WorldWideScience

Sample records for regression analysis approach

  1. A Visual Analytics Approach for Correlation, Classification, and Regression Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; SwanII, J. Edward [Mississippi State University (MSU); Fitzpatrick, Patrick J. [Mississippi State University (MSU); Jankun-Kelly, T.J. [Mississippi State University (MSU)

    2012-02-01

    New approaches that combine the strengths of humans and machines are necessary to equip analysts with the proper tools for exploring today's increasing complex, multivariate data sets. In this paper, a novel visual data mining framework, called the Multidimensional Data eXplorer (MDX), is described that addresses the challenges of today's data by combining automated statistical analytics with a highly interactive parallel coordinates based canvas. In addition to several intuitive interaction capabilities, this framework offers a rich set of graphical statistical indicators, interactive regression analysis, visual correlation mining, automated axis arrangements and filtering, and data classification techniques. The current work provides a detailed description of the system as well as a discussion of key design aspects and critical feedback from domain experts.

  2. Design and analysis of experiments classical and regression approaches with SAS

    CERN Document Server

    Onyiah, Leonard C

    2008-01-01

    Introductory Statistical Inference and Regression Analysis Elementary Statistical Inference Regression Analysis Experiments, the Completely Randomized Design (CRD)-Classical and Regression Approaches Experiments Experiments to Compare Treatments Some Basic Ideas Requirements of a Good Experiment One-Way Experimental Layout or the CRD: Design and Analysis Analysis of Experimental Data (Fixed Effects Model) Expected Values for the Sums of Squares The Analysis of Variance (ANOVA) Table Follow-Up Analysis to Check fo

  3. Regression Analysis

    CERN Document Server

    Freund, Rudolf J; Sa, Ping

    2006-01-01

    The book provides complete coverage of the classical methods of statistical analysis. It is designed to give students an understanding of the purpose of statistical analyses, to allow the student to determine, at least to some degree, the correct type of statistical analyses to be performed in a given situation, and have some appreciation of what constitutes good experimental design

  4. Support vector methods for survival analysis: a comparison between ranking and regression approaches.

    Science.gov (United States)

    Van Belle, Vanya; Pelckmans, Kristiaan; Van Huffel, Sabine; Suykens, Johan A K

    2011-10-01

    To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently in a context of structural risk minimization and convex optimization techniques. In a second approach, one uses a regression approach, dealing with censoring by means of inequality constraints. The goal of this paper is then twofold: (i) introducing a new model combining the ranking and regression strategy, which retains the link with existing survival models such as the proportional hazards model via transformation models; and (ii) comparison of the three techniques on 6 clinical and 3 high-dimensional datasets and discussing the relevance of these techniques over classical approaches fur survival data. We compare svm-based survival models based on ranking constraints, based on regression constraints and models based on both ranking and regression constraints. The performance of the models is compared by means of three different measures: (i) the concordance index, measuring the model's discriminating ability; (ii) the logrank test statistic, indicating whether patients with a prognostic index lower than the median prognostic index have a significant different survival than patients with a prognostic index higher than the median; and (iii) the hazard ratio after normalization to restrict the prognostic index between 0 and 1. Our results indicate a significantly better performance for models including regression constraints above models only based on ranking constraints. This work gives empirical evidence that svm-based models using regression constraints perform significantly better than svm-based models based on ranking constraints. Our experiments show a comparable performance for methods

  5. Regression analysis by example

    CERN Document Server

    Chatterjee, Samprit

    2012-01-01

    Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded

  6. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

    Science.gov (United States)

    Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

    2017-05-01

    Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.

  7. Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2011-01-01

    This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal...

  8. A new approach to nuclear reactor design optimization using genetic algorithms and regression analysis

    International Nuclear Information System (INIS)

    Kumar, Akansha; Tsvetkov, Pavel V.

    2015-01-01

    desired power peaking limits, desired effective and infinite neutron multiplication factors, high fast fission factor, high thermal efficiency in the conversion from thermal energy to electrical energy using the Brayton cycle, and high fuel burn-up. It is to be noted that we have kept the total mass of the fuel as constant. In this work, we present a module based (modular) approach to perform the optimization wherein, we have defined the following modules: single fuel pin cell, whole core, thermal–hydraulics, and energy conversion. In each of the modules we have defined a specific set of parameters and optimization objectives. The GA system (GAS), and RS together, play the role of optimizing each of the individual modules, and integrating the modules to determine the final nuclear reactor core. However, implementation of GA could lead to a local minimum or a non-unique set of parameters, those meet the specific optimization objectives. The GA code is built using Java, neutronic analysis using MCNP6, thermal–hydraulics calculations using Java, and regression analysis using R

  9. Bayesian logistic regression analysis

    NARCIS (Netherlands)

    Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.

    2012-01-01

    In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an

  10. Linear Regression Analysis

    CERN Document Server

    Seber, George A F

    2012-01-01

    Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.

  11. Multicollinearity and Regression Analysis

    Science.gov (United States)

    Daoud, Jamal I.

    2017-12-01

    In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.

  12. Analysis of sparse data in logistic regression in medical research: A newer approach

    Directory of Open Access Journals (Sweden)

    S Devika

    2016-01-01

    Full Text Available Background and Objective: In the analysis of dichotomous type response variable, logistic regression is usually used. However, the performance of logistic regression in the presence of sparse data is questionable. In such a situation, a common problem is the presence of high odds ratios (ORs with very wide 95% confidence interval (CI (OR: >999.999, 95% CI: 999.999. In this paper, we addressed this issue by using penalized logistic regression (PLR method. Materials and Methods: Data from case-control study on hyponatremia and hiccups conducted in Christian Medical College, Vellore, Tamil Nadu, India was used. The outcome variable was the presence/absence of hiccups and the main exposure variable was the status of hyponatremia. Simulation dataset was created with different sample sizes and with a different number of covariates. Results: A total of 23 cases and 50 controls were used for the analysis of ordinary and PLR methods. The main exposure variable hyponatremia was present in nine (39.13% of the cases and in four (8.0% of the controls. Of the 23 hiccup cases, all were males and among the controls, 46 (92.0% were males. Thus, the complete separation between gender and the disease group led into an infinite OR with 95% CI (OR: >999.999, 95% CI: 999.999 whereas there was a finite and consistent regression coefficient for gender (OR: 5.35; 95% CI: 0.42, 816.48 using PLR. After adjusting for all the confounding variables, hyponatremia entailed 7.9 (95% CI: 2.06, 38.86 times higher risk for the development of hiccups as was found using PLR whereas there was an overestimation of risk OR: 10.76 (95% CI: 2.17, 53.41 using the conventional method. Simulation experiment shows that the estimated coverage probability of this method is near the nominal level of 95% even for small sample sizes and for a large number of covariates. Conclusions: PLR is almost equal to the ordinary logistic regression when the sample size is large and is superior in small cell

  13. How efficient are referral hospitals in Uganda? A data envelopment analysis and tobit regression approach.

    Science.gov (United States)

    Mujasi, Paschal N; Asbu, Eyob Z; Puig-Junoy, Jaume

    2016-07-08

    Hospitals represent a significant proportion of health expenditures in Uganda, accounting for about 26 % of total health expenditure. Improving the technical efficiency of hospitals in Uganda can result in large savings which can be devoted to expand access to services and improve quality of care. This paper explores the technical efficiency of referral hospitals in Uganda during the 2012/2013 financial year. This was a cross sectional study using secondary data. Input and output data were obtained from the Uganda Ministry of Health annual health sector performance report for the period July 1, 2012 to June 30, 2013 for the 14 public sector regional referral and 4 large private not for profit hospitals. We assumed an output-oriented model with Variable Returns to Scale to estimate the efficiency score for each hospital using Data Envelopment Analysis (DEA) with STATA13. Using a Tobit model DEA, efficiency scores were regressed against selected institutional and contextual/environmental factors to estimate their impacts on efficiency. The average variable returns to scale (Pure) technical efficiency score was 91.4 % and the average scale efficiency score was 87.1 % while the average constant returns to scale technical efficiency score was 79.4 %. Technically inefficient hospitals could have become more efficient by increasing the outpatient department visits by 45,943; and inpatient days by 31,425 without changing the total number of inputs. Alternatively, they would achieve efficiency by for example transferring the excess 216 medical staff and 454 beds to other levels of the health system without changing the total number of outputs. Tobit regression indicates that significant factors in explaining hospital efficiency are: hospital size (p Uganda.

  14. A Vector Approach to Regression Analysis and Its Implications to Heavy-Duty Diesel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, H.T.

    2001-02-14

    An alternative approach is presented for the regression of response data on predictor variables that are not logically or physically separable. The methodology is demonstrated by its application to a data set of heavy-duty diesel emissions. Because of the covariance of fuel properties, it is found advantageous to redefine the predictor variables as vectors, in which the original fuel properties are components, rather than as scalars each involving only a single fuel property. The fuel property vectors are defined in such a way that they are mathematically independent and statistically uncorrelated. Because the available data set does not allow definitive separation of vehicle and fuel effects, and because test fuels used in several of the studies may be unrealistically contrived to break the association of fuel variables, the data set is not considered adequate for development of a full-fledged emission model. Nevertheless, the data clearly show that only a few basic patterns of fuel-property variation affect emissions and that the number of these patterns is considerably less than the number of variables initially thought to be involved. These basic patterns, referred to as ''eigenfuels,'' may reflect blending practice in accordance with their relative weighting in specific circumstances. The methodology is believed to be widely applicable in a variety of contexts. It promises an end to the threat of collinearity and the frustration of attempting, often unrealistically, to separate variables that are inseparable.

  15. Understanding logistic regression analysis

    OpenAIRE

    Sperandei, Sandro

    2014-01-01

    Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...

  16. Understanding logistic regression analysis.

    Science.gov (United States)

    Sperandei, Sandro

    2014-01-01

    Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.

  17. Analysis of the impact of recreational trail usage for prioritising management decisions: a regression tree approach

    Science.gov (United States)

    Tomczyk, Aleksandra; Ewertowski, Marek; White, Piran; Kasprzak, Leszek

    2016-04-01

    The dual role of many Protected Natural Areas in providing benefits for both conservation and recreation poses challenges for management. Although recreation-based damage to ecosystems can occur very quickly, restoration can take many years. The protection of conservation interests at the same as providing for recreation requires decisions to be made about how to prioritise and direct management actions. Trails are commonly used to divert visitors from the most important areas of a site, but high visitor pressure can lead to increases in trail width and a concomitant increase in soil erosion. Here we use detailed field data on condition of recreational trails in Gorce National Park, Poland, as the basis for a regression tree analysis to determine the factors influencing trail deterioration, and link specific trail impacts with environmental, use related and managerial factors. We distinguished 12 types of trails, characterised by four levels of degradation: (1) trails with an acceptable level of degradation; (2) threatened trails; (3) damaged trails; and (4) heavily damaged trails. Damaged trails were the most vulnerable of all trails and should be prioritised for appropriate conservation and restoration. We also proposed five types of monitoring of recreational trail conditions: (1) rapid inventory of negative impacts; (2) monitoring visitor numbers and variation in type of use; (3) change-oriented monitoring focusing on sections of trail which were subjected to changes in type or level of use or subjected to extreme weather events; (4) monitoring of dynamics of trail conditions; and (5) full assessment of trail conditions, to be carried out every 10-15 years. The application of the proposed framework can enhance the ability of Park managers to prioritise their trail management activities, enhancing trail conditions and visitor safety, while minimising adverse impacts on the conservation value of the ecosystem. A.M.T. was supported by the Polish Ministry of

  18. On the Usefulness of a Multilevel Logistic Regression Approach to Person-Fit Analysis

    Science.gov (United States)

    Conijn, Judith M.; Emons, Wilco H. M.; van Assen, Marcel A. L. M.; Sijtsma, Klaas

    2011-01-01

    The logistic person response function (PRF) models the probability of a correct response as a function of the item locations. Reise (2000) proposed to use the slope parameter of the logistic PRF as a person-fit measure. He reformulated the logistic PRF model as a multilevel logistic regression model and estimated the PRF parameters from this…

  19. Regression analysis with categorized regression calibrated exposure: some interesting findings

    Directory of Open Access Journals (Sweden)

    Hjartåker Anette

    2006-07-01

    Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a

  20. Multiple linear regression analysis

    Science.gov (United States)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  1. Consistency analysis of subspace identification methods based on a linear regression approach

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2001-01-01

    In the literature results can be found which claim consistency for the subspace method under certain quite weak assumptions. Unfortunately, a new result gives a counter example showing inconsistency under these assumptions and then gives new more strict sufficient assumptions which however does n...... not include important model structures as e.g. Box-Jenkins. Based on a simple least squares approach this paper shows the possible inconsistency under the weak assumptions and develops only slightly stricter assumptions sufficient for consistency and which includes any model structure...

  2. Fuzzy multiple linear regression: A computational approach

    Science.gov (United States)

    Juang, C. H.; Huang, X. H.; Fleming, J. W.

    1992-01-01

    This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.

  3. River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach

    Science.gov (United States)

    Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal

    2018-06-01

    Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.

  4. Crime Modeling using Spatial Regression Approach

    Science.gov (United States)

    Saleh Ahmar, Ansari; Adiatma; Kasim Aidid, M.

    2018-01-01

    Act of criminality in Indonesia increased both variety and quantity every year. As murder, rape, assault, vandalism, theft, fraud, fencing, and other cases that make people feel unsafe. Risk of society exposed to crime is the number of reported cases in the police institution. The higher of the number of reporter to the police institution then the number of crime in the region is increasing. In this research, modeling criminality in South Sulawesi, Indonesia with the dependent variable used is the society exposed to the risk of crime. Modelling done by area approach is the using Spatial Autoregressive (SAR) and Spatial Error Model (SEM) methods. The independent variable used is the population density, the number of poor population, GDP per capita, unemployment and the human development index (HDI). Based on the analysis using spatial regression can be shown that there are no dependencies spatial both lag or errors in South Sulawesi.

  5. Polylinear regression analysis in radiochemistry

    International Nuclear Information System (INIS)

    Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.

    1995-01-01

    A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis

  6. Polynomial regression analysis and significance test of the regression function

    International Nuclear Information System (INIS)

    Gao Zhengming; Zhao Juan; He Shengping

    2012-01-01

    In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)

  7. Forecasting exchange rates: a robust regression approach

    OpenAIRE

    Preminger, Arie; Franck, Raphael

    2005-01-01

    The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach, based on the S-estimation method, to construct forecasting models that are less sensitive to data contamination by outliers. A robust linear autoregressive (RAR) and a robust neural network (RNN) models are estimated to study the predictabil...

  8. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study

    Directory of Open Access Journals (Sweden)

    Tania Dehesh

    2015-01-01

    Full Text Available Background. Univariate meta-analysis (UM procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS method as a multivariate meta-analysis approach. Methods. We evaluated the efficiency of four new approaches including zero correlation (ZC, common correlation (CC, estimated correlation (EC, and multivariate multilevel correlation (MMC on the estimation bias, mean square error (MSE, and 95% probability coverage of the confidence interval (CI in the synthesis of Cox proportional hazard models coefficients in a simulation study. Result. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. Conclusion. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  9. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    Science.gov (United States)

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  10. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  11. Impact of a New Law to Reduce the Legal Blood Alcohol Concentration Limit - A Poisson Regression Analysis and Descriptive Approach.

    Science.gov (United States)

    Nistal-Nuño, Beatriz

    2017-03-31

    In Chile, a new law introduced in March 2012 lowered the blood alcohol concentration (BAC) limit for impaired drivers from 0.1% to 0.08% and the BAC limit for driving under the influence of alcohol from 0.05% to 0.03%, but its effectiveness remains uncertain. The goal of this investigation was to evaluate the effects of this enactment on road traffic injuries and fatalities in Chile. A retrospective cohort study. Data were analyzed using a descriptive and a Generalized Linear Models approach, type of Poisson regression, to analyze deaths and injuries in a series of additive Log-Linear Models accounting for the effects of law implementation, month influence, a linear time trend and population exposure. A review of national databases in Chile was conducted from 2003 to 2014 to evaluate the monthly rates of traffic fatalities and injuries associated to alcohol and in total. It was observed a decrease by 28.1 percent in the monthly rate of traffic fatalities related to alcohol as compared to before the law (Plaw (Plaw implemented in 2012 in Chile. Chile experienced a significant reduction in alcohol-related traffic fatalities and injuries, being a successful public health intervention.

  12. Financial performance monitoring of the technical efficiency of critical access hospitals: a data envelopment analysis and logistic regression modeling approach.

    Science.gov (United States)

    Wilson, Asa B; Kerr, Bernard J; Bastian, Nathaniel D; Fulton, Lawrence V

    2012-01-01

    From 1980 to 1999, rural designated hospitals closed at a disproportionally high rate. In response to this emergent threat to healthcare access in rural settings, the Balanced Budget Act of 1997 made provisions for the creation of a new rural hospital--the critical access hospital (CAH). The conversion to CAH and the associated cost-based reimbursement scheme significantly slowed the closure rate of rural hospitals. This work investigates which methods can ensure the long-term viability of small hospitals. This article uses a two-step design to focus on a hypothesized relationship between technical efficiency of CAHs and a recently developed set of financial monitors for these entities. The goal is to identify the financial performance measures associated with efficiency. The first step uses data envelopment analysis (DEA) to differentiate efficient from inefficient facilities within a data set of 183 CAHs. Determining DEA efficiency is an a priori categorization of hospitals in the data set as efficient or inefficient. In the second step, DEA efficiency is the categorical dependent variable (efficient = 0, inefficient = 1) in the subsequent binary logistic regression (LR) model. A set of six financial monitors selected from the array of 20 measures were the LR independent variables. We use a binary LR to test the null hypothesis that recently developed CAH financial indicators had no predictive value for categorizing a CAH as efficient or inefficient, (i.e., there is no relationship between DEA efficiency and fiscal performance).

  13. Optimization of classification and regression analysis of four monoclonal antibodies from Raman spectra using collaborative machine learning approach.

    Science.gov (United States)

    Le, Laetitia Minh Maï; Kégl, Balázs; Gramfort, Alexandre; Marini, Camille; Nguyen, David; Cherti, Mehdi; Tfaili, Sana; Tfayli, Ali; Baillet-Guffroy, Arlette; Prognon, Patrice; Chaminade, Pierre; Caudron, Eric

    2018-07-01

    The use of monoclonal antibodies (mAbs) constitutes one of the most important strategies to treat patients suffering from cancers such as hematological malignancies and solid tumors. These antibodies are prescribed by the physician and prepared by hospital pharmacists. An analytical control enables the quality of the preparations to be ensured. The aim of this study was to explore the development of a rapid analytical method for quality control. The method used four mAbs (Infliximab, Bevacizumab, Rituximab and Ramucirumab) at various concentrations and was based on recording Raman data and coupling them to a traditional chemometric and machine learning approach for data analysis. Compared to conventional linear approach, prediction errors are reduced with a data-driven approach using statistical machine learning methods. In the latter, preprocessing and predictive models are jointly optimized. An additional original aspect of the work involved on submitting the problem to a collaborative data challenge platform called Rapid Analytics and Model Prototyping (RAMP). This allowed using solutions from about 300 data scientists in collaborative work. Using machine learning, the prediction of the four mAbs samples was considerably improved. The best predictive model showed a combined error of 2.4% versus 14.6% using linear approach. The concentration and classification errors were 5.8% and 0.7%, only three spectra were misclassified over the 429 spectra of the test set. This large improvement obtained with machine learning techniques was uniform for all molecules but maximal for Bevacizumab with an 88.3% reduction on combined errors (2.1% versus 17.9%). Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Robust Mediation Analysis Based on Median Regression

    Science.gov (United States)

    Yuan, Ying; MacKinnon, David P.

    2014-01-01

    Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925

  15. Functional data analysis of generalized regression quantiles

    KAUST Repository

    Guo, Mengmeng

    2013-11-05

    Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.

  16. Functional data analysis of generalized regression quantiles

    KAUST Repository

    Guo, Mengmeng; Zhou, Lan; Huang, Jianhua Z.; Hä rdle, Wolfgang Karl

    2013-01-01

    Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.

  17. Principal component regression analysis with SPSS.

    Science.gov (United States)

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  18. Regression Analysis by Example. 5th Edition

    Science.gov (United States)

    Chatterjee, Samprit; Hadi, Ali S.

    2012-01-01

    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  19. Survival analysis II: Cox regression

    NARCIS (Netherlands)

    Stel, Vianda S.; Dekker, Friedo W.; Tripepi, Giovanni; Zoccali, Carmine; Jager, Kitty J.

    2011-01-01

    In contrast to the Kaplan-Meier method, Cox proportional hazards regression can provide an effect estimate by quantifying the difference in survival between patient groups and can adjust for confounding effects of other variables. The purpose of this article is to explain the basic concepts of the

  20. Gaussian process regression analysis for functional data

    CERN Document Server

    Shi, Jian Qing

    2011-01-01

    Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime

  1. Multivariate Regression Analysis and Slaughter Livestock,

    Science.gov (United States)

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  2. A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study.

    Science.gov (United States)

    Liu, Danping; Yeung, Edwina H; McLain, Alexander C; Xie, Yunlong; Buck Louis, Germaine M; Sundaram, Rajeshwari

    2017-09-01

    Imperfect follow-up in longitudinal studies commonly leads to missing outcome data that can potentially bias the inference when the missingness is nonignorable; that is, the propensity of missingness depends on missing values in the data. In the Upstate KIDS Study, we seek to determine if the missingness of child development outcomes is nonignorable, and how a simple model assuming ignorable missingness would compare with more complicated models for a nonignorable mechanism. To correct for nonignorable missingness, the shared random effects model (SREM) jointly models the outcome and the missing mechanism. However, the computational complexity and lack of software packages has limited its practical applications. This paper proposes a novel two-step approach to handle nonignorable missing outcomes in generalized linear mixed models. We first analyse the missing mechanism with a generalized linear mixed model and predict values of the random effects; then, the outcome model is fitted adjusting for the predicted random effects to account for heterogeneity in the missingness propensity. Extensive simulation studies suggest that the proposed method is a reliable approximation to SREM, with a much faster computation. The nonignorability of missing data in the Upstate KIDS Study is estimated to be mild to moderate, and the analyses using the two-step approach or SREM are similar to the model assuming ignorable missingness. The two-step approach is a computationally straightforward method that can be conducted as sensitivity analyses in longitudinal studies to examine violations to the ignorable missingness assumption and the implications relative to health outcomes. © 2017 John Wiley & Sons Ltd.

  3. Parametric optimization of multiple quality characteristics in laser cutting of Inconel-718 by using hybrid approach of multiple regression analysis and genetic algorithm

    Science.gov (United States)

    Shrivastava, Prashant Kumar; Pandey, Arun Kumar

    2018-06-01

    Inconel-718 has found high demand in different industries due to their superior mechanical properties. The traditional cutting methods are facing difficulties for cutting these alloys due to their low thermal potential, lower elasticity and high chemical compatibility at inflated temperature. The challenges of machining and/or finishing of unusual shapes and/or sizes in these materials have also faced by traditional machining. Laser beam cutting may be applied for the miniaturization and ultra-precision cutting and/or finishing by appropriate control of different process parameter. This paper present multi-objective optimization the kerf deviation, kerf width and kerf taper in the laser cutting of Incone-718 sheet. The second order regression models have been developed for different quality characteristics by using the experimental data obtained through experimentation. The regression models have been used as objective function for multi-objective optimization based on the hybrid approach of multiple regression analysis and genetic algorithm. The comparison of optimization results to experimental results shows an improvement of 88%, 10.63% and 42.15% in kerf deviation, kerf width and kerf taper, respectively. Finally, the effects of different process parameters on quality characteristics have also been discussed.

  4. Applied regression analysis a research tool

    CERN Document Server

    Pantula, Sastry; Dickey, David

    1998-01-01

    Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...

  5. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    Science.gov (United States)

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  6. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  7. Regression Analysis and the Sociological Imagination

    Science.gov (United States)

    De Maio, Fernando

    2014-01-01

    Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.

  8. Analysing inequalities in Germany a structured additive distributional regression approach

    CERN Document Server

    Silbersdorff, Alexander

    2017-01-01

    This book seeks new perspectives on the growing inequalities that our societies face, putting forward Structured Additive Distributional Regression as a means of statistical analysis that circumvents the common problem of analytical reduction to simple point estimators. This new approach allows the observed discrepancy between the individuals’ realities and the abstract representation of those realities to be explicitly taken into consideration using the arithmetic mean alone. In turn, the method is applied to the question of economic inequality in Germany.

  9. Two Paradoxes in Linear Regression Analysis

    Science.gov (United States)

    FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong

    2016-01-01

    Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214

  10. Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy

    Science.gov (United States)

    Sarkar, Arnab; Karki, Vijay; Aggarwal, Suresh K.; Maurya, Gulab S.; Kumar, Rohit; Rai, Awadhesh K.; Mao, Xianglei; Russo, Richard E.

    2015-06-01

    Laser induced breakdown spectroscopy (LIBS) was applied for elemental characterization of high alloy steel using partial least squares regression (PLSR) with an objective to evaluate the analytical performance of this multivariate approach. The optimization of the number of principle components for minimizing error in PLSR algorithm was investigated. The effect of different pre-treatment procedures on the raw spectral data before PLSR analysis was evaluated based on several statistical (standard error of prediction, percentage relative error of prediction etc.) parameters. The pre-treatment with "NORM" parameter gave the optimum statistical results. The analytical performance of PLSR model improved by increasing the number of laser pulses accumulated per spectrum as well as by truncating the spectrum to appropriate wavelength region. It was found that the statistical benefit of truncating the spectrum can also be accomplished by increasing the number of laser pulses per accumulation without spectral truncation. The constituents (Co and Mo) present in hundreds of ppm were determined with relative precision of 4-9% (2σ), whereas the major constituents Cr and Ni (present at a few percent levels) were determined with a relative precision of ~ 2%(2σ).

  11. Bayesian approach to errors-in-variables in regression models

    Science.gov (United States)

    Rozliman, Nur Aainaa; Ibrahim, Adriana Irawati Nur; Yunus, Rossita Mohammad

    2017-05-01

    In many applications and experiments, data sets are often contaminated with error or mismeasured covariates. When at least one of the covariates in a model is measured with error, Errors-in-Variables (EIV) model can be used. Measurement error, when not corrected, would cause misleading statistical inferences and analysis. Therefore, our goal is to examine the relationship of the outcome variable and the unobserved exposure variable given the observed mismeasured surrogate by applying the Bayesian formulation to the EIV model. We shall extend the flexible parametric method proposed by Hossain and Gustafson (2009) to another nonlinear regression model which is the Poisson regression model. We shall then illustrate the application of this approach via a simulation study using Markov chain Monte Carlo sampling methods.

  12. Background stratified Poisson regression analysis of cohort data.

    Science.gov (United States)

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  13. Background stratified Poisson regression analysis of cohort data

    International Nuclear Information System (INIS)

    Richardson, David B.; Langholz, Bryan

    2012-01-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)

  14. Regression analysis using dependent Polya trees.

    Science.gov (United States)

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Method for nonlinear exponential regression analysis

    Science.gov (United States)

    Junkin, B. G.

    1972-01-01

    Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

  16. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    Science.gov (United States)

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  17. On logistic regression analysis of dichotomized responses.

    Science.gov (United States)

    Lu, Kaifeng

    2017-01-01

    We study the properties of treatment effect estimate in terms of odds ratio at the study end point from logistic regression model adjusting for the baseline value when the underlying continuous repeated measurements follow a multivariate normal distribution. Compared with the analysis that does not adjust for the baseline value, the adjusted analysis produces a larger treatment effect as well as a larger standard error. However, the increase in standard error is more than offset by the increase in treatment effect so that the adjusted analysis is more powerful than the unadjusted analysis for detecting the treatment effect. On the other hand, the true adjusted odds ratio implied by the normal distribution of the underlying continuous variable is a function of the baseline value and hence is unlikely to be able to be adequately represented by a single value of adjusted odds ratio from the logistic regression model. In contrast, the risk difference function derived from the logistic regression model provides a reasonable approximation to the true risk difference function implied by the normal distribution of the underlying continuous variable over the range of the baseline distribution. We show that different metrics of treatment effect have similar statistical power when evaluated at the baseline mean. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. A method for nonlinear exponential regression analysis

    Science.gov (United States)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  19. Regression analysis for the social sciences

    CERN Document Server

    Gordon, Rachel A

    2010-01-01

    The book provides graduate students in the social sciences with the basic skills that they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming and interpretation on the same data set and course exercises in which students can choose their own research questions and data set.

  20. An Original Stepwise Multilevel Logistic Regression Analysis of Discriminatory Accuracy

    DEFF Research Database (Denmark)

    Merlo, Juan; Wagner, Philippe; Ghith, Nermin

    2016-01-01

    BACKGROUND AND AIM: Many multilevel logistic regression analyses of "neighbourhood and health" focus on interpreting measures of associations (e.g., odds ratio, OR). In contrast, multilevel analysis of variance is rarely considered. We propose an original stepwise analytical approach that disting...

  1. Real-time regression analysis with deep convolutional neural networks

    OpenAIRE

    Huerta, E. A.; George, Daniel; Zhao, Zhizhen; Allen, Gabrielle

    2018-01-01

    We discuss the development of novel deep learning algorithms to enable real-time regression analysis for time series data. We showcase the application of this new method with a timely case study, and then discuss the applicability of this approach to tackle similar challenges across science domains.

  2. Credit Scoring Problem Based on Regression Analysis

    OpenAIRE

    Khassawneh, Bashar Suhil Jad Allah

    2014-01-01

    ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....

  3. bayesQR: A Bayesian Approach to Quantile Regression

    Directory of Open Access Journals (Sweden)

    Dries F. Benoit

    2017-01-01

    Full Text Available After its introduction by Koenker and Basset (1978, quantile regression has become an important and popular tool to investigate the conditional response distribution in regression. The R package bayesQR contains a number of routines to estimate quantile regression parameters using a Bayesian approach based on the asymmetric Laplace distribution. The package contains functions for the typical quantile regression with continuous dependent variable, but also supports quantile regression for binary dependent variables. For both types of dependent variables, an approach to variable selection using the adaptive lasso approach is provided. For the binary quantile regression model, the package also contains a routine that calculates the fitted probabilities for each vector of predictors. In addition, functions for summarizing the results, creating traceplots, posterior histograms and drawing quantile plots are included. This paper starts with a brief overview of the theoretical background of the models used in the bayesQR package. The main part of this paper discusses the computational problems that arise in the implementation of the procedure and illustrates the usefulness of the package through selected examples.

  4. Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines

    Directory of Open Access Journals (Sweden)

    Dario Pastrone

    2012-01-01

    Full Text Available Hybrid rocket engines are promising propulsion systems which present appealing features such as safety, low cost, and environmental friendliness. On the other hand, certain issues hamper the development hoped for. The present paper discusses approaches addressing improvements to one of the most important among these issues: low fuel regression rate. To highlight the consequence of such an issue and to better understand the concepts proposed, fundamentals are summarized. Two approaches are presented (multiport grain and high mixture ratio which aim at reducing negative effects without enhancing regression rate. Furthermore, fuel material changes and nonconventional geometries of grain and/or injector are presented as methods to increase fuel regression rate. Although most of these approaches are still at the laboratory or concept scale, many of them are promising.

  5. Regression analysis for the social sciences

    CERN Document Server

    Gordon, Rachel A

    2015-01-01

    Provides graduate students in the social sciences with the basic skills they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of Stata and use of chapter exercises in which students practice programming and interpretation on the same data set. A separate set of exercises allows students to select a data set to apply the concepts learned in each chapter to a research question of interest to them, all updated for this edition.

  6. Regression analysis of sparse asynchronous longitudinal data.

    Science.gov (United States)

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P

    2015-09-01

    We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

  7. A rotor optimization using regression analysis

    Science.gov (United States)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  8. Repeated Results Analysis for Middleware Regression Benchmarking

    Czech Academy of Sciences Publication Activity Database

    Bulej, Lubomír; Kalibera, T.; Tůma, P.

    2005-01-01

    Roč. 60, - (2005), s. 345-358 ISSN 0166-5316 R&D Projects: GA ČR GA102/03/0672 Institutional research plan: CEZ:AV0Z10300504 Keywords : middleware benchmarking * regression benchmarking * regression testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.756, year: 2005

  9. A new approach to age-period-cohort analysis using partial least squares regression: the trend in blood pressure in the Glasgow Alumni cohort.

    Directory of Open Access Journals (Sweden)

    Yu-Kang Tu

    2011-04-01

    Full Text Available Due to a problem of identification, how to estimate the distinct effects of age, time period and cohort has been a controversial issue in the analysis of trends in health outcomes in epidemiology. In this study, we propose a novel approach, partial least squares (PLS analysis, to separate the effects of age, period, and cohort. Our example for illustration is taken from the Glasgow Alumni cohort. A total of 15,322 students (11,755 men and 3,567 women received medical screening at the Glasgow University between 1948 and 1968. The aim is to investigate the secular trends in blood pressure over 1925 and 1950 while taking into account the year of examination and age at examination. We excluded students born before 1925 or aged over 25 years at examination and those with missing values in confounders from the analyses, resulting in 12,546 and 12,516 students for analysis of systolic and diastolic blood pressure, respectively. PLS analysis shows that both systolic and diastolic blood pressure increased with students' age, and students born later had on average lower blood pressure (SBP: -0.17 mmHg/per year [95% confidence intervals: -0.19 to -0.15] for men and -0.25 [-0.28 to -0.22] for women; DBP: -0.14 [-0.15 to -0.13] for men; -0.09 [-0.11 to -0.07] for women. PLS also shows a decreasing trend in blood pressure over the examination period. As identification is not a problem for PLS, it provides a flexible modelling strategy for age-period-cohort analysis. More emphasis is then required to clarify the substantive and conceptual issues surrounding the definitions and interpretations of age, period and cohort effects.

  10. Multiple linear regression approach for the analysis of the relationships between joints mobility and regional pressure-based parameters in the normal-arched foot.

    Science.gov (United States)

    Caravaggi, Paolo; Leardini, Alberto; Giacomozzi, Claudia

    2016-10-03

    Plantar load can be considered as a measure of the foot ability to transmit forces at the foot/ground, or foot/footwear interface during ambulatory activities via the lower limb kinematic chain. While morphological and functional measures have been shown to be correlated with plantar load, no exhaustive data are currently available on the possible relationships between range of motion of foot joints and plantar load regional parameters. Joints' kinematics from a validated multi-segmental foot model were recorded together with plantar pressure parameters in 21 normal-arched healthy subjects during three barefoot walking trials. Plantar pressure maps were divided into six anatomically-based regions of interest associated to corresponding foot segments. A stepwise multiple regression analysis was performed to determine the relationships between pressure-based parameters, joints range of motion and normalized walking speed (speed/subject height). Sagittal- and frontal-plane joint motion were those most correlated to plantar load. Foot joints' range of motion and normalized walking speed explained between 6% and 43% of the model variance (adjusted R 2 ) for pressure-based parameters. In general, those joints' presenting lower mobility during stance were associated to lower vertical force at forefoot and to larger mean and peak pressure at hindfoot and forefoot. Normalized walking speed was always positively correlated to mean and peak pressure at hindfoot and forefoot. While a large variance in plantar pressure data is still not accounted for by the present models, this study provides statistical corroboration of the close relationship between joint mobility and plantar pressure during stance in the normal healthy foot. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Regression Analysis of Individual Financial Performance: Evidence from Croatia

    OpenAIRE

    Bahovec, Vlasta; Barbić, Dajana; Palić, Irena

    2017-01-01

    Background: A large body of empirical literature indicates that gender and financial literacy are significant determinants of individual financial performance. Objectives: The purpose of this paper is to recognize the impact of the variable financial literacy and the variable gender on the variation of the financial performance using the regression analysis. Methods/Approach: The survey was conducted using the systematically chosen random sample of Croatian financial consumers. The cross sect...

  12. Common pitfalls in statistical analysis: Linear regression analysis

    Directory of Open Access Journals (Sweden)

    Rakesh Aggarwal

    2017-01-01

    Full Text Available In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.

  13. Sparse Regression by Projection and Sparse Discriminant Analysis

    KAUST Repository

    Qi, Xin

    2015-04-03

    © 2015, © American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America. Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high-dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross-validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares, and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared with the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplementary materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.

  14. Identifying predictors of physics item difficulty: A linear regression approach

    Science.gov (United States)

    Mesic, Vanes; Muratovic, Hasnija

    2011-06-01

    Large-scale assessments of student achievement in physics are often approached with an intention to discriminate students based on the attained level of their physics competencies. Therefore, for purposes of test design, it is important that items display an acceptable discriminatory behavior. To that end, it is recommended to avoid extraordinary difficult and very easy items. Knowing the factors that influence physics item difficulty makes it possible to model the item difficulty even before the first pilot study is conducted. Thus, by identifying predictors of physics item difficulty, we can improve the test-design process. Furthermore, we get additional qualitative feedback regarding the basic aspects of student cognitive achievement in physics that are directly responsible for the obtained, quantitative test results. In this study, we conducted a secondary analysis of data that came from two large-scale assessments of student physics achievement at the end of compulsory education in Bosnia and Herzegovina. Foremost, we explored the concept of “physics competence” and performed a content analysis of 123 physics items that were included within the above-mentioned assessments. Thereafter, an item database was created. Items were described by variables which reflect some basic cognitive aspects of physics competence. For each of the assessments, Rasch item difficulties were calculated in separate analyses. In order to make the item difficulties from different assessments comparable, a virtual test equating procedure had to be implemented. Finally, a regression model of physics item difficulty was created. It has been shown that 61.2% of item difficulty variance can be explained by factors which reflect the automaticity, complexity, and modality of the knowledge structure that is relevant for generating the most probable correct solution, as well as by the divergence of required thinking and interference effects between intuitive and formal physics knowledge

  15. Identifying predictors of physics item difficulty: A linear regression approach

    Directory of Open Access Journals (Sweden)

    Hasnija Muratovic

    2011-06-01

    Full Text Available Large-scale assessments of student achievement in physics are often approached with an intention to discriminate students based on the attained level of their physics competencies. Therefore, for purposes of test design, it is important that items display an acceptable discriminatory behavior. To that end, it is recommended to avoid extraordinary difficult and very easy items. Knowing the factors that influence physics item difficulty makes it possible to model the item difficulty even before the first pilot study is conducted. Thus, by identifying predictors of physics item difficulty, we can improve the test-design process. Furthermore, we get additional qualitative feedback regarding the basic aspects of student cognitive achievement in physics that are directly responsible for the obtained, quantitative test results. In this study, we conducted a secondary analysis of data that came from two large-scale assessments of student physics achievement at the end of compulsory education in Bosnia and Herzegovina. Foremost, we explored the concept of “physics competence” and performed a content analysis of 123 physics items that were included within the above-mentioned assessments. Thereafter, an item database was created. Items were described by variables which reflect some basic cognitive aspects of physics competence. For each of the assessments, Rasch item difficulties were calculated in separate analyses. In order to make the item difficulties from different assessments comparable, a virtual test equating procedure had to be implemented. Finally, a regression model of physics item difficulty was created. It has been shown that 61.2% of item difficulty variance can be explained by factors which reflect the automaticity, complexity, and modality of the knowledge structure that is relevant for generating the most probable correct solution, as well as by the divergence of required thinking and interference effects between intuitive and formal

  16. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

    Science.gov (United States)

    Azen, Razia; Traxel, Nicole

    2009-01-01

    This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…

  17. Regression and regression analysis time series prediction modeling on climate data of quetta, pakistan

    International Nuclear Information System (INIS)

    Jafri, Y.Z.; Kamal, L.

    2007-01-01

    Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)

  18. Forecasting urban water demand: A meta-regression analysis.

    Science.gov (United States)

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

  19. A Practical pedestrian approach to parsimonious regression with inaccurate inputs

    Directory of Open Access Journals (Sweden)

    Seppo Karrila

    2014-04-01

    Full Text Available A measurement result often dictates an interval containing the correct value. Interval data is also created by roundoff, truncation, and binning. We focus on such common interval uncertainty in data. Inaccuracy in model inputs is typically ignored on model fitting. We provide a practical approach for regression with inaccurate data: the mathematics is easy, and the linear programming formulations simple to use even in a spreadsheet. This self-contained elementary presentation introduces interval linear systems and requires only basic knowledge of algebra. Feature selection is automatic; but can be controlled to find only a few most relevant inputs; and joint feature selection is enabled for multiple modeled outputs. With more features than cases, a novel connection to compressed sensing emerges: robustness against interval errors-in-variables implies model parsimony, and the input inaccuracies determine the regularization term. A small numerical example highlights counterintuitive results and a dramatic difference to total least squares.

  20. Does intense monitoring matter? A quantile regression approach

    Directory of Open Access Journals (Sweden)

    Fekri Ali Shawtari

    2017-06-01

    Full Text Available Corporate governance has become a centre of attention in corporate management at both micro and macro levels due to adverse consequences and repercussion of insufficient accountability. In this study, we include the Malaysian stock market as sample to explore the impact of intense monitoring on the relationship between intellectual capital performance and market valuation. The objectives of the paper are threefold: i to investigate whether intense monitoring affects the intellectual capital performance of listed companies; ii to explore the impact of intense monitoring on firm value; iii to examine the extent to which the directors serving more than two board committees affects the linkage between intellectual capital performance and firms' value. We employ two approaches, namely, the Ordinary Least Square (OLS and the quantile regression approach. The purpose of the latter is to estimate and generate inference about conditional quantile functions. This method is useful when the conditional distribution does not have a standard shape such as an asymmetric, fat-tailed, or truncated distribution. In terms of variables, the intellectual capital is measured using the value added intellectual coefficient (VAIC, while the market valuation is proxied by firm's market capitalization. The findings of the quantile regression shows that some of the results do not coincide with the results of OLS. We found that intensity of monitoring does not influence the intellectual capital of all firms. It is also evident that intensity of monitoring does not influence the market valuation. However, to some extent, it moderates the relationship between intellectual capital performance and market valuation. This paper contributes to the existing literature as it presents new empirical evidences on the moderating effects of the intensity of monitoring of the board committees on the relationship between performance and intellectual capital.

  1. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis.

    Science.gov (United States)

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.

  2. A Quantile Regression Approach to Estimating the Distribution of Anesthetic Procedure Time during Induction.

    Directory of Open Access Journals (Sweden)

    Hsin-Lun Wu

    Full Text Available Although procedure time analyses are important for operating room management, it is not easy to extract useful information from clinical procedure time data. A novel approach was proposed to analyze procedure time during anesthetic induction. A two-step regression analysis was performed to explore influential factors of anesthetic induction time (AIT. Linear regression with stepwise model selection was used to select significant correlates of AIT and then quantile regression was employed to illustrate the dynamic relationships between AIT and selected variables at distinct quantiles. A total of 1,060 patients were analyzed. The first and second-year residents (R1-R2 required longer AIT than the third and fourth-year residents and attending anesthesiologists (p = 0.006. Factors prolonging AIT included American Society of Anesthesiologist physical status ≧ III, arterial, central venous and epidural catheterization, and use of bronchoscopy. Presence of surgeon before induction would decrease AIT (p < 0.001. Types of surgery also had significant influence on AIT. Quantile regression satisfactorily estimated extra time needed to complete induction for each influential factor at distinct quantiles. Our analysis on AIT demonstrated the benefit of quantile regression analysis to provide more comprehensive view of the relationships between procedure time and related factors. This novel two-step regression approach has potential applications to procedure time analysis in operating room management.

  3. Neighborhood social capital and crime victimization: comparison of spatial regression analysis and hierarchical regression analysis.

    Science.gov (United States)

    Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro

    2012-11-01

    Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan. Copyright

  4. Preface to Berk's "Regression Analysis: A Constructive Critique"

    OpenAIRE

    de Leeuw, Jan

    2003-01-01

    It is pleasure to write a preface for the book ”Regression Analysis” of my fellow series editor Dick Berk. And it is a pleasure in particular because the book is about regression analysis, the most popular and the most fundamental technique in applied statistics. And because it is critical of the way regression analysis is used in the sciences, in particular in the social and behavioral sciences. Although the book can be read as an introduction to regression analysis, it can also be read as a...

  5. Bayesian logistic regression approaches to predict incorrect DRG assignment.

    Science.gov (United States)

    Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural

    2018-05-07

    Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.

  6. Regression Benchmarking: An Approach to Quality Assurance in Performance

    OpenAIRE

    Bulej, Lubomír

    2005-01-01

    The paper presents a short summary of our work in the area of regression benchmarking and its application to software development. Specially, we explain the concept of regression benchmarking, the requirements for employing regression testing in a software project, and methods used for analyzing the vast amounts of data resulting from repeated benchmarking. We present the application of regression benchmarking on a real software project and conclude with a glimpse at the challenges for the fu...

  7. The Use of Nonparametric Kernel Regression Methods in Econometric Production Analysis

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard

    and nonparametric estimations of production functions in order to evaluate the optimal firm size. The second paper discusses the use of parametric and nonparametric regression methods to estimate panel data regression models. The third paper analyses production risk, price uncertainty, and farmers' risk preferences...... within a nonparametric panel data regression framework. The fourth paper analyses the technical efficiency of dairy farms with environmental output using nonparametric kernel regression in a semiparametric stochastic frontier analysis. The results provided in this PhD thesis show that nonparametric......This PhD thesis addresses one of the fundamental problems in applied econometric analysis, namely the econometric estimation of regression functions. The conventional approach to regression analysis is the parametric approach, which requires the researcher to specify the form of the regression...

