric load has always been the most important issues in the electricity industry, particularly for developing countries. Due to the various influences, electric load forecasting reveals highly nonlinear characteristics. Recently, support vector regression (SVR), with nonlinear mapping capabilities of forecasting, has been successfully employed to solve nonlinear regression and time series problems. However, it is still lack of systematic approaches to determine appropriate parameter combination for a SVR model. This investigation elucidates the feasibility of applying chaotic particle swarm optimization (CPSO) algorithm to choose the suitable parameter combination for a SVR model. The empirical results reveal that the proposed model outperforms the other two models applying other algorithms, genetic algorithm (GA) and simulated annealing algorithm (SA). Finally, it also provides the theoretical exploration of the electric load forecasting support system (ELFSS)
Austin, Peter C; Lee, Douglas S; Steyerberg, Ewout W; Tu, Jack V
2012-01-01
In biomedical research, the logistic regression model is the most commonly used method for predicting the probability of a binary outcome. While many clinical researchers have expressed an enthusiasm for regression trees, this method may have limited accuracy for predicting health outcomes. We aimed to evaluate the improvement that is achieved by using ensemble-based methods, including bootstrap aggregation (bagging) of regression trees, random forests, and boosted regression trees. We analyzed 30-day mortality in two large cohorts of patients hospitalized with either acute myocardial infarction (N = 16,230) or congestive heart failure (N = 15,848) in two distinct eras (1999–2001 and 2004–2005). We found that both the in-sample and out-of-sample prediction of ensemble methods offered substantial improvement in predicting cardiovascular mortality compared to conventional regression trees. However, conventional logistic regression models that incorporated restricted cubic smoothing splines had even better performance. We conclude that ensemble methods from the data mining and machine learning literature increase the predictive performance of regression trees, but may not lead to clear advantages over conventional logistic regression models for predicting short-term mortality in population-based samples of subjects with cardiovascular disease. PMID:22777999
van Veen, S H C M; van Kleef, R C; van de Ven, W P M M; van Vliet, R C J A
2018-02-01
This study explores the predictive power of interaction terms between the risk adjusters in the Dutch risk equalization (RE) model of 2014. Due to the sophistication of this RE-model and the complexity of the associations in the dataset (N = ~16.7 million), there are theoretically more than a million interaction terms. We used regression tree modelling, which has been applied rarely within the field of RE, to identify interaction terms that statistically significantly explain variation in observed expenses that is not already explained by the risk adjusters in this RE-model. The interaction terms identified were used as additional risk adjusters in the RE-model. We found evidence that interaction terms can improve the prediction of expenses overall and for specific groups in the population. However, the prediction of expenses for some other selective groups may deteriorate. Thus, interactions can reduce financial incentives for risk selection for some groups but may increase them for others. Furthermore, because regression trees are not robust, additional criteria are needed to decide which interaction terms should be used in practice. These criteria could be the right incentive structure for risk selection and efficiency or the opinion of medical experts. Copyright © 2017 John Wiley & Sons, Ltd.
Regression tree analysis for predicting body weight of Nigerian Muscovy duck (Cairina moschata
Directory of Open Access Journals (Sweden)
Oguntunji Abel Olusegun
2017-01-01
Full Text Available Morphometric parameters and their indices are central to the understanding of the type and function of livestock. The present study was conducted to predict body weight (BWT of adult Nigerian Muscovy ducks from nine (9 morphometric parameters and seven (7 body indices and also to identify the most important predictor of BWT among them using regression tree analysis (RTA. The experimental birds comprised of 1,020 adult male and female Nigerian Muscovy ducks randomly sampled in Rain Forest (203, Guinea Savanna (298 and Derived Savanna (519 agro-ecological zones. Result of RTA revealed that compactness; body girth and massiveness were the most important independent variables in predicting BWT and were used in constructing RT. The combined effect of the three predictors was very high and explained 91.00% of the observed variation of the target variable (BWT. The optimal regression tree suggested that Muscovy ducks with compactness >5.765 would be fleshy and have highest BWT. The result of the present study could be exploited by animal breeders and breeding companies in selection and improvement of BWT of Muscovy ducks.
Directory of Open Access Journals (Sweden)
M. Saki
2013-03-01
Full Text Available The relationship between plant species and environmental factors has always been a central issue in plant ecology. With rising power of statistical techniques, geo-statistics and geographic information systems (GIS, the development of predictive habitat distribution models of organisms has rapidly increased in ecology. This study aimed to evaluate the ability of Logistic Regression Tree model to create potential habitat map of Astragalus verus. This species produces Tragacanth and has economic value. A stratified- random sampling was applied to 100 sites (50 presence- 50 absence of given species, and produced environmental and edaphic factors maps by using Kriging and Inverse Distance Weighting methods in the ArcGIS software for the whole study area. Relationships between species occurrence and environmental factors were determined by Logistic Regression Tree model and extended to the whole study area. The results indicated species occurrence has strong correlation with environmental factors such as mean daily temperature and clay, EC and organic carbon content of the soil. Species occurrence showed direct relationship with mean daily temperature and clay and organic carbon, and inverse relationship with EC. Model accuracy was evaluated both by Cohen’s kappa statistics (κ and by area under Receiver Operating Characteristics curve based on independent test data set. Their values (kappa=0.9, Auc of ROC=0.96 indicated the high power of LRT to create potential habitat map on local scales. This model, therefore, can be applied to recognize potential sites for rangeland reclamation projects.
AbouEisha, Hassan M.; Moshkov, Mikhail; Calo, Victor M.; Paszynski, Maciej; Goik, Damian; Jopek, Konrad
2014-01-01
In this paper we present a dynamic programming algorithm for finding optimal elimination trees for computational grids refined towards point or edge singularities. The elimination tree is utilized to guide the multi-frontal direct solver algorithm
Strecht, Pedro; Cruz, Luís; Soares, Carlos; Mendes-Moreira, João; Abreu, Rui
2015-01-01
Predicting the success or failure of a student in a course or program is a problem that has recently been addressed using data mining techniques. In this paper we evaluate some of the most popular classification and regression algorithms on this problem. We address two problems: prediction of approval/failure and prediction of grade. The former is…
Directory of Open Access Journals (Sweden)
Kritski Afrânio
2006-02-01
Full Text Available Abstract Background Smear negative pulmonary tuberculosis (SNPT accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.
Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.
Huson, Daniel H; Linz, Simone
2018-01-01
A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.
Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K
2015-01-01
Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (pmachine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273
Prediction of cannabis and cocaine use in adolescence using decision trees and logistic regression
Directory of Open Access Journals (Sweden)
Alfonso L. Palmer
2010-01-01
Full Text Available Spain is one of the European countries with the highest prevalence of cannabis and cocaine use among young people. The aim of this study was to investigate the factors related to the consumption of cocaine and cannabis among adolescents. A questionnaire was administered to 9,284 students between 14 and 18 years of age in Palma de Mallorca (47.1% boys and 52.9% girls whose mean age was 15.59 years. Logistic regression and decision trees were carried out in order to model the consumption of cannabis and cocaine. The results show the use of legal substances and committing fraudulence or theft are the main variables that raise the odds of consuming cannabis. In boys, cannabis consumption and a family history of drug use increase the odds of consuming cocaine, whereas in girls the use of alcohol, behaviours of fraudulence or theft and difficulty in some personal skills influence their odds of consuming cocaine. Finally, ease of access to the substance greatly raises the odds of consuming cocaine and cannabis in both genders. Decision trees highlight the role of consuming other substances and committing fraudulence or theft. The results of this study gain importance when it comes to putting into practice effective prevention programmes.
Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong
2018-01-01
Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.
Directory of Open Access Journals (Sweden)
Xu Yu
2018-01-01
Full Text Available Cross-domain collaborative filtering (CDCF solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR. We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.
Building of fuzzy decision trees using ID3 algorithm
Begenova, S. B.; Avdeenko, T. V.
2018-05-01
Decision trees are widely used in the field of machine learning and artificial intelligence. Such popularity is due to the fact that with the help of decision trees graphic models, text rules can be built and they are easily understood by the final user. Because of the inaccuracy of observations, uncertainties, the data, collected in the environment, often take an unclear form. Therefore, fuzzy decision trees becoming popular in the field of machine learning. This article presents a method that includes the features of the two above-mentioned approaches: a graphical representation of the rules system in the form of a tree and a fuzzy representation of the data. The approach uses such advantages as high comprehensibility of decision trees and the ability to cope with inaccurate and uncertain information in fuzzy representation. The received learning method is suitable for classifying problems with both numerical and symbolic features. In the article, solution illustrations and numerical results are given.
Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutations
DEFF Research Database (Denmark)
Kratsch, Stefan; Lehre, Per Kristian; Neumann, Frank
2011-01-01
Evolutionary algorithms have been shown to be very successful for a wide range of NP-hard combinatorial optimization problems. We investigate the NP-hard problem of computing a spanning tree that has a maximal number of leaves by evolutionary algorithms in the context of fixed parameter tractabil...... two common mutation operators, we show that an operator related to spanning tree problems leads to an FPT running time in contrast to a general mutation operator that does not have this property....
Directory of Open Access Journals (Sweden)
Cheng-Wen Lee
2017-11-01
Full Text Available Accurate electricity forecasting is still the critical issue in many energy management fields. The applications of hybrid novel algorithms with support vector regression (SVR models to overcome the premature convergence problem and improve forecasting accuracy levels also deserve to be widely explored. This paper applies chaotic function and quantum computing concepts to address the embedded drawbacks including crossover and mutation operations of genetic algorithms. Then, this paper proposes a novel electricity load forecasting model by hybridizing chaotic function and quantum computing with GA in an SVR model (named SVRCQGA to achieve more satisfactory forecasting accuracy levels. Experimental examples demonstrate that the proposed SVRCQGA model is superior to other competitive models.
Integrating classification trees with local logistic regression in Intensive Care prognosis.
Abu-Hanna, Ameen; de Keizer, Nicolette
2003-01-01
Health care effectiveness and efficiency are under constant scrutiny especially when treatment is quite costly as in the Intensive Care (IC). Currently there are various international quality of care programs for the evaluation of IC. At the heart of such quality of care programs lie prognostic models whose prediction of patient mortality can be used as a norm to which actual mortality is compared. The current generation of prognostic models in IC are statistical parametric models based on logistic regression. Given a description of a patient at admission, these models predict the probability of his or her survival. Typically, this patient description relies on an aggregate variable, called a score, that quantifies the severity of illness of the patient. The use of a parametric model and an aggregate score form adequate means to develop models when data is relatively scarce but it introduces the risk of bias. This paper motivates and suggests a method for studying and improving the performance behavior of current state-of-the-art IC prognostic models. Our method is based on machine learning and statistical ideas and relies on exploiting information that underlies a score variable. In particular, this underlying information is used to construct a classification tree whose nodes denote patient sub-populations. For these sub-populations, local models, most notably logistic regression ones, are developed using only the total score variable. We compare the performance of this hybrid model to that of a traditional global logistic regression model. We show that the hybrid model not only provides more insight into the data but also has a better performance. We pay special attention to the precision aspect of model performance and argue why precision is more important than discrimination ability.
Sharifahmadian, Ershad
2006-01-01
The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.
Smith, R.; Kasprzyk, J. R.; Balaji, R.
2017-12-01
In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.
A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.
Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F
2018-03-01
Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.
Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas
2015-04-01
The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine
Damghi, Nada; Khoudri, Ibtissam; Oualili, Latifa; Abidi, Khalid; Madani, Naoufel; Zeggwagh, Amine Ali; Abouqal, Redouane
2008-07-01
Meeting the needs of patients' family members becomes an essential part of responsibilities of intensive care unit physicians. The aim of this study was to evaluate the satisfaction of patients' family members using the Arabic version of the Society of Critical Care Medicine's Family Needs Assessment questionnaire and to assess the predictors of family satisfaction using the classification and regression tree method. The authors conducted a prospective study. This study was conducted at a 12-bed medical intensive care unit in Morocco. Family representatives (n = 194) of consecutive patients with a length of stay >48 hrs were included in the study. Intervention was the Society of Critical Care Medicine's Family Needs Assessment questionnaire. Demographic data for relatives included age, gender, relationship with patients, education level, and intensive care unit commuting time. Clinical data for patients included age, gender, diagnoses, intensive care unit length of stay, Acute Physiology and Chronic Health Evaluation, MacCabe index, Therapeutic Interventioning Scoring System, and mechanical ventilation. The Arabic version of the Society of Critical Care Medicine's Family Needs Assessment questionnaire was administered between the third and fifth days after admission. Of family representatives, 81% declared being satisfied with information provided by physicians, 27% would like more information about the diagnosis, 30% about prognosis, and 45% about treatment. In univariate analysis, family satisfaction (small Society of Critical Care Medicine's Family Needs Assessment questionnaire score) increased with a lower family education level (p = .005), when the information was given by a senior physician (p = .014), and when the Society of Critical Care Medicine's Family Needs Assessment questionnaire was administered by an investigator (p = .002). Multivariate analysis (classification and regression tree) showed that the education level was the predominant factor
Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.
Hu, Yi-Chung
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.
A Boyer-Moore (or Watson-Watson) type algorithm for regular tree pattern matching
Watson, B.W.; Aarts, E.H.L.; Eikelder, ten H.M.M.; Hemerik, C.; Rem, M.
1995-01-01
In this chapter, I outline a new algorithm for regular tree pattern matching. The existence of this algorithm was first mentioned in the statements accompanying my dissertation, [2]. In order to avoid repeating the material in my dissertation, it is assumed that the reader is familiar with Chapters
DEFF Research Database (Denmark)
Hou, Peng; Hu, Weihao; Chen, Zhe
2015-01-01
Anew approach, Dynamic Minimal Spanning Tree (DMST) algorithm, whichisbased on the MST algorithm isproposed in this paper to optimizethe cable connectionlayout for large scale offshore wind farm collection system. The current carrying capacity of the cable is considered as the main constraint....... It is amore economicalway for cable connection configurationdesignof offshore wind farm collection system....
Faster exact algorithms for computing Steiner trees in higher dimensional Euclidean spaces
DEFF Research Database (Denmark)
Fonseca, Rasmus; Brazil, Marcus; Winter, Pawel
The Euclidean Steiner tree problem asks for a network of minimum total length interconnecting a finite set of points in d-dimensional space. For d ≥ 3, only one practical algorithmic approach exists for this problem --- proposed by Smith in 1992. A number of refinements of Smith's algorithm have...
Pair- ${v}$ -SVR: A Novel and Efficient Pairing nu-Support Vector Regression Algorithm.
Hao, Pei-Yi
This paper proposes a novel and efficient pairing nu-support vector regression (pair--SVR) algorithm that combines successfully the superior advantages of twin support vector regression (TSVR) and classical -SVR algorithms. In spirit of TSVR, the proposed pair--SVR solves two quadratic programming problems (QPPs) of smaller size rather than a single larger QPP, and thus has faster learning speed than classical -SVR. The significant advantage of our pair--SVR over TSVR is the improvement in the prediction speed and generalization ability by introducing the concepts of the insensitive zone and the regularization term that embodies the essence of statistical learning theory. Moreover, pair--SVR has additional advantage of using parameter for controlling the bounds on fractions of SVs and errors. Furthermore, the upper bound and lower bound functions of the regression model estimated by pair--SVR capture well the characteristics of data distributions, thus facilitating automatic estimation of the conditional mean and predictive variance simultaneously. This may be useful in many cases, especially when the noise is heteroscedastic and depends strongly on the input values. The experimental results validate the superiority of our pair--SVR in both training/prediction speed and generalization ability.This paper proposes a novel and efficient pairing nu-support vector regression (pair--SVR) algorithm that combines successfully the superior advantages of twin support vector regression (TSVR) and classical -SVR algorithms. In spirit of TSVR, the proposed pair--SVR solves two quadratic programming problems (QPPs) of smaller size rather than a single larger QPP, and thus has faster learning speed than classical -SVR. The significant advantage of our pair--SVR over TSVR is the improvement in the prediction speed and generalization ability by introducing the concepts of the insensitive zone and the regularization term that embodies the essence of statistical learning theory
Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat
2015-01-01
Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.
Directory of Open Access Journals (Sweden)
Jianzhou Wang
2015-01-01
Full Text Available This paper develops an effectively intelligent model to forecast short-term wind speed series. A hybrid forecasting technique is proposed based on recurrence plot (RP and optimized support vector regression (SVR. Wind caused by the interaction of meteorological systems makes itself extremely unsteady and difficult to forecast. To understand the wind system, the wind speed series is analyzed using RP. Then, the SVR model is employed to forecast wind speed, in which the input variables are selected by RP, and two crucial parameters, including the penalties factor and gamma of the kernel function RBF, are optimized by various optimization algorithms. Those optimized algorithms are genetic algorithm (GA, particle swarm optimization algorithm (PSO, and cuckoo optimization algorithm (COA. Finally, the optimized SVR models, including COA-SVR, PSO-SVR, and GA-SVR, are evaluated based on some criteria and a hypothesis test. The experimental results show that (1 analysis of RP reveals that wind speed has short-term predictability on a short-term time scale, (2 the performance of the COA-SVR model is superior to that of the PSO-SVR and GA-SVR methods, especially for the jumping samplings, and (3 the COA-SVR method is statistically robust in multi-step-ahead prediction and can be applied to practical wind farm applications.
Mazenq, Julie; Dubus, Jean-Christophe; Gaudart, Jean; Charpin, Denis; Viudes, Gilles; Noel, Guilhem
2017-11-01
Particulate matter, nitrogen dioxide (NO 2 ) and ozone are recognized as the three pollutants that most significantly affect human health. Asthma is a multifactorial disease. However, the place of residence has rarely been investigated. We compared the impact of air pollution, measured near patients' homes, on emergency department (ED) visits for asthma or trauma (controls) within the Provence-Alpes-Côte-d'Azur region. Variables were selected using classification and regression trees on asthmatic and control population, 3-99 years, visiting ED from January 1 to December 31, 2013. Then in a nested case control study, randomization was based on the day of ED visit and on defined age groups. Pollution, meteorological, pollens and viral data measured that day were linked to the patient's ZIP code. A total of 794,884 visits were reported including 6250 for asthma and 278,192 for trauma. Factors associated with an excess risk of emergency visit for asthma included short-term exposure to NO 2 , female gender, high viral load and a combination of low temperature and high humidity. Short-term exposures to high NO 2 concentrations, as assessed close to the homes of the patients, were significantly associated with asthma-related ED visits in children and adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
Groundwater level prediction of landslide based on classification and regression tree
Directory of Open Access Journals (Sweden)
Yannan Zhao
2016-09-01
Full Text Available According to groundwater level monitoring data of Shuping landslide in the Three Gorges Reservoir area, based on the response relationship between influential factors such as rainfall and reservoir level and the change of groundwater level, the influential factors of groundwater level were selected. Then the classification and regression tree (CART model was constructed by the subset and used to predict the groundwater level. Through the verification, the predictive results of the test sample were consistent with the actually measured values, and the mean absolute error and relative error is 0.28 m and 1.15% respectively. To compare the support vector machine (SVM model constructed using the same set of factors, the mean absolute error and relative error of predicted results is 1.53 m and 6.11% respectively. It is indicated that CART model has not only better fitting and generalization ability, but also strong advantages in the analysis of landslide groundwater dynamic characteristics and the screening of important variables. It is an effective method for prediction of ground water level in landslides.
Directory of Open Access Journals (Sweden)
Josef Smolle
2001-01-01
Full Text Available Objective: To evaluate the feasibility of the CART (Classification and Regression Tree procedure for the recognition of microscopic structures in tissue counter analysis. Methods: Digital microscopic images of H&E stained slides of normal human skin and of primary malignant melanoma were overlayed with regularly distributed square measuring masks (elements and grey value, texture and colour features within each mask were recorded. In the learning set, elements were interactively labeled as representing either connective tissue of the reticular dermis, other tissue components or background. Subsequently, CART models were based on these data sets. Results: Implementation of the CART classification rules into the image analysis program showed that in an independent test set 94.1% of elements classified as connective tissue of the reticular dermis were correctly labeled. Automated measurements of the total amount of tissue and of the amount of connective tissue within a slide showed high reproducibility (r=0.97 and r=0.94, respectively; p < 0.001. Conclusions: CART procedure in tissue counter analysis yields simple and reproducible classification rules for tissue elements.
Directory of Open Access Journals (Sweden)
I GEDE AGUS JIWADIANA
2015-11-01
Full Text Available The aim of this research is to determine the classification characteristics of traffic accidents in Denpasar city in January-July 2014 by using Classification And Regression Trees (CART. Then, for determine the explanatory variables into the main classifier of CART. The result showed that optimum CART generate three terminal node. First terminal node, there are 12 people were classified as heavy traffic accident characteritics with single accident, and second terminal nodes, there are 68 people were classified as minor traffic accident characteristics by type of traffic accident front-rear, front-front, front-side, pedestrians, side-side and location of traffic accident in district road and sub-district road. For third terminal node, there are 291 people were classified as medium traffic accident characteristics by type of traffic accident front-rear, front-front, front-side, pedestrians, side-side and location of traffic accident in municipality road and explanatory variables into the main splitter to make of CART is type of traffic accident with maximum homogeneity measure of 0.03252.
Estimating carbon and showing impacts of drought using satellite data in regression-tree models
Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.
2018-01-01
Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.
Regression trees modeling and forecasting of PM10 air pollution in urban areas
Stoimenova, M.; Voynikova, D.; Ivanov, A.; Gocheva-Ilieva, S.; Iliev, I.
2017-10-01
Fine particulate matter (PM10) air pollution is a serious problem affecting the health of the population in many Bulgarian cities. As an example, the object of this study is the pollution with PM10 of the town of Pleven, Northern Bulgaria. The measured concentrations of this air pollutant for this city consistently exceeded the permissible limits set by European and national legislation. Based on data for the last 6 years (2011-2016), the analysis shows that this applies both to the daily limit of 50 micrograms per cubic meter and the allowable number of daily concentration exceedances to 35 per year. Also, the average annual concentration of PM10 exceeded the prescribed norm of no more than 40 micrograms per cubic meter. The aim of this work is to build high performance mathematical models for effective prediction and forecasting the level of PM10 pollution. The study was conducted with the powerful flexible data mining technique Classification and Regression Trees (CART). The values of PM10 were fitted with respect to meteorological data such as maximum and minimum air temperature, relative humidity, wind speed and direction and others, as well as with time and autoregressive variables. As a result the obtained CART models demonstrate high predictive ability and fit the actual data with up to 80%. The best models were applied for forecasting the level pollution for 3 to 7 days ahead. An interpretation of the modeling results is presented.
International Nuclear Information System (INIS)
Hong, Wei-Chiang
2011-01-01
Support vector regression (SVR), with hybrid chaotic sequence and evolutionary algorithms to determine suitable values of its three parameters, not only can effectively avoid converging prematurely (i.e., trapping into a local optimum), but also reveals its superior forecasting performance. Electric load sometimes demonstrates a seasonal (cyclic) tendency due to economic activities or climate cyclic nature. The applications of SVR models to deal with seasonal (cyclic) electric load forecasting have not been widely explored. In addition, the concept of recurrent neural networks (RNNs), focused on using past information to capture detailed information, is helpful to be combined into an SVR model. This investigation presents an electric load forecasting model which combines the seasonal recurrent support vector regression model with chaotic artificial bee colony algorithm (namely SRSVRCABC) to improve the forecasting performance. The proposed SRSVRCABC employs the chaotic behavior of honey bees which is with better performance in function optimization to overcome premature local optimum. A numerical example from an existed reference is used to elucidate the forecasting performance of the proposed SRSVRCABC model. The forecasting results indicate that the proposed model yields more accurate forecasting results than ARIMA and TF-ε-SVR-SA models. Therefore, the SRSVRCABC model is a promising alternative for electric load forecasting. -- Highlights: → Hybridizing the seasonal adjustment and the recurrent mechanism into an SVR model. → Employing chaotic sequence to improve the premature convergence of artificial bee colony algorithm. → Successfully providing significant accurate monthly load demand forecasting.
Brabant, Marie-Eve; Hebert, Martine; Chagnon, Francois
2013-01-01
This study explored the clinical profiles of 77 female teenager survivors of sexual abuse and examined the association of abuse-related and personal variables with suicidal ideations. Analyses revealed that 64% of participants experienced suicidal ideations. Findings from classification and regression tree analysis indicated that depression,…
Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; Michael K. Falkowski; Alistair M. S. Smith; Paul E. Gessler; Penelope Morgan
2006-01-01
We compared the utility of discrete-return light detection and ranging (lidar) data and multispectral satellite imagery, and their integration, for modeling and mapping basal area and tree density across two diverse coniferous forest landscapes in north-central Idaho. We applied multiple linear regression models subset from a suite of 26 predictor variables derived...
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.
Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto
2012-11-21
This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.
Data-Parallel Algorithm for Contour Tree Construction
Energy Technology Data Exchange (ETDEWEB)
Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahrens, James Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, Hamish [Univ. of Leeds (United Kingdom); Weber, Gunther [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-01-19
The goal of this project is to develop algorithms for additional visualization and analysis filters in order to expand the functionality of the VTK-m toolkit to support less critical but commonly used operators.
Yu, Yun; Warnow, Tandy; Nakhleh, Luay
2011-11-01
One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is Minimize Deep Coalescence (MDC). Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from true gene trees, be incompletely resolved, and not necessarily rooted. In this article, we propose new MDC formulations for the cases where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-binary. Further, we prove structural theorems that allow us to extend the algorithms for the rooted/binary gene tree case to these cases in a straightforward manner. In addition, we devise MDC-based algorithms for cases when multiple alleles per species may be sampled. We study the performance of these methods in coalescent-based computer simulations.
Study on the Secant Segmentation Algorithm of Rubber Tree
Li, Shute; Zhang, Jie; Zhang, Jian; Sun, Liang; Liu, Yongna
2018-04-01
Natural rubber is one of the most important materials in the national defense and industry, and the tapping panel dryness (TPD) of the rubber tree is one of the most serious diseases that affect the production of rubber. Although considerable progress has been made in the more than 100 years of research on the TPD, there are still many areas to be improved. At present, the method of artificial observation is widely used to identify TPD, but the diversity of rubber tree secant symptoms leads to the inaccurate judgement of the level of TPD. In this paper, image processing technology is used to separate the secant and latex, so that we can get rid of the interference factors, get the exact secant and latex binary image. By calculating the area ratio of the corresponding binary images, the grade of TPD can be classified accurately. and can also provide an objective basis for the accurate identification of the tapping panel dryness (TPD) level.
An Efficient Distributed Algorithm for Constructing Spanning Trees in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Rosana Lachowski
2015-01-01
Full Text Available Monitoring and data collection are the two main functions in wireless sensor networks (WSNs. Collected data are generally transmitted via multihop communication to a special node, called the sink. While in a typical WSN, nodes have a sink node as the final destination for the data traffic, in an ad hoc network, nodes need to communicate with each other. For this reason, routing protocols for ad hoc networks are inefficient for WSNs. Trees, on the other hand, are classic routing structures explicitly or implicitly used in WSNs. In this work, we implement and evaluate distributed algorithms for constructing routing trees in WSNs described in the literature. After identifying the drawbacks and advantages of these algorithms, we propose a new algorithm for constructing spanning trees in WSNs. The performance of the proposed algorithm and the quality of the constructed tree were evaluated in different network scenarios. The results showed that the proposed algorithm is a more efficient solution. Furthermore, the algorithm provides multiple routes to the sensor nodes to be used as mechanisms for fault tolerance and load balancing.
Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks
Luo, Hongbin; Li, Lemin; Yu, Hongfang
2006-12-01
Wavelength-division-multiplexing (WDM) technology is expected to facilitate bandwidth-intensive multicast applications such as high-definition television. A single fiber cut in a WDM mesh network, however, can disrupt the dissemination of information to several destinations on a light-tree based multicast session. Thus it is imperative to protect multicast sessions by reserving redundant resources. We propose a novel and efficient algorithm for protecting light-trees in survivable WDM mesh networks. The algorithm is called segment-based protection with sister node first (SSNF), whose basic idea is to protect a light-tree using a set of backup segments with a higher priority to protect the segments from a branch point to its children (sister nodes). The SSNF algorithm differs from the segment protection scheme proposed in the literature in how the segments are identified and protected. Our objective is to minimize the network resources used for protecting each primary light-tree such that the blocking probability can be minimized. To verify the effectiveness of the SSNF algorithm, we conduct extensive simulation experiments. The simulation results demonstrate that the SSNF algorithm outperforms existing algorithms for the same problem.
Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi
2017-06-01
Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p logistic regression model for the classification of risk groups for PTB.
An Improved Binary Differential Evolution Algorithm to Infer Tumor Phylogenetic Trees.
Liang, Ying; Liao, Bo; Zhu, Wen
2017-01-01
Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells. We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform. The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process, which outperforms other similar algorithms.
Boundary expansion algorithm of a decision tree induction for an imbalanced dataset
Directory of Open Access Journals (Sweden)
Kesinee Boonchuay
2017-10-01
Full Text Available A decision tree is one of the famous classifiers based on a recursive partitioning algorithm. This paper introduces the Boundary Expansion Algorithm (BEA to improve a decision tree induction that deals with an imbalanced dataset. BEA utilizes all attributes to define non-splittable ranges. The computed means of all attributes for minority instances are used to find the nearest minority instance, which will be expanded along all attributes to cover a minority region. As a result, BEA can successfully cope with an imbalanced dataset comparing with C4.5, Gini, asymmetric entropy, top-down tree, and Hellinger distance decision tree on 25 imbalanced datasets from the UCI Repository.
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Fagerberg, Rolf; Mailund, Thomas
2013-01-01
), respectively, and counting how often the induced topologies in the two input trees are different. In this paper we present efficient algorithms for computing these distances. We show how to compute the triplet distance in time O(n log n) and the quartet distance in time O(d n log n), where d is the maximal......The triplet and quartet distances are distance measures to compare two rooted and two unrooted trees, respectively. The leaves of the two trees should have the same set of n labels. The distances are defined by enumerating all subsets of three labels (triplets) and four labels (quartets...... degree of any node in the two trees. Within the same time bounds, our framework also allows us to compute the parameterized triplet and quartet distances, where a parameter is introduced to weight resolved (binary) topologies against unresolved (non-binary) topologies. The previous best algorithm...
