Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg
2009-11-01
G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
Applications of MIDAS regression in analysing trends in water quality
Penev, Spiridon; Leonte, Daniela; Lazarov, Zdravetz; Mann, Rob A.
2014-04-01
We discuss novel statistical methods in analysing trends in water quality. Such analysis uses complex data sets of different classes of variables, including water quality, hydrological and meteorological. We analyse the effect of rainfall and flow on trends in water quality utilising a flexible model called Mixed Data Sampling (MIDAS). This model arises because of the mixed frequency in the data collection. Typically, water quality variables are sampled fortnightly, whereas the rain data is sampled daily. The advantage of using MIDAS regression is in the flexible and parsimonious modelling of the influence of the rain and flow on trends in water quality variables. We discuss the model and its implementation on a data set from the Shoalhaven Supply System and Catchments in the state of New South Wales, Australia. Information criteria indicate that MIDAS modelling improves upon simplistic approaches that do not utilise the mixed data sampling nature of the data.
Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.
Vatcheva, Kristina P; Lee, MinJae; McCormick, Joseph B; Rahbar, Mohammad H
2016-04-01
The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.
Statistical and regression analyses of detected extrasolar systems
Czech Academy of Sciences Publication Activity Database
Pintr, Pavel; Peřinová, V.; Lukš, A.; Pathak, A.
2013-01-01
Roč. 75, č. 1 (2013), s. 37-45 ISSN 0032-0633 Institutional support: RVO:61389021 Keywords : Exoplanets * Kepler candidates * Regression analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.630, year: 2013 http://www.sciencedirect.com/science/article/pii/S0032063312003066
Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies
Vatcheva, Kristina P.; Lee, MinJae; McCormick, Joseph B.; Rahbar, Mohammad H.
2016-01-01
The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epide...
Analysing inequalities in Germany a structured additive distributional regression approach
Silbersdorff, Alexander
2017-01-01
This book seeks new perspectives on the growing inequalities that our societies face, putting forward Structured Additive Distributional Regression as a means of statistical analysis that circumvents the common problem of analytical reduction to simple point estimators. This new approach allows the observed discrepancy between the individuals’ realities and the abstract representation of those realities to be explicitly taken into consideration using the arithmetic mean alone. In turn, the method is applied to the question of economic inequality in Germany.
Activation analyses of authenticated hairs of Napoleon Bonaparte confirm arsenic poisoning.
Weider, B; Fournier, J H
1999-12-01
In 1960, activation analyses at the Harwell Nuclear Research Laboratory of the University of Glascow, London of authenticated hairs of Napoleon Bonaparte taken immediately after his death confirmed Napoleon's chronic arsenic poisoning on the island of St. Helena. Timeline correlation of his clinical symptomatology of the preceding 4 months, as reported in the written diaries of his exiled companions, further supports the effect of fluctuating, elevated toxic levels of arsenic on his health. Independent analyses of authenticated hairs of Napoleon by the Toxicology Crime Laboratory of the United States Federal Bureau of Investigation in 1995 reveals toxic levels of arsenic. The successful assassination of Napoleon included both a cosmetic and lethal phase. The cosmetic phase consisted of arsenic poisoning over time to weaken Napoleon, making the associated debility appear to be a natural illness and thus allay any suspicions prior to instituting the lethal phase. On May 3, 1821, at 5:30 P.M., the lethal phase was carried out. Napoleon was given Calomel (HgCl), a cathartic, and a popular orange-flavored drink called orgeat, which was flavored with the oil of bitter almonds. Together they formed mercury cyanide, which is lethal. Napoleon lost consciousness and died two days later.
Tripepi, Giovanni; Jager, Kitty J.; Stel, Vianda S.; Dekker, Friedo W.; Zoccali, Carmine
2011-01-01
Because of some limitations of stratification methods, epidemiologists frequently use multiple linear and logistic regression analyses to address specific epidemiological questions. If the dependent variable is a continuous one (for example, systolic pressure and serum creatinine), the researcher
Directory of Open Access Journals (Sweden)
Philip L. Reno
2015-04-01
Full Text Available Sexual dimorphism in body size is often used as a correlate of social and reproductive behavior in Australopithecus afarensis. In addition to a number of isolated specimens, the sample for this species includes two small associated skeletons (A.L. 288-1 or “Lucy” and A.L. 128/129 and a geologically contemporaneous death assemblage of several larger individuals (A.L. 333. These have driven both perceptions and quantitative analyses concluding that Au. afarensis was markedly dimorphic. The Template Method enables simultaneous evaluation of multiple skeletal sites, thereby greatly expanding sample size, and reveals that A. afarensis dimorphism was similar to that of modern humans. A new very large partial skeleton (KSD-VP-1/1 or “Kadanuumuu” can now also be used, like Lucy, as a template specimen. In addition, the recently developed Geometric Mean Method has been used to argue that Au. afarensis was equally or even more dimorphic than gorillas. However, in its previous application Lucy and A.L. 128/129 accounted for 10 of 11 estimates of female size. Here we directly compare the two methods and demonstrate that including multiple measurements from the same partial skeleton that falls at the margin of the species size range dramatically inflates dimorphism estimates. Prevention of the dominance of a single specimen’s contribution to calculations of multiple dimorphism estimates confirms that Au. afarensis was only moderately dimorphic.
USE OF THE SIMPLE LINEAR REGRESSION MODEL IN MACRO-ECONOMICAL ANALYSES
Directory of Open Access Journals (Sweden)
Constantin ANGHELACHE
2011-10-01
Full Text Available The article presents the fundamental aspects of the linear regression, as a toolbox which can be used in macroeconomic analyses. The article describes the estimation of the parameters, the statistical tests used, the homoscesasticity and heteroskedasticity. The use of econometrics instrument in macroeconomics is an important factor that guarantees the quality of the models, analyses, results and possible interpretation that can be drawn at this level.
Karami, K; Zerehdaran, S; Barzanooni, B; Lotfi, E
2017-12-01
1. The aim of the present study was to estimate genetic parameters for average egg weight (EW) and egg number (EN) at different ages in Japanese quail using multi-trait random regression (MTRR) models. 2. A total of 8534 records from 900 quail, hatched between 2014 and 2015, were used in the study. Average weekly egg weights and egg numbers were measured from second until sixth week of egg production. 3. Nine random regression models were compared to identify the best order of the Legendre polynomials (LP). The most optimal model was identified by the Bayesian Information Criterion. A model with second order of LP for fixed effects, second order of LP for additive genetic effects and third order of LP for permanent environmental effects (MTRR23) was found to be the best. 4. According to the MTRR23 model, direct heritability for EW increased from 0.26 in the second week to 0.53 in the sixth week of egg production, whereas the ratio of permanent environment to phenotypic variance decreased from 0.48 to 0.1. Direct heritability for EN was low, whereas the ratio of permanent environment to phenotypic variance decreased from 0.57 to 0.15 during the production period. 5. For each trait, estimated genetic correlations among weeks of egg production were high (from 0.85 to 0.98). Genetic correlations between EW and EN were low and negative for the first two weeks, but they were low and positive for the rest of the egg production period. 6. In conclusion, random regression models can be used effectively for analysing egg production traits in Japanese quail. Response to selection for increased egg weight would be higher at older ages because of its higher heritability and such a breeding program would have no negative genetic impact on egg production.
Directory of Open Access Journals (Sweden)
Esther Leushuis
2016-12-01
Full Text Available Background: Standardization of the semen analysis may improve reproducibility. We assessed variability between laboratories in semen analyses and evaluated whether a transformation using Z scores and regression statistics was able to reduce this variability. Materials and Methods: We performed a retrospective cohort study. We calculated between-laboratory coefficients of variation (CVB for sperm concentration and for morphology. Subsequently, we standardized the semen analysis results by calculating laboratory specific Z scores, and by using regression. We used analysis of variance for four semen parameters to assess systematic differences between laboratories before and after the transformations, both in the circulation samples and in the samples obtained in the prospective cohort study in the Netherlands between January 2002 and February 2004. Results: The mean CVB was 7% for sperm concentration (range 3 to 13% and 32% for sperm morphology (range 18 to 51%. The differences between the laboratories were statistically significant for all semen parameters (all P<0.001. Standardization using Z scores did not reduce the differences in semen analysis results between the laboratories (all P<0.001. Conclusion: There exists large between-laboratory variability for sperm morphology and small, but statistically significant, between-laboratory variation for sperm concentration. Standardization using Z scores does not eliminate between-laboratory variability.
International Nuclear Information System (INIS)
Bhowmik, K.R.; Islam, S.
2016-01-01
Logistic regression (LR) analysis is the most common statistical methodology to find out the determinants of childhood mortality. However, the significant predictors cannot be ranked according to their influence on the response variable. Multiple classification (MC) analysis can be applied to identify the significant predictors with a priority index which helps to rank the predictors. The main objective of the study is to find the socio-demographic determinants of childhood mortality at neonatal, post-neonatal, and post-infant period by fitting LR model as well as to rank those through MC analysis. The study is conducted using the data of Bangladesh Demographic and Health Survey 2007 where birth and death information of children were collected from their mothers. Three dichotomous response variables are constructed from children age at death to fit the LR and MC models. Socio-economic and demographic variables significantly associated with the response variables separately are considered in LR and MC analyses. Both the LR and MC models identified the same significant predictors for specific childhood mortality. For both the neonatal and child mortality, biological factors of children, regional settings, and parents socio-economic status are found as 1st, 2nd, and 3rd significant groups of predictors respectively. Mother education and household environment are detected as major significant predictors of post-neonatal mortality. This study shows that MC analysis with or without LR analysis can be applied to detect determinants with rank which help the policy makers taking initiatives on a priority basis. (author)
Directory of Open Access Journals (Sweden)
Juan Nunez-Iglesias
2018-02-01
Full Text Available We present Skan (Skeleton analysis, a Python library for the analysis of the skeleton structures of objects. It was inspired by the “analyse skeletons” plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan’s measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions.
Nunez-Iglesias, Juan; Blanch, Adam J; Looker, Oliver; Dixon, Matthew W; Tilley, Leann
2018-01-01
We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the "analyse skeletons" plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan's measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions.
The number of subjects per variable required in linear regression analyses
P.C. Austin (Peter); E.W. Steyerberg (Ewout)
2015-01-01
textabstractObjectives To determine the number of independent variables that can be included in a linear regression model. Study Design and Setting We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression
The number of subjects per variable required in linear regression analyses.
Austin, Peter C; Steyerberg, Ewout W
2015-06-01
To determine the number of independent variables that can be included in a linear regression model. We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression coefficients and standard errors, on the empirical coverage of estimated confidence intervals, and on the accuracy of the estimated R(2) of the fitted model. A minimum of approximately two SPV tended to result in estimation of regression coefficients with relative bias of less than 10%. Furthermore, with this minimum number of SPV, the standard errors of the regression coefficients were accurately estimated and estimated confidence intervals had approximately the advertised coverage rates. A much higher number of SPV were necessary to minimize bias in estimating the model R(2), although adjusted R(2) estimates behaved well. The bias in estimating the model R(2) statistic was inversely proportional to the magnitude of the proportion of variation explained by the population regression model. Linear regression models require only two SPV for adequate estimation of regression coefficients, standard errors, and confidence intervals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kromhout, D.
2009-01-01
Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements of the
Li, Spencer D.
2011-01-01
Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…
Wu, Dane W.
2002-01-01
The year 2000 US presidential election between Al Gore and George Bush has been the most intriguing and controversial one in American history. The state of Florida was the trigger for the controversy, mainly, due to the use of the misleading "butterfly ballot". Using prediction (or confidence) intervals for least squares regression lines…
Directory of Open Access Journals (Sweden)
Giuliano de Oliveira Freitas
2013-10-01
Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.
Check-all-that-apply data analysed by Partial Least Squares regression
DEFF Research Database (Denmark)
Rinnan, Åsmund; Giacalone, Davide; Frøst, Michael Bom
2015-01-01
are analysed by multivariate techniques. CATA data can be analysed both by setting the CATA as the X and the Y. The former is the PLS-Discriminant Analysis (PLS-DA) version, while the latter is the ANOVA-PLS (A-PLS) version. We investigated the difference between these two approaches, concluding...
DEFF Research Database (Denmark)
Scott, Neil W; Fayers, Peter M; Aaronson, Neil K
2010-01-01
Differential item functioning (DIF) methods can be used to determine whether different subgroups respond differently to particular items within a health-related quality of life (HRQoL) subscale, after allowing for overall subgroup differences in that scale. This article reviews issues that arise ...... when testing for DIF in HRQoL instruments. We focus on logistic regression methods, which are often used because of their efficiency, simplicity and ease of application....
Analyses of Developmental Rate Isomorphy in Ectotherms: Introducing the Dirichlet Regression.
Directory of Open Access Journals (Sweden)
David S Boukal
Full Text Available Temperature drives development in insects and other ectotherms because their metabolic rate and growth depends directly on thermal conditions. However, relative durations of successive ontogenetic stages often remain nearly constant across a substantial range of temperatures. This pattern, termed 'developmental rate isomorphy' (DRI in insects, appears to be widespread and reported departures from DRI are generally very small. We show that these conclusions may be due to the caveats hidden in the statistical methods currently used to study DRI. Because the DRI concept is inherently based on proportional data, we propose that Dirichlet regression applied to individual-level data is an appropriate statistical method to critically assess DRI. As a case study we analyze data on five aquatic and four terrestrial insect species. We find that results obtained by Dirichlet regression are consistent with DRI violation in at least eight of the studied species, although standard analysis detects significant departure from DRI in only four of them. Moreover, the departures from DRI detected by Dirichlet regression are consistently much larger than previously reported. The proposed framework can also be used to infer whether observed departures from DRI reflect life history adaptations to size- or stage-dependent effects of varying temperature. Our results indicate that the concept of DRI in insects and other ectotherms should be critically re-evaluated and put in a wider context, including the concept of 'equiproportional development' developed for copepods.
International Nuclear Information System (INIS)
Slutskaya, N.G.; Mosseh, I.B.
2006-01-01
Data about genetic mutations under radiation and chemical treatment for different types of cells have been analyzed with correlation and regression analyses. Linear correlation between different genetic effects in sex cells and somatic cells have found. The results may be extrapolated on sex cells of human and mammals. (authors)
DEFF Research Database (Denmark)
Tybjærg-Hansen, Anne
2009-01-01
Within-person variability in measured values of multiple risk factors can bias their associations with disease. The multivariate regression calibration (RC) approach can correct for such measurement error and has been applied to studies in which true values or independent repeat measurements...... of the risk factors are observed on a subsample. We extend the multivariate RC techniques to a meta-analysis framework where multiple studies provide independent repeat measurements and information on disease outcome. We consider the cases where some or all studies have repeat measurements, and compare study......-specific, averaged and empirical Bayes estimates of RC parameters. Additionally, we allow for binary covariates (e.g. smoking status) and for uncertainty and time trends in the measurement error corrections. Our methods are illustrated using a subset of individual participant data from prospective long-term studies...
Huang, Banglian; Yang, Yiming; Luo, Tingting; Wu, S.; Du, Xuezhu; Cai, Detian; Loo, van, E.N.; Huang Bangquan
2013-01-01
In the present study correlation, regression and path analyses were carried out to decide correlations among the agro- nomic traits and their contributions to seed yield per plant in Crambe abyssinica. Partial correlation analysis indicated that plant height (X1) was significantly correlated with branching height and the number of first branches (P <0.01); Branching height (X2) was significantly correlated with pod number of primary inflorescence (P <0.01) and number of secondary branch...
Chevance, Aurélie; Schuster, Tibor; Steele, Russell; Ternès, Nils; Platt, Robert W
2015-10-01
Robustness of an existing meta-analysis can justify decisions on whether to conduct an additional study addressing the same research question. We illustrate the graphical assessment of the potential impact of an additional study on an existing meta-analysis using published data on statin use and the risk of acute kidney injury. A previously proposed graphical augmentation approach is used to assess the sensitivity of the current test and heterogeneity statistics extracted from existing meta-analysis data. In addition, we extended the graphical augmentation approach to assess potential changes in the pooled effect estimate after updating a current meta-analysis and applied the three graphical contour definitions to data from meta-analyses on statin use and acute kidney injury risk. In the considered example data, the pooled effect estimates and heterogeneity indices demonstrated to be considerably robust to the addition of a future study. Supportingly, for some previously inconclusive meta-analyses, a study update might yield statistically significant kidney injury risk increase associated with higher statin exposure. The illustrated contour approach should become a standard tool for the assessment of the robustness of meta-analyses. It can guide decisions on whether to conduct additional studies addressing a relevant research question. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Ming-Wei; Zhu, Xing-Quan; Gasser, Robin B; Lin, Rui-Qing; Sani, Rehana A; Lun, Zhao-Rong; Jacobs, Dennis E
2006-10-01
Non-isotopic polymerase chain reaction (PCR)-based single-strand conformation polymorphism and sequence analyses of the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) were utilized to genetically characterise ascaridoids from dogs and cats from China by comparison with those from other countries. The study showed that Toxocara canis, Toxocara cati, and Toxascaris leonina from China were genetically the same as those from other geographical origins. Specimens from cats from Guangzhou, China, which were morphologically consistent with Toxocara malaysiensis, were the same genetically as those from Malaysia, with the exception of a polymorphism in the ITS-2 but no unequivocal sequence difference. This is the first report of T. malaysiensis in cats outside of Malaysia (from where it was originally described), supporting the proposal that this species has a broader geographical distribution. The molecular approach employed provides a powerful tool for elucidating the biology, epidemiology, and zoonotic significance of T. malaysiensis.
Directory of Open Access Journals (Sweden)
Alice Beau
Full Text Available In Europe, the Middle Neolithic is characterized by an important diversification of cultures. In northeastern France, the appearance of the Michelsberg culture has been correlated with major cultural changes and interpreted as the result of the settlement of new groups originating from the Paris Basin. This cultural transition has been accompanied by the expansion of particular funerary practices involving inhumations within circular pits and individuals in "non-conventional" positions (deposited in the pits without any particular treatment. If the status of such individuals has been highly debated, the sacrifice hypothesis has been retained for the site of Gougenheim (Alsace. At the regional level, the analysis of the Gougenheim mitochondrial gene pool (SNPs and HVR-I sequence analyses permitted us to highlight a major genetic break associated with the emergence of the Michelsberg in the region. This genetic discontinuity appeared to be linked to new affinities with farmers from the Paris Basin, correlated to a noticeable hunter-gatherer legacy. All of the evidence gathered supports (i the occidental origin of the Michelsberg groups and (ii the potential implication of this migration in the progression of the hunter-gatherer legacy from the Paris Basin to Alsace / Western Germany at the beginning of the Late Neolithic. At the local level, we noted some differences in the maternal gene pool of individuals in "conventional" vs. "non-conventional" positions. The relative genetic isolation of these sub-groups nicely echoes both their social distinction and the hypothesis of sacrifices retained for the site. Our investigation demonstrates that a multi-scale aDNA study of ancient communities offers a unique opportunity to disentangle the complex relationships between cultural and biological evolution.
Analyses of non-fatal accidents in an opencast mine by logistic regression model - a case study.
Onder, Seyhan; Mutlu, Mert
2017-09-01
Accidents cause major damage for both workers and enterprises in the mining industry. To reduce the number of occupational accidents, these incidents should be properly registered and carefully analysed. This study efficiently examines the Aegean Lignite Enterprise (ELI) of Turkish Coal Enterprises (TKI) in Soma between 2006 and 2011, and opencast coal mine occupational accident records were used for statistical analyses. A total of 231 occupational accidents were analysed for this study. The accident records were categorized into seven groups: area, reason, occupation, part of body, age, shift hour and lost days. The SPSS package program was used in this study for logistic regression analyses, which predicted the probability of accidents resulting in greater or less than 3 lost workdays for non-fatal injuries. Social facilities-area of surface installations, workshops and opencast mining areas are the areas with the highest probability for accidents with greater than 3 lost workdays for non-fatal injuries, while the reasons with the highest probability for these types of accidents are transporting and manual handling. Additionally, the model was tested for such reported accidents that occurred in 2012 for the ELI in Soma and estimated the probability of exposure to accidents with lost workdays correctly by 70%.
Directory of Open Access Journals (Sweden)
Kevin D. Cashman
2017-05-01
Full Text Available Dietary Reference Values (DRVs for vitamin D have a key role in the prevention of vitamin D deficiency. However, despite adopting similar risk assessment protocols, estimates from authoritative agencies over the last 6 years have been diverse. This may have arisen from diverse approaches to data analysis. Modelling strategies for pooling of individual subject data from cognate vitamin D randomized controlled trials (RCTs are likely to provide the most appropriate DRV estimates. Thus, the objective of the present work was to undertake the first-ever individual participant data (IPD-level meta-regression, which is increasingly recognized as best practice, from seven winter-based RCTs (with 882 participants ranging in age from 4 to 90 years of the vitamin D intake–serum 25-hydroxyvitamin D (25(OHD dose-response. Our IPD-derived estimates of vitamin D intakes required to maintain 97.5% of 25(OHD concentrations >25, 30, and 50 nmol/L across the population are 10, 13, and 26 µg/day, respectively. In contrast, standard meta-regression analyses with aggregate data (as used by several agencies in recent years from the same RCTs estimated that a vitamin D intake requirement of 14 µg/day would maintain 97.5% of 25(OHD >50 nmol/L. These first IPD-derived estimates offer improved dietary recommendations for vitamin D because the underpinning modeling captures the between-person variability in response of serum 25(OHD to vitamin D intake.