  8. Least-Squares Linear Regression and Schrodinger's Cat: Perspectives on the Analysis of Regression Residuals.

    Science.gov (United States)

    Hecht, Jeffrey B.

    The analysis of regression residuals and detection of outliers are discussed, with emphasis on determining how deviant an individual data point must be to be considered an outlier and the impact that multiple suspected outlier data points have on the process of outlier determination and treatment. Only bivariate (one dependent and one independent)…

  9. Simulation Experiments in Practice: Statistical Design and Regression Analysis

    OpenAIRE

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic DOE and regression analysis assume a single simulation response that is normally and independen...

  10. Mixed kernel function support vector regression for global sensitivity analysis

    Science.gov (United States)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  11. General Nature of Multicollinearity in Multiple Regression Analysis.

    Science.gov (United States)

    Liu, Richard

    1981-01-01

    Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)

  12. application of multilinear regression analysis in modeling of soil

    African Journals Online (AJOL)

    Windows User

    Accordingly [1, 3] in their work, they applied linear regression ... (MLRA) is a statistical technique that uses several explanatory ... order to check this, they adopted bivariate correlation analysis .... groups, namely A-1 through A-7, based on their relative expected ..... Multivariate Regression in Gorgan Province North of Iran” ...

  13. The price sensitivity of Medicare beneficiaries: a regression discontinuity approach.

    Science.gov (United States)

    Buchmueller, Thomas C; Grazier, Kyle; Hirth, Richard A; Okeke, Edward N

    2013-01-01

    We use 4 years of data from the retiree health benefits program of the University of Michigan to estimate the effect of price on the health plan choices of Medicare beneficiaries. During the period of our analysis, changes in the University's premium contribution rules led to substantial price changes. A key feature of this 'natural experiment' is that individuals who had retired before a certain date were exempted from having to pay any premium contributions. This 'grandfathering' creates quasi-experimental variation that is ideal for estimating the effect of price. Using regression discontinuity methods, we compare the plan choices of individuals who retired just after the grandfathering cutoff date and were therefore exposed to significant price changes to the choices of a 'control group' of individuals who retired just before that date and therefore did not experience the price changes. The results indicate a statistically significant effect of price, with a $10 increase in monthly premium contributions leading to a 2 to 3 percentage point decrease in a plan's market share. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Efficient and robust cell detection: A structured regression approach.

    Science.gov (United States)

    Xie, Yuanpu; Xing, Fuyong; Shi, Xiaoshuang; Kong, Xiangfei; Su, Hai; Yang, Lin

    2018-02-01

    Efficient and robust cell detection serves as a critical prerequisite for many subsequent biomedical image analysis methods and computer-aided diagnosis (CAD). It remains a challenging task due to touching cells, inhomogeneous background noise, and large variations in cell sizes and shapes. In addition, the ever-increasing amount of available datasets and the high resolution of whole-slice scanned images pose a further demand for efficient processing algorithms. In this paper, we present a novel structured regression model based on a proposed fully residual convolutional neural network for efficient cell detection. For each testing image, our model learns to produce a dense proximity map that exhibits higher responses at locations near cell centers. Our method only requires a few training images with weak annotations (just one dot indicating the cell centroids). We have extensively evaluated our method using four different datasets, covering different microscopy staining methods (e.g., H & E or Ki-67 staining) or image acquisition techniques (e.g., bright-filed image or phase contrast). Experimental results demonstrate the superiority of our method over existing state of the art methods in terms of both detection accuracy and running time. Copyright © 2017. Published by Elsevier B.V.

  15. Neighborhood Effects in Wind Farm Performance: A Regression Approach

    Directory of Open Access Journals (Sweden)

    Matthias Ritter

    2017-03-01

    Full Text Available The optimization of turbine density in wind farms entails a trade-off between the usage of scarce, expensive land and power losses through turbine wake effects. A quantification and prediction of the wake effect, however, is challenging because of the complex aerodynamic nature of the interdependencies of turbines. In this paper, we propose a parsimonious data driven regression wake model that can be used to predict production losses of existing and potential wind farms. Motivated by simple engineering wake models, the predicting variables are wind speed, the turbine alignment angle, and distance. By utilizing data from two wind farms in Germany, we show that our models can compete with the standard Jensen model in predicting wake effect losses. A scenario analysis reveals that a distance between turbines can be reduced by up to three times the rotor size, without entailing substantial production losses. In contrast, an unfavorable configuration of turbines with respect to the main wind direction can result in production losses that are much higher than in an optimal case.

  16. Moderation analysis using a two-level regression model.

    Science.gov (United States)

    Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

    2014-10-01

    Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

  17. A comparative study of multiple regression analysis and back ...

    Indian Academy of Sciences (India)

    Abhijit Sarkar

    artificial neural network (ANN) models to predict weld bead geometry and HAZ width in submerged arc welding ... Keywords. Submerged arc welding (SAW); multi-regression analysis (MRA); artificial neural network ..... Degree of freedom.

  18. The evolution of GDP in USA using cyclic regression analysis

    OpenAIRE

    Catalin Angelo IOAN; Gina IOAN

    2013-01-01

    Based on the four major types of economic cycles (Kondratieff, Juglar, Kitchin, Kuznet), the paper aims to determine their actual length (for the U.S. economy) using cyclic regressions based on Fourier analysis.

  19. Testing for Stock Market Contagion: A Quantile Regression Approach

    NARCIS (Netherlands)

    S.Y. Park (Sung); W. Wang (Wendun); N. Huang (Naijing)

    2015-01-01

    markdownabstract__Abstract__ Regarding the asymmetric and leptokurtic behavior of financial data, we propose a new contagion test in the quantile regression framework that is robust to model misspecification. Unlike conventional correlation-based tests, the proposed quantile contagion test

  20. On two flexible methods of 2-dimensional regression analysis

    Czech Academy of Sciences Publication Activity Database

    Volf, Petr

    2012-01-01

    Roč. 18, č. 4 (2012), s. 154-164 ISSN 1803-9782 Grant - others:GA ČR(CZ) GAP209/10/2045 Institutional support: RVO:67985556 Keywords : regression analysis * Gordon surface * prediction error * projection pursuit Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/SI/volf-on two flexible methods of 2-dimensional regression analysis.pdf

  1. Prediction of radiation levels in residences: A methodological comparison of CART [Classification and Regression Tree Analysis] and conventional regression

    International Nuclear Information System (INIS)

    Janssen, I.; Stebbings, J.H.

    1990-01-01

    In environmental epidemiology, trace and toxic substance concentrations frequently have very highly skewed distributions ranging over one or more orders of magnitude, and prediction by conventional regression is often poor. Classification and Regression Tree Analysis (CART) is an alternative in such contexts. To compare the techniques, two Pennsylvania data sets and three independent variables are used: house radon progeny (RnD) and gamma levels as predicted by construction characteristics in 1330 houses; and ∼200 house radon (Rn) measurements as predicted by topographic parameters. CART may identify structural variables of interest not identified by conventional regression, and vice versa, but in general the regression models are similar. CART has major advantages in dealing with other common characteristics of environmental data sets, such as missing values, continuous variables requiring transformations, and large sets of potential independent variables. CART is most useful in the identification and screening of independent variables, greatly reducing the need for cross-tabulations and nested breakdown analyses. There is no need to discard cases with missing values for the independent variables because surrogate variables are intrinsic to CART. The tree-structured approach is also independent of the scale on which the independent variables are measured, so that transformations are unnecessary. CART identifies important interactions as well as main effects. The major advantages of CART appear to be in exploring data. Once the important variables are identified, conventional regressions seem to lead to results similar but more interpretable by most audiences. 12 refs., 8 figs., 10 tabs

  2. QUANTITATIVE ELECTRONIC STRUCTURE - ACTIVITY RELATIONSHIP OF ANTIMALARIAL COMPOUND OF ARTEMISININ DERIVATIVES USING PRINCIPAL COMPONENT REGRESSION APPROACH

    Directory of Open Access Journals (Sweden)

    Paul Robert Martin Werfette

    2010-06-01

    Full Text Available Analysis of quantitative structure - activity relationship (QSAR for a series of antimalarial compound artemisinin derivatives has been done using principal component regression. The descriptors for QSAR study were representation of electronic structure i.e. atomic net charges of the artemisinin skeleton calculated by AM1 semi-empirical method. The antimalarial activity of the compound was expressed in log 1/IC50 which is an experimental data. The main purpose of the principal component analysis approach is to transform a large data set of atomic net charges to simplify into a data set which known as latent variables. The best QSAR equation to analyze of log 1/IC50 can be obtained from the regression method as a linear function of several latent variables i.e. x1, x2, x3, x4 and x5. The best QSAR model is expressed in the following equation,  (;;   Keywords: QSAR, antimalarial, artemisinin, principal component regression

  3. Least Squares Adjustment: Linear and Nonlinear Weighted Regression Analysis

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2007-01-01

    This note primarily describes the mathematics of least squares regression analysis as it is often used in geodesy including land surveying and satellite positioning applications. In these fields regression is often termed adjustment. The note also contains a couple of typical land surveying...... and satellite positioning application examples. In these application areas we are typically interested in the parameters in the model typically 2- or 3-D positions and not in predictive modelling which is often the main concern in other regression analysis applications. Adjustment is often used to obtain...... the clock error) and to obtain estimates of the uncertainty with which the position is determined. Regression analysis is used in many other fields of application both in the natural, the technical and the social sciences. Examples may be curve fitting, calibration, establishing relationships between...

  4. Inferring gene expression dynamics via functional regression analysis

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2008-01-01

    Full Text Available Abstract Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches.

  5. Weibull and lognormal Taguchi analysis using multiple linear regression

    International Nuclear Information System (INIS)

    Piña-Monarrez, Manuel R.; Ortiz-Yañez, Jesús F.

    2015-01-01

    The paper provides to reliability practitioners with a method (1) to estimate the robust Weibull family when the Taguchi method (TM) is applied, (2) to estimate the normal operational Weibull family in an accelerated life testing (ALT) analysis to give confidence to the extrapolation and (3) to perform the ANOVA analysis to both the robust and the normal operational Weibull family. On the other hand, because the Weibull distribution neither has the normal additive property nor has a direct relationship with the normal parameters (µ, σ), in this paper, the issues of estimating a Weibull family by using a design of experiment (DOE) are first addressed by using an L_9 (3"4) orthogonal array (OA) in both the TM and in the Weibull proportional hazard model approach (WPHM). Then, by using the Weibull/Gumbel and the lognormal/normal relationships and multiple linear regression, the direct relationships between the Weibull and the lifetime parameters are derived and used to formulate the proposed method. Moreover, since the derived direct relationships always hold, the method is generalized to the lognormal and ALT analysis. Finally, the method’s efficiency is shown through its application to the used OA and to a set of ALT data. - Highlights: • It gives the statistical relations and steps to use the Taguchi Method (TM) to analyze Weibull data. • It gives the steps to determine the unknown Weibull family to both the robust TM setting and the normal ALT level. • It gives a method to determine the expected lifetimes and to perform its ANOVA analysis in TM and ALT analysis. • It gives a method to give confidence to the extrapolation in an ALT analysis by using the Weibull family of the normal level.

  6. A Novel Imbalanced Data Classification Approach Based on Logistic Regression and Fisher Discriminant

    Directory of Open Access Journals (Sweden)

    Baofeng Shi

    2015-01-01

    Full Text Available We introduce an imbalanced data classification approach based on logistic regression significant discriminant and Fisher discriminant. First of all, a key indicators extraction model based on logistic regression significant discriminant and correlation analysis is derived to extract features for customer classification. Secondly, on the basis of the linear weighted utilizing Fisher discriminant, a customer scoring model is established. And then, a customer rating model where the customer number of all ratings follows normal distribution is constructed. The performance of the proposed model and the classical SVM classification method are evaluated in terms of their ability to correctly classify consumers as default customer or nondefault customer. Empirical results using the data of 2157 customers in financial engineering suggest that the proposed approach better performance than the SVM model in dealing with imbalanced data classification. Moreover, our approach contributes to locating the qualified customers for the banks and the bond investors.

  7. Research and analyze of physical health using multiple regression analysis

    Directory of Open Access Journals (Sweden)

    T. S. Kyi

    2014-01-01

    Full Text Available This paper represents the research which is trying to create a mathematical model of the "healthy people" using the method of regression analysis. The factors are the physical parameters of the person (such as heart rate, lung capacity, blood pressure, breath holding, weight height coefficient, flexibility of the spine, muscles of the shoulder belt, abdominal muscles, squatting, etc.., and the response variable is an indicator of physical working capacity. After performing multiple regression analysis, obtained useful multiple regression models that can predict the physical performance of boys the aged of fourteen to seventeen years. This paper represents the development of regression model for the sixteen year old boys and analyzed results.

  8. Framing an Nuclear Emergency Plan using Qualitative Regression Analysis

    International Nuclear Information System (INIS)

    Amy Hamijah Abdul Hamid; Ibrahim, M.Z.A.; Deris, S.R.

    2014-01-01

    Since the arising on safety maintenance issues due to post-Fukushima disaster, as well as, lack of literatures on disaster scenario investigation and theory development. This study is dealing with the initiation difficulty on the research purpose which is related to content and problem setting of the phenomenon. Therefore, the research design of this study refers to inductive approach which is interpreted and codified qualitatively according to primary findings and written reports. These data need to be classified inductively into thematic analysis as to develop conceptual framework related to several theoretical lenses. Moreover, the framing of the expected framework of the respective emergency plan as the improvised business process models are abundant of unstructured data abstraction and simplification. The structural methods of Qualitative Regression Analysis (QRA) and Work System snapshot applied to form the data into the proposed model conceptualization using rigorous analyses. These methods were helpful in organising and summarizing the snapshot into an ' as-is ' work system that being recommended as ' to-be' w ork system towards business process modelling. We conclude that these methods are useful to develop comprehensive and structured research framework for future enhancement in business process simulation. (author)

  9. Linear regression and sensitivity analysis in nuclear reactor design

    International Nuclear Information System (INIS)

    Kumar, Akansha; Tsvetkov, Pavel V.; McClarren, Ryan G.

    2015-01-01

    Highlights: • Presented a benchmark for the applicability of linear regression to complex systems. • Applied linear regression to a nuclear reactor power system. • Performed neutronics, thermal–hydraulics, and energy conversion using Brayton’s cycle for the design of a GCFBR. • Performed detailed sensitivity analysis to a set of parameters in a nuclear reactor power system. • Modeled and developed reactor design using MCNP, regression using R, and thermal–hydraulics in Java. - Abstract: The paper presents a general strategy applicable for sensitivity analysis (SA), and uncertainity quantification analysis (UA) of parameters related to a nuclear reactor design. This work also validates the use of linear regression (LR) for predictive analysis in a nuclear reactor design. The analysis helps to determine the parameters on which a LR model can be fit for predictive analysis. For those parameters, a regression surface is created based on trial data and predictions are made using this surface. A general strategy of SA to determine and identify the influential parameters those affect the operation of the reactor is mentioned. Identification of design parameters and validation of linearity assumption for the application of LR of reactor design based on a set of tests is performed. The testing methods used to determine the behavior of the parameters can be used as a general strategy for UA, and SA of nuclear reactor models, and thermal hydraulics calculations. A design of a gas cooled fast breeder reactor (GCFBR), with thermal–hydraulics, and energy transfer has been used for the demonstration of this method. MCNP6 is used to simulate the GCFBR design, and perform the necessary criticality calculations. Java is used to build and run input samples, and to extract data from the output files of MCNP6, and R is used to perform regression analysis and other multivariate variance, and analysis of the collinearity of data

  10. Optimal choice of basis functions in the linear regression analysis

    International Nuclear Information System (INIS)

    Khotinskij, A.M.

    1988-01-01

    Problem of optimal choice of basis functions in the linear regression analysis is investigated. Step algorithm with estimation of its efficiency, which holds true at finite number of measurements, is suggested. Conditions, providing the probability of correct choice close to 1 are formulated. Application of the step algorithm to analysis of decay curves is substantiated. 8 refs

  11. Predicting Dropouts of University Freshmen: A Logit Regression Analysis.

    Science.gov (United States)

    Lam, Y. L. Jack

    1984-01-01

    Stepwise discriminant analysis coupled with logit regression analysis of freshmen data from Brandon University (Manitoba) indicated that six tested variables drawn from research on university dropouts were useful in predicting attrition: student status, residence, financial sources, distance from home town, goal fulfillment, and satisfaction with…

  12. Simulation Experiments in Practice : Statistical Design and Regression Analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. Statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic

  13. Poisson regression approach for modeling fatal injury rates amongst Malaysian workers

    International Nuclear Information System (INIS)

    Kamarulzaman Ibrahim; Heng Khai Theng

    2005-01-01

    Many safety studies are based on the analysis carried out on injury surveillance data. The injury surveillance data gathered for the analysis include information on number of employees at risk of injury in each of several strata where the strata are defined in terms of a series of important predictor variables. Further insight into the relationship between fatal injury rates and predictor variables may be obtained by the poisson regression approach. Poisson regression is widely used in analyzing count data. In this study, poisson regression is used to model the relationship between fatal injury rates and predictor variables which are year (1995-2002), gender, recording system and industry type. Data for the analysis were obtained from PERKESO and Jabatan Perangkaan Malaysia. It is found that the assumption that the data follow poisson distribution has been violated. After correction for the problem of over dispersion, the predictor variables that are found to be significant in the model are gender, system of recording, industry type, two interaction effects (interaction between recording system and industry type and between year and industry type). Introduction Regression analysis is one of the most popular

  14. Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel

    Science.gov (United States)

    Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.

    2017-12-01

    The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.

  15. Development of a User Interface for a Regression Analysis Software Tool

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.

  16. MULGRES: a computer program for stepwise multiple regression analysis

    Science.gov (United States)

    A. Jeff Martin

    1971-01-01

    MULGRES is a computer program source deck that is designed for multiple regression analysis employing the technique of stepwise deletion in the search for most significant variables. The features of the program, along with inputs and outputs, are briefly described, with a note on machine compatibility.

  17. Application of multilinear regression analysis in modeling of soil ...

    African Journals Online (AJOL)

    The application of Multi-Linear Regression Analysis (MLRA) model for predicting soil properties in Calabar South offers a technical guide and solution in foundation designs problems in the area. Forty-five soil samples were collected from fifteen different boreholes at a different depth and 270 tests were carried out for CBR, ...

  18. Regression Analysis: Instructional Resource for Cost/Managerial Accounting

    Science.gov (United States)

    Stout, David E.

    2015-01-01

    This paper describes a classroom-tested instructional resource, grounded in principles of active learning and a constructivism, that embraces two primary objectives: "demystify" for accounting students technical material from statistics regarding ordinary least-squares (OLS) regression analysis--material that students may find obscure or…

  19. Management of Industrial Performance Indicators: Regression Analysis and Simulation

    Directory of Open Access Journals (Sweden)

    Walter Roberto Hernandez Vergara

    2017-11-01

    Full Text Available Stochastic methods can be used in problem solving and explanation of natural phenomena through the application of statistical procedures. The article aims to associate the regression analysis and systems simulation, in order to facilitate the practical understanding of data analysis. The algorithms were developed in Microsoft Office Excel software, using statistical techniques such as regression theory, ANOVA and Cholesky Factorization, which made it possible to create models of single and multiple systems with up to five independent variables. For the analysis of these models, the Monte Carlo simulation and analysis of industrial performance indicators were used, resulting in numerical indices that aim to improve the goals’ management for compliance indicators, by identifying systems’ instability, correlation and anomalies. The analytical models presented in the survey indicated satisfactory results with numerous possibilities for industrial and academic applications, as well as the potential for deployment in new analytical techniques.

  20. PATH ANALYSIS WITH LOGISTIC REGRESSION MODELS : EFFECT ANALYSIS OF FULLY RECURSIVE CAUSAL SYSTEMS OF CATEGORICAL VARIABLES

    OpenAIRE

    Nobuoki, Eshima; Minoru, Tabata; Geng, Zhi; Department of Medical Information Analysis, Faculty of Medicine, Oita Medical University; Department of Applied Mathematics, Faculty of Engineering, Kobe University; Department of Probability and Statistics, Peking University

    2001-01-01

    This paper discusses path analysis of categorical variables with logistic regression models. The total, direct and indirect effects in fully recursive causal systems are considered by using model parameters. These effects can be explained in terms of log odds ratios, uncertainty differences, and an inner product of explanatory variables and a response variable. A study on food choice of alligators as a numerical exampleis reanalysed to illustrate the present approach.

  1. The quantile regression approach to efficiency measurement: insights from Monte Carlo simulations.

    Science.gov (United States)

    Liu, Chunping; Laporte, Audrey; Ferguson, Brian S

    2008-09-01

    In the health economics literature there is an ongoing debate over approaches used to estimate the efficiency of health systems at various levels, from the level of the individual hospital - or nursing home - up to that of the health system as a whole. The two most widely used approaches to evaluating the efficiency with which various units deliver care are non-parametric data envelopment analysis (DEA) and parametric stochastic frontier analysis (SFA). Productivity researchers tend to have very strong preferences over which methodology to use for efficiency estimation. In this paper, we use Monte Carlo simulation to compare the performance of DEA and SFA in terms of their ability to accurately estimate efficiency. We also evaluate quantile regression as a potential alternative approach. A Cobb-Douglas production function, random error terms and a technical inefficiency term with different distributions are used to calculate the observed output. The results, based on these experiments, suggest that neither DEA nor SFA can be regarded as clearly dominant, and that, depending on the quantile estimated, the quantile regression approach may be a useful addition to the armamentarium of methods for estimating technical efficiency.

  2. Marginal regression analysis of recurrent events with coarsened censoring times.

    Science.gov (United States)

    Hu, X Joan; Rosychuk, Rhonda J

    2016-12-01

    Motivated by an ongoing pediatric mental health care (PMHC) study, this article presents weakly structured methods for analyzing doubly censored recurrent event data where only coarsened information on censoring is available. The study extracted administrative records of emergency department visits from provincial health administrative databases. The available information of each individual subject is limited to a subject-specific time window determined up to concealed data. To evaluate time-dependent effect of exposures, we adapt the local linear estimation with right censored survival times under the Cox regression model with time-varying coefficients (cf. Cai and Sun, Scandinavian Journal of Statistics 2003, 30, 93-111). We establish the pointwise consistency and asymptotic normality of the regression parameter estimator, and examine its performance by simulation. The PMHC study illustrates the proposed approach throughout the article. © 2016, The International Biometric Society.

  3. Regression analysis of a chemical reaction fouling model

    International Nuclear Information System (INIS)

    Vasak, F.; Epstein, N.

    1996-01-01

    A previously reported mathematical model for the initial chemical reaction fouling of a heated tube is critically examined in the light of the experimental data for which it was developed. A regression analysis of the model with respect to that data shows that the reference point upon which the two adjustable parameters of the model were originally based was well chosen, albeit fortuitously. (author). 3 refs., 2 tabs., 2 figs

  4. Detection of Differential Item Functioning with Nonlinear Regression: A Non-IRT Approach Accounting for Guessing

    Science.gov (United States)

    Drabinová, Adéla; Martinková, Patrícia

    2017-01-01

    In this article we present a general approach not relying on item response theory models (non-IRT) to detect differential item functioning (DIF) in dichotomous items with presence of guessing. The proposed nonlinear regression (NLR) procedure for DIF detection is an extension of method based on logistic regression. As a non-IRT approach, NLR can…

  5. Poisson Regression Analysis of Illness and Injury Surveillance Data

    Energy Technology Data Exchange (ETDEWEB)

    Frome E.L., Watkins J.P., Ellis E.D.

    2012-12-12

    The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences due to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra

  6. On macroeconomic values investigation using fuzzy linear regression analysis

    Directory of Open Access Journals (Sweden)

    Richard Pospíšil

    2017-06-01

    Full Text Available The theoretical background for abstract formalization of the vague phenomenon of complex systems is the fuzzy set theory. In the paper, vague data is defined as specialized fuzzy sets - fuzzy numbers and there is described a fuzzy linear regression model as a fuzzy function with fuzzy numbers as vague parameters. To identify the fuzzy coefficients of the model, the genetic algorithm is used. The linear approximation of the vague function together with its possibility area is analytically and graphically expressed. A suitable application is performed in the tasks of the time series fuzzy regression analysis. The time-trend and seasonal cycles including their possibility areas are calculated and expressed. The examples are presented from the economy field, namely the time-development of unemployment, agricultural production and construction respectively between 2009 and 2011 in the Czech Republic. The results are shown in the form of the fuzzy regression models of variables of time series. For the period 2009-2011, the analysis assumptions about seasonal behaviour of variables and the relationship between them were confirmed; in 2010, the system behaved fuzzier and the relationships between the variables were vaguer, that has a lot of causes, from the different elasticity of demand, through state interventions to globalization and transnational impacts.

  7. Regression analysis of radiological parameters in nuclear power plants

    International Nuclear Information System (INIS)

    Bhargava, Pradeep; Verma, R.K.; Joshi, M.L.

    2003-01-01

    Indian Pressurized Heavy Water Reactors (PHWRs) have now attained maturity in their operations. Indian PHWR operation started in the year 1972. At present there are 12 operating PHWRs collectively producing nearly 2400 MWe. Sufficient radiological data are available for analysis to draw inferences which may be utilised for better understanding of radiological parameters influencing the collective internal dose. Tritium is the main contributor to the occupational internal dose originating in PHWRs. An attempt has been made to establish the relationship between radiological parameters, which may be useful to draw inferences about the internal dose. Regression analysis have been done to find out the relationship, if it exist, among the following variables: A. Specific tritium activity of heavy water (Moderator and PHT) and tritium concentration in air at various work locations. B. Internal collective occupational dose and tritium release to environment through air route. C. Specific tritium activity of heavy water (Moderator and PHT) and collective internal occupational dose. For this purpose multivariate regression analysis has been carried out. D. Tritium concentration in air at various work location and tritium release to environment through air route. For this purpose multivariate regression analysis has been carried out. This analysis reveals that collective internal dose has got very good correlation with the tritium activity release to the environment through air route. Whereas no correlation has been found between specific tritium activity in the heavy water systems and collective internal occupational dose. The good correlation has been found in case D and F test reveals that it is not by chance. (author)

  8. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    Science.gov (United States)

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  9. Finding determinants of audit delay by pooled OLS regression analysis

    OpenAIRE

    Vuko, Tina; Čular, Marko

    2014-01-01

    The aim of this paper is to investigate determinants of audit delay. Audit delay is measured as the length of time (i.e. the number of calendar days) from the fiscal year-end to the audit report date. It is important to understand factors that influence audit delay since it directly affects the timeliness of financial reporting. The research is conducted on a sample of Croatian listed companies, covering the period of four years (from 2008 to 2011). We use pooled OLS regression analysis, mode...

  10. What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis

    Science.gov (United States)

    Thomas, Emily H.; Galambos, Nora

    2004-01-01

    To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…

  11. Distance Based Root Cause Analysis and Change Impact Analysis of Performance Regressions

    Directory of Open Access Journals (Sweden)

    Junzan Zhou

    2015-01-01

    Full Text Available Performance regression testing is applied to uncover both performance and functional problems of software releases. A performance problem revealed by performance testing can be high response time, low throughput, or even being out of service. Mature performance testing process helps systematically detect software performance problems. However, it is difficult to identify the root cause and evaluate the potential change impact. In this paper, we present an approach leveraging server side logs for identifying root causes of performance problems. Firstly, server side logs are used to recover call tree of each business transaction. We define a novel distance based metric computed from call trees for root cause analysis and apply inverted index from methods to business transactions for change impact analysis. Empirical studies show that our approach can effectively and efficiently help developers diagnose root cause of performance problems.

  12. Exploratory regression analysis: a tool for selecting models and determining predictor importance.

    Science.gov (United States)

    Braun, Michael T; Oswald, Frederick L

    2011-06-01

    Linear regression analysis is one of the most important tools in a researcher's toolbox for creating and testing predictive models. Although linear regression analysis indicates how strongly a set of predictor variables, taken together, will predict a relevant criterion (i.e., the multiple R), the analysis cannot indicate which predictors are the most important. Although there is no definitive or unambiguous method for establishing predictor variable importance, there are several accepted methods. This article reviews those methods for establishing predictor importance and provides a program (in Excel) for implementing them (available for direct download at http://dl.dropbox.com/u/2480715/ERA.xlsm?dl=1) . The program investigates all 2(p) - 1 submodels and produces several indices of predictor importance. This exploratory approach to linear regression, similar to other exploratory data analysis techniques, has the potential to yield both theoretical and practical benefits.

  13. Bayesian Analysis for Penalized Spline Regression Using WinBUGS

    Directory of Open Access Journals (Sweden)

    Ciprian M. Crainiceanu

    2005-09-01

    Full Text Available Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. This paper provides a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained by using low-rank thin-plate splines, while simulation times per iteration are reduced employing WinBUGS specific computational tricks.

  14. The use of cognitive ability measures as explanatory variables in regression analysis.

    Science.gov (United States)

    Junker, Brian; Schofield, Lynne Steuerle; Taylor, Lowell J

    2012-12-01

    Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual's wage, or a decision such as an individual's education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score , constructed via standard psychometric practice from individuals' responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a "mixed effects structural equations" (MESE) model, may be more appropriate in many circumstances.

  15. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.

    Science.gov (United States)

    Yelland, Lisa N; Salter, Amy B; Ryan, Philip

    2011-10-15

    Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.

  16. Regression analysis of informative current status data with the additive hazards model.

    Science.gov (United States)

    Zhao, Shishun; Hu, Tao; Ma, Ling; Wang, Peijie; Sun, Jianguo

    2015-04-01

    This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.

  17. Sparse Regression by Projection and Sparse Discriminant Analysis

    KAUST Repository

    Qi, Xin; Luo, Ruiyan; Carroll, Raymond J.; Zhao, Hongyu

    2015-01-01

    predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths

  18. When homogeneity meets heterogeneity: the geographically weighted regression with spatial lag approach to prenatal care utilization

    Science.gov (United States)

    Shoff, Carla; Chen, Vivian Yi-Ju; Yang, Tse-Chuan

    2014-01-01

    Using geographically weighted regression (GWR), a recent study by Shoff and colleagues (2012) investigated the place-specific risk factors for prenatal care utilization in the US and found that most of the relationships between late or not prenatal care and its determinants are spatially heterogeneous. However, the GWR approach may be subject to the confounding effect of spatial homogeneity. The goal of this study is to address this concern by including both spatial homogeneity and heterogeneity into the analysis. Specifically, we employ an analytic framework where a spatially lagged (SL) effect of the dependent variable is incorporated into the GWR model, which is called GWR-SL. Using this innovative framework, we found evidence to argue that spatial homogeneity is neglected in the study by Shoff et al. (2012) and the results are changed after considering the spatially lagged effect of prenatal care utilization. The GWR-SL approach allows us to gain a place-specific understanding of prenatal care utilization in US counties. In addition, we compared the GWR-SL results with the results of conventional approaches (i.e., OLS and spatial lag models) and found that GWR-SL is the preferred modeling approach. The new findings help us to better estimate how the predictors are associated with prenatal care utilization across space, and determine whether and how the level of prenatal care utilization in neighboring counties matters. PMID:24893033

  19. Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.

    Science.gov (United States)

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2016-01-01

    Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.

  20. Finding determinants of audit delay by pooled OLS regression analysis

    Directory of Open Access Journals (Sweden)

    Tina Vuko

    2014-03-01

    Full Text Available The aim of this paper is to investigate determinants of audit delay. Audit delay is measured as the length of time (i.e. the number of calendar days from the fiscal year-end to the audit report date. It is important to understand factors that influence audit delay since it directly affects the timeliness of financial reporting. The research is conducted on a sample of Croatian listed companies, covering the period of four years (from 2008 to 2011. We use pooled OLS regression analysis, modelling audit delay as a function of the following explanatory variables: audit firm type, audit opinion, profitability, leverage, inventory and receivables to total assets, absolute value of total accruals, company size and audit committee existence. Our results indicate that audit committee existence, profitability and leverage are statistically significant determinants of audit delay in Croatia.

  1. Regression and local control rates after radiotherapy for jugulotympanic paragangliomas: Systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Hulsteijn, Leonie T. van; Corssmit, Eleonora P.M.; Coremans, Ida E.M.; Smit, Johannes W.A.; Jansen, Jeroen C.; Dekkers, Olaf M.

    2013-01-01

    The primary treatment goal of radiotherapy for paragangliomas of the head and neck region (HNPGLs) is local control of the tumor, i.e. stabilization of tumor volume. Interestingly, regression of tumor volume has also been reported. Up to the present, no meta-analysis has been performed giving an overview of regression rates after radiotherapy in HNPGLs. The main objective was to perform a systematic review and meta-analysis to assess regression of tumor volume in HNPGL-patients after radiotherapy. A second outcome was local tumor control. Design of the study is systematic review and meta-analysis. PubMed, EMBASE, Web of Science, COCHRANE and Academic Search Premier and references of key articles were searched in March 2012 to identify potentially relevant studies. Considering the indolent course of HNPGLs, only studies with ⩾12 months follow-up were eligible. Main outcomes were the pooled proportions of regression and local control after radiotherapy as initial, combined (i.e. directly post-operatively or post-embolization) or salvage treatment (i.e. after initial treatment has failed) for HNPGLs. A meta-analysis was performed with an exact likelihood approach using a logistic regression with a random effect at the study level. Pooled proportions with 95% confidence intervals (CI) were reported. Fifteen studies were included, concerning a total of 283 jugulotympanic HNPGLs in 276 patients. Pooled regression proportions for initial, combined and salvage treatment were respectively 21%, 33% and 52% in radiosurgery studies and 4%, 0% and 64% in external beam radiotherapy studies. Pooled local control proportions for radiotherapy as initial, combined and salvage treatment ranged from 79% to 100%. Radiotherapy for jugulotympanic paragangliomas results in excellent local tumor control and therefore is a valuable treatment for these types of tumors. The effects of radiotherapy on regression of tumor volume remain ambiguous, although the data suggest that regression can

  2. The effectiveness of selected feed and water additives for reducing Salmonella spp. of public health importance in broiler chickens: a systematic review, meta-analysis, and meta-regression approach.

    Science.gov (United States)

    Totton, Sarah C; Farrar, Ashley M; Wilkins, Wendy; Bucher, Oliver; Waddell, Lisa A; Wilhelm, Barbara J; McEwen, Scott A; Rajić, Andrijana

    2012-10-01

    Eating inappropriately prepared poultry meat is a major cause of foodborne salmonellosis. Our objectives were to determine the efficacy of feed and water additives (other than competitive exclusion and antimicrobials) on reducing Salmonella prevalence or concentration in broiler chickens using systematic review-meta-analysis and to explore sources of heterogeneity found in the meta-analysis through meta-regression. Six electronic databases were searched (Current Contents (1999-2009), Agricola (1924-2009), MEDLINE (1860-2009), Scopus (1960-2009), Centre for Agricultural Bioscience (CAB) (1913-2009), and CAB Global Health (1971-2009)), five topic experts were contacted, and the bibliographies of review articles and a topic-relevant textbook were manually searched to identify all relevant research. Study inclusion criteria comprised: English-language primary research investigating the effects of feed and water additives on the Salmonella prevalence or concentration in broiler chickens. Data extraction and study methodological assessment were conducted by two reviewers independently using pretested forms. Seventy challenge studies (n=910 unique treatment-control comparisons), seven controlled studies (n=154), and one quasi-experiment (n=1) met the inclusion criteria. Compared to an assumed control group prevalence of 44 of 1000 broilers, random-effects meta-analysis indicated that the Salmonella cecal colonization in groups with prebiotics (fructooligosaccharide, lactose, whey, dried milk, lactulose, lactosucrose, sucrose, maltose, mannanoligosaccharide) added to feed or water was 15 out of 1000 broilers; with lactose added to feed or water it was 10 out of 1000 broilers; with experimental chlorate product (ECP) added to feed or water it was 21 out of 1000. For ECP the concentration of Salmonella in the ceca was decreased by 0.61 log(10)cfu/g in the treated group compared to the control group. Significant heterogeneity (Cochran's Q-statistic p≤0.10) was observed

  3. Determinants of orphan drugs prices in France: a regression analysis.

    Science.gov (United States)

    Korchagina, Daria; Millier, Aurelie; Vataire, Anne-Lise; Aballea, Samuel; Falissard, Bruno; Toumi, Mondher

    2017-04-21

    The introduction of the orphan drug legislation led to the increase in the number of available orphan drugs, but the access to them is often limited due to the high price. Social preferences regarding funding orphan drugs as well as the criteria taken into consideration while setting the price remain unclear. The study aimed at identifying the determinant of orphan drug prices in France using a regression analysis. All drugs with a valid orphan designation at the moment of launch for which the price was available in France were included in the analysis. The selection of covariates was based on a literature review and included drug characteristics (Anatomical Therapeutic Chemical (ATC) class, treatment line, age of target population), diseases characteristics (severity, prevalence, availability of alternative therapeutic options), health technology assessment (HTA) details (actual benefit (AB) and improvement in actual benefit (IAB) scores, delay between the HTA and commercialisation), and study characteristics (type of study, comparator, type of endpoint). The main data sources were European public assessment reports, HTA reports, summaries of opinion on orphan designation of the European Medicines Agency, and the French insurance database of drugs and tariffs. A generalized regression model was developed to test the association between the annual treatment cost and selected covariates. A total of 68 drugs were included. The mean annual treatment cost was €96,518. In the univariate analysis, the ATC class (p = 0.01), availability of alternative treatment options (p = 0.02) and the prevalence (p = 0.02) showed a significant correlation with the annual cost. The multivariate analysis demonstrated significant association between the annual cost and availability of alternative treatment options, ATC class, IAB score, type of comparator in the pivotal clinical trial, as well as commercialisation date and delay between the HTA and commercialisation. The

  4. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results.

    Science.gov (United States)

    Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T

    2016-02-01

    The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.

  5. Regression of uveal malignant melanomas following cobalt-60 plaque. Correlates between acoustic spectrum analysis and tumor regression

    International Nuclear Information System (INIS)

    Coleman, D.J.; Lizzi, F.L.; Silverman, R.H.; Ellsworth, R.M.; Haik, B.G.; Abramson, D.H.; Smith, M.E.; Rondeau, M.J.

    1985-01-01

    Parameters derived from computer analysis of digital radio-frequency (rf) ultrasound scan data of untreated uveal malignant melanomas were examined for correlations with tumor regression following cobalt-60 plaque. Parameters included tumor height, normalized power spectrum and acoustic tissue type (ATT). Acoustic tissue type was based upon discriminant analysis of tumor power spectra, with spectra of tumors of known pathology serving as a model. Results showed ATT to be correlated with tumor regression during the first 18 months following treatment. Tumors with ATT associated with spindle cell malignant melanoma showed over twice the percentage reduction in height as those with ATT associated with mixed/epithelioid melanomas. Pre-treatment height was only weakly correlated with regression. Additionally, significant spectral changes were observed following treatment. Ultrasonic spectrum analysis thus provides a noninvasive tool for classification, prediction and monitoring of tumor response to cobalt-60 plaque

  6. A different approach to estimate nonlinear regression model using numerical methods

    Science.gov (United States)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].

  7. A regression approach for Zircaloy-2 in-reactor creep constitutive equations

    International Nuclear Information System (INIS)

    Yung Liu, Y.; Bement, A.L.

    1977-01-01

    In this paper the methodology of multiple regressions as applied to Zircaloy-2 in-reactor creep data analysis and construction of constitutive equation are illustrated. While the resulting constitutive equation can be used in creep analysis of in-reactor Zircaloy structural components, the methodology itself is entirely general and can be applied to any creep data analysis. The promising aspects of multiple regression creep data analysis are briefly outlined as follows: (1) When there are more than one variable involved, there is no need to make the assumption that each variable affects the response independently. No separate normalizations are required either and the estimation of parameters is obtained by solving many simultaneous equations. The number of simultaneous equations is equal to the number of data sets. (2) Regression statistics such as R 2 - and F-statistics provide measures of the significance of regression creep equation in correlating the overall data. The relative weights of each variable on the response can also be obtained. (3) Special regression techniques such as step-wise, ridge, and robust regressions and residual plots, etc., provide diagnostic tools for model selections. Multiple regression analysis performed on a set of carefully selected Zircaloy-2 in-reactor creep data leads to a model which provides excellent correlations for the data. (Auth.)

  8. Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.

    Science.gov (United States)

    Ferrari, Alberto

    2017-01-01

    Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.

  9. Online Statistical Modeling (Regression Analysis) for Independent Responses

    Science.gov (United States)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  10. Robust Regression and its Application in Financial Data Analysis

    OpenAIRE

    Mansoor Momeni; Mahmoud Dehghan Nayeri; Ali Faal Ghayoumi; Hoda Ghorbani

    2010-01-01

    This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from th...

  11. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    International Nuclear Information System (INIS)

    Chan, Yea-Kuang; Tsai, Yu-Ching

    2017-01-01

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  12. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yea-Kuang; Tsai, Yu-Ching [Institute of Nuclear Energy Research, Taoyuan City, Taiwan (China). Nuclear Engineering Division

    2017-03-15

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  13. Explaining the heterogeneous scrapie surveillance figures across Europe: a meta-regression approach

    Directory of Open Access Journals (Sweden)

    Ru Giuseppe

    2007-06-01

    Full Text Available Abstract Background Two annual surveys, the abattoir and the fallen stock, monitor the presence of scrapie across Europe. A simple comparison between the prevalence estimates in different countries reveals that, in 2003, the abattoir survey appears to detect more scrapie in some countries. This is contrary to evidence suggesting the greater ability of the fallen stock survey to detect the disease. We applied meta-analysis techniques to study this apparent heterogeneity in the behaviour of the surveys across Europe. Furthermore, we conducted a meta-regression analysis to assess the effect of country-specific characteristics on the variability. We have chosen the odds ratios between the two surveys to inform the underlying relationship between them and to allow comparisons between the countries under the meta-regression framework. Baseline risks, those of the slaughtered populations across Europe, and country-specific covariates, available from the European Commission Report, were inputted in the model to explain the heterogeneity. Results Our results show the presence of significant heterogeneity in the odds ratios between countries and no reduction in the variability after adjustment for the different risks in the baseline populations. Three countries contributed the most to the overall heterogeneity: Germany, Ireland and The Netherlands. The inclusion of country-specific covariates did not, in general, reduce the variability except for one variable: the proportion of the total adult sheep population sampled as fallen stock by each country. A large residual heterogeneity remained in the model indicating the presence of substantial effect variability between countries. Conclusion The meta-analysis approach was useful to assess the level of heterogeneity in the implementation of the surveys and to explore the reasons for the variation between countries.

  14. Statistical analysis of sediment toxicity by additive monotone regression splines

    NARCIS (Netherlands)

    Boer, de W.J.; Besten, den P.J.; Braak, ter C.J.F.

    2002-01-01

    Modeling nonlinearity and thresholds in dose-effect relations is a major challenge, particularly in noisy data sets. Here we show the utility of nonlinear regression with additive monotone regression splines. These splines lead almost automatically to the estimation of thresholds. We applied this

  15. Dual Regression

    OpenAIRE

    Spady, Richard; Stouli, Sami

    2012-01-01

    We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

  16. Development of an empirical model of turbine efficiency using the Taylor expansion and regression analysis

    International Nuclear Information System (INIS)

    Fang, Xiande; Xu, Yu

    2011-01-01

    The empirical model of turbine efficiency is necessary for the control- and/or diagnosis-oriented simulation and useful for the simulation and analysis of dynamic performances of the turbine equipment and systems, such as air cycle refrigeration systems, power plants, turbine engines, and turbochargers. Existing empirical models of turbine efficiency are insufficient because there is no suitable form available for air cycle refrigeration turbines. This work performs a critical review of empirical models (called mean value models in some literature) of turbine efficiency and develops an empirical model in the desired form for air cycle refrigeration, the dominant cooling approach in aircraft environmental control systems. The Taylor series and regression analysis are used to build the model, with the Taylor series being used to expand functions with the polytropic exponent and the regression analysis to finalize the model. The measured data of a turbocharger turbine and two air cycle refrigeration turbines are used for the regression analysis. The proposed model is compact and able to present the turbine efficiency map. Its predictions agree with the measured data very well, with the corrected coefficient of determination R c 2 ≥ 0.96 and the mean absolute percentage deviation = 1.19% for the three turbines. -- Highlights: → Performed a critical review of empirical models of turbine efficiency. → Developed an empirical model in the desired form for air cycle refrigeration, using the Taylor expansion and regression analysis. → Verified the method for developing the empirical model. → Verified the model.

  17. A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis

    Directory of Open Access Journals (Sweden)

    Zhiming Song

    2015-01-01

    Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.

  18. Regression and kriging analysis for grid power factor estimation

    Directory of Open Access Journals (Sweden)

    Rajesh Guntaka

    2014-12-01

    Full Text Available The measurement of power factor (PF in electrical utility grids is a mainstay of load balancing and is also a critical element of transmission and distribution efficiency. The measurement of PF dates back to the earliest periods of electrical power distribution to public grids. In the wide-area distribution grid, measurement of current waveforms is trivial and may be accomplished at any point in the grid using a current tap transformer. However, voltage measurement requires reference to ground and so is more problematic and measurements are normally constrained to points that have ready and easy access to a ground source. We present two mathematical analysis methods based on kriging and linear least square estimation (LLSE (regression to derive PF at nodes with unknown voltages that are within a perimeter of sample nodes with ground reference across a selected power grid. Our results indicate an error average of 1.884% that is within acceptable tolerances for PF measurements that are used in load balancing tasks.