Rovlias, Aristedis; Theodoropoulos, Spyridon; Papoutsakis, Dimitrios
2015-01-01
Background: Chronic subdural hematoma (CSDH) is one of the most common clinical entities in daily neurosurgical practice which carries a most favorable prognosis. However, because of the advanced age and medical problems of patients, surgical therapy is frequently associated with various complications. This study evaluated the clinical features, radiological findings, and neurological outcome in a large series of patients with CSDH. Methods: A classification and regression tree (CART) technique was employed in the analysis of data from 986 patients who were operated at Asclepeion General Hospital of Athens from January 1986 to December 2011. Burr holes evacuation with closed system drainage has been the operative technique of first choice at our institution for 29 consecutive years. A total of 27 prognostic factors were examined to predict the outcome at 3-month postoperatively. Results: Our results indicated that neurological status on admission was the best predictor of outcome. With regard to the other data, age, brain atrophy, thickness and density of hematoma, subdural accumulation of air, and antiplatelet and anticoagulant therapy were found to correlate significantly with prognosis. The overall cross-validated predictive accuracy of CART model was 85.34%, with a cross-validated relative error of 0.326. Conclusions: Methodologically, CART technique is quite different from the more commonly used methods, with the primary benefit of illustrating the important prognostic variables as related to outcome. Since, the ideal therapy for the treatment of CSDH is still under debate, this technique may prove useful in developing new therapeutic strategies and approaches for patients with CSDH. PMID:26257985
Kaskhedikar, Apoorva Prakash
According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI
Aguiar, Fabio S; Almeida, Luciana L; Ruffino-Netto, Antonio; Kritski, Afranio Lineu; Mello, Fernanda Cq; Werneck, Guilherme L
2012-08-07
Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in
Directory of Open Access Journals (Sweden)
Andréa Gazzinelli
Full Text Available Praziquantel (PZQ is an effective chemotherapy for schistosomiasis mansoni and a mainstay for its control and potential elimination. However, it does not prevent against reinfection, which can occur rapidly in areas with active transmission. A guide to ranking the risk factors for Schistosoma mansoni reinfection would greatly contribute to prioritizing resources and focusing prevention and control measures to prevent rapid reinfection. The objective of the current study was to explore the relationship among the socioeconomic, demographic, and epidemiological factors that can influence reinfection by S. mansoni one year after successful treatment with PZQ in school-aged children in Northeastern Minas Gerais state Brazil. Parasitological, socioeconomic, demographic, and water contact information were surveyed in 506 S. mansoni-infected individuals, aged 6 to 15 years, resident in these endemic areas. Eligible individuals were treated with PZQ until they were determined to be negative by the absence of S. mansoni eggs in the feces on two consecutive days of Kato-Katz fecal thick smear. These individuals were surveyed again 12 months from the date of successful treatment with PZQ. A classification and regression tree modeling (CART was then used to explore the relationship between socioeconomic, demographic, and epidemiological variables and their reinfection status. The most important risk factor identified for S. mansoni reinfection was their "heavy" infection at baseline. Additional analyses, excluding heavy infection status, showed that lower socioeconomic status and a lower level of education of the household head were also most important risk factors for S. mansoni reinfection. Our results provide an important contribution toward the control and possible elimination of schistosomiasis by identifying three major risk factors that can be used for targeted treatment and monitoring of reinfection. We suggest that control measures that target
Rare itemsets mining algorithm based on RP-Tree and spark framework
Liu, Sainan; Pan, Haoan
2018-05-01
For the issues of the rare itemsets mining in big data, this paper proposed a rare itemsets mining algorithm based on RP-Tree and Spark framework. Firstly, it arranged the data vertically according to the transaction identifier, in order to solve the defects of scan the entire data set, the vertical datasets are divided into frequent vertical datasets and rare vertical datasets. Then, it adopted the RP-Tree algorithm to construct the frequent pattern tree that contains rare items and generate rare 1-itemsets. After that, it calculated the support of the itemsets by scanning the two vertical data sets, finally, it used the iterative process to generate rare itemsets. The experimental show that the algorithm can effectively excavate rare itemsets and have great superiority in execution time.
Applications and Benefits for Big Data Sets Using Tree Distances and The T-SNE Algorithm
2016-03-01
BENEFITS FOR BIG DATA SETS USING TREE DISTANCES AND THE T-SNE ALGORITHM by Suyoung Lee March 2016 Thesis Advisor: Samuel E. Buttrey...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE APPLICATIONS AND BENEFITS FOR BIG DATA SETS USING TREE DISTANCES AND THE T-SNE...public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words ) Modern data sets often consist of unstructured data
A New Algorithm Using the Non-Dominated Tree to Improve Non-Dominated Sorting.
Gustavsson, Patrik; Syberfeldt, Anna
2018-01-01
Non-dominated sorting is a technique often used in evolutionary algorithms to determine the quality of solutions in a population. The most common algorithm is the Fast Non-dominated Sort (FNS). This algorithm, however, has the drawback that its performance deteriorates when the population size grows. The same drawback applies also to other non-dominating sorting algorithms such as the Efficient Non-dominated Sort with Binary Strategy (ENS-BS). An algorithm suggested to overcome this drawback is the Divide-and-Conquer Non-dominated Sort (DCNS) which works well on a limited number of objectives but deteriorates when the number of objectives grows. This article presents a new, more efficient algorithm called the Efficient Non-dominated Sort with Non-Dominated Tree (ENS-NDT). ENS-NDT is an extension of the ENS-BS algorithm and uses a novel Non-Dominated Tree (NDTree) to speed up the non-dominated sorting. ENS-NDT is able to handle large population sizes and a large number of objectives more efficiently than existing algorithms for non-dominated sorting. In the article, it is shown that with ENS-NDT the runtime of multi-objective optimization algorithms such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) can be substantially reduced.
A practical O(n log2 n) time algorithm for computing the triplet distance on binary trees
DEFF Research Database (Denmark)
Sand, Andreas; Pedersen, Christian Nørgaard Storm; Mailund, Thomas
2013-01-01
rooted binary trees in time O (n log2 n). The algorithm is related to an algorithm for computing the quartet distance between two unrooted binary trees in time O (n log n). While the quartet distance algorithm has a very severe overhead in the asymptotic time complexity that makes it impractical compared......The triplet distance is a distance measure that compares two rooted trees on the same set of leaves by enumerating all sub-sets of three leaves and counting how often the induced topologies of the tree are equal or different. We present an algorithm that computes the triplet distance between two...
International Nuclear Information System (INIS)
Althuwaynee, Omar F; Pradhan, Biswajeet; Ahmad, Noordin
2014-01-01
This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies
Althuwaynee, Omar F.; Pradhan, Biswajeet; Ahmad, Noordin
2014-06-01
This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies.
Using rapidly-exploring random tree-based algorithms to find smooth and optimal trajectories
CSIR Research Space (South Africa)
Matebese, B
2012-10-01
Full Text Available -exploring random tree-based algorithms to fi nd smooth and optimal trajectories B MATEBESE1, MK BANDA2 AND S UTETE1 1CSIR Modelling and Digital Science, PO Box 395, Pretoria, South Africa, 0001 2Department of Applied Mathematics, Stellenbosch University... and complex environments. The RRT algorithm is the most popular and has the ability to find a feasible solution faster than other algorithms. The drawback of using RRT is that, as the number of samples increases, the probability that the algorithm converges...
Comprehensive database of diameter-based biomass regressions for North American tree species
Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey
2004-01-01
A database consisting of 2,640 equations compiled from the literature for predicting the biomass of trees and tree components from diameter measurements of species found in North America. Bibliographic information, geographic locations, diameter limits, diameter and biomass units, equation forms, statistical errors, and coefficients are provided for each equation,...
Deconinck, E; Zhang, M H; Petitet, F; Dubus, E; Ijjaali, I; Coomans, D; Vander Heyden, Y
2008-02-18
The use of some unconventional non-linear modeling techniques, i.e. classification and regression trees and multivariate adaptive regression splines-based methods, was explored to model the blood-brain barrier (BBB) passage of drugs and drug-like molecules. The data set contains BBB passage values for 299 structural and pharmacological diverse drugs, originating from a structured knowledge-based database. Models were built using boosted regression trees (BRT) and multivariate adaptive regression splines (MARS), as well as their respective combinations with stepwise multiple linear regression (MLR) and partial least squares (PLS) regression in two-step approaches. The best models were obtained using combinations of MARS with either stepwise MLR or PLS. It could be concluded that the use of combinations of a linear with a non-linear modeling technique results in some improved properties compared to the individual linear and non-linear models and that, when the use of such a combination is appropriate, combinations using MARS as non-linear technique should be preferred over those with BRT, due to some serious drawbacks of the BRT approaches.
Fast algorithms for finding proper strategies in game trees
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Sørensen, Troels Bjerre
2008-01-01
We show how to find a normal form proper equilibrium in behavior strategies of a given two-player zero-sum extensive form game with imperfect information but perfect recall. Our algorithm solves a finite sequence of linear programs and runs in polynomial time. For the case of a perfect informatio...
Creating ensembles of oblique decision trees with evolutionary algorithms and sampling
Cantu-Paz, Erick [Oakland, CA; Kamath, Chandrika [Tracy, CA
2006-06-13
A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.
Matsen, Frederick A
2010-06-01
This article introduces constNJ (constrained neighbor-joining), an algorithm for phylogenetic reconstruction of sets of trees with constrained pairwise rooted subtree-prune-regraft (rSPR) distance. We are motivated by the problem of constructing sets of trees that must fit into a recombination, hybridization, or similar network. Rather than first finding a set of trees that are optimal according to a phylogenetic criterion (e.g., likelihood or parsimony) and then attempting to fit them into a network, constNJ estimates the trees while enforcing specified rSPR distance constraints. The primary input for constNJ is a collection of distance matrices derived from sequence blocks which are assumed to have evolved in a tree-like manner, such as blocks of an alignment which do not contain any recombination breakpoints. The other input is a set of rSPR constraint inequalities for any set of pairs of trees. constNJ is consistent and a strict generalization of the neighbor-joining algorithm; it uses the new notion of maximum agreement partitions (MAPs) to assure that the resulting trees satisfy the given rSPR distance constraints.
Directory of Open Access Journals (Sweden)
Meiping Wang
2016-01-01
Full Text Available We developed an effective intelligent model to predict the dynamic heat supply of heat source. A hybrid forecasting method was proposed based on support vector regression (SVR model-optimized particle swarm optimization (PSO algorithms. Due to the interaction of meteorological conditions and the heating parameters of heating system, it is extremely difficult to forecast dynamic heat supply. Firstly, the correlations among heat supply and related influencing factors in the heating system were analyzed through the correlation analysis of statistical theory. Then, the SVR model was employed to forecast dynamic heat supply. In the model, the input variables were selected based on the correlation analysis and three crucial parameters, including the penalties factor, gamma of the kernel RBF, and insensitive loss function, were optimized by PSO algorithms. The optimized SVR model was compared with the basic SVR, optimized genetic algorithm-SVR (GA-SVR, and artificial neural network (ANN through six groups of experiment data from two heat sources. The results of the correlation coefficient analysis revealed the relationship between the influencing factors and the forecasted heat supply and determined the input variables. The performance of the PSO-SVR model is superior to those of the other three models. The PSO-SVR method is statistically robust and can be applied to practical heating system.
A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm.
Ronowicz, Joanna; Thommes, Markus; Kleinebudde, Peter; Krysiński, Jerzy
2015-06-20
The present study is focused on the thorough analysis of cause-effect relationships between pellet formulation characteristics (pellet composition as well as process parameters) and the selected quality attribute of the final product. The shape using the aspect ratio value expressed the quality of pellets. A data matrix for chemometric analysis consisted of 224 pellet formulations performed by means of eight different active pharmaceutical ingredients and several various excipients, using different extrusion/spheronization process conditions. The data set contained 14 input variables (both formulation and process variables) and one output variable (pellet aspect ratio). A tree regression algorithm consistent with the Quality by Design concept was applied to obtain deeper understanding and knowledge of formulation and process parameters affecting the final pellet sphericity. The clear interpretable set of decision rules were generated. The spehronization speed, spheronization time, number of holes and water content of extrudate have been recognized as the key factors influencing pellet aspect ratio. The most spherical pellets were achieved by using a large number of holes during extrusion, a high spheronizer speed and longer time of spheronization. The described data mining approach enhances knowledge about pelletization process and simultaneously facilitates searching for the optimal process conditions which are necessary to achieve ideal spherical pellets, resulting in good flow characteristics. This data mining approach can be taken into consideration by industrial formulation scientists to support rational decision making in the field of pellets technology. Copyright © 2015 Elsevier B.V. All rights reserved.
Advanced hybrid query tree algorithm based on slotted backoff mechanism in RFID
Directory of Open Access Journals (Sweden)
XIE Xiaohui
2013-12-01
Full Text Available The merits of performance quality for a RFID system are determined by the effectiveness of tag anti-collision algorithm.Many algorithms for RFID system of tag identification have been proposed,but they all have obvious weaknesses,such as slow speed of identification,unstable and so on.The existing algorithms can be divided into two groups,one is based on ALOHA and another is based on query tree.This article is based on the hybrid query tree algorithm,combined with a slotted backoff mechanism and a specific encoding (Manchester encoding.The number of value“1” in every three consecutive bits of tags is used to determine the tag response time slots,which will greatly reduce the time slot of the collision and improve the recognition efficiency.
Fast algorithms for finding proper strategies in game trees
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Sørensen, Troels Bjerre
2008-01-01
We show how to find a normal form proper equilibrium in behavior strategies of a given two-player zero-sum extensive form game with imperfect information but perfect recall. Our algorithm solves a finite sequence of linear programs and runs in polynomial time. For the case of a perfect information...... game, we show how to find a normal form proper equilibrium in linear time by a simple backwards induction procedure....
Shabani, Farzin; Kumar, Lalit; Solhjouy-fard, Samaneh
2017-08-01
The aim of this study was to have a comparative investigation and evaluation of the capabilities of correlative and mechanistic modeling processes, applied to the projection of future distributions of date palm in novel environments and to establish a method of minimizing uncertainty in the projections of differing techniques. The location of this study on a global scale is in Middle Eastern Countries. We compared the mechanistic model CLIMEX (CL) with the correlative models MaxEnt (MX), Boosted Regression Trees (BRT), and Random Forests (RF) to project current and future distributions of date palm ( Phoenix dactylifera L.). The Global Climate Model (GCM), the CSIRO-Mk3.0 (CS) using the A2 emissions scenario, was selected for making projections. Both indigenous and alien distribution data of the species were utilized in the modeling process. The common areas predicted by MX, BRT, RF, and CL from the CS GCM were extracted and compared to ascertain projection uncertainty levels of each individual technique. The common areas identified by all four modeling techniques were used to produce a map indicating suitable and unsuitable areas for date palm cultivation for Middle Eastern countries, for the present and the year 2100. The four different modeling approaches predict fairly different distributions. Projections from CL were more conservative than from MX. The BRT and RF were the most conservative methods in terms of projections for the current time. The combination of the final CL and MX projections for the present and 2100 provide higher certainty concerning those areas that will become highly suitable for future date palm cultivation. According to the four models, cold, hot, and wet stress, with differences on a regional basis, appears to be the major restrictions on future date palm distribution. The results demonstrate variances in the projections, resulting from different techniques. The assessment and interpretation of model projections requires reservations
Directory of Open Access Journals (Sweden)
Aguiar Fabio S
2012-08-01
Full Text Available Abstract Background Tuberculosis (TB remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Methods Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART model was generated and validated. The area under the ROC curve (AUC, sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. Results We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. Conclusions The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with
Tomczyk, Aleksandra; Ewertowski, Marek; White, Piran; Kasprzak, Leszek
2016-04-01
The dual role of many Protected Natural Areas in providing benefits for both conservation and recreation poses challenges for management. Although recreation-based damage to ecosystems can occur very quickly, restoration can take many years. The protection of conservation interests at the same as providing for recreation requires decisions to be made about how to prioritise and direct management actions. Trails are commonly used to divert visitors from the most important areas of a site, but high visitor pressure can lead to increases in trail width and a concomitant increase in soil erosion. Here we use detailed field data on condition of recreational trails in Gorce National Park, Poland, as the basis for a regression tree analysis to determine the factors influencing trail deterioration, and link specific trail impacts with environmental, use related and managerial factors. We distinguished 12 types of trails, characterised by four levels of degradation: (1) trails with an acceptable level of degradation; (2) threatened trails; (3) damaged trails; and (4) heavily damaged trails. Damaged trails were the most vulnerable of all trails and should be prioritised for appropriate conservation and restoration. We also proposed five types of monitoring of recreational trail conditions: (1) rapid inventory of negative impacts; (2) monitoring visitor numbers and variation in type of use; (3) change-oriented monitoring focusing on sections of trail which were subjected to changes in type or level of use or subjected to extreme weather events; (4) monitoring of dynamics of trail conditions; and (5) full assessment of trail conditions, to be carried out every 10-15 years. The application of the proposed framework can enhance the ability of Park managers to prioritise their trail management activities, enhancing trail conditions and visitor safety, while minimising adverse impacts on the conservation value of the ecosystem. A.M.T. was supported by the Polish Ministry of
Multiple Additive Regression Trees a Methodology for Predictive Data Mining for Fraud Detection
National Research Council Canada - National Science Library
da
2002-01-01
...) is using new and innovative techniques for fraud detection. Their primary techniques for fraud detection are the data mining tools of classification trees and neural networks as well as methods for pooling the results of multiple model fits...
International Nuclear Information System (INIS)
Kumar, Akansha; Tsvetkov, Pavel V.
2015-01-01
Highlights: • This paper presents a new method useful for the optimization of complex dynamic systems. • The method uses the strengths of; genetic algorithms (GA), and regression splines. • The method is applied to the design of a gas cooled fast breeder reactor design. • Tools like Java, R, and codes like MCNP, Matlab are used in this research. - Abstract: A module based optimization method using genetic algorithms (GA), and multivariate regression analysis has been developed to optimize a set of parameters in the design of a nuclear reactor. GA simulates natural evolution to perform optimization, and is widely used in recent times by the scientific community. The GA fits a population of random solutions to the optimized solution of a specific problem. In this work, we have developed a genetic algorithm to determine the values for a set of nuclear reactor parameters to design a gas cooled fast breeder reactor core including a basis thermal–hydraulics analysis, and energy transfer. Multivariate regression is implemented using regression splines (RS). Reactor designs are usually complex and a simulation needs a significantly large amount of time to execute, hence the implementation of GA or any other global optimization techniques is not feasible, therefore we present a new method of using RS in conjunction with GA. Due to using RS, we do not necessarily need to run the neutronics simulation for all the inputs generated from the GA module rather, run the simulations for a predefined set of inputs, build a multivariate regression fit to the input and the output parameters, and then use this fit to predict the output parameters for the inputs generated by GA. The reactor parameters are given by the, radius of a fuel pin cell, isotopic enrichment of the fissile material in the fuel, mass flow rate of the coolant, and temperature of the coolant at the core inlet. And, the optimization objectives for the reactor core are, high breeding of U-233 and Pu-239 in
Liu, Yang; Lü, Yi-he; Zheng, Hai-feng; Chen, Li-ding
2010-05-01
Based on the 10-day SPOT VEGETATION NDVI data and the daily meteorological data from 1998 to 2007 in Yan' an City, the main meteorological variables affecting the annual and interannual variations of NDVI were determined by using regression tree. It was found that the effects of test meteorological variables on the variability of NDVI differed with seasons and time lags. Temperature and precipitation were the most important meteorological variables affecting the annual variation of NDVI, and the average highest temperature was the most important meteorological variable affecting the inter-annual variation of NDVI. Regression tree was very powerful in determining the key meteorological variables affecting NDVI variation, but could not build quantitative relations between NDVI and meteorological variables, which limited its further and wider application.
Forecasting systems reliability based on support vector regression with genetic algorithms
International Nuclear Information System (INIS)
Chen, K.-Y.
2007-01-01
This study applies a novel neural-network technique, support vector regression (SVR), to forecast reliability in engine systems. The aim of this study is to examine the feasibility of SVR in systems reliability prediction by comparing it with the existing neural-network approaches and the autoregressive integrated moving average (ARIMA) model. To build an effective SVR model, SVR's parameters must be set carefully. This study proposes a novel approach, known as GA-SVR, which searches for SVR's optimal parameters using real-value genetic algorithms, and then adopts the optimal parameters to construct the SVR models. A real reliability data for 40 suits of turbochargers were employed as the data set. The experimental results demonstrate that SVR outperforms the existing neural-network approaches and the traditional ARIMA models based on the normalized root mean square error and mean absolute percentage error
Directory of Open Access Journals (Sweden)
Avval Zhila Mohajeri
2015-01-01
Full Text Available This paper deals with developing a linear quantitative structure-activity relationship (QSAR model for predicting the RSK inhibition activity of some new compounds. A dataset consisting of 62 pyrazino [1,2-α] indole, diazepino [1,2-α] indole, and imidazole derivatives with known inhibitory activities was used. Multiple linear regressions (MLR technique combined with the stepwise (SW and the genetic algorithm (GA methods as variable selection tools was employed. For more checking stability, robustness and predictability of the proposed models, internal and external validation techniques were used. Comparison of the results obtained, indicate that the GA-MLR model is superior to the SW-MLR model and that it isapplicable for designing novel RSK inhibitors.
Asencio-Cortés, G.; Morales-Esteban, A.; Shang, X.; Martínez-Álvarez, F.
2018-06-01
Earthquake magnitude prediction is a challenging problem that has been widely studied during the last decades. Statistical, geophysical and machine learning approaches can be found in literature, with no particularly satisfactory results. In recent years, powerful computational techniques to analyze big data have emerged, making possible the analysis of massive datasets. These new methods make use of physical resources like cloud based architectures. California is known for being one of the regions with highest seismic activity in the world and many data are available. In this work, the use of several regression algorithms combined with ensemble learning is explored in the context of big data (1 GB catalog is used), in order to predict earthquakes magnitude within the next seven days. Apache Spark framework, H2 O library in R language and Amazon cloud infrastructure were been used, reporting very promising results.
Application of an Intelligent Fuzzy Regression Algorithm in Road Freight Transportation Modeling
Directory of Open Access Journals (Sweden)
Pooya Najaf
2013-07-01
Full Text Available Road freight transportation between provinces of a country has an important effect on the traffic flow of intercity transportation networks. Therefore, an accurate estimation of the road freight transportation for provinces of a country is so crucial to improve the rural traffic operation in a large scale management. Accordingly, the focused case study database in this research is the information related to Iran’s provinces in the year 2008. Correlation between road freight transportation with variables such as transport cost and distance, population, average household income and Gross Domestic Product (GDP of each province is calculated. Results clarify that the population is the most effective factor in the prediction of provinces’ transported freight. Linear Regression Model (LRM is calibrated based on the population variable, and afterwards Fuzzy Regression Algorithm (FRA is generated on the basis of the LRM. The proposed FRA is an intelligent modified algorithm with an accurate prediction and fitting ability. This methodology can be significantly useful in macro-level planning problems where decreasing prediction error values is one of the most important concerns for decision makers. In addition, Back-Propagation Neural Network (BPNN is developed to evaluate the prediction capability of the models and to be compared with FRA. According to the final results, the modified FRA estimates road freight transportation values more accurately than the BPNN and LRM. Finally, in order to predict the road freight transportation values, the reliability of the calibrated models is analyzed using the information of the year 2009. Results show higher reliability for the proposed modified FRA.
Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies
Cantu-Paz, Erick; Kamath, Chandrika
2000-10-01
Decision tress have long been popular in classification as they use simple and easy-to-understand tests at each node. Most variants of decision trees test a single attribute at a node, leading to axis- parallel trees, where the test results in a hyperplane which is parallel to one of the dimensions in the attribute space. These trees can be rather large and inaccurate in cases where the concept to be learned is best approximated by oblique hyperplanes. In such cases, it may be more appropriate to use an oblique decision tree, where the decision at each node is a linear combination of the attributes. Oblique decision trees have not gained wide popularity in part due to the complexity of constructing good oblique splits and the tendency of existing splitting algorithms to get stuck in local minima. Several alternatives have been proposed to handle these problems including randomization in conjunction wiht deterministic hill-climbing and the use of simulated annealing. In this paper, we use evolutionary algorithms (EAs) to determine the split. EAs are well suited for this problem because of their global search properties, their tolerance to noisy fitness evaluations, and their scalability to large dimensional search spaces. We demonstrate our technique on a synthetic data set, and then we apply it to a practical problem from astronomy, namely, the classification of galaxies with a bent-double morphology. In addition, we describe our experiences with several split evaluation criteria. Our results suggest that, in some cases, the evolutionary approach is faster and more accurate than existing oblique decision tree algorithms. However, for our astronomical data, the accuracy is not significantly different than the axis-parallel trees.
Applied Swarm-based medicine: collecting decision trees for patterns of algorithms analysis.
Panje, Cédric M; Glatzer, Markus; von Rappard, Joscha; Rothermundt, Christian; Hundsberger, Thomas; Zumstein, Valentin; Plasswilm, Ludwig; Putora, Paul Martin
2017-08-16
The objective consensus methodology has recently been applied in consensus finding in several studies on medical decision-making among clinical experts or guidelines. The main advantages of this method are an automated analysis and comparison of treatment algorithms of the participating centers which can be performed anonymously. Based on the experience from completed consensus analyses, the main steps for the successful implementation of the objective consensus methodology were identified and discussed among the main investigators. The following steps for the successful collection and conversion of decision trees were identified and defined in detail: problem definition, population selection, draft input collection, tree conversion, criteria adaptation, problem re-evaluation, results distribution and refinement, tree finalisation, and analysis. This manuscript provides information on the main steps for successful collection of decision trees and summarizes important aspects at each point of the analysis.
Liu, Ke; Chen, Xiaojing; Li, Limin; Chen, Huiling; Ruan, Xiukai; Liu, Wenbin
2015-02-09
The successive projections algorithm (SPA) is widely used to select variables for multiple linear regression (MLR) modeling. However, SPA used only once may not obtain all the useful information of the full spectra, because the number of selected variables cannot exceed the number of calibration samples in the SPA algorithm. Therefore, the SPA-MLR method risks the loss of useful information. To make a full use of the useful information in the spectra, a new method named "consensus SPA-MLR" (C-SPA-MLR) is proposed herein. This method is the combination of consensus strategy and SPA-MLR method. In the C-SPA-MLR method, SPA-MLR is used to construct member models with different subsets of variables, which are selected from the remaining variables iteratively. A consensus prediction is obtained by combining the predictions of the member models. The proposed method is evaluated by analyzing the near infrared (NIR) spectra of corn and diesel. The results of C-SPA-MLR method showed a better prediction performance compared with the SPA-MLR and full-spectra PLS methods. Moreover, these results could serve as a reference for combination the consensus strategy and other variable selection methods when analyzing NIR spectra and other spectroscopic techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.
2016-02-01
Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.
A Regression-based K nearest neighbor algorithm for gene function prediction from heterogeneous data
Directory of Open Access Journals (Sweden)
Ruzzo Walter L
2006-03-01
Full Text Available Abstract Background As a variety of functional genomic and proteomic techniques become available, there is an increasing need for functional analysis methodologies that integrate heterogeneous data sources. Methods In this paper, we address this issue by proposing a general framework for gene function prediction based on the k-nearest-neighbor (KNN algorithm. The choice of KNN is motivated by its simplicity, flexibility to incorporate different data types and adaptability to irregular feature spaces. A weakness of traditional KNN methods, especially when handling heterogeneous data, is that performance is subject to the often ad hoc choice of similarity metric. To address this weakness, we apply regression methods to infer a similarity metric as a weighted combination of a set of base similarity measures, which helps to locate the neighbors that are most likely to be in the same class as the target gene. We also suggest a novel voting scheme to generate confidence scores that estimate the accuracy of predictions. The method gracefully extends to multi-way classification problems. Results We apply this technique to gene function prediction according to three well-known Escherichia coli classification schemes suggested by biologists, using information derived from microarray and genome sequencing data. We demonstrate that our algorithm dramatically outperforms the naive KNN methods and is competitive with support vector machine (SVM algorithms for integrating heterogenous data. We also show that by combining different data sources, prediction accuracy can improve significantly. Conclusion Our extension of KNN with automatic feature weighting, multi-class prediction, and probabilistic inference, enhance prediction accuracy significantly while remaining efficient, intuitive and flexible. This general framework can also be applied to similar classification problems involving heterogeneous datasets.
Directory of Open Access Journals (Sweden)
René Roland Colditz
2015-07-01
Full Text Available Land cover mapping for large regions often employs satellite images of medium to coarse spatial resolution, which complicates mapping of discrete classes. Class memberships, which estimate the proportion of each class for every pixel, have been suggested as an alternative. This paper compares different strategies of training data allocation for discrete and continuous land cover mapping using classification and regression tree algorithms. In addition to measures of discrete and continuous map accuracy the correct estimation of the area is another important criteria. A subset of the 30 m national land cover dataset of 2006 (NLCD2006 of the United States was used as reference set to classify NADIR BRDF-adjusted surface reflectance time series of MODIS at 900 m spatial resolution. Results show that sampling of heterogeneous pixels and sample allocation according to the expected area of each class is best for classification trees. Regression trees for continuous land cover mapping should be trained with random allocation, and predictions should be normalized with a linear scaling function to correctly estimate the total area. From the tested algorithms random forest classification yields lower errors than boosted trees of C5.0, and Cubist shows higher accuracies than random forest regression.
AbouEisha, Hassan M.
2014-06-06
In this paper we present a dynamic programming algorithm for finding optimal elimination trees for computational grids refined towards point or edge singularities. The elimination tree is utilized to guide the multi-frontal direct solver algorithm. Thus, the criterion for the optimization of the elimination tree is the computational cost associated with the multi-frontal solver algorithm executed over such tree. We illustrate the paper with several examples of optimal trees found for grids with point, isotropic edge and anisotropic edge mixed with point singularity. We show the comparison of the execution time of the multi-frontal solver algorithm with results of MUMPS solver with METIS library, implementing the nested dissection algorithm.
A robust background regression based score estimation algorithm for hyperspectral anomaly detection
Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei
2016-12-01
Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement
Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu
2012-02-01
In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.
Directory of Open Access Journals (Sweden)
Brian A. Johnson
2018-01-01
Full Text Available The advent of very high resolution (VHR satellite imagery and the development of Geographic Object-Based Image Analysis (GEOBIA have led to many new opportunities for fine-scale land cover mapping, especially in urban areas. Image segmentation is an important step in the GEOBIA framework, so great time/effort is often spent to ensure that computer-generated image segments closely match real-world objects of interest. In the remote sensing community, segmentation is frequently performed using the multiresolution segmentation (MRS algorithm, which is tuned through three user-defined parameters (the scale, shape/color, and compactness/smoothness parameters. The scale parameter (SP is the most important parameter and governs the average size of generated image segments. Existing automatic methods to determine suitable SPs for segmentation are scene-specific and often computationally intensive, so an approach to estimating appropriate SPs that is generalizable (i.e., not scene-specific could speed up the GEOBIA workflow considerably. In this study, we attempted to identify generalizable SPs for five common urban land cover types (buildings, vegetation, roads, bare soil, and water through meta-analysis and nonlinear regression tree (RT modeling. First, we performed a literature search of recent studies that employed GEOBIA for urban land cover mapping and extracted the MRS parameters used, the image properties (i.e., spatial and radiometric resolutions, and the land cover classes mapped. Using this data extracted from the literature, we constructed RT models for each land cover class to predict suitable SP values based on the: image spatial resolution, image radiometric resolution, shape/color parameter, and compactness/smoothness parameter. Based on a visual and quantitative analysis of results, we found that for all land cover classes except water, relatively accurate SPs could be identified using our RT modeling results. The main advantage of our
Directory of Open Access Journals (Sweden)
Stadler Peter F
2010-06-01
Full Text Available Abstract Background The Maximal Pairing Problem (MPP is the prototype of a class of combinatorial optimization problems that are of considerable interest in bioinformatics: Given an arbitrary phylogenetic tree T and weights ωxy for the paths between any two pairs of leaves (x, y, what is the collection of edge-disjoint paths between pairs of leaves that maximizes the total weight? Special cases of the MPP for binary trees and equal weights have been described previously; algorithms to solve the general MPP are still missing, however. Results We describe a relatively simple dynamic programming algorithm for the special case of binary trees. We then show that the general case of multifurcating trees can be treated by interleaving solutions to certain auxiliary Maximum Weighted Matching problems with an extension of this dynamic programming approach, resulting in an overall polynomial-time solution of complexity (n4 log n w.r.t. the number n of leaves. The source code of a C implementation can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/Targeting. For binary trees, we furthermore discuss several constrained variants of the MPP as well as a partition function approach to the probabilistic version of the MPP. Conclusions The algorithms introduced here make it possible to solve the MPP also for large trees with high-degree vertices. This has practical relevance in the field of comparative phylogenetics and, for example, in the context of phylogenetic targeting, i.e., data collection with resource limitations.