Cashman, Kevin D.; Ritz, Christian; Kiely, Mairead
2017-01-01
Dietary Reference Values (DRVs) for vitamin D have a key role in the prevention of vitamin D deficiency. However, despite adopting similar risk assessment protocols, estimates from authoritative agencies over the last 6 years have been diverse. This may have arisen from diverse approaches to data analysis. Modelling strategies for pooling of individual subject data from cognate vitamin D randomized controlled trials (RCTs) are likely to provide the most appropriate DRV estimates. Thus, the objective of the present work was to undertake the first-ever individual participant data (IPD)-level meta-regression, which is increasingly recognized as best practice, from seven winter-based RCTs (with 882 participants ranging in age from 4 to 90 years) of the vitamin D intake–serum 25-hydroxyvitamin D (25(OH)D) dose-response. Our IPD-derived estimates of vitamin D intakes required to maintain 97.5% of 25(OH)D concentrations >25, 30, and 50 nmol/L across the population are 10, 13, and 26 µg/day, respectively. In contrast, standard meta-regression analyses with aggregate data (as used by several agencies in recent years) from the same RCTs estimated that a vitamin D intake requirement of 14 µg/day would maintain 97.5% of 25(OH)D >50 nmol/L. These first IPD-derived estimates offer improved dietary recommendations for vitamin D because the underpinning modeling captures the between-person variability in response of serum 25(OH)D to vitamin D intake. PMID:28481259
Directory of Open Access Journals (Sweden)
Luise A Seeker
Full Text Available Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In humans short telomeres have been linked to morbidity and mortality. With the accumulation of longitudinal datasets the focus shifts from investigating telomere length (TL to exploring TL change within individuals over time. Some studies indicate that the speed of telomere attrition is predictive of future disease. The objectives of the present study were to 1 characterize the change in bovine relative leukocyte TL (RLTL across the lifetime in Holstein Friesian dairy cattle, 2 estimate genetic parameters of RLTL over time and 3 investigate the association of differences in individual RLTL profiles with productive lifespan. RLTL measurements were analysed using Legendre polynomials in a random regression model to describe TL profiles and genetic variance over age. The analyses were based on 1,328 repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic Legendre polynomial was fitted to the fixed effect of age in months and to the random effect of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along the age trajectory were calculated and illustrated. At a population level, the relationship between RLTL and age was described by a positive quadratic function. Individuals varied significantly regarding the direction and amount of RLTL change over life. The heritability of RLTL ranged from 0.36 to 0.47 (SE = 0.05-0.08 and remained statistically unchanged over time. The genetic correlation of RLTL at birth with measurements later in life decreased with the time interval between samplings from near unity to 0.69, indicating that TL later in life might be regulated by different genes than TL early in life. Even though animals differed in their RLTL profiles significantly, those differences were not correlated with productive lifespan (p = 0.954.
van der Klift, Heleen M; Jansen, Anne M L; van der Steenstraten, Niki; Bik, Elsa C; Tops, Carli M J; Devilee, Peter; Wijnen, Juul T
2015-01-01
A subset of DNA variants causes genetic disease through aberrant splicing. Experimental splicing assays, either RT-PCR analyses of patient RNA or functional splicing reporter minigene assays, are required to evaluate the molecular nature of the splice defect. Here, we present minigene assays performed for 17 variants in the consensus splice site regions, 14 exonic variants outside these regions, and two deep intronic variants, all in the DNA mismatch-repair (MMR) genes MLH1, MSH2, MSH6, and PMS2, associated with Lynch syndrome. We also included two deep intronic variants in APC and PKD2. For one variant (MLH1 c.122A>G), our minigene assay and patient RNA analysis could not confirm the previously reported aberrant splicing. The aim of our study was to further investigate the concordance between minigene splicing assays and patient RNA analyses. For 30 variants results from patient RNA analyses were available, either performed by our laboratory or presented in literature. Some variants were deliberately included in this study because they resulted in multiple aberrant transcripts in patient RNA analysis, or caused a splice effect other than the prevalent exon skip. While both methods were completely concordant in the assessment of splice effects, four variants exhibited major differences in aberrant splice patterns. Based on the present and earlier studies, together showing an almost 100% concordance of minigene assays with patient RNA analyses, we discuss the weight given to minigene splicing assays in the current criteria proposed by InSiGHT for clinical classification of MMR variants. PMID:26247049
LENUS (Irish Health Repository)
Hutchinson, Michael
2013-09-01
In the phase 3, randomized, placebo-controlled and active reference (glatiramer acetate) comparator CONFIRM study in patients with relapsing-remitting multiple sclerosis, oral BG-12 (dimethyl fumarate) reduced the annualized relapse rate (ARR; primary endpoint), as well as the proportion of patients relapsed, magnetic resonance imaging lesion activity, and confirmed disability progression, compared with placebo. We investigated the clinical efficacy of BG-12 240 mg twice daily (BID) and three times daily (TID) in patient subgroups stratified according to baseline demographic and disease characteristics including gender, age, relapse history, McDonald criteria, treatment history, Expanded Disability Status Scale score, T2 lesion volume, and gadolinium-enhancing lesions. BG-12 treatment demonstrated generally consistent benefits on relapse-related outcomes across patient subgroups, reflecting the positive findings in the overall CONFIRM study population. Treatment with BG-12 BID and TID reduced the ARR and the proportion of patients relapsed at 2 years compared with placebo in all subgroups analyzed. Reductions in ARR with BG-12 BID versus placebo ranged from 34% [rate ratio 0.664 (95% confidence interval 0.422-1.043)] to 53% [0.466 (0.313-0.694)] and from 13% [0.870 (0.551-1.373)] to 67% [0.334 (0.226-0.493)] with BG-12 TID versus placebo. Treatment with glatiramer acetate reduced the ARR and the proportion of patients relapsed at 2 years compared with placebo in most patient subgroups. The results of these analyses indicate that treatment with BG-12 is effective on relapses across a broad range of patients with relapsing-remitting multiple sclerosis with varied demographic and disease characteristics.
Directory of Open Access Journals (Sweden)
Željko V. Račić
2010-12-01
Full Text Available This paper aims to present the specifics of the application of multiple linear regression model. The economic (financial crisis is analyzed in terms of gross domestic product which is in a function of the foreign trade balance (on one hand and the credit cards, i.e. indebtedness of the population on this basis (on the other hand, in the USA (from 1999. to 2008. We used the extended application model which shows how the analyst should run the whole development process of regression model. This process began with simple statistical features and the application of regression procedures, and ended with residual analysis, intended for the study of compatibility of data and model settings. This paper also analyzes the values of some standard statistics used in the selection of appropriate regression model. Testing of the model is carried out with the use of the Statistics PASW 17 program.
Energy Technology Data Exchange (ETDEWEB)
Reddy, T.A. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States)); Claridge, D.E. (Energy Systems Lab., Texas A and M Univ., College Station, TX (United States))
1994-01-01
Multiple regression modeling of monitored building energy use data is often faulted as a reliable means of predicting energy use on the grounds that multicollinearity between the regressor variables can lead both to improper interpretation of the relative importance of the various physical regressor parameters and to a model with unstable regressor coefficients. Principal component analysis (PCA) has the potential to overcome such drawbacks. While a few case studies have already attempted to apply this technique to building energy data, the objectives of this study were to make a broader evaluation of PCA and multiple regression analysis (MRA) and to establish guidelines under which one approach is preferable to the other. Four geographic locations in the US with different climatic conditions were selected and synthetic data sequence representative of daily energy use in large institutional buildings were generated in each location using a linear model with outdoor temperature, outdoor specific humidity and solar radiation as the three regression variables. MRA and PCA approaches were then applied to these data sets and their relative performances were compared. Conditions under which PCA seems to perform better than MRA were identified and preliminary recommendations on the use of either modeling approach formulated. (orig.)
Laszlo, Sarah; Federmeier, Kara D.
2010-01-01
Linking print with meaning tends to be divided into subprocesses, such as recognition of an input's lexical entry and subsequent access of semantics. However, recent results suggest that the set of semantic features activated by an input is broader than implied by a view wherein access serially follows recognition. EEG was collected from participants who viewed items varying in number and frequency of both orthographic neighbors and lexical associates. Regression analysis of single item ERPs replicated past findings, showing that N400 amplitudes are greater for items with more neighbors, and further revealed that N400 amplitudes increase for items with more lexical associates and with higher frequency neighbors or associates. Together, the data suggest that in the N400 time window semantic features of items broadly related to inputs are active, consistent with models in which semantic access takes place in parallel with stimulus recognition. PMID:20624252
Directory of Open Access Journals (Sweden)
Abdelfattah M. Selim
2018-03-01
Full Text Available Aim: The present cross-sectional study was conducted to determine the seroprevalence and potential risk factors associated with Bovine viral diarrhea virus (BVDV disease in cattle and buffaloes in Egypt, to model the potential risk factors associated with the disease using logistic regression (LR models, and to fit the best predictive model for the current data. Materials and Methods: A total of 740 blood samples were collected within November 2012-March 2013 from animals aged between 6 months and 3 years. The potential risk factors studied were species, age, sex, and herd location. All serum samples were examined with indirect ELIZA test for antibody detection. Data were analyzed with different statistical approaches such as Chi-square test, odds ratios (OR, univariable, and multivariable LR models. Results: Results revealed a non-significant association between being seropositive with BVDV and all risk factors, except for species of animal. Seroprevalence percentages were 40% and 23% for cattle and buffaloes, respectively. OR for all categories were close to one with the highest OR for cattle relative to buffaloes, which was 2.237. Likelihood ratio tests showed a significant drop of the -2LL from univariable LR to multivariable LR models. Conclusion: There was an evidence of high seroprevalence of BVDV among cattle as compared with buffaloes with the possibility of infection in different age groups of animals. In addition, multivariable LR model was proved to provide more information for association and prediction purposes relative to univariable LR models and Chi-square tests if we have more than one predictor.
Botha, J.; De Ridder, J.H.; Potgieter, J.C.; Steyn, H.S.; Malan, L.
2013-01-01
A recently proposed model for waist circumference cut points (RPWC), driven by increased blood pressure, was demonstrated in an African population. We therefore aimed to validate the RPWC by comparing the RPWC and the Joint Statement Consensus (JSC) models via Logistic Regression (LR) and Neural Networks (NN) analyses. Urban African gender groups (N=171) were stratified according to the JSC and RPWC cut point models. Ultrasound carotid intima media thickness (CIMT), blood pressure (BP) and fa...
Misyura, Maksym; Sukhai, Mahadeo A; Kulasignam, Vathany; Zhang, Tong; Kamel-Reid, Suzanne; Stockley, Tracy L
2018-02-01
A standard approach in test evaluation is to compare results of the assay in validation to results from previously validated methods. For quantitative molecular diagnostic assays, comparison of test values is often performed using simple linear regression and the coefficient of determination (R 2 ), using R 2 as the primary metric of assay agreement. However, the use of R 2 alone does not adequately quantify constant or proportional errors required for optimal test evaluation. More extensive statistical approaches, such as Bland-Altman and expanded interpretation of linear regression methods, can be used to more thoroughly compare data from quantitative molecular assays. We present the application of Bland-Altman and linear regression statistical methods to evaluate quantitative outputs from next-generation sequencing assays (NGS). NGS-derived data sets from assay validation experiments were used to demonstrate the utility of the statistical methods. Both Bland-Altman and linear regression were able to detect the presence and magnitude of constant and proportional error in quantitative values of NGS data. Deming linear regression was used in the context of assay comparison studies, while simple linear regression was used to analyse serial dilution data. Bland-Altman statistical approach was also adapted to quantify assay accuracy, including constant and proportional errors, and precision where theoretical and empirical values were known. The complementary application of the statistical methods described in this manuscript enables more extensive evaluation of performance characteristics of quantitative molecular assays, prior to implementation in the clinical molecular laboratory. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Dyer, Betsey D.; Kahn, Michael J.; LeBlanc, Mark D.
2008-01-01
Classification and regression tree (CART) analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures) of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear) qualities of genomes may reflect certain environmental conditions (such as temperature) in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results. PMID:19054742
Bowden, Jack; Del Greco M, Fabiola; Minelli, Cosetta; Davey Smith, George; Sheehan, Nuala A; Thompson, John R
2016-12-01
: MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied. An adaptation of the I2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it IGX2 . The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example. In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of IGX2 ), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We
Xie, Heping; Wang, Fuxing; Hao, Yanbin; Chen, Jiaxue; An, Jing; Wang, Yuxin; Liu, Huashan
2017-01-01
Cueing facilitates retention and transfer of multimedia learning. From the perspective of cognitive load theory (CLT), cueing has a positive effect on learning outcomes because of the reduction in total cognitive load and avoidance of cognitive overload. However, this has not been systematically evaluated. Moreover, what remains ambiguous is the direct relationship between the cue-related cognitive load and learning outcomes. A meta-analysis and two subsequent meta-regression analyses were conducted to explore these issues. Subjective total cognitive load (SCL) and scores on a retention test and transfer test were selected as dependent variables. Through a systematic literature search, 32 eligible articles encompassing 3,597 participants were included in the SCL-related meta-analysis. Among them, 25 articles containing 2,910 participants were included in the retention-related meta-analysis and the following retention-related meta-regression, while there were 29 articles containing 3,204 participants included in the transfer-related meta-analysis and the transfer-related meta-regression. The meta-analysis revealed a statistically significant cueing effect on subjective ratings of cognitive load (d = -0.11, 95% CI = [-0.19, -0.02], p < 0.05), retention performance (d = 0.27, 95% CI = [0.08, 0.46], p < 0.01), and transfer performance (d = 0.34, 95% CI = [0.12, 0.56], p < 0.01). The subsequent meta-regression analyses showed that dSCL for cueing significantly predicted dretention for cueing (β = -0.70, 95% CI = [-1.02, -0.38], p < 0.001), as well as dtransfer for cueing (β = -0.60, 95% CI = [-0.92, -0.28], p < 0.001). Thus in line with CLT, adding cues in multimedia materials can indeed reduce SCL and promote learning outcomes, and the more SCL is reduced by cues, the better retention and transfer of multimedia learning.
Hutton, Eileen K; Simioni, Julia C; Thabane, Lehana
2017-08-01
Among women with a fetus with a non-cephalic presentation, external cephalic version (ECV) has been shown to reduce the rate of breech presentation at birth and cesarean birth. Compared with ECV at term, beginning ECV prior to 37 weeks' gestation decreases the number of infants in a non-cephalic presentation at birth. The purpose of this secondary analysis was to investigate factors associated with a successful ECV procedure and to present this in a clinically useful format. Data were collected as part of the Early ECV Pilot and Early ECV2 Trials, which randomized 1776 women with a fetus in breech presentation to either early ECV (34-36 weeks' gestation) or delayed ECV (at or after 37 weeks). The outcome of interest was successful ECV, defined as the fetus being in a cephalic presentation immediately following the procedure, as well as at the time of birth. The importance of several factors in predicting successful ECV was investigated using two statistical methods: logistic regression and classification and regression tree (CART) analyses. Among nulliparas, non-engagement of the presenting part and an easily palpable fetal head were independently associated with success. Among multiparas, non-engagement of the presenting part, gestation less than 37 weeks and an easily palpable fetal head were found to be independent predictors of success. These findings were consistent with results of the CART analyses. Regardless of parity, descent of the presenting part was the most discriminating factor in predicting successful ECV and cephalic presentation at birth. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O
2017-03-05
The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K b ), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K b and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10 -7 M for anthracene and 3.48×10 -8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized
Peluso, Marco E M; Munnia, Armelle; Ceppi, Marcello
2014-11-05
Exposures to bisphenol-A, a weak estrogenic chemical, largely used for the production of plastic containers, can affect the rodent behaviour. Thus, we examined the relationships between bisphenol-A and the anxiety-like behaviour, spatial skills, and aggressiveness, in 12 toxicity studies of rodent offspring from females orally exposed to bisphenol-A, while pregnant and/or lactating, by median and linear splines analyses. Subsequently, the meta-regression analysis was applied to quantify the behavioural changes. U-shaped, inverted U-shaped and J-shaped dose-response curves were found to describe the relationships between bisphenol-A with the behavioural outcomes. The occurrence of anxiogenic-like effects and spatial skill changes displayed U-shaped and inverted U-shaped curves, respectively, providing examples of effects that are observed at low-doses. Conversely, a J-dose-response relationship was observed for aggressiveness. When the proportion of rodents expressing certain traits or the time that they employed to manifest an attitude was analysed, the meta-regression indicated that a borderline significant increment of anxiogenic-like effects was present at low-doses regardless of sexes (β)=-0.8%, 95% C.I. -1.7/0.1, P=0.076, at ≤120 μg bisphenol-A. Whereas, only bisphenol-A-males exhibited a significant inhibition of spatial skills (β)=0.7%, 95% C.I. 0.2/1.2, P=0.004, at ≤100 μg/day. A significant increment of aggressiveness was observed in both the sexes (β)=67.9,C.I. 3.4, 172.5, P=0.038, at >4.0 μg. Then, bisphenol-A treatments significantly abrogated spatial learning and ability in males (Pbisphenol-A, e.g. ≤120 μg/day, were associated to behavioural aberrations in offspring. Copyright © 2014. Published by Elsevier Ireland Ltd.
International Nuclear Information System (INIS)
Lindner, E.N.
2000-01-01
As described, the purpose of the Performance Confirmation Plan is to specify monitoring, testing, and analysis activities for evaluating the accuracy and adequacy of the information used to determine that performance objectives for postclosure will be met. This plan defines a number of specific performance confirmation activities and associated test concepts in support of the MGR that will be implemented to fulfill this purpose. In doing so, the plan defines an approach to identify key factors and processes, predict performance, establish tolerances and test criteria, collect data (through monitoring, testing, and experiments), analyze these data, and recommend appropriate action. The process of defining which factors to address under performance confirmation incorporates input from several areas. In all cases, key performance confirmation factors are those factors which are: (1) important to safety, (2) measurable and predictable, and (3) relevant to the program (i.e., a factor that is affected by construction, emplacement, or is a time-dependent variable). For the present version of the plan, performance confirmation factors important to safety are identified using the principal factors from the RSS (CRWMS M and O 2000a) (which is derived from TSPA analyses) together with other available performance assessment analyses. With this basis, key performance confirmation factors have been identified, and test concepts and test descriptions have been developed in the plan. Other activities are also incorporated into the performance confirmation program outside of these key factors. Additional activities and tests have been incorporated when they are prescribed by requirements and regulations or are necessary to address data needs and model validation requirements relevant to postclosure safety. These other activities have been included with identified factors to construct the overall performance confirmation program
International Nuclear Information System (INIS)
Lindner, E.N.
2000-01-01
As described, the purpose of the Performance Confirmation Plan is to specify monitoring, testing, and analysis activities for evaluating the accuracy and adequacy of the information used to determine that performance objectives for postclosure will be met. This plan defines a number of specific performance confirmation activities and associated test concepts in support of the MGR that will be implemented to fulfill this purpose. In doing so, the plan defines an approach to identify key factors and processes, predict performance, establish tolerances and test criteria, collect data (through monitoring, testing, and experiments), analyze these data, and recommend appropriate action. The process of defining which factors to address under performance confirmation incorporates input from several areas. In all cases, key performance confirmation factors are those factors which are: (1) important to safety, (2) measurable and predictable, and (3) relevant to the program (i.e., a factor that i s affected by construction, emplacement, or is a time-dependent variable). For the present version of the plan, performance confirmation factors important to safety are identified using the principal factors from the RSS (CRWMS M and O 2000a) (which is derived from TSPA analyses) together with other available performance assessment analyses. With this basis, key performance confirmation factors have been identified, and test concepts and test descriptions have been developed in the plan. Other activities are also incorporated into the performance confirmation program outside of these key factors. Additional activities and tests have been incorporated when they are prescribed by requirements and regulations or are necessary to address data needs and model validation requirements relevant to postclosure safety. These other activities have been included with identified factors to construct the overall performance confirmation program
Johansen, Mette; Bahrt, Henriette; Altman, Roy D; Bartels, Else M; Juhl, Carsten B; Bliddal, Henning; Lund, Hans; Christensen, Robin
2016-08-01
The aim was to identify factors explaining inconsistent observations concerning the efficacy of intra-articular hyaluronic acid compared to intra-articular sham/control, or non-intervention control, in patients with symptomatic osteoarthritis, based on randomized clinical trials (RCTs). A systematic review and meta-regression analyses of available randomized trials were conducted. The outcome, pain, was assessed according to a pre-specified hierarchy of potentially available outcomes. Hedges׳s standardized mean difference [SMD (95% CI)] served as effect size. REstricted Maximum Likelihood (REML) mixed-effects models were used to combine study results, and heterogeneity was calculated and interpreted as Tau-squared and I-squared, respectively. Overall, 99 studies (14,804 patients) met the inclusion criteria: Of these, only 71 studies (72%), including 85 comparisons (11,216 patients), had adequate data available for inclusion in the primary meta-analysis. Overall, compared with placebo, intra-articular hyaluronic acid reduced pain with an effect size of -0.39 [-0.47 to -0.31; P hyaluronic acid. Based on available trial data, intra-articular hyaluronic acid showed a better effect than intra-articular saline on pain reduction in osteoarthritis. Publication bias and the risk of selective outcome reporting suggest only small clinical effect compared to saline. Copyright © 2016 Elsevier Inc. All rights reserved.
Fossati, Andrea; Widiger, Thomas A; Borroni, Serena; Maffei, Cesare; Somma, Antonella
2017-06-01
To extend the evidence on the reliability and construct validity of the Five-Factor Model Rating Form (FFMRF) in its self-report version, two independent samples of Italian participants, which were composed of 510 adolescent high school students and 457 community-dwelling adults, respectively, were administered the FFMRF in its Italian translation. Adolescent participants were also administered the Italian translation of the Borderline Personality Features Scale for Children-11 (BPFSC-11), whereas adult participants were administered the Italian translation of the Triarchic Psychopathy Measure (TriPM). Cronbach α values were consistent with previous findings; in both samples, average interitem r values indicated acceptable internal consistency for all FFMRF scales. A multidimensional graded item response theory model indicated that the majority of FFMRF items had adequate discrimination parameters; information indices supported the reliability of the FFMRF scales. Both categorical (i.e., item-level) and scale-level regression analyses suggested that the FFMRF scores may predict a nonnegligible amount of variance in the BPFSC-11 total score in adolescent participants, and in the TriPM scale scores in adult participants.
Samdal, Gro Beate; Eide, Geir Egil; Barth, Tom; Williams, Geoffrey; Meland, Eivind
2017-03-28
This systematic review aims to explain the heterogeneity in results of interventions to promote physical activity and healthy eating for overweight and obese adults, by exploring the differential effects of behaviour change techniques (BCTs) and other intervention characteristics. The inclusion criteria specified RCTs with ≥ 12 weeks' duration, from January 2007 to October 2014, for adults (mean age ≥ 40 years, mean BMI ≥ 30). Primary outcomes were measures of healthy diet or physical activity. Two reviewers rated study quality, coded the BCTs, and collected outcome results at short (≤6 months) and long term (≥12 months). Meta-analyses and meta-regressions were used to estimate effect sizes (ES), heterogeneity indices (I 2 ) and regression coefficients. We included 48 studies containing a total of 82 outcome reports. The 32 long term reports had an overall ES = 0.24 with 95% confidence interval (CI): 0.15 to 0.33 and I 2 = 59.4%. The 50 short term reports had an ES = 0.37 with 95% CI: 0.26 to 0.48, and I 2 = 71.3%. The number of BCTs unique to the intervention group, and the BCTs goal setting and self-monitoring of behaviour predicted the effect at short and long term. The total number of BCTs in both intervention arms and using the BCTs goal setting of outcome, feedback on outcome of behaviour, implementing graded tasks, and adding objects to the environment, e.g. using a step counter, significantly predicted the effect at long term. Setting a goal for change; and the presence of reporting bias independently explained 58.8% of inter-study variation at short term. Autonomy supportive and person-centred methods as in Motivational Interviewing, the BCTs goal setting of behaviour, and receiving feedback on the outcome of behaviour, explained all of the between study variations in effects at long term. There are similarities, but also differences in effective BCTs promoting change in healthy eating and physical activity and
Spady, Richard; Stouli, Sami
2012-01-01
We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...
Simons, Monique; de Vet, Emely; Chinapaw, Mai Jm; de Boer, Michiel; Seidell, Jacob C; Brug, Johannes
2014-04-04
Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games-active games-seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of active and non-active gaming among adolescents. The objective of this study was to examine potential personal, social, and game-related correlates of both active and non-active gaming in adolescents. A survey assessing game behavior and potential personal, social, and game-related correlates was conducted among adolescents (12-16 years, N=353) recruited via schools. Multivariable, multilevel logistic regression analyses, adjusted for demographics (age, sex and educational level of adolescents), were conducted to examine personal, social, and game-related correlates of active gaming ≥1 hour per week (h/wk) and non-active gaming >7 h/wk. Active gaming ≥1 h/wk was significantly associated with a more positive attitude toward active gaming (OR 5.3, CI 2.4-11.8; Pgames (OR 0.30, CI 0.1-0.6; P=.002), a higher score on habit strength regarding gaming (OR 1.9, CI 1.2-3.2; P=.008) and having brothers/sisters (OR 6.7, CI 2.6-17.1; Pgame engagement (OR 0.95, CI 0.91-0.997; P=.04). Non-active gaming >7 h/wk was significantly associated with a more positive attitude toward non-active gaming (OR 2.6, CI 1.1-6.3; P=.035), a stronger habit regarding gaming (OR 3.0, CI 1.7-5.3; P7 h/wk. Active gaming is most strongly (negatively) associated with attitude with respect to non-active games, followed by observed active game behavior of brothers and sisters and attitude with respect to active gaming (positive associations). On the other hand, non-active gaming is most strongly associated with observed non-active game behavior of friends, habit strength regarding gaming and attitude toward non-active gaming (positive associations). Habit strength was a correlate of both active and non-active gaming
de Vet, Emely; Chinapaw, Mai JM; de Boer, Michiel; Seidell, Jacob C; Brug, Johannes
2014-01-01
Background Playing video games contributes substantially to sedentary behavior in youth. A new generation of video games—active games—seems to be a promising alternative to sedentary games to promote physical activity and reduce sedentary behavior. At this time, little is known about correlates of active and non-active gaming among adolescents. Objective The objective of this study was to examine potential personal, social, and game-related correlates of both active and non-active gaming in adolescents. Methods A survey assessing game behavior and potential personal, social, and game-related correlates was conducted among adolescents (12-16 years, N=353) recruited via schools. Multivariable, multilevel logistic regression analyses, adjusted for demographics (age, sex and educational level of adolescents), were conducted to examine personal, social, and game-related correlates of active gaming ≥1 hour per week (h/wk) and non-active gaming >7 h/wk. Results Active gaming ≥1 h/wk was significantly associated with a more positive attitude toward active gaming (OR 5.3, CI 2.4-11.8; Pgames (OR 0.30, CI 0.1-0.6; P=.002), a higher score on habit strength regarding gaming (OR 1.9, CI 1.2-3.2; P=.008) and having brothers/sisters (OR 6.7, CI 2.6-17.1; Pgame engagement (OR 0.95, CI 0.91-0.997; P=.04). Non-active gaming >7 h/wk was significantly associated with a more positive attitude toward non-active gaming (OR 2.6, CI 1.1-6.3; P=.035), a stronger habit regarding gaming (OR 3.0, CI 1.7-5.3; P7 h/wk. Active gaming is most strongly (negatively) associated with attitude with respect to non-active games, followed by observed active game behavior of brothers and sisters and attitude with respect to active gaming (positive associations). On the other hand, non-active gaming is most strongly associated with observed non-active game behavior of friends, habit strength regarding gaming and attitude toward non-active gaming (positive associations). Habit strength was a
Alexeeff, Stacey E; Schwartz, Joel; Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Coull, Brent A
2015-01-01
Many epidemiological studies use predicted air pollution exposures as surrogates for true air pollution levels. These predicted exposures contain exposure measurement error, yet simulation studies have typically found negligible bias in resulting health effect estimates. However, previous studies typically assumed a statistical spatial model for air pollution exposure, which may be oversimplified. We address this shortcoming by assuming a realistic, complex exposure surface derived from fine-scale (1 km × 1 km) remote-sensing satellite data. Using simulation, we evaluate the accuracy of epidemiological health effect estimates in linear and logistic regression when using spatial air pollution predictions from kriging and land use regression models. We examined chronic (long-term) and acute (short-term) exposure to air pollution. Results varied substantially across different scenarios. Exposure models with low out-of-sample R(2) yielded severe biases in the health effect estimates of some models, ranging from 60% upward bias to 70% downward bias. One land use regression exposure model with >0.9 out-of-sample R(2) yielded upward biases up to 13% for acute health effect estimates. Almost all models drastically underestimated the SEs. Land use regression models performed better in chronic effect simulations. These results can help researchers when interpreting health effect estimates in these types of studies.
Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.
2017-01-01
Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...
Wang, Hui; Sui, Weiguo; Xue, Wen; Wu, Junyong; Chen, Jiejing; Dai, Yong
2014-09-01
Immunoglobulin A nephropathy (IgAN) is a complex trait regulated by the interaction among multiple physiologic regulatory systems and probably involving numerous genes, which leads to inconsistent findings in genetic studies. One possibility of failure to replicate some single-locus results is that the underlying genetics of IgAN nephropathy is based on multiple genes with minor effects. To learn the association between 23 single nucleotide polymorphisms (SNPs) in 14 genes predisposing to chronic glomerular diseases and IgAN in Han males, the 23 SNPs genotypes of 21 Han males were detected and analyzed with a BaiO gene chip, and their associations were analyzed with univariate analysis and multiple linear regression analysis. Analysis showed that CTLA4 rs231726 and CR2 rs1048971 revealed a significant association with IgAN. These findings support the multi-gene nature of the etiology of IgAN and propose a potential gene-gene interactive model for future studies.
Directory of Open Access Journals (Sweden)
Susanne Unverzagt
Full Text Available This study is an in-depth-analysis to explain statistical heterogeneity in a systematic review of implementation strategies to improve guideline adherence of primary care physicians in the treatment of patients with cardiovascular diseases. The systematic review included randomized controlled trials from a systematic search in MEDLINE, EMBASE, CENTRAL, conference proceedings and registers of ongoing studies. Implementation strategies were shown to be effective with substantial heterogeneity of treatment effects across all investigated strategies. Primary aim of this study was to explain different effects of eligible trials and to identify methodological and clinical effect modifiers. Random effects meta-regression models were used to simultaneously assess the influence of multimodal implementation strategies and effect modifiers on physician adherence. Effect modifiers included the staff responsible for implementation, level of prevention and definition pf the primary outcome, unit of randomization, duration of follow-up and risk of bias. Six clinical and methodological factors were investigated as potential effect modifiers of the efficacy of different implementation strategies on guideline adherence in primary care practices on the basis of information from 75 eligible trials. Five effect modifiers were able to explain a substantial amount of statistical heterogeneity. Physician adherence was improved by 62% (95% confidence interval (95% CI 29 to 104% or 29% (95% CI 5 to 60% in trials where other non-medical professionals or nurses were included in the implementation process. Improvement of physician adherence was more successful in primary and secondary prevention of cardiovascular diseases by around 30% (30%; 95% CI -2 to 71% and 31%; 95% CI 9 to 57%, respectively compared to tertiary prevention. This study aimed to identify effect modifiers of implementation strategies on physician adherence. Especially the cooperation of different health
Duda, David P.; Minnis, Patrick
2009-01-01
Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.
Crown, William H
2014-02-01
This paper examines the use of propensity score matching in economic analyses of observational data. Several excellent papers have previously reviewed practical aspects of propensity score estimation and other aspects of the propensity score literature. The purpose of this paper is to compare the conceptual foundation of propensity score models with alternative estimators of treatment effects. References are provided to empirical comparisons among methods that have appeared in the literature. These comparisons are available for a subset of the methods considered in this paper. However, in some cases, no pairwise comparisons of particular methods are yet available, and there are no examples of comparisons across all of the methods surveyed here. Irrespective of the availability of empirical comparisons, the goal of this paper is to provide some intuition about the relative merits of alternative estimators in health economic evaluations where nonlinearity, sample size, availability of pre/post data, heterogeneity, and missing variables can have important implications for choice of methodology. Also considered is the potential combination of propensity score matching with alternative methods such as differences-in-differences and decomposition methods that have not yet appeared in the empirical literature.
Duda, David P.; Minnis, Patrick
2009-01-01
Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.
Matson, Johnny L.; Kozlowski, Alison M.
2010-01-01
Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…
Freund, Rudolf J; Sa, Ping
2006-01-01
The book provides complete coverage of the classical methods of statistical analysis. It is designed to give students an understanding of the purpose of statistical analyses, to allow the student to determine, at least to some degree, the correct type of statistical analyses to be performed in a given situation, and have some appreciation of what constitutes good experimental design
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
Bhamidipati, Ravi Kanth; Syed, Muzeeb; Mullangi, Ramesh; Srinivas, Nuggehally
2018-02-01
1. Dalbavancin, a lipoglycopeptide, is approved for treating gram-positive bacterial infections. Area under plasma concentration versus time curve (AUC inf ) of dalbavancin is a key parameter and AUC inf /MIC ratio is a critical pharmacodynamic marker. 2. Using end of intravenous infusion concentration (i.e. C max ) C max versus AUC inf relationship for dalbavancin was established by regression analyses (i.e. linear, log-log, log-linear and power models) using 21 pairs of subject data. 3. The predictions of the AUC inf were performed using published C max data by application of regression equations. The quotient of observed/predicted values rendered fold difference. The mean absolute error (MAE)/root mean square error (RMSE) and correlation coefficient (r) were used in the assessment. 4. MAE and RMSE values for the various models were comparable. The C max versus AUC inf exhibited excellent correlation (r > 0.9488). The internal data evaluation showed narrow confinement (0.84-1.14-fold difference) with a RMSE models predicted AUC inf with a RMSE of 3.02-27.46% with fold difference largely contained within 0.64-1.48. 5. Regardless of the regression models, a single time point strategy of using C max (i.e. end of 30-min infusion) is amenable as a prospective tool for predicting AUC inf of dalbavancin in patients.
2003-01-01
The CERN Council held its 125th session on 20 June. Highlights of the meeting included confirmation that the LHC is on schedule for a 2007 start-up, and the announcement of a new organizational structure in 2004.
Repository performance confirmation
International Nuclear Information System (INIS)
Hansen, Francis D.
2011-01-01
Repository performance confirmation links the technical bases of repository science and societal acceptance. This paper explores the myriad aspects of what has been labeled performance confirmation in U.S. programs, which involves monitoring as a collection of distinct activities combining technical and social significance in radioactive waste management. This paper is divided into four parts: (1) A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives; (2) A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain; (3) A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant; and (4) An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. A fundamental consideration is the differentiation of confirmation monitoring from the many other testing and monitoring activities. Recently, the license application for Yucca Mountain provided a case study including a technical process for meeting regulatory requirements to confirm repository performance as well as considerations related to the preservation of retrievability. The performance confirmation plan developed as part of the
In late February, two separate observations confirmed the 1978 discovery by U.S. Naval Observatory scientist James W. Christy of a moon orbiting the planet Pluto. According to the U.S. Naval Observatory, these two observations were needed before the International Astronomical Society (IAS) would officially recognize the discovery.Two types of observations of the moon, which was named Charon after the ferryman in Greek mythology who carried the dead to Pluto's realm, were needed for confirmation: a transit, in which the moon passes in front of Pluto, and an occultation, in which the moon passes behind the planet. These two phenomena occur only during an 8-year period every 124 years that had been calculated to take place during 1984-1985. Both events were observed in late February.
Directory of Open Access Journals (Sweden)
Olatz Villate
2018-01-01
Full Text Available Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.
Villate, Olatz; Ibarluzea, Nekane; Fraile-Bethencourt, Eugenia; Valenzuela, Alberto; Velasco, Eladio A; Grozeva, Detelina; Raymond, F L; Botella, María P; Tejada, María-Isabel
2018-01-01
Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS) of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T) was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD ® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG) 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.
CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE
Energy Technology Data Exchange (ETDEWEB)
Agúndez, M.; Cernicharo, J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Decin, L. [Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Science Park 904, NL-1098 Amsterdam (Netherlands); Encrenaz, P. [LERMA, Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); Teyssier, D. [European Space Astronomy Centre, Urb. Villafranca del Castillo, P.O. Box 50727, E-28080 Madrid (Spain)
2014-08-01
Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.
Linear regression in astronomy. I
Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh
1990-01-01
Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.
Ridge Regression Signal Processing
Kuhl, Mark R.
1990-01-01
The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.
Mulroy, Sara J; Winstein, Carolee J; Kulig, Kornelia; Beneck, George J; Fowler, Eileen G; DeMuth, Sharon K; Sullivan, Katherine J; Brown, David A; Lane, Christianne J
2011-12-01
Each of the 4 randomized clinical trials (RCTs) hosted by the Physical Therapy Clinical Research Network (PTClinResNet) targeted a different disability group (low back disorder in the Muscle-Specific Strength Training Effectiveness After Lumbar Microdiskectomy [MUSSEL] trial, chronic spinal cord injury in the Strengthening and Optimal Movements for Painful Shoulders in Chronic Spinal Cord Injury [STOMPS] trial, adult stroke in the Strength Training Effectiveness Post-Stroke [STEPS] trial, and pediatric cerebral palsy in the Pediatric Endurance and Limb Strengthening [PEDALS] trial for children with spastic diplegic cerebral palsy) and tested the effectiveness of a muscle-specific or functional activity-based intervention on primary outcomes that captured pain (STOMPS, MUSSEL) or locomotor function (STEPS, PEDALS). The focus of these secondary analyses was to determine causal relationships among outcomes across levels of the International Classification of Functioning, Disability and Health (ICF) framework for the 4 RCTs. With the database from PTClinResNet, we used 2 separate secondary statistical approaches-mediation analysis for the MUSSEL and STOMPS trials and regression analysis for the STEPS and PEDALS trials-to test relationships among muscle performance, primary outcomes (pain related and locomotor related), activity and participation measures, and overall quality of life. Predictive models were stronger for the 2 studies with pain-related primary outcomes. Change in muscle performance mediated or predicted reductions in pain for the MUSSEL and STOMPS trials and, to some extent, walking speed for the STEPS trial. Changes in primary outcome variables were significantly related to changes in activity and participation variables for all 4 trials. Improvement in activity and participation outcomes mediated or predicted increases in overall quality of life for the 3 trials with adult populations. Variables included in the statistical models were limited to those
Differentiating regressed melanoma from regressed lichenoid keratosis.
Chan, Aegean H; Shulman, Kenneth J; Lee, Bonnie A
2017-04-01
Distinguishing regressed lichen planus-like keratosis (LPLK) from regressed melanoma can be difficult on histopathologic examination, potentially resulting in mismanagement of patients. We aimed to identify histopathologic features by which regressed melanoma can be differentiated from regressed LPLK. Twenty actively inflamed LPLK, 12 LPLK with regression and 15 melanomas with regression were compared and evaluated by hematoxylin and eosin staining as well as Melan-A, microphthalmia transcription factor (MiTF) and cytokeratin (AE1/AE3) immunostaining. (1) A total of 40% of regressed melanomas showed complete or near complete loss of melanocytes within the epidermis with Melan-A and MiTF immunostaining, while 8% of regressed LPLK exhibited this finding. (2) Necrotic keratinocytes were seen in the epidermis in 33% regressed melanomas as opposed to all of the regressed LPLK. (3) A dense infiltrate of melanophages in the papillary dermis was seen in 40% of regressed melanomas, a feature not seen in regressed LPLK. In summary, our findings suggest that a complete or near complete loss of melanocytes within the epidermis strongly favors a regressed melanoma over a regressed LPLK. In addition, necrotic epidermal keratinocytes and the presence of a dense band-like distribution of dermal melanophages can be helpful in differentiating these lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pedrini, D. T.; Pedrini, Bonnie C.
Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…
Performance confirmation data acquisition system
International Nuclear Information System (INIS)
McAffee, D.A.; Raczka, N.T.
1997-01-01
As part of the Viability Assessment (VA) work, this QAP-3-9 document presents and evaluates a comprehensive set of viable concepts for collecting Performance Confirmation (PC) related data. The concepts include: monitoring subsurface repository air temperatures, humidity levels and gaseous emissions via the subsurface ventilation systems, and monitoring the repository geo-technical parameters and rock mass from bore-holes located along the perimeter main drifts and throughout a series of human-rated Observation Drifts to be located in a plane 25 meters above the plane of the emplacement drifts. A key element of this document is the development and analysis of a purposed multi-purpose Remote Inspection Gantry that would provide direct, real-time visual, thermal, and radiological monitoring of conditions inside operational emplacement drifts and close-up observations of in-situ Waste Packages. Preliminary finite-element analyses are presented that indicate the technological feasibility of operating an inspection gantry inside the operational emplacement drifts for short inspection missions lasting 2--3 hours. Overall reliability, availability, and maintainability of the PC data collection concepts are discussed. Preliminary concepts for PC data collection network are also provided
Performance confirmation data acquisition system
Energy Technology Data Exchange (ETDEWEB)
McAffee, D.A.; Raczka, N.T. [Yucca Mountain Project, Las Vegas, NV (United States)
1997-12-31
As part of the Viability Assessment (VA) work, this QAP-3-9 document presents and evaluates a comprehensive set of viable concepts for collecting Performance Confirmation (PC) related data. The concepts include: monitoring subsurface repository air temperatures, humidity levels and gaseous emissions via the subsurface ventilation systems, and monitoring the repository geo-technical parameters and rock mass from bore-holes located along the perimeter main drifts and throughout a series of human-rated Observation Drifts to be located in a plane 25 meters above the plane of the emplacement drifts. A key element of this document is the development and analysis of a purposed multi-purpose Remote Inspection Gantry that would provide direct, real-time visual, thermal, and radiological monitoring of conditions inside operational emplacement drifts and close-up observations of in-situ Waste Packages. Preliminary finite-element analyses are presented that indicate the technological feasibility of operating an inspection gantry inside the operational emplacement drifts for short inspection missions lasting 2--3 hours. Overall reliability, availability, and maintainability of the PC data collection concepts are discussed. Preliminary concepts for PC data collection network are also provided.
Better Autologistic Regression
Directory of Open Access Journals (Sweden)
Mark A. Wolters
2017-11-01
Full Text Available Autologistic regression is an important probability model for dichotomous random variables observed along with covariate information. It has been used in various fields for analyzing binary data possessing spatial or network structure. The model can be viewed as an extension of the autologistic model (also known as the Ising model, quadratic exponential binary distribution, or Boltzmann machine to include covariates. It can also be viewed as an extension of logistic regression to handle responses that are not independent. Not all authors use exactly the same form of the autologistic regression model. Variations of the model differ in two respects. First, the variable coding—the two numbers used to represent the two possible states of the variables—might differ. Common coding choices are (zero, one and (minus one, plus one. Second, the model might appear in either of two algebraic forms: a standard form, or a recently proposed centered form. Little attention has been paid to the effect of these differences, and the literature shows ambiguity about their importance. It is shown here that changes to either coding or centering in fact produce distinct, non-nested probability models. Theoretical results, numerical studies, and analysis of an ecological data set all show that the differences among the models can be large and practically significant. Understanding the nature of the differences and making appropriate modeling choices can lead to significantly improved autologistic regression analyses. The results strongly suggest that the standard model with plus/minus coding, which we call the symmetric autologistic model, is the most natural choice among the autologistic variants.
Quantitative morphological descriptors confirm traditionally ...
African Journals Online (AJOL)
SARAH
2015-09-30
Sep 30, 2015 ... from Guinea, Sierra-Leone, Côte d'Ivoire, Togo, ... Atacora, Southern Borgou and Northern Borgou. Table .... sedimentary rocks. Savanna raised and shrubby with forests gallery, ... define the model of regression according to:.
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...
Regression analysis with categorized regression calibrated exposure: some interesting findings
Directory of Open Access Journals (Sweden)
Hjartåker Anette
2006-07-01
Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a
Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-01
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.
Scrapping of student bursaries confirmed.
Longhurst, Chris
2016-07-27
Student bursaries for nurses will be scrapped from next year, the government has confirmed. Undergraduate nursing and midwifery students in England will now face tuition fees and student loans from August 2017.
Selective enrichment of volatiles confirmed
de Pater, Imke
2018-05-01
Hydrogen sulfide gas is detected above Uranus's main cloud deck, confirming the prevalence of H2S ice particles as the main cloud component and a strongly unbalanced nitrogen/sulfur ratio in the planet's deep atmosphere.
Yi, Jun; Yang, Wenhong; Sun, Wen-Hua; Nomura, Kotohiro; Hada, Masahiko
2017-11-30
The NMR chemical shifts of vanadium ( 51 V) in (imido)vanadium(V) dichloride complexes with imidazolin-2-iminato and imidazolidin-2-iminato ligands were calculated by the density functional theory (DFT) method with GIAO. The calculated 51 V NMR chemical shifts were analyzed by the multiple linear regression (MLR) analysis (MLRA) method with a series of calculated molecular properties. Some of calculated NMR chemical shifts were incorrect using the optimized molecular geometries of the X-ray structures. After the global minimum geometries of all of the molecules were determined, the trend of the observed chemical shifts was well reproduced by the present DFT method. The MLRA method was performed to investigate the correlation between the 51 V NMR chemical shift and the natural charge, band energy gap, and Wiberg bond index of the V═N bond. The 51 V NMR chemical shifts obtained with the present MLR model were well reproduced with a correlation coefficient of 0.97.
Regression analysis by example
Chatterjee, Samprit
2012-01-01
Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded
DEFF Research Database (Denmark)
Fitzenberger, Bernd; Wilke, Ralf Andreas
2015-01-01
if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...
Opinion dynamics with confirmation bias.
Directory of Open Access Journals (Sweden)
Armen E Allahverdyan
Full Text Available Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science.We formulate a (non-Bayesian model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect-when consecutively exposed to two opinions, the preference is given to the last opinion (recency or the first opinion (primacy -and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties.The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development.
Performance Confirmation Data Acquisition System
International Nuclear Information System (INIS)
D.W. Markman
2000-01-01
The purpose of this analysis is to identify and analyze concepts for the acquisition of data in support of the Performance Confirmation (PC) program at the potential subsurface nuclear waste repository at Yucca Mountain. The scope and primary objectives of this analysis are to: (1) Review the criteria for design as presented in the Performance Confirmation Data Acquisition/Monitoring System Description Document, by way of the Input Transmittal, Performance Confirmation Input Criteria (CRWMS M and O 1999c). (2) Identify and describe existing and potential new trends in data acquisition system software and hardware that would support the PC plan. The data acquisition software and hardware will support the field instruments and equipment that will be installed for the observation and perimeter drift borehole monitoring, and in-situ monitoring within the emplacement drifts. The exhaust air monitoring requirements will be supported by a data communication network interface with the ventilation monitoring system database. (3) Identify the concepts and features that a data acquisition system should have in order to support the PC process and its activities. (4) Based on PC monitoring needs and available technologies, further develop concepts of a potential data acquisition system network in support of the PC program and the Site Recommendation and License Application
Williams, Paige; Kern, Margaret L; Waters, Lea
2016-01-01
Employee psychological capital (PsyCap), perceptions of organizational virtue (OV), and work happiness have been shown to be associated within and over time. This study examines selective exposure and confirmation bias as potential processes underlying PsyCap, OV, and work happiness associations. As part of a quasi-experimental study design, school staff (N = 69) completed surveys at three time points. After the first assessment, some staff (n = 51) completed a positive psychology training intervention. Results of descriptive statistics, correlation, and regression analyses on the intervention group provide some support for selective exposure and confirmation bias as explanatory mechanisms. In focusing on the processes through which employee attitudes may influence work happiness this study advances theoretical understanding, specifically of selective exposure and confirmation bias in a field study context.
Understanding logistic regression analysis
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...
Introduction to regression graphics
Cook, R Dennis
2009-01-01
Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava
Alternative Methods of Regression
Birkes, David
2011-01-01
Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s
Bacteriologically confirmed tuberculosis in children
International Nuclear Information System (INIS)
Ozere, I.; Sele, A.; Ozolina, A.
2005-01-01
Tuberculosis in children and adults is a growing problem with important public health implications. In Latvia the incidence of tuberculosis (TB) in children up to age 14 has increased from 7,1 per 100000 in 1992 to 28,8 per 100000 in 2003. The diagnosis of TB is confirmed by isolation and identification of M. tuberculosis (MT) from clinical specimen. Confirmation of the disease, however, is difficult in children due to poor bacilli excretion and even under the best circumstances only about 30-40% of pediatric TB cases are proved bacteriologically. Of the 370 pediatric TB cases diagnosed between January 1, 2001 and December 1, 2003 in Latvia, 53 (14,3%) were confirmed bacteriologically. The clinical, radiological, immunological and anamnestic features of confirmed TB can serve as cornerstones for diagnosing of TB, when culture is not available. Objective To evaluate the sensitivity of diagnostic criteria of TB, clinical and radiological manifestation of TB and drug susceptibility of MT isolated also. Methods All consecutive children (53 in total) up to age 14 diagnosed with bacteriologically confirmed TB during 01.01.2001. -01.12.2003. were prospectively evaluated for reasons mentioned above. Results Of the 53 children identified all but one had respiratory tract TB. 17(32,1 %) children were under 4 years of age, 9 (17%) children were 5-9 years old, but 27 (50,9%) patients were 10-14 years old. During evaluation data on TB source case were found in addition in 13 children and total TB contact history was positive in 37 (69,8%) patients. All clinical and radiographical forms of respiratory tract TB were diagnosed. The most common encountered forms were intrathoracic adenopathy in 10 (18,9%) cases and TB pneumonia in 6 (11,3%) cases in children aged 10-14 years. lnthrathoracic adenopathy associated with segmental parenchymal lesion was the most common form in children under 4 years of age -7 (13,2%) cases respectively. Conclusions 1. The clinical and radiological
Model confirmation in climate economics
Millner, Antony; McDermott, Thomas K. J.