  19. A simplified procedure of linear regression in a preliminary analysis

    Directory of Open Access Journals (Sweden)

    Silvia Facchinetti

    2013-05-01

    Full Text Available The analysis of a statistical large data-set can be led by the study of a particularly interesting variable Y – regressed – and an explicative variable X, chosen among the remained variables, conjointly observed. The study gives a simplified procedure to obtain the functional link of the variables y=y(x by a partition of the data-set into m subsets, in which the observations are synthesized by location indices (mean or median of X and Y. Polynomial models for y(x of order r are considered to verify the characteristics of the given procedure, in particular we assume r= 1 and 2. The distributions of the parameter estimators are obtained by simulation, when the fitting is done for m= r + 1. Comparisons of the results, in terms of distribution and efficiency, are made with the results obtained by the ordinary least square methods. The study also gives some considerations on the consistency of the estimated parameters obtained by the given procedure.

  20. Regression Analysis for Multivariate Dependent Count Data Using Convolved Gaussian Processes

    OpenAIRE

    Sofro, A'yunin; Shi, Jian Qing; Cao, Chunzheng

    2017-01-01

    Research on Poisson regression analysis for dependent data has been developed rapidly in the last decade. One of difficult problems in a multivariate case is how to construct a cross-correlation structure and at the meantime make sure that the covariance matrix is positive definite. To address the issue, we propose to use convolved Gaussian process (CGP) in this paper. The approach provides a semi-parametric model and offers a natural framework for modeling common mean structure and covarianc...

  1. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis

    CERN Document Server

    Harrell , Jr , Frank E

    2015-01-01

    This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap.  The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes.  This text realistically...

  2. An Analysis of Bank Service Satisfaction Based on Quantile Regression and Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Wen-Tsao Pan

    2016-01-01

    Full Text Available Bank service satisfaction is vital to the success of a bank. In this paper, we propose to use the grey relational analysis to gauge the levels of service satisfaction of the banks. With the grey relational analysis, we compared the effects of different variables on service satisfaction. We gave ranks to the banks according to their levels of service satisfaction. We further used the quantile regression model to find the variables that affected the satisfaction of a customer at a specific quantile of satisfaction level. The result of the quantile regression analysis provided a bank manager with information to formulate policies to further promote satisfaction of the customers at different quantiles of satisfaction level. We also compared the prediction accuracies of the regression models at different quantiles. The experiment result showed that, among the seven quantile regression models, the median regression model has the best performance in terms of RMSE, RTIC, and CE performance measures.

  3. A linear regression approach to evaluate the green supply chain management impact on industrial organizational performance.

    Science.gov (United States)

    Mumtaz, Ubaidullah; Ali, Yousaf; Petrillo, Antonella

    2018-05-15

    The increase in the environmental pollution is one of the most important topic in today's world. In this context, the industrial activities can pose a significant threat to the environment. To manage problems associate to industrial activities several methods, techniques and approaches have been developed. Green supply chain management (GSCM) is considered one of the most important "environmental management approach". In developing countries such as Pakistan the implementation of GSCM practices is still in its initial stages. Lack of knowledge about its effects on economic performance is the reason because of industries fear to implement these practices. The aim of this research is to perceive the effects of GSCM practices on organizational performance in Pakistan. In this research the GSCM practices considered are: internal practices, external practices, investment recovery and eco-design. While, the performance parameters considered are: environmental pollution, operational cost and organizational flexibility. A set of hypothesis propose the effect of each GSCM practice on the performance parameters. Factor analysis and linear regression are used to analyze the survey data of Pakistani industries, in order to authenticate these hypotheses. The findings of this research indicate a decrease in environmental pollution and operational cost with the implementation of GSCM practices, whereas organizational flexibility has not improved for Pakistani industries. These results aim to help managers regarding their decision of implementing GSCM practices in the industrial sector of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Robust estimation for homoscedastic regression in the secondary analysis of case-control data

    KAUST Repository

    Wei, Jiawei

    2012-12-04

    Primary analysis of case-control studies focuses on the relationship between disease D and a set of covariates of interest (Y, X). A secondary application of the case-control study, which is often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated owing to the case-control sampling, where the regression of Y on X is different from what it is in the population. Previous work has assumed a parametric distribution for Y given X and derived semiparametric efficient estimation and inference without any distributional assumptions about X. We take up the issue of estimation of a regression function when Y given X follows a homoscedastic regression model, but otherwise the distribution of Y is unspecified. The semiparametric efficient approaches can be used to construct semiparametric efficient estimates, but they suffer from a lack of robustness to the assumed model for Y given X. We take an entirely different approach. We show how to estimate the regression parameters consistently even if the assumed model for Y given X is incorrect, and thus the estimates are model robust. For this we make the assumption that the disease rate is known or well estimated. The assumption can be dropped when the disease is rare, which is typically so for most case-control studies, and the estimation algorithm simplifies. Simulations and empirical examples are used to illustrate the approach.

  5. Robust estimation for homoscedastic regression in the secondary analysis of case-control data

    KAUST Repository

    Wei, Jiawei; Carroll, Raymond J.; Mü ller, Ursula U.; Keilegom, Ingrid Van; Chatterjee, Nilanjan

    2012-01-01

    Primary analysis of case-control studies focuses on the relationship between disease D and a set of covariates of interest (Y, X). A secondary application of the case-control study, which is often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated owing to the case-control sampling, where the regression of Y on X is different from what it is in the population. Previous work has assumed a parametric distribution for Y given X and derived semiparametric efficient estimation and inference without any distributional assumptions about X. We take up the issue of estimation of a regression function when Y given X follows a homoscedastic regression model, but otherwise the distribution of Y is unspecified. The semiparametric efficient approaches can be used to construct semiparametric efficient estimates, but they suffer from a lack of robustness to the assumed model for Y given X. We take an entirely different approach. We show how to estimate the regression parameters consistently even if the assumed model for Y given X is incorrect, and thus the estimates are model robust. For this we make the assumption that the disease rate is known or well estimated. The assumption can be dropped when the disease is rare, which is typically so for most case-control studies, and the estimation algorithm simplifies. Simulations and empirical examples are used to illustrate the approach.

  6. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis

    Directory of Open Access Journals (Sweden)

    Maarten van Smeden

    2016-11-01

    Full Text Available Abstract Background Ten events per variable (EPV is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. Methods The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth’s correction, are compared. Results The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect (‘separation’. We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth’s correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. Conclusions The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

  7. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.

    Science.gov (United States)

    van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B

    2016-11-24

    Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

  8. Multiple Regression Analysis of Unconfined Compression Strength of Mine Tailings Matrices

    Directory of Open Access Journals (Sweden)

    Mahmood Ali A.

    2017-01-01

    Full Text Available As part of a novel approach of sustainable development of mine tailings, experimental and numerical analysis is carried out on newly formulated tailings matrices. Several physical characteristic tests are carried out including the unconfined compression strength test to ascertain the integrity of these matrices when subjected to loading. The current paper attempts a multiple regression analysis of the unconfined compressive strength test results of these matrices to investigate the most pertinent factors affecting their strength. Results of this analysis showed that the suggested equation is reasonably applicable to the range of binder combinations used.

  9. Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.

    Science.gov (United States)

    Hu, Yi-Chung

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.

  10. Bias due to two-stage residual-outcome regression analysis in genetic association studies.

    Science.gov (United States)

    Demissie, Serkalem; Cupples, L Adrienne

    2011-11-01

    Association studies of risk factors and complex diseases require careful assessment of potential confounding factors. Two-stage regression analysis, sometimes referred to as residual- or adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is calculated from a regression of the outcome variable on covariates and then the relationship between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the adjusted-outcome on the SNP. In this article, we examine the performance of this two-stage analysis as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP and a covariate are correlated, the two-stage approach results in biased genotypic effect and loss of power. Bias is always toward the null and increases with the squared-correlation between the SNP and the covariate (). For example, for , 0.1, and 0.5, two-stage analysis results in, respectively, 0, 10, and 50% attenuation in the SNP effect. As expected, MLR was always unbiased. Since individual SNPs often show little or no correlation with covariates, a two-stage analysis is expected to perform as well as MLR in many genetic studies; however, it produces considerably different results from MLR and may lead to incorrect conclusions when independent variables are highly correlated. While a useful alternative to MLR under , the two -stage approach has serious limitations. Its use as a simple substitute for MLR should be avoided. © 2011 Wiley Periodicals, Inc.

  11. Methods of Detecting Outliers in A Regression Analysis Model ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-06-01

    Jun 1, 2013 ... especially true in observational studies .... Simple linear regression and multiple ... The simple linear ..... Grubbs,F.E (1950): Sample Criteria for Testing Outlying observations: Annals of ... In experimental design, the Relative.

  12. 231 Using Multiple Regression Analysis in Modelling the Role of ...

    African Journals Online (AJOL)

    User

    of Internal Revenue, Tourism Bureau and hotel records. The multiple regression .... additional guest facilities such as restaurant, a swimming pool or child care and social function ... and provide good quality service to the public. Conclusion.

  13. Analysis of quantile regression as alternative to ordinary least squares

    OpenAIRE

    Ibrahim Abdullahi; Abubakar Yahaya

    2015-01-01

    In this article, an alternative to ordinary least squares (OLS) regression based on analytical solution in the Statgraphics software is considered, and this alternative is no other than quantile regression (QR) model. We also present goodness of fit statistic as well as approximate distributions of the associated test statistics for the parameters. Furthermore, we suggest a goodness of fit statistic called the least absolute deviation (LAD) coefficient of determination. The procedure is well ...

  14. Modeling Personalized Email Prioritization: Classification-based and Regression-based Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yoo S.; Yang, Y.; Carbonell, J.

    2011-10-24

    Email overload, even after spam filtering, presents a serious productivity challenge for busy professionals and executives. One solution is automated prioritization of incoming emails to ensure the most important are read and processed quickly, while others are processed later as/if time permits in declining priority levels. This paper presents a study of machine learning approaches to email prioritization into discrete levels, comparing ordinal regression versus classier cascades. Given the ordinal nature of discrete email priority levels, SVM ordinal regression would be expected to perform well, but surprisingly a cascade of SVM classifiers significantly outperforms ordinal regression for email prioritization. In contrast, SVM regression performs well -- better than classifiers -- on selected UCI data sets. This unexpected performance inversion is analyzed and results are presented, providing core functionality for email prioritization systems.

  15. Ordinary Least Squares and Quantile Regression: An Inquiry-Based Learning Approach to a Comparison of Regression Methods

    Science.gov (United States)

    Helmreich, James E.; Krog, K. Peter

    2018-01-01

    We present a short, inquiry-based learning course on concepts and methods underlying ordinary least squares (OLS), least absolute deviation (LAD), and quantile regression (QR). Students investigate squared, absolute, and weighted absolute distance functions (metrics) as location measures. Using differential calculus and properties of convex…

  16. Time series modeling by a regression approach based on a latent process.

    Science.gov (United States)

    Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice

    2009-01-01

    Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.

  17. Multiple regression for physiological data analysis: the problem of multicollinearity.

    Science.gov (United States)

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  18. Analysis of some methods for reduced rank Gaussian process regression

    DEFF Research Database (Denmark)

    Quinonero-Candela, J.; Rasmussen, Carl Edward

    2005-01-01

    While there is strong motivation for using Gaussian Processes (GPs) due to their excellent performance in regression and classification problems, their computational complexity makes them impractical when the size of the training set exceeds a few thousand cases. This has motivated the recent...... proliferation of a number of cost-effective approximations to GPs, both for classification and for regression. In this paper we analyze one popular approximation to GPs for regression: the reduced rank approximation. While generally GPs are equivalent to infinite linear models, we show that Reduced Rank...... Gaussian Processes (RRGPs) are equivalent to finite sparse linear models. We also introduce the concept of degenerate GPs and show that they correspond to inappropriate priors. We show how to modify the RRGP to prevent it from being degenerate at test time. Training RRGPs consists both in learning...

  19. Intermediate and advanced topics in multilevel logistic regression analysis.

    Science.gov (United States)

    Austin, Peter C; Merlo, Juan

    2017-09-10

    Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  20. A Hybrid Approach of Stepwise Regression, Logistic Regression, Support Vector Machine, and Decision Tree for Forecasting Fraudulent Financial Statements

    Directory of Open Access Journals (Sweden)

    Suduan Chen

    2014-01-01

    Full Text Available As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.

  1. A hybrid approach of stepwise regression, logistic regression, support vector machine, and decision tree for forecasting fraudulent financial statements.

    Science.gov (United States)

    Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.

  2. A robust ridge regression approach in the presence of both multicollinearity and outliers in the data

    Science.gov (United States)

    Shariff, Nurul Sima Mohamad; Ferdaos, Nur Aqilah

    2017-08-01

    Multicollinearity often leads to inconsistent and unreliable parameter estimates in regression analysis. This situation will be more severe in the presence of outliers it will cause fatter tails in the error distributions than the normal distributions. The well-known procedure that is robust to multicollinearity problem is the ridge regression method. This method however is expected to be affected by the presence of outliers due to some assumptions imposed in the modeling procedure. Thus, the robust version of existing ridge method with some modification in the inverse matrix and the estimated response value is introduced. The performance of the proposed method is discussed and comparisons are made with several existing estimators namely, Ordinary Least Squares (OLS), ridge regression and robust ridge regression based on GM-estimates. The finding of this study is able to produce reliable parameter estimates in the presence of both multicollinearity and outliers in the data.

  3. Grades, Gender, and Encouragement: A Regression Discontinuity Analysis

    Science.gov (United States)

    Owen, Ann L.

    2010-01-01

    The author employs a regression discontinuity design to provide direct evidence on the effects of grades earned in economics principles classes on the decision to major in economics and finds a differential effect for male and female students. Specifically, for female students, receiving an A for a final grade in the first economics class is…

  4. Predictions of biochar production and torrefaction performance from sugarcane bagasse using interpolation and regression analysis.

    Science.gov (United States)

    Chen, Wei-Hsin; Hsu, Hung-Jen; Kumar, Gopalakrishnan; Budzianowski, Wojciech M; Ong, Hwai Chyuan

    2017-12-01

    This study focuses on the biochar formation and torrefaction performance of sugarcane bagasse, and they are predicted using the bilinear interpolation (BLI), inverse distance weighting (IDW) interpolation, and regression analysis. It is found that the biomass torrefied at 275°C for 60min or at 300°C for 30min or longer is appropriate to produce biochar as alternative fuel to coal with low carbon footprint, but the energy yield from the torrefaction at 300°C is too low. From the biochar yield, enhancement factor of HHV, and energy yield, the results suggest that the three methods are all feasible for predicting the performance, especially for the enhancement factor. The power parameter of unity in the IDW method provides the best predictions and the error is below 5%. The second order in regression analysis gives a more reasonable approach than the first order, and is recommended for the predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A computational approach to compare regression modelling strategies in prediction research.

    Science.gov (United States)

    Pajouheshnia, Romin; Pestman, Wiebe R; Teerenstra, Steven; Groenwold, Rolf H H

    2016-08-25

    It is often unclear which approach to fit, assess and adjust a model will yield the most accurate prediction model. We present an extension of an approach for comparing modelling strategies in linear regression to the setting of logistic regression and demonstrate its application in clinical prediction research. A framework for comparing logistic regression modelling strategies by their likelihoods was formulated using a wrapper approach. Five different strategies for modelling, including simple shrinkage methods, were compared in four empirical data sets to illustrate the concept of a priori strategy comparison. Simulations were performed in both randomly generated data and empirical data to investigate the influence of data characteristics on strategy performance. We applied the comparison framework in a case study setting. Optimal strategies were selected based on the results of a priori comparisons in a clinical data set and the performance of models built according to each strategy was assessed using the Brier score and calibration plots. The performance of modelling strategies was highly dependent on the characteristics of the development data in both linear and logistic regression settings. A priori comparisons in four empirical data sets found that no strategy consistently outperformed the others. The percentage of times that a model adjustment strategy outperformed a logistic model ranged from 3.9 to 94.9 %, depending on the strategy and data set. However, in our case study setting the a priori selection of optimal methods did not result in detectable improvement in model performance when assessed in an external data set. The performance of prediction modelling strategies is a data-dependent process and can be highly variable between data sets within the same clinical domain. A priori strategy comparison can be used to determine an optimal logistic regression modelling strategy for a given data set before selecting a final modelling approach.

  6. A regression approach for zircaloy-2 in-reactor creep constitutive equations

    International Nuclear Information System (INIS)

    Yung Liu, Y.; Bement, A.L.

    1977-01-01

    In this paper the methodology of multiple regressions as applied to zircaloy-2 in-reactor creep data analysis and construction of constitutive equation are illustrated. While the resulting constitutive equation can be used in creep analysis of in-reactor zircaloy structural components, the methodology itself is entirely general and can be applied to any creep data analysis. From data analysis and model development point of views, both the assumption of independence and prior committment to specific model forms are unacceptable. One would desire means which can not only estimate the required parameters directly from data but also provide basis for model selections, viz., one model against others. Basic understanding of the physics of deformation is important in choosing the forms of starting physical model equations, but the justifications must rely on their abilities in correlating the overall data. The promising aspects of multiple regression creep data analysis are briefly outlined as follows: (1) when there are more than one variable involved, there is no need to make the assumption that each variable affects the response independently. No separate normalizations are required either and the estimation of parameters is obtained by solving many simultaneous equations. The number of simultaneous equations is equal to the number of data sets, (2) regression statistics such as R 2 - and F-statistics provide measures of the significance of regression creep equation in correlating the overall data. The relative weights of each variable on the response can also be obtained. (3) Special regression techniques such as step-wise, ridge, and robust regressions and residual plots, etc., provide diagnostic tools for model selections

  7. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    Science.gov (United States)

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  8. Regression analysis of censored data using pseudo-observations

    DEFF Research Database (Denmark)

    Parner, Erik T.; Andersen, Per Kragh

    2010-01-01

    We draw upon a series of articles in which a method based on pseu- dovalues is proposed for direct regression modeling of the survival function, the restricted mean, and the cumulative incidence function in competing risks with right-censored data. The models, once the pseudovalues have been...... computed, can be fit using standard generalized estimating equation software. Here we present Stata procedures for computing these pseudo-observations. An example from a bone marrow transplantation study is used to illustrate the method....

  9. Application of regression analysis to creep of space shuttle materials

    International Nuclear Information System (INIS)

    Rummler, D.R.

    1975-01-01

    Metallic heat shields for Space Shuttle thermal protection systems must operate for many flight cycles at high temperatures in low-pressure air and use thin-gage (less than or equal to 0.65 mm) sheet. Available creep data for thin sheet under those conditions are inadequate. To assess the effects of oxygen partial pressure and sheet thickness on creep behavior and to develop constitutive creep equations for small sets of data, regression techniques are applied and discussed

  10. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  11. Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements

    KAUST Repository

    Ryu, Duchwan

    2010-09-28

    We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that the effects of the longitudinal covariate processes are linear in the GLM may be unrealistic and if this happens it can cast doubt on the inference of observed covariate effects. Allowing the regression functions to be unknown, we propose to apply Bayesian nonparametric methods including cubic smoothing splines or P-splines for the possible nonlinearity and use an additive model in this complex setting. To improve computational efficiency, we propose the use of data-augmentation schemes. The approach allows flexible covariance structures for the random effects and within-subject measurement errors of the longitudinal processes. The posterior model space is explored through a Markov chain Monte Carlo (MCMC) sampler. The proposed methods are illustrated and compared to other approaches, the "naive" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves. © 2010, The International Biometric Society.

  12. A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation

    International Nuclear Information System (INIS)

    Baser, Furkan; Demirhan, Haydar

    2017-01-01

    Accurate estimation of the amount of horizontal global solar radiation for a particular field is an important input for decision processes in solar radiation investments. In this article, we focus on the estimation of yearly mean daily horizontal global solar radiation by using an approach that utilizes fuzzy regression functions with support vector machine (FRF-SVM). This approach is not seriously affected by outlier observations and does not suffer from the over-fitting problem. To demonstrate the utility of the FRF-SVM approach in the estimation of horizontal global solar radiation, we conduct an empirical study over a dataset collected in Turkey and applied the FRF-SVM approach with several kernel functions. Then, we compare the estimation accuracy of the FRF-SVM approach to an adaptive neuro-fuzzy system and a coplot supported-genetic programming approach. We observe that the FRF-SVM approach with a Gaussian kernel function is not affected by both outliers and over-fitting problem and gives the most accurate estimates of horizontal global solar radiation among the applied approaches. Consequently, the use of hybrid fuzzy functions and support vector machine approaches is found beneficial in long-term forecasting of horizontal global solar radiation over a region with complex climatic and terrestrial characteristics. - Highlights: • A fuzzy regression functions with support vector machines approach is proposed. • The approach is robust against outlier observations and over-fitting problem. • Estimation accuracy of the model is superior to several existent alternatives. • A new solar radiation estimation model is proposed for the region of Turkey. • The model is useful under complex terrestrial and climatic conditions.

  13. BRGLM, Interactive Linear Regression Analysis by Least Square Fit

    International Nuclear Information System (INIS)

    Ringland, J.T.; Bohrer, R.E.; Sherman, M.E.

    1985-01-01

    1 - Description of program or function: BRGLM is an interactive program written to fit general linear regression models by least squares and to provide a variety of statistical diagnostic information about the fit. Stepwise and all-subsets regression can be carried out also. There are facilities for interactive data management (e.g. setting missing value flags, data transformations) and tools for constructing design matrices for the more commonly-used models such as factorials, cubic Splines, and auto-regressions. 2 - Method of solution: The least squares computations are based on the orthogonal (QR) decomposition of the design matrix obtained using the modified Gram-Schmidt algorithm. 3 - Restrictions on the complexity of the problem: The current release of BRGLM allows maxima of 1000 observations, 99 variables, and 3000 words of main memory workspace. For a problem with N observations and P variables, the number of words of main memory storage required is MAX(N*(P+6), N*P+P*P+3*N, and 3*P*P+6*N). Any linear model may be fit although the in-memory workspace will have to be increased for larger problems

  14. Use of generalized regression models for the analysis of stress-rupture data

    International Nuclear Information System (INIS)

    Booker, M.K.

    1978-01-01

    The design of components for operation in an elevated-temperature environment often requires a detailed consideration of the creep and creep-rupture properties of the construction materials involved. Techniques for the analysis and extrapolation of creep data have been widely discussed. The paper presents a generalized regression approach to the analysis of such data. This approach has been applied to multiple heat data sets for types 304 and 316 austenitic stainless steel, ferritic 2 1 / 4 Cr-1 Mo steel, and the high-nickel austenitic alloy 800H. Analyses of data for single heats of several materials are also presented. All results appear good. The techniques presented represent a simple yet flexible and powerful means for the analysis and extrapolation of creep and creep-rupture data

  15. Bias in logistic regression due to imperfect diagnostic test results and practical correction approaches.

    Science.gov (United States)

    Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul

    2015-11-04

    Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.

  16. Nonlinear regression analysis for evaluating tracer binding parameters using the programmable K1003 desk computer

    International Nuclear Information System (INIS)

    Sarrach, D.; Strohner, P.

    1986-01-01

    The Gauss-Newton algorithm has been used to evaluate tracer binding parameters of RIA by nonlinear regression analysis. The calculations were carried out on the K1003 desk computer. Equations for simple binding models and its derivatives are presented. The advantages of nonlinear regression analysis over linear regression are demonstrated

  17. Replicating Experimental Impact Estimates Using a Regression Discontinuity Approach. NCEE 2012-4025

    Science.gov (United States)

    Gleason, Philip M.; Resch, Alexandra M.; Berk, Jillian A.

    2012-01-01

    This NCEE Technical Methods Paper compares the estimated impacts of an educational intervention using experimental and regression discontinuity (RD) study designs. The analysis used data from two large-scale randomized controlled trials--the Education Technology Evaluation and the Teach for America Study--to provide evidence on the performance of…

  18. Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation.

    Science.gov (United States)

    Hayes, Andrew F; Rockwood, Nicholas J

    2017-11-01

    There have been numerous treatments in the clinical research literature about various design, analysis, and interpretation considerations when testing hypotheses about mechanisms and contingencies of effects, popularly known as mediation and moderation analysis. In this paper we address the practice of mediation and moderation analysis using linear regression in the pages of Behaviour Research and Therapy and offer some observations and recommendations, debunk some popular myths, describe some new advances, and provide an example of mediation, moderation, and their integration as conditional process analysis using the PROCESS macro for SPSS and SAS. Our goal is to nudge clinical researchers away from historically significant but increasingly old school approaches toward modifications, revisions, and extensions that characterize more modern thinking about the analysis of the mechanisms and contingencies of effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    1995-01-01

    This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for

  20. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.

    Science.gov (United States)

    Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-04-01

    To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.

  1. Corporate Social Responsibility and Financial Performance: A Two Least Regression Approach

    Directory of Open Access Journals (Sweden)

    Alexander Olawumi Dabor

    2017-12-01

    Full Text Available The objective of this study is to investigate the casuality between corporate social responsibility and firm financial performance. The study employed two least square regression approaches. Fifty-two firms were selected using the scientific method. The findings revealed that corporate social responsibility and firm performance in manufacturing sector are mutually related at 5%. The study recommended that management of manufacturing companies in Nigeria should expend on CSR to boost profitability and corporate image.

  2. Modelling the return distribution of salmon farming companies : a quantile regression approach

    OpenAIRE

    Jacobsen, Fredrik

    2017-01-01

    The salmon farming industry has gained increased attention from investors, portfolio managers, financial analysts and other stakeholders the recent years. Despite this development, very little is known about the risk and return of salmon farming company stocks, and especially how the relationship between risk and return varies under different market conditions, given the volatile nature of the salmon farming industry. We approach this problem by using quantile regression to examine the relati...

  3. Driven Factors Analysis of China’s Irrigation Water Use Efficiency by Stepwise Regression and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Renfu Jia

    2016-01-01

    Full Text Available This paper introduces an integrated approach to find out the major factors influencing efficiency of irrigation water use in China. It combines multiple stepwise regression (MSR and principal component analysis (PCA to obtain more realistic results. In real world case studies, classical linear regression model often involves too many explanatory variables and the linear correlation issue among variables cannot be eliminated. Linearly correlated variables will cause the invalidity of the factor analysis results. To overcome this issue and reduce the number of the variables, PCA technique has been used combining with MSR. As such, the irrigation water use status in China was analyzed to find out the five major factors that have significant impacts on irrigation water use efficiency. To illustrate the performance of the proposed approach, the calculation based on real data was conducted and the results were shown in this paper.

  4. Regression analysis of mixed recurrent-event and panel-count data with additive rate models.

    Science.gov (United States)

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L

    2015-03-01

    Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007, The Statistical Analysis of Recurrent Events. New York: Springer-Verlag; Zhao et al., 2011, Test 20, 1-42). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013, Statistics in Medicine 32, 1954-1963). In this article, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. © 2014, The International Biometric Society.

  5. Semiparametric regression analysis of interval-censored competing risks data.

    Science.gov (United States)

    Mao, Lu; Lin, Dan-Yu; Zeng, Donglin

    2017-09-01

    Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (external) covariates on the cumulative incidence or sub-distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non-proportional hazards structures for the sub-distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM-type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV-1 infection with different viral subtypes. © 2017, The International Biometric Society.

  6. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach.

    Science.gov (United States)

    Weichenthal, Scott; Ryswyk, Keith Van; Goldstein, Alon; Bagg, Scott; Shekkarizfard, Maryam; Hatzopoulou, Marianne

    2016-04-01

    Existing evidence suggests that ambient ultrafine particles (UFPs) (regression model for UFPs in Montreal, Canada using mobile monitoring data collected from 414 road segments during the summer and winter months between 2011 and 2012. Two different approaches were examined for model development including standard multivariable linear regression and a machine learning approach (kernel-based regularized least squares (KRLS)) that learns the functional form of covariate impacts on ambient UFP concentrations from the data. The final models included parameters for population density, ambient temperature and wind speed, land use parameters (park space and open space), length of local roads and rail, and estimated annual average NOx emissions from traffic. The final multivariable linear regression model explained 62% of the spatial variation in ambient UFP concentrations whereas the KRLS model explained 79% of the variance. The KRLS model performed slightly better than the linear regression model when evaluated using an external dataset (R(2)=0.58 vs. 0.55) or a cross-validation procedure (R(2)=0.67 vs. 0.60). In general, our findings suggest that the KRLS approach may offer modest improvements in predictive performance compared to standard multivariable linear regression models used to estimate spatial variations in ambient UFPs. However, differences in predictive performance were not statistically significant when evaluated using the cross-validation procedure. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  7. Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data

    Science.gov (United States)

    Ulbrich, N.

    2015-01-01

    An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.

  8. Chronic subdural hematoma: Surgical management and outcome in 986 cases: A classification and regression tree approach

    Science.gov (United States)

    Rovlias, Aristedis; Theodoropoulos, Spyridon; Papoutsakis, Dimitrios

    2015-01-01

    Background: Chronic subdural hematoma (CSDH) is one of the most common clinical entities in daily neurosurgical practice which carries a most favorable prognosis. However, because of the advanced age and medical problems of patients, surgical therapy is frequently associated with various complications. This study evaluated the clinical features, radiological findings, and neurological outcome in a large series of patients with CSDH. Methods: A classification and regression tree (CART) technique was employed in the analysis of data from 986 patients who were operated at Asclepeion General Hospital of Athens from January 1986 to December 2011. Burr holes evacuation with closed system drainage has been the operative technique of first choice at our institution for 29 consecutive years. A total of 27 prognostic factors were examined to predict the outcome at 3-month postoperatively. Results: Our results indicated that neurological status on admission was the best predictor of outcome. With regard to the other data, age, brain atrophy, thickness and density of hematoma, subdural accumulation of air, and antiplatelet and anticoagulant therapy were found to correlate significantly with prognosis. The overall cross-validated predictive accuracy of CART model was 85.34%, with a cross-validated relative error of 0.326. Conclusions: Methodologically, CART technique is quite different from the more commonly used methods, with the primary benefit of illustrating the important prognostic variables as related to outcome. Since, the ideal therapy for the treatment of CSDH is still under debate, this technique may prove useful in developing new therapeutic strategies and approaches for patients with CSDH. PMID:26257985

  9. Comparison of beta-binomial regression model approaches to analyze health-related quality of life data.

    Science.gov (United States)

    Najera-Zuloaga, Josu; Lee, Dae-Jin; Arostegui, Inmaculada

    2017-01-01

    Health-related quality of life has become an increasingly important indicator of health status in clinical trials and epidemiological research. Moreover, the study of the relationship of health-related quality of life with patients and disease characteristics has become one of the primary aims of many health-related quality of life studies. Health-related quality of life scores are usually assumed to be distributed as binomial random variables and often highly skewed. The use of the beta-binomial distribution in the regression context has been proposed to model such data; however, the beta-binomial regression has been performed by means of two different approaches in the literature: (i) beta-binomial distribution with a logistic link; and (ii) hierarchical generalized linear models. None of the existing literature in the analysis of health-related quality of life survey data has performed a comparison of both approaches in terms of adequacy and regression parameter interpretation context. This paper is motivated by the analysis of a real data application of health-related quality of life outcomes in patients with Chronic Obstructive Pulmonary Disease, where the use of both approaches yields to contradictory results in terms of covariate effects significance and consequently the interpretation of the most relevant factors in health-related quality of life. We present an explanation of the results in both methodologies through a simulation study and address the need to apply the proper approach in the analysis of health-related quality of life survey data for practitioners, providing an R package.

  10. Simulation Experiments in Practice : Statistical Design and Regression Analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is

  11. Selective principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin contamination in corn

    Science.gov (United States)

    Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...

  12. Length bias correction in gene ontology enrichment analysis using logistic regression.

    Science.gov (United States)

    Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H

    2012-01-01

    When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

  13. Analysis of Relationship Between Personality and Favorite Places with Poisson Regression Analysis

    Directory of Open Access Journals (Sweden)

    Yoon Song Ha

    2018-01-01

    Full Text Available A relationship between human personality and preferred locations have been a long conjecture for human mobility research. In this paper, we analyzed the relationship between personality and visiting place with Poisson Regression. Poisson Regression can analyze correlation between countable dependent variable and independent variable. For this analysis, 33 volunteers provided their personality data and 49 location categories data are used. Raw location data is preprocessed to be normalized into rates of visit and outlier data is prunned. For the regression analysis, independent variables are personality data and dependent variables are preprocessed location data. Several meaningful results are found. For example, persons with high tendency of frequent visiting to university laboratory has personality with high conscientiousness and low openness. As well, other meaningful location categories are presented in this paper.

  14. Quantile regression analysis of body mass and wages.

    Science.gov (United States)

    Johar, Meliyanni; Katayama, Hajime

    2012-05-01

    Using the National Longitudinal Survey of Youth 1979, we explore the relationship between body mass and wages. We use quantile regression to provide a broad description of the relationship across the wage distribution. We also allow the relationship to vary by the degree of social skills involved in different jobs. Our results find that for female workers body mass and wages are negatively correlated at all points in their wage distribution. The strength of the relationship is larger at higher-wage levels. For male workers, the relationship is relatively constant across wage distribution but heterogeneous across ethnic groups. When controlling for the endogeneity of body mass, we find that additional body mass has a negative causal impact on the wages of white females earning more than the median wages and of white males around the median wages. Among these workers, the wage penalties are larger for those employed in jobs that require extensive social skills. These findings may suggest that labor markets reward white workers for good physical shape differently, depending on the level of wages and the type of job a worker has. Copyright © 2011 John Wiley & Sons, Ltd.

  15. The effect of foreign aid on corruption: A quantile regression approach

    OpenAIRE

    Okada, Keisuke; Samreth, Sovannroeun

    2011-01-01

    This paper investigates the effect of foreign aid on corruption using a quantile regression method. Our estimation results illustrate that foreign aid generally lessens corruption and, in particular, its reduction effect is larger in countries with low levels of corruption. In addition, considering foreign aid by donors, our analysis indicates that while multilateral aid has a larger reduction impact on corruption, bilateral aid from the world’s leading donors, such as France, the United King...

  16. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    Science.gov (United States)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  17. CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions

    Science.gov (United States)

    Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.

  18. Statistical 21-cm Signal Separation via Gaussian Process Regression Analysis

    Science.gov (United States)

    Mertens, F. G.; Ghosh, A.; Koopmans, L. V. E.

    2018-05-01

    Detecting and characterizing the Epoch of Reionization and Cosmic Dawn via the redshifted 21-cm hyperfine line of neutral hydrogen will revolutionize the study of the formation of the first stars, galaxies, black holes and intergalactic gas in the infant Universe. The wealth of information encoded in this signal is, however, buried under foregrounds that are many orders of magnitude brighter. These must be removed accurately and precisely in order to reveal the feeble 21-cm signal. This requires not only the modeling of the Galactic and extra-galactic emission, but also of the often stochastic residuals due to imperfect calibration of the data caused by ionospheric and instrumental distortions. To stochastically model these effects, we introduce a new method based on `Gaussian Process Regression' (GPR) which is able to statistically separate the 21-cm signal from most of the foregrounds and other contaminants. Using simulated LOFAR-EoR data that include strong instrumental mode-mixing, we show that this method is capable of recovering the 21-cm signal power spectrum across the entire range k = 0.07 - 0.3 {h cMpc^{-1}}. The GPR method is most optimal, having minimal and controllable impact on the 21-cm signal, when the foregrounds are correlated on frequency scales ≳ 3 MHz and the rms of the signal has σ21cm ≳ 0.1 σnoise. This signal separation improves the 21-cm power-spectrum sensitivity by a factor ≳ 3 compared to foreground avoidance strategies and enables the sensitivity of current and future 21-cm instruments such as the Square Kilometre Array to be fully exploited.

  19. A multi-scale relevance vector regression approach for daily urban water demand forecasting

    Science.gov (United States)

    Bai, Yun; Wang, Pu; Li, Chuan; Xie, Jingjing; Wang, Yin

    2014-09-01

    Water is one of the most important resources for economic and social developments. Daily water demand forecasting is an effective measure for scheduling urban water facilities. This work proposes a multi-scale relevance vector regression (MSRVR) approach to forecast daily urban water demand. The approach uses the stationary wavelet transform to decompose historical time series of daily water supplies into different scales. At each scale, the wavelet coefficients are used to train a machine-learning model using the relevance vector regression (RVR) method. The estimated coefficients of the RVR outputs for all of the scales are employed to reconstruct the forecasting result through the inverse wavelet transform. To better facilitate the MSRVR forecasting, the chaos features of the daily water supply series are analyzed to determine the input variables of the RVR model. In addition, an adaptive chaos particle swarm optimization algorithm is used to find the optimal combination of the RVR model parameters. The MSRVR approach is evaluated using real data collected from two waterworks and is compared with recently reported methods. The results show that the proposed MSRVR method can forecast daily urban water demand much more precisely in terms of the normalized root-mean-square error, correlation coefficient, and mean absolute percentage error criteria.

  20. Methods of Detecting Outliers in A Regression Analysis Model. | Ogu ...

    African Journals Online (AJOL)

    A Boilers data with dependent variable Y (man-Hour) and four independent variables X1 (Boiler Capacity), X2 (Design Pressure), X3 (Boiler Type), X4 (Drum Type) were used. The analysis of the Boilers data reviewed an unexpected group of Outliers. The results from the findings showed that an observation can be outlying ...

  1. Quantitative electron microscope autoradiography: application of multiple linear regression analysis

    International Nuclear Information System (INIS)

    Markov, D.V.

    1986-01-01

    A new method for the analysis of high resolution EM autoradiographs is described. It identifies labelled cell organelle profiles in sections on a strictly statistical basis and provides accurate estimates for their radioactivity without the need to make any assumptions about their size, shape and spatial arrangement. (author)

  2. Microhabitat analysis using radiotelemetry locations and polytomous logistic regression

    Science.gov (United States)

    Malcolm P. North; Joel H. Reynolds

    1996-01-01

    Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation structures or environmental conditions between sites classified by a study animal's presence or absence. These presence/absence studies make questionable assumptions about the habitat value of the comparison sites and the microhabitat data often violate the DFA's...

  3. Singular spectrum analysis, Harmonic regression and El-Nino effect ...

    Indian Academy of Sciences (India)

    42

    Keywords: Total ozone; Singular Spectrum Analysis; Spatial interpolation; Multivariate ENSO .... needed for a whole gamut of activities that contribute to the ultimate synthesis ..... −0.0009 3 + 0.0581 2 − 1.0123 + 7.3246, 2 = 0.53…

  4. Analysis of cost regression and post-accident absence

    Science.gov (United States)

    Wojciech, Drozd

    2017-07-01

    The article presents issues related with costs of work safety. It proves the thesis that economic aspects cannot be overlooked in effective management of occupational health and safety and that adequate expenditures on safety can bring tangible benefits to the company. Reliable analysis of this problem is essential for the description the problem of safety the work. In the article attempts to carry it out using the procedures of mathematical statistics [1, 2, 3].

  5. Partitioning of late gestation energy expenditure in ewes using indirect calorimetry and a linear regression approach

    DEFF Research Database (Denmark)

    Kiani, Alishir; Chwalibog, André; Nielsen, Mette O

    2007-01-01

    Late gestation energy expenditure (EE(gest)) originates from energy expenditure (EE) of development of conceptus (EE(conceptus)) and EE of homeorhetic adaptation of metabolism (EE(homeorhetic)). Even though EE(gest) is relatively easy to quantify, its partitioning is problematic. In the present...... study metabolizable energy (ME) intake ranges for twin-bearing ewes were 220-440, 350- 700, 350-900 kJ per metabolic body weight (W0.75) at week seven, five, two pre-partum respectively. Indirect calorimetry and a linear regression approach were used to quantify EE(gest) and then partition to EE......(conceptus) and EE(homeorhetic). Energy expenditure of basal metabolism of the non-gravid tissues (EE(bmng)), derived from the intercept of the linear regression equation of retained energy [kJ/W0.75] and ME intake [kJ/W(0.75)], was 298 [kJ/ W0.75]. Values of the intercepts of the regression equations at week seven...

  6. A cost-utility analysis of risk model-guided versus physician's choice antiemetic prophylaxis in patients receiving chemotherapy for early-stage breast cancer: a net benefit regression approach.

    Science.gov (United States)

    Thavorn, Kednapa; Coyle, Doug; Hoch, Jeffrey S; Vandermeer, Lisa; Mazzarello, Sasha; Wang, Zhou; Dranitsaris, George; Fergusson, Dean; Clemons, Mark

    2017-08-01

    We assessed the cost-effectiveness of a risk model-guided (RMG) antiemetic prophylaxis strategy compared with the physician's choice (PC) strategy in patients receiving chemotherapy for early-stage breast cancer. We conducted a cost-utility analysis based on a published randomized controlled trial of 324 patients with early-stage breast cancer undergoing chemotherapy at two Canadian cancer centers. Patients were randomized to receive their antiemetic treatments according to either predefined risk scores or the treating physician's preference. Effectiveness was measured as quality-adjusted life years (QALYs) gained. Cost and utility data were obtained from the Canadian published literature. We used generalized estimating equations to estimate the incremental cost-effectiveness ratios (ICERs) and 95% confidence intervals (CIs) over a range of willingness-to-pay values. The lower and upper bounds of the 95% CIs were used to characterize the statistical uncertainty for the cost-effectiveness estimates and construct cost-effectiveness acceptability curves. From the health care system's perspective, the RMG strategy was associated with greater QALYs gained (0.0016, 95% CI 0.0009, 0.0022) and higher cost ($49.19, 95% CI $24.87, $73.08) than the PC strategy, resulting in an ICER of $30,864.28 (95% CI $14,718.98, $62,789.04). At the commonly used threshold of $50,000/QALY, the probability that RMG prophylaxis is cost-effective was >94%; this probability increased with greater willingness-to-pay values. The risk-guided antiemetic prophylaxis is an economically attractive option for patients receiving chemotherapy for early-stage breast cancer. This information supports the implementation of risk prediction models to guide chemotherapy-induced nausea and vomiting prophylaxis in clinical practices.

  7. A classical regression framework for mediation analysis: fitting one model to estimate mediation effects.

    Science.gov (United States)

    Saunders, Christina T; Blume, Jeffrey D

    2017-10-26

    Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.

  8. Healthcare Expenditures Associated with Depression Among Individuals with Osteoarthritis: Post-Regression Linear Decomposition Approach.

    Science.gov (United States)

    Agarwal, Parul; Sambamoorthi, Usha

    2015-12-01

    Depression is common among individuals with osteoarthritis and leads to increased healthcare burden. The objective of this study was to examine excess total healthcare expenditures associated with depression among individuals with osteoarthritis in the US. Adults with self-reported osteoarthritis (n = 1881) were identified using data from the 2010 Medical Expenditure Panel Survey (MEPS). Among those with osteoarthritis, chi-square tests and ordinary least square regressions (OLS) were used to examine differences in healthcare expenditures between those with and without depression. Post-regression linear decomposition technique was used to estimate the relative contribution of different constructs of the Anderson's behavioral model, i.e., predisposing, enabling, need, personal healthcare practices, and external environment factors, to the excess expenditures associated with depression among individuals with osteoarthritis. All analysis accounted for the complex survey design of MEPS. Depression coexisted among 20.6 % of adults with osteoarthritis. The average total healthcare expenditures were $13,684 among adults with depression compared to $9284 among those without depression. Multivariable OLS regression revealed that adults with depression had 38.8 % higher healthcare expenditures (p regression linear decomposition analysis indicated that 50 % of differences in expenditures among adults with and without depression can be explained by differences in need factors. Among individuals with coexisting osteoarthritis and depression, excess healthcare expenditures associated with depression were mainly due to comorbid anxiety, chronic conditions and poor health status. These expenditures may potentially be reduced by providing timely intervention for need factors or by providing care under a collaborative care model.

  9. Financial analysis and forecasting of the results of small businesses performance based on regression model

    Directory of Open Access Journals (Sweden)

    Svetlana O. Musienko

    2017-03-01

    Full Text Available Objective to develop the economicmathematical model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies. Methods using comparative analysis the article studies the existing approaches to the construction of the company management models. Applying the regression analysis and the least squares method which is widely used for financial management of enterprises in Russia and abroad the author builds a model of the dependence of revenue on other balance sheet items taking into account the sectoral affiliation of the companies which can be used in the financial analysis and prediction of small enterprisesrsquo performance. Results the article states the need to identify factors affecting the financial management efficiency. The author analyzed scientific research and revealed the lack of comprehensive studies on the methodology for assessing the small enterprisesrsquo management while the methods used for large companies are not always suitable for the task. The systematized approaches of various authors to the formation of regression models describe the influence of certain factors on the company activity. It is revealed that the resulting indicators in the studies were revenue profit or the company relative profitability. The main drawback of most models is the mathematical not economic approach to the definition of the dependent and independent variables. Basing on the analysis it was determined that the most correct is the model of dependence between revenues and total assets of the company using the decimal logarithm. The model was built using data on the activities of the 507 small businesses operating in three spheres of economic activity. Using the presented model it was proved that there is direct dependence between the sales proceeds and the main items of the asset balance as well as differences in the degree of this effect depending on the economic activity of small

  10. What Satisfies Students? Mining Student-Opinion Data with Regression and Decision-Tree Analysis. AIR 2002 Forum Paper.

    Science.gov (United States)

    Thomas, Emily H.; Galambos, Nora

    To investigate how students' characteristics and experiences affect satisfaction, this study used regression and decision-tree analysis with the CHAID algorithm to analyze student opinion data from a sample of 1,783 college students. A data-mining approach identifies the specific aspects of students' university experience that most influence three…

  11. A Quality Assessment Tool for Non-Specialist Users of Regression Analysis

    Science.gov (United States)

    Argyrous, George

    2015-01-01

    This paper illustrates the use of a quality assessment tool for regression analysis. It is designed for non-specialist "consumers" of evidence, such as policy makers. The tool provides a series of questions such consumers of evidence can ask to interrogate regression analysis, and is illustrated with reference to a recent study published…

  12. Statistical learning method in regression analysis of simulated positron spectral data

    International Nuclear Information System (INIS)

    Avdic, S. Dz.