Rizvi, Syed S.; Shah, Dipali; Riasat, Aasia
The Time Wrap algorithm [3] offers a run time recovery mechanism that deals with the causality errors. These run time recovery mechanisms consists of rollback, anti-message, and Global Virtual Time (GVT) techniques. For rollback, there is a need to compute GVT which is used in discrete-event simulation to reclaim the memory, commit the output, detect the termination, and handle the errors. However, the computation of GVT requires dealing with transient message problem and the simultaneous reporting problem. These problems can be dealt in an efficient manner by the Samadi's algorithm [8] which works fine in the presence of causality errors. However, the performance of both Time Wrap and Samadi's algorithms depends on the latency involve in GVT computation. Both algorithms give poor latency for large simulation systems especially in the presence of causality errors. To improve the latency and reduce the processor ideal time, we implement tree and butterflies barriers with the optimistic algorithm. Our analysis shows that the use of synchronous barriers such as tree and butterfly with the optimistic algorithm not only minimizes the GVT latency but also minimizes the processor idle time.
Kenah, Eben; Britton, Tom; Halloran, M. Elizabeth; Longini, Ira M.
2016-01-01
Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology. PMID:27070316
DEFF Research Database (Denmark)
Bou Kheir, Rania; Shomar, B.; Greve, Mogens Humlekrog
2014-01-01
Soil heavy metal pollution has been and continues to be a worldwide phenomenon that has attracted a great deal of attention from governments and regulatory bodies. In this context, our study used Geographic Information Systems (GIS) and regression-tree modeling (196 trees) to precisely quantify...... the relationships between four toxic heavy metals (Ni, Cr, Cd and As) and sixteen environmental parameters (e.g., parent material, slope gradient, proximity to roads, etc.) in the soils of northern Lebanon (as a case study of Mediterranean landscapes), and to detect the most important parameters that can be used...... between 68% and 100%), surroundings of waste areas (48 – 92%), proximity to roads (45 – 82%) and parent materials (57 – 73%) considerably influenced all investigated heavy metals, which is not the case of hydromorphological and soil properties. For instance, hydraulic conductivity (18 – 41%) and pH (23...
An integrated study of surface roughness in EDM process using regression analysis and GSO algorithm
Zainal, Nurezayana; Zain, Azlan Mohd; Sharif, Safian; Nuzly Abdull Hamed, Haza; Mohamad Yusuf, Suhaila
2017-09-01
The aim of this study is to develop an integrated study of surface roughness (Ra) in the die-sinking electrical discharge machining (EDM) process of Ti-6AL-4V titanium alloy with positive polarity of copper-tungsten (Cu-W) electrode. Regression analysis and glowworm swarm optimization (GSO) algorithm were considered for modelling and optimization process. Pulse on time (A), pulse off time (B), peak current (C) and servo voltage (D) were selected as the machining parameters with various levels. The experiments have been conducted based on the two levels of full factorial design with an added center point design of experiments (DOE). Moreover, mathematical models with linear and 2 factor interaction (2FI) effects of the parameters chosen were developed. The validity test of the fit and the adequacy of the developed mathematical models have been carried out by using analysis of variance (ANOVA) and F-test. The statistical analysis showed that the 2FI model outperformed with the most minimal value of Ra compared to the linear model and experimental result.
Demand analysis of flood insurance by using logistic regression model and genetic algorithm
Sidi, P.; Mamat, M. B.; Sukono; Supian, S.; Putra, A. S.
2018-03-01
Citarum River floods in the area of South Bandung Indonesia, often resulting damage to some buildings belonging to the people living in the vicinity. One effort to alleviate the risk of building damage is to have flood insurance. The main obstacle is not all people in the Citarum basin decide to buy flood insurance. In this paper, we intend to analyse the decision to buy flood insurance. It is assumed that there are eight variables that influence the decision of purchasing flood assurance, include: income level, education level, house distance with river, building election with road, flood frequency experience, flood prediction, perception on insurance company, and perception towards government effort in handling flood. The analysis was done by using logistic regression model, and to estimate model parameters, it is done with genetic algorithm. The results of the analysis shows that eight variables analysed significantly influence the demand of flood insurance. These results are expected to be considered for insurance companies, to influence the decision of the community to be willing to buy flood insurance.
International Nuclear Information System (INIS)
Bunyamin, Muhammad Afif; Yap, Keem Siah; Aziz, Nur Liyana Afiqah Abdul; Tiong, Sheih Kiong; Wong, Shen Yuong; Kamal, Md Fauzan
2013-01-01
This paper presents a new approach of gas emission estimation in power generation plant using a hybrid Genetic Algorithm (GA) and Linear Regression (LR) (denoted as GA-LR). The LR is one of the approaches that model the relationship between an output dependant variable, y, with one or more explanatory variables or inputs which denoted as x. It is able to estimate unknown model parameters from inputs data. On the other hand, GA is used to search for the optimal solution until specific criteria is met causing termination. These results include providing good solutions as compared to one optimal solution for complex problems. Thus, GA is widely used as feature selection. By combining the LR and GA (GA-LR), this new technique is able to select the most important input features as well as giving more accurate prediction by minimizing the prediction errors. This new technique is able to produce more consistent of gas emission estimation, which may help in reducing population to the environment. In this paper, the study's interest is focused on nitrous oxides (NOx) prediction. The results of the experiment are encouraging.
Akkaş, Efe; Çubukçu, H. Evren; Artuner, Harun
2014-05-01
C5.0 Decision Tree algorithm. The predictions of the decision tree classifier, namely the matching of the test data with the appropriate mineral group, yield an overall accuracy of >90%. Besides, the algorithm successfully discriminated some mineral (groups) despite their similar elemental composition such as orthopyroxene ((Mg,Fe)2[SiO6]) and olivine ((Mg,Fe)2[SiO4]). Furthermore, the effects of various operating conditions have been insignificant for the classifier. These results demonstrate that decision tree algorithm stands as an accurate, rapid and automated method for mineral classification/identification. Hence, decision tree algorithm would be a promising component of an expert system focused on real-time, automated mineral identification using energy dispersive spectrometers without being affected from the operating conditions. Keywords: mineral identification, energy dispersive spectrometry, decision tree algorithm.
Algorithms and programs for evaluating fault trees with multi-state components
International Nuclear Information System (INIS)
Wickenhaeuser, A.
1989-07-01
Part 1 and 2 of the report contain a summary overview of methods and algorithms for the solution of fault tree analysis problems. The following points are treated in detail: Treatment of fault tree components with more than two states. Acceleration of the solution algorithms. Decomposition and modularization of extensive systems. Calculation of the structural function and the exact occurrence probability. Treatment of statistical dependencies. A flexible tool to be employed in solving these problems is the method of forming Boolean variables with restrictions. In this way, components with more than two states can be treated, the possibilities of forming modules expanded, and statistical dependencies treated. Part 3 contains descriptions of the MUSTAFA, MUSTAMO, PASPI, and SIMUST computer programs based on these methods. (orig./HP) [de
Finch, Holmes W; Davis, Andrew; Dean, Raymond S
2015-03-01
The accurate and early identification of individuals with pervasive conditions such as attention deficit hyperactivity disorder (ADHD) is crucial to ensuring that they receive appropriate and timely assistance and treatment. Heretofore, identification of such individuals has proven somewhat difficult, typically involving clinical decision making based on descriptions and observations of behavior, in conjunction with the administration of cognitive assessments. The present study reports on the use of a sensory motor battery in conjunction with a recursive partitioning computer algorithm, boosted trees, to develop a prediction heuristic for identifying individuals with ADHD. Results of the study demonstrate that this method is able to do so with accuracy rates of over 95 %, much higher than the popular logistic regression model against which it was compared. Implications of these results for practice are provided.
Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung
2017-04-01
Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An
International Nuclear Information System (INIS)
Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios, Martha; Baechler, Sébastien
2015-01-01
Purpose: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. Method: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). Results: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. Conclusion: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables
Astuti, Yuniar Andi
2011-01-01
This study examines techniques Support Vector Regression and Decision Tree C4.5 has been used in studies in various fields, in order to know the advantages and disadvantages of both techniques that appear in Data Mining. From the ten studies that use both techniques, the results of the analysis showed that the accuracy of the SVR technique for 59,64% and C4.5 for 76,97% So in this study obtained a statement that C4.5 is better than SVR 097038020
Yamashita, Takashi; Kart, Cary S; Noe, Douglas A
2012-12-01
Type 2 diabetes is known to contribute to health disparities in the U.S. and failure to adhere to recommended self-care behaviors is a contributing factor. Intervention programs face difficulties as a result of patient diversity and limited resources. With data from the 2005 Behavioral Risk Factor Surveillance System, this study employs a logistic regression tree algorithm to identify characteristics of sub-populations with type 2 diabetes according to their reported frequency of adherence to four recommended diabetes self-care behaviors including blood glucose monitoring, foot examination, eye examination and HbA1c testing. Using Andersen's health behavior model, need factors appear to dominate the definition of which sub-groups were at greatest risk for low as well as high adherence. Findings demonstrate the utility of easily interpreted tree diagrams to design specific culturally appropriate intervention programs targeting sub-populations of diabetes patients who need to improve their self-care behaviors. Limitations and contributions of the study are discussed.
Schumacher, Phyllis; Olinsky, Alan; Quinn, John; Smith, Richard
2010-01-01
The authors extended previous research by 2 of the authors who conducted a study designed to predict the successful completion of students enrolled in an actuarial program. They used logistic regression to determine the probability of an actuarial student graduating in the major or dropping out. They compared the results of this study with those…
Greg C. Liknes; Christopher W. Woodall; Charles H. Perry
2009-01-01
Climate information frequently is included in geospatial modeling efforts to improve the predictive capability of other data sources. The selection of an appropriate climate data source requires consideration given the number of choices available. With regard to climate data, there are a variety of parameters (e.g., temperature, humidity, precipitation), time intervals...
L.R. Iverson; A.M. Prasad; A. Liaw
2004-01-01
More and better machine learning tools are becoming available for landscape ecologists to aid in understanding species-environment relationships and to map probable species occurrence now and potentially into the future. To thal end, we evaluated three statistical models: Regression Tree Analybib (RTA), Bagging Trees (BT) and Random Forest (RF) for their utility in...
Pham, Binh Thai; Prakash, Indra; Tien Bui, Dieu
2018-02-01
A hybrid machine learning approach of Random Subspace (RSS) and Classification And Regression Trees (CART) is proposed to develop a model named RSSCART for spatial prediction of landslides. This model is a combination of the RSS method which is known as an efficient ensemble technique and the CART which is a state of the art classifier. The Luc Yen district of Yen Bai province, a prominent landslide prone area of Viet Nam, was selected for the model development. Performance of the RSSCART model was evaluated through the Receiver Operating Characteristic (ROC) curve, statistical analysis methods, and the Chi Square test. Results were compared with other benchmark landslide models namely Support Vector Machines (SVM), single CART, Naïve Bayes Trees (NBT), and Logistic Regression (LR). In the development of model, ten important landslide affecting factors related with geomorphology, geology and geo-environment were considered namely slope angles, elevation, slope aspect, curvature, lithology, distance to faults, distance to rivers, distance to roads, and rainfall. Performance of the RSSCART model (AUC = 0.841) is the best compared with other popular landslide models namely SVM (0.835), single CART (0.822), NBT (0.821), and LR (0.723). These results indicate that performance of the RSSCART is a promising method for spatial landslide prediction.
Directory of Open Access Journals (Sweden)
MILAD TAZIK
2017-11-01
Full Text Available Identifying cases in which road crashes result in fatality or injury of drivers may help improve their safety. In this study, datasets of crashes happened in TehranQom freeway, Iran, were examined by three models (multiple logistic regression, Bayesian logistic and classification tree to analyse the contribution of several variables to fatal accidents. For multiple logistic regression and Bayesian logistic models, the odds ratio was calculated for each variable. The model which best suited the identification of accident severity was determined based on AIC and DIC criteria. Based on the results of these two models, rollover crashes (OR = 14.58, %95 CI: 6.8-28.6, not using of seat belt (OR = 5.79, %95 CI: 3.1-9.9, exceeding speed limits (OR = 4.02, %95 CI: 1.8-7.9 and being female (OR = 2.91, %95 CI: 1.1-6.1 were the most important factors in fatalities of drivers. In addition, the results of the classification tree model have verified the findings of the other models.
Directory of Open Access Journals (Sweden)
Sofie Demeyer
Full Text Available Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA, a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/.
Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet
2013-01-01
Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/. PMID:23620730
Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet
2013-01-01
Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are inve...
An O(n log n) Version of the Averbakh-Berman Algorithm for the Robust Median of a Tree
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Georgiadis, Loukas; Katriel, Irit
2008-01-01
We show that the minmax regret median of a tree can be found in O(nlog n) time. This is obtained by a modification of Averbakh and Berman's O(nlog2 n)-time algorithm: We design a dynamic solution to their bottleneck subproblem of finding the middle of every root-leaf path in a tree....
Energy Technology Data Exchange (ETDEWEB)
Azadeh, A; Seraj, O [Department of Industrial Engineering and Research Institute of Energy Management and Planning, Center of Excellence for Intelligent-Based Experimental Mechanics, College of Engineering, University of Tehran, P.O. Box 11365-4563 (Iran); Saberi, M [Department of Industrial Engineering, University of Tafresh (Iran); Institute for Digital Ecosystems and Business Intelligence, Curtin University of Technology, Perth (Australia)
2010-06-15
This study presents an integrated fuzzy regression and time series framework to estimate and predict electricity demand for seasonal and monthly changes in electricity consumption especially in developing countries such as China and Iran with non-stationary data. Furthermore, it is difficult to model uncertain behavior of energy consumption with only conventional fuzzy regression (FR) or time series and the integrated algorithm could be an ideal substitute for such cases. At First, preferred Time series model is selected from linear or nonlinear models. For this, after selecting preferred Auto Regression Moving Average (ARMA) model, Mcleod-Li test is applied to determine nonlinearity condition. When, nonlinearity condition is satisfied, the preferred nonlinear model is selected and defined as preferred time series model. At last, the preferred model from fuzzy regression and time series model is selected by the Granger-Newbold. Also, the impact of data preprocessing on the fuzzy regression performance is considered. Monthly electricity consumption of Iran from March 1994 to January 2005 is considered as the case of this study. The superiority of the proposed algorithm is shown by comparing its results with other intelligent tools such as Genetic Algorithm (GA) and Artificial Neural Network (ANN). (author)
Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm
Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.
2014-11-01
minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several
van Iersel, Leo; Kelk, Steven; Lekić, Nela; Scornavacca, Celine
2014-05-05
Reticulate events play an important role in determining evolutionary relationships. The problem of computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard computational problem. Even for binary trees, exact solvers struggle to solve instances with reticulation number larger than 40-50. Here we present CycleKiller and NonbinaryCycleKiller, the first methods to produce solutions verifiably close to optimality for instances with hundreds or even thousands of reticulations. Using simulations, we demonstrate that these algorithms run quickly for large and difficult instances, producing solutions that are very close to optimality. As a spin-off from our simulations we also present TerminusEst, which is the fastest exact method currently available that can handle nonbinary trees: this is used to measure the accuracy of the NonbinaryCycleKiller algorithm. All three methods are based on extensions of previous theoretical work (SIDMA 26(4):1635-1656, TCBB 10(1):18-25, SIDMA 28(1):49-66) and are publicly available. We also apply our methods to real data.
Directory of Open Access Journals (Sweden)
E. Hadaś
2016-06-01
Full Text Available The estimation of dendrometric parameters has become an important issue for the agricultural planning and management. Since the classical field measurements are time consuming and inefficient, Airborne Laser Scanning (ALS data can be used for this purpose. Point clouds acquired for orchard areas allow to determine orchard structures and geometric parameters of individual trees. In this research we propose an automatic method that allows to determine geometric parameters of individual olive trees using ALS data. The method is based on the α-shape algorithm applied for normalized point clouds. The algorithm returns polygons representing crown shapes. For points located inside each polygon, we select the maximum height and the minimum height and then we estimate the tree height and the crown base height. We use the first two components of the Principal Component Analysis (PCA as the estimators for crown diameters. The α-shape algorithm requires to define the radius parameter R. In this study we investigated how sensitive are the results to the radius size, by comparing the results obtained with various settings of the R with reference values of estimated parameters from field measurements. Our study area was the olive orchard located in the Castellon Province, Spain. We used a set of ALS data with an average density of 4 points m−2. We noticed, that there was a narrow range of the R parameter, from 0.48 m to 0.80 m, for which all trees were detected and for which we obtained a high correlation coefficient (> 0.9 between estimated and measured values. We compared our estimates with field measurements. The RMSE of differences was 0.8 m for the tree height, 0.5 m for the crown base height, 0.6 m and 0.4 m for the longest and shorter crown diameter, respectively. The accuracy obtained with the method is thus sufficient for agricultural applications.
Bersinger, T; Bareille, G; Pigot, T; Bru, N; Le Hécho, I
2018-06-01
A good knowledge of the dynamic of pollutant concentration and flux in a combined sewer network is necessary when considering solutions to limit the pollutants discharged by combined sewer overflow (CSO) into receiving water during wet weather. Identification of the parameters that influence pollutant concentration and flux is important. Nevertheless, few studies have obtained satisfactory results for the identification of these parameters using statistical tools. Thus, this work uses a large database of rain events (116 over one year) obtained via continuous measurement of rainfall, discharge flow and chemical oxygen demand (COD) estimated using online turbidity for the identification of these parameters. We carried out a statistical study of the parameters influencing the maximum COD concentration, the discharge flow and the discharge COD flux. In this study a new test was used that has never been used in this field: the conditional regression tree test. We have demonstrated that the antecedent dry weather period, the rain event average intensity and the flow before the event are the three main factors influencing the maximum COD concentration during a rainfall event. Regarding the discharge flow, it is mainly influenced by the overall rainfall height but not by the maximum rainfall intensity. Finally, COD discharge flux is influenced by the discharge volume and the maximum COD concentration. Regression trees seem much more appropriate than common tests like PCA and PLS for this type of study as they take into account the thresholds and cumulative effects of various parameters as a function of the target variable. These results could help to improve sewer and CSO management in order to decrease the discharge of pollutants into receiving waters. Copyright © 2017 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Hou, Peng; Hu, Weihao; Chen, Cong
2016-01-01
The approach in this paper hads been developed to optimize the cable connection layout of large scale offshore wind farms. The objective is to minimize the Levelised Production Cost (LPC) og an offshore wind farm by optimizing the cable connection configuration. Based on the minimum spanning tree...... (MST) algorithm, an improved algorithm, the Dynamic Minimum Spanning Tree (DMST) algorithm is proposed. The current carrying capacity of the cable is considered to be the main constraint and the cable sectional area is changed dynamically. An irregular shaped wind farm is chosen as the studie case...
Directory of Open Access Journals (Sweden)
Zhou Feng
2013-09-01
Full Text Available A based on Rapidly-exploring Random Tree(RRT and Particle Swarm Optimizer (PSO for path planning of the robot is proposed.First the grid method is built to describe the working space of the mobile robot,then the Rapidly-exploring Random Tree algorithm is used to obtain the global navigation path,and the Particle Swarm Optimizer algorithm is adopted to get the better path.Computer experiment results demonstrate that this novel algorithm can plan an optimal path rapidly in a cluttered environment.The successful obstacle avoidance is achieved,and the model is robust and performs reliably.
On Directed Edge-Disjoint Spanning Trees in Product Networks, An Algorithmic Approach
Directory of Open Access Journals (Sweden)
A.R. Touzene
2014-12-01
Full Text Available In (Ku et al. 2003, the authors have proposed a construction of edge-disjoint spanning trees EDSTs in undirected product networks. Their construction method focuses more on showing the existence of a maximum number (n1+n2-1 of EDSTs in product network of two graphs, where factor graphs have respectively n1 and n2 EDSTs. In this paper, we propose a new systematic and algorithmic approach to construct (n1+n2 directed routed EDST in the product networks. The direction of an edge is added to support bidirectional links in interconnection networks. Our EDSTs can be used straightforward to develop efficient collective communication algorithms for both models store-and-forward and wormhole.
Siami, Mohammad; Gholamian, Mohammad Reza; Basiri, Javad
2014-10-01
Nowadays, credit scoring is one of the most important topics in the banking sector. Credit scoring models have been widely used to facilitate the process of credit assessing. In this paper, an application of the locally linear model tree algorithm (LOLIMOT) was experimented to evaluate the superiority of its performance to predict the customer's credit status. The algorithm is improved with an aim of adjustment by credit scoring domain by means of data fusion and feature selection techniques. Two real world credit data sets - Australian and German - from UCI machine learning database were selected to demonstrate the performance of our new classifier. The analytical results indicate that the improved LOLIMOT significantly increase the prediction accuracy.
Seo, Joo-Hyun; Park, Jihyang; Kim, Eun-Mi; Kim, Juhan; Joo, Keehyoung; Lee, Jooyoung; Kim, Byung-Gee
2014-02-01
Sequence subgrouping for a given sequence set can enable various informative tasks such as the functional discrimination of sequence subsets and the functional inference of unknown sequences. Because an identity threshold for sequence subgrouping may vary according to the given sequence set, it is highly desirable to construct a robust subgrouping algorithm which automatically identifies an optimal identity threshold and generates subgroups for a given sequence set. To meet this end, an automatic sequence subgrouping method, named 'Subgrouping Automata' was constructed. Firstly, tree analysis module analyzes the structure of tree and calculates the all possible subgroups in each node. Sequence similarity analysis module calculates average sequence similarity for all subgroups in each node. Representative sequence generation module finds a representative sequence using profile analysis and self-scoring for each subgroup. For all nodes, average sequence similarities are calculated and 'Subgrouping Automata' searches a node showing statistically maximum sequence similarity increase using Student's t-value. A node showing the maximum t-value, which gives the most significant differences in average sequence similarity between two adjacent nodes, is determined as an optimum subgrouping node in the phylogenetic tree. Further analysis showed that the optimum subgrouping node from SA prevents under-subgrouping and over-subgrouping. Copyright © 2013. Published by Elsevier Ltd.
Wang, Zhaocai; Huang, Dongmei; Meng, Huajun; Tang, Chengpei
2013-10-01
The minimum spanning tree (MST) problem is to find minimum edge connected subsets containing all the vertex of a given undirected graph. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications. Moreover in previous studies, DNA molecular operations usually were used to solve NP-complete head-to-tail path search problems, rarely for NP-hard problems with multi-lateral path solutions result, such as the minimum spanning tree problem. In this paper, we present a new fast DNA algorithm for solving the MST problem using DNA molecular operations. For an undirected graph with n vertex and m edges, we reasonably design flexible length DNA strands representing the vertex and edges, take appropriate steps and get the solutions of the MST problem in proper length range and O(3m+n) time complexity. We extend the application of DNA molecular operations and simultaneity simplify the complexity of the computation. Results of computer simulative experiments show that the proposed method updates some of the best known values with very short time and that the proposed method provides a better performance with solution accuracy over existing algorithms. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
A multicast tree aggregation algorithm in wavelength-routed WDM networks
Cheng, Hsu-Chen; Kuo, Chin-Chun; Lin, Frank Y.
2005-02-01
Wavelength division multiplexing (WDM) has been considered a promising transmission technology in optical communication networks. With the continuous advance in optical technology, WDM network will play an important role in wide area backbone networks. Optical wavelength switching, compared with optical packet switching, is a more mature and more cost-effective choice for optical switching technologies. Besides, the technology of time division multiplexing in optical communication networks has been working smoothly for a long time. In the proposed research, the problem of multicast groups aggregation and multicast routing and wavelength assignment in wavelength-routed WDM network is studied. The optical cross connect switches in the problem are assumed to have limited optical multicast/splitting and TDM functionalities. Given the physical network topology and capacity, the objective is to maximize the total revenue by means of utmost merging multicast groups into larger macro-groups. The groups in the same macro-group will share a multicast tree to conduct data transmission. The problem is formulated as an optimization problem, where the objective function is to maximize the total revenue subject to capacity constraints of components in the optical network, wavelength continuity constraints, and tree topology constraints. The decision variables in the formulations include the merging results between groups, multicast tree routing assignment and wavelength assignment. The basic approach to the algorithm development for this model is Lagrangean relaxation in conjunction with a number of optimization techniques. In computational experiments, the proposed algorithms are evaluated on different network topologies and perform efficiently and effectively according to the experiment results.
Diagnostic Algorithm to Reflect Regressive Changes of Human Papilloma Virus in Tissue Biopsies
Lhee, Min Jin; Cha, Youn Jin; Bae, Jong Man; Kim, Young Tae
2014-01-01
Purpose Landmark indicators have not yet to be developed to detect the regression of cervical intraepithelial neoplasia (CIN). We propose that quantitative viral load and indicative histological criteria can be used to differentiate between atypical squamous cells of undetermined significance (ASCUS) and a CIN of grade 1. Materials and Methods We collected 115 tissue biopsies from women who tested positive for the human papilloma virus (HPV). Nine morphological parameters including nuclear size, perinuclear halo, hyperchromasia, typical koilocyte (TK), abortive koilocyte (AK), bi-/multi-nucleation, keratohyaline granules, inflammation, and dyskeratosis were examined for each case. Correlation analyses, cumulative logistic regression, and binary logistic regression were used to determine optimal cut-off values of HPV copy numbers. The parameters TK, perinuclear halo, multi-nucleation, and nuclear size were significantly correlated quantitatively to HPV copy number. Results An HPV loading number of 58.9 and AK number of 20 were optimal to discriminate between negative and subtle findings in biopsies. An HPV loading number of 271.49 and AK of 20 were optimal for discriminating between equivocal changes and obvious koilocytosis. Conclusion We propose that a squamous epithelial lesion with AK of >20 and quantitative HPV copy number between 58.9-271.49 represents a new spectrum of subtle pathological findings, characterized by AK in ASCUS. This can be described as a distinct entity and called "regressing koilocytosis". PMID:24532500
Directory of Open Access Journals (Sweden)
David J. Purpura
2017-12-01
Full Text Available Many children struggle to successfully acquire early mathematics skills. Theoretical and empirical evidence has pointed to deficits in domain-specific skills (e.g., non-symbolic mathematics skills or domain-general skills (e.g., executive functioning and language as underlying low mathematical performance. In the current study, we assessed a sample of 113 three- to five-year old preschool children on a battery of domain-specific and domain-general factors in the fall and spring of their preschool year to identify Time 1 (fall factors associated with low performance in mathematics knowledge at Time 2 (spring. We used the exploratory approach of classification and regression tree analyses, a strategy that uses step-wise partitioning to create subgroups from a larger sample using multiple predictors, to identify the factors that were the strongest classifiers of low performance for younger and older preschool children. Results indicated that the most consistent classifier of low mathematics performance at Time 2 was children’s Time 1 mathematical language skills. Further, other distinct classifiers of low performance emerged for younger and older children. These findings suggest that risk classification for low mathematics performance may differ depending on children’s age.
Chiang, Peggy Pei-Chia; Xie, Jing; Keeffe, Jill Elizabeth
2011-04-25
To identify the critical success factors (CSF) associated with coverage of low vision services. Data were collected from a survey distributed to Vision 2020 contacts, government, and non-government organizations (NGOs) in 195 countries. The Classification and Regression Tree Analysis (CART) was used to identify the critical success factors of low vision service coverage. Independent variables were sourced from the survey: policies, epidemiology, provision of services, equipment and infrastructure, barriers to services, human resources, and monitoring and evaluation. Socioeconomic and demographic independent variables: health expenditure, population statistics, development status, and human resources in general, were sourced from the World Health Organization (WHO), World Bank, and the United Nations (UN). The findings identified that having >50% of children obtaining devices when prescribed (χ(2) = 44; P 3 rehabilitation workers per 10 million of population (χ(2) = 4.50; P = 0.034), higher percentage of population urbanized (χ(2) = 14.54; P = 0.002), a level of private investment (χ(2) = 14.55; P = 0.015), and being fully funded by government (χ(2) = 6.02; P = 0.014), are critical success factors associated with coverage of low vision services. This study identified the most important predictors for countries with better low vision coverage. The CART is a useful and suitable methodology in survey research and is a novel way to simplify a complex global public health issue in eye care.
Heddam, Salim; Kisi, Ozgur
2018-04-01
In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.
Directory of Open Access Journals (Sweden)
S.K. Lahiri
2009-09-01
Full Text Available Soft sensors have been widely used in the industrial process control to improve the quality of the product and assure safety in the production. The core of a soft sensor is to construct a soft sensing model. This paper introduces support vector regression (SVR, a new powerful machine learning methodbased on a statistical learning theory (SLT into soft sensor modeling and proposes a new soft sensing modeling method based on SVR. This paper presents an artificial intelligence based hybrid soft sensormodeling and optimization strategies, namely support vector regression – genetic algorithm (SVR-GA for modeling and optimization of mono ethylene glycol (MEG quality variable in a commercial glycol plant. In the SVR-GA approach, a support vector regression model is constructed for correlating the process data comprising values of operating and performance variables. Next, model inputs describing the process operating variables are optimized using genetic algorithm with a view to maximize the process performance. The SVR-GA is a new strategy for soft sensor modeling and optimization. The major advantage of the strategies is that modeling and optimization can be conducted exclusively from the historic process data wherein the detailed knowledge of process phenomenology (reaction mechanism, kinetics etc. is not required. Using SVR-GA strategy, a number of sets of optimized operating conditions were found. The optimized solutions, when verified in an actual plant, resulted in a significant improvement in the quality.
Directory of Open Access Journals (Sweden)
Xiangbing Zhou
2018-04-01
Full Text Available Rapidly growing GPS (Global Positioning System trajectories hide much valuable information, such as city road planning, urban travel demand, and population migration. In order to mine the hidden information and to capture better clustering results, a trajectory regression clustering method (an unsupervised trajectory clustering method is proposed to reduce local information loss of the trajectory and to avoid getting stuck in the local optimum. Using this method, we first define our new concept of trajectory clustering and construct a novel partitioning (angle-based partitioning method of line segments; second, the Lagrange-based method and Hausdorff-based K-means++ are integrated in fuzzy C-means (FCM clustering, which are used to maintain the stability and the robustness of the clustering process; finally, least squares regression model is employed to achieve regression clustering of the trajectory. In our experiment, the performance and effectiveness of our method is validated against real-world taxi GPS data. When comparing our clustering algorithm with the partition-based clustering algorithms (K-means, K-median, and FCM, our experimental results demonstrate that the presented method is more effective and generates a more reasonable trajectory.