2016-01-01
Benefit–cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth—one of its most important economic components—had questionable predictive power over the 20th century. PMID:27432964
Directory of Open Access Journals (Sweden)
F.M.O. Borges
2003-12-01
que significou pouca influência da metodologia sobre essa medida. A FDN não mostrou ser melhor preditor de EM do que a FB.One experiment was run with broiler chickens, to obtain prediction equations for metabolizable energy (ME based on feedstuffs chemical analyses, and determined ME of wheat grain and its by-products, using four different methodologies. Seven wheat grain by-products were used in five treatments: wheat grain, wheat germ, white wheat flour, dark wheat flour, wheat bran for human use, wheat bran for animal use and rough wheat bran. Based on chemical analyses of crude fiber (CF, ether extract (EE, crude protein (CP, ash (AS and starch (ST of the feeds and the determined values of apparent energy (MEA, true energy (MEV, apparent corrected energy (MEAn and true energy corrected by nitrogen balance (MEVn in five treatments, prediction equations were obtained using the stepwise procedure. CF showed the best relationship with metabolizable energy values, however, this variable alone was not enough for a good estimate of the energy values (R² below 0.80. When EE and CP were included in the equations, R² increased to 0.90 or higher in most estimates. When the equations were calculated with all treatments, the equation for MEA were less precise and R² decreased. When ME data of the traditional or force-feeding methods were used separately, the precision of the equations increases (R² higher than 0.85. For MEV and MEVn values, the best multiple linear equations included CF, EE and CP (R²>0.90, independently of using all experimental data or separating by methodology. The estimates of MEVn values showed high precision and the linear coefficients (a of the equations were similar for all treatments or methodologies. Therefore, it explains the small influence of the different methodologies on this parameter. NDF was not a better predictor of ME than CF.
A Simulation Investigation of Principal Component Regression.
Allen, David E.
Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…
Directory of Open Access Journals (Sweden)
Matthias Schmid
Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.
Understanding logistic regression analysis.
Sperandei, Sandro
2014-01-01
Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
Hosmer, David W; Sturdivant, Rodney X
2013-01-01
A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-
Multilingual speaker age recognition: regression analyses on the Lwazi corpus
CSIR Research Space (South Africa)
Feld, M
2009-12-01
Full Text Available Multilinguality represents an area of significant opportunities for automatic speech-processing systems: whereas multilingual societies are commonplace, the majority of speechprocessing systems are developed with a single language in mind. As a step...
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.
Development of the Performance Confirmation Program at Yucca Mountain, Nevada
International Nuclear Information System (INIS)
G.D. LeCain; D. Barr; D. Weaver; R. Snell; S.W. Goodin; F.D. Hansen
2006-01-01
The Yucca Mountain Performance Confirmation program consists of tests, monitoring activities, experiments, and analyses to evaluate the adequacy of assumptions, data, and analyses that form the basis of the conceptual and numerical models of flow and transport associated with a proposed radioactive waste repository at Yucca Mountain, Nevada. The Performance Confirmation program uses an eight-stage risk-informed, performance-based approach. Selection of the Performance Confirmation activities (a parameter and a test method) for inclusion in the Performance Confirmation program was done using a risk-informed performance-based decision analysis. The result of this analysis and review was a Performance Confirmation base portfolio that consists of 20 activities. The 20 Performance Confirmation activities include geologic, hydrologic, and construction/engineering testing. Several of the activities were initiated during site characterization and are ongoing. Others activities will commence during construction and/or post emplacement and will continue until repository closure
Directory of Open Access Journals (Sweden)
Mok Tik
2014-06-01
Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.
Multicollinearity and Regression Analysis
Daoud, Jamal I.
2017-12-01
In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.
DEFF Research Database (Denmark)
Bache, Stefan Holst
A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....
DEFF Research Database (Denmark)
Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas
2017-01-01
In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface...... for predicting the covariate specific absolute risks, their confidence intervals, and their confidence bands based on right censored time to event data. We provide explicit formulas for our implementation of the estimator of the (stratified) baseline hazard function in the presence of tied event times. As a by...... functionals. The software presented here is implemented in the riskRegression package....
Prediction, Regression and Critical Realism
DEFF Research Database (Denmark)
Næss, Petter
2004-01-01
This paper considers the possibility of prediction in land use planning, and the use of statistical research methods in analyses of relationships between urban form and travel behaviour. Influential writers within the tradition of critical realism reject the possibility of predicting social...... phenomena. This position is fundamentally problematic to public planning. Without at least some ability to predict the likely consequences of different proposals, the justification for public sector intervention into market mechanisms will be frail. Statistical methods like regression analyses are commonly...... seen as necessary in order to identify aggregate level effects of policy measures, but are questioned by many advocates of critical realist ontology. Using research into the relationship between urban structure and travel as an example, the paper discusses relevant research methods and the kinds...
Multiple linear regression analysis
Edwards, T. R.
1980-01-01
Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.
Bayesian logistic regression analysis
Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.
2012-01-01
In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an
Seber, George A F
2012-01-01
Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.
Ritz, Christian; Parmigiani, Giovanni
2009-01-01
R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.
Bayesian ARTMAP for regression.
Sasu, L M; Andonie, R
2013-10-01
Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bounded Gaussian process regression
DEFF Research Database (Denmark)
Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan
2013-01-01
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....
and Multinomial Logistic Regression
African Journals Online (AJOL)
This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for classifying students based on their academic performance. The predictive accuracy for each model was measured by their average Classification Correct Rate (CCR).
Mechanisms of neuroblastoma regression
Brodeur, Garrett M.; Bagatell, Rochelle
2014-01-01
Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179
A female Viking warrior confirmed by genomics.
Hedenstierna-Jonson, Charlotte; Kjellström, Anna; Zachrisson, Torun; Krzewińska, Maja; Sobrado, Veronica; Price, Neil; Günther, Torsten; Jakobsson, Mattias; Götherström, Anders; Storå, Jan
2017-12-01
The objective of this study has been to confirm the sex and the affinity of an individual buried in a well-furnished warrior grave (Bj 581) in the Viking Age town of Birka, Sweden. Previously, based on the material and historical records, the male sex has been associated with the gender of the warrior and such was the case with Bj 581. An earlier osteological classification of the individual as female was considered controversial in a historical and archaeological context. A genomic confirmation of the biological sex of the individual was considered necessary to solve the issue. Genome-wide sequence data was generated in order to confirm the biological sex, to support skeletal integrity, and to investigate the genetic relationship of the individual to ancient individuals as well as modern-day groups. Additionally, a strontium isotope analysis was conducted to highlight the mobility of the individual. The genomic results revealed the lack of a Y-chromosome and thus a female biological sex, and the mtDNA analyses support a single-individual origin of sampled elements. The genetic affinity is close to present-day North Europeans, and within Sweden to the southern and south-central region. Nevertheless, the Sr values are not conclusive as to whether she was of local or nonlocal origin. The identification of a female Viking warrior provides a unique insight into the Viking society, social constructions, and exceptions to the norm in the Viking time-period. The results call for caution against generalizations regarding social orders in past societies. © 2017 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
Subset selection in regression
Miller, Alan
2002-01-01
Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...
Regression in organizational leadership.
Kernberg, O F
1979-02-01
The choice of good leaders is a major task for all organizations. Inforamtion regarding the prospective administrator's personality should complement questions regarding his previous experience, his general conceptual skills, his technical knowledge, and the specific skills in the area for which he is being selected. The growing psychoanalytic knowledge about the crucial importance of internal, in contrast to external, object relations, and about the mutual relationships of regression in individuals and in groups, constitutes an important practical tool for the selection of leaders.
Classification and regression trees
Breiman, Leo; Olshen, Richard A; Stone, Charles J
1984-01-01
The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
KELEŞ, Taliha; ALTUN, Murat
2016-01-01
Regression analysis is a statistical technique for investigating and modeling the relationship between variables. The purpose of this study was the trivial presentation of the equation for orthogonal regression (OR) and the comparison of classical linear regression (CLR) and OR techniques with respect to the sum of squared perpendicular distances. For that purpose, the analyses were shown by an example. It was found that the sum of squared perpendicular distances of OR is smaller. Thus, it wa...
Hilbe, Joseph M
2009-01-01
This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...
Steganalysis using logistic regression
Lubenko, Ivans; Ker, Andrew D.
2011-02-01
We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.
SEPARATION PHENOMENA LOGISTIC REGRESSION
Directory of Open Access Journals (Sweden)
Ikaro Daniel de Carvalho Barreto
2014-03-01
Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.
DEFF Research Database (Denmark)
Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas
2017-01-01
In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface......-product we obtain fast access to the baseline hazards (compared to survival::basehaz()) and predictions of survival probabilities, their confidence intervals and confidence bands. Confidence intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding statistical...
Adaptive metric kernel regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
2000-01-01
Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...
Adaptive Metric Kernel Regression
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...
DEFF Research Database (Denmark)
Hansen, Henrik; Tarp, Finn
2001-01-01
This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy....... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes.......This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy...
Modified Regression Correlation Coefficient for Poisson Regression Model
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
Measurement Error in Education and Growth Regressions
Portela, M.; Teulings, C.N.; Alessie, R.
The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations
Measurement error in education and growth regressions
Portela, Miguel; Teulings, Coen; Alessie, R.
2004-01-01
The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations
Panel data specifications in nonparametric kernel regression
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...
Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun
2016-07-01
In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Evaluation of histologically confirmed carcinoma of the cervix in ...
African Journals Online (AJOL)
Data collected was analysed with SPSS version 20.0 software and presented in tables and charts. Results: Sixty two patients with histological confirmation of ... The commonest histological type of cervical cancer was squamous cell carcinoma accounting for 88.9%. Twenty (44.4%) patients were referred for radiotherapy and ...
Calibration and Confirmation in Geophysical Models
Werndl, Charlotte
2016-04-01
For policy decisions the best geophysical models are needed. To evaluate geophysical models, it is essential that the best available methods for confirmation are used. A hotly debated issue on confirmation in climate science (as well as in philosophy) is the requirement of use-novelty (i.e. that data can only confirm models if they have not already been used before. This talk investigates the issue of use-novelty and double-counting for geophysical models. We will see that the conclusions depend on the framework of confirmation and that it is not clear that use-novelty is a valid requirement and that double-counting is illegitimate.
Polynomial regression analysis and significance test of the regression function
International Nuclear Information System (INIS)
Gao Zhengming; Zhao Juan; He Shengping
2012-01-01
In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)
Recursive Algorithm For Linear Regression
Varanasi, S. V.
1988-01-01
Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Regression in autistic spectrum disorders.
Stefanatos, Gerry A
2008-12-01
A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.
Culture confirmation of tuberculosis cases in Birmingham, UK.
Hayer, Kalbir S; Sitch, Alice J; Dedicoat, Martin; Wood, Annette L
2013-10-01
The proportion of culture-confirmed tuberculosis (TB) cases in Birmingham had gradually decreased to less than 65% in 2008. Reasons for this were unclear, therefore this study assessed diagnostic methods used for confirming TB and reviewed factors involved in positive culture. A cross-sectional study was carried out. A list of notified TB cases for Birmingham in those aged 16 y and over in 2009 was collated. Where no positive culture was recorded, further data were collected from hospital databases and case notes. Of 449 TB cases, 419 (93%) had samples taken for culture testing. Of all cases, 309 (69%) were confirmed by culture testing; of those receiving culture testing, 73% were confirmed. Pulmonary TB was identified as a predictor of positive culture in both the unadjusted and adjusted analyses: odds ratio (OR) 2.05, 95% confidence interval (CI) 1.32-3.19, and OR 2.32, 95% CI 1.29-4.17, respectively. Gender, age, ethnicity, UK born, and treatment delay were not significantly associated with positive culture. Of 140 cases not confirmed by culture, 129 (92%) had their diagnosis supported by at least one other test. The vast majority of TB cases had microbiological specimens taken to help confirm the disease. Furthermore, culture confirmation rates in Birmingham were meeting national targets in 2009. However culture confirmation rates were significantly lower in extrapulmonary TB, therefore further work is suggested in this group. The role of other investigations (e.g. interferon-gamma release assay (IGRA), Mantoux) is unclear. Further collaboration between clinicians, histopathologists, and microbiologists is advised to ensure samples are sent appropriately and culture confirmation is optimized.
Advanced statistics: linear regression, part I: simple linear regression.
Marill, Keith A
2004-01-01
Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.
Confirmation of Essure placement using transvaginal ultrasound
Veersema, Sebastiaan; Vleugels, Michel; Koks, Caroline; Thurkow, Andreas; van der Vaart, Huub; Brölmann, Hans
2011-01-01
To evaluate the protocol for confirmation of satisfactory Essure placement using transvaginal ultrasound. Prospective multicenter cohort study (Canadian Task Force classification II-2). Outpatient departments of 4 teaching hospitals in the Netherlands. Eleven hundred forty-five women who underwent
escherichia coli serotypes confirmed in experimental mammary ...
African Journals Online (AJOL)
DJFLEX
VARIATIONS IN VIRULENCE OF THREE (3) ESCHERICHIA COLI. SEROTYPES CONFIRMED IN ... ows are susceptible to E. coli infection because. E. coli exist in the .... Coli infections in mice: A laboratory animal model for research in.
Experience with confirmation measurement at Los Alamos
International Nuclear Information System (INIS)
Marshall, R.S.; Wagner, R.P.; Hsue, F.
1985-01-01
Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountibility and for support of both at 235 U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilitis using similar instruments. A description of confirmation measurement techniques used in support of 235 U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given
Experience with confirmation measurement at Los Alamos
International Nuclear Information System (INIS)
Marshall, R.S.; Wagner, R.P.
1985-01-01
Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountability and for support of both 235 U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilities using similar instruments. A description of confirmation measurement techniques used in support of 235 U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given
Linear regression in astronomy. II
Feigelson, Eric D.; Babu, Gutti J.
1992-01-01
A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.
Time-adaptive quantile regression
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik
2008-01-01
and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....
Retro-regression--another important multivariate regression improvement.
Randić, M
2001-01-01
We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.
Quantile regression theory and applications
Davino, Cristina; Vistocco, Domenico
2013-01-01
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and
Directory of Open Access Journals (Sweden)
Hong-Juan Li
2013-04-01
Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.
Logistic regression applied to natural hazards: rare event logistic regression with replications
Directory of Open Access Journals (Sweden)
M. Guns
2012-06-01
Full Text Available Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
Logistic regression applied to natural hazards: rare event logistic regression with replications
Guns, M.; Vanacker, V.
2012-06-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logistic regression with replications, combines the strength of probabilistic and statistical methods, and allows overcoming some of the limitations of previous developments through robust variable selection. This technique was here developed for the analyses of landslide controlling factors, but the concept is widely applicable for statistical analyses of natural hazards.
A New Way to Confirm Planet Candidates
Kohler, Susanna
2016-05-01
What was the big deal behind the Kepler news conference yesterday? Its not just that the number of confirmed planets found by Kepler has more than doubled (though thats certainly exciting news!). Whats especially interesting is the way in which these new planets were confirmed.Number of planet discoveries by year since 1995, including previous non-Kepler discoveries (blue), previous Kepler discoveries (light blue) and the newly validated Kepler planets (orange). [NASA Ames/W. Stenzel; Princeton University/T. Morton]No Need for Follow-UpBefore Kepler, the way we confirmed planet candidates was with follow-up observations. The candidate could be validated either by directly imaging (which is rare) or obtaining a large number radial-velocity measurements of the wobble of the planets host star due to the planets orbit. But once Kepler started producing planet candidates, these approaches to validation became less feasible. A lot of Kepler candidates are small and orbit faint stars, making follow-up observations difficult or impossible.This problem is what inspired the development of whats known as probabilistic validation, an analysis technique that involves assessing the likelihood that the candidates signal is caused by various false-positive scenarios. Using this technique allows astronomers to estimate the likelihood of a candidate signal being a true planet detection; if that likelihood is high enough, the planet candidate can be confirmed without the need for follow-up observations.A breakdown of the catalog of Kepler Objects of Interest. Just over half had previously been identified as false positives or confirmed as candidates. 1284 are newly validated, and another 455 have FPP of1090%. [Morton et al. 2016]Probabilistic validation has been used in the past to confirm individual planet candidates in Kepler data, but now Timothy Morton (Princeton University) and collaborators have taken this to a new level: they developed the first code thats designed to do fully
Panel Smooth Transition Regression Models
DEFF Research Database (Denmark)
González, Andrés; Terasvirta, Timo; Dijk, Dick van
We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...
Testing discontinuities in nonparametric regression
Dai, Wenlin
2017-01-19
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Testing discontinuities in nonparametric regression
Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun
2017-01-01
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100
Logistic Regression: Concept and Application
Cokluk, Omay
2010-01-01
The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…
Fungible weights in logistic regression.
Jones, Jeff A; Waller, Niels G
2016-06-01
In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
International Nuclear Information System (INIS)
Leng Ling; Zhang Tianyi; Kleinman, Lawrence; Zhu Wei
2007-01-01
Regression analysis, especially the ordinary least squares method which assumes that errors are confined to the dependent variable, has seen a fair share of its applications in aerosol science. The ordinary least squares approach, however, could be problematic due to the fact that atmospheric data often does not lend itself to calling one variable independent and the other dependent. Errors often exist for both measurements. In this work, we examine two regression approaches available to accommodate this situation. They are orthogonal regression and geometric mean regression. Comparisons are made theoretically as well as numerically through an aerosol study examining whether the ratio of organic aerosol to CO would change with age
Tumor regression patterns in retinoblastoma
International Nuclear Information System (INIS)
Zafar, S.N.; Siddique, S.N.; Zaheer, N.
2016-01-01
To observe the types of tumor regression after treatment, and identify the common pattern of regression in our patients. Study Design: Descriptive study. Place and Duration of Study: Department of Pediatric Ophthalmology and Strabismus, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan, from October 2011 to October 2014. Methodology: Children with unilateral and bilateral retinoblastoma were included in the study. Patients were referred to Pakistan Institute of Medical Sciences, Islamabad, for chemotherapy. After every cycle of chemotherapy, dilated funds examination under anesthesia was performed to record response of the treatment. Regression patterns were recorded on RetCam II. Results: Seventy-four tumors were included in the study. Out of 74 tumors, 3 were ICRB group A tumors, 43 were ICRB group B tumors, 14 tumors belonged to ICRB group C, and remaining 14 were ICRB group D tumors. Type IV regression was seen in 39.1% (n=29) tumors, type II in 29.7% (n=22), type III in 25.6% (n=19), and type I in 5.4% (n=4). All group A tumors (100%) showed type IV regression. Seventeen (39.5%) group B tumors showed type IV regression. In group C, 5 tumors (35.7%) showed type II regression and 5 tumors (35.7%) showed type IV regression. In group D, 6 tumors (42.9%) regressed to type II non-calcified remnants. Conclusion: The response and success of the focal and systemic treatment, as judged by the appearance of different patterns of tumor regression, varies with the ICRB grouping of the tumor. (author)
Using Daily Horoscopes To Demonstrate Expectancy Confirmation.
Munro, Geoffrey D.; Munro, James E.
2000-01-01
Describes a classroom demonstration that uses daily horoscopes to show the effect that expectation can have on judgment. Addresses the preparation, procedure, and results of the demonstration, and student evaluations. States that the demonstration appears to be effective for teaching students about expectancy confirmation. (CMK)
Nonintrusive irradiated fuel inventory confirmation technique
International Nuclear Information System (INIS)
Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.
1980-01-01
Successful tests showing correlation between the intensity of the Cerenkov glow surrounding irradiated fuel assemblies in water-filled spent fuel storage ponds and the exposure and cooling times of assemblies have been concluded. Fieldable instruments used in subsequent tests confirmed that such measurements can be made easily and rapidly, without fuel assembly movement or the introduction of apparatus into the storage ponds
Confirmation of Essure placement using transvaginal ultrasound.
Veersema, Sebastiaan; Vleugels, Michel; Koks, Caroline; Thurkow, Andreas; van der Vaart, Huub; Brölmann, Hans
2011-01-01
To evaluate the protocol for confirmation of satisfactory Essure placement using transvaginal ultrasound. Prospective multicenter cohort study (Canadian Task Force classification II-2). Outpatient departments of 4 teaching hospitals in the Netherlands. Eleven hundred forty-five women who underwent hysteroscopic sterilization using the Essure device between March 2005 and December 2007. Transvaginal ultrasound examination 12 weeks after uncomplicated successful bilateral placement or as indicated according to the transvaginal ultrasound protocol after 4 weeks, and hysterosalpingography (HSG) at 12 weeks to confirm correct placement of the device after 3 months. The rate of successful placement was 88.4% initially. In 164 women (15%), successful placement was confirmed at HSG according the protocol. In 9 patients (0.84%), incorrect position of the device was observed at HSG. The cumulative pregnancy rate after 18 months was 3.85 per thousand women. Transvaginal ultrasound should be the first diagnostic test used to confirm the adequacy of hysteroscopic Essure sterilization because it is minimally invasive, averts ionizing radiation, and does not decrease the effectiveness of the Essure procedure. Copyright © 2011 AAGL. Published by Elsevier Inc. All rights reserved.
Selecting a Regression Saturated by Indicators
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren; Santos, Carlos
We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest....
Selecting a Regression Saturated by Indicators
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren; Santos, Carlos
We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest...
Regression to Causality : Regression-style presentation influences causal attribution
DEFF Research Database (Denmark)
Bordacconi, Mats Joe; Larsen, Martin Vinæs
2014-01-01
of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...
Augmenting Data with Published Results in Bayesian Linear Regression
de Leeuw, Christiaan; Klugkist, Irene
2012-01-01
In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…
Predicting Word Reading Ability: A Quantile Regression Study
McIlraith, Autumn L.
2018-01-01
Predictors of early word reading are well established. However, it is unclear if these predictors hold for readers across a range of word reading abilities. This study used quantile regression to investigate predictive relationships at different points in the distribution of word reading. Quantile regression analyses used preschool and…
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Logic regression and its extensions.
Schwender, Holger; Ruczinski, Ingo
2010-01-01
Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.
[Epidemiological investigation on confirmed cases of schistosomiasis in Hubei Province].
Yan-Yan, Chen; Shun-Xiang, Cai; Guo, Li; Ying, Xiao; Xiao-Wei, Shan; Juan, Zhang; Jian-Bing, Liu
2016-05-10
To grasp the distribution and epidemiology of confirmed cases of schistosomiasis in Hubei Province, so as to provide the evidence for promoting the prevention and control work. The confirmed cases of schistosomiasis in Hubei Province from 2010 to 2014 were epidemiologically investigated, and the prevalence characteristics and main influencing factors were analyzed. A total of 10 102 confirmed cases from 2010 to 2014 were surveyed. There were 1 062 local infected patients, accounting for 10.51% and including 354 repeated infections and 17 newly infected. There were 290 foreigninfected patients, accounting for 2.87%, with 206 repeated infection cases and 84 newly infected. There were 8 750 historical patients, including 2 229 patients who leaked the former schistosomiasis investigations, accounting for 22.06%; 570 patients missed treatment, accounting for 5.64%; 3 640 patients were treated with non-standard therapy, accounting for 36.03%; 2 311 patients were treated with poor medication efficacy, accounting for 22.88%. The multivariate non-conditional Logistic regression, targeting at confirmed cases in 2014, showed that, for the leaking investigations, the potential risk factors included the age, educational level, and latrine renovation ( b ＞0, OR ＞1), the protective factors were the times of previous treatment, cattle feeding in villager team, and Oncomelania hupensis snails in surroundings ( b ＜0, OR ＜1); for the treatment-missing, the age, educational level, snails in the surroundings of residence were risk factors ( b ＜0, OR ＜1); for the substandard treatment, the risk factors included the occupation and snails in the surroundings of residence ( b ＞0, OR ＞1), and the educational level and snails in the own field were protective factors ( b ＜0, OR ＜1). The epidemiological investigation on the confirmed cases of schistosomiasis could grasp the epidemic factors so as to improve the management and carry out the scientific control.
PERFORMANCE CONFIRMATION IN-SITU INSTRUMENTATION
International Nuclear Information System (INIS)
N.T. Raczka
2000-01-01
The purpose of this document is to identify and analyze the types of in-situ instruments and methods that could be used in support of the data acquisition portion of the Performance Confirmation (PC) program at the potential nuclear waste repository at Yucca Mountain. The PC program will require geomechanical , geophysical, thermal, and hydrologic instrumentation of several kinds. This analysis is being prepared to document the technical issues associated with each type of measurement during the PC period. This analysis utilizes the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a) as its starting point. The scope of this analysis is primarily on the period after the start of waste package emplacement and before permanent closure of the repository, a period lasting between 15 and 300 years after last package emplacement (Stroupe 2000, Attachment 1, p. 1). The primary objectives of this analysis are to: (1) Review the design criteria as presented in the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a). The scope of this analysis will be limited to the instrumentation related to parameters that require continuous monitoring of the conditions underground. (2) Preliminary identification and listing of the data requirements and parameters as related to the current repository layout in support of PC monitoring. (3) Preliminary identification of methods and instrumentation for the acquisition of the required data. Although the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a) defines a broad range of data that must be obtained from a variety of methods, the focus of this analysis is on instrumentation related to the performance of the rock mass and the formation of water in the repository environment, that is obtainable from in-situ observation, testing, and monitoring
Heat Flux Inhibition by Whistlers: Experimental Confirmation
International Nuclear Information System (INIS)
Eichler, D.