    2005-01-01

    Positron lifetime spectroscopy is a non-destructive tool for detection of radiation induced defects in nuclear reactor materials. This work concerns the applicability of the support vector machines method for the input data compression in the neural network analysis of positron lifetime spectra. It has been demonstrated that the SVM technique can be successfully applied to regression analysis of positron spectra. A substantial data compression of about 50 % and 8 % of the whole training set with two and three spectral components respectively has been achieved including a high accuracy of the spectra approximation. However, some parameters in the SVM approach such as the insensitivity zone e and the penalty parameter C have to be chosen carefully to obtain a good performance. (author)

  13. Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements

    KAUST Repository

    Ryu, Duchwan; Li, Erning; Mallick, Bani K.

    2010-01-01

    " approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves. © 2010, The International Biometric Society.

  14. The N-shaped environmental Kuznets curve: an empirical evaluation using a panel quantile regression approach.

    Science.gov (United States)

    Allard, Alexandra; Takman, Johanna; Uddin, Gazi Salah; Ahmed, Ali

    2018-02-01

    We evaluate the N-shaped environmental Kuznets curve (EKC) using panel quantile regression analysis. We investigate the relationship between CO 2 emissions and GDP per capita for 74 countries over the period of 1994-2012. We include additional explanatory variables, such as renewable energy consumption, technological development, trade, and institutional quality. We find evidence for the N-shaped EKC in all income groups, except for the upper-middle-income countries. Heterogeneous characteristics are, however, observed over the N-shaped EKC. Finally, we find a negative relationship between renewable energy consumption and CO 2 emissions, which highlights the importance of promoting greener energy in order to combat global warming.

  15. THE GENDER PAY GAP IN VIETNAM, 1993-2002: A QUANTILE REGRESSION APPROACH

    OpenAIRE

    Pham, Hung T; Reilly, Barry

    2007-01-01

    This paper uses mean and quantile regression analysis to investigate the gender pay gap for the wage employed in Vietnam over the period 1993 to 2002. It finds that the Doi moi reforms appear to have been associated with a sharp reduction in gender pay gap disparities for the wage employed. The average gender pay gap in this sector halved between 1993 and 2002 with most of the contraction evident by 1998. There has also been a narrowing in the gender pay gap at most selected points of the con...

  16. The Gender Pay Gap In Vietnam, 1993-2002: A Quantile Regression Approach

    OpenAIRE

    Barry Reilly & T. Hung Pham

    2006-01-01

    This paper uses mean and quantile regression analysis to investigate the gender pay gap for the wage employed in Vietnam over the period 1993 to 2002. It finds that the Doi moi reforms have been associated with a sharp reduction in gender wage disparities for the wage employed. The average gender pay gap in this sector halved between 1993 and 2002 with most of the contraction evident by 1998. There has also been a contraction in the gender pay at most selected points of the conditional wage d...

  17. An improved multiple linear regression and data analysis computer program package

    Science.gov (United States)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  18. Robust Methods for Moderation Analysis with a Two-Level Regression Model.

    Science.gov (United States)

    Yang, Miao; Yuan, Ke-Hai

    2016-01-01

    Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.

  19. Regression analysis of mixed panel count data with dependent terminal events.

    Science.gov (United States)

    Yu, Guanglei; Zhu, Liang; Li, Yang; Sun, Jianguo; Robison, Leslie L

    2017-05-10

    Event history studies are commonly conducted in many fields, and a great deal of literature has been established for the analysis of the two types of data commonly arising from these studies: recurrent event data and panel count data. The former arises if all study subjects are followed continuously, while the latter means that each study subject is observed only at discrete time points. In reality, a third type of data, a mixture of the two types of the data earlier, may occur and furthermore, as with the first two types of the data, there may exist a dependent terminal event, which may preclude the occurrences of recurrent events of interest. This paper discusses regression analysis of mixed recurrent event and panel count data in the presence of a terminal event and an estimating equation-based approach is proposed for estimation of regression parameters of interest. In addition, the asymptotic properties of the proposed estimator are established, and a simulation study conducted to assess the finite-sample performance of the proposed method suggests that it works well in practical situations. Finally, the methodology is applied to a childhood cancer study that motivated this study. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Weighted functional linear regression models for gene-based association analysis.

    Science.gov (United States)

    Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I

    2018-01-01

    Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

  1. [A SAS marco program for batch processing of univariate Cox regression analysis for great database].

    Science.gov (United States)

    Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin

    2015-02-01

    To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.

  2. Normalization in Unsupervised Segmentation Parameter Optimization: A Solution Based on Local Regression Trend Analysis

    Directory of Open Access Journals (Sweden)

    Stefanos Georganos

    2018-02-01

    Full Text Available In object-based image analysis (OBIA, the appropriate parametrization of segmentation algorithms is crucial for obtaining satisfactory image classification results. One of the ways this can be done is by unsupervised segmentation parameter optimization (USPO. A popular USPO method does this through the optimization of a “global score” (GS, which minimizes intrasegment heterogeneity and maximizes intersegment heterogeneity. However, the calculated GS values are sensitive to the minimum and maximum ranges of the candidate segmentations. Previous research proposed the use of fixed minimum/maximum threshold values for the intrasegment/intersegment heterogeneity measures to deal with the sensitivity of user-defined ranges, but the performance of this approach has not been investigated in detail. In the context of a remote sensing very-high-resolution urban application, we show the limitations of the fixed threshold approach, both in a theoretical and applied manner, and instead propose a novel solution to identify the range of candidate segmentations using local regression trend analysis. We found that the proposed approach showed significant improvements over the use of fixed minimum/maximum values, is less subjective than user-defined threshold values and, thus, can be of merit for a fully automated procedure and big data applications.

  3. Beyond the mean estimate: a quantile regression analysis of inequalities in educational outcomes using INVALSI survey data

    Directory of Open Access Journals (Sweden)

    Antonella Costanzo

    2017-09-01

    Full Text Available Abstract The number of studies addressing issues of inequality in educational outcomes using cognitive achievement tests and variables from large-scale assessment data has increased. Here the value of using a quantile regression approach is compared with a classical regression analysis approach to study the relationships between educational outcomes and likely predictor variables. Italian primary school data from INVALSI large-scale assessments were analyzed using both quantile and standard regression approaches. Mathematics and reading scores were regressed on students' characteristics and geographical variables selected for their theoretical and policy relevance. The results demonstrated that, in Italy, the role of gender and immigrant status varied across the entire conditional distribution of students’ performance. Analogous results emerged pertaining to the difference in students’ performance across Italian geographic areas. These findings suggest that quantile regression analysis is a useful tool to explore the determinants and mechanisms of inequality in educational outcomes. A proper interpretation of quantile estimates may enable teachers to identify effective learning activities and help policymakers to develop tailored programs that increase equity in education.

  4. A modified approach to estimating sample size for simple logistic regression with one continuous covariate.

    Science.gov (United States)

    Novikov, I; Fund, N; Freedman, L S

    2010-01-15

    Different methods for the calculation of sample size for simple logistic regression (LR) with one normally distributed continuous covariate give different results. Sometimes the difference can be large. Furthermore, some methods require the user to specify the prevalence of cases when the covariate equals its population mean, rather than the more natural population prevalence. We focus on two commonly used methods and show through simulations that the power for a given sample size may differ substantially from the nominal value for one method, especially when the covariate effect is large, while the other method performs poorly if the user provides the population prevalence instead of the required parameter. We propose a modification of the method of Hsieh et al. that requires specification of the population prevalence and that employs Schouten's sample size formula for a t-test with unequal variances and group sizes. This approach appears to increase the accuracy of the sample size estimates for LR with one continuous covariate.

  5. Heterogeneous effects of oil shocks on exchange rates: evidence from a quantile regression approach.

    Science.gov (United States)

    Su, Xianfang; Zhu, Huiming; You, Wanhai; Ren, Yinghua

    2016-01-01

    The determinants of exchange rates have attracted considerable attention among researchers over the past several decades. Most studies, however, ignore the possibility that the impact of oil shocks on exchange rates could vary across the exchange rate returns distribution. We employ a quantile regression approach to address this issue. Our results indicate that the effect of oil shocks on exchange rates is heterogeneous across quantiles. A large US depreciation or appreciation tends to heighten the effects of oil shocks on exchange rate returns. Positive oil demand shocks lead to appreciation pressures in oil-exporting countries and this result is robust across lower and upper return distributions. These results offer rich and useful information for investors and decision-makers.

  6. Identifying the Safety Factors over Traffic Signs in State Roads using a Panel Quantile Regression Approach.

    Science.gov (United States)

    Šarić, Željko; Xu, Xuecai; Duan, Li; Babić, Darko

    2018-06-20

    This study intended to investigate the interactions between accident rate and traffic signs in state roads located in Croatia, and accommodate the heterogeneity attributed to unobserved factors. The data from 130 state roads between 2012 and 2016 were collected from Traffic Accident Database System maintained by the Republic of Croatia Ministry of the Interior. To address the heterogeneity, a panel quantile regression model was proposed, in which quantile regression model offers a more complete view and a highly comprehensive analysis of the relationship between accident rate and traffic signs, while the panel data model accommodates the heterogeneity attributed to unobserved factors. Results revealed that (1) low visibility of material damage (MD) and death or injured (DI) increased the accident rate; (2) the number of mandatory signs and the number of warning signs were more likely to reduce the accident rate; (3)average speed limit and the number of invalid traffic signs per km exhibited a high accident rate. To our knowledge, it's the first attempt to analyze the interactions between accident consequences and traffic signs by employing a panel quantile regression model; by involving the visibility, the present study demonstrates that the low visibility causes a relatively higher risk of MD and DI; It is noteworthy that average speed limit corresponds with accident rate positively; The number of mandatory signs and the number of warning signs are more likely to reduce the accident rate; The number of invalid traffic signs per km are significant for accident rate, thus regular maintenance should be kept for a safer roadway environment.

  7. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    Science.gov (United States)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  8. A Two-Stage Penalized Logistic Regression Approach to Case-Control Genome-Wide Association Studies

    Directory of Open Access Journals (Sweden)

    Jingyuan Zhao

    2012-01-01

    Full Text Available We propose a two-stage penalized logistic regression approach to case-control genome-wide association studies. This approach consists of a screening stage and a selection stage. In the screening stage, main-effect and interaction-effect features are screened by using L1-penalized logistic like-lihoods. In the selection stage, the retained features are ranked by the logistic likelihood with the smoothly clipped absolute deviation (SCAD penalty (Fan and Li, 2001 and Jeffrey’s Prior penalty (Firth, 1993, a sequence of nested candidate models are formed, and the models are assessed by a family of extended Bayesian information criteria (J. Chen and Z. Chen, 2008. The proposed approach is applied to the analysis of the prostate cancer data of the Cancer Genetic Markers of Susceptibility (CGEMS project in the National Cancer Institute, USA. Simulation studies are carried out to compare the approach with the pair-wise multiple testing approach (Marchini et al. 2005 and the LASSO-patternsearch algorithm (Shi et al. 2007.

  9. Robust analysis of trends in noisy tokamak confinement data using geodesic least squares regression

    Energy Technology Data Exchange (ETDEWEB)

    Verdoolaege, G., E-mail: geert.verdoolaege@ugent.be [Department of Applied Physics, Ghent University, B-9000 Ghent (Belgium); Laboratory for Plasma Physics, Royal Military Academy, B-1000 Brussels (Belgium); Shabbir, A. [Department of Applied Physics, Ghent University, B-9000 Ghent (Belgium); Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Hornung, G. [Department of Applied Physics, Ghent University, B-9000 Ghent (Belgium)

    2016-11-15

    Regression analysis is a very common activity in fusion science for unveiling trends and parametric dependencies, but it can be a difficult matter. We have recently developed the method of geodesic least squares (GLS) regression that is able to handle errors in all variables, is robust against data outliers and uncertainty in the regression model, and can be used with arbitrary distribution models and regression functions. We here report on first results of application of GLS to estimation of the multi-machine scaling law for the energy confinement time in tokamaks, demonstrating improved consistency of the GLS results compared to standard least squares.

  10. Statistical Downscaling Output GCM Modeling with Continuum Regression and Pre-Processing PCA Approach

    Directory of Open Access Journals (Sweden)

    Sutikno Sutikno

    2010-08-01

    Full Text Available One of the climate models used to predict the climatic conditions is Global Circulation Models (GCM. GCM is a computer-based model that consists of different equations. It uses numerical and deterministic equation which follows the physics rules. GCM is a main tool to predict climate and weather, also it uses as primary information source to review the climate change effect. Statistical Downscaling (SD technique is used to bridge the large-scale GCM with a small scale (the study area. GCM data is spatial and temporal data most likely to occur where the spatial correlation between different data on the grid in a single domain. Multicollinearity problems require the need for pre-processing of variable data X. Continuum Regression (CR and pre-processing with Principal Component Analysis (PCA methods is an alternative to SD modelling. CR is one method which was developed by Stone and Brooks (1990. This method is a generalization from Ordinary Least Square (OLS, Principal Component Regression (PCR and Partial Least Square method (PLS methods, used to overcome multicollinearity problems. Data processing for the station in Ambon, Pontianak, Losarang, Indramayu and Yuntinyuat show that the RMSEP values and R2 predict in the domain 8x8 and 12x12 by uses CR method produces results better than by PCR and PLS.

  11. Quality of life in breast cancer patients--a quantile regression analysis.

    Science.gov (United States)

    Pourhoseingholi, Mohamad Amin; Safaee, Azadeh; Moghimi-Dehkordi, Bijan; Zeighami, Bahram; Faghihzadeh, Soghrat; Tabatabaee, Hamid Reza; Pourhoseingholi, Asma

    2008-01-01

    Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.

  12. Cost-of-illness studies based on massive data: a prevalence-based, top-down regression approach.

    Science.gov (United States)

    Stollenwerk, Björn; Welchowski, Thomas; Vogl, Matthias; Stock, Stephanie

    2016-04-01

    Despite the increasing availability of routine data, no analysis method has yet been presented for cost-of-illness (COI) studies based on massive data. We aim, first, to present such a method and, second, to assess the relevance of the associated gain in numerical efficiency. We propose a prevalence-based, top-down regression approach consisting of five steps: aggregating the data; fitting a generalized additive model (GAM); predicting costs via the fitted GAM; comparing predicted costs between prevalent and non-prevalent subjects; and quantifying the stochastic uncertainty via error propagation. To demonstrate the method, it was applied to aggregated data in the context of chronic lung disease to German sickness funds data (from 1999), covering over 7.3 million insured. To assess the gain in numerical efficiency, the computational time of the innovative approach has been compared with corresponding GAMs applied to simulated individual-level data. Furthermore, the probability of model failure was modeled via logistic regression. Applying the innovative method was reasonably fast (19 min). In contrast, regarding patient-level data, computational time increased disproportionately by sample size. Furthermore, using patient-level data was accompanied by a substantial risk of model failure (about 80 % for 6 million subjects). The gain in computational efficiency of the innovative COI method seems to be of practical relevance. Furthermore, it may yield more precise cost estimates.

  13. A Gaussian process regression based hybrid approach for short-term wind speed prediction

    International Nuclear Information System (INIS)

    Zhang, Chi; Wei, Haikun; Zhao, Xin; Liu, Tianhong; Zhang, Kanjian

    2016-01-01

    Highlights: • A novel hybrid approach is proposed for short-term wind speed prediction. • This method combines the parametric AR model with the non-parametric GPR model. • The relative importance of different inputs is considered. • Different types of covariance functions are considered and combined. • It can provide both accurate point forecasts and satisfactory prediction intervals. - Abstract: This paper proposes a hybrid model based on autoregressive (AR) model and Gaussian process regression (GPR) for probabilistic wind speed forecasting. In the proposed approach, the AR model is employed to capture the overall structure from wind speed series, and the GPR is adopted to extract the local structure. Additionally, automatic relevance determination (ARD) is used to take into account the relative importance of different inputs, and different types of covariance functions are combined to capture the characteristics of the data. The proposed hybrid model is compared with the persistence model, artificial neural network (ANN), and support vector machine (SVM) for one-step ahead forecasting, using wind speed data collected from three wind farms in China. The forecasting results indicate that the proposed method can not only improve point forecasts compared with other methods, but also generate satisfactory prediction intervals.

  14. Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis.

    Science.gov (United States)

    Ren, Y Y; Zhou, L C; Yang, L; Liu, P Y; Zhao, B W; Liu, H X

    2016-09-01

    The paper highlights the use of the logistic regression (LR) method in the construction of acceptable statistically significant, robust and predictive models for the classification of chemicals according to their aquatic toxic modes of action. Essentials accounting for a reliable model were all considered carefully. The model predictors were selected by stepwise forward discriminant analysis (LDA) from a combined pool of experimental data and chemical structure-based descriptors calculated by the CODESSA and DRAGON software packages. Model predictive ability was validated both internally and externally. The applicability domain was checked by the leverage approach to verify prediction reliability. The obtained models are simple and easy to interpret. In general, LR performs much better than LDA and seems to be more attractive for the prediction of the more toxic compounds, i.e. compounds that exhibit excess toxicity versus non-polar narcotic compounds and more reactive compounds versus less reactive compounds. In addition, model fit and regression diagnostics was done through the influence plot which reflects the hat-values, studentized residuals, and Cook's distance statistics of each sample. Overdispersion was also checked for the LR model. The relationships between the descriptors and the aquatic toxic behaviour of compounds are also discussed.

  15. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

    Science.gov (United States)

    Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

    2015-01-01

    To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

  16. Regression models for categorical, count, and related variables an applied approach

    CERN Document Server

    Hoffmann, John P

    2016-01-01

    Social science and behavioral science students and researchers are often confronted with data that are categorical, count a phenomenon, or have been collected over time. Sociologists examining the likelihood of interracial marriage, political scientists studying voting behavior, criminologists counting the number of offenses people commit, health scientists studying the number of suicides across neighborhoods, and psychologists modeling mental health treatment success are all interested in outcomes that are not continuous. Instead, they must measure and analyze these events and phenomena in a discrete manner.   This book provides an introduction and overview of several statistical models designed for these types of outcomes--all presented with the assumption that the reader has only a good working knowledge of elementary algebra and has taken introductory statistics and linear regression analysis.   Numerous examples from the social sciences demonstrate the practical applications of these models. The chapte...

  17. Key factors contributing to accident severity rate in construction industry in Iran: a regression modelling approach.

    Science.gov (United States)

    Soltanzadeh, Ahmad; Mohammadfam, Iraj; Moghimbeigi, Abbas; Ghiasvand, Reza

    2016-03-01

    Construction industry involves the highest risk of occupational accidents and bodily injuries, which range from mild to very severe. The aim of this cross-sectional study was to identify the factors associated with accident severity rate (ASR) in the largest Iranian construction companies based on data about 500 occupational accidents recorded from 2009 to 2013. We also gathered data on safety and health risk management and training systems. Data were analysed using Pearson's chi-squared coefficient and multiple regression analysis. Median ASR (and the interquartile range) was 107.50 (57.24- 381.25). Fourteen of the 24 studied factors stood out as most affecting construction accident severity (p<0.05). These findings can be applied in the design and implementation of a comprehensive safety and health risk management system to reduce ASR.

  18. In search of a corrected prescription drug elasticity estimate: a meta-regression approach.

    Science.gov (United States)

    Gemmill, Marin C; Costa-Font, Joan; McGuire, Alistair

    2007-06-01

    An understanding of the relationship between cost sharing and drug consumption depends on consistent and unbiased price elasticity estimates. However, there is wide heterogeneity among studies, which constrains the applicability of elasticity estimates for empirical purposes and policy simulation. This paper attempts to provide a corrected measure of the drug price elasticity by employing meta-regression analysis (MRA). The results indicate that the elasticity estimates are significantly different from zero, and the corrected elasticity is -0.209 when the results are made robust to heteroskedasticity and clustering of observations. Elasticity values are higher when the study was published in an economic journal, when the study employed a greater number of observations, and when the study used aggregate data. Elasticity estimates are lower when the institutional setting was a tax-based health insurance system.

  19. Casemix funding for a specialist paediatrics hospital: a hedonic regression approach.

    Science.gov (United States)

    Bridges, J F; Hanson, R M

    2000-01-01

    This paper inquires into the effects that Diagnosis Related Groups (DRGs) have had on the ability to explain patient-level costs in a specialist paediatrics hospital. Two hedonic models are estimated using 1996/97 New Children's Hospital (NCH) patient level cost data, one with and one without a casemix index (CMI). The results show that the inclusion of a casemix index as an explanatory variable leads to a better accounting of cost. The full hedonic model is then used to simulate a funding model for the 1997/98 NCH cost data. These costs are highly correlated with the actual costs reported for that year. In addition, univariate regression indicates that there has been inflation in costs in the order of 4.8% between the two years. In conclusion, hedonic analysis can provide valuable evidence for the design of funding models that account for casemix.

  20. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation

    Science.gov (United States)

    Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa

    2011-08-01

    In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.

  1. Predictability of extreme weather events for NE U.S.: improvement of the numerical prediction using a Bayesian regression approach

    Science.gov (United States)

    Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.

    2015-12-01

    Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be

  2. A kernel regression approach to gene-gene interaction detection for case-control studies.

    Science.gov (United States)

    Larson, Nicholas B; Schaid, Daniel J

    2013-11-01

    Gene-gene interactions are increasingly being addressed as a potentially important contributor to the variability of complex traits. Consequently, attentions have moved beyond single locus analysis of association to more complex genetic models. Although several single-marker approaches toward interaction analysis have been developed, such methods suffer from very high testing dimensionality and do not take advantage of existing information, notably the definition of genes as functional units. Here, we propose a comprehensive family of gene-level score tests for identifying genetic elements of disease risk, in particular pairwise gene-gene interactions. Using kernel machine methods, we devise score-based variance component tests under a generalized linear mixed model framework. We conducted simulations based upon coalescent genetic models to evaluate the performance of our approach under a variety of disease models. These simulations indicate that our methods are generally higher powered than alternative gene-level approaches and at worst competitive with exhaustive SNP-level (where SNP is single-nucleotide polymorphism) analyses. Furthermore, we observe that simulated epistatic effects resulted in significant marginal testing results for the involved genes regardless of whether or not true main effects were present. We detail the benefits of our methods and discuss potential genome-wide analysis strategies for gene-gene interaction analysis in a case-control study design. © 2013 WILEY PERIODICALS, INC.

  3. A general framework for the regression analysis of pooled biomarker assessments.

    Science.gov (United States)

    Liu, Yan; McMahan, Christopher; Gallagher, Colin

    2017-07-10

    As a cost-efficient data collection mechanism, the process of assaying pooled biospecimens is becoming increasingly common in epidemiological research; for example, pooling has been proposed for the purpose of evaluating the diagnostic efficacy of biological markers (biomarkers). To this end, several authors have proposed techniques that allow for the analysis of continuous pooled biomarker assessments. Regretfully, most of these techniques proceed under restrictive assumptions, are unable to account for the effects of measurement error, and fail to control for confounding variables. These limitations are understandably attributable to the complex structure that is inherent to measurements taken on pooled specimens. Consequently, in order to provide practitioners with the tools necessary to accurately and efficiently analyze pooled biomarker assessments, herein, a general Monte Carlo maximum likelihood-based procedure is presented. The proposed approach allows for the regression analysis of pooled data under practically all parametric models and can be used to directly account for the effects of measurement error. Through simulation, it is shown that the proposed approach can accurately and efficiently estimate all unknown parameters and is more computational efficient than existing techniques. This new methodology is further illustrated using monocyte chemotactic protein-1 data collected by the Collaborative Perinatal Project in an effort to assess the relationship between this chemokine and the risk of miscarriage. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2015-06-01

    To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.

  5. Testing contingency hypotheses in budgetary research: An evaluation of the use of moderated regression analysis

    NARCIS (Netherlands)

    Hartmann, Frank G.H.; Moers, Frank

    1999-01-01

    In the contingency literature on the behavioral and organizational effects of budgeting, use of the Moderated Regression Analysis (MRA) technique is prevalent. This technique is used to test contingency hypotheses that predict interaction effects between budgetary and contextual variables. This

  6. Interstage Flammability Analysis Approach

    Science.gov (United States)

    Little, Jeffrey K.; Eppard, William M.

    2011-01-01

    The Interstage of the Ares I launch platform houses several key components which are on standby during First Stage operation: the Reaction Control System (ReCS), the Upper Stage (US) Thrust Vector Control (TVC) and the J-2X with the Main Propulsion System (MPS) propellant feed system. Therefore potentially dangerous leaks of propellants could develop. The Interstage leaks analysis addresses the concerns of localized mixing of hydrogen and oxygen gases to produce deflagration zones in the Interstage of the Ares I launch vehicle during First Stage operation. This report details the approach taken to accomplish the analysis. Specified leakage profiles and actual flammability results are not presented due to proprietary and security restrictions. The interior volume formed by the Interstage walls, bounding interfaces with the Upper and First Stages, and surrounding the J2-X engine was modeled using Loci-CHEM to assess the potential for flammable gas mixtures to develop during First Stage operations. The transient analysis included a derived flammability indicator based on mixture ratios to maintain achievable simulation times. Validation of results was based on a comparison to Interstage pressure profiles outlined in prior NASA studies. The approach proved useful in the bounding of flammability risk in supporting program hazard reviews.

  7. Econometric analysis of realised covariation: high frequency covariance, regression and correlation in financial economics

    OpenAIRE

    Ole E. Barndorff-Nielsen; Neil Shephard

    2002-01-01

    This paper analyses multivariate high frequency financial data using realised covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis and covariance. It will be based on a fixed interval of time (e.g. a day or week), allowing the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions and covariances change through time. In particular w...

  8. FIRE: an SPSS program for variable selection in multiple linear regression analysis via the relative importance of predictors.

    Science.gov (United States)

    Lorenzo-Seva, Urbano; Ferrando, Pere J

    2011-03-01

    We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.

  9. Multiple regression analysis of anthropometric measurements influencing the cephalic index of male Japanese university students.

    Science.gov (United States)

    Hossain, Md Golam; Saw, Aik; Alam, Rashidul; Ohtsuki, Fumio; Kamarul, Tunku

    2013-09-01

    Cephalic index (CI), the ratio of head breadth to head length, is widely used to categorise human populations. The aim of this study was to access the impact of anthropometric measurements on the CI of male Japanese university students. This study included 1,215 male university students from Tokyo and Kyoto, selected using convenient sampling. Multiple regression analysis was used to determine the effect of anthropometric measurements on CI. The variance inflation factor (VIF) showed no evidence of a multicollinearity problem among independent variables. The coefficients of the regression line demonstrated a significant positive relationship between CI and minimum frontal breadth (p regression analysis showed a greater likelihood for minimum frontal breadth (p regression analysis revealed bizygomatic breadth, head circumference, minimum frontal breadth, head height and morphological facial height to be the best predictor craniofacial measurements with respect to CI. The results suggest that most of the variables considered in this study appear to influence the CI of adult male Japanese students.

  10. Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

    Science.gov (United States)

    Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo

    2013-01-01

    Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593

  11. Asymmetrical Responses of Ecosystem Processes to Positive Versus Negative Precipitation Extremes: a Replicated Regression Experimental Approach

    Science.gov (United States)

    Felton, A. J.; Smith, M. D.

    2016-12-01

    Heightened climatic variability due to atmospheric warming is forecast to increase the frequency and severity of climate extremes. In particular, changes to interannual variability in precipitation, characterized by increases in extreme wet and dry years, are likely to impact virtually all terrestrial ecosystem processes. However, to date experimental approaches have yet to explicitly test how ecosystem processes respond to multiple levels of climatic extremity, limiting our understanding of how ecosystems will respond to forecast increases in the magnitude of climate extremes. Here we report the results of a replicated regression experimental approach, in which we imposed 9 and 11 levels of growing season precipitation amount and extremity in mesic grassland during 2015 and 2016, respectively. Each level corresponded to a specific percentile of the long-term record, which produced a large gradient of soil moisture conditions that ranged from extreme wet to extreme dry. In both 2015 and 2016, asymptotic responses to water availability were observed for soil respiration. This asymmetry was driven in part by transitions between soil moisture versus temperature constraints on respiration as conditions became increasingly dry versus increasingly wet. In 2015, aboveground net primary production (ANPP) exhibited asymmetric responses to precipitation that largely mirrored those of soil respiration. In total, our results suggest that in this mesic ecosystem, these two carbon cycle processes were more sensitive to extreme drought than to extreme wet years. Future work will assess ANPP responses for 2016, soil nutrient supply and physiological responses of the dominant plant species. Future efforts are needed to compare our findings across a diverse array of ecosystem types, and in particular how the timing and magnitude of precipitation events may modify the response of ecosystem processes to increasing magnitudes of precipitation extremes.

  12. Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2012-05-01

    Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  13. Model-free prediction and regression a transformation-based approach to inference

    CERN Document Server

    Politis, Dimitris N

    2015-01-01

    The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, co...

  14. A regression modeling approach for studying carbonate system variability in the northern Gulf of Alaska

    Science.gov (United States)

    Evans, Wiley; Mathis, Jeremy T.; Winsor, Peter; Statscewich, Hank; Whitledge, Terry E.

    2013-01-01

    northern Gulf of Alaska (GOA) shelf experiences carbonate system variability on seasonal and annual time scales, but little information exists to resolve higher frequency variability in this region. To resolve this variability using platforms-of-opportunity, we present multiple linear regression (MLR) models constructed from hydrographic data collected along the Northeast Pacific Global Ocean Ecosystems Dynamics (GLOBEC) Seward Line. The empirical algorithms predict dissolved inorganic carbon (DIC) and total alkalinity (TA) using observations of nitrate (NO3-), temperature, salinity and pressure from the surface to 500 m, with R2s > 0.97 and RMSE values of 11 µmol kg-1 for DIC and 9 µmol kg-1 for TA. We applied these relationships to high-resolution NO3- data sets collected during a novel 20 h glider flight and a GLOBEC mesoscale SeaSoar survey. Results from the glider flight demonstrated time/space along-isopycnal variability of aragonite saturations (Ωarag) associated with a dicothermal layer (a cold near-surface layer found in high latitude oceans) that rivaled changes seen vertically through the thermocline. The SeaSoar survey captured the uplift to aragonite saturation horizon (depth where Ωarag = 1) shoaled to a previously unseen depth in the northern GOA. This work is similar to recent studies aimed at predicting the carbonate system in continental margin settings, albeit demonstrates that a NO3--based approach can be applied to high-latitude data collected from platforms capable of high-frequency measurements.

  15. A logistic regression approach to model the willingness of consumers to adopt renewable energy sources

    Science.gov (United States)

    Ulkhaq, M. M.; Widodo, A. K.; Yulianto, M. F. A.; Widhiyaningrum; Mustikasari, A.; Akshinta, P. Y.

    2018-03-01

    The implementation of renewable energy in this globalization era is inevitable since the non-renewable energy leads to climate change and global warming; hence, it does harm the environment and human life. However, in the developing countries, such as Indonesia, the implementation of the renewable energy sources does face technical and social problems. For the latter, renewable energy sources implementation is only effective if the public is aware of its benefits. This research tried to identify the determinants that influence consumers’ intention in adopting renewable energy sources. In addition, this research also tried to predict the consumers who are willing to apply the renewable energy sources in their houses using a logistic regression approach. A case study was conducted in Semarang, Indonesia. The result showed that only eight variables (from fifteen) that are significant statistically, i.e., educational background, employment status, income per month, average electricity cost per month, certainty about the efficiency of renewable energy project, relatives’ influence to adopt the renewable energy sources, energy tax deduction, and the condition of the price of the non-renewable energy sources. The finding of this study could be used as a basis for the government to set up a policy towards an implementation of the renewable energy sources.

  16. An Ionospheric Index Model based on Linear Regression and Neural Network Approaches

    Science.gov (United States)

    Tshisaphungo, Mpho; McKinnell, Lee-Anne; Bosco Habarulema, John

    2017-04-01

    The ionosphere is well known to reflect radio wave signals in the high frequency (HF) band due to the present of electron and ions within the region. To optimise the use of long distance HF communications, it is important to understand the drivers of ionospheric storms and accurately predict the propagation conditions especially during disturbed days. This paper presents the development of an ionospheric storm-time index over the South African region for the application of HF communication users. The model will result into a valuable tool to measure the complex ionospheric behaviour in an operational space weather monitoring and forecasting environment. The development of an ionospheric storm-time index is based on a single ionosonde station data over Grahamstown (33.3°S,26.5°E), South Africa. Critical frequency of the F2 layer (foF2) measurements for a period 1996-2014 were considered for this study. The model was developed based on linear regression and neural network approaches. In this talk validation results for low, medium and high solar activity periods will be discussed to demonstrate model's performance.

  17. A primer for biomedical scientists on how to execute model II linear regression analysis.

    Science.gov (United States)

    Ludbrook, John

    2012-04-01

    1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

  18. Detecting overdispersion in count data: A zero-inflated Poisson regression analysis

    Science.gov (United States)

    Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Nor, Maria Elena; Mohamed, Maryati; Ismail, Norradihah

    2017-09-01

    This study focusing on analysing count data of butterflies communities in Jasin, Melaka. In analysing count dependent variable, the Poisson regression model has been known as a benchmark model for regression analysis. Continuing from the previous literature that used Poisson regression analysis, this study comprising the used of zero-inflated Poisson (ZIP) regression analysis to gain acute precision on analysing the count data of butterfly communities in Jasin, Melaka. On the other hands, Poisson regression should be abandoned in the favour of count data models, which are capable of taking into account the extra zeros explicitly. By far, one of the most popular models include ZIP regression model. The data of butterfly communities which had been called as the number of subjects in this study had been taken in Jasin, Melaka and consisted of 131 number of subjects visits Jasin, Melaka. Since the researchers are considering the number of subjects, this data set consists of five families of butterfly and represent the five variables involve in the analysis which are the types of subjects. Besides, the analysis of ZIP used the SAS procedure of overdispersion in analysing zeros value and the main purpose of continuing the previous study is to compare which models would be better than when exists zero values for the observation of the count data. The analysis used AIC, BIC and Voung test of 5% level significance in order to achieve the objectives. The finding indicates that there is a presence of over-dispersion in analysing zero value. The ZIP regression model is better than Poisson regression model when zero values exist.

  19. Analysis of γ spectra in airborne radioactivity measurements using multiple linear regressions

    International Nuclear Information System (INIS)

    Bao Min; Shi Quanlin; Zhang Jiamei

    2004-01-01

    This paper describes the net peak counts calculating of nuclide 137 Cs at 662 keV of γ spectra in airborne radioactivity measurements using multiple linear regressions. Mathematic model is founded by analyzing every factor that has contribution to Cs peak counts in spectra, and multiple linear regression function is established. Calculating process adopts stepwise regression, and the indistinctive factors are eliminated by F check. The regression results and its uncertainty are calculated using Least Square Estimation, then the Cs peak net counts and its uncertainty can be gotten. The analysis results for experimental spectrum are displayed. The influence of energy shift and energy resolution on the analyzing result is discussed. In comparison with the stripping spectra method, multiple linear regression method needn't stripping radios, and the calculating result has relation with the counts in Cs peak only, and the calculating uncertainty is reduced. (authors)

  20. A simplified calculation procedure for mass isotopomer distribution analysis (MIDA) based on multiple linear regression.

    Science.gov (United States)

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio

    2016-10-01

    We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two 13 C atoms ( 13 C 2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of 13 C 2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% 13 C 2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yangyang; Parajuli, Prem B.

    2011-08-10

    Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

  2. [Causal analysis approaches in epidemiology].

    Science.gov (United States)

    Dumas, O; Siroux, V; Le Moual, N; Varraso, R

    2014-02-01

    Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the

  3. Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees

    Science.gov (United States)

    Pham, Binh Thai; Prakash, Indra; Tien Bui, Dieu

    2018-02-01

    A hybrid machine learning approach of Random Subspace (RSS) and Classification And Regression Trees (CART) is proposed to develop a model named RSSCART for spatial prediction of landslides. This model is a combination of the RSS method which is known as an efficient ensemble technique and the CART which is a state of the art classifier. The Luc Yen district of Yen Bai province, a prominent landslide prone area of Viet Nam, was selected for the model development. Performance of the RSSCART model was evaluated through the Receiver Operating Characteristic (ROC) curve, statistical analysis methods, and the Chi Square test. Results were compared with other benchmark landslide models namely Support Vector Machines (SVM), single CART, Naïve Bayes Trees (NBT), and Logistic Regression (LR). In the development of model, ten important landslide affecting factors related with geomorphology, geology and geo-environment were considered namely slope angles, elevation, slope aspect, curvature, lithology, distance to faults, distance to rivers, distance to roads, and rainfall. Performance of the RSSCART model (AUC = 0.841) is the best compared with other popular landslide models namely SVM (0.835), single CART (0.822), NBT (0.821), and LR (0.723). These results indicate that performance of the RSSCART is a promising method for spatial landslide prediction.

  4. Comparison of exact, efron and breslow parameter approach method on hazard ratio and stratified cox regression model

    Science.gov (United States)

    Fatekurohman, Mohamat; Nurmala, Nita; Anggraeni, Dian

    2018-04-01

    Lungs are the most important organ, in the case of respiratory system. Problems related to disorder of the lungs are various, i.e. pneumonia, emphysema, tuberculosis and lung cancer. Comparing all those problems, lung cancer is the most harmful. Considering about that, the aim of this research applies survival analysis and factors affecting the endurance of the lung cancer patient using comparison of exact, Efron and Breslow parameter approach method on hazard ratio and stratified cox regression model. The data applied are based on the medical records of lung cancer patients in Jember Paru-paru hospital on 2016, east java, Indonesia. The factors affecting the endurance of the lung cancer patients can be classified into several criteria, i.e. sex, age, hemoglobin, leukocytes, erythrocytes, sedimentation rate of blood, therapy status, general condition, body weight. The result shows that exact method of stratified cox regression model is better than other. On the other hand, the endurance of the patients is affected by their age and the general conditions.

  5. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    Science.gov (United States)

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  6. Detection of Differential Item Functioning with Nonlinear Regression: A Non-IRT Approach Accounting for Guessing

    Czech Academy of Sciences Publication Activity Database

    Drabinová, Adéla; Martinková, Patrícia

    2017-01-01

    Roč. 54, č. 4 (2017), s. 498-517 ISSN 0022-0655 R&D Projects: GA ČR GJ15-15856Y Institutional support: RVO:67985807 Keywords : differential item functioning * non-linear regression * logistic regression * item response theory Subject RIV: AM - Education OBOR OECD: Statistics and probability Impact factor: 0.979, year: 2016

  7. Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data

    Science.gov (United States)

    Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.

    2014-01-01

    In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438

  8. Regression analysis understanding and building business and economic models using Excel

    CERN Document Server

    Wilson, J Holton

    2012-01-01

    The technique of regression analysis is used so often in business and economics today that an understanding of its use is necessary for almost everyone engaged in the field. This book will teach you the essential elements of building and understanding regression models in a business/economic context in an intuitive manner. The authors take a non-theoretical treatment that is accessible even if you have a limited statistical background. It is specifically designed to teach the correct use of regression, while advising you of its limitations and teaching about common pitfalls. This book describe

  9. Statistical approach for selection of regression model during validation of bioanalytical method

    Directory of Open Access Journals (Sweden)

    Natalija Nakov

    2014-06-01

    Full Text Available The selection of an adequate regression model is the basis for obtaining accurate and reproducible results during the bionalytical method validation. Given the wide concentration range, frequently present in bioanalytical assays, heteroscedasticity of the data may be expected. Several weighted linear and quadratic regression models were evaluated during the selection of the adequate curve fit using nonparametric statistical tests: One sample rank test and Wilcoxon signed rank test for two independent groups of samples. The results obtained with One sample rank test could not give statistical justification for the selection of linear vs. quadratic regression models because slight differences between the error (presented through the relative residuals were obtained. Estimation of the significance of the differences in the RR was achieved using Wilcoxon signed rank test, where linear and quadratic regression models were treated as two independent groups. The application of this simple non-parametric statistical test provides statistical confirmation of the choice of an adequate regression model.

  10. Assessment of perfusion by dynamic contrast-enhanced imaging using a deconvolution approach based on regression and singular value decomposition.

    Science.gov (United States)

    Koh, T S; Wu, X Y; Cheong, L H; Lim, C C T

    2004-12-01

    The assessment of tissue perfusion by dynamic contrast-enhanced (DCE) imaging involves a deconvolution process. For analysis of DCE imaging data, we implemented a regression approach to select appropriate regularization parameters for deconvolution using the standard and generalized singular value decomposition methods. Monte Carlo simulation experiments were carried out to study the performance and to compare with other existing methods used for deconvolution analysis of DCE imaging data. The present approach is found to be robust and reliable at the levels of noise commonly encountered in DCE imaging, and for different models of the underlying tissue vasculature. The advantages of the present method, as compared with previous methods, include its efficiency of computation, ability to achieve adequate regularization to reproduce less noisy solutions, and that it does not require prior knowledge of the noise condition. The proposed method is applied on actual patient study cases with brain tumors and ischemic stroke, to illustrate its applicability as a clinical tool for diagnosis and assessment of treatment response.

  11. A multiple regression analysis for accurate background subtraction in 99Tcm-DTPA renography

    International Nuclear Information System (INIS)

    Middleton, G.W.; Thomson, W.H.; Davies, I.H.; Morgan, A.

    1989-01-01

    A technique for accurate background subtraction in 99 Tc m -DTPA renography is described. The technique is based on a multiple regression analysis of the renal curves and separate heart and soft tissue curves which together represent background activity. It is compared, in over 100 renograms, with a previously described linear regression technique. Results show that the method provides accurate background subtraction, even in very poorly functioning kidneys, thus enabling relative renal filtration and excretion to be accurately estimated. (author)

  12. An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models

    DEFF Research Database (Denmark)

    Kinnebrock, Silja; Podolskij, Mark

    This paper introduces a new estimator to measure the ex-post covariation between high-frequency financial time series under market microstructure noise. We provide an asymptotic limit theory (including feasible central limit theorems) for standard methods such as regression, correlation analysis...... process can be relaxed and how our method can be applied to non-synchronous observations. We also present an empirical study of how high-frequency correlations, regressions and covariances change through time....

  13. Application of Robust Regression and Bootstrap in Poductivity Analysis of GERD Variable in EU27

    Directory of Open Access Journals (Sweden)

    Dagmar Blatná

    2014-06-01

    Full Text Available The GERD is one of Europe 2020 headline indicators being tracked within the Europe 2020 strategy. The headline indicator is the 3% target for the GERD to be reached within the EU by 2020. Eurostat defi nes “GERD” as total gross domestic expenditure on research and experimental development in a percentage of GDP. GERD depends on numerous factors of a general economic background, namely of employment, innovation and research, science and technology. The values of these indicators vary among the European countries, and consequently the occurrence of outliers can be anticipated in corresponding analyses. In such a case, a classical statistical approach – the least squares method – can be highly unreliable, the robust regression methods representing an acceptable and useful tool. The aim of the present paper is to demonstrate the advantages of robust regression and applicability of the bootstrap approach in regression based on both classical and robust methods.