Molecular phylogenetic trees - On the validity of the Goodman-Moore augmentation algorithm
Holmquist, R.
1979-01-01
A response is made to the reply of Nei and Tateno (1979) to the letter of Holmquist (1978) supporting the validity of the augmentation algorithm of Moore (1977) in reconstructions of nucleotide substitutions by means of the maximum parsimony principle. It is argued that the overestimation of the augmented numbers of nucleotide substitutions (augmented distances) found by Tateno and Nei (1978) is due to an unrepresentative data sample and that it is only necessary that evolution be stochastically uniform in different regions of the phylogenetic network for the augmentation method to be useful. The importance of the average value of the true distance over all links is explained, and the relative variances of the true and augmented distances are calculated to be almost identical. The effects of topological changes in the phylogenetic tree on the augmented distance and the question of the correctness of ancestral sequences inferred by the method of parsimony are also clarified.
Chugh, Saryu; Arivu Selvan, K.; Nadesh, RK
2017-11-01
Numerous destructive things influence the working arrangement of human body as hypertension, smoking, obesity, inappropriate medication taking which causes many contrasting diseases as diabetes, thyroid, strokes and coronary diseases. The impermanence and horribleness of the environment situation is also the reason for the coronary disease. The structure of Apache start relies on the evolution which requires gathering of the data. To break down the significance of use programming focused on data structure the Apache stop ought to be utilized and it gives various central focuses as it is fast in light as it uses memory worked in preparing. Apache Spark continues running on dispersed environment and chops down the data in bunches giving a high profitability rate. Utilizing mining procedure as a part of the determination of coronary disease has been exhaustively examined indicating worthy levels of precision. Decision trees, Neural Network, Gradient Boosting Algorithm are the various apache spark proficiencies which help in collecting the information.
A Hybrid Differential Evolution and Tree Search Algorithm for the Job Shop Scheduling Problem
Directory of Open Access Journals (Sweden)
Rui Zhang
2011-01-01
Full Text Available The job shop scheduling problem (JSSP is a notoriously difficult problem in combinatorial optimization. In terms of the objective function, most existing research has been focused on the makespan criterion. However, in contemporary manufacturing systems, due-date-related performances are more important because they are essential for maintaining a high service reputation. Therefore, in this study we aim at minimizing the total weighted tardiness in JSSP. Considering the high complexity, a hybrid differential evolution (DE algorithm is proposed for the problem. To enhance the overall search efficiency, a neighborhood property of the problem is discovered, and then a tree search procedure is designed and embedded into the DE framework. According to the extensive computational experiments, the proposed approach is efficient in solving the job shop scheduling problem with total weighted tardiness objective.
Directory of Open Access Journals (Sweden)
Yongquan Dong
2018-04-01
Full Text Available Providing accurate electric load forecasting results plays a crucial role in daily energy management of the power supply system. Due to superior forecasting performance, the hybridizing support vector regression (SVR model with evolutionary algorithms has received attention and deserves to continue being explored widely. The cuckoo search (CS algorithm has the potential to contribute more satisfactory electric load forecasting results. However, the original CS algorithm suffers from its inherent drawbacks, such as parameters that require accurate setting, loss of population diversity, and easy trapping in local optima (i.e., premature convergence. Therefore, proposing some critical improvement mechanisms and employing an improved CS algorithm to determine suitable parameter combinations for an SVR model is essential. This paper proposes the SVR with chaotic cuckoo search (SVRCCS model based on using a tent chaotic mapping function to enrich the cuckoo search space and diversify the population to avoid trapping in local optima. In addition, to deal with the cyclic nature of electric loads, a seasonal mechanism is combined with the SVRCCS model, namely giving a seasonal SVR with chaotic cuckoo search (SSVRCCS model, to produce more accurate forecasting performances. The numerical results, tested by using the datasets from the National Electricity Market (NEM, Queensland, Australia and the New York Independent System Operator (NYISO, NY, USA, show that the proposed SSVRCCS model outperforms other alternative models.
Directory of Open Access Journals (Sweden)
Yingxin Gu
2016-11-01
Full Text Available Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD between the predicted and actual NDVI (scaled NDVI, value from 0–200 and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4, which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.
Al-Khaja, Nawal
2007-01-01
This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.
Biazzo, Indaco; Braunstein, Alfredo; Zecchina, Riccardo
2012-08-01
We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the dhea solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.
Chen, Wei; Li, Hui; Hou, Enke; Wang, Shengquan; Wang, Guirong; Panahi, Mahdi; Li, Tao; Peng, Tao; Guo, Chen; Niu, Chao; Xiao, Lele; Wang, Jiale; Xie, Xiaoshen; Ahmad, Baharin Bin
2018-09-01
The aim of the current study was to produce groundwater spring potential maps using novel ensemble weights-of-evidence (WoE) with logistic regression (LR) and functional tree (FT) models. First, a total of 66 springs were identified by field surveys, out of which 70% of the spring locations were used for training the models and 30% of the spring locations were employed for the validation process. Second, a total of 14 affecting factors including aspect, altitude, slope, plan curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), sediment transport index (STI), lithology, normalized difference vegetation index (NDVI), land use, soil, distance to roads, and distance to streams was used to analyze the spatial relationship between these affecting factors and spring occurrences. Multicollinearity analysis and feature selection of the correlation attribute evaluation (CAE) method were employed to optimize the affecting factors. Subsequently, the novel ensembles of the WoE, LR, and FT models were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) curves, standard error, confidence interval (CI) at 95%, and significance level P were employed to validate and compare the performance of three models. Overall, all three models performed well for groundwater spring potential evaluation. The prediction capability of the FT model, with the highest AUC values, the smallest standard errors, the narrowest CIs, and the smallest P values for the training and validation datasets, is better compared to those of other models. The groundwater spring potential maps can be adopted for the management of water resources and land use by planners and engineers. Copyright © 2018 Elsevier B.V. All rights reserved.
Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.
2012-01-01
agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.
Dai, Wensheng
2014-01-01
Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting. PMID:25165740
Dai, Wensheng; Wu, Jui-Yu; Lu, Chi-Jie
2014-01-01
Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.
Directory of Open Access Journals (Sweden)
Wensheng Dai
2014-01-01
Full Text Available Sales forecasting is one of the most important issues in managing information technology (IT chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR, is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA, temporal ICA (tICA, and spatiotemporal ICA (stICA to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.
CSIR Research Space (South Africa)
Adelabu, S
2013-11-01
Full Text Available in semiarid environments. In this study, we examined the suitability of 5-band RapidEye satellite data for the classification of five tree species in mopane woodland of Botswana using machine leaning algorithms with limited training samples. We performed...
Directory of Open Access Journals (Sweden)
Zhang Jing
2015-06-01
Full Text Available The connected dominating set (CDS has become a well-known approach for constructing a virtual backbone in wireless sensor networks. Then traffic can forwarded by the virtual backbone and other nodes turn off their radios to save energy. Furthermore, a smaller CDS incurs fewer interference problems. However, constructing a minimum CDS is an NP-hard problem, and thus most researchers concentrate on how to derive approximate algorithms. In this paper, a novel algorithm based on the induced tree of the crossed cube (ITCC is presented. The ITCC is to find a maximal independent set (MIS, which is based on building an induced tree of the crossed cube network, and then to connect the MIS nodes to form a CDS. The priority of an induced tree is determined according to a new parameter, the degree of the node in the square of a graph. This paper presents the proof that the ITCC generates a CDS with a lower approximation ratio. Furthermore, it is proved that the cardinality of the induced trees is a Fibonacci sequence, and an upper bound to the number of the dominating set is established. The simulations show that the algorithm provides the smallest CDS size compared with some other traditional algorithms.
An algorithm for sequential tail value at risk for path-independent payoffs in a binomial tree
Roorda, Berend
2010-01-01
We present an algorithm that determines Sequential Tail Value at Risk (STVaR) for path-independent payoffs in a binomial tree. STVaR is a dynamic version of Tail-Value-at-Risk (TVaR) characterized by the property that risk levels at any moment must be in the range of risk levels later on. The
Abbasitabar, Fatemeh; Zare-Shahabadi, Vahid
2017-04-01
Risk assessment of chemicals is an important issue in environmental protection; however, there is a huge lack of experimental data for a large number of end-points. The experimental determination of toxicity of chemicals involves high costs and time-consuming process. In silico tools such as quantitative structure-toxicity relationship (QSTR) models, which are constructed on the basis of computational molecular descriptors, can predict missing data for toxic end-points for existing or even not yet synthesized chemicals. Phenol derivatives are known to be aquatic pollutants. With this background, we aimed to develop an accurate and reliable QSTR model for the prediction of toxicity of 206 phenols to Tetrahymena pyriformis. A multiple linear regression (MLR)-based QSTR was obtained using a powerful descriptor selection tool named Memorized_ACO algorithm. Statistical parameters of the model were 0.72 and 0.68 for R training 2 and R test 2 , respectively. To develop a high-quality QSTR model, classification and regression tree (CART) was employed. Two approaches were considered: (1) phenols were classified into different modes of action using CART and (2) the phenols in the training set were partitioned to several subsets by a tree in such a manner that in each subset, a high-quality MLR could be developed. For the first approach, the statistical parameters of the resultant QSTR model were improved to 0.83 and 0.75 for R training 2 and R test 2 , respectively. Genetic algorithm was employed in the second approach to obtain an optimal tree, and it was shown that the final QSTR model provided excellent prediction accuracy for the training and test sets (R training 2 and R test 2 were 0.91 and 0.93, respectively). The mean absolute error for the test set was computed as 0.1615. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lazaridis, D.C.; Verbesselt, J.; Robinson, A.P.
2011-01-01
Constructing models can be complicated when the available fitting data are highly correlated and of high dimension. However, the complications depend on whether the goal is prediction instead of estimation. We focus on predicting tree mortality (measured as the number of dead trees) from change
Directory of Open Access Journals (Sweden)
Artur Wnorowski
2017-06-01
Full Text Available Tree saps are nourishing biological media commonly used for beverage and syrup production. Although the nutritional aspect of tree saps is widely acknowledged, the exact relationship between the sap composition, origin, and effect on the metabolic rate of human cells is still elusive. Thus, we collected saps from seven different tree species and conducted composition-activity analysis. Saps from trees of Betulaceae, but not from Salicaceae, Sapindaceae, nor Juglandaceae families, were increasing the metabolic rate of HepG2 cells, as measured using tetrazolium-based assay. Content of glucose, fructose, sucrose, chlorides, nitrates, sulphates, fumarates, malates, and succinates in sap samples varied across different tree species. Grade correspondence analysis clustered trees based on the saps’ chemical footprint indicating its usability in chemotaxonomy. Multiple regression modeling showed that glucose and fumarate present in saps from silver birch (Betula pendula Roth., black alder (Alnus glutinosa Gaertn., and European hornbeam (Carpinus betulus L. are positively affecting the metabolic activity of HepG2 cells.
Azad, Mohammad
2013-11-25
In the paper, we study a greedy algorithm for construction of decision trees. This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions. For a given row, we should find a decision from the set attached to this row. Experimental results for data sets from UCI Machine Learning Repository and randomly generated tables are presented. We make a comparative study of the depth and average depth of the constructed decision trees for proposed approach and approach based on generalized decision. The obtained results show that the proposed approach can be useful from the point of view of knowledge representation and algorithm construction.
An IPv6 routing lookup algorithm using weight-balanced tree based on prefix value for virtual router
Chen, Lingjiang; Zhou, Shuguang; Zhang, Qiaoduo; Li, Fenghua
2016-10-01
Virtual router enables the coexistence of different networks on the same physical facility and has lately attracted a great deal of attention from researchers. As the number of IPv6 addresses is rapidly increasing in virtual routers, designing an efficient IPv6 routing lookup algorithm is of great importance. In this paper, we present an IPv6 lookup algorithm called weight-balanced tree (WBT). WBT merges Forwarding Information Bases (FIBs) of virtual routers into one spanning tree, and compresses the space cost. WBT's average time complexity and the worst case time complexity of lookup and update process are both O(logN) and space complexity is O(cN) where N is the size of routing table and c is a constant. Experiments show that WBT helps reduce more than 80% Static Random Access Memory (SRAM) cost in comparison to those separation schemes. WBT also achieves the least average search depth comparing with other homogeneous algorithms.
Azad, Mohammad; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata
2013-01-01
In the paper, we study a greedy algorithm for construction of decision trees. This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions. For a given row, we should find a decision from the set attached to this row. Experimental results for data sets from UCI Machine Learning Repository and randomly generated tables are presented. We make a comparative study of the depth and average depth of the constructed decision trees for proposed approach and approach based on generalized decision. The obtained results show that the proposed approach can be useful from the point of view of knowledge representation and algorithm construction.
Smoly, Ilan; Carmel, Amir; Shemer-Avni, Yonat; Yeger-Lotem, Esti; Ziv-Ukelson, Michal
2016-03-01
Network querying is a powerful approach to mine molecular interaction networks. Most state-of-the-art network querying tools either confine the search to a prespecified topology in the form of some template subnetwork, or do not specify any topological constraints at all. Another approach is grammar-based queries, which are more flexible and expressive as they allow for expressing the topology of the sought pattern according to some grammar-based logic. Previous grammar-based network querying tools were confined to the identification of paths. In this article, we extend the patterns identified by grammar-based query approaches from paths to trees. For this, we adopt a higher order query descriptor in the form of a regular tree grammar (RTG). We introduce a novel problem and propose an algorithm to search a given graph for the k highest scoring subgraphs matching a tree accepted by an RTG. Our algorithm is based on the combination of dynamic programming with color coding, and includes an extension of previous k-best parsing optimization approaches to avoid isomorphic trees in the output. We implement the new algorithm and exemplify its application to mining viral infection patterns within molecular interaction networks. Our code is available online.
Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui
2016-01-01
Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365
Directory of Open Access Journals (Sweden)
Adimi Maryam
2012-01-01
Full Text Available A quantitative structure activity relationship (QSAR model has been produced for predicting antagonist potency of biphenyl derivatives as human histamine (H3 receptors. The molecular structures of the compounds are numerically represented by various kinds of molecular descriptors. The whole data set was divided into training and test sets. Genetic algorithm based multiple linear regression is used to select most statistically effective descriptors. The final QSAR model (N =24, R2=0.916, F = 51.771, Q2 LOO = 0.872, Q2 LGO = 0.847, Q2 BOOT = 0.857 was fully validated employing leaveone- out (LOO cross-validation approach, Fischer statistics (F, Yrandomisation test, and predictions based on the test data set. The test set presented an external prediction power of R2 test=0.855. In conclusion, the QSAR model generated can be used as a valuable tool for designing similar groups of new antagonists of histamine (H3 receptors.
Fisz, Jacek J
2006-12-07
The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi
Detection of Spam Email by Combining Harmony Search Algorithm and Decision Tree
Directory of Open Access Journals (Sweden)
M. Z. Gashti
2017-06-01
Full Text Available Spam emails is probable the main problem faced by most e-mail users. There are many features in spam email detection and some of these features have little effect on detection and cause skew detection and classification of spam email. Thus, Feature Selection (FS is one of the key topics in spam email detection systems. With choosing the important and effective features in classification, its performance can be optimized. Selector features has the task of finding a subset of features to improve the accuracy of its predictions. In this paper, a hybrid of Harmony Search Algorithm (HSA and decision tree is used for selecting the best features and classification. The obtained results on Spam-base dataset show that the rate of recognition accuracy in the proposed model is 95.25% which is high in comparison with models such as SVM, NB, J48 and MLP. Also, the accuracy of the proposed model on the datasets of Ling-spam and PU1 is high in comparison with models such as NB, SVM and LR.
Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.
2012-06-01
In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).
Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano
2016-07-07
Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.
Tayefi, Maryam; Tajfard, Mohammad; Saffar, Sara; Hanachi, Parichehr; Amirabadizadeh, Ali Reza; Esmaeily, Habibollah; Taghipour, Ali; Ferns, Gordon A; Moohebati, Mohsen; Ghayour-Mobarhan, Majid
2017-04-01
Coronary heart disease (CHD) is an important public health problem globally. Algorithms incorporating the assessment of clinical biomarkers together with several established traditional risk factors can help clinicians to predict CHD and support clinical decision making with respect to interventions. Decision tree (DT) is a data mining model for extracting hidden knowledge from large databases. We aimed to establish a predictive model for coronary heart disease using a decision tree algorithm. Here we used a dataset of 2346 individuals including 1159 healthy participants and 1187 participant who had undergone coronary angiography (405 participants with negative angiography and 782 participants with positive angiography). We entered 10 variables of a total 12 variables into the DT algorithm (including age, sex, FBG, TG, hs-CRP, TC, HDL, LDL, SBP and DBP). Our model could identify the associated risk factors of CHD with sensitivity, specificity, accuracy of 96%, 87%, 94% and respectively. Serum hs-CRP levels was at top of the tree in our model, following by FBG, gender and age. Our model appears to be an accurate, specific and sensitive model for identifying the presence of CHD, but will require validation in prospective studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Jianlei Kong
2015-07-01
Full Text Available In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS, which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents.
Directory of Open Access Journals (Sweden)
Rohulla Kosari Langari
2014-02-01
Full Text Available Change the world through information technology and Internet development, has created competitive knowledge in the field of electronic commerce, lead to increasing in competitive potential among organizations. In this condition The increasing rate of commercial deals developing guaranteed with speed and light quality is due to provide dynamic system of electronic banking until by using modern technology to facilitate electronic business process. Internet banking is enumerate as a potential opportunity the fundamental pillars and determinates of e-banking that in cyber space has been faced with various obstacles and threats. One of this challenge is complete uncertainty in security guarantee of financial transactions also exist of suspicious and unusual behavior with mail fraud for financial abuse. Now various systems because of intelligence mechanical methods and data mining technique has been designed for fraud detection in users’ behaviors and applied in various industrial such as insurance, medicine and banking. Main of article has been recognizing of unusual users behaviors in e-banking system. Therefore, detection behavior user and categories of emerged patterns to paper the conditions for predicting unauthorized penetration and detection of suspicious behavior. Since detection behavior user in internet system has been uncertainty and records of transactions can be useful to understand these movement and therefore among machine method, decision tree technique is considered common tool for classification and prediction, therefore in this research at first has determinate banking effective variable and weight of everything in internet behaviors production and in continuation combining of various behaviors manner draw out such as the model of inductive rules to provide ability recognizing of different behaviors. At least trend of four algorithm Chaid, ex_Chaid, C4.5, C5.0 has compared and evaluated for classification and detection of exist
Directory of Open Access Journals (Sweden)
Daniel Vasiliu
Full Text Available Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED. Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.
Directory of Open Access Journals (Sweden)
Ji Zhou
2014-06-01
Full Text Available The land surface temperature (LST is one of the most important parameters of surface-atmosphere interactions. Methods for retrieving LSTs from satellite remote sensing data are beneficial for modeling hydrological, ecological, agricultural and meteorological processes on Earth’s surface. Many split-window (SW algorithms, which can be applied to satellite sensors with two adjacent thermal channels located in the atmospheric window between 10 μm and 12 μm, require auxiliary atmospheric parameters (e.g., water vapor content. In this research, the Heihe River basin, which is one of the most arid regions in China, is selected as the study area. The Moderate-resolution Imaging Spectroradiometer (MODIS is selected as a test case. The Global Data Assimilation System (GDAS atmospheric profiles of the study area are used to generate the training dataset through radiative transfer simulation. Significant correlations between the atmospheric upwelling radiance in MODIS channel 31 and the other three atmospheric parameters, including the transmittance in channel 31 and the transmittance and upwelling radiance in channel 32, are trained based on the simulation dataset and formulated with three regression models. Next, the genetic algorithm is used to estimate the LST. Validations of the RM-GA method are based on the simulation dataset generated from in situ measured radiosonde profiles and GDAS atmospheric profiles, the in situ measured LSTs, and a pair of daytime and nighttime MOD11A1 products in the study area. The results demonstrate that RM-GA has a good ability to estimate the LSTs directly from the MODIS data without any auxiliary atmospheric parameters. Although this research is for local application in the Heihe River basin, the findings and proposed method can easily be extended to other satellite sensors and regions with arid climates and high elevations.
Directory of Open Access Journals (Sweden)
Dwi Marisa Efendi
2018-04-01
Full Text Available Cassava is one type of plant that can be planted in tropical climates. Cassava commodity is one of the leading sub-sectors in the plantation area. Cassava plant is the main ingredient of sago flour which is now experiencing price decline. The condition of the abundant supply of sago or tapioca flour production is due to the increase of cassava planting in each farmer. With the increasing number of cassava planting in farmer's plantation cause the price of cassava received by farmer is not suitable. So for the need of making sago or tapioca flour often excess in buying raw material of cassava This resulted in a lot of rotten cassava and the factory bought cassava for a low price. Based on the problem, this research is done using data mining modeled with multiple linear regression algorithm which aim to estimate the amount of Sago or Tapioca flour that can be produced, so that the future can improve the balance between the amount of cassava supply and tapioca production. The variables used in linear regression analysis are dependent variable and independent variable . From the data obtained, the dependent variable is the number of Tapioca (kg symbolized by Y while the independent variable is milled cassava symbolized by X. From the results obtained with an accuracy of 95% confidence level, then obtained coefficient of determination (R2 is 1.00. While the estimation results almost closer to the actual data value, with an average error of 0.00.
Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.
2017-01-01
Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...
Directory of Open Access Journals (Sweden)
A. Sreenivasa Murthy
2014-11-01
Full Text Available With the spurt in the amount of data (Image, video, audio, speech, & text available on the net, there is a huge demand for memory & bandwidth savings. One has to achieve this, by maintaining the quality & fidelity of the data acceptable to the end user. Wavelet transform is an important and practical tool for data compression. Set partitioning in hierarchal trees (SPIHT is a widely used compression algorithm for wavelet transformed images. Among all wavelet transform and zero-tree quantization based image compression algorithms SPIHT has become the benchmark state-of-the-art algorithm because it is simple to implement & yields good results. In this paper we present a comparative study of various wavelet families for image compression with SPIHT algorithm. We have conducted experiments with Daubechies, Coiflet, Symlet, Bi-orthogonal, Reverse Bi-orthogonal and Demeyer wavelet types. The resulting image quality is measured objectively, using peak signal-to-noise ratio (PSNR, and subjectively, using perceived image quality (human visual perception, HVP for short. The resulting reduction in the image size is quantified by compression ratio (CR.
Directory of Open Access Journals (Sweden)
Lüdtke Rainer
2008-08-01
Full Text Available Abstract Background Regression to the mean (RTM occurs in situations of repeated measurements when extreme values are followed by measurements in the same subjects that are closer to the mean of the basic population. In uncontrolled studies such changes are likely to be interpreted as a real treatment effect. Methods Several statistical approaches have been developed to analyse such situations, including the algorithm of Mee and Chua which assumes a known population mean μ. We extend this approach to a situation where μ is unknown and suggest to vary it systematically over a range of reasonable values. Using differential calculus we provide formulas to estimate the range of μ where treatment effects are likely to occur when RTM is present. Results We successfully applied our method to three real world examples denoting situations when (a no treatment effect can be confirmed regardless which μ is true, (b when a treatment effect must be assumed independent from the true μ and (c in the appraisal of results of uncontrolled studies. Conclusion Our method can be used to separate the wheat from the chaff in situations, when one has to interpret the results of uncontrolled studies. In meta-analysis, health-technology reports or systematic reviews this approach may be helpful to clarify the evidence given from uncontrolled observational studies.
Rafiei, Hamid; Khanzadeh, Marziyeh; Mozaffari, Shahla; Bostanifar, Mohammad Hassan; Avval, Zhila Mohajeri; Aalizadeh, Reza; Pourbasheer, Eslam
2016-01-01
Quantitative structure-activity relationship (QSAR) study has been employed for predicting the inhibitory activities of the Hepatitis C virus (HCV) NS5B polymerase inhibitors . A data set consisted of 72 compounds was selected, and then different types of molecular descriptors were calculated. The whole data set was split into a training set (80 % of the dataset) and a test set (20 % of the dataset) using principle component analysis. The stepwise (SW) and the genetic algorithm (GA) techniques were used as variable selection tools. Multiple linear regression method was then used to linearly correlate the selected descriptors with inhibitory activities. Several validation technique including leave-one-out and leave-group-out cross-validation, Y-randomization method were used to evaluate the internal capability of the derived models. The external prediction ability of the derived models was further analyzed using modified r(2), concordance correlation coefficient values and Golbraikh and Tropsha acceptable model criteria's. Based on the derived results (GA-MLR), some new insights toward molecular structural requirements for obtaining better inhibitory activity were obtained.
Li, Yongxin; Li, Yuanqian; Zheng, Bo; Qu, Lingli; Li, Can
2009-06-08
A rapid and sensitive method based on microchip capillary electrophoresis with condition optimization of genetic algorithm-support vector regression (GA-SVR) was developed and applied to simultaneous analysis of multiplex PCR products of four foodborne pathogenic bacteria. Four pairs of oligonucleotide primers were designed to exclusively amplify the targeted gene of Vibrio parahemolyticus, Salmonella, Escherichia coli (E. coli) O157:H7, Shigella and the quadruplex PCR parameters were optimized. At the same time, GA-SVR was employed to optimize the separation conditions of DNA fragments in microchip capillary electrophoresis. The proposed method was applied to simultaneously detect the multiplex PCR products of four foodborne pathogenic bacteria under the optimal conditions within 8 min. The levels of detection were as low as 1.2 x 10(2) CFU mL(-1) of Vibrio parahemolyticus, 2.9 x 10(2) CFU mL(-1) of Salmonella, 8.7 x 10(1) CFU mL(-1) of E. coli O157:H7 and 5.2 x 10(1) CFU mL(-1) of Shigella, respectively. The relative standard deviation of migration time was in the range of 0.74-2.09%. The results demonstrated that the good resolution and less analytical time were achieved due to the application of the multivariate strategy. This study offers an efficient alternative to routine foodborne pathogenic bacteria detection in a fast, reliable, and sensitive way.
Directory of Open Access Journals (Sweden)
Ping Jiang
2015-01-01
Full Text Available Wind speed/power has received increasing attention around the earth due to its renewable nature as well as environmental friendliness. With the global installed wind power capacity rapidly increasing, wind industry is growing into a large-scale business. Reliable short-term wind speed forecasts play a practical and crucial role in wind energy conversion systems, such as the dynamic control of wind turbines and power system scheduling. In this paper, an intelligent hybrid model for short-term wind speed prediction is examined; the model is based on cross correlation (CC analysis and a support vector regression (SVR model that is coupled with brainstorm optimization (BSO and cuckoo search (CS algorithms, which are successfully utilized for parameter determination. The proposed hybrid models were used to forecast short-term wind speeds collected from four wind turbines located on a wind farm in China. The forecasting results demonstrate that the intelligent hybrid models outperform single models for short-term wind speed forecasting, which mainly results from the superiority of BSO and CS for parameter optimization.
Spanning trees with many leaves: new extremal results and an improved FPT algorithm
Bonsma, P.S.
We present two lower bounds for the maximum number of leaves in a spanning tree of a graph. For connected graphs without triangles, with minimum degree at least three, we show that a spanning tree with at least (n+4)/3 leaves exists, where n is the number of vertices of the graph. For connected
Degree distribution of shortest path trees and bias of network sampling algorithms
Bhamidi, S.; Goodman, J.A.; Hofstad, van der R.W.; Komjáthy, J.
2013-01-01
In this article, we explicitly derive the limiting distribution of the degree distribution of the shortest path tree from a single source on various random network models with edge weights. We determine the power-law exponent of the degree distribution of this tree and compare it to the degree
Degree distribution of shortest path trees and bias of network sampling algorithms
Bhamidi, S.; Goodman, J.A.; Hofstad, van der R.W.; Komjáthy, J.
2015-01-01
In this article, we explicitly derive the limiting degree distribution of the shortest path tree from a single source on various random network models with edge weights. We determine the asymptotics of the degree distribution for large degrees of this tree and compare it to the degree distribution
VLSI implementation of MIMO detection for 802.11n using a novel adaptive tree search algorithm
International Nuclear Information System (INIS)
Yao Heng; Jian Haifang; Zhou Liguo; Shi Yin
2013-01-01
A 4×4 64-QAM multiple-input multiple-output (MIMO) detector is presented for the application of an IEEE 802.11n wireless local area network. The detectoris the implementation of a novel adaptive tree search(ATS) algorithm, and multiple ATS cores need to be instantiated to achieve the wideband requirement in the 802.11n standard. Both the ATS algorithm and the architectural considerations are explained. The latency of the detector is 0.75 μs, and the detector has a gate count of 848 k with a total of 19 parallel ATS cores. Each ATS core runs at 67 MHz. Measurement results show that compared with the floating-point ATS algorithm, the fixed-point implementation achieves a loss of 0.9 dB at a BER of 10 −3 . (semiconductor integrated circuits)
Dyer, Betsey D.; Kahn, Michael J.; LeBlanc, Mark D.
2008-01-01
Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results. PMID:19054742
Yang, Cheng-Hong; Wu, Kuo-Chuan; Chuang, Li-Yeh; Chang, Hsueh-Wei
2018-01-01
DNA barcode sequences are accumulating in large data sets. A barcode is generally a sequence larger than 1000 base pairs and generates a computational burden. Although the DNA barcode was originally envisioned as straightforward species tags, the identification usage of barcode sequences is rarely emphasized currently. Single-nucleotide polymorphism (SNP) association studies provide us an idea that the SNPs may be the ideal target of feature selection to discriminate between different species. We hypothesize that SNP-based barcodes may be more effective than the full length of DNA barcode sequences for species discrimination. To address this issue, we tested a r ibulose diphosphate carboxylase ( rbcL ) S NP b arcoding (RSB) strategy using a decision tree algorithm. After alignment and trimming, 31 SNPs were discovered in the rbcL sequences from 38 Brassicaceae plant species. In the decision tree construction, these SNPs were computed to set up the decision rule to assign the sequences into 2 groups level by level. After algorithm processing, 37 nodes and 31 loci were required for discriminating 38 species. Finally, the sequence tags consisting of 31 rbcL SNP barcodes were identified for discriminating 38 Brassicaceae species based on the decision tree-selected SNP pattern using RSB method. Taken together, this study provides the rational that the SNP aspect of DNA barcode for rbcL gene is a useful and effective sequence for tagging 38 Brassicaceae species.
Strobl, Carolin; Malley, James; Tutz, Gerhard
2009-01-01
Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…
DEFF Research Database (Denmark)
Mozaffari, Ahmad; Gorji-Bandpy, Mofid; Samadian, Pendar
2013-01-01
Optimizing and controlling of complex engineering systems is a phenomenon that has attracted an incremental interest of numerous scientists. Until now, a variety of intelligent optimizing and controlling techniques such as neural networks, fuzzy logic, game theory, support vector machines...... and stochastic algorithms were proposed to facilitate controlling of the engineering systems. In this study, an extended version of mutable smart bee algorithm (MSBA) called Pareto based mutable smart bee (PBMSB) is inspired to cope with multi-objective problems. Besides, a set of benchmark problems and four...... well-known Pareto based optimizing algorithms i.e. multi-objective bee algorithm (MOBA), multi-objective particle swarm optimization (MOPSO) algorithm, non-dominated sorting genetic algorithm (NSGA-II), and strength Pareto evolutionary algorithm (SPEA 2) are utilized to confirm the acceptable...