2002-01-01
Heat flux in weakly magnetized collisionless plasma is, according to theoretical predictions, limited by whistler turbulence that is generated by heat flux instabilities near threshold. Observations of solar wind electrons by Gary and coworkers appear to confirm the limit on heat flux as being roughly the product of the magnetic energy density and the electron thermal velocity, in agreement with prediction (Pistinner and Eichler 1998)
Abstract Expression Grammar Symbolic Regression
Korns, Michael F.
This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.
Quantile Regression With Measurement Error
Wei, Ying; Carroll, Raymond J.
2009-01-01
. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a
From Rasch scores to regression
DEFF Research Database (Denmark)
Christensen, Karl Bang
2006-01-01
Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....
Testing Heteroscedasticity in Robust Regression
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2011-01-01
Roč. 1, č. 4 (2011), s. 25-28 ISSN 2045-3345 Grant - others:GA ČR(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust regression * heteroscedasticity * regression quantiles * diagnostics Subject RIV: BB - Applied Statistics , Operational Research http://www.researchjournals.co.uk/documents/Vol4/06%20Kalina.pdf
Regression methods for medical research
Tai, Bee Choo
2013-01-01
Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the
Forecasting with Dynamic Regression Models
Pankratz, Alan
2012-01-01
One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.
Short Communication Confirmed identification of gymnodimine in ...
African Journals Online (AJOL)
Mussels Choromytilus meridionalis and oysters Crassostrea gigas were suspended from a mooring off Lambert's Bay, South Africa, to study the kinetics of lipophilic phycotoxin accumulation and detoxification. The shellfish were subsequently harvested daily over approximately three weeks and analysed for lipophilic ...
Complex regression Doppler optical coherence tomography
Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.
2018-04-01
We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.
Troubleshooting Requests e-mail Confirmation
TS Department
2004-01-01
In an ongoing effort to improve quality of the repair requests, a new e-mail confirmation automatic system will be implemented starting from the 21st October. All repair requests transmitted to the TCR (72201) or the FM Helpdesk (77777) will be confirmed in an e-mail to the requestor, provided that the latter has a valid e-mail address in the HR database. The e-mail will contain a reference number, a brief description of the problem, the location and a contact where more information can be obtained. A second e-mail will be sent when the processing of the repair request is finished. We hope that this initiative will improve the transparency and quality of our service. Helpdesk Troubleshooting Requests (reminder) We remind you that all the repair requests and other communication concerning the CERN machine buildings have to be transmitted to the TCR via 72201, whereas the ones concerning tertiary buildings are handled directly by the FM helpdesk under the phone number 77777, i.e. problems on systems and equ...
Kepler Confirmation of Multi-Planet Systems
Cochran, W. D.
2011-10-01
The NASA Kepler spacecraft has detected 170 candidate multi-planet systems in the first two quarters of data released in February 2011 by Borucki et al. (2011). These systems comprise 115 double candidate systems, 45 triple candidate sys- tems, and 10 systems with 4 or more candidate planets. The architecture and dynamics of these systems were discussed by Lissauer et al. (2011), and a comparison of candidates in single- and multi-planet systems was presented by Latham et al. (2011). Proceeding from "planetary candidate" systems to confirmed and validated multi-planet systems is a difficult process, as most of these systems orbit stars too faint to obtain extremely precise (1ms-1) radial velocity confimation. Here, we discuss in detail the use of transit timing vari- ations (cf. e.g. Holman et al., 2010) to confirm planets near a mean motion resonance. We also discuss extensions to the BLENDER validation (Torres et al., 2004, 2011; Fressin et al., 2011) to validate planets in multi-planet systems. Kepler was competitively selected as the tenth Discovery mission. Funding for the Kepler Mis- sion is provided by NASA's Science Mission Direc- torate. We are deeply grateful for the very hard work of the entire Kepler team.
Logistic regression for dichotomized counts.
Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W
2016-12-01
Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.
Upheaval Dome, Utah, USA: Impact Origin Confirmed
Buchner, Elmar; Kenkmann, Thomas
2008-01-01
Upheaval Dome is a unique circular structure on the Colorado Plateau in SE Utah, the origin of which has been controversially discussed for decades. It has been interpreted as a crypto volcanic feature, a salt diapir, a pinched-off salt diapir, and an eroded impact crater. While recent structural mapping, modeling, and analyses of deformation mechanisms strongly support an impact origin, ultimate proof, namely the documentation of unambiguous shock features, has yet to be successfully provide...
Efficiency of insurance companies: Application of DEA and Tobit analyses
Directory of Open Access Journals (Sweden)
Eva Grmanová
2017-10-01
Full Text Available The aim of this paper is to determine the relationship between technical efficiency and profitability of insurance companies. The profitability of insurance companies was expressed by such indicators as ROA, ROE and the size of assets. We analysed 15 commercial insurance companies in Slovakia in the period of 2013-2015. Technical efficiency scores were expressed using DEA models. The relationship between the technical efficiency score and the indicators of profitability was expressed using censored regression, i.e. the Tobit regression model and the Mann-Whitney U-test. The relationship between the technical efficiency score in the CCR and BCC models and all the groups formed on the basis of the return on assets and the group formed basing on the return on equity was not confirmed. Statistically significant difference between average technical efficiency score in the CCR model in the group of insurance companies with ROA
Producing The New Regressive Left
DEFF Research Database (Denmark)
Crone, Christine
members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...
A Matlab program for stepwise regression
Directory of Open Access Journals (Sweden)
Yanhong Qi
2016-03-01
Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.
Correlation and simple linear regression.
Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G
2003-06-01
In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.
Regression filter for signal resolution
International Nuclear Information System (INIS)
Matthes, W.
1975-01-01
The problem considered is that of resolving a measured pulse height spectrum of a material mixture, e.g. gamma ray spectrum, Raman spectrum, into a weighed sum of the spectra of the individual constituents. The model on which the analytical formulation is based is described. The problem reduces to that of a multiple linear regression. A stepwise linear regression procedure was constructed. The efficiency of this method was then tested by transforming the procedure in a computer programme which was used to unfold test spectra obtained by mixing some spectra, from a library of arbitrary chosen spectra, and adding a noise component. (U.K.)
Nonparametric Mixture of Regression Models.
Huang, Mian; Li, Runze; Wang, Shaoli
2013-07-01
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.
International Nuclear Information System (INIS)
Roy, Prasun K.; Dutta Majumder, D.; Biswas, Jaydip
1999-01-01
Spontaneous regression of malignant tumours without treatment is a most enigmatic phenomenon with immense therapeutic potentialities. We analyse such cases to find that the commonest cause is a preceding episode of high fever-induced thermal fluctuation which produce fluctuation of biochemical and immunological parameters. Using Prigogine-Glansdorff thermodynamic stability formalism and biocybernetic principles, we develop the theoretical foundation of tumour regression induced by thermal, radiational or oxygenational fluctuations. For regression, a preliminary threshold condition of fluctuations is derived, namely σ > 2.83. We present some striking confirmation of such fluctuation-induced regression of various therapy-resistant masses as Ewing tumour, neurogranuloma and Lewis lung carcinoma by utilising σ > 2.83. Our biothermodynamic stability model of malignancy appears to illuminate the marked increase of aggressiveness of mammalian malignancy which occurred around 250 million years ago when homeothermic warm-blooded pre-mammals evolved. Using experimental data, we propose a novel approach of multi-modal hyper-fluctuation therapy involving modulation of radiotherapeutic hyper-fractionation, temperature, radiothermy and immune-status. (author)
Molecular confirmation of Hepatozoon canis in Mauritius.
Daskalaki, Aikaterini Alexandra; Ionică, Angela Monica; Jeetah, Keshav; Gherman, Călin Mircea; Mihalca, Andrei Daniel
2018-01-01
In this study, Hepatozoon species was molecularly identified and characterized for the first time on the Indian Ocean island of Mauritius. Partial sequences of the 18S rRNA gene of the Hepatozoon isolates were analysed from three naturally infected dogs. The sequences of H. canis were similar to the 18S rRNA partial sequences (JX112783, AB365071 99%) from dog blood samples from West Indies and Nigeria. Our sequences were deposited in the GenBank database. Copyright © 2017 Elsevier B.V. All rights reserved.
Cactus: An Introduction to Regression
Hyde, Hartley
2008-01-01
When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…
Regression Models for Repairable Systems
Czech Academy of Sciences Publication Activity Database
Novák, Petr
2015-01-01
Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf
Survival analysis II: Cox regression
Stel, Vianda S.; Dekker, Friedo W.; Tripepi, Giovanni; Zoccali, Carmine; Jager, Kitty J.
2011-01-01
In contrast to the Kaplan-Meier method, Cox proportional hazards regression can provide an effect estimate by quantifying the difference in survival between patient groups and can adjust for confounding effects of other variables. The purpose of this article is to explain the basic concepts of the
Kernel regression with functional response
Ferraty, Frédéric; Laksaci, Ali; Tadj, Amel; Vieu, Philippe
2011-01-01
We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.
Linear regression and the normality assumption.
Schmidt, Amand F; Finan, Chris
2017-12-16
Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient. Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings. Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. Copyright © 2017 Elsevier Inc. All rights reserved.
Magnetic resonance tomography in confirmed multiple sclerosis
International Nuclear Information System (INIS)
Uhlenbrock, D.; Dickmann, E.; Beyer, H.K.; Gehlen, W.; Josef-Hospital, Bochum; Knappschafts-Krankenhaus Bochum
1985-01-01
The authors report on 21 cases of confirmed multiple sclerosis examined by both CT and magnetic resonance tomography. To safeguard the results, strict criteria were applied in accordance with the suggestions made by neurological work teams. Pathological lesons were seen in 20 patients; the MR image did not reveal anything abnormal in one case. On the average, 10.3 lesions were seen in the MR tomogram, whereas CT images showed on the average only 2.1 foci. The size and number of lesions in the MR tomogram were independent of the duration of the disease, the presented clinical symptoms, or the type of treatment at the time of examination. Evidently the sensitivity of MR tomography is very high in MS patients, but it has not yet been clarified to what extent this applies also to the specificity. Further research is mandatory. First experiences made by us show that lesions of a similar kind can also occur in diseases such as malignant lymphoma involving the brain, in vitamin B 12 deficiency syndrome, or encephalitis, and can become manifest in the MR tomogram. (orig.) [de
Web-Based Honorarium Confirmation System Prototype
Wisswani, N. W.; Catur Bawa, I. G. N. B.
2018-01-01
Improving services in academic environment can be applied by regulating salary payment process for all employees. As a form of control to maintain financial transparency, employees should have information concerning salary payment process. Currently, notification process of committee honorarium will be accepted by the employees in a manual manner. The salary will be received by the employee bank account and to know its details, they should go to the accounting unit to find out further information. Though there are some employees entering the accounting unit, they still find difficulty to obtain information about detailed honor information that they received in their accounts. This can be caused by many data collected and to be managed. Based on this issue, this research will design a prototype of web-based system for accounting unit system in order to provide detailed financial transaction confirmation to employee bank accounts that have been informed through mobile banking system. This prototype will be developed with Waterfall method through testing on final users after it is developed through PHP program with MySQL as DBMS
Entrepreneurial intention modeling using hierarchical multiple regression
Directory of Open Access Journals (Sweden)
Marina Jeger
2014-12-01
Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.
Model Selection in Kernel Ridge Regression
DEFF Research Database (Denmark)
Exterkate, Peter
Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels......, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based...... on these interpretations, we provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely...
Quantile Regression With Measurement Error
Wei, Ying
2009-08-27
Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.
Multivariate and semiparametric kernel regression
Härdle, Wolfgang; Müller, Marlene
1997-01-01
The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...
Regression algorithm for emotion detection
Berthelon , Franck; Sander , Peter
2013-01-01
International audience; We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor m...
Directional quantile regression in R
Czech Academy of Sciences Publication Activity Database
Boček, Pavel; Šiman, Miroslav
2017-01-01
Roč. 53, č. 3 (2017), s. 480-492 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : multivariate quantile * regression quantile * halfspace depth * depth contour Subject RIV: BD - Theory of Information OBOR OECD: Applied mathematics Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/bocek-0476587.pdf
Polylinear regression analysis in radiochemistry
International Nuclear Information System (INIS)
Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.
1995-01-01
A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis
Gaussian Process Regression Model in Spatial Logistic Regression
Sofro, A.; Oktaviarina, A.
2018-01-01
Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.
Manned in Situ Confirmation of Lunar Ice
Gerené, S. P. B.; Hummeling, R. W. J.; Ockels, W. J.
A study is performed to investigate the feasibility of a manned expedition to the Moon using the European Ariane-5 launcher. The primary objective of this lunar mission is to confirm the presence of water at the South-Pole craters. It is believed that these permanently shadowed craters contain water in the form of ice. Secondary objective is to perform lunar surface science and making a first step towards a lunar outpost. Early results show that a minimum of two Ariane-5 launches is required. In this `two Ariane' scenario the first launch will bring a Lunar Landing Vehicle (LLV) into low lunar orbit. The second will launch two astronauts in a Crew Transfer Vehicle into a rendez- vous trajectory with the LLV. Arrived at the Moon, the astronauts will enter the LLV, undock from the CTV and land at the designated site located near the rim of the South-Pole Shackleton crater. The transfer strategy for both spacecraft will be the so-called direct transfer, taking about four days. At arrival the LLV will start mapping the landing site at a ground resolution of one meter. As a consequence of the polar orbit, the CTV has to arrive fourteen days later and surface operations can take about twelve days, accumulating in a total mission-duration of 36 days. 32 days for the CTV and 22 days for the LLV. In case a `two Ariane' flight does not posses sufficient capabilities also a `three Ariane' scenario is developed, in which the LLV is split-up into two stages and launched separately. These two will dock at the Moon forming a descent stage and an ascent stage. The third launch will be a CTV. During surface operations, astronauts will set up a solar power unit, install the sample retrieval system and carry out surface science. Samples of the crater floor will be retrieved by means of a probe or robot guided along a cable suspended over the crater rim. Also, this paper shows the way in which European astronauts can be brought to the Moon for other future missions, like the
Registered error between PET and CT images confirmed by a water model
International Nuclear Information System (INIS)
Chen Yangchun; Fan Mingwu; Xu Hao; Chen Ping; Zhang Chunlin
2012-01-01
The registered error between PET and CT imaging system was confirmed by a water model simulating clinical cases. A barrel of 6750 mL was filled with 59.2 MBq [ 18 F]-FDG and scanned after 80 min by 2 dimension model PET/CT. The CT images were used to attenuate the PET images. The CT/PET images were obtained by image morphological processing analyses without barrel wall. The relationship of the water image centroids of CT and PET images was established by linear regression analysis, and the registered error between PET and CT image could be computed one slice by one slice. The alignment program was done 4 times following the protocol given by GE Healthcare. Compared with centroids of water CT images, centroids of PET images were shifted to X-axis (0.011slice+0.63) mm, to Y-axis (0.022×slice+1.35) mm. To match CT images, PET images should be translated along X-axis (-2.69±0.15) mm, Y-axis (0.43±0.11) mm, Z-axis (0.86±0.23) mm, and X-axis be rotated by (0.06±0.07)°, Y-axis by (-0.01±0.08)°, and Z-axis by (0.11±0.07)°. So, the systematic registered error was not affected by load and its distribution. By finding the registered error between PET and CT images for coordinate rotation random error, the water model could confirm the registered results of PET-CT system corrected by Alignment parameters. (authors)
Tutorial on Using Regression Models with Count Outcomes Using R
Directory of Open Access Journals (Sweden)
A. Alexander Beaujean
2016-02-01
Full Text Available Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the R syntax used run the example analyses are included in the Appendix.
Spontaneous regression of pulmonary bullae
International Nuclear Information System (INIS)
Satoh, H.; Ishikawa, H.; Ohtsuka, M.; Sekizawa, K.
2002-01-01
The natural history of pulmonary bullae is often characterized by gradual, progressive enlargement. Spontaneous regression of bullae is, however, very rare. We report a case in which complete resolution of pulmonary bullae in the left upper lung occurred spontaneously. The management of pulmonary bullae is occasionally made difficult because of gradual progressive enlargement associated with abnormal pulmonary function. Some patients have multiple bulla in both lungs and/or have a history of pulmonary emphysema. Others have a giant bulla without emphysematous change in the lungs. Our present case had treated lung cancer with no evidence of local recurrence. He had no emphysematous change in lung function test and had no complaints, although the high resolution CT scan shows evidence of underlying minimal changes of emphysema. Ortin and Gurney presented three cases of spontaneous reduction in size of bulla. Interestingly, one of them had a marked decrease in the size of a bulla in association with thickening of the wall of the bulla, which was observed in our patient. This case we describe is of interest, not only because of the rarity with which regression of pulmonary bulla has been reported in the literature, but also because of the spontaneous improvements in the radiological picture in the absence of overt infection or tumor. Copyright (2002) Blackwell Science Pty Ltd
Quantum algorithm for linear regression
Wang, Guoming
2017-07-01
We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Keith, Timothy Z
2014-01-01
Multiple Regression and Beyond offers a conceptually oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. Covers both MR and SEM, while explaining their relevance to one another Also includes path analysis, confirmatory factor analysis, and latent growth modeling Figures and tables throughout provide examples and illustrate key concepts and techniques For additional resources, please visit: http://tzkeith.com/.
Analytical approach for confirming the achievement of LMFBR reliability goals
International Nuclear Information System (INIS)
Ingram, G.E.; Elerath, J.G.; Wood, A.P.
1981-01-01
The approach, recommended by GE-ARSD, for confirming the achievement of LMFBR reliability goals relies upon a comprehensive understanding of the physical and operational characteristics of the system and the environments to which the system will be subjected during its operational life. This kind of understanding is required for an approach based on system hardware testing or analyses, as recommended in this report. However, for a system as complex and expensive as the LMFBR, an approach which relies primarily on system hardware testing would be prohibitive both in cost and time to obtain the required system reliability test information. By using an analytical approach, results of tests (reliability and functional) at a low level within the specific system of interest, as well as results from other similar systems can be used to form the data base for confirming the achievement of the system reliability goals. This data, along with information relating to the design characteristics and operating environments of the specific system, will be used in the assessment of the system's reliability
Isotopic Generation and Confirmation of the PWR Application Model?
International Nuclear Information System (INIS)
L.B. Wimmer
2003-01-01
The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000). The isotopic database consists of the set of 14 actinides and 15 fission products presented in Section 3.5.2.1.1 of YMP 2000 for use in CSNF burnup credit. This set of 29 isotopes is referred to as the principal isotopes. The oxygen isotope from the UO 2 fuel is also included in the database. The isotopic database covers enrichments of 235 U ranging from 1.5 to 5.5 weight percent (wt%) and burnups ranging from approximately zero to 75 GWd per metric ton of uranium (mtU). The choice of fuel assembly and operating history values used in generating the isotopic database are provided is Section 5. Tables of isotopic concentrations for the 29 principal isotopes (plus oxygen) as a function of enrichment and burnup are provided in Section 6.1. Results of the confirmation of the conservatism with respect to criticality in the isotopic concentration values are provided in Section 6.2
On Weighted Support Vector Regression
DEFF Research Database (Denmark)
Han, Xixuan; Clemmensen, Line Katrine Harder
2014-01-01
We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...... shrinks the coefficient of each observation in the estimated functions; thus, it is widely used for minimizing influence of outliers. We propose to additionally add weights to the slack variables in the constraints (CF‐weights) and call the combination of weights the doubly weighted SVR. We illustrate...... the differences and similarities of the two types of weights by demonstrating the connection between the Least Absolute Shrinkage and Selection Operator (LASSO) and the SVR. We show that an SVR problem can be transformed to a LASSO problem plus a linear constraint and a box constraint. We demonstrate...
Pathological Confirmation of Optic Neuropathy in Familial Dysautonomia.
Mendoza-Santiesteban, Carlos E; Palma, Jose-Alberto; Hedges, Thomas R; Laver, Nora V; Farhat, Nada; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio
2017-03-01
Clinical data suggest that optic neuropathy and retinal ganglion cell loss are the main cause of visual decline in patients with familial dysautonomia, but this has not previously been confirmed by pathological analyses. We studied retinas and optic nerves in 6 eyes from 3 affected patients obtained at autopsy. Analyses included routine neurohistology and immunohistochemistry for neurofilaments, cytochrome c oxidase (COX), and melanopsin-containing ganglion cells. We observed profound axon loss in the temporal portions of optic nerves with relative preservation in the nasal portions; this correlated with clinical and optical coherence tomography findings in 1 patient. Retinal ganglion cell layers were markedly reduced in the central retina, whereas melanopsin-containing ganglion cells were relatively spared. COX staining was reduced in the temporal portions of the optic nerve indicating reduced mitochondrial density. Axonal swelling with degenerating lysosomes and mitochondria were observed by electron microscopy. These findings support the concept that there is a specific optic neuropathy and retinopathy in patients with familial dysautonomia similar to that seen in other optic neuropathies with mitochondrial dysfunction. This raises the possibility that defective expression of the IkB kinase complex-associated protein (IKAP) resulting from mutations in IKBKAP affects mitochondrial function in the metabolism-dependent retinal parvocellular ganglion cells in this condition. © 2017 American Association of Neuropathologists, Inc. All rights reserved.
Carbonell, F; Bellec, P; Shmuel, A
2014-02-01
The effect of regressing out the global average signal (GAS) in resting state fMRI data has become a concern for interpreting functional connectivity analyses. It is not clear whether the reported anti-correlations between the Default Mode and the Dorsal Attention Networks are intrinsic to the brain, or are artificially created by regressing out the GAS. Here we introduce a concept, Impact of the Global Average on Functional Connectivity (IGAFC), for quantifying the sensitivity of seed-based correlation analyses to the regression of the GAS. This voxel-wise IGAFC index is defined as the product of two correlation coefficients: the correlation between the GAS and the fMRI time course of a voxel, times the correlation between the GAS and the seed time course. This definition enables the calculation of a threshold at which the impact of regressing-out the GAS would be large enough to introduce spurious negative correlations. It also yields a post-hoc impact correction procedure via thresholding, which eliminates spurious correlations introduced by regressing out the GAS. In addition, we introduce an Artificial Negative Correlation Index (ANCI), defined as the absolute difference between the IGAFC index and the impact threshold. The ANCI allows a graded confidence scale for ranking voxels according to their likelihood of showing artificial correlations. By applying this method, we observed regions in the Default Mode and Dorsal Attention Networks that were anti-correlated. These findings confirm that the previously reported negative correlations between the Dorsal Attention and Default Mode Networks are intrinsic to the brain and not the result of statistical manipulations. Our proposed quantification of the impact that a confound may have on functional connectivity can be generalized to global effect estimators other than the GAS. It can be readily applied to other confounds, such as systemic physiological or head movement interferences, in order to quantify their
Credit Scoring Problem Based on Regression Analysis
Khassawneh, Bashar Suhil Jad Allah
2014-01-01
ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....
Variable selection and model choice in geoadditive regression models.
Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard
2009-06-01
Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.
An Original Stepwise Multilevel Logistic Regression Analysis of Discriminatory Accuracy
DEFF Research Database (Denmark)
Merlo, Juan; Wagner, Philippe; Ghith, Nermin
2016-01-01
BACKGROUND AND AIM: Many multilevel logistic regression analyses of "neighbourhood and health" focus on interpreting measures of associations (e.g., odds ratio, OR). In contrast, multilevel analysis of variance is rarely considered. We propose an original stepwise analytical approach that disting...