  14. Demographic and socioeconomic disparity in nutrition: application of a novel Correlated Component Regression approach

    Science.gov (United States)

    Alkerwi, Ala'a; Vernier, Céderic; Sauvageot, Nicolas; Crichton, Georgina E; Elias, Merrill F

    2015-01-01

    Objectives This study aimed to examine the most important demographic and socioeconomic factors associated with diet quality, evaluated in terms of compliance with national dietary recommendations, selection of healthy and unhealthy food choices, energy density and food variety. We hypothesised that different demographic and socioeconomic factors may show disparate associations with diet quality. Study design A nationwide, cross-sectional, population-based study. Participants A total of 1352 apparently healthy and non-institutionalised subjects, aged 18–69 years, participated in the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV-LUX) study in 2007–2008. The participants attended the nearest study centre after a telephone appointment, and were interviewed by trained research staff. Outcome measures Diet quality as measured by 5 dietary indicators, namely, recommendation compliance index (RCI), recommended foods score (RFS), non-recommended foods score (non-RFS), energy density score (EDS), and dietary diversity score (DDS). The novel Correlated Component Regression (CCR) technique was used to determine the importance and magnitude of the association of each socioeconomic factor with diet quality, in a global analytic approach. Results Increasing age, being male and living below the poverty threshold were predominant factors associated with eating a high energy density diet. Education level was an important factor associated with healthy and adequate food choices, whereas economic resources were predominant factors associated with food diversity and energy density. Conclusions Multiple demographic and socioeconomic circumstances were associated with different diet quality indicators. Efforts to improve diet quality for high-risk groups need an important public health focus. PMID:25967988

  15. SU-E-J-212: Identifying Bones From MRI: A Dictionary Learnign and Sparse Regression Approach

    International Nuclear Information System (INIS)

    Ruan, D; Yang, Y; Cao, M; Hu, P; Low, D

    2014-01-01

    Purpose: To develop an efficient and robust scheme to identify bony anatomy based on MRI-only simulation images. Methods: MRI offers important soft tissue contrast and functional information, yet its lack of correlation to electron-density has placed it as an auxiliary modality to CT in radiotherapy simulation and adaptation. An effective scheme to identify bony anatomy is an important first step towards MR-only simulation/treatment paradigm and would satisfy most practical purposes. We utilize a UTE acquisition sequence to achieve visibility of the bone. By contrast to manual + bulk or registration-to identify bones, we propose a novel learning-based approach for improved robustness to MR artefacts and environmental changes. Specifically, local information is encoded with MR image patch, and the corresponding label is extracted (during training) from simulation CT aligned to the UTE. Within each class (bone vs. nonbone), an overcomplete dictionary is learned so that typical patches within the proper class can be represented as a sparse combination of the dictionary entries. For testing, an acquired UTE-MRI is divided to patches using a sliding scheme, where each patch is sparsely regressed against both bone and nonbone dictionaries, and subsequently claimed to be associated with the class with the smaller residual. Results: The proposed method has been applied to the pilot site of brain imaging and it has showed general good performance, with dice similarity coefficient of greater than 0.9 in a crossvalidation study using 4 datasets. Importantly, it is robust towards consistent foreign objects (e.g., headset) and the artefacts relates to Gibbs and field heterogeneity. Conclusion: A learning perspective has been developed for inferring bone structures based on UTE MRI. The imaging setting is subject to minimal motion effects and the post-processing is efficient. The improved efficiency and robustness enables a first translation to MR-only routine. The scheme

  16. SU-E-J-212: Identifying Bones From MRI: A Dictionary Learnign and Sparse Regression Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, D; Yang, Y; Cao, M; Hu, P; Low, D [UCLA, Los Angeles, CA (United States)

    2014-06-01

    Purpose: To develop an efficient and robust scheme to identify bony anatomy based on MRI-only simulation images. Methods: MRI offers important soft tissue contrast and functional information, yet its lack of correlation to electron-density has placed it as an auxiliary modality to CT in radiotherapy simulation and adaptation. An effective scheme to identify bony anatomy is an important first step towards MR-only simulation/treatment paradigm and would satisfy most practical purposes. We utilize a UTE acquisition sequence to achieve visibility of the bone. By contrast to manual + bulk or registration-to identify bones, we propose a novel learning-based approach for improved robustness to MR artefacts and environmental changes. Specifically, local information is encoded with MR image patch, and the corresponding label is extracted (during training) from simulation CT aligned to the UTE. Within each class (bone vs. nonbone), an overcomplete dictionary is learned so that typical patches within the proper class can be represented as a sparse combination of the dictionary entries. For testing, an acquired UTE-MRI is divided to patches using a sliding scheme, where each patch is sparsely regressed against both bone and nonbone dictionaries, and subsequently claimed to be associated with the class with the smaller residual. Results: The proposed method has been applied to the pilot site of brain imaging and it has showed general good performance, with dice similarity coefficient of greater than 0.9 in a crossvalidation study using 4 datasets. Importantly, it is robust towards consistent foreign objects (e.g., headset) and the artefacts relates to Gibbs and field heterogeneity. Conclusion: A learning perspective has been developed for inferring bone structures based on UTE MRI. The imaging setting is subject to minimal motion effects and the post-processing is efficient. The improved efficiency and robustness enables a first translation to MR-only routine. The scheme

  17. Analysis of stresses on buried pipeline subjected to landslide based on numerical simulation and regression analysis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bing; Jing, Hongyuan; Liu, Jianping; Wu, Zhangzhong [PetroChina Pipeline RandD Center, Langfang, Hebei (China); Hao, Jianbin [School of Petroleum Engineering, Southwest Petroleum University, Chengdu, Sichuan (China)

    2010-07-01

    Landslides have a serious impact on the integrity of oil and gas pipelines in the tough terrain of Western China. This paper introduces a solving method of axial stress, which uses numerical simulation and regression analysis for the pipelines subjected to landslides. Numerical simulation is performed to analyze the change regularity of pipe stresses for the five vulnerability assessment indexes, which are: the distance between pipeline and landslide tail; the thickness of landslide; the inclination angle of landslide; the pipeline length passing through landslide; and the buried depth of pipeline. A pipeline passing through a certain landslide in southwest China was selected as an example to verify the feasibility and effectiveness of this method. This method has practical applicability, but it would need large numbers of examples to better verify its reliability and should be modified accordingly. Also, it only considers the case where the direction of the pipeline is perpendicular to the primary slip direction of the landslide.

  18. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    Science.gov (United States)

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  19. Trend Analysis of Cancer Mortality and Incidence in Panama, Using Joinpoint Regression Analysis.

    Science.gov (United States)

    Politis, Michael; Higuera, Gladys; Chang, Lissette Raquel; Gomez, Beatriz; Bares, Juan; Motta, Jorge

    2015-06-01

    Cancer is one of the leading causes of death worldwide and its incidence is expected to increase in the future. In Panama, cancer is also one of the leading causes of death. In 1964, a nationwide cancer registry was started and it was restructured and improved in 2012. The aim of this study is to utilize Joinpoint regression analysis to study the trends of the incidence and mortality of cancer in Panama in the last decade. Cancer mortality was estimated from the Panamanian National Institute of Census and Statistics Registry for the period 2001 to 2011. Cancer incidence was estimated from the Panamanian National Cancer Registry for the period 2000 to 2009. The Joinpoint Regression Analysis program, version 4.0.4, was used to calculate trends by age-adjusted incidence and mortality rates for selected cancers. Overall, the trend of age-adjusted cancer mortality in Panama has declined over the last 10 years (-1.12% per year). The cancers for which there was a significant increase in the trend of mortality were female breast cancer and ovarian cancer; while the highest increases in incidence were shown for breast cancer, liver cancer, and prostate cancer. Significant decrease in the trend of mortality was evidenced for the following: prostate cancer, lung and bronchus cancer, and cervical cancer; with respect to incidence, only oral and pharynx cancer in both sexes had a significant decrease. Some cancers showed no significant trends in incidence or mortality. This study reveals contrasting trends in cancer incidence and mortality in Panama in the last decade. Although Panama is considered an upper middle income nation, this study demonstrates that some cancer mortality trends, like the ones seen in cervical and lung cancer, behave similarly to the ones seen in high income countries. In contrast, other types, like breast cancer, follow a pattern seen in countries undergoing a transition to a developed economy with its associated lifestyle, nutrition, and body weight

  20. Regression analysis of growth responses to water depth in three wetland plant species

    DEFF Research Database (Denmark)

    Sorrell, Brian K; Tanner, Chris C; Brix, Hans

    2012-01-01

    depths from 0 – 0.5 m. Morphological and growth responses to depth were followed for 54 days before harvest, and then analysed by repeated measures analysis of covariance, and non-linear and quantile regression analysis (QRA), to compare flooding tolerances. Principal results Growth responses to depth...

  1. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis.

    Science.gov (United States)

    Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro

    2017-09-01

    To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Simple estimation procedures for regression analysis of interval-censored failure time data under the proportional hazards model.

    Science.gov (United States)

    Sun, Jianguo; Feng, Yanqin; Zhao, Hui

    2015-01-01

    Interval-censored failure time data occur in many fields including epidemiological and medical studies as well as financial and sociological studies, and many authors have investigated their analysis (Sun, The statistical analysis of interval-censored failure time data, 2006; Zhang, Stat Modeling 9:321-343, 2009). In particular, a number of procedures have been developed for regression analysis of interval-censored data arising from the proportional hazards model (Finkelstein, Biometrics 42:845-854, 1986; Huang, Ann Stat 24:540-568, 1996; Pan, Biometrics 56:199-203, 2000). For most of these procedures, however, one drawback is that they involve estimation of both regression parameters and baseline cumulative hazard function. In this paper, we propose two simple estimation approaches that do not need estimation of the baseline cumulative hazard function. The asymptotic properties of the resulting estimates are given, and an extensive simulation study is conducted and indicates that they work well for practical situations.

  3. Regression Analysis of Top of Descent Location for Idle-thrust Descents

    Science.gov (United States)

    Stell, Laurel; Bronsvoort, Jesper; McDonald, Greg

    2013-01-01

    In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. The independent variables cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also recorded or computed post-operations. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajec- tory parameters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowl- edge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace. In particular, a model for TOD location that is linear in the independent variables would enable decision support tool human-machine interfaces for which a kinetic approach would be computationally too slow.

  4. An Integrated Approach to Battery Health Monitoring using Bayesian Regression, Classification and State Estimation

    Data.gov (United States)

    National Aeronautics and Space Administration — The application of the Bayesian theory of managing uncertainty and complexity to regression and classification in the form of Relevance Vector Machine (RVM), and to...

  5. Multiple regression analysis of Jominy hardenability data for boron treated steels

    International Nuclear Information System (INIS)

    Komenda, J.; Sandstroem, R.; Tukiainen, M.

    1997-01-01

    The relations between chemical composition and their hardenability of boron treated steels have been investigated using a multiple regression analysis method. A linear model of regression was chosen. The free boron content that is effective for the hardenability was calculated using a model proposed by Jansson. The regression analysis for 1261 steel heats provided equations that were statistically significant at the 95% level. All heats met the specification according to the nordic countries producers classification. The variation in chemical composition explained typically 80 to 90% of the variation in the hardenability. In the regression analysis elements which did not significantly contribute to the calculated hardness according to the F test were eliminated. Carbon, silicon, manganese, phosphorus and chromium were of importance at all Jominy distances, nickel, vanadium, boron and nitrogen at distances above 6 mm. After the regression analysis it was demonstrated that very few outliers were present in the data set, i.e. data points outside four times the standard deviation. The model has successfully been used in industrial practice replacing some of the necessary Jominy tests. (orig.)

  6. HYBRID DATA APPROACH FOR SELECTING EFFECTIVE TEST CASES DURING THE REGRESSION TESTING

    OpenAIRE

    Mohan, M.; Shrimali, Tarun

    2017-01-01

    In the software industry, software testing becomes more important in the entire software development life cycle. Software testing is one of the fundamental components of software quality assurances. Software Testing Life Cycle (STLC)is a process involved in testing the complete software, which includes Regression Testing, Unit Testing, Smoke Testing, Integration Testing, Interface Testing, System Testing & etc. In the STLC of Regression testing, test case selection is one of the most importan...

  7. Treating experimental data of inverse kinetic method by unitary linear regression analysis

    International Nuclear Information System (INIS)

    Zhao Yusen; Chen Xiaoliang

    2009-01-01

    The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)

  8. Prediction of hearing outcomes by multiple regression analysis in patients with idiopathic sudden sensorineural hearing loss.

    Science.gov (United States)

    Suzuki, Hideaki; Tabata, Takahisa; Koizumi, Hiroki; Hohchi, Nobusuke; Takeuchi, Shoko; Kitamura, Takuro; Fujino, Yoshihisa; Ohbuchi, Toyoaki

    2014-12-01

    This study aimed to create a multiple regression model for predicting hearing outcomes of idiopathic sudden sensorineural hearing loss (ISSNHL). The participants were 205 consecutive patients (205 ears) with ISSNHL (hearing level ≥ 40 dB, interval between onset and treatment ≤ 30 days). They received systemic steroid administration combined with intratympanic steroid injection. Data were examined by simple and multiple regression analyses. Three hearing indices (percentage hearing improvement, hearing gain, and posttreatment hearing level [HLpost]) and 7 prognostic factors (age, days from onset to treatment, initial hearing level, initial hearing level at low frequencies, initial hearing level at high frequencies, presence of vertigo, and contralateral hearing level) were included in the multiple regression analysis as dependent and explanatory variables, respectively. In the simple regression analysis, the percentage hearing improvement, hearing gain, and HLpost showed significant correlation with 2, 5, and 6 of the 7 prognostic factors, respectively. The multiple correlation coefficients were 0.396, 0.503, and 0.714 for the percentage hearing improvement, hearing gain, and HLpost, respectively. Predicted values of HLpost calculated by the multiple regression equation were reliable with 70% probability with a 40-dB-width prediction interval. Prediction of HLpost by the multiple regression model may be useful to estimate the hearing prognosis of ISSNHL. © The Author(s) 2014.

  9. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    Science.gov (United States)

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  10. Analysis of Functional Data with Focus on Multinomial Regression and Multilevel Data

    DEFF Research Database (Denmark)

    Mousavi, Seyed Nourollah

    Functional data analysis (FDA) is a fast growing area in statistical research with increasingly diverse range of application from economics, medicine, agriculture, chemometrics, etc. Functional regression is an area of FDA which has received the most attention both in aspects of application...... and methodological development. Our main Functional data analysis (FDA) is a fast growing area in statistical research with increasingly diverse range of application from economics, medicine, agriculture, chemometrics, etc. Functional regression is an area of FDA which has received the most attention both in aspects...

  11. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2004-01-01

    This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....

  12. Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis.

    Science.gov (United States)

    Ponsoda, Vicente; Martínez, Kenia; Pineda-Pardo, José A; Abad, Francisco J; Olea, Julio; Román, Francisco J; Barbey, Aron K; Colom, Roberto

    2017-02-01

    Neuroimaging research involves analyses of huge amounts of biological data that might or might not be related with cognition. This relationship is usually approached using univariate methods, and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the probability of false negatives is also increased. Multivariate frameworks have been proposed for helping to alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous analysis of biological and cognitive data, namely, structural connections among 82 brain regions and several latent factors estimating cognitive performance. We tested whether cognitive differences predict distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections among regions, the 36 edges better predicted by the individuals' cognitive scores were selected. Cognitive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity patterns. The selected edges connect regions distributed across the entire brain and the network defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control, (b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This multivariate study suggests that one widespread, but limited number, of regions in the human brain, supports high-level cognitive ability differences. Hum Brain Mapp 38:803-816, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Is the perceived placebo effect comparable between adults and children? A meta-regression analysis.

    Science.gov (United States)

    Janiaud, Perrine; Cornu, Catherine; Lajoinie, Audrey; Djemli, Amina; Cucherat, Michel; Kassai, Behrouz

    2017-01-01

    A potential larger perceived placebo effect in children compared with adults could influence the detection of the treatment effect and the extrapolation of the treatment benefit from adults to children. This study aims to explore this potential difference, using a meta-epidemiological approach. A systematic review of the literature was done to identify trials included in meta-analyses evaluating a drug intervention with separate data for adults and children. The standardized mean change and the proportion of responders (binary outcomes) were used to calculate the perceived placebo effect. A meta-regression analysis was conducted to test for the difference between adults and children of the perceived placebo effect. For binary outcomes, the perceived placebo effect was significantly more favorable in children compared with adults (β = 0.13; P = 0.001). Parallel group trials (β = -1.83; P < 0.001), subjective outcomes (β = -0.76; P < 0.001), and the disease type significantly influenced the perceived placebo effect. The perceived placebo effect is different between adults and children for binary outcomes. This difference seems to be influenced by the design, the disease, and outcomes. Calibration of new studies for children should consider cautiously the placebo effect in children.

  14. Associations of neighborhood disorganization and maternal spanking with children's aggression: A fixed-effects regression analysis.

    Science.gov (United States)

    Ma, Julie; Grogan-Kaylor, Andrew; Lee, Shawna J

    2018-02-01

    This study employed fixed effects regression that controls for selection bias, omitted variables bias, and all time-invariant aspects of parent and child characteristics to examine the simultaneous associations between neighborhood disorganization, maternal spanking, and aggressive behavior in early childhood using data from the Fragile Families and Child Wellbeing Study (FFCWS). Analysis was based on 2,472 children and their mothers who participated in Wave 3 (2001-2003; child age 3) and Wave 4 (2003-2006; child age 5) of the FFCWS. Results indicated that higher rates of neighborhood crime and violence predicted higher levels of child aggression. Maternal spanking in the past year, whether frequent or infrequent, was also associated with increases in aggressive behavior. This study contributes statistically rigorous evidence that exposure to violence in the neighborhood as well as the family context are predictors of child aggression. We conclude with a discussion for the need for multilevel prevention and intervention approaches that target both community and parenting factors. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Desertification Susceptibility Mapping Using Logistic Regression Analysis in the Djelfa Area, Algeria

    Directory of Open Access Journals (Sweden)

    Farid Djeddaoui

    2017-10-01

    Full Text Available The main goal of this work was to identify the areas that are most susceptible to desertification in a part of the Algerian steppe, and to quantitatively assess the key factors that contribute to this desertification. In total, 139 desertified zones were mapped using field surveys and photo-interpretation. We selected 16 spectral and geomorphic predictive factors, which a priori play a significant role in desertification. They were mainly derived from Landsat 8 imagery and Shuttle Radar Topographic Mission digital elevation model (SRTM DEM. Some factors, such as the topographic position index (TPI and curvature, were used for the first time in this kind of study. For this purpose, we adapted the logistic regression algorithm for desertification susceptibility mapping, which has been widely used for landslide susceptibility mapping. The logistic model was evaluated using the area under the receiver operating characteristic (ROC curve. The model accuracy was 87.8%. We estimated the model uncertainties using a bootstrap method. Our analysis suggests that the predictive model is robust and stable. Our results indicate that land cover factors, including normalized difference vegetation index (NDVI and rangeland classes, play a major role in determining desertification occurrence, while geomorphological factors have a limited impact. The predictive map shows that 44.57% of the area is classified as highly to very highly susceptible to desertification. The developed approach can be used to assess desertification in areas with similar characteristics and to guide possible actions to combat desertification.

  16. Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis

    Science.gov (United States)

    Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad

    2015-01-01

    Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.

  17. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    Science.gov (United States)

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  18. Understanding poisson regression.

    Science.gov (United States)

    Hayat, Matthew J; Higgins, Melinda

    2014-04-01

    Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

  19. Estimate the contribution of incubation parameters influence egg hatchability using multiple linear regression analysis.

    Science.gov (United States)

    Khalil, Mohamed H; Shebl, Mostafa K; Kosba, Mohamed A; El-Sabrout, Karim; Zaki, Nesma

    2016-08-01

    This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens' eggs. Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens.

  20. A nonparametric approach to calculate critical micelle concentrations: the local polynomial regression method

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Fontan, J.L.; Costa, J.; Ruso, J.M.; Prieto, G. [Dept. of Applied Physics, Univ. of Santiago de Compostela, Santiago de Compostela (Spain); Sarmiento, F. [Dept. of Mathematics, Faculty of Informatics, Univ. of A Coruna, A Coruna (Spain)

    2004-02-01

    The application of a statistical method, the local polynomial regression method, (LPRM), based on a nonparametric estimation of the regression function to determine the critical micelle concentration (cmc) is presented. The method is extremely flexible because it does not impose any parametric model on the subjacent structure of the data but rather allows the data to speak for themselves. Good concordance of cmc values with those obtained by other methods was found for systems in which the variation of a measured physical property with concentration showed an abrupt change. When this variation was slow, discrepancies between the values obtained by LPRM and others methods were found. (orig.)

  1. Exploring factors associated with traumatic dental injuries in preschool children: a Poisson regression analysis.

    Science.gov (United States)

    Feldens, Carlos Alberto; Kramer, Paulo Floriani; Ferreira, Simone Helena; Spiguel, Mônica Hermann; Marquezan, Marcela

    2010-04-01

    This cross-sectional study aimed to investigate the factors associated with dental trauma in preschool children using Poisson regression analysis with robust variance. The study population comprised 888 children aged 3- to 5-year-old attending public nurseries in Canoas, southern Brazil. Questionnaires assessing information related to the independent variables (age, gender, race, mother's educational level and family income) were completed by the parents. Clinical examinations were carried out by five trained examiners in order to assess traumatic dental injuries (TDI) according to Andreasen's classification. One of the five examiners was calibrated to assess orthodontic characteristics (open bite and overjet). Multivariable Poisson regression analysis with robust variance was used to determine the factors associated with dental trauma as well as the strengths of association. Traditional logistic regression was also performed in order to compare the estimates obtained by both methods of statistical analysis. 36.4% (323/888) of the children suffered dental trauma and there was no difference in prevalence rates from 3 to 5 years of age. Poisson regression analysis showed that the probability of the outcome was almost 30% higher for children whose mothers had more than 8 years of education (Prevalence Ratio = 1.28; 95% CI = 1.03-1.60) and 63% higher for children with an overjet greater than 2 mm (Prevalence Ratio = 1.63; 95% CI = 1.31-2.03). Odds ratios clearly overestimated the size of the effect when compared with prevalence ratios. These findings indicate the need for preventive orientation regarding TDI, in order to educate parents and caregivers about supervising infants, particularly those with increased overjet and whose mothers have a higher level of education. Poisson regression with robust variance represents a better alternative than logistic regression to estimate the risk of dental trauma in preschool children.

  2. Quantile regression for the statistical analysis of immunological data with many non-detects.

    Science.gov (United States)

    Eilers, Paul H C; Röder, Esther; Savelkoul, Huub F J; van Wijk, Roy Gerth

    2012-07-07

    Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.

  3. Determining Balıkesir’s Energy Potential Using a Regression Analysis Computer Program

    Directory of Open Access Journals (Sweden)

    Bedri Yüksel

    2014-01-01

    Full Text Available Solar power and wind energy are used concurrently during specific periods, while at other times only the more efficient is used, and hybrid systems make this possible. When establishing a hybrid system, the extent to which these two energy sources support each other needs to be taken into account. This paper is a study of the effects of wind speed, insolation levels, and the meteorological parameters of temperature and humidity on the energy potential in Balıkesir, in the Marmara region of Turkey. The relationship between the parameters was studied using a multiple linear regression method. Using a designed-for-purpose computer program, two different regression equations were derived, with wind speed being the dependent variable in the first and insolation levels in the second. The regression equations yielded accurate results. The computer program allowed for the rapid calculation of different acceptance rates. The results of the statistical analysis proved the reliability of the equations. An estimate of identified meteorological parameters and unknown parameters could be produced with a specified precision by using the regression analysis method. The regression equations also worked for the evaluation of energy potential.

  4. Differential item functioning analysis with ordinal logistic regression techniques. DIFdetect and difwithpar.

    Science.gov (United States)

    Crane, Paul K; Gibbons, Laura E; Jolley, Lance; van Belle, Gerald

    2006-11-01

    We present an ordinal logistic regression model for identification of items with differential item functioning (DIF) and apply this model to a Mini-Mental State Examination (MMSE) dataset. We employ item response theory ability estimation in our models. Three nested ordinal logistic regression models are applied to each item. Model testing begins with examination of the statistical significance of the interaction term between ability and the group indicator, consistent with nonuniform DIF. Then we turn our attention to the coefficient of the ability term in models with and without the group term. If including the group term has a marked effect on that coefficient, we declare that it has uniform DIF. We examined DIF related to language of test administration in addition to self-reported race, Hispanic ethnicity, age, years of education, and sex. We used PARSCALE for IRT analyses and STATA for ordinal logistic regression approaches. We used an iterative technique for adjusting IRT ability estimates on the basis of DIF findings. Five items were found to have DIF related to language. These same items also had DIF related to other covariates. The ordinal logistic regression approach to DIF detection, when combined with IRT ability estimates, provides a reasonable alternative for DIF detection. There appear to be several items with significant DIF related to language of test administration in the MMSE. More attention needs to be paid to the specific criteria used to determine whether an item has DIF, not just the technique used to identify DIF.

  5. Predictors of postoperative outcomes of cubital tunnel syndrome treatments using multiple logistic regression analysis.

    Science.gov (United States)

    Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki

    2017-05-01

    This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  6. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water.

    Science.gov (United States)

    Franz, Eelco; Schijven, Jack; de Roda Husman, Ana Maria; Blaak, Hetty

    2014-06-17

    The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.

  7. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    Science.gov (United States)

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  8. Application of range-test in multiple linear regression analysis in ...

    African Journals Online (AJOL)

    Application of range-test in multiple linear regression analysis in the presence of outliers is studied in this paper. First, the plot of the explanatory variables (i.e. Administration, Social/Commercial, Economic services and Transfer) on the dependent variable (i.e. GDP) was done to identify the statistical trend over the years.

  9. Multiple Logistic Regression Analysis of Cigarette Use among High School Students

    Science.gov (United States)

    Adwere-Boamah, Joseph

    2011-01-01

    A binary logistic regression analysis was performed to predict high school students' cigarette smoking behavior from selected predictors from 2009 CDC Youth Risk Behavior Surveillance Survey. The specific target student behavior of interest was frequent cigarette use. Five predictor variables included in the model were: a) race, b) frequency of…

  10. A systematic review and meta-regression analysis of mivacurium for tracheal intubation

    NARCIS (Netherlands)

    Vanlinthout, L.E.H.; Mesfin, S.H.; Hens, N.; Vanacker, B.F.; Robertson, E.N.; Booij, L.H.D.J.

    2014-01-01

    We systematically reviewed factors associated with intubation conditions in randomised controlled trials of mivacurium, using random-effects meta-regression analysis. We included 29 studies of 1050 healthy participants. Four factors explained 72.9% of the variation in the probability of excellent

  11. Declining Bias and Gender Wage Discrimination? A Meta-Regression Analysis

    Science.gov (United States)

    Jarrell, Stephen B.; Stanley, T. D.

    2004-01-01

    The meta-regression analysis reveals that there is a strong tendency for discrimination estimates to fall and wage discrimination exist against the woman. The biasing effect of researchers' gender of not correcting for selection bias has weakened and changes in labor market have made it less important.

  12. Gender Gaps in Mathematics, Science and Reading Achievements in Muslim Countries: A Quantile Regression Approach

    Science.gov (United States)

    Shafiq, M. Najeeb

    2013-01-01

    Using quantile regression analyses, this study examines gender gaps in mathematics, science, and reading in Azerbaijan, Indonesia, Jordan, the Kyrgyz Republic, Qatar, Tunisia, and Turkey among 15-year-old students. The analyses show that girls in Azerbaijan achieve as well as boys in mathematics and science and overachieve in reading. In Jordan,…

  13. INTRODUCTION TO A COMBINED MULTIPLE LINEAR REGRESSION AND ARMA MODELING APPROACH FOR BEACH BACTERIA PREDICTION

    Science.gov (United States)

    Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...

  14. Modeling geochemical datasets for source apportionment: Comparison of least square regression and inversion approaches.

    Digital Repository Service at National Institute of Oceanography (India)

    Tripathy, G.R.; Das, Anirban.

    used methods, the Least Square Regression (LSR) and Inverse Modeling (IM), to determine the contributions of (i) solutes from different sources to global river water, and (ii) various rocks to a glacial till. The purpose of this exercise is to compare...

  15. Financial Aid and First-Year Collegiate GPA: A Regression Discontinuity Approach

    Science.gov (United States)

    Curs, Bradley R.; Harper, Casandra E.

    2012-01-01

    Using a regression discontinuity design, we investigate whether a merit-based financial aid program has a causal effect on the first-year grade point average of first-time out-of-state freshmen at the University of Oregon. Our results indicate that merit-based financial aid has a positive and significant effect on first-year collegiate grade point…

  16. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach.

    Science.gov (United States)

    Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of

  17. Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression.

    Science.gov (United States)

    Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C

    2011-04-01

    The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF

  18. Regression Analysis and Calibration Recommendations for the Characterization of Balance Temperature Effects

    Science.gov (United States)

    Ulbrich, N.; Volden, T.

    2018-01-01

    Analysis and use of temperature-dependent wind tunnel strain-gage balance calibration data are discussed in the paper. First, three different methods are presented and compared that may be used to process temperature-dependent strain-gage balance data. The first method uses an extended set of independent variables in order to process the data and predict balance loads. The second method applies an extended load iteration equation during the analysis of balance calibration data. The third method uses temperature-dependent sensitivities for the data analysis. Physical interpretations of the most important temperature-dependent regression model terms are provided that relate temperature compensation imperfections and the temperature-dependent nature of the gage factor to sets of regression model terms. Finally, balance calibration recommendations are listed so that temperature-dependent calibration data can be obtained and successfully processed using the reviewed analysis methods.

  19. Modelling lecturer performance index of private university in Tulungagung by using survival analysis with multivariate adaptive regression spline

    Science.gov (United States)

    Hasyim, M.; Prastyo, D. D.

    2018-03-01

    Survival analysis performs relationship between independent variables and survival time as dependent variable. In fact, not all survival data can be recorded completely by any reasons. In such situation, the data is called censored data. Moreover, several model for survival analysis requires assumptions. One of the approaches in survival analysis is nonparametric that gives more relax assumption. In this research, the nonparametric approach that is employed is Multivariate Regression Adaptive Spline (MARS). This study is aimed to measure the performance of private university’s lecturer. The survival time in this study is duration needed by lecturer to obtain their professional certificate. The results show that research activities is a significant factor along with developing courses material, good publication in international or national journal, and activities in research collaboration.

  20. A Simple Linear Regression Method for Quantitative Trait Loci Linkage Analysis With Censored Observations

    OpenAIRE

    Anderson, Carl A.; McRae, Allan F.; Visscher, Peter M.

    2006-01-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using...

  1. Choosing of mode and calculation of multiple regression equation parameters in X-ray radiometric analysis

    International Nuclear Information System (INIS)

    Mamikonyan, S.V.; Berezkin, V.V.; Lyubimova, S.V.; Svetajlo, Yu.N.; Shchekin, K.I.

    1978-01-01

    A method to derive multiple regression equations for X-ray radiometric analysis is described. Te method is realized in the form of the REGRA program in an algorithmic language. The subprograms included in the program are describe. In analyzing cement for Mg, Al, Si, Ca and Fe contents as an example, the obtainment of working equations in the course of calculations by the program is shown to simpliy the realization of computing devices in instruments for X-ray radiometric analysis

  2. Forecasting Model for IPTV Service in Korea Using Bootstrap Ridge Regression Analysis

    Science.gov (United States)

    Lee, Byoung Chul; Kee, Seho; Kim, Jae Bum; Kim, Yun Bae

    The telecom firms in Korea are taking new step to prepare for the next generation of convergence services, IPTV. In this paper we described our analysis on the effective method for demand forecasting about IPTV broadcasting. We have tried according to 3 types of scenarios based on some aspects of IPTV potential market and made a comparison among the results. The forecasting method used in this paper is the multi generation substitution model with bootstrap ridge regression analysis.

  3. Predicting Insolvency : A comparison between discriminant analysis and logistic regression using principal components

    OpenAIRE

    Geroukis, Asterios; Brorson, Erik

    2014-01-01

    In this study, we compare the two statistical techniques logistic regression and discriminant analysis to see how well they classify companies based on clusters – made from the solvency ratio ­– using principal components as independent variables. The principal components are made with different financial ratios. We use cluster analysis to find groups with low, medium and high solvency ratio of 1200 different companies found on the NASDAQ stock market and use this as an apriori definition of ...

  4. Analysis of designed experiments by stabilised PLS Regression and jack-knifing

    DEFF Research Database (Denmark)

    Martens, Harald; Høy, M.; Westad, F.

    2001-01-01

    Pragmatical, visually oriented methods for assessing and optimising bi-linear regression models are described, and applied to PLS Regression (PLSR) analysis of multi-response data from controlled experiments. The paper outlines some ways to stabilise the PLSR method to extend its range...... the reliability of the linear and bi-linear model parameter estimates. The paper illustrates how the obtained PLSR "significance" probabilities are similar to those from conventional factorial ANOVA, but the PLSR is shown to give important additional overview plots of the main relevant structures in the multi....... An Introduction, Wiley, Chichester, UK, 2001]....

  5. Statistical methods in regression and calibration analysis of chromosome aberration data

    International Nuclear Information System (INIS)

    Merkle, W.

    1983-01-01

    The method of iteratively reweighted least squares for the regression analysis of Poisson distributed chromosome aberration data is reviewed in the context of other fit procedures used in the cytogenetic literature. As an application of the resulting regression curves methods for calculating confidence intervals on dose from aberration yield are described and compared, and, for the linear quadratic model a confidence interval is given. Emphasis is placed on the rational interpretation and the limitations of various methods from a statistical point of view. (orig./MG)

  6. Semiparametric approach for non-monotone missing covariates in a parametric regression model

    KAUST Repository

    Sinha, Samiran

    2014-02-26

    Missing covariate data often arise in biomedical studies, and analysis of such data that ignores subjects with incomplete information may lead to inefficient and possibly biased estimates. A great deal of attention has been paid to handling a single missing covariate or a monotone pattern of missing data when the missingness mechanism is missing at random. In this article, we propose a semiparametric method for handling non-monotone patterns of missing data. The proposed method relies on the assumption that the missingness mechanism of a variable does not depend on the missing variable itself but may depend on the other missing variables. This mechanism is somewhat less general than the completely non-ignorable mechanism but is sometimes more flexible than the missing at random mechanism where the missingness mechansim is allowed to depend only on the completely observed variables. The proposed approach is robust to misspecification of the distribution of the missing covariates, and the proposed mechanism helps to nullify (or reduce) the problems due to non-identifiability that result from the non-ignorable missingness mechanism. The asymptotic properties of the proposed estimator are derived. Finite sample performance is assessed through simulation studies. Finally, for the purpose of illustration we analyze an endometrial cancer dataset and a hip fracture dataset.

  7. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    Science.gov (United States)

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P valuelinear regression P value). The statistical power of CAT test decreased, while the result of linear regression analysis remained the same when population size was reduced by 100 times and AMI incidence rate remained unchanged. The two statistical methods have their advantages and disadvantages. It is necessary to choose statistical method according the fitting degree of data, or comprehensively analyze the results of two methods.

  8. Composite marginal quantile regression analysis for longitudinal adolescent body mass index data.

    Science.gov (United States)

    Yang, Chi-Chuan; Chen, Yi-Hau; Chang, Hsing-Yi

    2017-09-20

    Childhood and adolescenthood overweight or obesity, which may be quantified through the body mass index (BMI), is strongly associated with adult obesity and other health problems. Motivated by the child and adolescent behaviors in long-term evolution (CABLE) study, we are interested in individual, family, and school factors associated with marginal quantiles of longitudinal adolescent BMI values. We propose a new method for composite marginal quantile regression analysis for longitudinal outcome data, which performs marginal quantile regressions at multiple quantile levels simultaneously. The proposed method extends the quantile regression coefficient modeling method introduced by Frumento and Bottai (Biometrics 2016; 72:74-84) to longitudinal data accounting suitably for the correlation structure in longitudinal observations. A goodness-of-fit test for the proposed modeling is also developed. Simulation results show that the proposed method can be much more efficient than the analysis without taking correlation into account and the analysis performing separate quantile regressions at different quantile levels. The application to the longitudinal adolescent BMI data from the CABLE study demonstrates the practical utility of our proposal. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Analysis of the Influence of Quantile Regression Model on Mainland Tourists' Service Satisfaction Performance

    Science.gov (United States)

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models. PMID:24574916

  10. Analysis of the influence of quantile regression model on mainland tourists' service satisfaction performance.

    Science.gov (United States)

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

  11. Analysis of the Influence of Quantile Regression Model on Mainland Tourists’ Service Satisfaction Performance

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wang

    2014-01-01

    Full Text Available It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

  12. Comparing Kriging and Regression Approaches for Mapping Soil Clay Content in a diverse Danish Landscape

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mette Balslev

    2013-01-01

    Information on the spatial variability of soil texture including soil clay content in a landscape is very important for agricultural and environmental use. Different prediction techniques are available to assess and map spatial variability of soil properties, but selecting the most suitable techn...... the prediction in OKst compared with that in OK, whereas RT showed the lowest performance of all (R2 = 0.52; RMSE = 0.52; and RPD = 1.17). We found RKrr to be an effective prediction method and recommend this method for any future soil mapping activities in Denmark....... technique at a given site has always been a major issue in all soil mapping applications. We studied the prediction performance of ordinary kriging (OK), stratified OK (OKst), regression trees (RT), and rule-based regression kriging (RKrr) for digital mapping of soil clay content at 30.4-m grid size using 6...

  13. Performance and separation occurrence of binary probit regression estimator using maximum likelihood method and Firths approach under different sample size

    Science.gov (United States)

    Lusiana, Evellin Dewi

    2017-12-01

    The parameters of binary probit regression model are commonly estimated by using Maximum Likelihood Estimation (MLE) method. However, MLE method has limitation if the binary data contains separation. Separation is the condition where there are one or several independent variables that exactly grouped the categories in binary response. It will result the estimators of MLE method become non-convergent, so that they cannot be used in modeling. One of the effort to resolve the separation is using Firths approach instead. This research has two aims. First, to identify the chance of separation occurrence in binary probit regression model between MLE method and Firths approach. Second, to compare the performance of binary probit regression model estimator that obtained by MLE method and Firths approach using RMSE criteria. Those are performed using simulation method and under different sample size. The results showed that the chance of separation occurrence in MLE method for small sample size is higher than Firths approach. On the other hand, for larger sample size, the probability decreased and relatively identic between MLE method and Firths approach. Meanwhile, Firths estimators have smaller RMSE than MLEs especially for smaller sample sizes. But for larger sample sizes, the RMSEs are not much different. It means that Firths estimators outperformed MLE estimator.

  14. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  15. AucPR: an AUC-based approach using penalized regression for disease prediction with high-dimensional omics data.

    Science.gov (United States)

    Yu, Wenbao; Park, Taesung

    2014-01-01

    It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and sensitivity for a given specificity, particularly when there are many correlated genes. We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance. Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data, such as miRNA and protein data.

  16. Diagnosis of cranial hemangioma: Comparison between logistic regression analysis and neuronal network

    International Nuclear Information System (INIS)

    Arana, E.; Marti-Bonmati, L.; Bautista, D.; Paredes, R.

    1998-01-01

    To study the utility of logistic regression and the neuronal network in the diagnosis of cranial hemangiomas. Fifteen patients presenting hemangiomas were selected form a total of 167 patients with cranial lesions. All were evaluated by plain radiography and computed tomography (CT). Nineteen variables in their medical records were reviewed. Logistic regression and neuronal network models were constructed and validated by the jackknife (leave-one-out) approach. The yields of the two models were compared by means of ROC curves, using the area under the curve as parameter. Seven men and 8 women presented hemangiomas. The mean age of these patients was 38.4 (15.4 years (mea ± standard deviation). Logistic regression identified as significant variables the shape, soft tissue mass and periosteal reaction. The neuronal network lent more importance to the existence of ossified matrix, ruptured cortical vein and the mixed calcified-blastic (trabeculated) pattern. The neuronal network showed a greater yield than logistic regression (Az, 0.9409) (0.004 versus 0.7211± 0.075; p<0.001). The neuronal network discloses hidden interactions among the variables, providing a higher yield in the characterization of cranial hemangiomas and constituting a medical diagnostic acid. (Author)29 refs

  17. [Multiple linear regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis].

    Science.gov (United States)

    Ma, Yu-Feng; Wang, Qing-Fu; Chen, Zhao-Jun; Du, Chun-Lin; Li, Jun-Hai; Huang, Hu; Shi, Zong-Ting; Yin, Yue-Shan; Zhang, Lei; A-Di, Li-Jiang; Dong, Shi-Yu; Wu, Ji

    2012-05-01

    To perform Multiple Linear Regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis, and to analyze their relationship with clinical and biomechanical concepts. From March 2011 to July 2011, 140 patients (250 knees) were reviewed, including 132 knees in the left and 118 knees in the right; ranging in age from 40 to 71 years, with an average of 54.68 years. The MB-RULER measurement software was applied to measure femoral angle, tibial angle, femorotibial angle, joint gap angle from antero-posterir and lateral position of X-rays. The WOMAC scores were also collected. Then multiple regression equations was applied for the linear regression analysis of correlation between the X-ray measurement and WOMAC scores. There was statistical significance in the regression equation of AP X-rays value and WOMAC scores (Pregression equation of lateral X-ray value and WOMAC scores (P>0.05). 1) X-ray measurement of knee joint can reflect the WOMAC scores to a certain extent. 2) It is necessary to measure the X-ray mechanical axis of knee, which is important for diagnosis and treatment of osteoarthritis. 3) The correlation between tibial angle,joint gap angle on antero-posterior X-ray and WOMAC scores is significant, which can be used to assess the functional recovery of patients before and after treatment.

  18. Replica analysis of overfitting in regression models for time-to-event data

    Science.gov (United States)

    Coolen, A. C. C.; Barrett, J. E.; Paga, P.; Perez-Vicente, C. J.

    2017-09-01

    Overfitting, which happens when the number of parameters in a model is too large compared to the number of data points available for determining these parameters, is a serious and growing problem in survival analysis. While modern medicine presents us with data of unprecedented dimensionality, these data cannot yet be used effectively for clinical outcome prediction. Standard error measures in maximum likelihood regression, such as p-values and z-scores, are blind to overfitting, and even for Cox’s proportional hazards model (the main tool of medical statisticians), one finds in literature only rules of thumb on the number of samples required to avoid overfitting. In this paper we present a mathematical theory of overfitting in regression models for time-to-event data, which aims to increase our quantitative understanding of the problem and provide practical tools with which to correct regression outcomes for the impact of overfitting. It is based on the replica method, a statistical mechanical technique for the analysis of heterogeneous many-variable systems that has been used successfully for several decades in physics, biology, and computer science, but not yet in medical statistics. We develop the theory initially for arbitrary regression models for time-to-event data, and verify its predictions in detail for the popular Cox model.

  19. Using the mean approach in pooling cross-section and time series data for regression modelling

    International Nuclear Information System (INIS)

    Nuamah, N.N.N.N.

    1989-12-01

    The mean approach is one of the methods for pooling cross section and time series data for mathematical-statistical modelling. Though a simple approach, its results are sometimes paradoxical in nature. However, researchers still continue using it for its simplicity. Here, the paper investigates the nature and source of such unwanted phenomena. (author). 7 refs

  20. Antibiotic Resistances in Livestock: A Comparative Approach to Identify an Appropriate Regression Model for Count Data

    Directory of Open Access Journals (Sweden)

    Anke Hüls

    2017-05-01

    Full Text Available Antimicrobial resistance in livestock is a matter of general concern. To develop hygiene measures and methods for resistance prevention and control, epidemiological studies on a population level are needed to detect factors associated with antimicrobial resistance in livestock holdings. In general, regression models are used to describe these relationships between environmental factors and resistance outcome. Besides the study design, the correlation structures of the different outcomes of antibiotic resistance and structural zero measurements on the resistance outcome as well as on the exposure side are challenges for the epidemiological model building process. The use of appropriate regression models that acknowledge these complexities is essential to assure valid epidemiological interpretations. The aims of this paper are (i to explain the model building process comparing several competing models for count data (negative binomial model, quasi-Poisson model, zero-inflated model, and hurdle model and (ii to compare these models using data from a cross-sectional study on antibiotic resistance in animal husbandry. These goals are essential to evaluate which model is most suitable to identify potential prevention measures. The dataset used as an example in our analyses was generated initially to study the prevalence and associated factors for the appearance of cefotaxime-resistant Escherichia coli in 48 German fattening pig farms. For each farm, the outcome was the count of samples with resistant bacteria. There was almost no overdispersion and only moderate evidence of excess zeros in the data. Our analyses show that it is essential to evaluate regression models in studies analyzing the relationship between environmental factors and antibiotic resistances in livestock. After model comparison based on evaluation of model predictions, Akaike information criterion, and Pearson residuals, here the hurdle model was judged to be the most appropriate

  1. Regional trends in short-duration precipitation extremes: a flexible multivariate monotone quantile regression approach

    Science.gov (United States)

    Cannon, Alex

    2017-04-01

    Estimating historical trends in short-duration rainfall extremes at regional and local scales is challenging due to low signal-to-noise ratios and the limited availability of homogenized observational data. In addition to being of scientific interest, trends in rainfall extremes are of practical importance, as their presence calls into question the stationarity assumptions that underpin traditional engineering and infrastructure design practice. Even with these fundamental challenges, increasingly complex questions are being asked about time series of extremes. For instance, users may not only want to know whether or not rainfall extremes have changed over time, they may also want information on the modulation of trends by large-scale climate modes or on the nonstationarity of trends (e.g., identifying hiatus periods or periods of accelerating positive trends). Efforts have thus been devoted to the development and application of more robust and powerful statistical estimators for regional and local scale trends. While a standard nonparametric method like the regional Mann-Kendall test, which tests for the presence of monotonic trends (i.e., strictly non-decreasing or non-increasing changes), makes fewer assumptions than parametric methods and pools information from stations within a region, it is not designed to visualize detected trends, include information from covariates, or answer questions about the rate of change in trends. As a remedy, monotone quantile regression (MQR) has been developed as a nonparametric alternative that can be used to estimate a common monotonic trend in extremes at multiple stations. Quantile regression makes efficient use of data by directly estimating conditional quantiles based on information from all rainfall data in a region, i.e., without having to precompute the sample quantiles. The MQR method is also flexible and can be used to visualize and analyze the nonlinearity of the detected trend. However, it is fundamentally a

  2. Non-stationary hydrologic frequency analysis using B-spline quantile regression

    Science.gov (United States)

    Nasri, B.; Bouezmarni, T.; St-Hilaire, A.; Ouarda, T. B. M. J.

    2017-11-01

    Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic and water resources systems under the assumption of stationarity. However, with increasing evidence of climate change, it is possible that the assumption of stationarity, which is prerequisite for traditional frequency analysis and hence, the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extremes based on B-Spline quantile regression which allows to model data in the presence of non-stationarity and/or dependence on covariates with linear and non-linear dependence. A Markov Chain Monte Carlo (MCMC) algorithm was used to estimate quantiles and their posterior distributions. A coefficient of determination and Bayesian information criterion (BIC) for quantile regression are used in order to select the best model, i.e. for each quantile, we choose the degree and number of knots of the adequate B-spline quantile regression model. The method is applied to annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in the variable of interest and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for an annual maximum and minimum discharge with high annual non-exceedance probabilities.