Directory of Open Access Journals (Sweden)
Jianzhong Zhou
2018-04-01
Full Text Available With the fast development of artificial intelligence techniques, data-driven modeling approaches are becoming hotspots in both academic research and engineering practice. This paper proposes a novel data-driven T-S fuzzy model to precisely describe the complicated dynamic behaviors of pumped storage generator motor (PSGM. In premise fuzzy partition of the proposed T-S fuzzy model, a novel variable-length tree-seed algorithm based competitive agglomeration (VTSA-CA algorithm is presented to determine the optimal number of clusters automatically and improve the fuzzy clustering performances. Besides, in order to promote modeling accuracy of PSGM, the input and output formats in the T-S fuzzy model are selected by an economical parameter controlled auto-regressive (CAR model derived from a high-order transfer function of PSGM considering the distributed components in the water diversion system of the power plant. The effectiveness and superiority of the T-S fuzzy model for PSGM under different working conditions are validated by performing comparative studies with both practical data and the conventional mechanistic model.
Directory of Open Access Journals (Sweden)
Regis Wendpouire Oubida
2015-03-01
Full Text Available Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13 to 0.32 and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP, and mean annual precipitation (MAP. These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar.
Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.
2012-01-01
Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.
Ozge, C; Toros, F; Bayramkaya, E; Camdeviren, H; Sasmaz, T
2006-08-01
The purpose of this study is to evaluate the most important sociodemographic factors on smoking status of high school students using a broad randomised epidemiological survey. Using in-class, self administered questionnaire about their sociodemographic variables and smoking behaviour, a representative sample of total 3304 students of preparatory, 9th, 10th, and 11th grades, from 22 randomly selected schools of Mersin, were evaluated and discriminative factors have been determined using appropriate statistics. In addition to binary logistic regression analysis, the study evaluated combined effects of these factors using classification and regression tree methodology, as a new statistical method. The data showed that 38% of the students reported lifetime smoking and 16.9% of them reported current smoking with a male predominancy and increasing prevalence by age. Second hand smoking was reported at a 74.3% frequency with father predominance (56.6%). The significantly important factors that affect current smoking in these age groups were increased by household size, late birth rank, certain school types, low academic performance, increased second hand smoking, and stress (especially reported as separation from a close friend or because of violence at home). Classification and regression tree methodology showed the importance of some neglected sociodemographic factors with a good classification capacity. It was concluded that, as closely related with sociocultural factors, smoking was a common problem in this young population, generating important academic and social burden in youth life and with increasing data about this behaviour and using new statistical methods, effective coping strategies could be composed.
Lombardo, L.; Cama, M.; Maerker, M.; Parisi, L.; Rotigliano, E.
2014-12-01
This study aims at comparing the performances of Binary Logistic Regression (BLR) and Boosted Regression Trees (BRT) methods in assessing landslide susceptibility for multiple-occurrence regional landslide events within the Mediterranean region. A test area was selected in the north-eastern sector of Sicily (southern Italy), corresponding to the catchments of the Briga and the Giampilieri streams both stretching for few kilometres from the Peloritan ridge (eastern Sicily, Italy) to the Ionian sea. This area was struck on the 1st October 2009 by an extreme climatic event resulting in thousands of rapid shallow landslides, mainly of debris flows and debris avalanches types involving the weathered layer of a low to high grade metamorphic bedrock. Exploiting the same set of predictors and the 2009 landslide archive, BLR- and BRT-based susceptibility models were obtained for the two catchments separately, adopting a random partition (RP) technique for validation; besides, the models trained in one of the two catchments (Briga) were tested in predicting the landslide distribution in the other (Giampilieri), adopting a spatial partition (SP) based validation procedure. All the validation procedures were based on multi-folds tests so to evaluate and compare the reliability of the fitting, the prediction skill, the coherence in the predictor selection and the precision of the susceptibility estimates. All the obtained models for the two methods produced very high predictive performances, with a general congruence between BLR and BRT in the predictor importance. In particular, the research highlighted that BRT-models reached a higher prediction performance with respect to BLR-models, for RP based modelling, whilst for the SP-based models the difference in predictive skills between the two methods dropped drastically, converging to an analogous excellent performance. However, when looking at the precision of the probability estimates, BLR demonstrated to produce more robust
Sirait, Kamson; Tulus; Budhiarti Nababan, Erna
2017-12-01
Clustering methods that have high accuracy and time efficiency are necessary for the filtering process. One method that has been known and applied in clustering is K-Means Clustering. In its application, the determination of the begining value of the cluster center greatly affects the results of the K-Means algorithm. This research discusses the results of K-Means Clustering with starting centroid determination with a random and KD-Tree method. The initial determination of random centroid on the data set of 1000 student academic data to classify the potentially dropout has a sse value of 952972 for the quality variable and 232.48 for the GPA, whereas the initial centroid determination by KD-Tree has a sse value of 504302 for the quality variable and 214,37 for the GPA variable. The smaller sse values indicate that the result of K-Means Clustering with initial KD-Tree centroid selection have better accuracy than K-Means Clustering method with random initial centorid selection.
Indian Academy of Sciences (India)
polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.
Malegori, Cristina; Nascimento Marques, Emanuel José; de Freitas, Sergio Tonetto; Pimentel, Maria Fernanda; Pasquini, Celio; Casiraghi, Ernestina
2017-04-01
The main goal of this study was to investigate the analytical performances of a state-of-the-art device, one of the smallest dispersion NIR spectrometers on the market (MicroNIR 1700), making a critical comparison with a benchtop FT-NIR spectrometer in the evaluation of the prediction accuracy. In particular, the aim of this study was to estimate in a non-destructive manner, titratable acidity and ascorbic acid content in acerola fruit during ripening, in a view of direct applicability in field of this new miniaturised handheld device. Acerola (Malpighia emarginata DC.) is a super-fruit characterised by a considerable amount of ascorbic acid, ranging from 1.0% to 4.5%. However, during ripening, acerola colour changes and the fruit may lose as much as half of its ascorbic acid content. Because the variability of chemical parameters followed a non-strictly linear profile, two different regression algorithms were compared: PLS and SVM. Regression models obtained with Micro-NIR spectra give better results using SVM algorithm, for both ascorbic acid and titratable acidity estimation. FT-NIR data give comparable results using both SVM and PLS algorithms, with lower errors for SVM regression. The prediction ability of the two instruments was statistically compared using the Passing-Bablok regression algorithm; the outcomes are critically discussed together with the regression models, showing the suitability of the portable Micro-NIR for in field monitoring of chemical parameters of interest in acerola fruits. Copyright © 2016 Elsevier B.V. All rights reserved.
Shastri, Niket; Pathak, Kamlesh
2018-05-01
The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.
DEFF Research Database (Denmark)
Greve, Mogens Humlekrog; Bou Kheir, Rania; Greve, Mette Balslev
2012-01-01
Soil texture is an important soil characteristic that drives crop production and field management, and is the basis for environmental monitoring (including soil quality and sustainability, hydrological and ecological processes, and climate change simulations). The combination of coarse sand, fine...... sand, silt, and clay in soil determines its textural classification. This study used Geographic Information Systems (GIS) and regression-tree modeling to precisely quantify the relationships between the soil texture fractions and different environmental parameters on a national scale, and to detect...... precipitation, seasonal precipitation to statistically explain soil texture fractions field/laboratory measurements (45,224 sampling sites) in the area of interest (Denmark). The developed strongest relationships were associated with clay and silt, variance being equal to 60%, followed by coarse sand (54...
Kabeshova, A; Annweiler, C; Fantino, B; Philip, T; Gromov, V A; Launay, C P; Beauchet, O
2014-06-01
Regression tree (RT) analyses are particularly adapted to explore the risk of recurrent falling according to various combinations of fall risk factors compared to logistic regression models. The aims of this study were (1) to determine which combinations of fall risk factors were associated with the occurrence of recurrent falls in older community-dwellers, and (2) to compare the efficacy of RT and multiple logistic regression model for the identification of recurrent falls. A total of 1,760 community-dwelling volunteers (mean age ± standard deviation, 71.0 ± 5.1 years; 49.4 % female) were recruited prospectively in this cross-sectional study. Age, gender, polypharmacy, use of psychoactive drugs, fear of falling (FOF), cognitive disorders and sad mood were recorded. In addition, the history of falls within the past year was recorded using a standardized questionnaire. Among 1,760 participants, 19.7 % (n = 346) were recurrent fallers. The RT identified 14 nodes groups and 8 end nodes with FOF as the first major split. Among participants with FOF, those who had sad mood and polypharmacy formed the end node with the greatest OR for recurrent falls (OR = 6.06 with p falls (OR = 0.25 with p factors for recurrent falls, the combination most associated with recurrent falls involving FOF, sad mood and polypharmacy. The FOF emerged as the risk factor strongly associated with recurrent falls. In addition, RT and multiple logistic regression were not sensitive enough to identify the majority of recurrent fallers but appeared efficient in detecting individuals not at risk of recurrent falls.
An O(n²) maximal planarization algorithm based on PQ-trees
Kant, G.
1992-01-01
In this paper we investigate the problem how to delete a number of edges from a nonplanar graph G such that the resulting graph G’ is maximal planar, i.e., such that we cannot add an edge e E G – G’ to G’ without destroying planarity. Actually, our algorithm is a corrected and more generalized
A Decision-Tree-Based Algorithm for Speech/Music Classification and Segmentation
Directory of Open Access Journals (Sweden)
Lavner Yizhar
2009-01-01
Full Text Available We present an efficient algorithm for segmentation of audio signals into speech or music. The central motivation to our study is consumer audio applications, where various real-time enhancements are often applied. The algorithm consists of a learning phase and a classification phase. In the learning phase, predefined training data is used for computing various time-domain and frequency-domain features, for speech and music signals separately, and estimating the optimal speech/music thresholds, based on the probability density functions of the features. An automatic procedure is employed to select the best features for separation. In the test phase, initial classification is performed for each segment of the audio signal, using a three-stage sieve-like approach, applying both Bayesian and rule-based methods. To avoid erroneous rapid alternations in the classification, a smoothing technique is applied, averaging the decision on each segment with past segment decisions. Extensive evaluation of the algorithm, on a database of more than 12 hours of speech and more than 22 hours of music showed correct identification rates of 99.4% and 97.8%, respectively, and quick adjustment to alternating speech/music sections. In addition to its accuracy and robustness, the algorithm can be easily adapted to different audio types, and is suitable for real-time operation.
A New Architecture for Making Moral Agents Based on C4.5 Decision Tree Algorithm
Meisam Azad-Manjiri
2014-01-01
Regarding to the influence of robots in the various fields of life, the issue of trusting to them is important, especially when a robot deals with people directly. One of the possible ways to get this confidence is adding a moral dimension to the robots. Therefore, we present a new architecture in order to build moral agents that learn from demonstrations. This agent is based on Beauchamp and Childress’s principles of biomedical ethics (a type of deontological theory) and uses decision tree a...
Efficient algorithms to assess component and gate importance in fault tree analysis
International Nuclear Information System (INIS)
Dutuit, Y.; Rauzy, A.
2001-01-01
One of the principal activities of risk assessment is either the ranking or the categorization of structures, systems and components with respect to their risk-significance or their safety-significance. Several measures, so-called importance factors, of such a significance have been proposed for the case where the support model is a fault tree. In this article, we show how binary decision diagrams can be use to assess efficiently a number of classical importance factors. This work completes the preliminary results obtained recently by Andrews and Sinnamon, and the authors. It deals also with the concept of joint reliability importance
Comparison between SARS CoV and MERS CoV Using Apriori Algorithm, Decision Tree, SVM
Directory of Open Access Journals (Sweden)
Jang Seongpil
2016-01-01
Full Text Available MERS (Middle East Respiratory Syndrome is a worldwide disease these days. The number of infected people is 1038(08/03/2015 in Saudi Arabia and 186(08/03/2015 in South Korea. MERS is all over the world including Europe and the fatality rate is 38.8%, East Asia and the Middle East. The MERS is also known as a cousin of SARS (Severe Acute Respiratory Syndrome because both diseases show similar symptoms such as high fever and difficulty in breathing. This is why we compared MERS with SARS. We used data of the spike glycoprotein from NCBI. As a way of analyzing the protein, apriori algorithm, decision tree, SVM were used, and particularly SVM was iterated by normal, polynomial, and sigmoid. The result came out that the MERS and the SARS are alike but also different in some way.
Yang, Cheng-Hong; Wu, Kuo-Chuan; Dahms, Hans-Uwe; Chuang, Li-Yeh; Chang, Hsueh-Wei
2017-07-01
DNA barcodes are widely used in taxonomy, systematics, species identification, food safety, and forensic science. Most of the conventional DNA barcode sequences contain the whole information of a given barcoding gene. Most of the sequence information does not vary and is uninformative for a given group of taxa within a monophylum. We suggest here a method that reduces the amount of noninformative nucleotides in a given barcoding sequence of a major taxon, like the prokaryotes, or eukaryotic animals, plants, or fungi. The actual differences in genetic sequences, called single nucleotide polymorphism (SNP) genotyping, provide a tool for developing a rapid, reliable, and high-throughput assay for the discrimination between known species. Here, we investigated SNPs as robust markers of genetic variation for identifying different pigeon species based on available cytochrome c oxidase I (COI) data. We propose here a decision tree-based SNP barcoding (DTSB) algorithm where SNP patterns are selected from the DNA barcoding sequence of several evolutionarily related species in order to identify a single species with pigeons as an example. This approach can make use of any established barcoding system. We here firstly used as an example the mitochondrial gene COI information of 17 pigeon species (Columbidae, Aves) using DTSB after sequence trimming and alignment. SNPs were chosen which followed the rule of decision tree and species-specific SNP barcodes. The shortest barcode of about 11 bp was then generated for discriminating 17 pigeon species using the DTSB method. This method provides a sequence alignment and tree decision approach to parsimoniously assign a unique and shortest SNP barcode for any known species of a chosen monophyletic taxon where a barcoding sequence is available.
Directory of Open Access Journals (Sweden)
Mei-Shiang Chang
2013-01-01
Full Text Available The facility layout problem is a typical combinational optimization problem. In this research, a slicing tree representation and a quadratically constrained program model are combined with harmony search to develop a heuristic method for solving the unequal-area block layout problem. Because of characteristics of slicing tree structure, we propose a regional structure of harmony memory to memorize facility layout solutions and two kinds of harmony improvisation to enhance global search ability of the proposed heuristic method. The proposed harmony search based heuristic is tested on 10 well-known unequal-area facility layout problems from the literature. The results are compared with the previously best-known solutions obtained by genetic algorithm, tabu search, and ant system as well as exact methods. For problems O7, O9, vC10Ra, M11*, and Nug12, new best solutions are found. For other problems, the proposed approach can find solutions that are very similar to previous best-known solutions.
Directory of Open Access Journals (Sweden)
Abraham Pouliakis
2015-01-01
Full Text Available Objective. Nowadays numerous ancillary techniques detecting HPV DNA and mRNA compete with cytology; however no perfect test exists; in this study we evaluated classification and regression trees (CARTs for the production of triage rules and estimate the risk for cervical intraepithelial neoplasia (CIN in cases with ASCUS+ in cytology. Study Design. We used 1625 cases. In contrast to other approaches we used missing data to increase the data volume, obtain more accurate results, and simulate real conditions in the everyday practice of gynecologic clinics and laboratories. The proposed CART was based on the cytological result, HPV DNA typing, HPV mRNA detection based on NASBA and flow cytometry, p16 immunocytochemical expression, and finally age and parous status. Results. Algorithms useful for the triage of women were produced; gynecologists could apply these in conjunction with available examination results and conclude to an estimation of the risk for a woman to harbor CIN expressed as a probability. Conclusions. The most important test was the cytological examination; however the CART handled cases with inadequate cytological outcome and increased the diagnostic accuracy by exploiting the results of ancillary techniques even if there were inadequate missing data. The CART performance was better than any other single test involved in this study.
Pouliakis, Abraham; Karakitsou, Efrossyni; Chrelias, Charalampos; Pappas, Asimakis; Panayiotides, Ioannis; Valasoulis, George; Kyrgiou, Maria; Paraskevaidis, Evangelos; Karakitsos, Petros
2015-01-01
Nowadays numerous ancillary techniques detecting HPV DNA and mRNA compete with cytology; however no perfect test exists; in this study we evaluated classification and regression trees (CARTs) for the production of triage rules and estimate the risk for cervical intraepithelial neoplasia (CIN) in cases with ASCUS+ in cytology. We used 1625 cases. In contrast to other approaches we used missing data to increase the data volume, obtain more accurate results, and simulate real conditions in the everyday practice of gynecologic clinics and laboratories. The proposed CART was based on the cytological result, HPV DNA typing, HPV mRNA detection based on NASBA and flow cytometry, p16 immunocytochemical expression, and finally age and parous status. Algorithms useful for the triage of women were produced; gynecologists could apply these in conjunction with available examination results and conclude to an estimation of the risk for a woman to harbor CIN expressed as a probability. The most important test was the cytological examination; however the CART handled cases with inadequate cytological outcome and increased the diagnostic accuracy by exploiting the results of ancillary techniques even if there were inadequate missing data. The CART performance was better than any other single test involved in this study.
Indian Academy of Sciences (India)
to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...
Tree Alignment Based on Needleman-Wunsch Algorithm for Sensor Selection in Smart Homes.
Chua, Sook-Ling; Foo, Lee Kien
2017-08-18
Activity recognition in smart homes aims to infer the particular activities of the inhabitant, the aim being to monitor their activities and identify any abnormalities, especially for those living alone. In order for a smart home to support its inhabitant, the recognition system needs to learn from observations acquired through sensors. One question that often arises is which sensors are useful and how many sensors are required to accurately recognise the inhabitant's activities? Many wrapper methods have been proposed and remain one of the popular evaluators for sensor selection due to its superior accuracy performance. However, they are prohibitively slow during the evaluation process and may run into the risk of overfitting due to the extent of the search. Motivated by this characteristic, this paper attempts to reduce the cost of the evaluation process and overfitting through tree alignment. The performance of our method is evaluated on two public datasets obtained in two distinct smart home environments.
International Nuclear Information System (INIS)
Wang Jianyong; Wang Tianzhi; Zuiderweg, Erik R. P.; Crippen, Gordon M.
2005-01-01
Rapid analysis of protein structure, interaction, and dynamics requires fast and automated assignments of 3D protein backbone triple-resonance NMR spectra. We introduce a new depth-first ordered tree search method of automated assignment, CASA, which uses hand-edited peak-pick lists of a flexible number of triple resonance experiments. The computer program was tested on 13 artificially simulated peak lists for proteins up to 723 residues, as well as on the experimental data for four proteins. Under reasonable tolerances, it generated assignments that correspond to the ones reported in the literature within a few minutes of CPU time. The program was also tested on the proteins analyzed by other methods, with both simulated and experimental peaklists, and it could generate good assignments in all relevant cases. The robustness was further tested under various situations
Implementation of a tree algorithm in MCNP code for nuclear well logging applications
Energy Technology Data Exchange (ETDEWEB)
Li Fusheng, E-mail: fusheng.li@bakerhughes.com [Baker Hughes Incorporated, 2001 Rankin Rd. Houston, TX 77073-5101 (United States); Han Xiaogang [Baker Hughes Incorporated, 2001 Rankin Rd. Houston, TX 77073-5101 (United States)
2012-07-15
The goal of this paper is to develop some modeling capabilities that are missing in the current MCNP code. Those missing capabilities can greatly help for some certain nuclear tools designs, such as a nuclear lithology/mineralogy spectroscopy tool. The new capabilities to be developed in this paper include the following: zone tally, neutron interaction tally, gamma rays index tally and enhanced pulse-height tally. The patched MCNP code also can be used to compute neutron slowing-down length and thermal neutron diffusion length. - Highlights: Black-Right-Pointing-Pointer Tree structure programming is suitable for Monte-Carlo based particle tracking. Black-Right-Pointing-Pointer Enhanced pulse height tally is developed for oilwell logging tool simulation. Black-Right-Pointing-Pointer Neutron interaction tally and gamma ray index tally for geochemical logging.
Directory of Open Access Journals (Sweden)
Francesco Cerasoli
Full Text Available Boosted Regression Trees (BRT is one of the modelling techniques most recently applied to biodiversity conservation and it can be implemented with presence-only data through the generation of artificial absences (pseudo-absences. In this paper, three pseudo-absences generation techniques are compared, namely the generation of pseudo-absences within target-group background (TGB, testing both the weighted (WTGB and unweighted (UTGB scheme, and the generation at random (RDM, evaluating their performance and applicability in distribution modelling and species conservation. The choice of the target group fell on amphibians, because of their rapid decline worldwide and the frequent lack of guidelines for conservation strategies and regional-scale planning, which instead could be provided through an appropriate implementation of SDMs. Bufo bufo, Salamandrina perspicillata and Triturus carnifex were considered as target species, in order to perform our analysis with species having different ecological and distributional characteristics. The study area is the "Gran Sasso-Monti della Laga" National Park, which hosts 15 Natura 2000 sites and represents one of the most important biodiversity hotspots in Europe. Our results show that the model calibration ameliorates when using the target-group based pseudo-absences compared to the random ones, especially when applying the WTGB. Contrarily, model discrimination did not significantly vary in a consistent way among the three approaches with respect to the tree target species. Both WTGB and RDM clearly isolate the highly contributing variables, supplying many relevant indications for species conservation actions. Moreover, the assessment of pairwise variable interactions and their three-dimensional visualization further increase the amount of useful information for protected areas' managers. Finally, we suggest the use of RDM as an admissible alternative when it is not possible to individuate a suitable set of
Directory of Open Access Journals (Sweden)
José A. Delgado
2012-01-01
Full Text Available Forest structural parameters such as quadratic mean diameter, basal area, and number of trees per unit area are important for the assessment of wood volume and biomass and represent key forest inventory attributes. Forest inventory information is required to support sustainable management, carbon accounting, and policy development activities. Digital image processing of remotely sensed imagery is increasingly utilized to assist traditional, more manual, methods in the estimation of forest structural attributes over extensive areas, also enabling evaluation of change over time. Empirical attribute estimation with remotely sensed data is frequently employed, yet with known limitations, especially over complex environments such as Mediterranean forests. In this study, the capacity of high spatial resolution (HSR imagery and related techniques to model structural parameters at the stand level (n = 490 in Mediterranean pines in Central Spain is tested using data from the commercial satellite QuickBird-2. Spectral and spatial information derived from multispectral and panchromatic imagery (2.4 m and 0.68 m sided pixels, respectively served to model structural parameters. Classification and Regression Tree Analysis (CART was selected for the modeling of attributes. Accurate models were produced of quadratic mean diameter (QMD (R2 = 0.8; RMSE = 0.13 m with an average error of 17% while basal area (BA models produced an average error of 22% (RMSE = 5.79 m2/ha. When the measured number of trees per unit area (N was categorized, as per frequent forest management practices, CART models correctly classified 70% of the stands, with all other stands classified in an adjacent class. The accuracy of the attributes estimated here is expected to be better when canopy cover is more open and attribute values are at the lower end of the range present, as related in the pattern of the residuals found in this study. Our findings indicate that attributes derived from
Transferability of decision trees for land cover classification in a ...
African Journals Online (AJOL)
This paper attempts to derive classification rules from training data of four Landsat-8 scenes by using the classification and regression tree (CART) implementation of the decision tree algorithm. The transferability of the ruleset was evaluated by classifying two adjacent scenes. The classification of the four mosaicked scenes ...
Directory of Open Access Journals (Sweden)
Qing Guo
2015-04-01
Full Text Available A gait identification method for a lower extremity exoskeleton is presented in order to identify the gait sub-phases in human-machine coordinated motion. First, a sensor layout for the exoskeleton is introduced. Taking the difference between human lower limb motion and human-machine coordinated motion into account, the walking gait is divided into five sub-phases, which are ‘double standing’, ‘right leg swing and left leg stance’, ‘double stance with right leg front and left leg back’, ‘right leg stance and left leg swing’, and ‘double stance with left leg front and right leg back’. The sensors include shoe pressure sensors, knee encoders, and thigh and calf gyroscopes, and are used to measure the contact force of the foot, and the knee joint angle and its angular velocity. Then, five sub-phases of walking gait are identified by a C4.5 decision tree algorithm according to the data fusion of the sensors' information. Based on the simulation results for the gait division, identification accuracy can be guaranteed by the proposed algorithm. Through the exoskeleton control experiment, a division of five sub-phases for the human-machine coordinated walk is proposed. The experimental results verify this gait division and identification method. They can make hydraulic cylinders retract ahead of time and improve the maximal walking velocity when the exoskeleton follows the person's motion.
Comparative analysis of decision tree algorithms on quality of water contaminated with soil
Directory of Open Access Journals (Sweden)
Mara Andrea Dota
2015-02-01
Full Text Available Agriculture, roads, animal farms and other land uses may modify the water quality from rivers, dams and other surface freshwaters. In the control of the ecological process and for environmental management, it is necessary to quickly and accurately identify surface water contamination (in areas such as rivers and dams with contaminated runoff waters coming, for example, from cultivation and urban areas. This paper presents a comparative analysis of different classification algorithms applied to the data collected from a sample of soil-contaminated water aiming to identify if the water quality classification proposed in this research agrees with reality. The sample was part of a laboratory experiment, which began with a sample of treated water added with increasing fractions of soil. The results show that the proposed classification for water quality in this scenario is coherent, because different algorithms indicated a strong statistic relationship between the classes and their instances, that is, in the classes that qualify the water sample and the values which describe each class. The proposed water classification varies from excelling to very awful (12 classes
Hutton, Eileen K; Simioni, Julia C; Thabane, Lehana
2017-08-01
Among women with a fetus with a non-cephalic presentation, external cephalic version (ECV) has been shown to reduce the rate of breech presentation at birth and cesarean birth. Compared with ECV at term, beginning ECV prior to 37 weeks' gestation decreases the number of infants in a non-cephalic presentation at birth. The purpose of this secondary analysis was to investigate factors associated with a successful ECV procedure and to present this in a clinically useful format. Data were collected as part of the Early ECV Pilot and Early ECV2 Trials, which randomized 1776 women with a fetus in breech presentation to either early ECV (34-36 weeks' gestation) or delayed ECV (at or after 37 weeks). The outcome of interest was successful ECV, defined as the fetus being in a cephalic presentation immediately following the procedure, as well as at the time of birth. The importance of several factors in predicting successful ECV was investigated using two statistical methods: logistic regression and classification and regression tree (CART) analyses. Among nulliparas, non-engagement of the presenting part and an easily palpable fetal head were independently associated with success. Among multiparas, non-engagement of the presenting part, gestation less than 37 weeks and an easily palpable fetal head were found to be independent predictors of success. These findings were consistent with results of the CART analyses. Regardless of parity, descent of the presenting part was the most discriminating factor in predicting successful ECV and cephalic presentation at birth. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
Ibanez, C. A. G.; Carcellar, B. G., III; Paringit, E. C.; Argamosa, R. J. L.; Faelga, R. A. G.; Posilero, M. A. V.; Zaragosa, G. P.; Dimayacyac, N. A.
2016-06-01
Diameter-at-Breast-Height Estimation is a prerequisite in various allometric equations estimating important forestry indices like stem volume, basal area, biomass and carbon stock. LiDAR Technology has a means of directly obtaining different forest parameters, except DBH, from the behavior and characteristics of point cloud unique in different forest classes. Extensive tree inventory was done on a two-hectare established sample plot in Mt. Makiling, Laguna for a natural growth forest. Coordinates, height, and canopy cover were measured and types of species were identified to compare to LiDAR derivatives. Multiple linear regression was used to get LiDAR-derived DBH by integrating field-derived DBH and 27 LiDAR-derived parameters at 20m, 10m, and 5m grid resolutions. To know the best combination of parameters in DBH Estimation, all possible combinations of parameters were generated and automated using python scripts and additional regression related libraries such as Numpy, Scipy, and Scikit learn were used. The combination that yields the highest r-squared or coefficient of determination and lowest AIC (Akaike's Information Criterion) and BIC (Bayesian Information Criterion) was determined to be the best equation. The equation is at its best using 11 parameters at 10mgrid size and at of 0.604 r-squared, 154.04 AIC and 175.08 BIC. Combination of parameters may differ among forest classes for further studies. Additional statistical tests can be supplemented to help determine the correlation among parameters such as Kaiser- Meyer-Olkin (KMO) Coefficient and the Barlett's Test for Spherecity (BTS).
Sayegh, Arwa; Tate, James E.; Ropkins, Karl
2016-02-01
Oxides of Nitrogen (NOx) is a major component of photochemical smog and its constituents are considered principal traffic-related pollutants affecting human health. This study investigates the influence of background concentrations of NOx, traffic density, and prevailing meteorological conditions on roadside concentrations of NOx at UK urban, open motorway, and motorway tunnel sites using the statistical approach Boosted Regression Trees (BRT). BRT models have been fitted using hourly concentration, traffic, and meteorological data for each site. The models predict, rank, and visualise the relationship between model variables and roadside NOx concentrations. A strong relationship between roadside NOx and monitored local background concentrations is demonstrated. Relationships between roadside NOx and other model variables have been shown to be strongly influenced by the quality and resolution of background concentrations of NOx, i.e. if it were based on monitored data or modelled prediction. The paper proposes a direct method of using site-specific fundamental diagrams for splitting traffic data into four traffic states: free-flow, busy-flow, congested, and severely congested. Using BRT models, the density of traffic (vehicles per kilometre) was observed to have a proportional influence on the concentrations of roadside NOx, with different fitted regression line slopes for the different traffic states. When other influences are conditioned out, the relationship between roadside concentrations and ambient air temperature suggests NOx concentrations reach a minimum at around 22 °C with high concentrations at low ambient air temperatures which could be associated to restricted atmospheric dispersion and/or to changes in road traffic exhaust emission characteristics at low ambient air temperatures. This paper uses BRT models to study how different critical factors, and their relative importance, influence the variation of roadside NOx concentrations. The paper
Lo, Ching F.
1999-01-01
The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.
Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.
2014-12-01
Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.