Interpreting Multiple Linear Regression: A Guidebook of Variable Importance
Nathans, Laura L.; Oswald, Frederick L.; Nimon, Kim
2012-01-01
Multiple regression (MR) analyses are commonly employed in social science fields. It is also common for interpretation of results to typically reflect overreliance on beta weights, often resulting in very limited interpretations of variable importance. It appears that few researchers employ other methods to obtain a fuller understanding of what…
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Estimating the exceedance probability of rain rate by logistic regression
Chiu, Long S.; Kedem, Benjamin
1990-01-01
Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.
Use of probabilistic weights to enhance linear regression myoelectric control.
Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J
2015-12-01
Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts' law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p linear regression control. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.
Independent contrasts and PGLS regression estimators are equivalent.
Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary
2012-05-01
We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.
DNBR Prediction Using a Support Vector Regression
International Nuclear Information System (INIS)
Yang, Heon Young; Na, Man Gyun
2008-01-01
PWRs (Pressurized Water Reactors) generally operate in the nucleate boiling state. However, the conversion of nucleate boiling into film boiling with conspicuously reduced heat transfer induces a boiling crisis that may cause the fuel clad melting in the long run. This type of boiling crisis is called Departure from Nucleate Boiling (DNB) phenomena. Because the prediction of minimum DNBR in a reactor core is very important to prevent the boiling crisis such as clad melting, a lot of research has been conducted to predict DNBR values. The object of this research is to predict minimum DNBR applying support vector regression (SVR) by using the measured signals of a reactor coolant system (RCS). The SVR has extensively and successfully been applied to nonlinear function approximation like the proposed problem for estimating DNBR values that will be a function of various input variables such as reactor power, reactor pressure, core mass flowrate, control rod positions and so on. The minimum DNBR in a reactor core is predicted using these various operating condition data as the inputs to the SVR. The minimum DBNR values predicted by the SVR confirm its correctness compared with COLSS values
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Comparing parametric and nonparametric regression methods for panel data
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
We investigate and compare the suitability of parametric and non-parametric stochastic regression methods for analysing production technologies and the optimal firm size. Our theoretical analysis shows that the most commonly used functional forms in empirical production analysis, Cobb......-Douglas and Translog, are unsuitable for analysing the optimal firm size. We show that the Translog functional form implies an implausible linear relationship between the (logarithmic) firm size and the elasticity of scale, where the slope is artificially related to the substitutability between the inputs....... The practical applicability of the parametric and non-parametric regression methods is scrutinised and compared by an empirical example: we analyse the production technology and investigate the optimal size of Polish crop farms based on a firm-level balanced panel data set. A nonparametric specification test...
Prenatal diagnosis of Caudal Regression Syndrome : a case report
Directory of Open Access Journals (Sweden)
Celikaslan Nurgul
2001-12-01
Full Text Available Abstract Background Caudal regression is a rare syndrome which has a spectrum of congenital malformations ranging from simple anal atresia to absence of sacral, lumbar and possibly lower thoracic vertebrae, to the most severe form which is known as sirenomelia. Maternal diabetes, genetic predisposition and vascular hypoperfusion have been suggested as possible causative factors. Case presentation We report a case of caudal regression syndrome diagnosed in utero at 22 weeks' of gestation. Prenatal ultrasound examination revealed a sudden interruption of the spine and "frog-like" position of lower limbs. Termination of pregnancy and autopsy findings confirmed the diagnosis. Conclusion Prenatal ultrasonographic diagnosis of caudal regression syndrome is possible at 22 weeks' of gestation by ultrasound examination.
Regression periods in infancy: a case study from Catalonia.
Sadurní, Marta; Rostan, Carlos
2002-05-01
Based on Rijt-Plooij and Plooij's (1992) research on emergence of regression periods in the first two years of life, the presence of such periods in a group of 18 babies (10 boys and 8 girls, aged between 3 weeks and 14 months) from a Catalonian population was analyzed. The measurements were a questionnaire filled in by the infants' mothers, a semi-structured weekly tape-recorded interview, and observations in their homes. The procedure and the instruments used in the project follow those proposed by Rijt-Plooij and Plooij. Our results confirm the existence of the regression periods in the first year of children's life. Inter-coder agreement for trained coders was 78.2% and within-coder agreement was 90.1%. In the discussion, the possible meaning and relevance of regression periods in order to understand development from a psychobiological and social framework is commented upon.
Unbalanced Regressions and the Predictive Equation
DEFF Research Database (Denmark)
Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo
Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...
Semiparametric regression during 2003–2007
Ruppert, David; Wand, M.P.; Carroll, Raymond J.
2009-01-01
Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application.
Gaussian process regression analysis for functional data
Shi, Jian Qing
2011-01-01
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime
[TECOS: confirmation of the cardiovascular safety of sitaliptin].
Scheen, A J; Paquot, N
2015-10-01
The cardiovascular safety of sitagliptin has been evaluated in TECOS ("Trial Evaluating Cardiovascular Outcomes with Sitagliptin"). TECOS recruited patients with type 2 diabetes and a history of cardiovascular disease who received, as add-on to their usual therapy, either sitagliptin (n = 7.257) or placebo (n = 7.266), with a median follow-up of 3 years. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% confidence interval, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P=0.98). The cardiovascular safety of sitagliptin, which was already shown in meta-analyses of phase II-III randomised controlled trials and in observational cohort studies in real life, is now confirmed in the landmark prospective cardiovascular outcome study TECOS.
Confirming theoretical pay constructs of a variable pay scheme
Directory of Open Access Journals (Sweden)
Sibangilizwe Ncube
2013-05-01
Full Text Available Orientation: Return on the investment in variable pay programmes remains controversial because their cost versus contribution cannot be empirically justified. Research purpose: This study validates the findings of the model developed by De Swardt on the factors related to successful variable pay programmes. Motivation for the study: Many organisations blindly implement variable pay programmes without any means to assess the impact these programmes have on the company’s performance. This study was necessary to validate the findings of an existing instrument that validates the contribution of variable pay schemes. Research design, approach and method: The study was conducted using quantitative research. A total of 300 completed questionnaires from a non-purposive sample of 3000 participants in schemes across all South African industries were returned and analysed. Main findings: Using exploratory and confirmatory factor analysis, it was found that the validation instrument developed by De Swardt is still largely valid in evaluating variable pay schemes. The differences between the study and the model were reported. Practical/managerial implications: The study confirmed the robustness of an existing model that enables practitioners to empirically validate the use of variable pay plans. This model assists in the design and implementation of variable pay programmes that meet critical success factors. Contribution/value-add: The study contributed to the development of a measurement instrument that will assess whether a variable pay plan contributes to an organisation’s success.
Regression Analysis by Example. 5th Edition
Chatterjee, Samprit; Hadi, Ali S.
2012-01-01
Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…
Standards for Standardized Logistic Regression Coefficients
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
A Seemingly Unrelated Poisson Regression Model
King, Gary
1989-01-01
This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.
The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...
Regression with Sparse Approximations of Data
DEFF Research Database (Denmark)
Noorzad, Pardis; Sturm, Bob L.
2012-01-01
We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...
Spontaneous regression of a congenital melanocytic nevus
Directory of Open Access Journals (Sweden)
Amiya Kumar Nath
2011-01-01
Full Text Available Congenital melanocytic nevus (CMN may rarely regress which may also be associated with a halo or vitiligo. We describe a 10-year-old girl who presented with CMN on the left leg since birth, which recently started to regress spontaneously with associated depigmentation in the lesion and at a distant site. Dermoscopy performed at different sites of the regressing lesion demonstrated loss of epidermal pigments first followed by loss of dermal pigments. Histopathology and Masson-Fontana stain demonstrated lymphocytic infiltration and loss of pigment production in the regressing area. Immunohistochemistry staining (S100 and HMB-45, however, showed that nevus cells were present in the regressing areas.
The Use of Nonparametric Kernel Regression Methods in Econometric Production Analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard
and nonparametric estimations of production functions in order to evaluate the optimal firm size. The second paper discusses the use of parametric and nonparametric regression methods to estimate panel data regression models. The third paper analyses production risk, price uncertainty, and farmers' risk preferences...... within a nonparametric panel data regression framework. The fourth paper analyses the technical efficiency of dairy farms with environmental output using nonparametric kernel regression in a semiparametric stochastic frontier analysis. The results provided in this PhD thesis show that nonparametric......This PhD thesis addresses one of the fundamental problems in applied econometric analysis, namely the econometric estimation of regression functions. The conventional approach to regression analysis is the parametric approach, which requires the researcher to specify the form of the regression...
Analyses of developmental rate isomorphy in ectotherms: Introducing the dirichlet regression
Czech Academy of Sciences Publication Activity Database
Boukal S., David; Ditrich, Tomáš; Kutcherov, D.; Sroka, Pavel; Dudová, Pavla; Papáček, M.
2015-01-01
Roč. 10, č. 6 (2015), e0129341 E-ISSN 1932-6203 R&D Projects: GA ČR GAP505/10/0096 Grant - others:European Fund(CZ) PERG04-GA-2008-239543; GA JU(CZ) 145/2013/P Institutional support: RVO:60077344 Keywords : ectotherms Subject RIV: ED - Physiology Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129341
The benefits of using quantile regression for analysing the effect of weeds on organic winter wheat
Casagrande, M.; Makowski, D.; Jeuffroy, M.H.; Valantin-Morison, M.; David, C.
2010-01-01
P>In organic farming, weeds are one of the threats that limit crop yield. An early prediction of weed effect on yield loss and the size of late weed populations could help farmers and advisors to improve weed management. Numerous studies predicting the effect of weeds on yield have already been
Gilstrap, Donald L.
2013-01-01
In addition to qualitative methods presented in chaos and complexity theories in educational research, this article addresses quantitative methods that may show potential for future research studies. Although much in the social and behavioral sciences literature has focused on computer simulations, this article explores current chaos and…
DEFF Research Database (Denmark)
Scott, Neil W.; Fayers, Peter M.; Aaronson, Neil K.
2010-01-01
Differential item functioning (DIF) methods can be used to determine whether different subgroups respond differently to particular items within a health-related quality of life (HRQoL) subscale, after allowing for overall subgroup differences in that scale. This article reviews issues that arise...
Determination of benzo(apyrene content in PM10 using regression methods
Directory of Open Access Journals (Sweden)
Jacek Gębicki
2015-12-01
Full Text Available The paper presents an attempt of application of multidimensional linear regression to estimation of an empirical model describing the factors influencing on B(aP content in suspended dust PM10 in Olsztyn and Elbląg city regions between 2010 and 2013. During this period annual average concentration of B(aP in PM10 exceeded the admissible level 1.5-3 times. Conducted investigations confirm that the reasons of B(aP concentration increase are low-efficiency individual home heat stations or low-temperature heat sources, which are responsible for so-called low emission during heating period. Dependences between the following quantities were analysed: concentration of PM10 dust in air, air temperature, wind velocity, air humidity. A measure of model fitting to actual B(aP concentration in PM10 was the coefficient of determination of the model. Application of multidimensional linear regression yielded the equations characterized by high values of the coefficient of determination of the model, especially during heating season. This parameter ranged from 0.54 to 0.80 during the analyzed period.
Intermediate and advanced topics in multilevel logistic regression analysis.
Austin, Peter C; Merlo, Juan
2017-09-10
Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Applied regression analysis a research tool
Pantula, Sastry; Dickey, David
1998-01-01
Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...
Regression models of reactor diagnostic signals
International Nuclear Information System (INIS)
Vavrin, J.
1989-01-01
The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)
Bulcock, J. W.
The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…
Multivariate Regression Analysis and Slaughter Livestock,
AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.
Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J
2016-04-01
The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees. Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control. The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability. Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.
Use of probabilistic weights to enhance linear regression myoelectric control
Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.
2015-12-01
Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.
Regression modeling methods, theory, and computation with SAS
Panik, Michael
2009-01-01
Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,
Lockhart, Shawn R; Etienne, Kizee A; Vallabhaneni, Snigdha; Farooqi, Joveria; Chowdhary, Anuradha; Govender, Nelesh P; Colombo, Arnaldo Lopes; Calvo, Belinda; Cuomo, Christina A; Desjardins, Christopher A; Berkow, Elizabeth L; Castanheira, Mariana; Magobo, Rindidzani E; Jabeen, Kauser; Asghar, Rana J; Meis, Jacques F; Jackson, Brendan; Chiller, Tom; Litvintseva, Anastasia P
2017-01-15
Candida auris, a multidrug-resistant yeast that causes invasive infections, was first described in 2009 in Japan and has since been reported from several countries. To understand the global emergence and epidemiology of C. auris, we obtained isolates from 54 patients with C. auris infection from Pakistan, India, South Africa, and Venezuela during 2012-2015 and the type specimen from Japan. Patient information was available for 41 of the isolates. We conducted antifungal susceptibility testing and whole-genome sequencing (WGS). Available clinical information revealed that 41% of patients had diabetes mellitus, 51% had undergone recent surgery, 73% had a central venous catheter, and 41% were receiving systemic antifungal therapy when C. auris was isolated. The median time from admission to infection was 19 days (interquartile range, 9-36 days), 61% of patients had bloodstream infection, and 59% died. Using stringent break points, 93% of isolates were resistant to fluconazole, 35% to amphotericin B, and 7% to echinocandins; 41% were resistant to 2 antifungal classes and 4% were resistant to 3 classes. WGS demonstrated that isolates were grouped into unique clades by geographic region. Clades were separated by thousands of single-nucleotide polymorphisms, but within each clade isolates were clonal. Different mutations in ERG11 were associated with azole resistance in each geographic clade. C. auris is an emerging healthcare-associated pathogen associated with high mortality. Treatment options are limited, due to antifungal resistance. WGS analysis suggests nearly simultaneous, and recent, independent emergence of different clonal populations on 3 continents. Risk factors and transmission mechanisms need to be elucidated to guide control measures. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; Berkow, E.L.; Castanheira, M.; Magobo, R.E.; Jabeen, K.; Asghar, R.J.; Meis, J.F.G.M.; Jackson, B.; Chiller, T.; Litvintseva, A.P.
2017-01-01
BACKGROUND: Candida auris, a multidrug-resistant yeast that causes invasive infections, was first described in 2009 in Japan and has since been reported from several countries. METHODS: To understand the global emergence and epidemiology of C. auris, we obtained isolates from 54 patients with C.
Gondo, Tatsuo; Poon, Bing Ying; Matsumoto, Kazuhiro; Bernstein, Melanie; Sjoberg, Daniel D; Eastham, James A
2015-01-01
To identify preoperative factors predicting Gleason score downgrading after radical prostatectomy (RP) in patients with biopsy Gleason score 3+4 prostate cancer and to determine if prediction of downgrading can identify potential candidates for active surveillance (AS). We identified 1317 patients with biopsy Gleason score 3+4 prostate cancers who underwent RP at the Memorial Sloan-Kettering Cancer Center between 2005 and 2013. Several preoperative and biopsy characteristics were evaluated by forward selection regression, and selected predictors of downgrading were analysed by multivariable logistic regression. Decision curve analysis was used to evaluate the clinical utility of the multivariate model. Gleason score was downgraded after RP in 115 patients (9%). We developed a multivariable model using age, prostate-specific antigen density, percentage of positive cores with Gleason pattern 4 cancer out of all cores taken, and maximum percentage of cancer involvement within a positive core with Gleason pattern 4 cancer. The area under the curve for this model was 0.75 after 10-fold cross validation. However, decision curve analysis revealed that the model was not clinically helpful in identifying patients who will downgrade at RP for the purpose of reassigning them to AS. While patients with pathological Gleason score 3 + 3 with tertiary Gleason pattern ≤4 at RP in patients with biopsy Gleason score 3 + 4 prostate cancer may be potential candidates for AS, decision curve analysis showed limited utility of our model to identify such men. Future study is needed to identify new predictors to help identify potential candidates for AS among patients with biopsy confirmed Gleason score 3 + 4 prostate cancer. © 2014 The Authors. BJU International © 2014 BJU International.
Complete regression of myocardial involvement associated with lymphoma following chemotherapy.
Vinicki, Juan Pablo; Cianciulli, Tomás F; Farace, Gustavo A; Saccheri, María C; Lax, Jorge A; Kazelian, Lucía R; Wachs, Adolfo
2013-09-26
Cardiac involvement as an initial presentation of malignant lymphoma is a rare occurrence. We describe the case of a 26 year old man who had initially been diagnosed with myocardial infiltration on an echocardiogram, presenting with a testicular mass and unilateral peripheral facial paralysis. On admission, electrocardiograms (ECG) revealed negative T-waves in all leads and ST-segment elevation in the inferior leads. On two-dimensional echocardiography, there was infiltration of the pericardium with mild effusion, infiltrative thickening of the aortic walls, both atria and the interatrial septum and a mildly depressed systolic function of both ventricles. An axillary biopsy was performed and reported as a T-cell lymphoblastic lymphoma (T-LBL). Following the diagnosis and staging, chemotherapy was started. Twenty-two days after finishing the first cycle of chemotherapy, the ECG showed regression of T-wave changes in all leads and normalization of the ST-segment elevation in the inferior leads. A follow-up Two-dimensional echocardiography confirmed regression of the myocardial infiltration. This case report illustrates a lymphoma presenting with testicular mass, unilateral peripheral facial paralysis and myocardial involvement, and demonstrates that regression of infiltration can be achieved by intensive chemotherapy treatment. To our knowledge, there are no reported cases of T-LBL presenting as a testicular mass and unilateral peripheral facial paralysis, with complete regression of myocardial involvement.
International Nuclear Information System (INIS)
Janssen, I.; Stebbings, J.H.
1990-01-01
In environmental epidemiology, trace and toxic substance concentrations frequently have very highly skewed distributions ranging over one or more orders of magnitude, and prediction by conventional regression is often poor. Classification and Regression Tree Analysis (CART) is an alternative in such contexts. To compare the techniques, two Pennsylvania data sets and three independent variables are used: house radon progeny (RnD) and gamma levels as predicted by construction characteristics in 1330 houses; and ∼200 house radon (Rn) measurements as predicted by topographic parameters. CART may identify structural variables of interest not identified by conventional regression, and vice versa, but in general the regression models are similar. CART has major advantages in dealing with other common characteristics of environmental data sets, such as missing values, continuous variables requiring transformations, and large sets of potential independent variables. CART is most useful in the identification and screening of independent variables, greatly reducing the need for cross-tabulations and nested breakdown analyses. There is no need to discard cases with missing values for the independent variables because surrogate variables are intrinsic to CART. The tree-structured approach is also independent of the scale on which the independent variables are measured, so that transformations are unnecessary. CART identifies important interactions as well as main effects. The major advantages of CART appear to be in exploring data. Once the important variables are identified, conventional regressions seem to lead to results similar but more interpretable by most audiences. 12 refs., 8 figs., 10 tabs
Quantifying Fire Cycle from Dendroecological Records Using Survival Analyses
Directory of Open Access Journals (Sweden)
Dominic Cyr
2016-06-01
Full Text Available Quantifying fire regimes in the boreal forest ecosystem is crucial for understanding the past and present dynamics, as well as for predicting its future dynamics. Survival analyses have often been used to estimate the fire cycle in eastern Canada because they make it possible to take into account the censored information that is made prevalent by the typically long fire return intervals and the limited scope of the dendroecological methods that are used to quantify them. Here, we assess how the true length of the fire cycle, the short-term temporal variations in fire activity, and the sampling effort affect the accuracy and precision of estimates obtained from two types of parametric survival models, the Weibull and the exponential models, and one non-parametric model obtained with the Cox regression. Then, we apply those results in a case area located in eastern Canada. Our simulation experiment confirms some documented concerns regarding the detrimental effects of temporal variations in fire activity on parametric estimation of the fire cycle. Cox regressions appear to provide the most accurate and robust estimator, being by far the least affected by temporal variations in fire activity. The Cox-based estimate of the fire cycle for the last 300 years in the case study area is 229 years (CI95: 162–407, compared with the likely overestimated 319 years obtained with the commonly used exponential model.
New robust statistical procedures for the polytomous logistic regression models.
Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro
2018-05-17
This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.
RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,
This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)
Hierarchical regression analysis in structural Equation Modeling
de Jong, P.F.
1999-01-01
In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main
Categorical regression dose-response modeling
The goal of this training is to provide participants with training on the use of the U.S. EPA’s Categorical Regression soft¬ware (CatReg) and its application to risk assessment. Categorical regression fits mathematical models to toxicity data that have been assigned ord...
Variable importance in latent variable regression models
Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.
2014-01-01
The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable
Stepwise versus Hierarchical Regression: Pros and Cons
Lewis, Mitzi
2007-01-01
Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…
Suppression Situations in Multiple Linear Regression
Shieh, Gwowen
2006-01-01
This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…
Gibrat’s law and quantile regressions
DEFF Research Database (Denmark)
Distante, Roberta; Petrella, Ivan; Santoro, Emiliano
2017-01-01
The nexus between firm growth, size and age in U.S. manufacturing is examined through the lens of quantile regression models. This methodology allows us to overcome serious shortcomings entailed by linear regression models employed by much of the existing literature, unveiling a number of important...
Regression Analysis and the Sociological Imagination
De Maio, Fernando
2014-01-01
Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.
Repeated Results Analysis for Middleware Regression Benchmarking
Czech Academy of Sciences Publication Activity Database
Bulej, Lubomír; Kalibera, T.; Tůma, P.
2005-01-01
Roč. 60, - (2005), s. 345-358 ISSN 0166-5316 R&D Projects: GA ČR GA102/03/0672 Institutional research plan: CEZ:AV0Z10300504 Keywords : middleware benchmarking * regression benchmarking * regression testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.756, year: 2005
Principles of Quantile Regression and an Application
Chen, Fang; Chalhoub-Deville, Micheline
2014-01-01
Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…
ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES
RUSCHENDORF, L; DEVALK, [No Value
We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive
Poliomyelitis in Osun State, Nigeria: Two Confirmed Cases After 6 ...
African Journals Online (AJOL)
The Clinico-epidemological characteristics of two confirmed cases of poliomyelitis detected by Acute Flaccid Paralysis (AFP) surveillance in Osun State of Nigeria after almost 6 years of the last confirmed case in the State was reported to provide information for formulating possible aetiological hypothesis and to adequately ...
The role of laboratory confirmations and molecular epidemiology in ...
African Journals Online (AJOL)
This review reports on the role of laboratory confirmation and molecular epidemiology in global eradication of measles. The role of laboratory confirmation and molecular epidemiology in defining the origins of measles outbreaks cannot be overemphasized. New serological tests based on recombinant proteins detect only a ...
Marital status integration and suicide: A meta-analysis and meta-regression.
Kyung-Sook, Woo; SangSoo, Shin; Sangjin, Shin; Young-Jeon, Shin
2018-01-01
Marital status is an index of the phenomenon of social integration within social structures and has long been identified as an important predictor suicide. However, previous meta-analyses have focused only on a particular marital status, or not sufficiently explored moderators. A meta-analysis of observational studies was conducted to explore the relationships between marital status and suicide and to understand the important moderating factors in this association. Electronic databases were searched to identify studies conducted between January 1, 2000 and June 30, 2016. We performed a meta-analysis, subgroup analysis, and meta-regression of 170 suicide risk estimates from 36 publications. Using random effects model with adjustment for covariates, the study found that the suicide risk for non-married versus married was OR = 1.92 (95% CI: 1.75-2.12). The suicide risk was higher for non-married individuals aged analysis by gender, non-married men exhibited a greater risk of suicide than their married counterparts in all sub-analyses, but women aged 65 years or older showed no significant association between marital status and suicide. The suicide risk in divorced individuals was higher than for non-married individuals in both men and women. The meta-regression showed that gender, age, and sample size affected between-study variation. The results of the study indicated that non-married individuals have an aggregate higher suicide risk than married ones. In addition, gender and age were confirmed as important moderating factors in the relationship between marital status and suicide. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kepler AutoRegressive Planet Search
Caceres, Gabriel Antonio; Feigelson, Eric
2016-01-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real
An alternative method to achieve metrological confirmation in measurement process
Villeta, M.; Rubio, E. M.; Sanz, A.; Sevilla, L.
2012-04-01
Metrological confirmation process must be designed and implemented to ensure that metrological characteristics of the measurement system meet metrological requirements of the measurement process. The aim of this paper is to present an alternative method to the traditional metrological requirements about the relationship between tolerance and measurement uncertainty, to develop such confirmation processes. The proposed way to metrological confirmation considers a given inspection task of the measurement process into the manufacturing system, and it is based on the Index of Contamination of the Capability, ICC. Metrological confirmation process is then developed taking into account the producer risks and economic considerations on this index. As a consequence, depending on the capability of the manufacturing process, the measurement system will be or will not be in adequate state of metrological confirmation for the measurement process.