  3. Comparison of cranial sex determination by discriminant analysis and logistic regression.

    Science.gov (United States)

    Amores-Ampuero, Anabel; Alemán, Inmaculada

    2016-04-05

    Various methods have been proposed for estimating dimorphism. The objective of this study was to compare sex determination results from cranial measurements using discriminant analysis or logistic regression. The study sample comprised 130 individuals (70 males) of known sex, age, and cause of death from San José cemetery in Granada (Spain). Measurements of 19 neurocranial dimensions and 11 splanchnocranial dimensions were subjected to discriminant analysis and logistic regression, and the percentages of correct classification were compared between the sex functions obtained with each method. The discriminant capacity of the selected variables was evaluated with a cross-validation procedure. The percentage accuracy with discriminant analysis was 78.2% for the neurocranium (82.4% in females and 74.6% in males) and 73.7% for the splanchnocranium (79.6% in females and 68.8% in males). These percentages were higher with logistic regression analysis: 85.7% for the neurocranium (in both sexes) and 94.1% for the splanchnocranium (100% in females and 91.7% in males).

  4. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    Science.gov (United States)

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  5. Interactions between cadmium and decabrominated diphenyl ether on blood cells count in rats-Multiple factorial regression analysis.

    Science.gov (United States)

    Curcic, Marijana; Buha, Aleksandra; Stankovic, Sanja; Milovanovic, Vesna; Bulat, Zorica; Đukić-Ćosić, Danijela; Antonijević, Evica; Vučinić, Slavica; Matović, Vesna; Antonijevic, Biljana

    2017-02-01

    The objective of this study was to assess toxicity of Cd and BDE-209 mixture on haematological parameters in subacutely exposed rats and to determine the presence and type of interactions between these two chemicals using multiple factorial regression analysis. Furthermore, for the assessment of interaction type, an isobologram based methodology was applied and compared with multiple factorial regression analysis. Chemicals were given by oral gavage to the male Wistar rats weighing 200-240g for 28days. Animals were divided in 16 groups (8/group): control vehiculum group, three groups of rats were treated with 2.5, 7.5 or 15mg Cd/kg/day. These doses were chosen on the bases of literature data and reflect relatively high Cd environmental exposure, three groups of rats were treated with 1000, 2000 or 4000mg BDE-209/kg/bw/day, doses proved to induce toxic effects in rats. Furthermore, nine groups of animals were treated with different mixtures of Cd and BDE-209 containing doses of Cd and BDE-209 stated above. Blood samples were taken at the end of experiment and red blood cells, white blood cells and platelets counts were determined. For interaction assessment multiple factorial regression analysis and fitted isobologram approach were used. In this study, we focused on multiple factorial regression analysis as a method for interaction assessment. We also investigated the interactions between Cd and BDE-209 by the derived model for the description of the obtained fitted isobologram curves. Current study indicated that co-exposure to Cd and BDE-209 can result in significant decrease in RBC count, increase in WBC count and decrease in PLT count, when compared with controls. Multiple factorial regression analysis used for the assessment of interactions type between Cd and BDE-209 indicated synergism for the effect on RBC count and no interactions i.e. additivity for the effects on WBC and PLT counts. On the other hand, isobologram based approach showed slight antagonism

  6. Interactions between cadmium and decabrominated diphenyl ether on blood cells count in rats—Multiple factorial regression analysis

    International Nuclear Information System (INIS)

    Curcic, Marijana; Buha, Aleksandra; Stankovic, Sanja; Milovanovic, Vesna; Bulat, Zorica; Đukić-Ćosić, Danijela; Antonijević, Evica; Vučinić, Slavica; Matović, Vesna; Antonijevic, Biljana

    2017-01-01

    The objective of this study was to assess toxicity of Cd and BDE-209 mixture on haematological parameters in subacutely exposed rats and to determine the presence and type of interactions between these two chemicals using multiple factorial regression analysis. Furthermore, for the assessment of interaction type, an isobologram based methodology was applied and compared with multiple factorial regression analysis. Chemicals were given by oral gavage to the male Wistar rats weighing 200–240 g for 28 days. Animals were divided in 16 groups (8/group): control vehiculum group, three groups of rats were treated with 2.5, 7.5 or 15 mg Cd/kg/day. These doses were chosen on the bases of literature data and reflect relatively high Cd environmental exposure, three groups of rats were treated with 1000, 2000 or 4000 mg BDE-209/kg/bw/day, doses proved to induce toxic effects in rats. Furthermore, nine groups of animals were treated with different mixtures of Cd and BDE-209 containing doses of Cd and BDE-209 stated above. Blood samples were taken at the end of experiment and red blood cells, white blood cells and platelets counts were determined. For interaction assessment multiple factorial regression analysis and fitted isobologram approach were used. In this study, we focused on multiple factorial regression analysis as a method for interaction assessment. We also investigated the interactions between Cd and BDE-209 by the derived model for the description of the obtained fitted isobologram curves. Current study indicated that co-exposure to Cd and BDE-209 can result in significant decrease in RBC count, increase in WBC count and decrease in PLT count, when compared with controls. Multiple factorial regression analysis used for the assessment of interactions type between Cd and BDE-209 indicated synergism for the effect on RBC count and no interactions i.e. additivity for the effects on WBC and PLT counts. On the other hand, isobologram based approach showed slight

  7. Data analysis and approximate models model choice, location-scale, analysis of variance, nonparametric regression and image analysis

    CERN Document Server

    Davies, Patrick Laurie

    2014-01-01

    Introduction IntroductionApproximate Models Notation Two Modes of Statistical AnalysisTowards One Mode of Analysis Approximation, Randomness, Chaos, Determinism ApproximationA Concept of Approximation Approximation Approximating a Data Set by a Model Approximation Regions Functionals and EquivarianceRegularization and Optimality Metrics and DiscrepanciesStrong and Weak Topologies On Being (almost) Honest Simulations and Tables Degree of Approximation and p-values ScalesStability of Analysis The Choice of En(α, P) Independence Procedures, Approximation and VaguenessDiscrete Models The Empirical Density Metrics and Discrepancies The Total Variation Metric The Kullback-Leibler and Chi-Squared Discrepancies The Po(λ) ModelThe b(k, p) and nb(k, p) Models The Flying Bomb Data The Student Study Times Data OutliersOutliers, Data Analysis and Models Breakdown Points and Equivariance Identifying Outliers and Breakdown Outliers in Multivariate Data Outliers in Linear Regression Outliers in Structured Data The Location...

  8. Analysis of the Risk of Company's Bankruptcy in Polish Food and Beverage Production Sector Using the Cox Regression

    Directory of Open Access Journals (Sweden)

    Przemysław Dominiak

    2011-01-01

    Full Text Available Analysis of the risk of a company’s bankruptcy in Polish food and beverages production sector (NACE, No. 15 has been carried out using econometric modelling in the form of the Cox regression. The purpose of this paper was to find factors (models describing the risk of a company’s bankruptcy. The described approach to modelling of the risk of bankruptcy is – in the case of quantitative variables – the use of “raw” positions from financial accounts. (original abstract

  9. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction

    International Nuclear Information System (INIS)

    Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.

    2013-01-01

    Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability

  10. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    Science.gov (United States)

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-10-15

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  12. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    International Nuclear Information System (INIS)

    Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon

    2016-01-01

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  13. Predictive model of Amorphophallus muelleri growth in some agroforestry in East Java by multiple regression analysis

    Directory of Open Access Journals (Sweden)

    BUDIMAN

    2012-01-01

    Full Text Available Budiman, Arisoesilaningsih E. 2012. Predictive model of Amorphophallus muelleri growth in some agroforestry in East Java by multiple regression analysis. Biodiversitas 13: 18-22. The aims of this research was to determine the multiple regression models of vegetative and corm growth of Amorphophallus muelleri Blume in some age variations and habitat conditions of agroforestry in East Java. Descriptive exploratory research method was conducted by systematic random sampling at five agroforestries on four plantations in East Java: Saradan, Bojonegoro, Nganjuk and Blitar. In each agroforestry, we observed A. muelleri vegetative and corm growth on four growing age (1, 2, 3 and 4 years old respectively as well as environmental variables such as altitude, vegetation, climate and soil conditions. Data were analyzed using descriptive statistics to compare A. muelleri habitat in five agroforestries. Meanwhile, the influence and contribution of each environmental variable to the growth of A. muelleri vegetative and corm were determined using multiple regression analysis of SPSS 17.0. The multiple regression models of A. muelleri vegetative and corm growth were generated based on some characteristics of agroforestries and age showed high validity with R2 = 88-99%. Regression model showed that age, monthly temperatures, percentage of radiation and soil calcium (Ca content either simultaneously or partially determined the growth of A. muelleri vegetative and corm. Based on these models, the A. muelleri corm reached the optimal growth after four years of cultivation and they will be ready to be harvested. Additionally, the soil Ca content should reach 25.3 me.hg-1 as Sugihwaras agroforestry, with the maximal radiation of 60%.

  14. Detrended fluctuation analysis as a regression framework: Estimating dependence at different scales

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2015-01-01

    Roč. 91, č. 1 (2015), 022802-1-022802-5 ISSN 1539-3755 R&D Projects: GA ČR(CZ) GP14-11402P Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : Detrended cross-correlation analysis * Regression * Scales Subject RIV: AH - Economics Impact factor: 2.288, year: 2014 http://library.utia.cas.cz/separaty/2015/E/kristoufek-0452315.pdf

  15. MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY

    OpenAIRE

    Chayalakshmi C.L

    2018-01-01

    MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY ABSTRACT Calculation of boiler efficiency is essential if its parameters need to be controlled for either maintaining or enhancing its efficiency. But determination of boiler efficiency using conventional method is time consuming and very expensive. Hence, it is not recommended to find boiler efficiency frequently. The work presented in this paper deals with establishing the statistical mo...

  16. Use of generalized ordered logistic regression for the analysis of multidrug resistance data.

    Science.gov (United States)

    Agga, Getahun E; Scott, H Morgan

    2015-10-01

    Statistical analysis of antimicrobial resistance data largely focuses on individual antimicrobial's binary outcome (susceptible or resistant). However, bacteria are becoming increasingly multidrug resistant (MDR). Statistical analysis of MDR data is mostly descriptive often with tabular or graphical presentations. Here we report the applicability of generalized ordinal logistic regression model for the analysis of MDR data. A total of 1,152 Escherichia coli, isolated from the feces of weaned pigs experimentally supplemented with chlortetracycline (CTC) and copper, were tested for susceptibilities against 15 antimicrobials and were binary classified into resistant or susceptible. The 15 antimicrobial agents tested were grouped into eight different antimicrobial classes. We defined MDR as the number of antimicrobial classes to which E. coli isolates were resistant ranging from 0 to 8. Proportionality of the odds assumption of the ordinal logistic regression model was violated only for the effect of treatment period (pre-treatment, during-treatment and post-treatment); but not for the effect of CTC or copper supplementation. Subsequently, a partially constrained generalized ordinal logistic model was built that allows for the effect of treatment period to vary while constraining the effects of treatment (CTC and copper supplementation) to be constant across the levels of MDR classes. Copper (Proportional Odds Ratio [Prop OR]=1.03; 95% CI=0.73-1.47) and CTC (Prop OR=1.1; 95% CI=0.78-1.56) supplementation were not significantly associated with the level of MDR adjusted for the effect of treatment period. MDR generally declined over the trial period. In conclusion, generalized ordered logistic regression can be used for the analysis of ordinal data such as MDR data when the proportionality assumptions for ordered logistic regression are violated. Published by Elsevier B.V.

  17. Regression analysis: An evaluation of the inuences behindthe pricing of beer

    OpenAIRE

    Eriksson, Sara; Häggmark, Jonas

    2017-01-01

    This bachelor thesis in applied mathematics is an analysis of which factors affect the pricing of beer at the Swedish market. A multiple linear regression model is created with the statistical programming language R through a study of the influences for several explanatory variables. For example these variables include country of origin, beer style, volume sold and a Bayesian weighted mean rating from RateBeer, a popular website for beer enthusiasts. The main goal of the project is to find si...

  18. Health care: necessity or luxury good? A meta-regression analysis

    OpenAIRE

    Iordache, Ioana Raluca

    2014-01-01

    When estimating the influence income per capita exerts on health care expenditure, the research in the field offers mixed results. Studies employ different data, estimation techniques and models, which brings about the question whether these differences in research design play any part in explaining the heterogeneity of reported outcomes. By employing meta-regression analysis, the present paper analyzes 220 estimates of health spending income elasticity collected from 54 studies and finds tha...

  19. Temporal trends in sperm count: a systematic review and meta-regression analysis.

    Science.gov (United States)

    Levine, Hagai; Jørgensen, Niels; Martino-Andrade, Anderson; Mendiola, Jaime; Weksler-Derri, Dan; Mindlis, Irina; Pinotti, Rachel; Swan, Shanna H

    2017-11-01

    Reported declines in sperm counts remain controversial today and recent trends are unknown. A definitive meta-analysis is critical given the predictive value of sperm count for fertility, morbidity and mortality. To provide a systematic review and meta-regression analysis of recent trends in sperm counts as measured by sperm concentration (SC) and total sperm count (TSC), and their modification by fertility and geographic group. PubMed/MEDLINE and EMBASE were searched for English language studies of human SC published in 1981-2013. Following a predefined protocol 7518 abstracts were screened and 2510 full articles reporting primary data on SC were reviewed. A total of 244 estimates of SC and TSC from 185 studies of 42 935 men who provided semen samples in 1973-2011 were extracted for meta-regression analysis, as well as information on years of sample collection and covariates [fertility group ('Unselected by fertility' versus 'Fertile'), geographic group ('Western', including North America, Europe Australia and New Zealand versus 'Other', including South America, Asia and Africa), age, ejaculation abstinence time, semen collection method, method of measuring SC and semen volume, exclusion criteria and indicators of completeness of covariate data]. The slopes of SC and TSC were estimated as functions of sample collection year using both simple linear regression and weighted meta-regression models and the latter were adjusted for pre-determined covariates and modification by fertility and geographic group. Assumptions were examined using multiple sensitivity analyses and nonlinear models. SC declined significantly between 1973 and 2011 (slope in unadjusted simple regression models -0.70 million/ml/year; 95% CI: -0.72 to -0.69; P regression analysis reports a significant decline in sperm counts (as measured by SC and TSC) between 1973 and 2011, driven by a 50-60% decline among men unselected by fertility from North America, Europe, Australia and New Zealand. Because

  20. Effect of air quality alerts on human health: a regression discontinuity analysis in Toronto, Canada.

    Science.gov (United States)

    Chen, Hong; Li, Qiongsi; Kaufman, Jay S; Wang, Jun; Copes, Ray; Su, Yushan; Benmarhnia, Tarik

    2018-01-01

    Ambient air pollution is a major health risk globally. To reduce adverse health effects on days when air pollution is high, government agencies worldwide have implemented air quality alert programmes. Despite their widespread use, little is known about whether these programmes produce any observable public-health benefits. We assessed the effectiveness of such programmes using a quasi-experimental approach. We assembled a population-based cohort comprising all individuals who resided in the city of Toronto (Ontario, Canada) from 2003 to 2012 (about 2·6 million people). We ascertained seven health outcomes known to be affected by short-term elevation of air pollution, using provincial health administrative databases. These health outcomes were cardiovascular-related mortality, respiratory-related mortality, and hospital admissions or emergency-department visits for acute myocardial infarction, heart failure, stroke, asthma, and chronic obstructive pulmonary disease (COPD). We applied a regression discontinuity design to assess the effectiveness of an intervention (ie, the air quality alert programme). To quantify the effect of the air quality alert programme, we estimated for each outcome both the absolute rate difference and the rate ratio attributable to programme eligibility (by intention-to-treat analysis) and the alerts themselves (by two-stage regression approach), respectively. Between Jan 1, 2003, and Dec 31, 2012, on average between three and 27 daily cardiovascular or respiratory events were reported in Toronto (depending on the outcome). Alert announcements reduced asthma-related emergency-department visits by 4·73 cases per 1 000 000 people per day (95% CI 0·55-9·38), or in relative terms by 25% (95% CI 1-47). Programme eligibility also led to 2·05 (95% CI 0·07-4·00) fewer daily emergency-department visits for asthma. We did not detect a significant reduction in any other health outcome as a result of alert announcements or programme

  1. Regression analysis for LED color detection of visual-MIMO system

    Science.gov (United States)

    Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo

    2018-04-01

    Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.

  2. Flow modeling in a porous cylinder with regressing walls using semi analytical approach

    Directory of Open Access Journals (Sweden)

    M Azimi

    2016-10-01

    Full Text Available In this paper, the mathematical modeling of the flow in a porous cylinder with a focus on applications to solid rocket motors is presented. As usual, the cylindrical propellant grain of a solid rocket motor is modeled as a long tube with one end closed at the headwall, while the other remains open. The cylindrical wall is assumed to be permeable so as to simulate the propellant burning and normal gas injection. At first, the problem description and formulation are considered. The Navier-Stokes equations for the viscous flow in a porous cylinder with regressing walls are reduced to a nonlinear ODE by using a similarity transformation in time and space. Application of Differential Transformation Method (DTM as an approximate analytical method has been successfully applied. Finally the results have been presented for various cases.

  3. Expert Approaches to Analysis

    Science.gov (United States)

    1999-03-01

    analysis that takes place in anatomy or circuit diagrams. The goal is to break an entity down into a set of non- overlapping parts, and to specify the...components. For example, one subject in predicting the fate of different species, broke them into three types: animals that humans would save (e.g., gorillas

  4. Ca analysis: an Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis.

    Science.gov (United States)

    Greensmith, David J

    2014-01-01

    Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Comparison of autoregressive (AR) strategy with that of regression approach for determining ozone layer depletion as a physical process

    International Nuclear Information System (INIS)

    Yousufzai, M.A.K; Aansari, M.R.K.; Quamar, J.; Iqbal, J.; Hussain, M.A.

    2010-01-01

    This communication presents the development of a comprehensive characterization of ozone layer depletion (OLD) phenomenon as a physical process in the form of mathematical models that comprise the usual regression, multiple or polynomial regression and stochastic strategy. The relevance of these models has been illuminated using predicted values of different parameters under a changing environment. The information obtained from such analysis can be employed to alter the possible factors and variables to achieve optimum performance. This kind of analysis initiates a study towards formulating the phenomenon of OLD as a physical process with special reference to the stratospheric region of Pakistan. The data presented here establishes that the Auto regressive (AR) nature of modeling OLD as a physical process is an appropriate scenario rather than using usual regression. The data reported in literature suggest quantitatively the OLD is occurring in our region. For this purpose we have modeled this phenomenon using the data recorded at the Geophysical Centre Quetta during the period 1960-1999. The predictions made by this analysis are useful for public, private and other relevant organizations. (author)

  6. Dose-Dependent Effects of Statins for Patients with Aneurysmal Subarachnoid Hemorrhage: Meta-Regression Analysis.

    Science.gov (United States)

    To, Minh-Son; Prakash, Shivesh; Poonnoose, Santosh I; Bihari, Shailesh

    2018-05-01

    The study uses meta-regression analysis to quantify the dose-dependent effects of statin pharmacotherapy on vasospasm, delayed ischemic neurologic deficits (DIND), and mortality in aneurysmal subarachnoid hemorrhage. Prospective, retrospective observational studies, and randomized controlled trials (RCTs) were retrieved by a systematic database search. Summary estimates were expressed as absolute risk (AR) for a given statin dose or control (placebo). Meta-regression using inverse variance weighting and robust variance estimation was performed to assess the effect of statin dose on transformed AR in a random effects model. Dose-dependence of predicted AR with 95% confidence interval (CI) was recovered by using Miller's Freeman-Tukey inverse. The database search and study selection criteria yielded 18 studies (2594 patients) for analysis. These included 12 RCTs, 4 retrospective observational studies, and 2 prospective observational studies. Twelve studies investigated simvastatin, whereas the remaining studies investigated atorvastatin, pravastatin, or pitavastatin, with simvastatin-equivalent doses ranging from 20 to 80 mg. Meta-regression revealed dose-dependent reductions in Freeman-Tukey-transformed AR of vasospasm (slope coefficient -0.00404, 95% CI -0.00720 to -0.00087; P = 0.0321), DIND (slope coefficient -0.00316, 95% CI -0.00586 to -0.00047; P = 0.0392), and mortality (slope coefficient -0.00345, 95% CI -0.00623 to -0.00067; P = 0.0352). The present meta-regression provides weak evidence for dose-dependent reductions in vasospasm, DIND and mortality associated with acute statin use after aneurysmal subarachnoid hemorrhage. However, the analysis was limited by substantial heterogeneity among individual studies. Greater dosing strategies are a potential consideration for future RCTs. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Mediation analysis for logistic regression with interactions: Application of a surrogate marker in ophthalmology

    DEFF Research Database (Denmark)

    Jensen, Signe Marie; Hauger, Hanne; Ritz, Christian

    2018-01-01

    Mediation analysis is often based on fitting two models, one including and another excluding a potential mediator, and subsequently quantify the mediated effects by combining parameter estimates from these two models. Standard errors of such derived parameters may be approximated using the delta...... method. For a study evaluating a treatment effect on visual acuity, a binary outcome, we demonstrate how mediation analysis may conveniently be carried out by means of marginally fitted logistic regression models in combination with the delta method. Several metrics of mediation are estimated and results...

  8. A regression analysis of the effect of energy use in agriculture

    International Nuclear Information System (INIS)

    Karkacier, Osman; Gokalp Goktolga, Z.; Cicek, Adnan

    2006-01-01

    This study investigates the impacts of energy use on productivity of Turkey's agriculture. It reports the results of a regression analysis of the relationship between energy use and agricultural productivity. The study is based on the analysis of the yearbook data for the period 1971-2003. Agricultural productivity was specified as a function of its energy consumption (TOE) and gross additions of fixed assets during the year. Least square (LS) was employed to estimate equation parameters. The data of this study comes from the State Institute of Statistics (SIS) and The Ministry of Energy of Turkey

  9. Identifying multiple outliers in linear regression: robust fit and clustering approach

    International Nuclear Information System (INIS)

    Robiah Adnan; Mohd Nor Mohamad; Halim Setan

    2001-01-01

    This research provides a clustering based approach for determining potential candidates for outliers. This is modification of the method proposed by Serbert et. al (1988). It is based on using the single linkage clustering algorithm to group the standardized predicted and residual values of data set fit by least trimmed of squares (LTS). (Author)

  10. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan

    Science.gov (United States)

    Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.

    2008-04-01

    Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.

  11. City housing atmospheric pollutant impact on emergency visit for asthma: A classification and regression tree approach.

    Science.gov (United States)

    Mazenq, Julie; Dubus, Jean-Christophe; Gaudart, Jean; Charpin, Denis; Viudes, Gilles; Noel, Guilhem

    2017-11-01

    Particulate matter, nitrogen dioxide (NO 2 ) and ozone are recognized as the three pollutants that most significantly affect human health. Asthma is a multifactorial disease. However, the place of residence has rarely been investigated. We compared the impact of air pollution, measured near patients' homes, on emergency department (ED) visits for asthma or trauma (controls) within the Provence-Alpes-Côte-d'Azur region. Variables were selected using classification and regression trees on asthmatic and control population, 3-99 years, visiting ED from January 1 to December 31, 2013. Then in a nested case control study, randomization was based on the day of ED visit and on defined age groups. Pollution, meteorological, pollens and viral data measured that day were linked to the patient's ZIP code. A total of 794,884 visits were reported including 6250 for asthma and 278,192 for trauma. Factors associated with an excess risk of emergency visit for asthma included short-term exposure to NO 2 , female gender, high viral load and a combination of low temperature and high humidity. Short-term exposures to high NO 2 concentrations, as assessed close to the homes of the patients, were significantly associated with asthma-related ED visits in children and adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Relative Age in School and Suicide among Young Individuals in Japan: A Regression Discontinuity Approach.

    Directory of Open Access Journals (Sweden)

    Tetsuya Matsubayashi

    Full Text Available Evidence collected in many parts of the world suggests that, compared to older students, students who are relatively younger at school entry tend to have worse academic performance and lower levels of income. This study examined how relative age in a grade affects suicide rates of adolescents and young adults between 15 and 25 years of age using data from Japan.We examined individual death records in the Vital Statistics of Japan from 1989 to 2010. In contrast to other countries, late entry to primary school is not allowed in Japan. We took advantage of the school entry cutoff date to implement a regression discontinuity (RD design, assuming that the timing of births around the school entry cutoff date was randomly determined and therefore that individuals who were born just before and after the cutoff date have similar baseline characteristics.We found that those who were born right before the school cutoff day and thus youngest in their cohort have higher mortality rates by suicide, compared to their peers who were born right after the cutoff date and thus older. We also found that those with relative age disadvantage tend to follow a different career path than those with relative age advantage, which may explain their higher suicide mortality rates.Relative age effects have broader consequences than was previously supposed. This study suggests that policy intervention that alleviates the relative age effect can be important.

  13. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    Science.gov (United States)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  14. Mathematical models for estimating earthquake casualties and damage cost through regression analysis using matrices

    International Nuclear Information System (INIS)

    Urrutia, J D; Bautista, L A; Baccay, E B

    2014-01-01

    The aim of this study was to develop mathematical models for estimating earthquake casualties such as death, number of injured persons, affected families and total cost of damage. To quantify the direct damages from earthquakes to human beings and properties given the magnitude, intensity, depth of focus, location of epicentre and time duration, the regression models were made. The researchers formulated models through regression analysis using matrices and used α = 0.01. The study considered thirty destructive earthquakes that hit the Philippines from the inclusive years 1968 to 2012. Relevant data about these said earthquakes were obtained from Philippine Institute of Volcanology and Seismology. Data on damages and casualties were gathered from the records of National Disaster Risk Reduction and Management Council. This study will be of great value in emergency planning, initiating and updating programs for earthquake hazard reduction in the Philippines, which is an earthquake-prone country.

  15. Sub-pixel estimation of tree cover and bare surface densities using regression tree analysis

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Zangrando Toneli

    2011-09-01

    Full Text Available Sub-pixel analysis is capable of generating continuous fields, which represent the spatial variability of certain thematic classes. The aim of this work was to develop numerical models to represent the variability of tree cover and bare surfaces within the study area. This research was conducted in the riparian buffer within a watershed of the São Francisco River in the North of Minas Gerais, Brazil. IKONOS and Landsat TM imagery were used with the GUIDE algorithm to construct the models. The results were two index images derived with regression trees for the entire study area, one representing tree cover and the other representing bare surface. The use of non-parametric and non-linear regression tree models presented satisfactory results to characterize wetland, deciduous and savanna patterns of forest formation.

  16. Identification of cotton properties to improve yarn count quality by using regression analysis

    International Nuclear Information System (INIS)

    Amin, M.; Ullah, M.; Akbar, A.

    2014-01-01

    Identification of raw material characteristics towards yarn count variation was studied by using statistical techniques. Regression analysis is used to meet the objective. Stepwise regression is used for mode) selection, and coefficient of determination and mean squared error (MSE) criteria are used to identify the contributing factors of cotton properties for yam count. Statistical assumptions of normality, autocorrelation and multicollinearity are evaluated by using probability plot, Durbin Watson test, variance inflation factor (VIF), and then model fitting is carried out. It is found that, invisible (INV), nepness (Nep), grayness (RD), cotton trash (TR) and uniformity index (VI) are the main contributing cotton properties for yarn count variation. The results are also verified by Pareto chart. (author)

  17. COLOR IMAGE RETRIEVAL BASED ON FEATURE FUSION THROUGH MULTIPLE LINEAR REGRESSION ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. Seetharaman

    2015-08-01

    Full Text Available This paper proposes a novel technique based on feature fusion using multiple linear regression analysis, and the least-square estimation method is employed to estimate the parameters. The given input query image is segmented into various regions according to the structure of the image. The color and texture features are extracted on each region of the query image, and the features are fused together using the multiple linear regression model. The estimated parameters of the model, which is modeled based on the features, are formed as a vector called a feature vector. The Canberra distance measure is adopted to compare the feature vectors of the query and target images. The F-measure is applied to evaluate the performance of the proposed technique. The obtained results expose that the proposed technique is comparable to the other existing techniques.

  18. THE PROGNOSIS OF RUSSIAN DEFENSE INDUSTRY DEVELOPMENT IMPLEMENTED THROUGH REGRESSION ANALYSIS

    Directory of Open Access Journals (Sweden)

    L.M. Kapustina

    2007-03-01

    Full Text Available The article illustrates the results of investigation the major internal and external factors which influence the development of the defense industry, as well as the results of regression analysis which quantitatively displays the factorial contribution in the growth rate of Russian defense industry. On the basis of calculated regression dependences the authors fulfilled the medium-term prognosis of defense industry. Optimistic and inertial versions of defense product growth rate for the period up to 2009 are based on scenario conditions in Russian economy worked out by the Ministry of economy and development. In conclusion authors point out which factors and conditions have the largest impact on successful and stable operation of Russian defense industry.

  19. Experimental and regression analysis for multi cylinder diesel engine operated with hybrid fuel blends

    Directory of Open Access Journals (Sweden)

    Gopal Rajendiran

    2014-01-01

    Full Text Available The purpose of this research work is to build a multiple linear regression model for the characteristics of multicylinder diesel engine using multicomponent blends (diesel- pungamia methyl ester-ethanol as fuel. Nine blends were tested by varying diesel (100 to 10% by Vol., biodiesel (80 to 10% by vol. and keeping ethanol as 10% constant. The brake thermal efficiency, smoke, oxides of nitrogen, carbon dioxide, maximum cylinder pressure, angle of maximum pressure, angle of 5% and 90% mass burning were predicted based on load, speed, diesel and biodiesel percentage. To validate this regression model another multi component fuel comprising diesel-palm methyl ester-ethanol was used in same engine. Statistical analysis was carried out between predicted and experimental data for both fuel. The performance, emission and combustion characteristics of multi cylinder diesel engine using similar fuel blends can be predicted without any expenses for experimentation.

  20. Standards for Standardized Logistic Regression Coefficients

    Science.gov (United States)

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  1. Ordinary least square regression, orthogonal regression, geometric mean regression and their applications in aerosol science

    International Nuclear Information System (INIS)

    Leng Ling; Zhang Tianyi; Kleinman, Lawrence; Zhu Wei

    2007-01-01

    Regression analysis, especially the ordinary least squares method which assumes that errors are confined to the dependent variable, has seen a fair share of its applications in aerosol science. The ordinary least squares approach, however, could be problematic due to the fact that atmospheric data often does not lend itself to calling one variable independent and the other dependent. Errors often exist for both measurements. In this work, we examine two regression approaches available to accommodate this situation. They are orthogonal regression and geometric mean regression. Comparisons are made theoretically as well as numerically through an aerosol study examining whether the ratio of organic aerosol to CO would change with age

  2. Solving the Omitted Variables Problem of Regression Analysis Using the Relative Vertical Position of Observations

    Directory of Open Access Journals (Sweden)

    Jonathan E. Leightner

    2012-01-01

    Full Text Available The omitted variables problem is one of regression analysis’ most serious problems. The standard approach to the omitted variables problem is to find instruments, or proxies, for the omitted variables, but this approach makes strong assumptions that are rarely met in practice. This paper introduces best projection reiterative truncated projected least squares (BP-RTPLS, the third generation of a technique that solves the omitted variables problem without using proxies or instruments. This paper presents a theoretical argument that BP-RTPLS produces unbiased reduced form estimates when there are omitted variables. This paper also provides simulation evidence that shows OLS produces between 250% and 2450% more errors than BP-RTPLS when there are omitted variables and when measurement and round-off error is 1 percent or less. In an example, the government spending multiplier, , is estimated using annual data for the USA between 1929 and 2010.

  3. Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach

    International Nuclear Information System (INIS)

    Zhang, Yue-Jun; Peng, Hua-Rong; Liu, Zhao; Tan, Weiping

    2015-01-01

    The transport sector appears a main energy consumer in China and plays a significant role in energy conservation. Improving energy efficiency proves an effective way to reduce energy consumption in transport sector, whereas its effectiveness may be affected by the rebound effect. This paper proposes a dynamic panel quantile regression model to estimate the direct energy rebound effect for road passenger transport in the whole country, eastern, central and western China, respectively, based on the data of 30 provinces from 2003 to 2012. The empirical results reveal that, first of all, the direct rebound effect does exist for road passenger transport and on the whole country, the short-term and long-term direct rebound effects are 25.53% and 26.56% on average, respectively. Second, the direct rebound effect for road passenger transport in central and eastern China tends to decrease, increase and then decrease again, whereas that in western China decreases and then increases, with the increasing passenger kilometers. Finally, when implementing energy efficiency policy in road passenger transport sector, the effectiveness of energy conservation in western China proves much better than that in central China overall, while the effectiveness in central China is relatively better than that in eastern China. - Highlights: • The direct rebound effect (RE) for road passenger transport in China is estimated. • The direct RE in the whole country, eastern, central, and western China is analyzed. • The short and long-term direct REs are 25.53% and 26.56% within the sample period. • Western China has better energy-saving performance than central and eastern China.

  4. Understanding child stunting in India: a comprehensive analysis of socio-economic, nutritional and environmental determinants using additive quantile regression.

    Science.gov (United States)

    Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A

    2013-01-01

    Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Using cross-sectional data for children aged 0-24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role.

  5. Understanding child stunting in India: a comprehensive analysis of socio-economic, nutritional and environmental determinants using additive quantile regression.

    Directory of Open Access Journals (Sweden)

    Nora Fenske

    Full Text Available BACKGROUND: Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. OBJECTIVE: We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. DESIGN: Using cross-sectional data for children aged 0-24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. RESULTS: At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. CONCLUSIONS: Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role.

  6. Prevalence of treponema species detected in endodontic infections: systematic review and meta-regression analysis.

    Science.gov (United States)

    Leite, Fábio R M; Nascimento, Gustavo G; Demarco, Flávio F; Gomes, Brenda P F A; Pucci, Cesar R; Martinho, Frederico C

    2015-05-01

    This systematic review and meta-regression analysis aimed to calculate a combined prevalence estimate and evaluate the prevalence of different Treponema species in primary and secondary endodontic infections, including symptomatic and asymptomatic cases. The MEDLINE/PubMed, Embase, Scielo, Web of Knowledge, and Scopus databases were searched without starting date restriction up to and including March 2014. Only reports in English were included. The selected literature was reviewed by 2 authors and classified as suitable or not to be included in this review. Lists were compared, and, in case of disagreements, decisions were made after a discussion based on inclusion and exclusion criteria. A pooled prevalence of Treponema species in endodontic infections was estimated. Additionally, a meta-regression analysis was performed. Among the 265 articles identified in the initial search, only 51 were included in the final analysis. The studies were classified into 2 different groups according to the type of endodontic infection and whether it was an exclusively primary/secondary study (n = 36) or a primary/secondary comparison (n = 15). The pooled prevalence of Treponema species was 41.5% (95% confidence interval, 35.9-47.0). In the multivariate model of meta-regression analysis, primary endodontic infections (P apical abscess, symptomatic apical periodontitis (P < .001), and concomitant presence of 2 or more species (P = .028) explained the heterogeneity regarding the prevalence rates of Treponema species. Our findings suggest that Treponema species are important pathogens involved in endodontic infections, particularly in cases of primary and acute infections. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Risk factors for violence in psychosis: systematic review and meta-regression analysis of 110 studies.

    Directory of Open Access Journals (Sweden)

    Katrina Witt

    Full Text Available Previous reviews on risk and protective factors for violence in psychosis have produced contrasting findings. There is therefore a need to clarify the direction and strength of association of risk and protective factors for violent outcomes in individuals with psychosis.We conducted a systematic review and meta-analysis using 6 electronic databases (CINAHL, EBSCO, EMBASE, Global Health, PsycINFO, PUBMED and Google Scholar. Studies were identified that reported factors associated with violence in adults diagnosed, using DSM or ICD criteria, with schizophrenia and other psychoses. We considered non-English language studies and dissertations. Risk and protective factors were meta-analysed if reported in three or more primary studies. Meta-regression examined sources of heterogeneity. A novel meta-epidemiological approach was used to group similar risk factors into one of 10 domains. Sub-group analyses were then used to investigate whether risk domains differed for studies reporting severe violence (rather than aggression or hostility and studies based in inpatient (rather than outpatient settings.There were 110 eligible studies reporting on 45,533 individuals, 8,439 (18.5% of whom were violent. A total of 39,995 (87.8% were diagnosed with schizophrenia, 209 (0.4% were diagnosed with bipolar disorder, and 5,329 (11.8% were diagnosed with other psychoses. Dynamic (or modifiable risk factors included hostile behaviour, recent drug misuse, non-adherence with psychological therapies (p values<0.001, higher poor impulse control scores, recent substance misuse, recent alcohol misuse (p values<0.01, and non-adherence with medication (p value <0.05. We also examined a number of static factors, the strongest of which were criminal history factors. When restricting outcomes to severe violence, these associations did not change materially. In studies investigating inpatient violence, associations differed in strength but not direction.Certain dynamic risk

  8. Translating Response During Therapy into Ultimate Treatment Outcome: A Personalized 4-Dimensional MRI Tumor Volumetric Regression Approach in Cervical Cancer

    International Nuclear Information System (INIS)

    Mayr, Nina A.; Wang, Jian Z.; Lo, Simon S.; Zhang Dongqing; Grecula, John C.; Lu Lanchun; Montebello, Joseph F.; Fowler, Jeffrey M.; Yuh, William T.C.

    2010-01-01

    Purpose: To assess individual volumetric tumor regression pattern in cervical cancer during therapy using serial four-dimensional MRI and to define the regression parameters' prognostic value validated with local control and survival correlation. Methods and Materials: One hundred and fifteen patients with Stage IB 2 -IVA cervical cancer treated with radiation therapy (RT) underwent serial MRI before (MRI 1) and during RT, at 2-2.5 weeks (MRI 2, at 20-25 Gy), and at 4-5 weeks (MRI 3, at 40-50 Gy). Eighty patients had a fourth MRI 1-2 months post-RT. Mean follow-up was 5.3 years. Tumor volume was measured by MRI-based three-dimensional volumetry, and plotted as dose(time)/volume regression curves. Volume regression parameters were correlated with local control, disease-specific, and overall survival. Results: Residual tumor volume, slope, and area under the regression curve correlated significantly with local control and survival. Residual volumes ≥20% at 40-50 Gy were independently associated with inferior 5-year local control (53% vs. 97%, p <0.001) and disease-specific survival rates (50% vs. 72%, p = 0.009) than smaller volumes. Patients with post-RT residual volumes ≥10% had 0% local control and 17% disease-specific survival, compared with 91% and 72% for <10% volume (p <0.001). Conclusion: Using more accurate four-dimensional volumetric regression analysis, tumor response can now be directly translated into individual patients' outcome for clinical application. Our results define two temporal thresholds critically influencing local control and survival. In patients with ≥20% residual volume at 40-50 Gy and ≥10% post-RT, the risk for local failure and death are so high that aggressive intervention may be warranted.

  9. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach

    International Nuclear Information System (INIS)

    Chen, Kuilin; Yu, Jie

    2014-01-01

    Highlights: • A novel hybrid modeling method is proposed for short-term wind speed forecasting. • Support vector regression model is constructed to formulate nonlinear state-space framework. • Unscented Kalman filter is adopted to recursively update states under random uncertainty. • The new SVR–UKF approach is compared to several conventional methods for short-term wind speed prediction. • The proposed method demonstrates higher prediction accuracy and reliability. - Abstract: Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed. In this study, unscented Kalman filter (UKF) is integrated with support vector regression (SVR) based state-space model in order to precisely update the short-term estimation of wind speed sequence. In the proposed SVR–UKF approach, support vector regression is first employed to formulate a nonlinear state-space model and then unscented Kalman filter is adopted to perform dynamic state estimation recursively on wind sequence with stochastic uncertainty. The novel SVR–UKF method is compared with artificial neural networks (ANNs), SVR, autoregressive (AR) and autoregressive integrated with Kalman filter (AR-Kalman) approaches for predicting short-term wind speed sequences collected from three sites in Massachusetts, USA. The forecasting results indicate that the proposed method has much better performance in both one-step-ahead and multi-step-ahead wind speed predictions than the other approaches across all the locations

  10. A robust combination approach for short-term wind speed forecasting and analysis – Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model

    International Nuclear Information System (INIS)

    Wang, Jianzhou; Hu, Jianming

    2015-01-01

    With the increasing importance of wind power as a component of power systems, the problems induced by the stochastic and intermittent nature of wind speed have compelled system operators and researchers to search for more reliable techniques to forecast wind speed. This paper proposes a combination model for probabilistic short-term wind speed forecasting. In this proposed hybrid approach, EWT (Empirical Wavelet Transform) is employed to extract meaningful information from a wind speed series by designing an appropriate wavelet filter bank. The GPR (Gaussian Process Regression) model is utilized to combine independent forecasts generated by various forecasting engines (ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM)) in a nonlinear way rather than the commonly used linear way. The proposed approach provides more probabilistic information for wind speed predictions besides improving the forecasting accuracy for single-value predictions. The effectiveness of the proposed approach is demonstrated with wind speed data from two wind farms in China. The results indicate that the individual forecasting engines do not consistently forecast short-term wind speed for the two sites, and the proposed combination method can generate a more reliable and accurate forecast. - Highlights: • The proposed approach can make probabilistic modeling for wind speed series. • The proposed approach adapts to the time-varying characteristic of the wind speed. • The hybrid approach can extract the meaningful components from the wind speed series. • The proposed method can generate adaptive, reliable and more accurate forecasting results. • The proposed model combines four independent forecasting engines in a nonlinear way.

  11. Generalized Partial Least Squares Approach for Nominal Multinomial Logit Regression Models with a Functional Covariate

    Science.gov (United States)

    Albaqshi, Amani Mohammed H.

    2017-01-01

    Functional Data Analysis (FDA) has attracted substantial attention for the last two decades. Within FDA, classifying curves into two or more categories is consistently of interest to scientists, but multi-class prediction within FDA is challenged in that most classification tools have been limited to binary response applications. The functional…

  12. Systematic review, meta-analysis, and meta-regression: Successful second-line treatment for Helicobacter pylori.

    Science.gov (United States)

    Muñoz, Neus; Sánchez-Delgado, Jordi; Baylina, Mireia; Puig, Ignasi; López-Góngora, Sheila; Suarez, David; Calvet, Xavier

    2018-06-01

    Multiple Helicobacter pylori second-line schedules have been described as potentially useful. It remains unclear, however, which are the best combinations, and which features of second-line treatments are related to better cure rates. The aim of this study was to determine that second-line treatments achieved excellent (>90%) cure rates by performing a systematic review and when possible a meta-analysis. A meta-regression was planned to determine the characteristics of treatments achieving excellent cure rates. A systematic review for studies evaluating second-line Helicobacter pylori treatment was carried out in multiple databases. A formal meta-analysis was performed when an adequate number of comparative studies was found, using RevMan5.3. A meta-regression for evaluating factors predicting cure rates >90% was performed using Stata Statistical Software. The systematic review identified 115 eligible studies, including 203 evaluable treatment arms. The results were extremely heterogeneous, with 61 treatment arms (30%) achieving optimal (>90%) cure rates. The meta-analysis favored quadruple therapies over triple (83.2% vs 76.1%, OR: 0.59:0.38-0.93; P = .02) and 14-day quadruple treatments over 7-day treatments (91.2% vs 81.5%, OR; 95% CI: 0.42:0.24-0.73; P = .002), although the differences were significant only in the per-protocol analysis. The meta-regression did not find any particular characteristics of the studies to be associated with excellent cure rates. Second-line Helicobacter pylori treatments achieving>90% cure rates are extremely heterogeneous. Quadruple therapy and 14-day treatments seem better than triple therapies and 7-day ones. No single characteristic of the treatments was related to excellent cure rates. Future approaches suitable for infectious diseases-thus considering antibiotic resistances-are needed to design rescue treatments that consistently achieve excellent cure rates. © 2018 John Wiley & Sons Ltd.

  13. Education-Based Gaps in eHealth: A Weighted Logistic Regression Approach.

    Science.gov (United States)

    Amo, Laura

    2016-10-12

    Persons with a college degree are more likely to engage in eHealth behaviors than persons without a college degree, compounding the health disadvantages of undereducated groups in the United States. However, the extent to which quality of recent eHealth experience reduces the education-based eHealth gap is unexplored. The goal of this study was to examine how eHealth information search experience moderates the relationship between college education and eHealth behaviors. Based on a nationally representative sample of adults who reported using the Internet to conduct the most recent health information search (n=1458), I evaluated eHealth search experience in relation to the likelihood of engaging in different eHealth behaviors. I examined whether Internet health information search experience reduces the eHealth behavior gaps among college-educated and noncollege-educated adults. Weighted logistic regression models were used to estimate the probability of different eHealth behaviors. College education was significantly positively related to the likelihood of 4 eHealth behaviors. In general, eHealth search experience was negatively associated with health care behaviors, health information-seeking behaviors, and user-generated or content sharing behaviors after accounting for other covariates. Whereas Internet health information search experience has narrowed the education gap in terms of likelihood of using email or Internet to communicate with a doctor or health care provider and likelihood of using a website to manage diet, weight, or health, it has widened the education gap in the instances of searching for health information for oneself, searching for health information for someone else, and downloading health information on a mobile device. The relationship between college education and eHealth behaviors is moderated by Internet health information search experience in different ways depending on the type of eHealth behavior. After controlling for college

  14. Straight line fitting and predictions: On a marginal likelihood approach to linear regression and errors-in-variables models

    Science.gov (United States)

    Christiansen, Bo

    2015-04-01

    Linear regression methods are without doubt the most used approaches to describe and predict data in the physical sciences. They are often good first order approximations and they are in general easier to apply and interpret than more advanced methods. However, even the properties of univariate regression can lead to debate over the appropriateness of various models as witnessed by the recent discussion about climate reconstruction methods. Before linear regression is applied important choices have to be made regarding the origins of the noise terms and regarding which of the two variables under consideration that should be treated as the independent variable. These decisions are often not easy to make but they may have a considerable impact on the results. We seek to give a unified probabilistic - Bayesian with flat priors - treatment of univariate linear regression and prediction by taking, as starting point, the general errors-in-variables model (Christiansen, J. Clim., 27, 2014-2031, 2014). Other versions of linear regression can be obtained as limits of this model. We derive the likelihood of the model parameters and predictands of the general errors-in-variables model by marginalizing over the nuisance parameters. The resulting likelihood is relatively simple and easy to analyze and calculate. The well known unidentifiability of the errors-in-variables model is manifested as the absence of a well-defined maximum in the likelihood. However, this does not mean that probabilistic inference can not be made; the marginal likelihoods of model parameters and the predictands have, in general, well-defined maxima. We also include a probabilistic version of classical calibration and show how it is related to the errors-in-variables model. The results are illustrated by an example from the coupling between the lower stratosphere and the troposphere in the Northern Hemisphere winter.