Yu, Huibin; Song, Yonghui; Liu, Ruixia; Pan, Hongwei; Xiang, Liancheng; Qian, Feng
2014-10-01
The stabilization of latent tracers of dissolved organic matter (DOM) of wastewater was analyzed by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy coupled with self-organizing map and classification and regression tree analysis (CART) in wastewater treatment performance. DOM of water samples collected from primary sedimentation, anaerobic, anoxic, oxic and secondary sedimentation tanks in a large-scale wastewater treatment plant contained four fluorescence components: tryptophan-like (C1), tyrosine-like (C2), microbial humic-like (C3) and fulvic-like (C4) materials extracted by self-organizing map. These components showed good positive linear correlations with dissolved organic carbon of DOM. C1 and C2 were representative components in the wastewater, and they were removed to a higher extent than those of C3 and C4 in the treatment process. C2 was a latent parameter determined by CART to differentiate water samples of oxic and secondary sedimentation tanks from the successive treatment units, indirectly proving that most of tyrosine-like material was degraded by anaerobic microorganisms. C1 was an accurate parameter to comprehensively separate the samples of the five treatment units from each other, indirectly indicating that tryptophan-like material was decomposed by anaerobic and aerobic bacteria. EEM fluorescence spectroscopy in combination with self-organizing map and CART analysis can be a nondestructive effective method for characterizing structural component of DOM fractions and monitoring organic matter removal in wastewater treatment process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
César Lavorenti
1990-01-01
Full Text Available O presente trabalho foi realizado com o objetivo de determinar a existência e as magnitudes de correlações e regressões lineares simples em plântulas jovens de seringueira (Hevea spp., para melhor condução de seleção nos futuros trabalhos de melhoramento. Foram utilizadas médias de produção de borracha seca por plântulas por corte, através do teste Hamaker-Morris-Mann (P; circunferência do caule (CC; espessura de casca (EC; número de anéis (NA; diâmetro dos vasos (DV; densidade dos vasos laticíleros (D e distância média entre anéis de vasos consecutivos (DMEAVC em um viveiro de cruzamento com três anos e meio de idade. Os resultados mostraram, entre outros fatores, que as correlações lineares simples de P com CC, EC, NA, D, DV e DMEAVC foram, respectivamente, r =t 0,61, 0,34, 0,28, 0,29, 0,43 e -0,13. As correlações de CC com EC, NA, D, DV e DMEAVC foram: 0,65, 0,22, 0,37, 0,33 e 0,096 respectivamente. Estudos de regressão linear simples de P com CC, EC, NA, DV, D e DMEAVC sugerem que CC foi o caráter independente mais significativo, contribuindo com 36% da variação em P. Em relação ao vigor, a regressão de CC com os respectivos caracteres sugere que EC foi o único caráter que contribuiu significativamente para a variação de CC com 42%. As altas correlações observadas da produção com circunferência do caule e com espessura de casca evidenciam a possibilidade de obter genótipos jovens de boa capacidade produtiva e grande vigor, através de seleção precoce dessas variáveis.This study was undertaken aiming to determine the existence of linear correlations, based on simple regression studies for a better improvement of young rubber tree (Hevea spp. breeding and selection. The characters studied were: yield of dry rubber per tapping by Hamaker-Morris-Mann test tapping (P, mean gurth (CC, bark thickness (EC, number of latex vessel rings (NA, diameter of latex vesseis (DV, density of latex vesseis per 5mm
Directory of Open Access Journals (Sweden)
Javier Trujillano
2008-02-01
Full Text Available Objetivo: : Realizar una aproximación a la metodología de árboles de decisión tipo CART (Classification and Regression Trees desarrollando un modelo para calcular la probabilidad de muerte hospitalaria en infarto agudo de miocardio (IAM. Método: Se utiliza el conjunto mínimo básico de datos al alta hospitalaria (CMBD de Andalucía, Cataluña, Madrid y País Vasco de los años 2001 y 2002, que incluye los casos con IAM como diagnóstico principal. Los 33.203 pacientes se dividen aleatoriamente (70 y 30 % en grupo de desarrollo (GD = 23.277 y grupo de validación (GV = 9.926. Como CART se utiliza un modelo inductivo basado en el algoritmo de Breiman, con análisis de sensibilidad mediante el índice de Gini y sistema de validación cruzada. Se compara con un modelo de regresión logística (RL y una red neuronal artificial (RNA (multilayer perceptron. Los modelos desarrollados se contrastan en el GV y sus propiedades se comparan con el área bajo la curva ROC (ABC (intervalo de confianza del 95%. Resultados: En el GD el CART con ABC = 0,85 (0,86-0,88, RL 0,87 (0,86-0,88 y RNA 0,85 (0,85-0,86. En el GV el CART con ABC = 0,85 (0,85-0,88, RL 0,86 (0,85-0,88 y RNA 0,84 (0,83-0,86. Conclusiones: Los 3 modelos obtienen resultados similares en su capacidad de discriminación. El modelo CART ofrece como ventaja su simplicidad de uso y de interpretación, ya que las reglas de decisión que generan pueden aplicarse sin necesidad de procesos matemáticos.Objective: To provide an overview of decision trees based on CART (Classification and Regression Trees methodology. As an example, we developed a CART model intended to estimate the probability of intrahospital death from acute myocardial infarction (AMI. Method: We employed the minimum data set (MDS of Andalusia, Catalonia, Madrid and the Basque Country (2001-2002, which included 33,203 patients with a diagnosis of AMI. The 33,203 patients were randomly divided (70% and 30% into the development (DS
A novel tree-based algorithm to discover seismic patterns in earthquake catalogs
Florido, E.; Asencio-Cortés, G.; Aznarte, J. L.; Rubio-Escudero, C.; Martínez-Álvarez, F.
2018-06-01
A novel methodology is introduced in this research study to detect seismic precursors. Based on an existing approach, the new methodology searches for patterns in the historical data. Such patterns may contain statistical or soil dynamics information. It improves the original version in several aspects. First, new seismicity indicators have been used to characterize earthquakes. Second, a machine learning clustering algorithm has been applied in a very flexible way, thus allowing the discovery of new data groupings. Third, a novel search strategy is proposed in order to obtain non-overlapped patterns. And, fourth, arbitrary lengths of patterns are searched for, thus discovering long and short-term behaviors that may influence in the occurrence of medium-large earthquakes. The methodology has been applied to seven different datasets, from three different regions, namely the Iberian Peninsula, Chile and Japan. Reported results show a remarkable improvement with respect to the former version, in terms of all evaluated quality measures. In particular, the number of false positives has decreased and the positive predictive values increased, both of them in a very remarkable manner.
Directory of Open Access Journals (Sweden)
Dominik Jaskierniak
2015-06-01
Full Text Available Managers of forested water supply catchments require efficient and accurate methods to quantify changes in forest water use due to changes in forest structure and density after disturbance. Using Light Detection and Ranging (LiDAR data with as few as 0.9 pulses m−2, we applied a local maximum filtering (LMF method and normalised cut (NCut algorithm to predict stocking density (SDen of a 69-year-old Eucalyptus regnans forest comprising 251 plots with resolution of the order of 0.04 ha. Using the NCut method we predicted basal area (BAHa per hectare and sapwood area (SAHa per hectare, a well-established proxy for transpiration. Sapwood area was also indirectly estimated with allometric relationships dependent on LiDAR derived SDen and BAHa using a computationally efficient procedure. The individual tree detection (ITD rates for the LMF and NCut methods respectively had 72% and 68% of stems correctly identified, 25% and 20% of stems missed, and 2% and 12% of stems over-segmented. The significantly higher computational requirement of the NCut algorithm makes the LMF method more suitable for predicting SDen across large forested areas. Using NCut derived ITD segments, observed versus predicted stand BAHa had R2 ranging from 0.70 to 0.98 across six catchments, whereas a generalised parsimonious model applied to all sites used the portion of hits greater than 37 m in height (PH37 to explain 68% of BAHa. For extrapolating one ha resolution SAHa estimates across large forested catchments, we found that directly relating SAHa to NCut derived LiDAR indices (R2 = 0.56 was slightly more accurate but computationally more demanding than indirect estimates of SAHa using allometric relationships consisting of BAHa (R2 = 0.50 or a sapwood perimeter index, defined as (BAHaSDen½ (R2 = 0.48.
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...
Indian Academy of Sciences (India)
ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...
DEFF Research Database (Denmark)
Halkjær From, Andreas; Schlichtkrull, Anders; Villadsen, Jørgen
2018-01-01
We formally prove in Isabelle/HOL two properties of an algorithm for laying out trees visually. The first property states that removing layout annotations recovers the original tree. The second property states that nodes are placed at least a unit of distance apart. We have yet to formalize three...
Liu, Iching; Sun, Ying
1992-10-01
A system for reconstructing 3-D vascular structure from two orthogonally projected images is presented. The formidable problem of matching segments between two views is solved using knowledge of the epipolar constraint and the similarity of segment geometry and connectivity. The knowledge is represented in a rule-based system, which also controls the operation of several computational algorithms for tracking segments in each image, representing 2-D segments with directed graphs, and reconstructing 3-D segments from matching 2-D segment pairs. Uncertain reasoning governs the interaction between segmentation and matching; it also provides a framework for resolving the matching ambiguities in an iterative way. The system was implemented in the C language and the C Language Integrated Production System (CLIPS) expert system shell. Using video images of a tree model, the standard deviation of reconstructed centerlines was estimated to be 0.8 mm (1.7 mm) when the view direction was parallel (perpendicular) to the epipolar plane. Feasibility of clinical use was shown using x-ray angiograms of a human chest phantom. The correspondence of vessel segments between two views was accurate. Computational time for the entire reconstruction process was under 30 s on a workstation. A fully automated system for two-view reconstruction that does not require the a priori knowledge of vascular anatomy is demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Hosseini, Seyed Abolfazl, E-mail: sahosseini@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Tehran 8639-11365 (Iran, Islamic Republic of); Afrakoti, Iman Esmaili Paeen [Faculty of Engineering & Technology, University of Mazandaran, Pasdaran Street, P.O. Box: 416, Babolsar 47415 (Iran, Islamic Republic of)
2017-04-11
Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The {sup 241}Am-{sup 9}Be and {sup 252}Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions. - Highlights: • The neutron pulse height distribution was simulated using MCNPX-ESUT. • The energy spectrum of the neutron source was unfolded using GMDH. • The energy spectrum of the neutron source was
Shrivastava, Prashant Kumar; Pandey, Arun Kumar
2018-06-01
Inconel-718 has found high demand in different industries due to their superior mechanical properties. The traditional cutting methods are facing difficulties for cutting these alloys due to their low thermal potential, lower elasticity and high chemical compatibility at inflated temperature. The challenges of machining and/or finishing of unusual shapes and/or sizes in these materials have also faced by traditional machining. Laser beam cutting may be applied for the miniaturization and ultra-precision cutting and/or finishing by appropriate control of different process parameter. This paper present multi-objective optimization the kerf deviation, kerf width and kerf taper in the laser cutting of Incone-718 sheet. The second order regression models have been developed for different quality characteristics by using the experimental data obtained through experimentation. The regression models have been used as objective function for multi-objective optimization based on the hybrid approach of multiple regression analysis and genetic algorithm. The comparison of optimization results to experimental results shows an improvement of 88%, 10.63% and 42.15% in kerf deviation, kerf width and kerf taper, respectively. Finally, the effects of different process parameters on quality characteristics have also been discussed.
Directory of Open Access Journals (Sweden)
Peng Jiang
2016-07-01
Full Text Available Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs just consider how to optimize network coverage and connectivity rate. However, these literatures don’t discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D convex hull and spanning tree (NDACS for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability.
Indian Academy of Sciences (India)
algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).
Indian Academy of Sciences (India)
algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...
Ghavami, Raoof; Najafi, Amir; Sajadi, Mohammad; Djannaty, Farhad
2008-09-01
In order to accurately simulate (13)C NMR spectra of hydroxy, polyhydroxy and methoxy substituted flavonoid a quantitative structure-property relationship (QSPR) model, relating atom-based calculated descriptors to (13)C NMR chemical shifts (ppm, TMS=0), is developed. A dataset consisting of 50 flavonoid derivatives was employed for the present analysis. A set of 417 topological, geometrical, and electronic descriptors representing various structural characteristics was calculated and separate multilinear QSPR models were developed between each carbon atom of flavonoid and the calculated descriptors. Genetic algorithm (GA) and multiple linear regression analysis (MLRA) were used to select the descriptors and to generate the correlation models. Analysis of the results revealed a correlation coefficient and root mean square error (RMSE) of 0.994 and 2.53ppm, respectively, for the prediction set.
Xiao, Hong; Lin, Xiao-ling; Dai, Xiang-yu; Gao, Li-dong; Chen, Bi-yun; Zhang, Xi-xing; Zhu, Pei-juan; Tian, Huai-yu
2012-05-01
To analyze the periodicity of pandemic influenza A (H1N1) in Changsha in year 2009 and its correlation with sensitive climatic factors. The information of 5439 cases of influenza A (H1N1) and synchronous meteorological data during the period between May 22th and December 31st in year 2009 (223 days in total) in Changsha city were collected. The classification and regression tree (CART) was employed to screen the sensitive climatic factors on influenza A (H1N1); meanwhile, cross wavelet transform and wavelet coherence analysis were applied to assess and compare the periodicity of the pandemic disease and its association with the time-lag phase features of the sensitive climatic factors. The results of CART indicated that the daily minimum temperature and daily absolute humidity were the sensitive climatic factors for the popularity of influenza A (H1N1) in Changsha. The peak of the incidence of influenza A (H1N1) was in the period between October and December (Median (M) = 44.00 cases per day), simultaneously the daily minimum temperature (M = 13°C) and daily absolute humidity (M = 6.69 g/m(3)) were relatively low. The results of wavelet analysis demonstrated that a period of 16 days was found in the epidemic threshold in Changsha, while the daily minimum temperature and daily absolute humidity were the relatively sensitive climatic factors. The number of daily reported patients was statistically relevant to the daily minimum temperature and daily absolute humidity. The frequency domain was mostly in the period of (16 ± 2) days. In the initial stage of the disease (from August 9th and September 8th), a 6-day lag was found between the incidence and the daily minimum temperature. In the peak period of the disease, the daily minimum temperature and daily absolute humidity were negatively relevant to the incidence of the disease. In the pandemic period, the incidence of influenza A (H1N1) showed periodic features; and the sensitive climatic factors did have a "driving
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
Fouad, Marwa A; Tolba, Enas H; El-Shal, Manal A; El Kerdawy, Ahmed M
2018-05-11
The justified continuous emerging of new β-lactam antibiotics provokes the need for developing suitable analytical methods that accelerate and facilitate their analysis. A face central composite experimental design was adopted using different levels of phosphate buffer pH, acetonitrile percentage at zero time and after 15 min in a gradient program to obtain the optimum chromatographic conditions for the elution of 31 β-lactam antibiotics. Retention factors were used as the target property to build two QSRR models utilizing the conventional forward selection and the advanced nature-inspired firefly algorithm for descriptor selection, coupled with multiple linear regression. The obtained models showed high performance in both internal and external validation indicating their robustness and predictive ability. Williams-Hotelling test and student's t-test showed that there is no statistical significant difference between the models' results. Y-randomization validation showed that the obtained models are due to significant correlation between the selected molecular descriptors and the analytes' chromatographic retention. These results indicate that the generated FS-MLR and FFA-MLR models are showing comparable quality on both the training and validation levels. They also gave comparable information about the molecular features that influence the retention behavior of β-lactams under the current chromatographic conditions. We can conclude that in some cases simple conventional feature selection algorithm can be used to generate robust and predictive models comparable to that are generated using advanced ones. Copyright © 2018 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Boris Campillo-Gimenez
Full Text Available Case-based reasoning (CBR is an emerging decision making paradigm in medical research where new cases are solved relying on previously solved similar cases. Usually, a database of solved cases is provided, and every case is described through a set of attributes (inputs and a label (output. Extracting useful information from this database can help the CBR system providing more reliable results on the yet to be solved cases.We suggest a general framework where a CBR system, viz. K-Nearest Neighbour (K-NN algorithm, is combined with various information obtained from a Logistic Regression (LR model, in order to improve prediction of access to the transplant waiting list.LR is applied, on the case database, to assign weights to the attributes as well as the solved cases. Thus, five possible decision making systems based on K-NN and/or LR were identified: a standalone K-NN, a standalone LR and three soft K-NN algorithms that rely on the weights based on the results of the LR. The evaluation was performed under two conditions, either using predictive factors known to be related to registration, or using a combination of factors related and not related to registration.The results show that our suggested approach, where the K-NN algorithm relies on both weighted attributes and cases, can efficiently deal with non relevant attributes, whereas the four other approaches suffer from this kind of noisy setups. The robustness of this approach suggests interesting perspectives for medical problem solving tools using CBR methodology.
DEFF Research Database (Denmark)
Petersen, Mette Bisgaard; Tolver, Anders; Husted, Louise
2016-01-01
-off value of 7 mmol/L had a sensitivity of 0.66 and a specificity of 0.92 in predicting survival. In independent test data, the sensitivity was 0.69 and the specificity was 0.76. At the observed survival rate (38%), the optimal decision tree identified horses as non-survivors when the Lac at admission...... admitted with acute colitis (trees, as well as random...
Indian Academy of Sciences (India)
will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...
Directory of Open Access Journals (Sweden)
Lucinda Pfalzer
2013-06-01
Full Text Available Background/Purpose: Over 1/3 of adults over age 65 experiences at least one fall each year. This pilot report uses a classification regression tree analysis (CART to model the outcomes for balance/risk of falls from the Gentiva® Safe Strides® Program (SSP. Methods/Outcomes: SSP is a home-based balance/fall prevention program designed to treat root causes of a patient
An Approach to Indexing and Retrieval of Spatial Data with Reduced R+ Tree and K-NN Query Algorithm
S. Palaniappan; T.V. Rajinikanth; A. Govardhan
2015-01-01
Recently, “spatial data bases have been extensively adopted in the recent decade and various methods have been presented to store, browse, search and retrieve spatial objects”. In this study, a method is plotted for retrieving nearest neighbors from spatial data indexed by R+ tree. The approach uses a reduced R+tree for the purpose of representing the spatial data. Initially the spatial data is selected and R+tree is constructed accordingly. Then a function called joining nodes is applied to ...
Barbosa, Rommel Melgaço; Nacano, Letícia Ramos; Freitas, Rodolfo; Batista, Bruno Lemos; Barbosa, Fernando
2014-09-01
This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation. © 2014 Institute of Food Technologists®
Duan, Libin; Xiao, Ning-cong; Li, Guangyao; Cheng, Aiguo; Chen, Tao
2017-07-01
Tailor-rolled blank thin-walled (TRB-TH) structures have become important vehicle components owing to their advantages of light weight and crashworthiness. The purpose of this article is to provide an efficient lightweight design for improving the energy-absorbing capability of TRB-TH structures under dynamic loading. A finite element (FE) model for TRB-TH structures is established and validated by performing a dynamic axial crash test. Different material properties for individual parts with different thicknesses are considered in the FE model. Then, a multi-objective crashworthiness design of the TRB-TH structure is constructed based on the ɛ-support vector regression (ɛ-SVR) technique and non-dominated sorting genetic algorithm-II. The key parameters (C, ɛ and σ) are optimized to further improve the predictive accuracy of ɛ-SVR under limited sample points. Finally, the technique for order preference by similarity to the ideal solution method is used to rank the solutions in Pareto-optimal frontiers and find the best compromise optima. The results demonstrate that the light weight and crashworthiness performance of the optimized TRB-TH structures are superior to their uniform thickness counterparts. The proposed approach provides useful guidance for designing TRB-TH energy absorbers for vehicle bodies.
Khosravi, Khabat; Pham, Binh Thai; Chapi, Kamran; Shirzadi, Ataollah; Shahabi, Himan; Revhaug, Inge; Prakash, Indra; Tien Bui, Dieu
2018-06-15
Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas. Copyright © 2018 Elsevier B.V. All rights reserved.
Spady, Richard; Stouli, Sami
2012-01-01
We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...
An overview of decision tree applied to power systems
DEFF Research Database (Denmark)
Liu, Leo; Rather, Zakir Hussain; Chen, Zhe
2013-01-01
The corrosive volume of available data in electric power systems motivate the adoption of data mining techniques in the emerging field of power system data analytics. The mainstream of data mining algorithm applied to power system, Decision Tree (DT), also named as Classification And Regression...... Tree (CART), has gained increasing interests because of its high performance in terms of computational efficiency, uncertainty manageability, and interpretability. This paper presents an overview of a variety of DT applications to power systems for better interfacing of power systems with data...... analytics. The fundamental knowledge of CART algorithm is also introduced which is then followed by examples of both classification tree and regression tree with the help of case study for security assessment of Danish power system....
Krepper, Gabriela; Romeo, Florencia; Fernandes, David Douglas de Sousa; Diniz, Paulo Henrique Gonçalves Dias; de Araújo, Mário César Ugulino; Di Nezio, María Susana; Pistonesi, Marcelo Fabián; Centurión, María Eugenia
2018-01-01
Determining fat content in hamburgers is very important to minimize or control the negative effects of fat on human health, effects such as cardiovascular diseases and obesity, which are caused by the high consumption of saturated fatty acids and cholesterol. This study proposed an alternative analytical method based on Near Infrared Spectroscopy (NIR) and Successive Projections Algorithm for interval selection in Partial Least Squares regression (iSPA-PLS) for fat content determination in commercial chicken hamburgers. For this, 70 hamburger samples with a fat content ranging from 14.27 to 32.12 mg kg- 1 were prepared based on the upper limit recommended by the Argentinean Food Codex, which is 20% (w w- 1). NIR spectra were then recorded and then preprocessed by applying different approaches: base line correction, SNV, MSC, and Savitzky-Golay smoothing. For comparison, full-spectrum PLS and the Interval PLS are also used. The best performance for the prediction set was obtained for the first derivative Savitzky-Golay smoothing with a second-order polynomial and window size of 19 points, achieving a coefficient of correlation of 0.94, RMSEP of 1.59 mg kg- 1, REP of 7.69% and RPD of 3.02. The proposed methodology represents an excellent alternative to the conventional Soxhlet extraction method, since waste generation is avoided, yet without the use of either chemical reagents or solvents, which follows the primary principles of Green Chemistry. The new method was successfully applied to chicken hamburger analysis, and the results agreed with those with reference values at a 95% confidence level, making it very attractive for routine analysis.
Energy Technology Data Exchange (ETDEWEB)
Lopes, J.A Pecas; Vasconcelos, Maria Helena O.P. de [Instituto de Engenharia de Sistemas e Computadores (INESC), Porto (Portugal). E-mail: jpl@riff.fe.up.pt; hvasconcelos@inescn.pt
1999-07-01
This paper describes in a synthetic manner the technology adopted to define structures used in the fast evaluation of dynamic safety of isolated network with high level of eolic production contribution. This methodology uses hybrid regression trees, which allows the quantification the endurance connected to the dynamic behavior of these networks by emulating the frequency minimum deviation that will be experienced by the system when submitted toa pre-defined perturbation. Also, new procedures for data automatic generation are presented, which will be used for construction and measurements of the evaluation structures performance. The paper describes the Terceira island - Acores archipelago network study case.
Directory of Open Access Journals (Sweden)
Rabia Latif
2015-01-01
Full Text Available Due to the scattered nature of DDoS attacks and advancement of new technologies such as cloud-assisted WBAN, it becomes challenging to detect malicious activities by relying on conventional security mechanisms. The detection of such attacks demands an adaptive and incremental learning classifier capable of accurate decision making with less computation. Hence, the DDoS attack detection using existing machine learning techniques requires full data set to be stored in the memory and are not appropriate for real-time network traffic. To overcome these shortcomings, Very Fast Decision Tree (VFDT algorithm has been proposed in the past that can handle high speed streaming data efficiently. Whilst considering the data generated by WBAN sensors, noise is an obvious aspect that severely affects the accuracy and increases false alarms. In this paper, an enhanced VFDT (EVFDT is proposed to efficiently detect the occurrence of DDoS attack in cloud-assisted WBAN. EVFDT uses an adaptive tie-breaking threshold for node splitting. To resolve the tree size expansion under extreme noise, a lightweight iterative pruning technique is proposed. To analyze the performance of EVFDT, four metrics are evaluated: classification accuracy, tree size, time, and memory. Simulation results show that EVFDT attains significantly high detection accuracy with fewer false alarms.
Directory of Open Access Journals (Sweden)
Drzewiecki Wojciech
2016-12-01
Full Text Available In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques.
Time-adaptive quantile regression
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik
2008-01-01
and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....
Random Forest as a Predictive Analytics Alternative to Regression in Institutional Research
He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne
2018-01-01
In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…
A short note on the use of the red-black tree in Cartesian adaptive mesh refinement algorithms
Hasbestan, Jaber J.; Senocak, Inanc
2017-12-01
Mesh adaptivity is an indispensable capability to tackle multiphysics problems with large disparity in time and length scales. With the availability of powerful supercomputers, there is a pressing need to extend time-proven computational techniques to extreme-scale problems. Cartesian adaptive mesh refinement (AMR) is one such method that enables simulation of multiscale, multiphysics problems. AMR is based on construction of octrees. Originally, an explicit tree data structure was used to generate and manipulate an adaptive Cartesian mesh. At least eight pointers are required in an explicit approach to construct an octree. Parent-child relationships are then used to traverse the tree. An explicit octree, however, is expensive in terms of memory usage and the time it takes to traverse the tree to access a specific node. For these reasons, implicit pointerless methods have been pioneered within the computer graphics community, motivated by applications requiring interactivity and realistic three dimensional visualization. Lewiner et al. [1] provides a concise review of pointerless approaches to generate an octree. Use of a hash table and Z-order curve are two key concepts in pointerless methods that we briefly discuss next.
Classification algorithms using adaptive partitioning
Binev, Peter; Cohen, Albert; Dahmen, Wolfgang; DeVore, Ronald
2014-01-01
© 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.
Classification algorithms using adaptive partitioning
Binev, Peter
2014-12-01
© 2014 Institute of Mathematical Statistics. Algorithms for binary classification based on adaptive tree partitioning are formulated and analyzed for both their risk performance and their friendliness to numerical implementation. The algorithms can be viewed as generating a set approximation to the Bayes set and thus fall into the general category of set estimators. In contrast with the most studied tree-based algorithms, which utilize piecewise constant approximation on the generated partition [IEEE Trans. Inform. Theory 52 (2006) 1335.1353; Mach. Learn. 66 (2007) 209.242], we consider decorated trees, which allow us to derive higher order methods. Convergence rates for these methods are derived in terms the parameter - of margin conditions and a rate s of best approximation of the Bayes set by decorated adaptive partitions. They can also be expressed in terms of the Besov smoothness β of the regression function that governs its approximability by piecewise polynomials on adaptive partition. The execution of the algorithms does not require knowledge of the smoothness or margin conditions. Besov smoothness conditions are weaker than the commonly used Holder conditions, which govern approximation by nonadaptive partitions, and therefore for a given regression function can result in a higher rate of convergence. This in turn mitigates the compatibility conflict between smoothness and margin parameters.
A Comparison of the Effects of K-Anonymity on Machine Learning Algorithms
Hayden Wimmer; Loreen Powell
2014-01-01
While research has been conducted in machine learning algorithms and in privacy preserving in data mining (PPDM), a gap in the literature exists which combines the aforementioned areas to determine how PPDM affects common machine learning algorithms. The aim of this research is to narrow this literature gap by investigating how a common PPDM algorithm, K-Anonymity, affects common machine learning and data mining algorithms, namely neural networks, logistic regression, decision trees, and Baye...
Application of XGBoost algorithm in hourly PM2.5 concentration prediction
Pan, Bingyue
2018-02-01
In view of prediction techniques of hourly PM2.5 concentration in China, this paper applied the XGBoost(Extreme Gradient Boosting) algorithm to predict hourly PM2.5 concentration. The monitoring data of air quality in Tianjin city was analyzed by using XGBoost algorithm. The prediction performance of the XGBoost method is evaluated by comparing observed and predicted PM2.5 concentration using three measures of forecast accuracy. The XGBoost method is also compared with the random forest algorithm, multiple linear regression, decision tree regression and support vector machines for regression models using computational results. The results demonstrate that the XGBoost algorithm outperforms other data mining methods.
IND - THE IND DECISION TREE PACKAGE
Buntine, W.
1994-01-01
A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The
DEFF Research Database (Denmark)
Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter
2007-01-01
We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....
Directory of Open Access Journals (Sweden)
LI Hui
2015-07-01
Full Text Available As the basis of object-oriented information extraction from remote sensing imagery,image segmentation using multiple image features,exploiting spatial context information, and by a multi-scale approach are currently the research focuses. Using an optimization approach of the graph theory, an improved multi-scale image segmentation method is proposed. In this method, the image is applied with a coherent enhancement anisotropic diffusion filter followed by a minimum spanning tree segmentation approach, and the resulting segments are merged with reference to a minimum heterogeneity criterion.The heterogeneity criterion is defined as a function of the spectral characteristics and shape parameters of segments. The purpose of the merging step is to realize the multi-scale image segmentation. Tested on two images, the proposed method was visually and quantitatively compared with the segmentation method employed in the eCognition software. The results show that the proposed method is effective and outperforms the latter on areas with subtle spectral differences.
Hu, T C
2002-01-01
Newly enlarged, updated second edition of a valuable text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discusses binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. 153 black-and-white illus. 23 tables.Newly enlarged, updated second edition of a valuable, widely used text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discussed are binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. New to this edition: Chapter 9
Directory of Open Access Journals (Sweden)
Kim Sunghyun
2016-01-01
Full Text Available Since 2003, 608 people in 15 countries have infected with human-infectious AI viruses and 359 of them died. Especially, in China, H6N1 and H10N8 viruses were wide-spread and a lot of people were infected and died. Recently, H5N6 virus emerged in China and the number of patients has been increasing gradually. Therefore, this research compared amino acid strain of Matrix Protein, Hemagglutinin, Neuraminidase and Nucleoprotein of H5N6, H6N1 and H10N8, by using Decision tree and Apriori Algorithm, to figure out their similarity and devise the treatment. In result, Matrix protein and Nucleoprotein sequences of H5N6 were similar with those of H6N1 and H10N8. Therefore, this research concluded that the treatment targeting those proteins of H6N1 and H10N8 will be also effective to H5N6.
Directory of Open Access Journals (Sweden)
Kai-Wei Chiang
2015-12-01
Full Text Available Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS in some indoor environments. Pedestrian Dead Reckoning (PDR is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS. Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions.
Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H
2017-10-25
Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.
International Nuclear Information System (INIS)
Balasubramanian, K.
1982-01-01
A method is developed for obtaining the spectra of trees of NMR and chemical interests. The characteristic polynomials of branched trees can be obtained in terms of the characteristic polynomials of unbranched trees and branches by pruning the tree at the joints. The unbranched trees can also be broken down further until a tree containing just two vertices is obtained. The effectively reduces the order of the secular determinant of the tree used at the beginning to determinants of orders atmost equal to the number of vertices in the branch containing the largest number of vertices. An illustrative example of a NMR graph is given for which the 22 x 22 secular determinant is reduced to determinants of orders atmost 4 x 4 in just the second step of the algorithm. The tree pruning algorithm can be applied even to trees with no symmetry elements and such a factoring can be achieved. Methods developed here can be elegantly used to find if two trees are cospectral and to construct cospectral trees
Matson, Johnny L.; Kozlowski, Alison M.
2010-01-01
Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…
Directory of Open Access Journals (Sweden)
Santana Isabel
2011-08-01
Full Text Available Abstract Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI, but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing.
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
DEFF Research Database (Denmark)
Bache, Stefan Holst
A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....
Subset selection in regression
Miller, Alan
2002-01-01
Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...