Regression of environmental noise in LIGO data
International Nuclear Information System (INIS)
Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G
2015-01-01
We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)
Pathological assessment of liver fibrosis regression
Directory of Open Access Journals (Sweden)
WANG Bingqiong
2017-03-01
Full Text Available Hepatic fibrosis is the common pathological outcome of chronic hepatic diseases. An accurate assessment of fibrosis degree provides an important reference for a definite diagnosis of diseases, treatment decision-making, treatment outcome monitoring, and prognostic evaluation. At present, many clinical studies have proven that regression of hepatic fibrosis and early-stage liver cirrhosis can be achieved by effective treatment, and a correct evaluation of fibrosis regression has become a hot topic in clinical research. Liver biopsy has long been regarded as the gold standard for the assessment of hepatic fibrosis, and thus it plays an important role in the evaluation of fibrosis regression. This article reviews the clinical application of current pathological staging systems in the evaluation of fibrosis regression from the perspectives of semi-quantitative scoring system, quantitative approach, and qualitative approach, in order to propose a better pathological evaluation system for the assessment of fibrosis regression.
Should metacognition be measured by logistic regression?
Rausch, Manuel; Zehetleitner, Michael
2017-03-01
Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.
Jernberg, Tomas; Lindahl, Bertil; James, Stefan; Larsson, Anders; Hansson, Lars-Olof; Wallentin, Lars
2004-10-19
Patients with suspected or confirmed non-ST-elevation acute coronary syndrome (ACS) constitute a large and heterogeneous group. Measurements of renal function such as serum creatinine and estimation of creatinine clearance carry independent prognostic information in this population. Cystatin C is a new and better marker of renal function than creatinine. The aim was therefore to evaluate the prognostic value of cystatin C in this population. Cystatin C was analyzed on admission in 726 patients admitted because of symptoms suggestive of an acute coronary syndrome and no ST-segment elevations. Patients were followed up with regard to death and myocardial infarction for a median of 40 and 6 months, respectively. The median cystatin C level was 1.00 mg/L (25th to 75th percentile, 0.83 to 1.24 mg/L). The risk of death during follow-up increased with increasing levels of cystatin C. In the group with non-ST-elevation ACS, patients in the second, third, and fourth quartiles had a relative risk of subsequent death of 1.8 (95% CI, 0.6 to 5.3), 3.2 (95% CI, 1.2 to 8.5), and 11.7 (95% CI, 4.7 to 29.3) compared with the lowest quartile. In Cox regression models including well-known predictors of outcome, cystatin C level was independently associated with mortality but not with the risk of subsequent myocardial infarction. In a comparison of the markers of renal function in receiver-operating curve analyses, cystatin C had the best ability to discriminate between survivors and nonsurvivors. A single measurement of cystatin C will substantially improve the early risk stratification of patients with suspected or confirmed non-ST-elevation ACS.
Automatic selection of indicators in a fully saturated regression
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren; Santos, Carlos
2008-01-01
We consider selecting a regression model, using a variant of Gets, when there are more variables than observations, in the special case that the variables are impulse dummies (indicators) for every observation. We show that the setting is unproblematic if tackled appropriately, and obtain the fin...... the finite-sample distribution of estimators of the mean and variance in a simple location-scale model under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution, and shows power against an alternative of interest....
National Research Council Canada - National Science Library
Pfleiderer, Elaine M; Scroggins, Cheryl L; Manning, Carol A
2009-01-01
Two separate logistic regression analyses were conducted for low- and high-altitude sectors to determine whether a set of dynamic sector characteristics variables could reliably discriminate between operational error (OE...
Easy methods for extracting individual regression slopes: Comparing SPSS, R, and Excel
Directory of Open Access Journals (Sweden)
Roland Pfister
2013-10-01
Full Text Available Three different methods for extracting coefficientsof linear regression analyses are presented. The focus is on automatic and easy-to-use approaches for common statistical packages: SPSS, R, and MS Excel / LibreOffice Calc. Hands-on examples are included for each analysis, followed by a brief description of how a subsequent regression coefficient analysis is performed.
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
Logistic Regression in the Identification of Hazards in Construction
Drozd, Wojciech
2017-10-01
The construction site and its elements create circumstances that are conducive to the formation of risks to safety during the execution of works. Analysis indicates the critical importance of these factors in the set of characteristics that describe the causes of accidents in the construction industry. This article attempts to analyse the characteristics related to the construction site, in order to indicate their importance in defining the circumstances of accidents at work. The study includes sites inspected in 2014 - 2016 by the employees of the District Labour Inspectorate in Krakow (Poland). The analysed set of detailed (disaggregated) data includes both quantitative and qualitative characteristics. The substantive task focused on classification modelling in the identification of hazards in construction and identifying those of the analysed characteristics that are important in an accident. In terms of methodology, resource data analysis using statistical classifiers, in the form of logistic regression, was the method used.
Variable and subset selection in PLS regression
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2001-01-01
The purpose of this paper is to present some useful methods for introductory analysis of variables and subsets in relation to PLS regression. We present here methods that are efficient in finding the appropriate variables or subset to use in the PLS regression. The general conclusion...... is that variable selection is important for successful analysis of chemometric data. An important aspect of the results presented is that lack of variable selection can spoil the PLS regression, and that cross-validation measures using a test set can show larger variation, when we use different subsets of X, than...
Applied Regression Modeling A Business Approach
Pardoe, Iain
2012-01-01
An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a
Consumer satisfaction and confirmation of habits of comprehension
DEFF Research Database (Denmark)
Sørensen, Bent; Andersen, Christian; Andersen, Morten Purup
2014-01-01
the formation of consumer satisfaction; the perspective is that of the confirmation paradigm within advertisement research. Inductive advertisements support cognitive habit formation through confirmation, and the confirmation paradigm explains exactly consumer satisfaction with reference to confirmation. Hence......The purpose of this article is twofold: First, within a Peircean framework it shall be demonstrated how there is a relation between the compositional structure of certain types of print advertisements and their bringing about inductive comprehension, and how the consumer can be understood...... as a bundle of habits. It is the assumption that advertising that supports an inductive effect particularly appeals to the cognitive tendency of habit formation in the consumer. Second, it is asked whether advertisements that predominantly invite inductive processes of comprehension also influence...
Detection and confirmation of toxigenic Vibrio cholerae O1 in ...
African Journals Online (AJOL)
2013-08-20
Aug 20, 2013 ... mental water samples, as well as for confirmation of clinical isolates. Keywords: ... Monitoring the presence of V. cholerae in drinking water sources ... have several advantages: they are rapid, sensitive, highly selective and do ...
First confirmed record of Elodea canadensis Michx. (Hydrocharitaceae in Greece
Directory of Open Access Journals (Sweden)
Poulis Georgios
2017-12-01
Full Text Available The paper confirms the presence of Elodea canadensis Michx. in Greece and outlines the history of contradictory relevant reports. This is also the first report of the species′ presence in the transboundary lake Great Prespa.
CERN confirms goal of 2007 start-up for LHC
2005-01-01
Speaking at the 131st session of CERN Council on 17 December 2004, the Director-General, Robert Aymar, confirmed that the top priority is to maintain the goal of starting up the Large Hadron Collider (LHC) in 2007.
NIH study confirms risk factors for male breast cancer
Pooled data from studies of about 2,400 men with breast cancer and 52,000 men without breast cancer confirmed that risk factors for male breast cancer include obesity, a rare genetic condition called Klinefelter syndrome, and gynecomastia.
Scientists confirm delay in testing new CERN particle accelerator
2007-01-01
"Scientists seeking to uncover the secrets of the universe will have to wait a little longer after the CERN laboratory inswitzerland on Monday confirmed a delay in tests of a massive new particle accelerator." (1 page)
Confirmation of the absolute configuration of (−)-aurantioclavine
Behenna, Douglas C.; Krishnan, Shyam; Stoltz, Brian M.
2011-01-01
We confirm our previous assignment of the absolute configuration of (-)-aurantioclavine as 7R by crystallographically characterizing an advanced 3-bromoindole intermediate reported in our previous synthesis. This analysis also provides additional
Linear regression metamodeling as a tool to summarize and present simulation model results.
Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M
2013-10-01
Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.
Vectors, a tool in statistical regression theory
Corsten, L.C.A.
1958-01-01
Using linear algebra this thesis developed linear regression analysis including analysis of variance, covariance analysis, special experimental designs, linear and fertility adjustments, analysis of experiments at different places and times. The determination of the orthogonal projection, yielding
Genetics Home Reference: caudal regression syndrome
... umbilical artery: Further support for a caudal regression-sirenomelia spectrum. Am J Med Genet A. 2007 Dec ... AK, Dickinson JE, Bower C. Caudal dysgenesis and sirenomelia-single centre experience suggests common pathogenic basis. Am ...
Dynamic travel time estimation using regression trees.
2008-10-01
This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...
Two Paradoxes in Linear Regression Analysis
FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong
2016-01-01
Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214
Discriminative Elastic-Net Regularized Linear Regression.
Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen
2017-03-01
In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.
Fuzzy multiple linear regression: A computational approach
Juang, C. H.; Huang, X. H.; Fleming, J. W.
1992-01-01
This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.
Computing multiple-output regression quantile regions
Czech Academy of Sciences Publication Activity Database
Paindaveine, D.; Šiman, Miroslav
2012-01-01
Roč. 56, č. 4 (2012), s. 840-853 ISSN 0167-9473 R&D Projects: GA MŠk(CZ) 1M06047 Institutional research plan: CEZ:AV0Z10750506 Keywords : halfspace depth * multiple-output regression * parametric linear programming * quantile regression Subject RIV: BA - General Mathematics Impact factor: 1.304, year: 2012 http://library.utia.cas.cz/separaty/2012/SI/siman-0376413.pdf
There is No Quantum Regression Theorem
International Nuclear Information System (INIS)
Ford, G.W.; OConnell, R.F.
1996-01-01
The Onsager regression hypothesis states that the regression of fluctuations is governed by macroscopic equations describing the approach to equilibrium. It is here asserted that this hypothesis fails in the quantum case. This is shown first by explicit calculation for the example of quantum Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem. It is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-dissipation theorem. copyright 1996 The American Physical Society
Caudal regression syndrome : a case report
International Nuclear Information System (INIS)
Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun
1998-01-01
Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging
Caudal regression syndrome : a case report
Energy Technology Data Exchange (ETDEWEB)
Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun [Chungang Gil Hospital, Incheon (Korea, Republic of)
1998-07-01
Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging.
Spontaneous regression of metastatic Merkel cell carcinoma.
LENUS (Irish Health Repository)
Hassan, S J
2010-01-01
Merkel cell carcinoma is a rare aggressive neuroendocrine carcinoma of the skin predominantly affecting elderly Caucasians. It has a high rate of local recurrence and regional lymph node metastases. It is associated with a poor prognosis. Complete spontaneous regression of Merkel cell carcinoma has been reported but is a poorly understood phenomenon. Here we present a case of complete spontaneous regression of metastatic Merkel cell carcinoma demonstrating a markedly different pattern of events from those previously published.
Forecasting exchange rates: a robust regression approach
Preminger, Arie; Franck, Raphael
2005-01-01
The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach, based on the S-estimation method, to construct forecasting models that are less sensitive to data contamination by outliers. A robust linear autoregressive (RAR) and a robust neural network (RNN) models are estimated to study the predictabil...
Marginal longitudinal semiparametric regression via penalized splines
Al Kadiri, M.
2010-08-01
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.
Marginal longitudinal semiparametric regression via penalized splines
Al Kadiri, M.; Carroll, R.J.; Wand, M.P.
2010-01-01
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.
Post-processing through linear regression
van Schaeybroeck, B.; Vannitsem, S.
2011-03-01
Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS) method, a new time-dependent Tikhonov regularization (TDTR) method, the total least-square method, a new geometric-mean regression (GM), a recently introduced error-in-variables (EVMOS) method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified. These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise). At long lead times the regression schemes (EVMOS, TDTR) which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.
Post-processing through linear regression
Directory of Open Access Journals (Sweden)
B. Van Schaeybroeck
2011-03-01
Full Text Available Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS method, a new time-dependent Tikhonov regularization (TDTR method, the total least-square method, a new geometric-mean regression (GM, a recently introduced error-in-variables (EVMOS method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified.
These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise. At long lead times the regression schemes (EVMOS, TDTR which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.
Unbalanced Regressions and the Predictive Equation
DEFF Research Database (Denmark)
Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo
Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...... in the theoretical predictive equation by suggesting a data generating process, where returns are generated as linear functions of a lagged latent I(0) risk process. The observed predictor is a function of this latent I(0) process, but it is corrupted by a fractionally integrated noise. Such a process may arise due...... to aggregation or unexpected level shifts. In this setup, the practitioner estimates a misspecified, unbalanced, and endogenous predictive regression. We show that the OLS estimate of this regression is inconsistent, but standard inference is possible. To obtain a consistent slope estimate, we then suggest...
An introduction to using Bayesian linear regression with clinical data.
Baldwin, Scott A; Larson, Michael J
2017-11-01
Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to standard frequentist methods. This article provides researchers with an introduction to fundamental ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to illustrate Bayesian models. Specifically, the models examine the relationship between error-related negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered include: how to set up a regression model in a Bayesian framework, specifying priors, examining convergence of the model, visualizing and interpreting posterior distributions, interval estimates, expected and predicted values, and model comparison tools. We also discuss situations where Bayesian methods can outperform frequentist methods as well has how to specify more complicated regression models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian methods in their own research. We provide data and R code for replicating our analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Covariate Imbalance and Adjustment for Logistic Regression Analysis of Clinical Trial Data
Ciolino, Jody D.; Martin, Reneé H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.
2014-01-01
In logistic regression analysis for binary clinical trial data, adjusted treatment effect estimates are often not equivalent to unadjusted estimates in the presence of influential covariates. This paper uses simulation to quantify the benefit of covariate adjustment in logistic regression. However, International Conference on Harmonization guidelines suggest that covariate adjustment be pre-specified. Unplanned adjusted analyses should be considered secondary. Results suggest that that if adjustment is not possible or unplanned in a logistic setting, balance in continuous covariates can alleviate some (but never all) of the shortcomings of unadjusted analyses. The case of log binomial regression is also explored. PMID:24138438
Economic Analyses of Ware Yam Production in Orlu Agricultural ...
African Journals Online (AJOL)
Economic Analyses of Ware Yam Production in Orlu Agricultural Zone of Imo State. ... International Journal of Agriculture and Rural Development ... statistics, gross margin analysis, marginal analysis and multiple regression analysis. Results ...
The best of both worlds: Phylogenetic eigenvector regression and mapping
Directory of Open Access Journals (Sweden)
José Alexandre Felizola Diniz Filho
2015-09-01
Full Text Available Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In a phylogenetic context, Diniz-Filho et al. (1998 proposed what they called Phylogenetic Eigenvector Regression (PVR, in which pairwise phylogenetic distances among species are submitted to a Principal Coordinate Analysis, and eigenvectors are then used as explanatory variables in regression, correlation or ANOVAs. More recently, a new approach called Phylogenetic Eigenvector Mapping (PEM was proposed, with the main advantage of explicitly incorporating a model-based warping in phylogenetic distance in which an Ornstein-Uhlenbeck (O-U process is fitted to data before eigenvector extraction. Here we compared PVR and PEM in respect to estimated phylogenetic signal, correlated evolution under alternative evolutionary models and phylogenetic imputation, using simulated data. Despite similarity between the two approaches, PEM has a slightly higher prediction ability and is more general than the original PVR. Even so, in a conceptual sense, PEM may provide a technique in the best of both worlds, combining the flexibility of data-driven and empirical eigenfunction analyses and the sounding insights provided by evolutionary models well known in comparative analyses.
On macroeconomic values investigation using fuzzy linear regression analysis
Directory of Open Access Journals (Sweden)
Richard Pospíšil
2017-06-01
Full Text Available The theoretical background for abstract formalization of the vague phenomenon of complex systems is the fuzzy set theory. In the paper, vague data is defined as specialized fuzzy sets - fuzzy numbers and there is described a fuzzy linear regression model as a fuzzy function with fuzzy numbers as vague parameters. To identify the fuzzy coefficients of the model, the genetic algorithm is used. The linear approximation of the vague function together with its possibility area is analytically and graphically expressed. A suitable application is performed in the tasks of the time series fuzzy regression analysis. The time-trend and seasonal cycles including their possibility areas are calculated and expressed. The examples are presented from the economy field, namely the time-development of unemployment, agricultural production and construction respectively between 2009 and 2011 in the Czech Republic. The results are shown in the form of the fuzzy regression models of variables of time series. For the period 2009-2011, the analysis assumptions about seasonal behaviour of variables and the relationship between them were confirmed; in 2010, the system behaved fuzzier and the relationships between the variables were vaguer, that has a lot of causes, from the different elasticity of demand, through state interventions to globalization and transnational impacts.
Johnson, Suzanne; Price, Matthew; Mehta, Natasha; Anderson, Page L
2014-08-19
There are high attrition rates observed in efficacy studies for social anxiety disorder, and research has not identified consistent nor theoretically meaningful predictors of dropout. Pre-treatment symptom severity and demographic factors, such as age and gender, are sometimes predictive of dropout. The current study examines a theoretically meaningful predictor of attrition based on experiences associated with social group membership rather than differences between social group categories--fear of confirming stereotypes. This is a secondary data analysis of a randomized controlled trial comparing two cognitive behavioral treatments for social anxiety disorder: virtual reality exposure therapy and exposure group therapy. Participants (N = 74) with a primary diagnosis of social anxiety disorder who were eligible to participate in the parent study and who self-identified as either "African American" (n = 31) or "Caucasian" (n = 43) completed standardized self-report measures of stereotype confirmation concerns (SCC) and social anxiety symptoms as part of a pre-treatment assessment battery. Hierarchical logistic regression showed that greater stereotype confirmation concerns were associated with higher dropout from therapy--race, age, gender, and pre-treatment symptom severity were not. Group treatment also was associated with higher dropout. These findings urge further research on theoretically meaningful predictors of attrition and highlight the importance of addressing cultural variables, such as the experience of stereotype confirmation concerns, during treatment of social anxiety to minimize dropout from therapy.
Racial athletic stereotype confirmation in college football recruiting.
Thomas, Grant; Good, Jessica J; Gross, Alexi R
2015-01-01
The present study tested real-world racial stereotype use in the context of college athletic recruiting. Stereotype confirmation suggests that observers use stereotypes as hypotheses and interpret relevant evidence in a biased way that confirms their stereotypes. Shifting standards suggest that the evaluative standard to which we hold a target changes as a function of their group membership. We examined whether stereotype confirmation and shifting standards effects would be seen in college football coaches during recruiting. College football coaches evaluated a Black or White player on several attributes and made both zero- and non-zero-sum allocations. Results suggested that coaches used the evidence presented to develop biased subjective evaluations of the players based on race while still maintaining equivalent objective evaluations. Coaches also allocated greater overall resources to the Black recruit than the White recruit.
Molecular Confirmation of Salmonella typhimuriumin Poultry from Kathmandu Valley
Directory of Open Access Journals (Sweden)
Sanjeev Kumar Adhikari
2018-05-01
Full Text Available A prevalence study was carried to isolate Salmonella typhimurium from blood (n= 50 and gut samples (n=100 of poultry in Kathmandu valley during early 2016. Salmonella typhimurium bacteria isolated in the selective media were biochemically confirmed based on Bergey’s Manual. Two sets of oligonucleotide primers-the genus specific 16S rRNA and the organism specific invA were employed for molecular level confirmation by the Polymerase Chain Reaction (PCR assay. The amplified fragments in 1% agarose gel observed at 406bp and 285bp, respectively confirmed the isolates to be Salmonella typhimurium. Of 150 samples tested, Salmonella typhimurium were isolated from 49 samples, among which nine were from blood (18% and forty from the gut (40%. The present result indicated an alarmingly high level of Salmonella typhimurium, which can result inzoonotic infection in humans owing to increased contact with poultry and consumption of poultry products in the Kathmandu valley.
Eric Besson: the financial advantage of nuclear energy is confirmed
International Nuclear Information System (INIS)
Anon.
2012-01-01
The French minister of energy, E. Besson said that the study of the Court of Auditors on the real costs of nuclear energy confirmed the competitiveness of nuclear power. The Court of Auditors confirmed also that public expenditures in favor of nuclear energy are balanced by the gain through the tax on nuclear facilities. The Court of Auditors confirms also that dismantlement charges and charges for the management of radioactive wastes are included in the present costs of nuclear energy at an adequate level with today's knowledge. The total cost of nuclear energy is very competitive, it ranges form 32.5 euros/MWh to 49.5 euros/MWh according to the cost accounting method used. One of major parameters for cost elaboration is the knowledge of the lengths of the operating life of the power plant. The longer the extension is, the lower is the investment cost. (A.C.)
Time series regression model for infectious disease and weather.
Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro
2015-10-01
Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Regression analysis using dependent Polya trees.
Schörgendorfer, Angela; Branscum, Adam J
2013-11-30
Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.
Is past life regression therapy ethical?
Andrade, Gabriel
2017-01-01
Past life regression therapy is used by some physicians in cases with some mental diseases. Anxiety disorders, mood disorders, and gender dysphoria have all been treated using life regression therapy by some doctors on the assumption that they reflect problems in past lives. Although it is not supported by psychiatric associations, few medical associations have actually condemned it as unethical. In this article, I argue that past life regression therapy is unethical for two basic reasons. First, it is not evidence-based. Past life regression is based on the reincarnation hypothesis, but this hypothesis is not supported by evidence, and in fact, it faces some insurmountable conceptual problems. If patients are not fully informed about these problems, they cannot provide an informed consent, and hence, the principle of autonomy is violated. Second, past life regression therapy has the great risk of implanting false memories in patients, and thus, causing significant harm. This is a violation of the principle of non-malfeasance, which is surely the most important principle in medical ethics.
Thumb rule of visual angle: a new confirmation.
Groot, C; Ortega, F; Beltran, F S
1994-02-01
The classical thumb rule of visual angle was reexamined. Hence, the visual angle was measured as a function of a thumb's width and the distance between eye and thumb. The measurement of a thumb's width when held at arm's length was taken on 67 second-year students of psychology. The visual angle was about 2 degrees as R. P. O'Shea confirmed in 1991. Also, we confirmed a linear relationship between the size of a thumb's width at arm's length and the visual angle.
Interpret with caution: multicollinearity in multiple regression of cognitive data.
Morrison, Catriona M
2003-08-01
Shibihara and Kondo in 2002 reported a reanalysis of the 1997 Kanji picture-naming data of Yamazaki, Ellis, Morrison, and Lambon-Ralph in which independent variables were highly correlated. Their addition of the variable visual familiarity altered the previously reported pattern of results, indicating that visual familiarity, but not age of acquisition, was important in predicting Kanji naming speed. The present paper argues that caution should be taken when drawing conclusions from multiple regression analyses in which the independent variables are so highly correlated, as such multicollinearity can lead to unreliable output.
Preference learning with evolutionary Multivariate Adaptive Regression Spline model
DEFF Research Database (Denmark)
Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll
2015-01-01
This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for function approximation as well as being relatively easy to interpret. MARS models are evolved based on their efficiency in learning pairwise data. The method is tested on two datasets that collectively provide pairwise preference data of five cognitive states expressed by users. The method is analysed...
Nonparametric regression using the concept of minimum energy
International Nuclear Information System (INIS)
Williams, Mike
2011-01-01
It has recently been shown that an unbinned distance-based statistic, the energy, can be used to construct an extremely powerful nonparametric multivariate two sample goodness-of-fit test. An extension to this method that makes it possible to perform nonparametric regression using multiple multivariate data sets is presented in this paper. The technique, which is based on the concept of minimizing the energy of the system, permits determination of parameters of interest without the need for parametric expressions of the parent distributions of the data sets. The application and performance of this new method is discussed in the context of some simple example analyses.