  15. Oil and gas pipeline construction cost analysis and developing regression models for cost estimation

    Science.gov (United States)

    Thaduri, Ravi Kiran

    In this study, cost data for 180 pipelines and 136 compressor stations have been analyzed. On the basis of the distribution analysis, regression models have been developed. Material, Labor, ROW and miscellaneous costs make up the total cost of a pipeline construction. The pipelines are analyzed based on different pipeline lengths, diameter, location, pipeline volume and year of completion. In a pipeline construction, labor costs dominate the total costs with a share of about 40%. Multiple non-linear regression models are developed to estimate the component costs of pipelines for various cross-sectional areas, lengths and locations. The Compressor stations are analyzed based on the capacity, year of completion and location. Unlike the pipeline costs, material costs dominate the total costs in the construction of compressor station, with an average share of about 50.6%. Land costs have very little influence on the total costs. Similar regression models are developed to estimate the component costs of compressor station for various capacities and locations.

  16. A PANEL REGRESSION ANALYSIS OF HUMAN CAPITAL RELEVANCE IN SELECTED SCANDINAVIAN AND SE EUROPEAN COUNTRIES

    Directory of Open Access Journals (Sweden)

    Filip Kokotovic

    2016-06-01

    Full Text Available The study of human capital relevance to economic growth is becoming increasingly important taking into account its relevance in many of the Sustainable Development Goals proposed by the UN. This paper conducted a panel regression analysis of selected SE European countries and Scandinavian countries using the Granger causality test and pooled panel regression. In order to test the relevance of human capital on economic growth, several human capital proxy variables were identified. Aside from the human capital proxy variables, other explanatory variables were selected using stepwise regression while the dependant variable was GDP. This paper concludes that there are significant structural differences in the economies of the two observed panels. Of the human capital proxy variables observed, for the panel of SE European countries only life expectancy was statistically significant and it had a negative impact on economic growth, while in the panel of Scandinavian countries total public expenditure on education had a statistically significant positive effect on economic growth. Based upon these results and existing studies, this paper concludes that human capital has a far more significant impact on economic growth in more developed economies.

  17. Robust best linear estimation for regression analysis using surrogate and instrumental variables.

    Science.gov (United States)

    Wang, C Y

    2012-04-01

    We investigate methods for regression analysis when covariates are measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies the classical measurement error model, but it may not have repeated measurements. In addition to the surrogate variables that are available among the subjects in the calibration sample, we assume that there is an instrumental variable (IV) that is available for all study subjects. An IV is correlated with the unobserved true exposure variable and hence can be useful in the estimation of the regression coefficients. We propose a robust best linear estimator that uses all the available data, which is the most efficient among a class of consistent estimators. The proposed estimator is shown to be consistent and asymptotically normal under very weak distributional assumptions. For Poisson or linear regression, the proposed estimator is consistent even if the measurement error from the surrogate or IV is heteroscedastic. Finite-sample performance of the proposed estimator is examined and compared with other estimators via intensive simulation studies. The proposed method and other methods are applied to a bladder cancer case-control study.

  18. Percentile-Based ETCCDI Temperature Extremes Indices for CMIP5 Model Output: New Results through Semiparametric Quantile Regression Approach

    Science.gov (United States)

    Li, L.; Yang, C.

    2017-12-01

    Climate extremes often manifest as rare events in terms of surface air temperature and precipitation with an annual reoccurrence period. In order to represent the manifold characteristics of climate extremes for monitoring and analysis, the Expert Team on Climate Change Detection and Indices (ETCCDI) had worked out a set of 27 core indices based on daily temperature and precipitation data, describing extreme weather and climate events on an annual basis. The CLIMDEX project (http://www.climdex.org) had produced public domain datasets of such indices for data from a variety of sources, including output from global climate models (GCM) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the 27 ETCCDI indices, there are six percentile-based temperature extremes indices that may fall into two groups: exceedance rates (ER) (TN10p, TN90p, TX10p and TX90p) and durations (CSDI and WSDI). Percentiles must be estimated prior to the calculation of the indices, and could more or less be biased by the adopted algorithm. Such biases will in turn be propagated to the final results of indices. The CLIMDEX used an empirical quantile estimator combined with a bootstrap resampling procedure to reduce the inhomogeneity in the annual series of the ER indices. However, there are still some problems remained in the CLIMDEX datasets, namely the overestimated climate variability due to unaccounted autocorrelation in the daily temperature data, seasonally varying biases and inconsistency between algorithms applied to the ER indices and to the duration indices. We now present new results of the six indices through a semiparametric quantile regression approach for the CMIP5 model output. By using the base-period data as a whole and taking seasonality and autocorrelation into account, this approach successfully addressed the aforementioned issues and came out with consistent results. The new datasets cover the historical and three projected (RCP2.6, RCP4.5 and RCP

  19. Estimating leaf photosynthetic pigments information by stepwise multiple linear regression analysis and a leaf optical model

    Science.gov (United States)

    Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei

    2014-10-01

    Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.

  20. Selenium Exposure and Cancer Risk: an Updated Meta-analysis and Meta-regression

    Science.gov (United States)

    Cai, Xianlei; Wang, Chen; Yu, Wanqi; Fan, Wenjie; Wang, Shan; Shen, Ning; Wu, Pengcheng; Li, Xiuyang; Wang, Fudi

    2016-01-01

    The objective of this study was to investigate the associations between selenium exposure and cancer risk. We identified 69 studies and applied meta-analysis, meta-regression and dose-response analysis to obtain available evidence. The results indicated that high selenium exposure had a protective effect on cancer risk (pooled OR = 0.78; 95%CI: 0.73–0.83). The results of linear and nonlinear dose-response analysis indicated that high serum/plasma selenium and toenail selenium had the efficacy on cancer prevention. However, we did not find a protective efficacy of selenium supplement. High selenium exposure may have different effects on specific types of cancer. It decreased the risk of breast cancer, lung cancer, esophageal cancer, gastric cancer, and prostate cancer, but it was not associated with colorectal cancer, bladder cancer, and skin cancer. PMID:26786590

  1. An evaluation of an operating BWR piping system damping during earthquake by applying auto regressive analysis

    International Nuclear Information System (INIS)

    Kitada, Y.; Makiguchi, M.; Komori, A.; Ichiki, T.

    1985-01-01

    The records of three earthquakes which had induced significant earthquake response to the piping system were obtained with the earthquake observation system. In the present paper, first, the eigenvalue analysis results for the natural piping system based on the piping support (boundary) conditions are described and second, the frequency and the damping factor evaluation results for each vibrational mode are described. In the present study, the Auto Regressive (AR) analysis method is used in the evaluation of natural frequencies and damping factors. The AR analysis applied here has a capability of direct evaluation of natural frequencies and damping factors from earthquake records observed on a piping system without any information on the input motions to the system. (orig./HP)

  2. Neck-focused panic attacks among Cambodian refugees; a logistic and linear regression analysis.

    Science.gov (United States)

    Hinton, Devon E; Chhean, Dara; Pich, Vuth; Um, Khin; Fama, Jeanne M; Pollack, Mark H

    2006-01-01

    Consecutive Cambodian refugees attending a psychiatric clinic were assessed for the presence and severity of current--i.e., at least one episode in the last month--neck-focused panic. Among the whole sample (N=130), in a logistic regression analysis, the Anxiety Sensitivity Index (ASI; odds ratio=3.70) and the Clinician-Administered PTSD Scale (CAPS; odds ratio=2.61) significantly predicted the presence of current neck panic (NP). Among the neck panic patients (N=60), in the linear regression analysis, NP severity was significantly predicted by NP-associated flashbacks (beta=.42), NP-associated catastrophic cognitions (beta=.22), and CAPS score (beta=.28). Further analysis revealed the effect of the CAPS score to be significantly mediated (Sobel test [Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182]) by both NP-associated flashbacks and catastrophic cognitions. In the care of traumatized Cambodian refugees, NP severity, as well as NP-associated flashbacks and catastrophic cognitions, should be specifically assessed and treated.

  3. Characterization of sonographically indeterminate ovarian tumors with MR imaging. A logistic regression analysis

    International Nuclear Information System (INIS)

    Yamashita, Y.; Hatanaka, Y.; Torashima, M.; Takahashi, M.; Miyazaki, K.; Okamura, H.

    1997-01-01

    Purpose: The goal of this study was to maximize the discrimination between benign and malignant masses in patients with sonographically indeterminate ovarian lesions by means of unenhanced and contrast-enhanced MR imaging, and to develop a computer-assisted diagnosis system. Material and Methods: Findings in precontrast and Gd-DTPA contrast-enhanced MR images of 104 patients with 115 sonographically indeterminate ovarian masses were analyzed, and the results were correlated with histopathological findings. Of 115 lesions, 65 were benign (23 cystadenomas, 13 complex cysts, 11 teratomas, 6 fibrothecomas, 12 others) and 50 were malignant (32 ovarian carcinomas, 7 metastatic tumors of the ovary, 4 carcinomas of the fallopian tubes, 7 others). A logistic regression analysis was performed to discriminate between benign and malignant lesions, and a model of a computer-assisted diagnosis was developed. This model was prospectively tested in 75 cases of ovarian tumors found at other institutions. Results: From the univariate analysis, the following parameters were selected as significant for predicting malignancy (p≤0.05): A solid or cystic mass with a large solid component or wall thickness greater than 3 mm; complex internal architecture; ascites; and bilaterality. Based on these parameters, a model of a computer-assisted diagnosis system was developed with the logistic regression analysis. To distinguish benign from malignant lesions, the maximum cut-off point was obtained between 0.47 and 0.51. In a prospective application of this model, 87% of the lesions were accurately identified as benign or malignant. (orig.)

  4. Logistic Regression and Path Analysis Method to Analyze Factors influencing Students’ Achievement

    Science.gov (United States)

    Noeryanti, N.; Suryowati, K.; Setyawan, Y.; Aulia, R. R.

    2018-04-01

    Students' academic achievement cannot be separated from the influence of two factors namely internal and external factors. The first factors of the student (internal factors) consist of intelligence (X1), health (X2), interest (X3), and motivation of students (X4). The external factors consist of family environment (X5), school environment (X6), and society environment (X7). The objects of this research are eighth grade students of the school year 2016/2017 at SMPN 1 Jiwan Madiun sampled by using simple random sampling. Primary data are obtained by distributing questionnaires. The method used in this study is binary logistic regression analysis that aims to identify internal and external factors that affect student’s achievement and how the trends of them. Path Analysis was used to determine the factors that influence directly, indirectly or totally on student’s achievement. Based on the results of binary logistic regression, variables that affect student’s achievement are interest and motivation. And based on the results obtained by path analysis, factors that have a direct impact on student’s achievement are students’ interest (59%) and students’ motivation (27%). While the factors that have indirect influences on students’ achievement, are family environment (97%) and school environment (37).

  5. Application of nonlinear regression analysis for ammonium exchange by natural (Bigadic) clinoptilolite

    International Nuclear Information System (INIS)

    Gunay, Ahmet

    2007-01-01

    The experimental data of ammonium exchange by natural Bigadic clinoptilolite was evaluated using nonlinear regression analysis. Three two-parameters isotherm models (Langmuir, Freundlich and Temkin) and three three-parameters isotherm models (Redlich-Peterson, Sips and Khan) were used to analyse the equilibrium data. Fitting of isotherm models was determined using values of standard normalization error procedure (SNE) and coefficient of determination (R 2 ). HYBRID error function provided lowest sum of normalized error and Khan model had better performance for modeling the equilibrium data. Thermodynamic investigation indicated that ammonium removal by clinoptilolite was favorable at lower temperatures and exothermic in nature

  6. A REVIEW ON THE USE OF REGRESSION ANALYSIS IN STUDIES OF AUDIT QUALITY

    Directory of Open Access Journals (Sweden)

    Agung Dodit Muliawan

    2015-07-01

    Full Text Available This study aimed to review how regression analysis has been used in studies of abstract phenomenon, such as audit quality, an importance concept in the auditing practice (Schroeder et al., 1986, yet is not well defined. The articles reviewed were the research articles that include audit quality as research variable, either as dependent or independent variables. The articles were purposefully selected to represent balance combination between audit specific and more general accounting journals and between Anglo Saxon and Anglo American journals. The articles were published between 1983-2011 and from the A/A class journal based on ERA 2010’s classifications. The study found that most of the articles reviewed used multiple regression analysis and treated audit quality as dependent variable and measured it by using a proxy. This study also highlights the size of data sample used and the lack of discussions about the assumptions of the statistical analysis used in most of the articles reviewed. This study concluded that the effectiveness and validity of multiple regressions do not only depends on its application by the researchers but also on how the researchers communicate their findings to the audience. KEYWORDS Audit quality, regression analysis ABSTRAK Kajian ini bertujuan untuk mereviu bagaimana analisa regresi digunakan dalam suatu fenomena abstrak seperti kualitas audit, suatu konsep yang penting dalam praktik audit (Schroeder et al., 1986 namun belum terdefinisi dengan jelas. Artikel yang direviu dalam kajian ini adalah artikel penelitian yang memasukkan kualitas audit sebagai variabel penelitian, baik sebagai variabel independen maupun dependen. Artikel-artikel tersebut dipilih dengan cara purposif sampling untuk mendapatkan keterwakilan yang seimbang antara artikel jurnal khusus audit dan akuntansi secara umum, serta mewakili jurnal Anglo Saxon dan Anglo American. Artikel yang direviu diterbitkan pada periode 1983-2011 oleh jurnal yang

  7. Estimating the causes of traffic accidents using logistic regression and discriminant analysis.

    Science.gov (United States)

    Karacasu, Murat; Ergül, Barış; Altin Yavuz, Arzu

    2014-01-01

    Factors that affect traffic accidents have been analysed in various ways. In this study, we use the methods of logistic regression and discriminant analysis to determine the damages due to injury and non-injury accidents in the Eskisehir Province. Data were obtained from the accident reports of the General Directorate of Security in Eskisehir; 2552 traffic accidents between January and December 2009 were investigated regarding whether they resulted in injury. According to the results, the effects of traffic accidents were reflected in the variables. These results provide a wealth of information that may aid future measures toward the prevention of undesired results.

  8. Regression analysis of pulsed eddy current signals for inspection of steam generator tube support structures

    International Nuclear Information System (INIS)

    Buck, J.; Underhill, P.R.; Mokros, S.G.; Morelli, J.; Krause, T.W.; Babbar, V.K.; Lepine, B.

    2015-01-01

    Nuclear steam generator (SG) support structure degradation and fouling can result in damage to SG tubes and loss of SG efficiency. Conventional eddy current technology is extensively used to detect cracks, frets at supports and other flaws, but has limited capabilities in the presence of multiple degradation modes or fouling. Pulsed eddy current (PEC) combined with principal components analysis (PCA) and multiple linear regression models was examined for the inspection of support structure degradation and SG tube off-centering with the goal of extending results to include additional degradation modes. (author)

  9. Classification of Error-Diffused Halftone Images Based on Spectral Regression Kernel Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Zhigao Zeng

    2016-01-01

    Full Text Available This paper proposes a novel algorithm to solve the challenging problem of classifying error-diffused halftone images. We firstly design the class feature matrices, after extracting the image patches according to their statistics characteristics, to classify the error-diffused halftone images. Then, the spectral regression kernel discriminant analysis is used for feature dimension reduction. The error-diffused halftone images are finally classified using an idea similar to the nearest centroids classifier. As demonstrated by the experimental results, our method is fast and can achieve a high classification accuracy rate with an added benefit of robustness in tackling noise.

  10. FREQFIT: Computer program which performs numerical regression and statistical chi-squared goodness of fit analysis

    International Nuclear Information System (INIS)

    Hofland, G.S.; Barton, C.C.

    1990-01-01

    The computer program FREQFIT is designed to perform regression and statistical chi-squared goodness of fit analysis on one-dimensional or two-dimensional data. The program features an interactive user dialogue, numerous help messages, an option for screen or line printer output, and the flexibility to use practically any commercially available graphics package to create plots of the program's results. FREQFIT is written in Microsoft QuickBASIC, for IBM-PC compatible computers. A listing of the QuickBASIC source code for the FREQFIT program, a user manual, and sample input data, output, and plots are included. 6 refs., 1 fig

  11. Multivariate regression analysis for determining short-term values of radon and its decay products from filter measurements

    International Nuclear Information System (INIS)

    Kraut, W.; Schwarz, W.; Wilhelm, A.

    1994-01-01

    A multivariate regression analysis is applied to decay measurements of α-resp. β-filter activcity. Activity concentrations for Po-218, Pb-214 and Bi-214, resp. for the Rn-222 equilibrium equivalent concentration are obtained explicitly. The regression analysis takes into account properly the variances of the measured count rates and their influence on the resulting activity concentrations. (orig.) [de

  12. Regressive Prediction Approach to Vertical Handover in Fourth Generation Wireless Networks

    Directory of Open Access Journals (Sweden)

    Abubakar M. Miyim

    2014-11-01

    Full Text Available The over increasing demand for deployment of wireless access networks has made wireless mobile devices to face so many challenges in choosing the best suitable network from a set of available access networks. Some of the weighty issues in 4G wireless networks are fastness and seamlessness in handover process. This paper therefore, proposes a handover technique based on movement prediction in wireless mobile (WiMAX and LTE-A environment. The technique enables the system to predict signal quality between the UE and Radio Base Stations (RBS/Access Points (APs in two different networks. Prediction is achieved by employing the Markov Decision Process Model (MDPM where the movement of the UE is dynamically estimated and averaged to keep track of the signal strength of mobile users. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency can be reduced. The performances of various handover approaches influenced by different metrics (mobility velocities were evaluated. The results presented demonstrate good accuracy the proposed method was able to achieve in predicting the next signal level by reducing the total handover latency.

  13. The Public-Private Sector Wage Gap in Zambia in the 1990s: A Quantile Regression Approach

    DEFF Research Database (Denmark)

    Nielsen, Helena Skyt; Rosholm, Michael

    2001-01-01

    of economic transition, because items as privatization and deregulation were on the political agenda. The focus is placed on the public-private sector wage gap, and the results show that this gap was relatively favorable for the low-skilled and less favorable for the high-skilled. This picture was further......We investigate the determinants of wages in Zambia and based on the quantile regression approach, we analyze how their effects differ at different points in the wage distribution and over time. We use three cross-sections of Zambian household data from the early nineties, which was a period...

  14. Regression analysis of case K interval-censored failure time data in the presence of informative censoring.

    Science.gov (United States)

    Wang, Peijie; Zhao, Hui; Sun, Jianguo

    2016-12-01

    Interval-censored failure time data occur in many fields such as demography, economics, medical research, and reliability and many inference procedures on them have been developed (Sun, 2006; Chen, Sun, and Peace, 2012). However, most of the existing approaches assume that the mechanism that yields interval censoring is independent of the failure time of interest and it is clear that this may not be true in practice (Zhang et al., 2007; Ma, Hu, and Sun, 2015). In this article, we consider regression analysis of case K interval-censored failure time data when the censoring mechanism may be related to the failure time of interest. For the problem, an estimated sieve maximum-likelihood approach is proposed for the data arising from the proportional hazards frailty model and for estimation, a two-step procedure is presented. In the addition, the asymptotic properties of the proposed estimators of regression parameters are established and an extensive simulation study suggests that the method works well. Finally, we apply the method to a set of real interval-censored data that motivated this study. © 2016, The International Biometric Society.

  15. Risk factors for pedicled flap necrosis in hand soft tissue reconstruction: a multivariate logistic regression analysis.

    Science.gov (United States)

    Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun

    2018-03-01

    Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.

  16. Relative accuracy of spatial predictive models for lynx Lynx canadensis derived using logistic regression-AIC, multiple criteria evaluation and Bayesian approaches

    Directory of Open Access Journals (Sweden)

    Shelley M. ALEXANDER

    2009-02-01

    Full Text Available We compared probability surfaces derived using one set of environmental variables in three Geographic Information Systems (GIS-based approaches: logistic regression and Akaike’s Information Criterion (AIC, Multiple Criteria Evaluation (MCE, and Bayesian Analysis (specifically Dempster-Shafer theory. We used lynx Lynx canadensis as our focal species, and developed our environment relationship model using track data collected in Banff National Park, Alberta, Canada, during winters from 1997 to 2000. The accuracy of the three spatial models were compared using a contingency table method. We determined the percentage of cases in which both presence and absence points were correctly classified (overall accuracy, the failure to predict a species where it occurred (omission error and the prediction of presence where there was absence (commission error. Our overall accuracy showed the logistic regression approach was the most accurate (74.51%. The multiple criteria evaluation was intermediate (39.22%, while the Dempster-Shafer (D-S theory model was the poorest (29.90%. However, omission and commission error tell us a different story: logistic regression had the lowest commission error, while D-S theory produced the lowest omission error. Our results provide evidence that habitat modellers should evaluate all three error measures when ascribing confidence in their model. We suggest that for our study area at least, the logistic regression model is optimal. However, where sample size is small or the species is very rare, it may also be useful to explore and/or use a more ecologically cautious modelling approach (e.g. Dempster-Shafer that would over-predict, protect more sites, and thereby minimize the risk of missing critical habitat in conservation plans[Current Zoology 55(1: 28 – 40, 2009].

  17. Regression analysis of mixed recurrent-event and panel-count data.

    Science.gov (United States)

    Zhu, Liang; Tong, Xinwei; Sun, Jianguo; Chen, Manhua; Srivastava, Deo Kumar; Leisenring, Wendy; Robison, Leslie L

    2014-07-01

    In event history studies concerning recurrent events, two types of data have been extensively discussed. One is recurrent-event data (Cook and Lawless, 2007. The Analysis of Recurrent Event Data. New York: Springer), and the other is panel-count data (Zhao and others, 2010. Nonparametric inference based on panel-count data. Test 20: , 1-42). In the former case, all study subjects are monitored continuously; thus, complete information is available for the underlying recurrent-event processes of interest. In the latter case, study subjects are monitored periodically; thus, only incomplete information is available for the processes of interest. In reality, however, a third type of data could occur in which some study subjects are monitored continuously, but others are monitored periodically. When this occurs, we have mixed recurrent-event and panel-count data. This paper discusses regression analysis of such mixed data and presents two estimation procedures for the problem. One is a maximum likelihood estimation procedure, and the other is an estimating equation procedure. The asymptotic properties of both resulting estimators of regression parameters are established. Also, the methods are applied to a set of mixed recurrent-event and panel-count data that arose from a Childhood Cancer Survivor Study and motivated this investigation. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Determination of baroreflex sensitivity during the modified Oxford maneuver by trigonometric regressive spectral analysis.

    Directory of Open Access Journals (Sweden)

    Julia Gasch

    Full Text Available BACKGROUND: Differences in spontaneous and drug-induced baroreflex sensitivity (BRS have been attributed to its different operating ranges. The current study attempted to compare BRS estimates during cardiovascular steady-state and pharmacologically stimulation using an innovative algorithm for dynamic determination of baroreflex gain. METHODOLOGY/PRINCIPAL FINDINGS: Forty-five volunteers underwent the modified Oxford maneuver in supine and 60° tilted position with blood pressure and heart rate being continuously recorded. Drug-induced BRS-estimates were calculated from data obtained by bolus injections of nitroprusside and phenylephrine. Spontaneous indices were derived from data obtained during rest (stationary and under pharmacological stimulation (non-stationary using the algorithm of trigonometric regressive spectral analysis (TRS. Spontaneous and drug-induced BRS values were significantly correlated and display directionally similar changes under different situations. Using the Bland-Altman method, systematic differences between spontaneous and drug-induced estimates were found and revealed that the discrepancy can be as large as the gain itself. Fixed bias was not evident with ordinary least products regression. The correlation and agreement between the estimates increased significantly when BRS was calculated by TRS in non-stationary mode during the drug injection period. TRS-BRS significantly increased during phenylephrine and decreased under nitroprusside. CONCLUSIONS/SIGNIFICANCE: The TRS analysis provides a reliable, non-invasive assessment of human BRS not only under static steady state conditions, but also during pharmacological perturbation of the cardiovascular system.

  19. Logistic regression analysis to predict Medical Licensing Examination of Thailand (MLET) Step1 success or failure.

    Science.gov (United States)

    Wanvarie, Samkaew; Sathapatayavongs, Boonmee

    2007-09-01

    The aim of this paper was to assess factors that predict students' performance in the Medical Licensing Examination of Thailand (MLET) Step1 examination. The hypothesis was that demographic factors and academic records would predict the students' performance in the Step1 Licensing Examination. A logistic regression analysis of demographic factors (age, sex and residence) and academic records [high school grade point average (GPA), National University Entrance Examination Score and GPAs of the pre-clinical years] with the MLET Step1 outcome was accomplished using the data of 117 third-year Ramathibodi medical students. Twenty-three (19.7%) students failed the MLET Step1 examination. Stepwise logistic regression analysis showed that the significant predictors of MLET Step1 success/failure were residence background and GPAs of the second and third preclinical years. For students whose sophomore and third-year GPAs increased by an average of 1 point, the odds of passing the MLET Step1 examination increased by a factor of 16.3 and 12.8 respectively. The minimum GPAs for students from urban and rural backgrounds to pass the examination were estimated from the equation (2.35 vs 2.65 from 4.00 scale). Students from rural backgrounds and/or low-grade point averages in their second and third preclinical years of medical school are at risk of failing the MLET Step1 examination. They should be given intensive tutorials during the second and third pre-clinical years.

  20. Modelling and analysis of turbulent datasets using Auto Regressive Moving Average processes

    International Nuclear Information System (INIS)

    Faranda, Davide; Dubrulle, Bérengère; Daviaud, François; Pons, Flavio Maria Emanuele; Saint-Michel, Brice; Herbert, Éric; Cortet, Pierre-Philippe

    2014-01-01

    We introduce a novel way to extract information from turbulent datasets by applying an Auto Regressive Moving Average (ARMA) statistical analysis. Such analysis goes well beyond the analysis of the mean flow and of the fluctuations and links the behavior of the recorded time series to a discrete version of a stochastic differential equation which is able to describe the correlation structure in the dataset. We introduce a new index Υ that measures the difference between the resulting analysis and the Obukhov model of turbulence, the simplest stochastic model reproducing both Richardson law and the Kolmogorov spectrum. We test the method on datasets measured in a von Kármán swirling flow experiment. We found that the ARMA analysis is well correlated with spatial structures of the flow, and can discriminate between two different flows with comparable mean velocities, obtained by changing the forcing. Moreover, we show that the Υ is highest in regions where shear layer vortices are present, thereby establishing a link between deviations from the Kolmogorov model and coherent structures. These deviations are consistent with the ones observed by computing the Hurst exponents for the same time series. We show that some salient features of the analysis are preserved when considering global instead of local observables. Finally, we analyze flow configurations with multistability features where the ARMA technique is efficient in discriminating different stability branches of the system

  1. A haplotype regression approach for genetic evaluation using sequences from the 1000 bull genomes Project

    International Nuclear Information System (INIS)

    Lakhssassi, K.; González-Recio, O.

    2017-01-01

    Haplotypes from sequencing data may improve the prediction accuracy in genomic evaluations as haplotypes are in stronger linkage disequilibrium with quantitative trait loci than markers from SNP chips. This study focuses first, on the creation of haplotypes in a population sample of 450 Holstein animals, with full-sequence data from the 1000 bull genomes project; and second, on incorporating them into the whole genome prediction model. In total, 38,319,258 SNPs (and indels) from Next Generation Sequencing were included in the analysis. After filtering variants with minor allele frequency (MAF< 0.025) 13,912,326 SNPs were available for the haplotypes extraction with findhap.f90. The number of SNPs in the haploblocks was on average 924 SNP (166,552 bp). Unique haplotypes were around 97% in all chromosomes and were ignored leaving 153,428 haplotypes. Estimated haplotypes had a large contribution to the total variance of genomic estimated breeding values for kilogram of protein, Global Type Index, Somatic Cell Score and Days Open (between 32 and 99.9%). Haploblocks containing haplotypes with large effects were selected by filtering for each trait, haplotypes whose effect was larger/lower than the mean plus/minus 3 times the standard deviation (SD) and 1 SD above the mean of the haplotypes effect distribution. Results showed that filtering by 3 SD would not be enough to capture a large proportion of genetic variance, whereas filtering by 1 SD could be useful but model convergence should be considered. Additionally, sequence haplotypes were able to capture additional genetic variance to the polygenic effect for traits undergoing lower selection intensity like fertility and health traits.

  2. A haplotype regression approach for genetic evaluation using sequences from the 1000 bull genomes Project

    Energy Technology Data Exchange (ETDEWEB)

    Lakhssassi, K.; González-Recio, O.

    2017-07-01

    Haplotypes from sequencing data may improve the prediction accuracy in genomic evaluations as haplotypes are in stronger linkage disequilibrium with quantitative trait loci than markers from SNP chips. This study focuses first, on the creation of haplotypes in a population sample of 450 Holstein animals, with full-sequence data from the 1000 bull genomes project; and second, on incorporating them into the whole genome prediction model. In total, 38,319,258 SNPs (and indels) from Next Generation Sequencing were included in the analysis. After filtering variants with minor allele frequency (MAF< 0.025) 13,912,326 SNPs were available for the haplotypes extraction with findhap.f90. The number of SNPs in the haploblocks was on average 924 SNP (166,552 bp). Unique haplotypes were around 97% in all chromosomes and were ignored leaving 153,428 haplotypes. Estimated haplotypes had a large contribution to the total variance of genomic estimated breeding values for kilogram of protein, Global Type Index, Somatic Cell Score and Days Open (between 32 and 99.9%). Haploblocks containing haplotypes with large effects were selected by filtering for each trait, haplotypes whose effect was larger/lower than the mean plus/minus 3 times the standard deviation (SD) and 1 SD above the mean of the haplotypes effect distribution. Results showed that filtering by 3 SD would not be enough to capture a large proportion of genetic variance, whereas filtering by 1 SD could be useful but model convergence should be considered. Additionally, sequence haplotypes were able to capture additional genetic variance to the polygenic effect for traits undergoing lower selection intensity like fertility and health traits.

  3. Wage Inequality and Return to Education in Indonesia: Quantile Regression Analysis

    Directory of Open Access Journals (Sweden)

    Restuning Dyah Widyanti

    2018-01-01

    Full Text Available It is essential to the government to recognize the factors causing the increasing trend of income inequality in Indonesia since the Gini coefficient increased between 1996 and 2016. Moreover, wage inequality, which represented by high percentile and low percentile of income, also shows widening gap since 2003. This study focuses on the factors of wage inequality acceleration through the supply side approach that follows the Mincerian wage equation model. Specifically, this paper aims to investigate the association between the return to education and wage inequality in Indonesia. The quantile regression method is applied to compute the return on the investment at different points of the wage distribution. The main finding is that education contributes to an increasing wage inequality due to the significant variation in the rate of return to education in different quantile and as increasing wage dispersion within the same education.DOI: 10.15408/sjie.v7i1.6071

  4. Within-session analysis of the extinction of pavlovian fear-conditioning using robust regression

    Directory of Open Access Journals (Sweden)

    Vargas-Irwin, Cristina

    2010-06-01

    Full Text Available Traditionally , the analysis of extinction data in fear conditioning experiments has involved the use of standard linear models, mostly ANOVA of between-group differences of subjects that have undergone different extinction protocols, pharmacological manipulations or some other treatment. Although some studies report individual differences in quantities such as suppression rates or freezing percentages, these differences are not included in the statistical modeling. Withinsubject response patterns are then averaged using coarse-grain time windows which can overlook these individual performance dynamics. Here we illustrate an alternative analytical procedure consisting of 2 steps: the estimation of a trend for within-session data and analysis of group differences in trend as main outcome. This procedure is tested on real fear-conditioning extinction data, comparing trend estimates via Ordinary Least Squares (OLS and robust Least Median of Squares (LMS regression estimates, as well as comparing between-group differences and analyzing mean freezing percentage versus LMS slopes as outcomes

  5. Marital status integration and suicide: A meta-analysis and meta-regression.

    Science.gov (United States)

    Kyung-Sook, Woo; SangSoo, Shin; Sangjin, Shin; Young-Jeon, Shin

    2018-01-01

    Marital status is an index of the phenomenon of social integration within social structures and has long been identified as an important predictor suicide. However, previous meta-analyses have focused only on a particular marital status, or not sufficiently explored moderators. A meta-analysis of observational studies was conducted to explore the relationships between marital status and suicide and to understand the important moderating factors in this association. Electronic databases were searched to identify studies conducted between January 1, 2000 and June 30, 2016. We performed a meta-analysis, subgroup analysis, and meta-regression of 170 suicide risk estimates from 36 publications. Using random effects model with adjustment for covariates, the study found that the suicide risk for non-married versus married was OR = 1.92 (95% CI: 1.75-2.12). The suicide risk was higher for non-married individuals aged analysis by gender, non-married men exhibited a greater risk of suicide than their married counterparts in all sub-analyses, but women aged 65 years or older showed no significant association between marital status and suicide. The suicide risk in divorced individuals was higher than for non-married individuals in both men and women. The meta-regression showed that gender, age, and sample size affected between-study variation. The results of the study indicated that non-married individuals have an aggregate higher suicide risk than married ones. In addition, gender and age were confirmed as important moderating factors in the relationship between marital status and suicide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Standardizing effect size from linear regression models with log-transformed variables for meta-analysis.

    Science.gov (United States)

    Rodríguez-Barranco, Miguel; Tobías, Aurelio; Redondo, Daniel; Molina-Portillo, Elena; Sánchez, María José

    2017-03-17

    Meta-analysis is very useful to summarize the effect of a treatment or a risk factor for a given disease. Often studies report results based on log-transformed variables in order to achieve the principal assumptions of a linear regression model. If this is the case for some, but not all studies, the effects need to be homogenized. We derived a set of formulae to transform absolute changes into relative ones, and vice versa, to allow including all results in a meta-analysis. We applied our procedure to all possible combinations of log-transformed independent or dependent variables. We also evaluated it in a simulation based on two variables either normally or asymmetrically distributed. In all the scenarios, and based on different change criteria, the effect size estimated by the derived set of formulae was equivalent to the real effect size. To avoid biased estimates of the effect, this procedure should be used with caution in the case of independent variables with asymmetric distributions that significantly differ from the normal distribution. We illustrate an application of this procedure by an application to a meta-analysis on the potential effects on neurodevelopment in children exposed to arsenic and manganese. The procedure proposed has been shown to be valid and capable of expressing the effect size of a linear regression model based on different change criteria in the variables. Homogenizing the results from different studies beforehand allows them to be combined in a meta-analysis, independently of whether the transformations had been performed on the dependent and/or independent variables.

  7. Evaluation of Visual Field Progression in Glaucoma: Quasar Regression Program and Event Analysis.

    Science.gov (United States)

    Díaz-Alemán, Valentín T; González-Hernández, Marta; Perera-Sanz, Daniel; Armas-Domínguez, Karintia

    2016-01-01

    To determine the sensitivity, specificity and agreement between the Quasar program, glaucoma progression analysis (GPA II) event analysis and expert opinion in the detection of glaucomatous progression. The Quasar program is based on linear regression analysis of both mean defect (MD) and pattern standard deviation (PSD). Each series of visual fields was evaluated by three methods; Quasar, GPA II and four experts. The sensitivity, specificity and agreement (kappa) for each method was calculated, using expert opinion as the reference standard. The study included 439 SITA Standard visual fields of 56 eyes of 42 patients, with a mean of 7.8 ± 0.8 visual fields per eye. When suspected cases of progression were considered stable, sensitivity and specificity of Quasar, GPA II and the experts were 86.6% and 70.7%, 26.6% and 95.1%, and 86.6% and 92.6% respectively. When suspected cases of progression were considered as progressing, sensitivity and specificity of Quasar, GPA II and the experts were 79.1% and 81.2%, 45.8% and 90.6%, and 85.4% and 90.6% respectively. The agreement between Quasar and GPA II when suspected cases were considered stable or progressing was 0.03 and 0.28 respectively. The degree of agreement between Quasar and the experts when suspected cases were considered stable or progressing was 0.472 and 0.507. The degree of agreement between GPA II and the experts when suspected cases were considered stable or progressing was 0.262 and 0.342. The combination of MD and PSD regression analysis in the Quasar program showed better agreement with the experts and higher sensitivity than GPA II.

  8. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models

    International Nuclear Information System (INIS)

    Storlie, Curtis B.; Swiler, Laura P.; Helton, Jon C.; Sallaberry, Cedric J.

    2009-01-01

    The analysis of many physical and engineering problems involves running complex computational models (simulation models, computer codes). With problems of this type, it is important to understand the relationships between the input variables (whose values are often imprecisely known) and the output. The goal of sensitivity analysis (SA) is to study this relationship and identify the most significant factors or variables affecting the results of the model. In this presentation, an improvement on existing methods for SA of complex computer models is described for use when the model is too computationally expensive for a standard Monte-Carlo analysis. In these situations, a meta-model or surrogate model can be used to estimate the necessary sensitivity index for each input. A sensitivity index is a measure of the variance in the response that is due to the uncertainty in an input. Most existing approaches to this problem either do not work well with a large number of input variables and/or they ignore the error involved in estimating a sensitivity index. Here, a new approach to sensitivity index estimation using meta-models and bootstrap confidence intervals is described that provides solutions to these drawbacks. Further, an efficient yet effective approach to incorporate this methodology into an actual SA is presented. Several simulated and real examples illustrate the utility of this approach. This framework can be extended to uncertainty analysis as well.

  9. Validity of the reduced-sample insulin modified frequently-sampled intravenous glucose tolerance test using the nonlinear regression approach.

    Science.gov (United States)

    Sumner, Anne E; Luercio, Marcella F; Frempong, Barbara A; Ricks, Madia; Sen, Sabyasachi; Kushner, Harvey; Tulloch-Reid, Marshall K

    2009-02-01

    The disposition index, the product of the insulin sensitivity index (S(I)) and the acute insulin response to glucose, is linked in African Americans to chromosome 11q. This link was determined with S(I) calculated with the nonlinear regression approach to the minimal model and data from the reduced-sample insulin-modified frequently-sampled intravenous glucose tolerance test (Reduced-Sample-IM-FSIGT). However, the application of the nonlinear regression approach to calculate S(I) using data from the Reduced-Sample-IM-FSIGT has been challenged as being not only inaccurate but also having a high failure rate in insulin-resistant subjects. Our goal was to determine the accuracy and failure rate of the Reduced-Sample-IM-FSIGT using the nonlinear regression approach to the minimal model. With S(I) from the Full-Sample-IM-FSIGT considered the standard and using the nonlinear regression approach to the minimal model, we compared the agreement between S(I) from the Full- and Reduced-Sample-IM-FSIGT protocols. One hundred African Americans (body mass index, 31.3 +/- 7.6 kg/m(2) [mean +/- SD]; range, 19.0-56.9 kg/m(2)) had FSIGTs. Glucose (0.3 g/kg) was given at baseline. Insulin was infused from 20 to 25 minutes (total insulin dose, 0.02 U/kg). For the Full-Sample-IM-FSIGT, S(I) was calculated based on the glucose and insulin samples taken at -1, 1, 2, 3, 4, 5, 6, 7, 8,10, 12, 14, 16, 19, 22, 23, 24, 25, 27, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, and 180 minutes. For the Reduced-Sample-FSIGT, S(I) was calculated based on the time points that appear in bold. Agreement was determined by Spearman correlation, concordance, and the Bland-Altman method. In addition, for both protocols, the population was divided into tertiles of S(I). Insulin resistance was defined by the lowest tertile of S(I) from the Full-Sample-IM-FSIGT. The distribution of subjects across tertiles was compared by rank order and kappa statistic. We found that the rate of failure of resolution of S(I) by

  10. Secure and Efficient Regression Analysis Using a Hybrid Cryptographic Framework: Development and Evaluation.

    Science.gov (United States)

    Sadat, Md Nazmus; Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman

    2018-03-05

    Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. ©Md Nazmus Sadat, Xiaoqian Jiang, Md Momin Al Aziz, Shuang Wang, Noman Mohammed. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2018.

  11. Multiple Regression Analysis of mRNA-miRNA Associations in Colorectal Cancer Pathway

    Science.gov (United States)

    Wang, Fengfeng; Wong, S. C. Cesar; Chan, Lawrence W. C.; Cho, William C. S.; Yip, S. P.; Yung, Benjamin Y. M.

    2014-01-01

    Background. MicroRNA (miRNA) is a short and endogenous RNA molecule that regulates posttranscriptional gene expression. It is an important factor for tumorigenesis of colorectal cancer (CRC), and a potential biomarker for diagnosis, prognosis, and therapy of CRC. Our objective is to identify the related miRNAs and their associations with genes frequently involved in CRC microsatellite instability (MSI) and chromosomal instability (CIN) signaling pathways. Results. A regression model was adopted to identify the significantly associated miRNAs targeting a set of candidate genes frequently involved in colorectal cancer MSI and CIN pathways. Multiple linear regression analysis was used to construct the model and find the significant mRNA-miRNA associations. We identified three significantly associated mRNA-miRNA pairs: BCL2 was positively associated with miR-16 and SMAD4 was positively associated with miR-567 in the CRC tissue, while MSH6 was positively associated with miR-142-5p in the normal tissue. As for the whole model, BCL2 and SMAD4 models were not significant, and MSH6 model was significant. The significant associations were different in the normal and the CRC tissues. Conclusion. Our results have laid down a solid foundation in exploration of novel CRC mechanisms, and identification of miRNA roles as oncomirs or tumor suppressor mirs in CRC. PMID:24895601

  12. Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration

    Science.gov (United States)

    Árnadóttir, Í.; Gíslason, M. K.; Carraro, U.

    2016-01-01

    Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions, and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery. Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the optimal quantification of muscle degeneration. PMID:28115982

  13. Regression tree analysis for predicting body weight of Nigerian Muscovy duck (Cairina moschata

    Directory of Open Access Journals (Sweden)

    Oguntunji Abel Olusegun

    2017-01-01

    Full Text Available Morphometric parameters and their indices are central to the understanding of the type and function of livestock. The present study was conducted to predict body weight (BWT of adult Nigerian Muscovy ducks from nine (9 morphometric parameters and seven (7 body indices and also to identify the most important predictor of BWT among them using regression tree analysis (RTA. The experimental birds comprised of 1,020 adult male and female Nigerian Muscovy ducks randomly sampled in Rain Forest (203, Guinea Savanna (298 and Derived Savanna (519 agro-ecological zones. Result of RTA revealed that compactness; body girth and massiveness were the most important independent variables in predicting BWT and were used in constructing RT. The combined effect of the three predictors was very high and explained 91.00% of the observed variation of the target variable (BWT. The optimal regression tree suggested that Muscovy ducks with compactness >5.765 would be fleshy and have highest BWT. The result of the present study could be exploited by animal breeders and breeding companies in selection and improvement of BWT of Muscovy ducks.

  14. Classification of Effective Soil Depth by Using Multinomial Logistic Regression Analysis

    Science.gov (United States)

    Chang, C. H.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Classification of effective soil depth is a task of determining the slopeland utilizable limitation in Taiwan. The "Slopeland Conservation and Utilization Act" categorizes the slopeland into agriculture and husbandry land, land suitable for forestry and land for enhanced conservation according to the factors including average slope, effective soil depth, soil erosion and parental rock. However, sit investigation of the effective soil depth requires a cost-effective field work. This research aimed to classify the effective soil depth by using multinomial logistic regression with the environmental factors. The Wen-Shui Watershed located at the central Taiwan was selected as the study areas. The analysis of multinomial logistic regression is performed by the assistance of a Geographic Information Systems (GIS). The effective soil depth was categorized into four levels including deeper, deep, shallow and shallower. The environmental factors of slope, aspect, digital elevation model (DEM), curvature and normalized difference vegetation index (NDVI) were selected for classifying the soil depth. An Error Matrix was then used to assess the model accuracy. The results showed an overall accuracy of 75%. At the end, a map of effective soil depth was produced to help planners and decision makers in determining the slopeland utilizable limitation in the study areas.

  15. Principal components and iterative regression analysis of geophysical series: Application to Sunspot number (1750 2004)

    Science.gov (United States)

    Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.

    2008-11-01

    We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.

  16. Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration

    Directory of Open Access Journals (Sweden)

    K. J. Edmunds

    2016-01-01

    Full Text Available Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions, and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery. Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the optimal quantification of muscle degeneration.

  17. Logistic regression analysis of psychosocial correlates associated with recovery from schizophrenia in a Chinese community.