International Nuclear Information System (INIS)
Longhi, Antonio Eduardo Bier; Pessoa, Artur Alves; Garcia, Pauli Adriano de Almada
2015-01-01
Since low-demand safety instrumented systems (SISs) do not operate continuously, their failures are often only detected when the system is demanded or tested. The conduction of tests, besides adding costs, can raise risks of failure on demand during their execution and also increase the frequency of spurious activation. Additionally, it is often necessary to interrupt production to carry out tests. In light of this scenario, this paper presents a model to optimize strategies for operation and testing of these systems, applying modeling by fault trees associated with optimization by a genetic algorithm. Its main differences are: (i) ability to represent four modes of operation and test them for each SIS subsystem; (ii) ability to represent a SIS that executes more than one safety instrumented function; (iii) ability to keep track of the down-time generated in the production system; and (iv) alteration of a genetic selection mechanism that permits identification of more efficient solutions with smaller influence on the optimization parameters. These aspects are presented by applying this model in three case studies. The results obtained show the applicability of the proposed approach and its potential to help make more informed decisions. - Highlights: • Models the integrity and cost related to operation and testing of low-demand SISs. • Keeps track of the production down-time generated by SIS tests and repairs. • Allows multiobjective optimization to identify operation and testing strategies. • Enables integrated assessment of an SIS that executes more than one SIF. • Allows altering the selection mechanism to identify the most efficient strategies
Rectilinear Full Steiner Tree Generation
DEFF Research Database (Denmark)
Zachariasen, Martin
1999-01-01
The fastest exact algorithm (in practice) for the rectilinear Steiner tree problem in the plane uses a two-phase scheme: First, a small but sufficient set of full Steiner trees (FSTs) is generated and then a Steiner minimum tree is constructed from this set by using simple backtrack search, dynamic...
Directory of Open Access Journals (Sweden)
Weibo Zhao
2017-12-01
Full Text Available Power generation industry is the key industry of carbon dioxide (CO2 emission in China. Assessing its future CO2 emissions is of great significance to the formulation and implementation of energy saving and emission reduction policies. Based on the Stochastic Impacts by Regression on Population, Affluence and Technology model (STIRPAT, the influencing factors analysis model of CO2 emission of power generation industry is established. The ridge regression (RR method is used to estimate the historical data. In addition, a wavelet neural network (WNN prediction model based on Cuckoo Search algorithm optimized by Gauss (GCS is put forward to predict the factors in the STIRPAT model. Then, the predicted values are substituted into the regression model, and the CO2 emission estimation values of the power generation industry in China are obtained. It’s concluded that population, per capita Gross Domestic Product (GDP, standard coal consumption and thermal power specific gravity are the key factors affecting the CO2 emission from the power generation industry. Besides, the GCS-WNN prediction model has higher prediction accuracy, comparing with other models. Moreover, with the development of science and technology in the future, the CO2 emission growth in the power generation industry will gradually slow down according to the prediction results.
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Geodesic atlas-based labeling of anatomical trees
DEFF Research Database (Denmark)
Feragen, Aasa; Petersen, Jens; Owen, Megan
2015-01-01
We present a fast and robust atlas-based algorithm for labeling airway trees, using geodesic distances in a geometric tree-space. Possible branch label configurations for an unlabeled airway tree are evaluated using distances to a training set of labeled airway trees. In tree-space, airway tree t...... equally complete airway trees, and comparable in performance to that of experts in pulmonary medicine, emphasizing the suitability of the labeling algorithm for clinical use....
Directory of Open Access Journals (Sweden)
Ziping WANG
2011-09-01
Full Text Available Background and objective It has been proven that gefitinib produces only 10%-20% tumor regression in heavily pretreated, unselected non-small cell lung cancer (NSCLC patients as the second- and third-line setting. Asian, female, nonsmokers and adenocarcinoma are favorable factors; however, it is difficult to find a patient satisfying all the above clinical characteristics. The aim of this study is to identify novel predicting factors, and to explore the interactions between clinical variables and their impact on the survival of Chinese patients with advanced NSCLC who were heavily treated with gefitinib in the second- or third-line setting. Methods The clinical and follow-up data of 127 advanced NSCLC patients referred to the Cancer Hospital & Institute, Chinese Academy of Medical Sciences from March 2005 to March 2010 were analyzed. Multivariate analysis of progression-free survival (PFS was performed using recursive partitioning, which is referred to as the classification and regression tree (CART analysis. Results The median PFS of 127 eligible consecutive advanced NSCLC patients was 8.0 months (95%CI: 5.8-10.2. CART was performed with an initial split on first-line chemotherapy outcomes and a second split on patients’ age. Three terminal subgroups were formed. The median PFS of the three subsets ranged from 1.0 month (95%CI: 0.8-1.2 for those with progressive disease outcome after the first-line chemotherapy subgroup, 10 months (95%CI: 7.0-13.0 in patients with a partial response or stable disease in first-line chemotherapy and age <70, and 22.0 months for patients obtaining a partial response or stable disease in first-line chemotherapy at age 70-81 (95%CI: 3.8-40.1. Conclusion Partial response, stable disease in first-line chemotherapy and age ≥ 70 are closely correlated with long-term survival treated by gefitinib as a second- or third-line setting in advanced NSCLC. CART can be used to identify previously unappreciated patient
Nonparametric Mixture of Regression Models.
Huang, Mian; Li, Runze; Wang, Shaoli
2013-07-01
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.
Refining discordant gene trees.
Górecki, Pawel; Eulenstein, Oliver
2014-01-01
Evolutionary studies are complicated by discordance between gene trees and the species tree in which they evolved. Dealing with discordant trees often relies on comparison costs between gene and species trees, including the well-established Robinson-Foulds, gene duplication, and deep coalescence costs. While these costs have provided credible results for binary rooted gene trees, corresponding cost definitions for non-binary unrooted gene trees, which are frequently occurring in practice, are challenged by biological realism. We propose a natural extension of the well-established costs for comparing unrooted and non-binary gene trees with rooted binary species trees using a binary refinement model. For the duplication cost we describe an efficient algorithm that is based on a linear time reduction and also computes an optimal rooted binary refinement of the given gene tree. Finally, we show that similar reductions lead to solutions for computing the deep coalescence and the Robinson-Foulds costs. Our binary refinement of Robinson-Foulds, gene duplication, and deep coalescence costs for unrooted and non-binary gene trees together with the linear time reductions provided here for computing these costs significantly extends the range of trees that can be incorporated into approaches dealing with discordance.
Gross, Samuel M; Tibshirani, Robert
2015-04-01
We consider the scenario where one observes an outcome variable and sets of features from multiple assays, all measured on the same set of samples. One approach that has been proposed for dealing with these type of data is "sparse multiple canonical correlation analysis" (sparse mCCA). All of the current sparse mCCA techniques are biconvex and thus have no guarantees about reaching a global optimum. We propose a method for performing sparse supervised canonical correlation analysis (sparse sCCA), a specific case of sparse mCCA when one of the datasets is a vector. Our proposal for sparse sCCA is convex and thus does not face the same difficulties as the other methods. We derive efficient algorithms for this problem that can be implemented with off the shelf solvers, and illustrate their use on simulated and real data. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Algorithmically specialized parallel computers
Snyder, Lawrence; Gannon, Dennis B
1985-01-01
Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster
Gu, Huidong; Liu, Guowen; Wang, Jian; Aubry, Anne-Françoise; Arnold, Mark E
2014-09-16
A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, σ(2) is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.
Prediction of Baseflow Index of Catchments using Machine Learning Algorithms
Yadav, B.; Hatfield, K.
2017-12-01
We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized
An efficient and extensible approach for compressing phylogenetic trees
Matthews, Suzanne J; Williams, Tiffani L
2011-01-01
Background: Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend
Extensions and applications of ensemble-of-trees methods in machine learning
Bleich, Justin
Ensemble-of-trees algorithms have emerged to the forefront of machine learning due to their ability to generate high forecasting accuracy for a wide array of regression and classification problems. Classic ensemble methodologies such as random forests (RF) and stochastic gradient boosting (SGB) rely on algorithmic procedures to generate fits to data. In contrast, more recent ensemble techniques such as Bayesian Additive Regression Trees (BART) and Dynamic Trees (DT) focus on an underlying Bayesian probability model to generate the fits. These new probability model-based approaches show much promise versus their algorithmic counterparts, but also offer substantial room for improvement. The first part of this thesis focuses on methodological advances for ensemble-of-trees techniques with an emphasis on the more recent Bayesian approaches. In particular, we focus on extensions of BART in four distinct ways. First, we develop a more robust implementation of BART for both research and application. We then develop a principled approach to variable selection for BART as well as the ability to naturally incorporate prior information on important covariates into the algorithm. Next, we propose a method for handling missing data that relies on the recursive structure of decision trees and does not require imputation. Last, we relax the assumption of homoskedasticity in the BART model to allow for parametric modeling of heteroskedasticity. The second part of this thesis returns to the classic algorithmic approaches in the context of classification problems with asymmetric costs of forecasting errors. First we consider the performance of RF and SGB more broadly and demonstrate its superiority to logistic regression for applications in criminology with asymmetric costs. Next, we use RF to forecast unplanned hospital readmissions upon patient discharge with asymmetric costs taken into account. Finally, we explore the construction of stable decision trees for forecasts of
Adaptive metric kernel regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
2000-01-01
Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...
Adaptive Metric Kernel Regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...
Bayesian ARTMAP for regression.
Sasu, L M; Andonie, R
2013-10-01
Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.
Navigation and Tree Mapping in Orchards
DEFF Research Database (Denmark)
Jæger-Hansen, Claes Lund; Griepentrog, Hans W.; Andersen, Jens Christian
In this paper an algorithm for estimating tree positions is presented. The sensors used for the algorithm is GNSS and LIDAR, and data is collected in an orchard with grapefruit trees while driving along the rows. The positions of the trees are estimated using ellipse fitting on point clouds....... The average accuracy for the center point estimation is 0.2 m in the along track direction and 0.35 m in the across track direction. The goal of the tree mapping algorithm is create a database of individual trees, and be the basis for creation of a graph map that can be used for mission planning...
Tree Transduction Tools for Cdec
Directory of Open Access Journals (Sweden)
Austin Matthews
2014-09-01
Full Text Available We describe a collection of open source tools for learning tree-to-string and tree-to-tree transducers and the extensions to the cdec decoder that enable translation with these. Our modular, easy-to-extend tools extract rules from trees or forests aligned to strings and trees subject to different structural constraints. A fast, multithreaded implementation of the Cohn and Blunsom (2009 model for extracting compact tree-to-string rules is also included. The implementation of the tree composition algorithm used by cdec is described, and translation quality and decoding time results are presented. Our experimental results add to the body of evidence suggesting that tree transducers are a compelling option for translation, particularly when decoding speed and translation model size are important.
On Determining if Tree-based Networks Contain Fixed Trees.
Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine
2016-05-01
We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable.
Spanning Tree Based Attribute Clustering
DEFF Research Database (Denmark)
Zeng, Yifeng; Jorge, Cordero Hernandez
2009-01-01
Attribute clustering has been previously employed to detect statistical dependence between subsets of variables. We propose a novel attribute clustering algorithm motivated by research of complex networks, called the Star Discovery algorithm. The algorithm partitions and indirectly discards...... inconsistent edges from a maximum spanning tree by starting appropriate initial modes, therefore generating stable clusters. It discovers sound clusters through simple graph operations and achieves significant computational savings. We compare the Star Discovery algorithm against earlier attribute clustering...
Rosero-Vlasova, O.; Borini Alves, D.; Vlassova, L.; Perez-Cabello, F.; Montorio Lloveria, R.
2017-10-01
Deforestation in Amazon basin due, among other factors, to frequent wildfires demands continuous post-fire monitoring of soil and vegetation. Thus, the study posed two objectives: (1) evaluate the capacity of Visible - Near InfraRed - ShortWave InfraRed (VIS-NIR-SWIR) spectroscopy to estimate soil organic matter (SOM) in fire-affected soils, and (2) assess the feasibility of SOM mapping from satellite images. For this purpose, 30 soil samples (surface layer) were collected in 2016 in areas of grass and riparian vegetation of Campos Amazonicos National Park, Brazil, repeatedly affected by wildfires. Standard laboratory procedures were applied to determine SOM. Reflectance spectra of soils were obtained in controlled laboratory conditions using Fieldspec4 spectroradiometer (spectral range 350nm- 2500nm). Measured spectra were resampled to simulate reflectances for Landsat-8, Sentinel-2 and EnMap spectral bands, used as predictors in SOM models developed using Partial Least Squares regression and step-down variable selection algorithm (PLSR-SD). The best fit was achieved with models based on reflectances simulated for EnMap bands (R2=0.93; R2cv=0.82 and NMSE=0.07; NMSEcv=0.19). The model uses only 8 out of 244 predictors (bands) chosen by the step-down variable selection algorithm. The least reliable estimates (R2=0.55 and R2cv=0.40 and NMSE=0.43; NMSEcv=0.60) resulted from Landsat model, while Sentinel-2 model showed R2=0.68 and R2cv=0.63; NMSE=0.31 and NMSEcv=0.38. The results confirm high potential of VIS-NIR-SWIR spectroscopy for SOM estimation. Application of step-down produces sparser and better-fit models. Finally, SOM can be estimated with an acceptable accuracy (NMSE 0.35) from EnMap and Sentinel-2 data enabling mapping and analysis of impacts of repeated wildfires on soils in the study area.
Accelerating the XGBoost algorithm using GPU computing
Directory of Open Access Journals (Sweden)
Rory Mitchell
2017-07-01
Full Text Available We present a CUDA-based implementation of a decision tree construction algorithm within the gradient boosting library XGBoost. The tree construction algorithm is executed entirely on the graphics processing unit (GPU and shows high performance with a variety of datasets and settings, including sparse input matrices. Individual boosting iterations are parallelised, combining two approaches. An interleaved approach is used for shallow trees, switching to a more conventional radix sort-based approach for larger depths. We show speedups of between 3× and 6× using a Titan X compared to a 4 core i7 CPU, and 1.2× using a Titan X compared to 2× Xeon CPUs (24 cores. We show that it is possible to process the Higgs dataset (10 million instances, 28 features entirely within GPU memory. The algorithm is made available as a plug-in within the XGBoost library and fully supports all XGBoost features including classification, regression and ranking tasks.
Directory of Open Access Journals (Sweden)
Robin Roj
2014-07-01
Full Text Available This paper presents three different search engines for the detection of CAD-parts in large databases. The analysis of the contained information is performed by the export of the data that is stored in the structure trees of the CAD-models. A preparation program generates one XML-file for every model, which in addition to including the data of the structure tree, also owns certain physical properties of each part. The first search engine is specializes in the discovery of standard parts, like screws or washers. The second program uses certain user input as search parameters, and therefore has the ability to perform personalized queries. The third one compares one given reference part with all parts in the database, and locates files that are identical, or similar to, the reference part. All approaches run automatically, and have the analysis of the structure tree in common. Files constructed with CATIA V5, and search engines written with Python have been used for the implementation. The paper also includes a short comparison of the advantages and disadvantages of each program, as well as a performance test.
Drawing Contour Trees in the Plane.
Heine, C; Schneider, D; Carr, Hamish; Scheuermann, G
2011-11-01
The contour tree compactly describes scalar field topology. From the viewpoint of graph drawing, it is a tree with attributes at vertices and optionally on edges. Standard tree drawing algorithms emphasize structural properties of the tree and neglect the attributes. Applying known techniques to convey this information proves hard and sometimes even impossible. We present several adaptions of popular graph drawing approaches to the problem of contour tree drawing and evaluate them. We identify five esthetic criteria for drawing contour trees and present a novel algorithm for drawing contour trees in the plane that satisfies four of these criteria. Our implementation is fast and effective for contour tree sizes usually used in interactive systems (around 100 branches) and also produces readable pictures for larger trees, as is shown for an 800 branch example.
DIF Trees: Using Classification Trees to Detect Differential Item Functioning
Vaughn, Brandon K.; Wang, Qiu
2010-01-01
A nonparametric tree classification procedure is used to detect differential item functioning for items that are dichotomously scored. Classification trees are shown to be an alternative procedure to detect differential item functioning other than the use of traditional Mantel-Haenszel and logistic regression analysis. A nonparametric…
Retro-regression--another important multivariate regression improvement.
Randić, M
2001-01-01
We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.
Submodular unsplittable flow on trees
DEFF Research Database (Denmark)
Adamaszek, Anna Maria; Chalermsook, Parinya; Ene, Alina
2016-01-01
We study the Unsplittable Flow problem (UFP) on trees with a submodular objective function. The input to this problem is a tree with edge capacities and a collection of tasks, each characterized by a source node, a sink node, and a demand. A subset of the tasks is feasible if the tasks can...... simultaneously send their demands from the source to the sink without violating the edge capacities. The goal is to select a feasible subset of the tasks that maximizes a submodular objective function. Our main result is an O(k log n)-approximation algorithm for Submodular UFP on trees where k denotes...... the pathwidth of the given tree. Since every tree has pathwidth O(log n), we obtain an O(log2 n) approximation for arbitrary trees. This is the first non-trivial approximation guarantee for the problem and it matches the best approximation known for UFP on trees with a linear objective function. Our main...
Differentiating regressed melanoma from regressed lichenoid keratosis.
Chan, Aegean H; Shulman, Kenneth J; Lee, Bonnie A
2017-04-01
Distinguishing regressed lichen planus-like keratosis (LPLK) from regressed melanoma can be difficult on histopathologic examination, potentially resulting in mismanagement of patients. We aimed to identify histopathologic features by which regressed melanoma can be differentiated from regressed LPLK. Twenty actively inflamed LPLK, 12 LPLK with regression and 15 melanomas with regression were compared and evaluated by hematoxylin and eosin staining as well as Melan-A, microphthalmia transcription factor (MiTF) and cytokeratin (AE1/AE3) immunostaining. (1) A total of 40% of regressed melanomas showed complete or near complete loss of melanocytes within the epidermis with Melan-A and MiTF immunostaining, while 8% of regressed LPLK exhibited this finding. (2) Necrotic keratinocytes were seen in the epidermis in 33% regressed melanomas as opposed to all of the regressed LPLK. (3) A dense infiltrate of melanophages in the papillary dermis was seen in 40% of regressed melanomas, a feature not seen in regressed LPLK. In summary, our findings suggest that a complete or near complete loss of melanocytes within the epidermis strongly favors a regressed melanoma over a regressed LPLK. In addition, necrotic epidermal keratinocytes and the presence of a dense band-like distribution of dermal melanophages can be helpful in differentiating these lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Estimation of structural attributes of walnut trees based on terrestrial laser scanning
Directory of Open Access Journals (Sweden)
J. Estornell
2017-06-01
Full Text Available Juglans regia L. (walnut is a tree of significant economic importance, usually cultivated for its seed used in the food market, and for its wood used in the furniture industry. The aim of this work was to develop regression models to predict crown parameters for walnut trees using a terrestrial laser scanner. A set of 30 trees was selected and the total height, crown height and crown diameter were measured in the field. The trees were also measured by a laser scanner and algorithms were applied to compute the crown volume, crown diameter, total and crown height. Linear regression models were calculated to estimate walnut tree parameters from TLS data. Good results were obtained with values of R2 between 0.90 and 0.98. In addition, to analyze whether coarser point cloud densities might affect the results, the point clouds for all trees were subsampled using different point densities: points every 0.005 m, 0.01 m, 0.05 m, 0.1 m, 0.25 m, 0.5 m, 1 m, and 2 m. New regression models were calculated to estimate field parameters. For total height and crown volume good estimations were obtained from TLS parameters derived for all subsampled point cloud (0.005 m – 2 m.
Linking and Cutting Spanning Trees
Directory of Open Access Journals (Sweden)
Luís M. S. Russo
2018-04-01
Full Text Available We consider the problem of uniformly generating a spanning tree for an undirected connected graph. This process is useful for computing statistics, namely for phylogenetic trees. We describe a Markov chain for producing these trees. For cycle graphs, we prove that this approach significantly outperforms existing algorithms. For general graphs, experimental results show that the chain converges quickly. This yields an efficient algorithm due to the use of proper fast data structures. To obtain the mixing time of the chain we describe a coupling, which we analyze for cycle graphs and simulate for other graphs.
Pedrini, D. T.; Pedrini, Bonnie C.
Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…
Meta-learning in decision tree induction
Grąbczewski, Krzysztof
2014-01-01
The book focuses on different variants of decision tree induction but also describes the meta-learning approach in general which is applicable to other types of machine learning algorithms. The book discusses different variants of decision tree induction and represents a useful source of information to readers wishing to review some of the techniques used in decision tree learning, as well as different ensemble methods that involve decision trees. It is shown that the knowledge of different components used within decision tree learning needs to be systematized to enable the system to generate and evaluate different variants of machine learning algorithms with the aim of identifying the top-most performers or potentially the best one. A unified view of decision tree learning enables to emulate different decision tree algorithms simply by setting certain parameters. As meta-learning requires running many different processes with the aim of obtaining performance results, a detailed description of the experimen...
Abstract Expression Grammar Symbolic Regression
Korns, Michael F.
This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.
Phylogenetic trees and Euclidean embeddings.
Layer, Mark; Rhodes, John A
2017-01-01
It was recently observed by de Vienne et al. (Syst Biol 60(6):826-832, 2011) that a simple square root transformation of distances between taxa on a phylogenetic tree allowed for an embedding of the taxa into Euclidean space. While the justification for this was based on a diffusion model of continuous character evolution along the tree, here we give a direct and elementary explanation for it that provides substantial additional insight. We use this embedding to reinterpret the differences between the NJ and BIONJ tree building algorithms, providing one illustration of how this embedding reflects tree structures in data.
Drzewiecki, Wojciech
2016-12-01
In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.
Reconciliation with non-binary species trees.
Vernot, Benjamin; Stolzer, Maureen; Goldman, Aiton; Durand, Dannie
2008-10-01
Reconciliation extracts information from the topological incongruence between gene and species trees to infer duplications and losses in the history of a gene family. The inferred duplication-loss histories provide valuable information for a broad range of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees. While reconciliation for binary trees is a tractable and well studied problem, there are no algorithms for reconciliation with non-binary species trees. Yet a striking proportion of species trees are non-binary. For example, 64% of branch points in the NCBI taxonomy have three or more children. When applied to non-binary species trees, current algorithms overestimate the number of duplications because they cannot distinguish between duplication and incomplete lineage sorting. We present the first algorithms for reconciling binary gene trees with non-binary species trees under a duplication-loss parsimony model. Our algorithms utilize an efficient mapping from gene to species trees to infer the minimum number of duplications in O(|V(G) | x (k(S) + h(S))) time, where |V(G)| is the number of nodes in the gene tree, h(S) is the height of the species tree and k(S) is the size of its largest polytomy. We present a dynamic programming algorithm which also minimizes the total number of losses. Although this algorithm is exponential in the size of the largest polytomy, it performs well in practice for polytomies with outdegree of 12 or less. We also present a heuristic which estimates the minimal number of losses in polynomial time. In empirical tests, this algorithm finds an optimal loss history 99% of the time. Our algorithms have been implemented in NOTUNG, a robust, production quality, tree-fitting program, which provides a graphical user interface for exploratory analysis and also supports automated, high-throughput analysis of large data sets.
Static terrestrial laser scanning of juvenile understory trees for field phenotyping
Wang, Huanhuan; Lin, Yi
2014-11-01
This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.
Indian Academy of Sciences (India)
Flowering Trees. Boswellia serrata Roxb. ex Colebr. (Indian Frankincense tree) of Burseraceae is a large-sized deciduous tree that is native to India. Bark is thin, greenish-ash-coloured that exfoliates into smooth papery flakes. Stem exudes pinkish resin ... Fruit is a three-valved capsule. A green gum-resin exudes from the ...
Indian Academy of Sciences (India)
IAS Admin
Flowering Trees. Ailanthus excelsa Roxb. (INDIAN TREE OF. HEAVEN) of Simaroubaceae is a lofty tree with large pinnately compound alternate leaves, which are ... inflorescences, unisexual and greenish-yellow. Fruits are winged, wings many-nerved. Wood is used in making match sticks. 1. Male flower; 2. Female flower.
Indian Academy of Sciences (India)
Flowering Trees. Gyrocarpus americanus Jacq. (Helicopter Tree) of Hernandiaceae is a moderate size deciduous tree that grows to about 12 m in height with a smooth, shining, greenish-white bark. The leaves are ovate, rarely irregularly ... flowers which are unpleasant smelling. Fruit is a woody nut with two long thin wings.
Indian Academy of Sciences (India)
More Details Fulltext PDF. Volume 8 Issue 8 August 2003 pp 112-112 Flowering Trees. Zizyphus jujuba Lam. of Rhamnaceae · More Details Fulltext PDF. Volume 8 Issue 9 September 2003 pp 97-97 Flowering Trees. Moringa oleifera · More Details Fulltext PDF. Volume 8 Issue 10 October 2003 pp 100-100 Flowering Trees.
Computing Refined Buneman Trees in Cubic Time
DEFF Research Database (Denmark)
Brodal, G.S.; Fagerberg, R.; Östlin, A.
2003-01-01
Reconstructing the evolutionary tree for a set of n species based on pairwise distances between the species is a fundamental problem in bioinformatics. Neighbor joining is a popular distance based tree reconstruction method. It always proposes fully resolved binary trees despite missing evidence...... in the underlying distance data. Distance based methods based on the theory of Buneman trees and refined Buneman trees avoid this problem by only proposing evolutionary trees whose edges satisfy a number of constraints. These trees might not be fully resolved but there is strong combinatorial evidence for each...... proposed edge. The currently best algorithm for computing the refined Buneman tree from a given distance measure has a running time of O(n 5) and a space consumption of O(n 4). In this paper, we present an algorithm with running time O(n 3) and space consumption O(n 2). The improved complexity of our...
Mathematical foundations of event trees
International Nuclear Information System (INIS)
Papazoglou, Ioannis A.
1998-01-01
A mathematical foundation from first principles of event trees is presented. The main objective of this formulation is to offer a formal basis for developing automated computer assisted construction techniques for event trees. The mathematical theory of event trees is based on the correspondence between the paths of the tree and the elements of the outcome space of a joint event. The concept of a basic cylinder set is introduced to describe joint event outcomes conditional on specific outcomes of basic events or unconditional on the outcome of basic events. The concept of outcome space partition is used to describe the minimum amount of information intended to be preserved by the event tree representation. These concepts form the basis for an algorithm for systematic search for and generation of the most compact (reduced) form of an event tree consistent with the minimum amount of information the tree should preserve. This mathematical foundation allows for the development of techniques for automated generation of event trees corresponding to joint events which are formally described through other types of graphical models. Such a technique has been developed for complex systems described by functional blocks and it is reported elsewhere. On the quantification issue of event trees, a formal definition of a probability space corresponding to the event tree outcomes is provided. Finally, a short discussion is offered on the relationship of the presented mathematical theory with the more general use of event trees in reliability analysis of dynamic systems
Edge-Disjoint Fibonacci Trees in Hypercube
Directory of Open Access Journals (Sweden)
Indhumathi Raman
2014-01-01
Full Text Available The Fibonacci tree is a rooted binary tree whose number of vertices admit a recursive definition similar to the Fibonacci numbers. In this paper, we prove that a hypercube of dimension h admits two edge-disjoint Fibonacci trees of height h, two edge-disjoint Fibonacci trees of height h-2, two edge-disjoint Fibonacci trees of height h-4 and so on, as subgraphs. The result shows that an algorithm with Fibonacci trees as underlying data structure can be implemented concurrently on a hypercube network with no communication latency.
Tree compression with top trees
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Landau, Gad M.
2013-01-01
We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...
Tree compression with top trees
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Landau, Gad M.
2015-01-01
We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...
Variable importance in latent variable regression models
Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.
2014-01-01
The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable
Robust B+ -Tree-Based Indexing of Moving Objects
DEFF Research Database (Denmark)
Jensen, Christian Søndergaard; Tiesyte, Dalia; Tradisauskas, Nerius
2006-01-01
Bx-tree is based on the B+-tree and is relatively easy to integrate into an existing DBMS. However, the Bx-tree is sensitive to data skew. This paper proposes a new query processing algorithm for the Bx-tree that fully exploits the available data statistics to reduce the query enlargement...
Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun
2016-07-01
In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Phylogenetic search through partial tree mixing
2012-01-01
Background Recent advances in sequencing technology have created large data sets upon which phylogenetic inference can be performed. Current research is limited by the prohibitive time necessary to perform tree search on a reasonable number of individuals. This research develops new phylogenetic algorithms that can operate on tens of thousands of species in a reasonable amount of time through several innovative search techniques. Results When compared to popular phylogenetic search algorithms, better trees are found much more quickly for large data sets. These algorithms are incorporated in the PSODA application available at http://dna.cs.byu.edu/psoda Conclusions The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly converge on near optimal tree regions. These regions can then be searched in a methodical way to determine the overall optimal phylogenetic solution. PMID:23320449
... Blog Vision Awards Common Allergens Tree Nut Allergy Tree Nut Allergy Learn about tree nut allergy, how ... a Tree Nut Label card . Allergic Reactions to Tree Nuts Tree nuts can cause a severe and ...
ESTIMATION OF HEIGHT OF EUCALYPTUS TREES WITH NEUROEVOLUTION OF AUGMENTING TOPOLOGIES (NEAT
Directory of Open Access Journals (Sweden)
Daniel Henrique Breda Binoti
2018-02-01
Full Text Available ABSTRACT The aim of this study was to evaluate the method of neuroevolution of augmenting topologies (NEAT to adjust the weights and the topology of artificial neural networks (ANNs in the estimation of tree height in a clonal population of eucalyptus, and compare with estimates obtained by a hypsometric regression model. To estimate the total tree height (Ht, the RNAs and the regression model, we used as variables a diameter of 1.3 m height (dbh and the dominant height (Hd. The RNAs were adjusted and applied to the computer system NeuroForest, varying the size of the initial population (the genetic algorithm parameter and the density of initial connections. Estimates of the total height of the trees obtained with the use of RNA and the regression model were evaluated based on the correlation coefficient, the percentage of errors scatter plot, the percentage frequency histogram of percentage errors, and the root mean square error (root mean square error - RMSE. Various settings which resulted in superior statistics to the hypsometric regression model were found. Connections had the highest correlation and the lowest RMSE% with a population size value of 300 and an initial density of 0.1 RNA. The NEAT methodology proved effective in estimating the height of trees in clonal population of eucalyptus.
Wu, Yufeng
2012-03-01
Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.
DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony.
Wehe, André; Bansal, Mukul S; Burleigh, J Gordon; Eulenstein, Oliver
2008-07-01
DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree
TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.
Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald
2018-01-01
Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.
Gleason, C. J.; Im, J.