    Science.gov (United States)

    Tse, Samson; Davidson, Larry; Chung, Ka-Fai; Yu, Chong Ho; Ng, King Lam; Tsoi, Emily

    2015-02-01

    More mental health services are adopting the recovery paradigm. This study adds to prior research by (a) using measures of stages of recovery and elements of recovery that were designed and validated in a non-Western, Chinese culture and (b) testing which demographic factors predict advanced recovery and whether placing importance on certain elements predicts advanced recovery. We examined recovery and factors associated with recovery among 75 Hong Kong adults who were diagnosed with schizophrenia and assessed to be in clinical remission. Data were collected on socio-demographic factors, recovery stages and elements associated with recovery. Logistic regression analysis was used to identify variables that could best predict stages of recovery. Receiver operating characteristic curves were used to detect the classification accuracy of the model (i.e. rates of correct classification of stages of recovery). Logistic regression results indicated that stages of recovery could be distinguished with reasonable accuracy for Stage 3 ('living with disability', classification accuracy = 75.45%) and Stage 4 ('living beyond disability', classification accuracy = 75.50%). However, there was no sufficient information to predict Combined Stages 1 and 2 ('overwhelmed by disability' and 'struggling with disability'). It was found that having a meaningful role and age were the most important differentiators of recovery stage. Preliminary findings suggest that adopting salient life roles personally is important to recovery and that this component should be incorporated into mental health services. © The Author(s) 2014.

  18. Exergy Analysis of a Subcritical Reheat Steam Power Plant with Regression Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    MUHIB ALI RAJPER

    2016-07-01

    Full Text Available In this paper, exergy analysis of a 210 MW SPP (Steam Power Plant is performed. Firstly, the plant is modeled and validated, followed by a parametric study to show the effects of various operating parameters on the performance parameters. The net power output, energy efficiency, and exergy efficiency are taken as the performance parameters, while the condenser pressure, main steam pressure, bled steam pressures, main steam temperature, and reheat steam temperature isnominated as the operating parameters. Moreover, multiple polynomial regression models are developed to correlate each performance parameter with the operating parameters. The performance is then optimizedby using Direct-searchmethod. According to the results, the net power output, energy efficiency, and exergy efficiency are calculated as 186.5 MW, 31.37 and 30.41%, respectively under normal operating conditions as a base case. The condenser is a major contributor towards the energy loss, followed by the boiler, whereas the highest irreversibilities occur in the boiler and turbine. According to the parametric study, variation in the operating parameters greatly influences the performance parameters. The regression models have appeared to be a good estimator of the performance parameters. The optimum net power output, energy efficiency and exergy efficiency are obtained as 227.6 MW, 37.4 and 36.4, respectively, which have been calculated along with optimal values of selected operating parameters.

  19. Thermodynamic Analysis of Simple Gas Turbine Cycle with Multiple Regression Modelling and Optimization

    Directory of Open Access Journals (Sweden)

    Abdul Ghafoor Memon

    2014-03-01

    Full Text Available In this study, thermodynamic and statistical analyses were performed on a gas turbine system, to assess the impact of some important operating parameters like CIT (Compressor Inlet Temperature, PR (Pressure Ratio and TIT (Turbine Inlet Temperature on its performance characteristics such as net power output, energy efficiency, exergy efficiency and fuel consumption. Each performance characteristic was enunciated as a function of operating parameters, followed by a parametric study and optimization. The results showed that the performance characteristics increase with an increase in the TIT and a decrease in the CIT, except fuel consumption which behaves oppositely. The net power output and efficiencies increase with the PR up to certain initial values and then start to decrease, whereas the fuel consumption always decreases with an increase in the PR. The results of exergy analysis showed the combustion chamber as a major contributor to the exergy destruction, followed by stack gas. Subsequently, multiple regression models were developed to correlate each of the response variables (performance characteristic with the predictor variables (operating parameters. The regression model equations showed a significant statistical relationship between the predictor and response variables.

  20. Bayesian linear regression with skew-symmetric error distributions with applications to survival analysis

    KAUST Repository

    Rubio, Francisco J.

    2016-02-09

    We study Bayesian linear regression models with skew-symmetric scale mixtures of normal error distributions. These kinds of models can be used to capture departures from the usual assumption of normality of the errors in terms of heavy tails and asymmetry. We propose a general noninformative prior structure for these regression models and show that the corresponding posterior distribution is proper under mild conditions. We extend these propriety results to cases where the response variables are censored. The latter scenario is of interest in the context of accelerated failure time models, which are relevant in survival analysis. We present a simulation study that demonstrates good frequentist properties of the posterior credible intervals associated with the proposed priors. This study also sheds some light on the trade-off between increased model flexibility and the risk of over-fitting. We illustrate the performance of the proposed models with real data. Although we focus on models with univariate response variables, we also present some extensions to the multivariate case in the Supporting Information.

  1. Personality disorders, violence, and antisocial behavior: a systematic review and meta-regression analysis.

    Science.gov (United States)

    Yu, Rongqin; Geddes, John R; Fazel, Seena

    2012-10-01

    The risk of antisocial outcomes in individuals with personality disorder (PD) remains uncertain. The authors synthesize the current evidence on the risks of antisocial behavior, violence, and repeat offending in PD, and they explore sources of heterogeneity in risk estimates through a systematic review and meta-regression analysis of observational studies comparing antisocial outcomes in personality disordered individuals with controls groups. Fourteen studies examined risk of antisocial and violent behavior in 10,007 individuals with PD, compared with over 12 million general population controls. There was a substantially increased risk of violent outcomes in studies with all PDs (random-effects pooled odds ratio [OR] = 3.0, 95% CI = 2.6 to 3.5). Meta-regression revealed that antisocial PD and gender were associated with higher risks (p = .01 and .07, respectively). The odds of all antisocial outcomes were also elevated. Twenty-five studies reported the risk of repeat offending in PD compared with other offenders. The risk of a repeat offense was also increased (fixed-effects pooled OR = 2.4, 95% CI = 2.2 to 2.7) in offenders with PD. The authors conclude that although PD is associated with antisocial outcomes and repeat offending, the risk appears to differ by PD category, gender, and whether individuals are offenders or not.

  2. Clinical benefit from pharmacological elevation of high-density lipoprotein cholesterol: meta-regression analysis.

    Science.gov (United States)

    Hourcade-Potelleret, F; Laporte, S; Lehnert, V; Delmar, P; Benghozi, Renée; Torriani, U; Koch, R; Mismetti, P

    2015-06-01

    Epidemiological evidence that the risk of coronary heart disease is inversely associated with the level of high-density lipoprotein cholesterol (HDL-C) has motivated several phase III programmes with cholesteryl ester transfer protein (CETP) inhibitors. To assess alternative methods to predict clinical response of CETP inhibitors. Meta-regression analysis on raising HDL-C drugs (statins, fibrates, niacin) in randomised controlled trials. 51 trials in secondary prevention with a total of 167,311 patients for a follow-up >1 year where HDL-C was measured at baseline and during treatment. The meta-regression analysis showed no significant association between change in HDL-C (treatment vs comparator) and log risk ratio (RR) of clinical endpoint (non-fatal myocardial infarction or cardiac death). CETP inhibitors data are consistent with this finding (RR: 1.03; P5-P95: 0.99-1.21). A prespecified sensitivity analysis by drug class suggested that the strength of relationship might differ between pharmacological groups. A significant association for both statins (p<0.02, log RR=-0.169-0.0499*HDL-C change, R(2)=0.21) and niacin (p=0.02, log RR=1.07-0.185*HDL-C change, R(2)=0.61) but not fibrates (p=0.18, log RR=-0.367+0.077*HDL-C change, R(2)=0.40) was shown. However, the association was no longer detectable after adjustment for low-density lipoprotein cholesterol for statins or exclusion of open trials for niacin. Meta-regression suggested that CETP inhibitors might not influence coronary risk. The relation between change in HDL-C level and clinical endpoint may be drug dependent, which limits the use of HDL-C as a surrogate marker of coronary events. Other markers of HDL function may be more relevant. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Regression Association Analysis of Yield-Related Traits with RAPD Molecular Markers in Pistachio (Pistacia vera L.

    Directory of Open Access Journals (Sweden)

    Saeid Mirzaei

    2017-10-01

    Full Text Available Introduction: The pistachio (Pistacia vera, a member of the cashew family, is a small tree originating from Central Asia and the Middle East. The tree produces seeds that are widely consumed as food. Pistacia vera often is confused with other species in the genus Pistacia that are also known as pistachio. These other species can be distinguished by their geographic distributions and their seeds which are much smaller and have a soft shell. Continual advances in crop improvement through plant breeding are driven by the available genetic diversity. Therefore, the recognition and measurement of such diversity is crucial to breeding programs. In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL identification and marker assisted selection (MAS. The germplasm-regression-combined association studies not only allow mapping of genes/QTLs with higher level of confidence, but also allow detection of genes/QTLs, which will otherwise escape detection in linkage-based QTL studies based on the planned populations. The development of the marker-based technology offers a fast, reliable, and easy way to perform multiple regression analysis and comprise an alternative approach to breeding in diverse species of plants. The availability of many makers and morphological traits can help to regression analysis between these markers and morphological traits. Materials and Methods: In this study, 20 genotypes of Pistachio were studied and yield related traits were measured. Young well-expanded leaves were collected for DNA extraction and total genomic DNA was extracted. Genotyping was performed using 15 RAPD primers and PCR amplification products were visualized by gel electrophoresis. The reproducible RAPD fragments were scored on the basis of present (1 or absent (0 bands and a binary matrix constructed using each molecular marker. Association analysis between

  4. Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.

    Science.gov (United States)

    Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D; Nichols, Thomas E

    2018-03-01

    Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. © 2017, The International Biometric Society.

  5. Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data

    Science.gov (United States)

    Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D.; Nichols, Thomas E.

    2017-01-01

    Summary Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the paper are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to 1) identify areas of consistent activation; and 2) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterised as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. PMID:28498564

  6. Characterization of breast masses by dynamic enhanced MR imaging. A logistic regression analysis

    International Nuclear Information System (INIS)

    Ikeda, O.; Morishita, S.; Kido, T.; Kitajima, M.; Yamashita, Y.; Takahashi, M.; Okamura, K.; Fukuda, S.

    1999-01-01

    Purpose: To identify features useful for differentiation between malignant and benign breast neoplasms using multivariate analysis of findings by MR imaging. Material and Methods: In a retrospective analysis, 61 patients with 64 breast masses underwent MR imaging and the time-signal intensity curves for precontrast dynamic postcontrast images were quantitatively analyzed. Statistical analysis was performed using a logistic regression model, which was prospectively tested in another 34 patients with suspected breast masses. Results: Univariate analysis revealed that the reliable indicators for malignancy were first the appearance of the tumor border, followed by the washout ratio, internal architecture after contrast enhancement, and peak time. The factors significantly associated with malignancy were irregular tumor border, followed by washout ratio, internal architecture, and peak time. For differentiation between benignity and malignancy, the maximum cut-off point was to be found between 0.47 and 0.51. In a prospective application of this model, 91% of the lesions were accurately discriminated as benign or malignant lesions. Conclusion: Combination of contrast-enhanced dynamic and postcontrast-enhanced MR imaging provided accurate data for the diagnosis of malignant neoplasms of the breast. The model had an accuracy of 91% (sensitivity 90%, specificity 93%). (orig.)

  7. Plateletpheresis efficiency and mathematical correction of software-derived platelet yield prediction: A linear regression and ROC modeling approach.

    Science.gov (United States)

    Jaime-Pérez, José Carlos; Jiménez-Castillo, Raúl Alberto; Vázquez-Hernández, Karina Elizabeth; Salazar-Riojas, Rosario; Méndez-Ramírez, Nereida; Gómez-Almaguer, David

    2017-10-01

    Advances in automated cell separators have improved the efficiency of plateletpheresis and the possibility of obtaining double products (DP). We assessed cell processor accuracy of predicted platelet (PLT) yields with the goal of a better prediction of DP collections. This retrospective proof-of-concept study included 302 plateletpheresis procedures performed on a Trima Accel v6.0 at the apheresis unit of a hematology department. Donor variables, software predicted yield and actual PLT yield were statistically evaluated. Software prediction was optimized by linear regression analysis and its optimal cut-off to obtain a DP assessed by receiver operating characteristic curve (ROC) modeling. Three hundred and two plateletpheresis procedures were performed; in 271 (89.7%) occasions, donors were men and in 31 (10.3%) women. Pre-donation PLT count had the best direct correlation with actual PLT yield (r = 0.486. P Simple correction derived from linear regression analysis accurately corrected this underestimation and ROC analysis identified a precise cut-off to reliably predict a DP. © 2016 Wiley Periodicals, Inc.

  8. An Introduction to the Hybrid Approach of Neural Networks and the Linear Regression Model : An Illustration in the Hedonic Pricing Model of Building Costs

    OpenAIRE

    浅野, 美代子; マーコ, ユー K.W.

    2007-01-01

    This paper introduces the hybrid approach of neural networks and linear regression model proposed by Asano and Tsubaki (2003). Neural networks are often credited with its superiority in data consistency whereas the linear regression model provides simple interpretation of the data enabling researchers to verify their hypotheses. The hybrid approach aims at combing the strengths of these two well-established statistical methods. A step-by-step procedure for performing the hybrid approach is pr...

  9. Estimation of a Reactor Core Power Peaking Factor Using Support Vector Regression and Uncertainty Analysis

    International Nuclear Information System (INIS)

    Bae, In Ho; Naa, Man Gyun; Lee, Yoon Joon; Park, Goon Cherl

    2009-01-01

    The monitoring of detailed 3-dimensional (3D) reactor core power distribution is a prerequisite in the operation of nuclear power reactors to ensure that various safety limits imposed on the LPD and DNBR, are not violated during nuclear power reactor operation. The LPD and DNBR should be calculated in order to perform the two major functions of the core protection calculator system (CPCS) and the core operation limit supervisory system (COLSS). The LPD at the hottest part of a hot fuel rod, which is related to the power peaking factor (PPF, F q ), is more important than the LPD at any other position in a reactor core. The LPD needs to be estimated accurately to prevent nuclear fuel rods from melting. In this study, support vector regression (SVR) and uncertainty analysis have been applied to estimation of reactor core power peaking factor

  10. A Note on Penalized Regression Spline Estimation in the Secondary Analysis of Case-Control Data

    KAUST Repository

    Gazioglu, Suzan; Wei, Jiawei; Jennings, Elizabeth M.; Carroll, Raymond J.

    2013-01-01

    Primary analysis of case-control studies focuses on the relationship between disease (D) and a set of covariates of interest (Y, X). A secondary application of the case-control study, often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated due to the case-control sampling, and to avoid the biased sampling that arises from the design, it is typical to use the control data only. In this paper, we develop penalized regression spline methodology that uses all the data, and improves precision of estimation compared to using only the controls. A simulation study and an empirical example are used to illustrate the methodology.

  11. A Note on Penalized Regression Spline Estimation in the Secondary Analysis of Case-Control Data

    KAUST Repository

    Gazioglu, Suzan

    2013-05-25

    Primary analysis of case-control studies focuses on the relationship between disease (D) and a set of covariates of interest (Y, X). A secondary application of the case-control study, often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated due to the case-control sampling, and to avoid the biased sampling that arises from the design, it is typical to use the control data only. In this paper, we develop penalized regression spline methodology that uses all the data, and improves precision of estimation compared to using only the controls. A simulation study and an empirical example are used to illustrate the methodology.

  12. Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis.

    Science.gov (United States)

    Tam, Vivian W Y; Wang, K; Tam, C M

    2008-04-01

    Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice.

  13. Logistic Regression Analysis on Factors Affecting Adoption of Rice-Fish Farming in North Iran

    Directory of Open Access Journals (Sweden)

    Seyyed Ali NOORHOSSEINI-NIYAKI

    2012-06-01

    Full Text Available We evaluated the factors influencing the adoption of rice-fish farming in the Tavalesh region near the Caspian Sea in northern Iran. We conducted a survey with open-ended questions. Data were collected from 184 respondents (61 adopters and 123 non-adopters randomly sampled from selected villages and analyzed using logistic regression and multi-response analysis. Family size, number of contacts with an extension agent, participation in extension-education activities, membership in social institutions and the presence of farm workers were the most important socio-economic factors for the adoption of rice-fish farming system. In addition, economic problems were the most common issue reported by adopters. Other issues such as lack of access to appropriate fish food, losses of fish, lack of access to high quality fish fingerlings and dehydration and poor water quality were also important to a number of farmers.

  14. Impact of Dobutamine in Patients With Septic Shock: A Meta-Regression Analysis.

    Science.gov (United States)

    Nadeem, Rashid; Sockanathan, Shivani; Singh, Mukesh; Hussain, Tamseela; Kent, Patrick; AbuAlreesh, Sarah

    2017-05-01

    Septic shock frequently requires vasopressor agents. Conflicting evidence exists for use of inotropes in patients with septic shock. Data from English studies on human adult septic shock patients were collected. A total of 83 studies were reviewed, while 11 studies with 21 data sets including 239 patients were pooled for meta-regression analysis. For VO2, pooled difference in means (PDM) was 0.274. For cardiac index (CI), PDM was 0.783. For delivery of oxygen, PDM was -0.890. For heart rate, PDM was -0.714. For left ventricle stroke work index, PDM was 0.375. For mean arterial pressure, PDM was -0.204. For mean pulmonary artery pressure, PDM was 0.085. For O2 extraction, PDM was 0.647. For PaCO2, PDM was -0.053. For PaO2, PDM was 0.282. For pulmonary artery occlusive pressure, PDM was 0.270. For pulmonary capillary wedge pressure, PDM was 0.300. For PVO2, PDM was -0.492. For right atrial pressure, PDM was 0.246. For SaO2, PDM was 0.604. For stroke volume index, PDM was 0.446. For SvO2, PDM was -0.816. For systemic vascular resistance, PDM was -0.600. For systemic vascular resistance index, PDM was 0.319. Meta-regression analysis was performed for VO2, DO2, CI, and O2 extraction. Age was found to be significant confounding factor for CI, DO2, and O2 extraction. APACHE score was not found to be a significant confounding factor for any of the parameters. Dobutamine seems to have a positive effect on cardiovascular parameters in patients with septic shock. Prospective studies with larger samples are required to further validate this observation.

  15. Poisson regression analysis of the mortality among a cohort of World War II nuclear industry workers

    International Nuclear Information System (INIS)

    Frome, E.L.; Cragle, D.L.; McLain, R.W.

    1990-01-01

    A historical cohort mortality study was conducted among 28,008 white male employees who had worked for at least 1 month in Oak Ridge, Tennessee, during World War II. The workers were employed at two plants that were producing enriched uranium and a research and development laboratory. Vital status was ascertained through 1980 for 98.1% of the cohort members and death certificates were obtained for 96.8% of the 11,671 decedents. A modified version of the traditional standardized mortality ratio (SMR) analysis was used to compare the cause-specific mortality experience of the World War II workers with the U.S. white male population. An SMR and a trend statistic were computed for each cause-of-death category for the 30-year interval from 1950 to 1980. The SMR for all causes was 1.11, and there was a significant upward trend of 0.74% per year. The excess mortality was primarily due to lung cancer and diseases of the respiratory system. Poisson regression methods were used to evaluate the influence of duration of employment, facility of employment, socioeconomic status, birth year, period of follow-up, and radiation exposure on cause-specific mortality. Maximum likelihood estimates of the parameters in a main-effects model were obtained to describe the joint effects of these six factors on cause-specific mortality of the World War II workers. We show that these multivariate regression techniques provide a useful extension of conventional SMR analysis and illustrate their effective use in a large occupational cohort study

  16. Diagnostic accuracy of atypical p-ANCA in autoimmune hepatitis using ROC- and multivariate regression analysis.

    Science.gov (United States)

    Terjung, B; Bogsch, F; Klein, R; Söhne, J; Reichel, C; Wasmuth, J-C; Beuers, U; Sauerbruch, T; Spengler, U

    2004-09-29

    Antineutrophil cytoplasmic antibodies (atypical p-ANCA) are detected at high prevalence in sera from patients with autoimmune hepatitis (AIH), but their diagnostic relevance for AIH has not been systematically evaluated so far. Here, we studied sera from 357 patients with autoimmune (autoimmune hepatitis n=175, primary sclerosing cholangitis (PSC) n=35, primary biliary cirrhosis n=45), non-autoimmune chronic liver disease (alcoholic liver cirrhosis n=62; chronic hepatitis C virus infection (HCV) n=21) or healthy controls (n=19) for the presence of various non-organ specific autoantibodies. Atypical p-ANCA, antinuclear antibodies (ANA), antibodies against smooth muscles (SMA), antibodies against liver/kidney microsomes (anti-Lkm1) and antimitochondrial antibodies (AMA) were detected by indirect immunofluorescence microscopy, antibodies against the M2 antigen (anti-M2), antibodies against soluble liver antigen (anti-SLA/LP) and anti-Lkm1 by using enzyme linked immunosorbent assays. To define the diagnostic precision of the autoantibodies, results of autoantibody testing were analyzed by receiver operating characteristics (ROC) and forward conditional logistic regression analysis. Atypical p-ANCA were detected at high prevalence in sera from patients with AIH (81%) and PSC (94%). ROC- and logistic regression analysis revealed atypical p-ANCA and SMA, but not ANA as significant diagnostic seromarkers for AIH (atypical p-ANCA: AUC 0.754+/-0.026, odds ratio [OR] 3.4; SMA: 0.652+/-0.028, OR 4.1). Atypical p-ANCA also emerged as the only diagnostically relevant seromarker for PSC (AUC 0.690+/-0.04, OR 3.4). None of the tested antibodies yielded a significant diagnostic accuracy for patients with alcoholic liver cirrhosis, HCV or healthy controls. Atypical p-ANCA along with SMA represent a seromarker with high diagnostic accuracy for AIH and should be explicitly considered in a revised version of the diagnostic score for AIH.

  17. Real Analysis A Historical Approach

    CERN Document Server

    Stahl, Saul

    2011-01-01

    A provocative look at the tools and history of real analysis This new edition of Real Analysis: A Historical Approach continues to serve as an interesting read for students of analysis. Combining historical coverage with a superb introductory treatment, this book helps readers easily make the transition from concrete to abstract ideas. The book begins with an exciting sampling of classic and famous problems first posed by some of the greatest mathematicians of all time. Archimedes, Fermat, Newton, and Euler are each summoned in turn, illuminating the utility of infinite, power, and trigonome

  18. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.

    Science.gov (United States)

    Almquist, Zack W; Butts, Carter T

    2014-08-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.

  19. Regression analysis for bivariate gap time with missing first gap time data.

    Science.gov (United States)

    Huang, Chia-Hui; Chen, Yi-Hau

    2017-01-01

    We consider ordered bivariate gap time while data on the first gap time are unobservable. This study is motivated by the HIV infection and AIDS study, where the initial HIV contracting time is unavailable, but the diagnosis times for HIV and AIDS are available. We are interested in studying the risk factors for the gap time between initial HIV contraction and HIV diagnosis, and gap time between HIV and AIDS diagnoses. Besides, the association between the two gap times is also of interest. Accordingly, in the data analysis we are faced with two-fold complexity, namely data on the first gap time is completely missing, and the second gap time is subject to induced informative censoring due to dependence between the two gap times. We propose a modeling framework for regression analysis of bivariate gap time under the complexity of the data. The estimating equations for the covariate effects on, as well as the association between, the two gap times are derived through maximum likelihood and suitable counting processes. Large sample properties of the resulting estimators are developed by martingale theory. Simulations are performed to examine the performance of the proposed analysis procedure. An application of data from the HIV and AIDS study mentioned above is reported for illustration.

  20. Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis.

    Science.gov (United States)

    Altmann, Aline Segatto Pires; Degrazia, Felipe Weidenbach; Celeste, Roger Keller; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2016-05-01

    To determine the consensus among studies that adhesive resin application improves the bond strength of orthodontic brackets and the association of methodological variables on the influence of bond strength outcome. In vitro studies were selected to answer whether adhesive resin application increases the immediate shear bond strength of metal orthodontic brackets bonded with a photo-cured orthodontic adhesive. Studies included were those comparing a group having adhesive resin to a group without adhesive resin with the primary outcome measurement shear bond strength in MPa. A systematic electronic search was performed in PubMed and Scopus databases. Nine studies were included in the analysis. Based on the pooled data and due to a high heterogeneity among studies (I(2)  =  93.3), a meta-regression analysis was conducted. The analysis demonstrated that five experimental conditions explained 86.1% of heterogeneity and four of them had significantly affected in vitro shear bond testing. The shear bond strength of metal brackets was not significantly affected when bonded with adhesive resin, when compared to those without adhesive resin. The adhesive resin application can be set aside during metal bracket bonding to enamel regardless of the type of orthodontic adhesive used.

  1. An integrated study of surface roughness in EDM process using regression analysis and GSO algorithm

    Science.gov (United States)

    Zainal, Nurezayana; Zain, Azlan Mohd; Sharif, Safian; Nuzly Abdull Hamed, Haza; Mohamad Yusuf, Suhaila

    2017-09-01

    The aim of this study is to develop an integrated study of surface roughness (Ra) in the die-sinking electrical discharge machining (EDM) process of Ti-6AL-4V titanium alloy with positive polarity of copper-tungsten (Cu-W) electrode. Regression analysis and glowworm swarm optimization (GSO) algorithm were considered for modelling and optimization process. Pulse on time (A), pulse off time (B), peak current (C) and servo voltage (D) were selected as the machining parameters with various levels. The experiments have been conducted based on the two levels of full factorial design with an added center point design of experiments (DOE). Moreover, mathematical models with linear and 2 factor interaction (2FI) effects of the parameters chosen were developed. The validity test of the fit and the adequacy of the developed mathematical models have been carried out by using analysis of variance (ANOVA) and F-test. The statistical analysis showed that the 2FI model outperformed with the most minimal value of Ra compared to the linear model and experimental result.

  2. Global Prevalence of Elder Abuse: A Meta-analysis and Meta-regression.

    Science.gov (United States)

    Ho, C Sh; Wong, S Y; Chiu, M M; Ho, R Cm

    2017-06-01

    Elder abuse is increasingly recognised as a global public health and social problem. There has been limited inter-study comparison of the prevalence and risk factors for elder abuse. This study aimed to estimate the pooled and subtype prevalence of elder abuse worldwide and identify significant associated risk factors. We conducted a meta-analysis and meta-regression of 34 population-based and 17 non-population-based studies. The pooled prevalences of elder abuse were 10.0% (95% confidence interval, 5.2%-18.6%) and 34.3% (95% confidence interval, 22.9%-47.8%) in population-based studies and third party- or caregiver-reported studies, respectively. Being in a marital relationship was found to be a significant moderator using random-effects model. This meta-analysis revealed that third parties or caregivers were more likely to report abuse than older abused adults. Subgroup analyses showed that females and those resident in non-western countries were more likely to be abused. Emotional abuse was the most prevalent elder abuse subtype and financial abuse was less commonly reported by third parties or caregivers. Heterogeneity in the prevalence was due to the high proportion of married older adults in the sample. Subgroup analysis showed that cultural factors, subtypes of abuse, and gender also contributed to heterogeneity in the pooled prevalence of elder abuse.

  3. Automated Detection of Connective Tissue by Tissue Counter Analysis and Classification and Regression Trees

    Directory of Open Access Journals (Sweden)

    Josef Smolle

    2001-01-01

    Full Text Available Objective: To evaluate the feasibility of the CART (Classification and Regression Tree procedure for the recognition of microscopic structures in tissue counter analysis. Methods: Digital microscopic images of H&E stained slides of normal human skin and of primary malignant melanoma were overlayed with regularly distributed square measuring masks (elements and grey value, texture and colour features within each mask were recorded. In the learning set, elements were interactively labeled as representing either connective tissue of the reticular dermis, other tissue components or background. Subsequently, CART models were based on these data sets. Results: Implementation of the CART classification rules into the image analysis program showed that in an independent test set 94.1% of elements classified as connective tissue of the reticular dermis were correctly labeled. Automated measurements of the total amount of tissue and of the amount of connective tissue within a slide showed high reproducibility (r=0.97 and r=0.94, respectively; p < 0.001. Conclusions: CART procedure in tissue counter analysis yields simple and reproducible classification rules for tissue elements.

  4. Predictive factors in patients eligible for pegfilgrastim prophylaxis focusing on RDI using ordered logistic regression analysis.

    Science.gov (United States)

    Kanbayashi, Yuko; Ishikawa, Takeshi; Kanazawa, Motohiro; Nakajima, Yuki; Kawano, Rumi; Tabuchi, Yusuke; Yoshioka, Tomoko; Ihara, Norihiko; Hosokawa, Toyoshi; Takayama, Koichi; Shikata, Keisuke; Taguchi, Tetsuya

    2018-03-16

    Although pegfilgrastim prophylaxis is expected to maintain the relative dose intensity (RDI) of chemotherapy and improve safety, information is limited. However, the optimal selection of patients eligible for pegfilgrastim prophylaxis is an important issue from a medical economics viewpoint. Therefore, this retrospective study identified factors that could predict these eligible patients to maintain the RDI. The participants included 166 cancer patients undergoing pegfilgrastim prophylaxis combined with chemotherapy in our outpatient chemotherapy center between March 2015 and April 2017. Variables were extracted from clinical records for regression analysis of factors related to maintenance of the RDI. RDI was classified into four categories: 100% = 0, 85% or predictive factors in patients eligible for pegfilgrastim prophylaxis to maintain the RDI. Threshold measures were examined using a receiver operating characteristic (ROC) analysis curve. Age [odds ratio (OR) 1.07, 95% confidence interval (CI) 1.04-1.11; P maintenance. ROC curve analysis of the group that failed to maintain the RDI indicated that the threshold for age was 70 years and above, with a sensitivity of 60.0% and specificity of 80.2% (area under the curve: 0.74). In conclusion, younger age, anemia (less), and administration of pegfilgrastim 24-72 h after chemotherapy were significant factors for RDI maintenance.

  5. Using beta-binomial regression for high-precision differential methylation analysis in multifactor whole-genome bisulfite sequencing experiments

    Science.gov (United States)

    2014-01-01

    Background Whole-genome bisulfite sequencing currently provides the highest-precision view of the epigenome, with quantitative information about populations of cells down to single nucleotide resolution. Several studies have demonstrated the value of this precision: meaningful features that correlate strongly with biological functions can be found associated with only a few CpG sites. Understanding the role of DNA methylation, and more broadly the role of DNA accessibility, requires that methylation differences between populations of cells are identified with extreme precision and in complex experimental designs. Results In this work we investigated the use of beta-binomial regression as a general approach for modeling whole-genome bisulfite data to identify differentially methylated sites and genomic intervals. Conclusions The regression-based analysis can handle medium- and large-scale experiments where it becomes critical to accurately model variation in methylation levels between replicates and account for influence of various experimental factors like cell types or batch effects. PMID:24962134

  6. Impacts on CO2 Emission Allowance Prices in China: A Quantile Regression Analysis of the Shanghai Emission Trading Scheme

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2016-11-01

    Full Text Available A pilot regional carbon emission trading scheme (ETS has been implemented in China for more than two years. An investigation into the impacts of different factors on carbon dioxide (CO2 emission allowance prices provides guidance for price-making in 2017 when the nation-wide ETS of China will be established. This paper adopts a quantile regression approach to estimate the impacts of different factors in Shanghai emission trading scheme (SH-ETS, namely, economic growth, energy prices and temperature. The empirical analysis shows that: (i the economic growth in Shanghai leads to a drop in the carbon allowance prices; (ii the oil price has a slightly positive effect on the allowance prices regardless of the ordinary least squares (OLS or quantile regression method; (iii a long-run negative relationship exists between the coal price and the Shanghai emission allowances (SHEA prices, but a positive interaction under different quantiles, especially the 25%–50% quantiles; (iv temperature has a significantly positive effect at the 20%–30% quantiles and a conspicuous negative impact at the right tail of the allowances prices.

  7. Regression analysis of longitudinal data with correlated censoring and observation times.

    Science.gov (United States)

    Li, Yang; He, Xin; Wang, Haiying; Sun, Jianguo

    2016-07-01

    Longitudinal data occur in many fields such as the medical follow-up studies that involve repeated measurements. For their analysis, most existing approaches assume that the observation or follow-up times are independent of the response process either completely or given some covariates. In practice, it is apparent that this may not be true. In this paper, we present a joint analysis approach that allows the possible mutual correlations that can be characterized by time-dependent random effects. Estimating equations are developed for the parameter estimation and the resulted estimators are shown to be consistent and asymptotically normal. The finite sample performance of the proposed estimators is assessed through a simulation study and an illustrative example from a skin cancer study is provided.

  8. Relationship between the curve of Spee and craniofacial variables: A regression analysis.

    Science.gov (United States)

    Halimi, Abdelali; Benyahia, Hicham; Azeroual, Mohamed-Faouzi; Bahije, Loubna; Zaoui, Fatima

    2018-06-01

    The aim of this regression analysis was to identify the determining factors, which impact the curve of Spee during its genesis, its therapeutic reconstruction, and its stability, within a continuously evolving craniofacial morphology throughout life. We selected a total of 107 patients, according to the inclusion criteria. A morphological and functional clinical examination was performed for each patient: plaster models, tracing of the curve of Spee, crowding, Angle's classification, overjet and overbite were thus recorded. Then, we made a cephalometric analysis based on the standardized lateral cephalograms. In the sagittal dimension, we measured the values of angles ANB, SNA, SNB, SND, I/i; and the following distances: AoBo, I/NA, i/NB, SE and SL. In the vertical dimension, we measured the values of angles FMA, GoGn/SN, the occlusal plane, and the following distances: SAr, ArD, Ar/Con, Con/Gn, GoPo, HFP, HFA and IF. The statistical analysis was performed using the SPSS software with a significance level of 0.05. Our sample including 107 subjects was composed of 77 female patients (71.3%) and 30 male patients (27.8%) 7 hypodivergent patients (6.5%), 56 hyperdivergent patients (52.3%) and 44 normodivergent patients (41.1%). Patients' mean age was 19.35±5.95 years. The hypodivergent patients presented more pronounced curves of Spee compared to the normodivergent and the hyperdivergent populations; patients in skeletal Class I presented less pronounced curves of Spee compared to patients in skeletal Class II and Class III. These differences were non significant (P>0.05). The curve of Spee was positively and moderately correlated with Angle's classification, overjet, overbite, sellion-articulare distance, and breathing type (P0.05). Seventy five percent (75%) of the hyperdivergent patients with an oral breathing presented an overbite of 3mm, which is quite excessive given the characteristics often admitted for this typology; this parameter could explain the overbite

  9. Regression-based approach for testing the association between multi-region haplotype configuration and complex trait

    Directory of Open Access Journals (Sweden)

    Zhao Hongbo

    2009-09-01

    Full Text Available Abstract Background It is quite common that the genetic architecture of complex traits involves many genes and their interactions. Therefore, dealing with multiple unlinked genomic regions simultaneously is desirable. Results In this paper we develop a regression-based approach to assess the interactions of haplotypes that belong to different unlinked regions, and we use score statistics to test the null hypothesis of non-genetic association. Additionally, multiple marker combinations at each unlinked region are considered. The multiple tests are settled via the minP approach. The P value of the "best" multi-region multi-marker configuration is corrected via Monte-Carlo simulations. Through simulation studies, we assess the performance of the proposed approach and demonstrate its validity and power in testing for haplotype interaction association. Conclusion Our simulations showed that, for binary trait without covariates, our proposed methods prove to be equal and even more powerful than htr and hapcc which are part of the FAMHAP program. Additionally, our model can be applied to a wider variety of traits and allow adjustment for other covariates. To test the validity, our methods are applied to analyze the association between four unlinked candidate genes and pig meat quality.

  10. Regression analysis utilizing subjective evaluation of emotional experience in PET studies on emotions.

    Science.gov (United States)

    Aalto, Sargo; Wallius, Esa; Näätänen, Petri; Hiltunen, Jaana; Metsähonkala, Liisa; Sipilä, Hannu; Karlsson, Hasse

    2005-09-01

    A methodological study on subject-specific regression analysis (SSRA) exploring the correlation between the neural response and the subjective evaluation of emotional experience in eleven healthy females is presented. The target emotions, i.e., amusement and sadness, were induced using validated film clips, regional cerebral blood flow (rCBF) was measured using positron emission tomography (PET), and the subjective intensity of the emotional experience during the PET scanning was measured using a category ratio (CR-10) scale. Reliability analysis of the rating data indicated that the subjects rated the intensity of their emotional experience fairly consistently on the CR-10 scale (Cronbach alphas 0.70-0.97). A two-phase random-effects analysis was performed to ensure the generalizability and inter-study comparability of the SSRA results. Random-effects SSRAs using Statistical non-Parametric Mapping 99 (SnPM99) showed that rCBF correlated with the self-rated intensity of the emotional experience mainly in the brain regions that were identified in the random-effects subtraction analyses using the same imaging data. Our results give preliminary evidence of a linear association between the neural responses related to amusement and sadness and the self-evaluated intensity of the emotional experience in several regions involved in the emotional response. SSRA utilizing subjective evaluation of emotional experience turned out a feasible and promising method of analysis. It allows versatile exploration of the neurobiology of emotions and the neural correlates of actual and individual emotional experience. Thus, SSRA might be able to catch the idiosyncratic aspects of the emotional response better than traditional subtraction analysis.

  11. Real analysis a constructive approach

    CERN Document Server

    Bridger, Mark

    2012-01-01

    A unique approach to analysis that lets you apply mathematics across a range of subjects This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense-not just to math majors but also to students from a

  12. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    Science.gov (United States)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  13. Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment

    NARCIS (Netherlands)

    Bakker, D.P.; Busscher, H.J.; Zanten, J. van; Vries, J. de; Klijnstra, J.W.; Mei, H.C. van der

    2004-01-01

    Many studies have shown relationships of substratum hydrophobicity, charge or roughness with bacterial adhesion, although bacterial adhesion is governed by interplay of different physico-chemical properties and multiple regression analysis would be more suitable to reveal mechanisms of bacterial

  14. Multiple linear regression analysis of bacterial deposition to polyurethane coating after conditioning film formation in the marine environment

    NARCIS (Netherlands)

    Bakker, Dewi P; Busscher, Henk J; van Zanten, Joyce; de Vries, Jacob; Klijnstra, Job W; van der Mei, Henny C

    Many studies have shown relationships of substratum hydrophobicity, charge or roughness with bacterial adhesion, although bacterial adhesion is governed by interplay of different physico-chemical properties and multiple regression analysis would be more suitable to reveal mechanisms of bacterial

  15. [Bibliometrics and visualization analysis of land use regression models in ambient air pollution research].

    Science.gov (United States)

    Zhang, Y J; Zhou, D H; Bai, Z P; Xue, F X

    2018-02-10

    Objective: To quantitatively analyze the current status and development trends regarding the land use regression (LUR) models on ambient air pollution studies. Methods: Relevant literature from the PubMed database before June 30, 2017 was analyzed, using the Bibliographic Items Co-occurrence Matrix Builder (BICOMB 2.0). Keywords co-occurrence networks, cluster mapping and timeline mapping were generated, using the CiteSpace 5.1.R5 software. Relevant literature identified in three Chinese databases was also reviewed. Results: Four hundred sixty four relevant papers were retrieved from the PubMed database. The number of papers published showed an annual increase, in line with the growing trend of the index. Most papers were published in the journal of Environmental Health Perspectives . Results from the Co-word cluster analysis identified five clusters: cluster#0 consisted of birth cohort studies related to the health effects of prenatal exposure to air pollution; cluster#1 referred to land use regression modeling and exposure assessment; cluster#2 was related to the epidemiology on traffic exposure; cluster#3 dealt with the exposure to ultrafine particles and related health effects; cluster#4 described the exposure to black carbon and related health effects. Data from Timeline mapping indicated that cluster#0 and#1 were the main research areas while cluster#3 and#4 were the up-coming hot areas of research. Ninety four relevant papers were retrieved from the Chinese databases with most of them related to studies on modeling. Conclusion: In order to better assess the health-related risks of ambient air pollution, and to best inform preventative public health intervention policies, application of LUR models to environmental epidemiology studies in China should be encouraged.

  16. Genetic analysis of partial egg production records in Japanese quail using random regression models.

    Science.gov (United States)

    Abou Khadiga, G; Mahmoud, B Y F; Farahat, G S; Emam, A M; El-Full, E A

    2017-08-01

    The main objectives of this study were to detect the most appropriate random regression model (RRM) to fit the data of monthly egg production in 2 lines (selected and control) of Japanese quail and to test the consistency of different criteria of model choice. Data from 1,200 female Japanese quails for the first 5 months of egg production from 4 consecutive generations of an egg line selected for egg production in the first month (EP1) was analyzed. Eight RRMs with different orders of Legendre polynomials were compared to determine the proper model for analysis. All criteria of model choice suggested that the adequate model included the second-order Legendre polynomials for fixed effects, and the third-order for additive genetic effects and permanent environmental effects. Predictive ability of the best model was the highest among all models (ρ = 0.987). According to the best model fitted to the data, estimates of heritability were relatively low to moderate (0.10 to 0.17) showed a descending pattern from the first to the fifth month of production. A similar pattern was observed for permanent environmental effects with greater estimates in the first (0.36) and second (0.23) months of production than heritability estimates. Genetic correlations between separate production periods were higher (0.18 to 0.93) than their phenotypic counterparts (0.15 to 0.87). The superiority of the selected line over the control was observed through significant (P egg production in earlier ages (first and second months) than later ones. A methodology based on random regression animal models can be recommended for genetic evaluation of egg production in Japanese quail. © 2017 Poultry Science Association Inc.

  17. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.

    Science.gov (United States)

    Xu, Kelin; Jin, Li; Xiong, Momiao

    2017-05-18

    Epistasis plays an essential rule in understanding the regulation mechanisms and is an essential component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create the observed position level read count curves. A single number for measuring gene expression which is widely used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome sequencing (WGS) data poses enormous challenges. We develop a nonlinear functional regression model (FRGM) with functional responses where the position-level read counts within a gene are taken as a function of genomic position, and functional predictors where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data. Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed to collectively test interaction between all possible pairs of SNPs within two genome regions. By large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of significantly interacting genes after Bonferroni correction

  18. Bootstrap-based procedures for inference in nonparametric receiver-operating characteristic curve regression analysis.

    Science.gov (United States)

    Rodríguez-Álvarez, María Xosé; Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Tahoces, Pablo G

    2018-03-01

    Prior to using a diagnostic test in a routine clinical setting, the rigorous evaluation of its diagnostic accuracy is essential. The receiver-operating characteristic curve is the measure of accuracy most widely used for continuous diagnostic tests. However, the possible impact of extra information about the patient (or even the environment) on diagnostic accuracy also needs to be assessed. In this paper, we focus on an estimator for the covariate-specific receiver-operating characteristic curve based on direct regression modelling and nonparametric smoothing techniques. This approach defines the class of generalised additive models for the receiver-operating characteristic curve. The main aim of the paper is to offer new inferential procedures for testing the effect of covariates on the conditional receiver-operating characteristic curve within the above-mentioned class. Specifically, two different bootstrap-based tests are suggested to check (a) the possible effect of continuous covariates on the receiver-operating characteristic curve and (b) the presence of factor-by-curve interaction terms. The validity of the proposed bootstrap-based procedures is supported by simulations. To facilitate the application of these new procedures in practice, an R-package, known as npROCRegression, is provided and briefly described. Finally, data derived from a computer-aided diagnostic system for the automatic detection of tumour masses in breast cancer is analysed.

  19. Machine learning of swimming data via wisdom of crowd and regression analysis.

    Science.gov (United States)

    Xie, Jiang; Xu, Junfu; Nie, Celine; Nie, Qing

    2017-04-01

    Every performance, in an officially sanctioned meet, by a registered USA swimmer is recorded into an online database with times dating back to 1980. For the first time, statistical analysis and machine learning methods are systematically applied to 4,022,631 swim records. In this study, we investigate performance features for all strokes as a function of age and gender. The variances in performance of males and females for different ages and strokes were studied, and the correlations of performances for different ages were estimated using the Pearson correlation. Regression analysis show the performance trends for both males and females at different ages and suggest critical ages for peak training. Moreover, we assess twelve popular machine learning methods to predict or classify swimmer performance. Each method exhibited different strengths or weaknesses in different cases, indicating no one method could predict well for all strokes. To address this problem, we propose a new method by combining multiple inference methods to derive Wisdom of Crowd Classifier (WoCC). Our simulation experiments demonstrate that the WoCC is a consistent method with better overall prediction accuracy. Our study reveals several new age-dependent trends in swimming and provides an accurate method for classifying and predicting swimming times.

  20. Demand analysis of flood insurance by using logistic regression model and genetic algorithm

    Science.gov (United States)

    Sidi, P.; Mamat, M. B.; Sukono; Supian, S.; Putra, A. S.

    2018-03-01

    Citarum River floods in the area of South Bandung Indonesia, often resulting damage to some buildings belonging to the people living in the vicinity. One effort to alleviate the risk of building damage is to have flood insurance. The main obstacle is not all people in the Citarum basin decide to buy flood insurance. In this paper, we intend to analyse the decision to buy flood insurance. It is assumed that there are eight variables that influence the decision of purchasing flood assurance, include: income level, education level, house distance with river, building election with road, flood frequency experience, flood prediction, perception on insurance company, and perception towards government effort in handling flood. The analysis was done by using logistic regression model, and to estimate model parameters, it is done with genetic algorithm. The results of the analysis shows that eight variables analysed significantly influence the demand of flood insurance. These results are expected to be considered for insurance companies, to influence the decision of the community to be willing to buy flood insurance.