2011-12-01
Airborne LiDAR remote sensing has been used effectively in assessing forest biomass because of its canopy penetrating effects and its ability to accurately describe the canopy surface. Current research in assessing biomass using airborne LiDAR focuses on either the individual tree as a base unit of study or statistical representations of a small aggregation of trees (i.e., plot level), and both methods usually rely on regression against field data to model the relationship between the LiDAR-derived data (e.g., volume) and biomass. This study estimates biomass for mixed forests and coniferous plantations (Picea Abies) within Heiberg Memorial Forest, Tully, NY, at both the plot and individual tree level. Plots are regularly spaced with a radius of 13m, and field data include diameter at breast height (dbh), tree height, and tree species. Field data collection and LiDAR data acquisition were seasonally coincident and both obtained in August of 2010. Resulting point cloud density was >5pts/m2. LiDAR data were processed to provide a canopy height surface, and a combination of watershed segmentation, active contouring, and genetic algorithm optimization was applied to delineate individual trees from the surface. This updated delineation method was shown to be more accurate than traditional watershed segmentation. Once trees had been delineated, four biomass estimation models were applied and compared: support vector regression (SVR), linear mixed effects regression (LME), random forest (RF), and Cubist regression. Candidate variables to be used in modeling were derived from the LiDAR surface, and include metrics of height, width, and volume per delineated tree footprint. Previously published allometric equations provided field estimates of biomass to inform the regressions and calculate their accuracy via leave-one-out cross validation. This study found that for forests such as found in the study area, aggregation of individual trees to form a plot-based estimate of
Combinatorial optimization algorithms and complexity
Papadimitriou, Christos H
1998-01-01
This clearly written, mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NP-complete problems, more. All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering.
Indian Academy of Sciences (India)
medium-sized handsome tree with a straight bole that branches at the top. Leaves are once pinnate, with two to three pairs of leaflets. Young parts of the tree are velvety. Inflorescence is a branched raceme borne at the branch ends. Flowers are large, white, attractive, and fragrant. Corolla is funnel-shaped. Fruit is an ...
Indian Academy of Sciences (India)
Cassia siamia Lamk. (Siamese tree senna) of Caesalpiniaceae is a small or medium size handsome tree. Leaves are alternate, pinnately compound and glandular, upto 18 cm long with 8–12 pairs of leaflets. Inflorescence is axillary or terminal and branched. Flowering lasts for a long period from March to February. Fruit is ...
Indian Academy of Sciences (India)
Flowering Trees. Cerbera manghasL. (SEA MANGO) of Apocynaceae is a medium-sized evergreen coastal tree with milky latex. The bark is grey-brown, thick and ... Fruit is large. (5–10 cm long), oval containing two flattened seeds and resembles a mango, hence the name Mangas or. Manghas. Leaves and fruits contain ...
Indian Academy of Sciences (India)
user
Flowering Trees. Gliricidia sepium(Jacq.) Kunta ex Walp. (Quickstick) of Fabaceae is a small deciduous tree with. Pinnately compound leaves. Flower are prroduced in large number in early summer on terminal racemes. They are attractive, pinkish-white and typically like bean flowers. Fruit is a few-seeded flat pod.
Indian Academy of Sciences (India)
Flowering Trees. Acrocarpus fraxinifolius Wight & Arn. (PINK CEDAR, AUSTRALIAN ASH) of. Caesalpiniaceae is a lofty unarmed deciduous native tree that attains a height of 30–60m with buttresses. Bark is thin and light grey. Leaves are compound and bright red when young. Flowers in dense, erect, axillary racemes.
Tolman, Marvin
2005-01-01
Students love outdoor activities and will love them even more when they build confidence in their tree identification and measurement skills. Through these activities, students will learn to identify the major characteristics of trees and discover how the pace--a nonstandard measuring unit--can be used to estimate not only distances but also the…
Indian Academy of Sciences (India)
Srimath
Grevillea robusta A. Cunn. ex R. Br. (Sil- ver Oak) of Proteaceae is a daintily lacy ornamental tree while young and growing into a mighty tree (45 m). Young shoots are silvery grey and the leaves are fern- like. Flowers are golden-yellow in one- sided racemes (10 cm). Fruit is a boat- shaped, woody follicle.
A hierarchical scheme for geodesic anatomical labeling of airway trees
DEFF Research Database (Denmark)
Feragen, Aasa; Petersen, Jens; Owen, Megan
2012-01-01
We present a fast and robust supervised algorithm for label- ing anatomical airway trees, based on geodesic distances in a geometric tree-space. Possible branch label configurations for a given unlabeled air- way tree are evaluated based on the distances to a training set of labeled airway trees....... In tree-space, the airway tree topology and geometry change continuously, giving a natural way to automatically handle anatomical differences and noise. The algorithm is made efficient using a hierarchical approach, in which labels are assigned from the top down. We only use features of the airway...
Optimised determinisation and completion of finite tree automata
DEFF Research Database (Denmark)
Gallagher, John Patrick; Ajspur, Mai; Kafle, Bishoksan
2018-01-01
Determinisation and completion of finite tree automata are important operations with applications in program analysis and verification. However, the complexity of the classical procedures for determinisation and completion is high. They are not practical procedures for manipulating tree automata...... beyond very small ones. In this paper we develop an algorithm for determinisation and completion of finite tree automata, whose worst-case complexity remains unchanged, but which performs far better than existing algorithms in practice. The critical aspect of the algorithm is that the transitions...... an experimental evaluation of the algorithm on a large set of tree automata examples....
Regression analysis by example
Chatterjee, Samprit
2012-01-01
Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded
Another view on the SSS* algorithm
W.H.L.M. Pijls (Wim); A. de Bruin (Arie)
1990-01-01
textabstractA new version of the SSS* algorithm for searching game trees is presented. This algorithm is built around two recursive procedures. It finds the minimax value of a game tree by first establishing an upper bound to this value and then successively trying in a top down fashion to tighten
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Baños, Hector; Bushek, Nathaniel; Davidson, Ruth; Gross, Elizabeth; Harris, Pamela E.; Krone, Robert; Long, Colby; Stewart, Allen; Walker, Robert
2016-01-01
We introduce the package PhylogeneticTrees for Macaulay2 which allows users to compute phylogenetic invariants for group-based tree models. We provide some background information on phylogenetic algebraic geometry and show how the package PhylogeneticTrees can be used to calculate a generating set for a phylogenetic ideal as well as a lower bound for its dimension. Finally, we show how methods within the package can be used to compute a generating set for the join of any two ideals.
Univariate decision tree induction using maximum margin classification
Yıldız, Olcay Taner
2012-01-01
In many pattern recognition applications, first decision trees are used due to their simplicity and easily interpretable nature. In this paper, we propose a new decision tree learning algorithm called univariate margin tree where, for each continuous attribute, the best split is found using convex optimization. Our simulation results on 47 data sets show that the novel margin tree classifier performs at least as good as C4.5 and linear discriminant tree (LDT) with a similar time complexity. F...
An Ordering Linear Unification Algorithm
Institute of Scientific and Technical Information of China (English)
胡运发
1989-01-01
In this paper,we present an ordering linear unification algorithm(OLU).A new idea on substituteion of the binding terms is introduced to the algorithm,which is able to overcome some drawbacks of other algorithms,e.g.,MM algorithm[1],RG1 and RG2 algorithms[2],Particularly,if we use the directed eyclie graphs,the algoritm needs not check the binding order,then the OLU algorithm can also be aplied to the infinite tree data struceture,and a higher efficiency can be expected.The paper focuses upon the discussion of OLU algorithm and a partial order structure with respect to the unification algorithm.This algorithm has been implemented in the GKD-PROLOG/VAX 780 interpreting system.Experimental results have shown that the algorithm is very simple and efficient.
Use of Logistic Regression for Forecasting Short-Term Volcanic Activity
Directory of Open Access Journals (Sweden)
Mark T. Woods
2012-08-01
Full Text Available An algorithm that forecasts volcanic activity using an event tree decision making framework and logistic regression has been developed, characterized, and validated. The suite of empirical models that drive the system were derived from a sparse and geographically diverse dataset comprised of source modeling results, volcano monitoring data, and historic information from analog volcanoes. Bootstrapping techniques were applied to the training dataset to allow for the estimation of robust logistic model coefficients. Probabilities generated from the logistic models increase with positive modeling results, escalating seismicity, and rising eruption frequency. Cross validation yielded a series of receiver operating characteristic curves with areas ranging between 0.78 and 0.81, indicating that the algorithm has good forecasting capabilities. Our results suggest that the logistic models are highly transportable and can compete with, and in some cases outperform, non-transportable empirical models trained with site specific information.
ENHANCED PREDICTION OF STUDENT DROPOUTS USING FUZZY INFERENCE SYSTEM AND LOGISTIC REGRESSION
Directory of Open Access Journals (Sweden)
A. Saranya
2016-01-01
Full Text Available Predicting college and school dropouts is a major problem in educational system and has complicated challenge due to data imbalance and multi dimensionality, which can affect the low performance of students. In this paper, we have collected different database from various colleges, among these 500 best real attributes are identified in order to identify the factor that affecting dropout students using neural based classification algorithm and different mining technique are implemented for data processing. We also propose a Dropout Prediction Algorithm (DPA using fuzzy logic and Logistic Regression based inference system because the weighted average will improve the performance of whole system. We are experimented our proposed work with all other classification systems and documented as the best outcomes. The aggregated data is given to the decision trees for better dropout prediction. The accuracy of overall system 98.6% it shows the proposed work depicts efficient prediction.
An efficient and extensible approach for compressing phylogenetic trees
Matthews, Suzanne J
2011-01-01
Background: Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set operations such as union, intersection, and set difference.Results: On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings.Conclusions: TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community. © 2011 Matthews and Williams; licensee BioMed Central Ltd.
An efficient and extensible approach for compressing phylogenetic trees.
Matthews, Suzanne J; Williams, Tiffani L
2011-10-18
Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set operations such as union, intersection, and set difference. On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community.
Quantile Regression With Measurement Error
Wei, Ying
2009-08-27
Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.
A simple algorithm for the identification of clinical COPD phenotypes
DEFF Research Database (Denmark)
Burgel, Pierre-Régis; Paillasseur, Jean-Louis; Janssens, Wim
2017-01-01
This study aimed to identify simple rules for allocating chronic obstructive pulmonary disease (COPD) patients to clinical phenotypes identified by cluster analyses. Data from 2409 COPD patients of French/Belgian COPD cohorts were analysed using cluster analysis resulting in the identification...... of subgroups, for which clinical relevance was determined by comparing 3-year all-cause mortality. Classification and regression trees (CARTs) were used to develop an algorithm for allocating patients to these subgroups. This algorithm was tested in 3651 patients from the COPD Cohorts Collaborative...... International Assessment (3CIA) initiative. Cluster analysis identified five subgroups of COPD patients with different clinical characteristics (especially regarding severity of respiratory disease and the presence of cardiovascular comorbidities and diabetes). The CART-based algorithm indicated...
Ormeño, M. I.; Faúndez-Abans, M.; Cavada, G.
2003-08-01
A importância deste trabalho deve-se à seleção de objetos ainda não tratados particularmente como uma família e ao emprego de procedimento estatístico robusto que não precisa de pressupostos ou condições de contorno. Contribui, assim, ao melhor entendimento do cenário das Galáxias Aneladas do diagrama de Hubble via classificação e estudo de subclasses. Selecionaram-se 100 galáxias possuidoras de dois anéis do Catalog of Southern Ringed Galaxies compilado por Ronald Buta, de modo a construir uma amostra completa em termos de conhecimento dos semi-eixos dos anéis interno e externo projetados no plano do céu. Visando uma possível classificação destas galáxias aneladas normais em famílias de acordo com as características geométricas dos anéis, empregou-se primeiramente a Análise de Aglomerados (ferramenta de classificação: medições de semelhança em um espaço bidimensional) para explorar a possível existência de famílias. As variáveis analisadas foram: os diâmetros interiores menores d(I) e maiores D(I), os diâmetros exteriores menores d(E) e maiores D(E), e os ângulos de inclinação dos semi-eixos maiores interiores q(I) e exteriores q(E) dos anéis. Como metodologia de discriminação, empregou-se a construção de Árvores de Classificação. As árvores de classificação constituem um método de discriminação alternativo aos modelos clássicos, tais como a Análise Discriminante e a Regressão Logística, onde uma base de dados é dividida em partições (subgrupos) da árvore por ação de um predictor (variável específica). Os pacotes estatísticos utilizados para o processamento da informação foram: SAS versão 8.0 (Statistical Analisys System) e CART versão 3.6.3. Esta análise estatística sugere a existência de três possíveis famílias de galáxias bianeladas, com base apenas na geometria dos anéis. Como forma exploratória inicial deste resultado, a construção de um diagrama BT (magnitude total) versus o
Decision trees in epidemiological research
Directory of Open Access Journals (Sweden)
Ashwini Venkatasubramaniam
2017-09-01
Full Text Available Abstract Background In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. Main text We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART technique and the newer Conditional Inference tree (CTree technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Conclusions Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.
Decision trees in epidemiological research.
Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone
2017-01-01
In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.
Heterogeneous Compression of Large Collections of Evolutionary Trees.
Matthews, Suzanne J
2015-01-01
Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.
TreeNetViz: revealing patterns of networks over tree structures.
Gou, Liang; Zhang, Xiaolong Luke
2011-12-01
Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE
DEFF Research Database (Denmark)
Fitzenberger, Bernd; Wilke, Ralf Andreas
2015-01-01
if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...
DEFF Research Database (Denmark)
Appelt, Ane L; Rønde, Heidi S
2013-01-01
The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....
Indian Academy of Sciences (India)
Srimath
shaped corolla. Fruit is large, ellipsoidal, green with a hard and smooth shell containing numerous flattened seeds, which are embedded in fleshy pulp. Calabash tree is commonly grown in the tropical gardens of the world as a botanical oddity.
Khina, Anatoly
2016-08-15
We consider the problem of stabilizing an unstable plant driven by bounded noise over a digital noisy communication link, a scenario at the heart of networked control. To stabilize such a plant, one needs real-time encoding and decoding with an error probability profile that decays exponentially with the decoding delay. The works of Schulman and Sahai over the past two decades have developed the notions of tree codes and anytime capacity, and provided the theoretical framework for studying such problems. Nonetheless, there has been little practical progress in this area due to the absence of explicit constructions of tree codes with efficient encoding and decoding algorithms. Recently, linear time-invariant tree codes were proposed to achieve the desired result under maximum-likelihood decoding. In this work, we take one more step towards practicality, by showing that these codes can be efficiently decoded using sequential decoding algorithms, up to some loss in performance (and with some practical complexity caveats). We supplement our theoretical results with numerical simulations that demonstrate the effectiveness of the decoder in a control system setting.
Data acquisition in modeling using neural networks and decision trees
Directory of Open Access Journals (Sweden)
R. Sika
2011-04-01
Full Text Available The paper presents a comparison of selected models from area of artificial neural networks and decision trees in relation with actualconditions of foundry processes. The work contains short descriptions of used algorithms, their destination and method of data preparation,which is a domain of work of Data Mining systems. First part concerns data acquisition realized in selected iron foundry, indicating problems to solve in aspect of casting process modeling. Second part is a comparison of selected algorithms: a decision tree and artificial neural network, that is CART (Classification And Regression Trees and BP (Backpropagation in MLP (Multilayer Perceptron networks algorithms.Aim of the paper is to show an aspect of selecting data for modeling, cleaning it and reducing, for example due to too strong correlationbetween some of recorded process parameters. Also, it has been shown what results can be obtained using two different approaches:first when modeling using available commercial software, for example Statistica, second when modeling step by step using Excel spreadsheetbasing on the same algorithm, like BP-MLP. Discrepancy of results obtained from these two approaches originates from a priorimade assumptions. Mentioned earlier Statistica universal software package, when used without awareness of relations of technologicalparameters, i.e. without user having experience in foundry and without scheduling ranks of particular parameters basing on acquisition, can not give credible basis to predict the quality of the castings. Also, a decisive influence of data acquisition method has been clearly indicated, the acquisition should be conducted according to repetitive measurement and control procedures. This paper is based on about 250 records of actual data, for one assortment for 6 month period, where only 12 data sets were complete (including two that were used for validation of neural network and useful for creating a model. It is definitely too
Understanding logistic regression analysis
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...
Introduction to regression graphics
Cook, R Dennis
2009-01-01
Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava
Alternative Methods of Regression
Birkes, David
2011-01-01
Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s
Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-01
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.
The stopping rules for winsorized tree
Ch'ng, Chee Keong; Mahat, Nor Idayu
2017-11-01
Winsorized tree is a modified tree-based classifier that is able to investigate and to handle all outliers in all nodes along the process of constructing the tree. It overcomes the tedious process of constructing a classical tree where the splitting of branches and pruning go concurrently so that the constructed tree would not grow bushy. This mechanism is controlled by the proposed algorithm. In winsorized tree, data are screened for identifying outlier. If outlier is detected, the value is neutralized using winsorize approach. Both outlier identification and value neutralization are executed recursively in every node until predetermined stopping criterion is met. The aim of this paper is to search for significant stopping criterion to stop the tree from further splitting before overfitting. The result obtained from the conducted experiment on pima indian dataset proved that the node could produce the final successor nodes (leaves) when it has achieved the range of 70% in information gain.
The augmentation algorithm and molecular phylogenetic trees
Holmquist, R.
1978-01-01
Moore's (1977) augmentation procedure is discussed, and it is concluded that the procedure is valid for obtaining estimates of the total number of fixed nucleotide substitutions both theoretically and in practice, for both simulated and real data, and in agreement, for experimentally dense data sets, with stochastic estimates of the divergence, provided the restrictions on codon mutability resulting from natural selection are explicitly allowed for. Tateno and Nei's (1978) critique that the augmentation procedure has a systematic bias toward overestimation of the total number of nucleotide replacements is disputed, and a data analysis suggests that ancestral sequences inferred by the method of parsimony contain a large number of incorrectly assigned nucleotides.
DEFF Research Database (Denmark)
Andersen, Esben Sloth
2002-01-01
The purpose of this paper is to bring forth an interaction between evolutionary economics and industrial systematics. The suggested solution is to reconstruct the "family tree" of the industries. Such a tree is based on similarities, but it may also reflect the evolutionary history in industries....... For this purpose the paper shows how matrices of input-output coefficients can be transformed into binary characteristics matrices and to distance matrices, and it also discusses the possible evolutionary meaning of this translation. Then these derived matrices are used as inputs to algorithms for the heuristic...... finding of optimal industrial trees. The results are presented as taxonomic trees that can easily be compared with the hierarchical structure of existing systems of industrial classification....
Visualizing Contour Trees within Histograms
DEFF Research Database (Denmark)
Kraus, Martin
2010-01-01
Many of the topological features of the isosurfaces of a scalar volume field can be compactly represented by its contour tree. Unfortunately, the contour trees of most real-world volume data sets are too complex to be visualized by dot-and-line diagrams. Therefore, we propose a new visualization...... that is suitable for large contour trees and efficiently conveys the topological structure of the most important isosurface components. This visualization is integrated into a histogram of the volume data; thus, it offers strictly more information than a traditional histogram. We present algorithms...... to automatically compute the graph layout and to calculate appropriate approximations of the contour tree and the surface area of the relevant isosurface components. The benefits of this new visualization are demonstrated with the help of several publicly available volume data sets....
Polylinear regression analysis in radiochemistry
International Nuclear Information System (INIS)
Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.
1995-01-01
A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis
Inferring species trees from incongruent multi-copy gene trees using the Robinson-Foulds distance
2013-01-01
Background Constructing species trees from multi-copy gene trees remains a challenging problem in phylogenetics. One difficulty is that the underlying genes can be incongruent due to evolutionary processes such as gene duplication and loss, deep coalescence, or lateral gene transfer. Gene tree estimation errors may further exacerbate the difficulties of species tree estimation. Results We present a new approach for inferring species trees from incongruent multi-copy gene trees that is based on a generalization of the Robinson-Foulds (RF) distance measure to multi-labeled trees (mul-trees). We prove that it is NP-hard to compute the RF distance between two mul-trees; however, it is easy to calculate this distance between a mul-tree and a singly-labeled species tree. Motivated by this, we formulate the RF problem for mul-trees (MulRF) as follows: Given a collection of multi-copy gene trees, find a singly-labeled species tree that minimizes the total RF distance from the input mul-trees. We develop and implement a fast SPR-based heuristic algorithm for the NP-hard MulRF problem. We compare the performance of the MulRF method (available at http://genome.cs.iastate.edu/CBL/MulRF/) with several gene tree parsimony approaches using gene tree simulations that incorporate gene tree error, gene duplications and losses, and/or lateral transfer. The MulRF method produces more accurate species trees than gene tree parsimony approaches. We also demonstrate that the MulRF method infers in minutes a credible plant species tree from a collection of nearly 2,000 gene trees. Conclusions Our new phylogenetic inference method, based on a generalized RF distance, makes it possible to quickly estimate species trees from large genomic data sets. Since the MulRF method, unlike gene tree parsimony, is based on a generic tree distance measure, it is appealing for analyses of genomic data sets, in which many processes such as deep coalescence, recombination, gene duplication and losses as
Inferring regulatory networks from expression data using tree-based methods.
Directory of Open Access Journals (Sweden)
Vân Anh Huynh-Thu
2010-09-01
Full Text Available One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene is predicted from the expression patterns of all the other genes (input genes, using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.
RBT—A Tool for Building Refined Buneman Trees
DEFF Research Database (Denmark)
Besenbacher, Søren; Mailund; Westh-Nielsen, Lasse
2005-01-01
We have developed a tool implementing an efficient algorithm for refined Buneman tree reconstruction. The algorithm—which has the same complexity as the neighbour-joining method and the (plain) Buneman tree construction—enables refined Buneman tree reconstruction on large taxa sets....
Directory of Open Access Journals (Sweden)
Matthias Schmid
Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.
Local search for Steiner tree problems in graphs
Verhoeven, M.G.A.; Severens, M.E.M.; Aarts, E.H.L.; Rayward-Smith, V.J.; Reeves, C.R.; Smith, G.D.
1996-01-01
We present a local search algorithm for the Steiner tree problem in graphs, which uses a neighbourhood in which paths in a steiner tree are exchanged. The exchange function of this neigbourhood is based on multiple-source shortest path algorithm. We present computational results for a known
Using tree diversity to compare phylogenetic heuristics.
Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L
2009-04-29
Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees-especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.
Understanding logistic regression analysis.
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
Hosmer, David W; Sturdivant, Rodney X
2013-01-01
A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-
Indian Academy of Sciences (India)
deciduous tree with irregularly-shaped trunk, greyish-white scaly bark and milky latex. Leaves in opposite pairs are simple, oblong and whitish beneath. Flowers that occur in branched inflorescence are white, 2–. 3cm across and fragrant. Calyx is glandular inside. Petals bear numerous linear white scales, the corollary.
Indian Academy of Sciences (India)
Berrya cordifolia (Willd.) Burret (Syn. B. ammonilla Roxb.) – Trincomali Wood of Tiliaceae is a tall evergreen tree with straight trunk, smooth brownish-grey bark and simple broad leaves. Inflorescence is much branched with white flowers. Stamens are many with golden yellow anthers. Fruit is a capsule with six spreading ...
Indian Academy of Sciences (India)
Canthium parviflorum Lam. of Rubiaceae is a large shrub that often grows into a small tree with conspicuous spines. Leaves are simple, in pairs at each node and are shiny. Inflorescence is an axillary few-flowered cymose fascicle. Flowers are small (less than 1 cm across), 4-merous and greenish-white. Fruit is ellipsoid ...
Indian Academy of Sciences (India)
sriranga
Hook.f. ex Brandis (Yellow. Cadamba) of Rubiaceae is a large and handsome deciduous tree. Leaves are simple, large, orbicular, and drawn abruptly at the apex. Flowers are small, yellowish and aggregate into small spherical heads. The corolla is funnel-shaped with five stamens inserted at its mouth. Fruit is a capsule.
Indian Academy of Sciences (India)
Celtis tetrandra Roxb. of Ulmaceae is a moderately large handsome deciduous tree with green branchlets and grayish-brown bark. Leaves are simple with three to four secondary veins running parallel to the mid vein. Flowers are solitary, male, female and bisexual and inconspicuous. Fruit is berry-like, small and globose ...
Indian Academy of Sciences (India)
IAS Admin
Aglaia elaeagnoidea (A.Juss.) Benth. of Meliaceae is a small-sized evergreen tree of both moist and dry deciduous forests. The leaves are alternate and pinnately compound, terminating in a single leaflet. Leaflets are more or less elliptic with entire margin. Flowers are small on branched inflorescence. Fruit is a globose ...
Indian Academy of Sciences (India)
user
Flowers are borne on stiff bunches terminally on short shoots. They are 2-3 cm across, white, sweet-scented with light-brown hairy sepals and many stamens. Loquat fruits are round or pear-shaped, 3-5 cm long and are edible. A native of China, Loquat tree is grown in parks as an ornamental and also for its fruits.
Indian Academy of Sciences (India)
mid-sized slow-growing evergreen tree with spreading branches that form a dense crown. The bark is smooth, thick, dark and flakes off in large shreds. Leaves are thick, oblong, leathery and bright red when young. The female flowers are drooping and are larger than male flowers. Fruit is large, red in color and velvety.
Indian Academy of Sciences (India)
Andira inermis (wright) DC. , Dog Almond of Fabaceae is a handsome lofty evergreen tree. Leaves are alternate and pinnately compound with 4–7 pairs of leaflets. Flowers are fragrant and are borne on compact branched inflorescences. Fruit is ellipsoidal one-seeded drupe that is peculiar to members of this family.
Indian Academy of Sciences (India)
narrow towards base. Flowers are large and attrac- tive, but emit unpleasant foetid smell. They appear in small numbers on erect terminal clusters and open at night. Stamens are numerous, pink or white. Style is slender and long, terminating in a small stigma. Fruit is green, ovoid and indistinctly lobed. Flowering Trees.
Indian Academy of Sciences (India)
Muntingia calabura L. (Singapore cherry) of. Elaeocarpaceae is a medium size handsome ever- green tree. Leaves are simple and alternate with sticky hairs. Flowers are bisexual, bear numerous stamens, white in colour and arise in the leaf axils. Fruit is a berry, edible with several small seeds embedded in a fleshy pulp ...
Indian Academy of Sciences (India)
. Stamens are fused into a purple staminal tube that is toothed. Fruit is about 0.5 in. across, nearly globose, generally 5-seeded, green but yellow when ripe, quite smooth at first but wrinkled in drying, remaining long on the tree ajier ripening.
Mark J. Ambrose
2012-01-01
Tree mortality is a natural process in all forest ecosystems. However, extremely high mortality also can be an indicator of forest health issues. On a regional scale, high mortality levels may indicate widespread insect or disease problems. High mortality may also occur if a large proportion of the forest in a particular region is made up of older, senescent stands....
Indian Academy of Sciences (India)
Guaiacum officinale L. (LIGNUM-VITAE) of Zygophyllaceae is a dense-crowned, squat, knobbly, rough and twisted medium-sized ev- ergreen tree with mottled bark. The wood is very hard and resinous. Leaves are compound. The leaflets are smooth, leathery, ovate-ellipti- cal and appear in two pairs. Flowers (about 1.5.
Function approximation with polynomial regression slines
International Nuclear Information System (INIS)
Urbanski, P.
1996-01-01
Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)
Hostettler, Isabel Charlotte; Muroi, Carl; Richter, Johannes Konstantin; Schmid, Josef; Neidert, Marian Christoph; Seule, Martin; Boss, Oliver; Pangalu, Athina; Germans, Menno Robbert; Keller, Emanuela
2018-01-19
OBJECTIVE The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7. RESULTS The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.
Breaking the fault tree circular logic
International Nuclear Information System (INIS)
Lankin, M.
2000-01-01
Event tree - fault tree approach to model failures of nuclear plants as well as of other complex facilities is noticeably dominant now. This approach implies modeling an object in form of unidirectional logical graph - tree, i.e. graph without circular logic. However, genuine nuclear plants intrinsically demonstrate quite a few logical loops (circular logic), especially where electrical systems are involved. This paper shows the incorrectness of existing practice of circular logic breaking by elimination of part of logical dependencies and puts forward a formal algorithm, which enables the analyst to correctly model the failure of complex object, which involves logical dependencies between system and components, in form of fault tree. (author)
Design of data structures for mergeable trees
DEFF Research Database (Denmark)
Georgiadis, Loukas; Tarjan, Robert Endre; Werneck, Renato Fonseca F.
2006-01-01
merge operation can change many arcs. In spite of this, we develop a data structure that supports merges and all other standard tree operations in O(log2 n) amortized time on an n-node forest. For the special case that occurs in the motivating application, in which arbitrary arc deletions...... are not allowed, we give a data structure with an O(log n) amortized time bound per operation, which is asymptotically optimal. The analysis of both algorithms is not straightforward and requires ideas not previously used in the study of dynamic trees. We explore the design space of algorithms for the problem......Motivated by an application in computational topology, we consider a novel variant of the problem of efficiently maintaining dynamic rooted trees. This variant allows an operation that merges two tree paths. In contrast to the standard problem, in which only one tree arc at a time changes, a single...
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.
Directory of Open Access Journals (Sweden)
Paulo Eduardo Telles dos Santos
2010-06-01
Full Text Available By the assessment of ten technological traits of eucalypt wood for sawn timber and energy purposes,
it was developed a multivariate statistical procedure in order to determine the sequence of logs to be sampled, in such a way to represent all statistical variation contained within the tree and, accordingly, to establish the appropriate sampling intensity. In the present work, it was used a total of 40 logs from four trees of Eucalyptus grandis provenance Concórdia-SC aged 18 years. By using principal components regression analysis and stepwise selection techniques, it was showed that only two logs, corresponding to the first (0.05 m to 2.60 m and fourth (8.85 m to 11.40 m positions into the tree, contained 99.2 % of the total variation detected originally. In the case of adopting a single log, the recommendation was over the fourth log, which represented 97.5 % of the total
amount of the original variation. For the referred population, the statistical procedure contributed substantially to reduce the high time-consuming and financial costs that are normally associated to studies oriented to this goal, without affecting the original statistical information exhibited by the whole group of logs that would be usually sampled.A partir da avaliação de dez características tecnológicas de madeira de eucalipto para fins de serraria e energia, desenvolveu-se procedimento estatístico multivariado para se determinar a seqüência de toras a ser amostrada, de forma a representar acumuladamente toda a variação estatística presente na árvore e, com isso, estabelecer a intensidade adequada de amostragem. Neste estudo, foram utilizadas 40 toras oriundas de quatro árvores de Eucalyptus grandis aos 18 anos de idade procedentes de Concórdia, SC. Com o uso de técnicas de regressão multivariada de componentes principais e seleção por etapas, chegou-se à conclusão que amostrandose apenas duas toras, correspondentes à primeira (0,05 m a 2
Live phylogeny with polytomies: Finding the most compact parsimonious trees.
Papamichail, D; Huang, A; Kennedy, E; Ott, J-L; Miller, A; Papamichail, G
2017-08-01
Construction of phylogenetic trees has traditionally focused on binary trees where all species appear on leaves, a problem for which numerous efficient solutions have been developed. Certain application domains though, such as viral evolution and transmission, paleontology, linguistics, and phylogenetic stemmatics, often require phylogeny inference that involves placing input species on ancestral tree nodes (live phylogeny), and polytomies. These requirements, despite their prevalence, lead to computationally harder algorithmic solutions and have been sparsely examined in the literature to date. In this article we prove some unique properties of most parsimonious live phylogenetic trees with polytomies, and their mapping to traditional binary phylogenetic trees. We show that our problem reduces to finding the most compact parsimonious tree for n species, and describe a novel efficient algorithm to find such trees without resorting to exhaustive enumeration of all possible tree topologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yunfeng Shan
2008-01-01
Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the ﬁnding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reﬂects the phylogenetic relationship among species in comparison.