On Solving Lq-Penalized Regressions
Directory of Open Access Journals (Sweden)
Tracy Zhou Wu
2007-01-01
Full Text Available Lq-penalized regression arises in multidimensional statistical modelling where all or part of the regression coefficients are penalized to achieve both accuracy and parsimony of statistical models. There is often substantial computational difficulty except for the quadratic penalty case. The difficulty is partly due to the nonsmoothness of the objective function inherited from the use of the absolute value. We propose a new solution method for the general Lq-penalized regression problem based on space transformation and thus efficient optimization algorithms. The new method has immediate applications in statistics, notably in penalized spline smoothing problems. In particular, the LASSO problem is shown to be polynomial time solvable. Numerical studies show promise of our approach.
Refractive regression after laser in situ keratomileusis.
Yan, Mabel K; Chang, John Sm; Chan, Tommy Cy
2018-04-26
Uncorrected refractive errors are a leading cause of visual impairment across the world. In today's society, laser in situ keratomileusis (LASIK) has become the most commonly performed surgical procedure to correct refractive errors. However, regression of the initially achieved refractive correction has been a widely observed phenomenon following LASIK since its inception more than two decades ago. Despite technological advances in laser refractive surgery and various proposed management strategies, post-LASIK regression is still frequently observed and has significant implications for the long-term visual performance and quality of life of patients. This review explores the mechanism of refractive regression after both myopic and hyperopic LASIK, predisposing risk factors and its clinical course. In addition, current preventative strategies and therapies are also reviewed. © 2018 Royal Australian and New Zealand College of Ophthalmologists.
Influence diagnostics in meta-regression model.
Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua
2017-09-01
This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.
Principal component regression for crop yield estimation
Suryanarayana, T M V
2016-01-01
This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...
Regression Models for Market-Shares
DEFF Research Database (Denmark)
Birch, Kristina; Olsen, Jørgen Kai; Tjur, Tue
2005-01-01
On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put on the interpretat......On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put...... on the interpretation of the parameters in relation to models for the total sales based on discrete choice models.Key words and phrases. MCI model, discrete choice model, market-shares, price elasitcity, regression model....
Shafiq, M. Najeeb
2013-01-01
Using quantile regression analyses, this study examines gender gaps in mathematics, science, and reading in Azerbaijan, Indonesia, Jordan, the Kyrgyz Republic, Qatar, Tunisia, and Turkey among 15-year-old students. The analyses show that girls in Azerbaijan achieve as well as boys in mathematics and science and overachieve in reading. In Jordan,…
The analysis of nonstationary time series using regression, correlation and cointegration
DEFF Research Database (Denmark)
Johansen, Søren
2012-01-01
There are simple well-known conditions for the validity of regression and correlation as statistical tools. We analyse by examples the effect of nonstationarity on inference using these methods and compare them to model based inference using the cointegrated vector autoregressive model. Finally we...... analyse some monthly data from US on interest rates as an illustration of the methods...
The Analysis of Nonstationary Time Series Using Regression, Correlation and Cointegration
Directory of Open Access Journals (Sweden)
Søren Johansen
2012-06-01
Full Text Available There are simple well-known conditions for the validity of regression and correlation as statistical tools. We analyse by examples the effect of nonstationarity on inference using these methods and compare them to model based inference using the cointegrated vector autoregressive model. Finally we analyse some monthly data from US on interest rates as an illustration of the methods.
On directional multiple-output quantile regression
Czech Academy of Sciences Publication Activity Database
Paindaveine, D.; Šiman, Miroslav
2011-01-01
Roč. 102, č. 2 (2011), s. 193-212 ISSN 0047-259X R&D Projects: GA MŠk(CZ) 1M06047 Grant - others:Commision EC(BE) Fonds National de la Recherche Scientifique Institutional research plan: CEZ:AV0Z10750506 Keywords : multivariate quantile * quantile regression * multiple-output regression * halfspace depth * portfolio optimization * value-at risk Subject RIV: BA - General Mathematics Impact factor: 0.879, year: 2011 http://library.utia.cas.cz/separaty/2011/SI/siman-0364128.pdf
Removing Malmquist bias from linear regressions
Verter, Frances
1993-01-01
Malmquist bias is present in all astronomical surveys where sources are observed above an apparent brightness threshold. Those sources which can be detected at progressively larger distances are progressively more limited to the intrinsically luminous portion of the true distribution. This bias does not distort any of the measurements, but distorts the sample composition. We have developed the first treatment to correct for Malmquist bias in linear regressions of astronomical data. A demonstration of the corrected linear regression that is computed in four steps is presented.
Robust median estimator in logisitc regression
Czech Academy of Sciences Publication Activity Database
Hobza, T.; Pardo, L.; Vajda, Igor
2008-01-01
Roč. 138, č. 12 (2008), s. 3822-3840 ISSN 0378-3758 R&D Projects: GA MŠk 1M0572 Grant - others:Instituto Nacional de Estadistica (ES) MPO FI - IM3/136; GA MŠk(CZ) MTM 2006-06872 Institutional research plan: CEZ:AV0Z10750506 Keywords : Logistic regression * Median * Robustness * Consistency and asymptotic normality * Morgenthaler * Bianco and Yohai * Croux and Hasellbroeck Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.679, year: 2008 http://library.utia.cas.cz/separaty/2008/SI/vajda-robust%20median%20estimator%20in%20logistic%20regression.pdf
Quantifying Shapes: Mathematical Techniques for Analysing Visual Representations of Sound and Music
Directory of Open Access Journals (Sweden)
Genevieve L. Noyce
2013-12-01
Full Text Available Research on auditory-visual correspondences has a long tradition but innovative experimental paradigms and analytic tools are sparse. In this study, we explore different ways of analysing real-time visual representations of sound and music drawn by both musically-trained and untrained individuals. To that end, participants' drawing responses captured by an electronic graphics tablet were analysed using various regression, clustering, and classification techniques. Results revealed that a Gaussian process (GP regression model with a linear plus squared-exponential covariance function was able to model the data sufficiently, whereas a simpler GP was not a good fit. Spectral clustering analysis was the best of a variety of clustering techniques, though no strong groupings are apparent in these data. This was confirmed by variational Bayes analysis, which only fitted one Gaussian over the dataset. Slight trends in the optimised hyperparameters between musically-trained and untrained individuals allowed for the building of a successful GP classifier that differentiated between these two groups. In conclusion, this set of techniques provides useful mathematical tools for analysing real-time visualisations of sound and can be applied to similar datasets as well.
Directory of Open Access Journals (Sweden)
Susmaga Robert
2018-03-01
Full Text Available The paper considers particular interestingness measures, called confirmation measures (also known as Bayesian confirmation measures, used for the evaluation of “if evidence, then hypothesis” rules. The agreement of such measures with a statistically sound (significant dependency between the evidence and the hypothesis in data is thoroughly investigated. The popular confirmation measures were not defined to possess such form of agreement. However, in error-prone environments, potential lack of agreement may lead to undesired effects, e.g. when a measure indicates either strong confirmation or strong disconfirmation, while in fact there is only weak dependency between the evidence and the hypothesis. In order to detect and prevent such situations, the paper employs a coefficient allowing to assess the level of dependency between the evidence and the hypothesis in data, and introduces a method of quantifying the level of agreement (referred to as a concordance between this coefficient and the measure being analysed. The concordance is characterized and visualised using specialized histograms, scatter-plots, etc. Moreover, risk-related interpretations of the concordance are introduced. Using a set of 12 confirmation measures, the paper presents experiments designed to establish the actual concordance as well as other useful characteristics of the measures.
DEFF Research Database (Denmark)
Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove
2007-01-01
the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating......The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...
Confirming psychogenic nonepileptic seizures with video-EEG: sex matters.
Noe, Katherine H; Grade, Madeline; Stonnington, Cynthia M; Driver-Dunckley, Erika; Locke, Dona E C
2012-03-01
The influence of gender on psychogenic nonepileptic seizures (PNES) diagnosis was examined retrospectively in 439 subjects undergoing video-EEG (vEEG) for spell classification, of whom 142 women and 42 men had confirmed PNES. The epileptologist's predicted diagnosis was correct in 72% overall. Confirmed epilepsy was correctly predicted in 94% men and 88% women. In contrast, confirmed PNES was accurately predicted in 86% women versus 61% men (p=0.003). Sex-based differences in likelihood of an indeterminate admission were not observed for predicted epilepsy or physiologic events, but were for predicted PNES (39% men, 12% women, p=0.0002). More frequent failure to record spells in men than women with predicted PNES was not explained by spell frequency, duration of monitoring, age, medication use, or personality profile. PNES are not only less common in men, but also more challenging to recognize in the clinic, and even when suspected more difficult to confirm with vEEG. Copyright Â© 2012 Elsevier Inc. All rights reserved.
Confirmation of the absolute configuration of (−)-aurantioclavine
Behenna, Douglas C.
2011-04-01
We confirm our previous assignment of the absolute configuration of (-)-aurantioclavine as 7R by crystallographically characterizing an advanced 3-bromoindole intermediate reported in our previous synthesis. This analysis also provides additional support for our model of enantioinduction in the palladium(II)-catalyzed oxidative kinetic resolution of secondary alcohols. © 2010 Elsevier Ltd. All rights reserved.
Confirmation of antibodies against L-tryptophan-like epitope in ...
African Journals Online (AJOL)
Rachel Oneya
2016-09-07
Sep 7, 2016 ... controls confirming previous results obtained with a lower number of patients in Congo. ... searching trypanosomes and white blood cells count in CSF: 13 in ... The well plate was then filled with 200 µL of diluted (2,000-fold).
Exploratory laparotomy in the management of confirmed necrotizing ...
African Journals Online (AJOL)
confirmed NEC who undergo laparotomy remain high in infants despite optimal medical and surgical care. Ann. Pediatr Surg 11:123–126 c 2015 Annals of Pediatric. Surgery. ... Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK e-mail: ... The institutional review board of the John Radcliffe. Hospital, Oxford ...
18 CFR 300.10 - Application for confirmation and approval.
2010-04-01
... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS CONFIRMATION AND APPROVAL OF THE RATES OF FEDERAL POWER MARKETING ADMINISTRATIONS Filing Requirements § 300.10... with applicable laws and that it is the lowest possible rate consistent with sound business principles...
Theory-Led Confirmation Bias and Experimental Persona
Allen, Michael
2011-01-01
Questionnaire and interview findings from a survey of three Year 8 (ages 12-13 years) science practical lessons (n = 52) demonstrate how pupils' data collection and inference making were sometimes biased by desires to confirm a personal theory. A variety of behaviours are described where learners knowingly rejected anomalies, manipulated…
Factors associated with child sexual abuse confirmation at forensic examinations
Directory of Open Access Journals (Sweden)
Welington dos Santos Silva
Full Text Available Abstract The aim of this study is identify potential factors associated with child sexual abuse confirmation at forensic examinations. The forensic files of children under 12 years of age reporting sexual abuse at the Nina Rodrigues Institute of Forensic Medicine in Salvador, Bahia, Brazil between January 2008 and December 2009 were reviewed. A multivariate analysis was conducted to identify factors associated with finding evidence of sexual abuse in forensic examinations. The proportion of cases confirmed by the forensic physician based on material evidence was 10.4%. Adjusted analysis showed that the variables place of birth, type of abuse reported, family relationship between the child and the perpetrator, and the interval between the reported abuse and the forensic examination were not independently associated with finding forensic evidence of sexual abuse. A report of penetration was associated with a five-fold greater likelihood of confirmation, while the victim being 10-11 years of age was associated with a two-fold of abuse confirmation than younger children. These findings should be taken into consideration when drawing up guidelines for the multidisciplinary evaluation of children suspected of being victims of sexual abuse and in deciding whether to refer the child for forensic examination.
Psychotherapy of Depression: A Self-Confirmation Model.
Andrews, John D. W.
1989-01-01
Concepts of self-confirmation, interpersonal diagnosis, and prototype construction are used to integrate research and clinical findings concerning depression. Various theoretical accounts and bodies of data that fit within this integrative conceptual framework are examined, and implications for psychotherapy are discussed. (SLD)
Confirmation of radiation pressure effects in laser--plasma interactions
International Nuclear Information System (INIS)
Attwood, D.T.; Sweeney, D.W.; Auerbach, J.M.; Lee, P.H.Y.
1977-10-01
Interferometric data resolved in 1μm and 15 psec confirms the dominant role of radiation pressure during high intensity laser-plasma interactions. Specifically observed manifestations include electron density profiles steepened to 1 μm scale length, clearly defined upper and lower density shelves, and small and large scale deformation of transverse isodensity surfaces
Laboratory-confirmed Congenital Rubella Syndrome at the ...
African Journals Online (AJOL)
Esem
ORIGINAL ARTICLE. Laboratory-confirmed Congenital Rubella Syndrome at the University Teaching Hospital in Lusaka,. Zambia-Case Reports. 1,2. 3. 3. 4 ... microcephaly. Rubella Immunoglobulin M (IgM) results were positive. The third case, a girl, was seen at twelve weeks and brought in for slow growth rate. On.
Confirmation of antibodies against L-tryptophan-like epitope in ...
African Journals Online (AJOL)
Confirmation of antibodies against L-tryptophan-like epitope in human African trypanosomosis serological diagnostic. ... number of patients in Congo. A diagnostic test based on this synthetic epitope, especially in combination with other tests, might improve the HAT diagnostic test in field conditions. Key words: Tryptophan ...
Contesting Citizenship: Comparative Analyses
DEFF Research Database (Denmark)
Siim, Birte; Squires, Judith
2007-01-01
importance of particularized experiences and multiple ineequality agendas). These developments shape the way citizenship is both practiced and analysed. Mapping neat citizenship modles onto distinct nation-states and evaluating these in relation to formal equality is no longer an adequate approach....... Comparative citizenship analyses need to be considered in relation to multipleinequalities and their intersections and to multiple governance and trans-national organisinf. This, in turn, suggests that comparative citizenship analysis needs to consider new spaces in which struggles for equal citizenship occur...
Demonstration of a Fiber Optic Regression Probe
Korman, Valentin; Polzin, Kurt A.
2010-01-01
The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for
Directory of Open Access Journals (Sweden)
Irene Fernández Monsalve
2014-08-01
Full Text Available During language comprehension, semantic contextual information is used to generate expectations about upcoming items. This has been commonly studied through the N400 event-related potential (ERP, as a measure of facilitated lexical retrieval. However, the associative relationships in multi-word expressions (MWE may enable the generation of a categorical expectation, leading to lexical retrieval before target word onset. Processing of the target word would thus reflect a target-identification mechanism, possibly indexed by a P3 ERP component. However, given their time overlap (200-500 ms post-stimulus onset, differentiating between N400/P3 ERP responses (averaged over multiple linguistically variable trials is problematic. In the present study, we analyzed EEG data from a previous experiment, which compared ERP responses to highly expected words that were placed either in a MWE or a regular non-fixed compositional context, and to low predictability controls. We focused on oscillatory dynamics and regression analyses, in order to dissociate between the two contexts by modeling the electrophysiological response as a function of item-level parameters. A significant interaction between word position and condition was found in the regression model for power in a theta range (~7-9 Hz, providing evidence for the presence of qualitative differences between conditions. Power levels within this band were lower for MWE than compositional contexts then the target word appeared later on in the sentence, confirming that in the former lexical retrieval would have taken place before word onset. On the other hand, gamma-power (~50-70 Hz was also modulated by predictability of the item in all conditions, which is interpreted as an index of a similar `matching' sub-step for both types of contexts, binding an expected representation and the external input.
Statistical approach for selection of regression model during validation of bioanalytical method
Directory of Open Access Journals (Sweden)
Natalija Nakov
2014-06-01
Full Text Available The selection of an adequate regression model is the basis for obtaining accurate and reproducible results during the bionalytical method validation. Given the wide concentration range, frequently present in bioanalytical assays, heteroscedasticity of the data may be expected. Several weighted linear and quadratic regression models were evaluated during the selection of the adequate curve fit using nonparametric statistical tests: One sample rank test and Wilcoxon signed rank test for two independent groups of samples. The results obtained with One sample rank test could not give statistical justification for the selection of linear vs. quadratic regression models because slight differences between the error (presented through the relative residuals were obtained. Estimation of the significance of the differences in the RR was achieved using Wilcoxon signed rank test, where linear and quadratic regression models were treated as two independent groups. The application of this simple non-parametric statistical test provides statistical confirmation of the choice of an adequate regression model.
Method for nonlinear exponential regression analysis
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Measurement Error in Education and Growth Regressions
Portela, Miguel; Alessie, Rob; Teulings, Coen
2010-01-01
The use of the perpetual inventory method for the construction of education data per country leads to systematic measurement error. This paper analyzes its effect on growth regressions. We suggest a methodology for correcting this error. The standard attenuation bias suggests that using these
The M Word: Multicollinearity in Multiple Regression.
Morrow-Howell, Nancy
1994-01-01
Notes that existence of substantial correlation between two or more independent variables creates problems of multicollinearity in multiple regression. Discusses multicollinearity problem in social work research in which independent variables are usually intercorrelated. Clarifies problems created by multicollinearity, explains detection of…
Regression Discontinuity Designs Based on Population Thresholds
DEFF Research Database (Denmark)
Eggers, Andrew C.; Freier, Ronny; Grembi, Veronica
In many countries, important features of municipal government (such as the electoral system, mayors' salaries, and the number of councillors) depend on whether the municipality is above or below arbitrary population thresholds. Several papers have used a regression discontinuity design (RDD...
Deriving the Regression Line with Algebra
Quintanilla, John A.
2017-01-01
Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…
Piecewise linear regression splines with hyperbolic covariates
International Nuclear Information System (INIS)
Cologne, John B.; Sposto, Richard
1992-09-01
Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)
Targeting: Logistic Regression, Special Cases and Extensions
Directory of Open Access Journals (Sweden)
Helmut Schaeben
2014-12-01
Full Text Available Logistic regression is a classical linear model for logit-transformed conditional probabilities of a binary target variable. It recovers the true conditional probabilities if the joint distribution of predictors and the target is of log-linear form. Weights-of-evidence is an ordinary logistic regression with parameters equal to the differences of the weights of evidence if all predictor variables are discrete and conditionally independent given the target variable. The hypothesis of conditional independence can be tested in terms of log-linear models. If the assumption of conditional independence is violated, the application of weights-of-evidence does not only corrupt the predicted conditional probabilities, but also their rank transform. Logistic regression models, including the interaction terms, can account for the lack of conditional independence, appropriate interaction terms compensate exactly for violations of conditional independence. Multilayer artificial neural nets may be seen as nested regression-like models, with some sigmoidal activation function. Most often, the logistic function is used as the activation function. If the net topology, i.e., its control, is sufficiently versatile to mimic interaction terms, artificial neural nets are able to account for violations of conditional independence and yield very similar results. Weights-of-evidence cannot reasonably include interaction terms; subsequent modifications of the weights, as often suggested, cannot emulate the effect of interaction terms.
Functional data analysis of generalized regression quantiles
Guo, Mengmeng
2013-11-05
Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.
Regression testing Ajax applications : Coping with dynamism
Roest, D.; Mesbah, A.; Van Deursen, A.
2009-01-01
Note: This paper is a pre-print of: Danny Roest, Ali Mesbah and Arie van Deursen. Regression Testing AJAX Applications: Coping with Dynamism. In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation (ICST’10), Paris, France. IEEE Computer Society, 2010.
Group-wise partial least square regression
Camacho, José; Saccenti, Edoardo
2018-01-01
This paper introduces the group-wise partial least squares (GPLS) regression. GPLS is a new sparse PLS technique where the sparsity structure is defined in terms of groups of correlated variables, similarly to what is done in the related group-wise principal component analysis. These groups are
Functional data analysis of generalized regression quantiles
Guo, Mengmeng; Zhou, Lan; Huang, Jianhua Z.; Hä rdle, Wolfgang Karl
2013-01-01
Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.
Finite Algorithms for Robust Linear Regression
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun
1990-01-01
The Huber M-estimator for robust linear regression is analyzed. Newton type methods for solution of the problem are defined and analyzed, and finite convergence is proved. Numerical experiments with a large number of test problems demonstrate efficiency and indicate that this kind of approach may...
Function approximation with polynomial regression slines
International Nuclear Information System (INIS)
Urbanski, P.
1996-01-01
Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)
Assessing risk factors for periodontitis using regression
Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa
2013-10-01
Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.
Predicting Social Trust with Binary Logistic Regression
Adwere-Boamah, Joseph; Hufstedler, Shirley
2015-01-01
This study used binary logistic regression to predict social trust with five demographic variables from a national sample of adult individuals who participated in The General Social Survey (GSS) in 2012. The five predictor variables were respondents' highest degree earned, race, sex, general happiness and the importance of personally assisting…
Yet another look at MIDAS regression
Ph.H.B.F. Franses (Philip Hans)
2016-01-01
textabstractA MIDAS regression involves a dependent variable observed at a low frequency and independent variables observed at a higher frequency. This paper relates a true high frequency data generating process, where also the dependent variable is observed (hypothetically) at the high frequency,
Revisiting Regression in Autism: Heller's "Dementia Infantilis"
Westphal, Alexander; Schelinski, Stefanie; Volkmar, Fred; Pelphrey, Kevin
2013-01-01
Theodor Heller first described a severe regression of adaptive function in normally developing children, something he termed dementia infantilis, over one 100 years ago. Dementia infantilis is most closely related to the modern diagnosis, childhood disintegrative disorder. We translate Heller's paper, Uber Dementia Infantilis, and discuss…
Fast multi-output relevance vector regression
Ha, Youngmin
2017-01-01
This paper aims to decrease the time complexity of multi-output relevance vector regression from O(VM^3) to O(V^3+M^3), where V is the number of output dimensions, M is the number of basis functions, and V
Regression Equations for Birth Weight Estimation using ...
African Journals Online (AJOL)
In this study, Birth Weight has been estimated from anthropometric measurements of hand and foot. Linear regression equations were formed from each of the measured variables. These simple equations can be used to estimate Birth Weight of new born babies, in order to identify those with low birth weight and referred to ...
Superquantile Regression: Theory, Algorithms, and Applications
2014-12-01
Highway, Suite 1204, Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1...Navy submariners, reliability engineering, uncertainty quantification, and financial risk management . Superquantile, superquantile regression...Royset Carlos F. Borges Associate Professor of Operations Research Dissertation Supervisor Professor of Applied Mathematics Lyn R. Whitaker Javier
transformation of independent variables in polynomial regression ...
African Journals Online (AJOL)
Ada
preferable when possible to work with a simple functional form in transformed variables rather than with a more complicated form in the original variables. In this paper, it is shown that linear transformations applied to independent variables in polynomial regression models affect the t ratio and hence the statistical ...
Multiple Linear Regression: A Realistic Reflector.
Nutt, A. T.; Batsell, R. R.
Examples of the use of Multiple Linear Regression (MLR) techniques are presented. This is done to show how MLR aids data processing and decision-making by providing the decision-maker with freedom in phrasing questions and by accurately reflecting the data on hand. A brief overview of the rationale underlying MLR is given, some basic definitions…
Risico-analyse brandstofpontons
Uijt de Haag P; Post J; LSO
2001-01-01
Voor het bepalen van de risico's van brandstofpontons in een jachthaven is een generieke risico-analyse uitgevoerd. Er is een referentiesysteem gedefinieerd, bestaande uit een betonnen brandstofponton met een relatief grote inhoud en doorzet. Aangenomen is dat de ponton gelegen is in een
Energy Technology Data Exchange (ETDEWEB)
Berry, A; Przybylski, M M; Sumner, I [Science Research Council, Daresbury (UK). Daresbury Lab.
1982-10-01
A fast multichannel analyser (MCA) capable of sampling at a rate of 10/sup 7/ s/sup -1/ has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format.
International Nuclear Information System (INIS)
Berry, A.; Przybylski, M.M.; Sumner, I.
1982-01-01
A fast multichannel analyser (MCA) capable of sampling at a rate of 10 7 s -1 has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format. (orig.)
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
Directory of Open Access Journals (Sweden)
Minh Vu Trieu
2017-03-01
Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four (4) statistical regression models (two linear and two nonlinear) are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2) of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.
Physics constrained nonlinear regression models for time series
International Nuclear Information System (INIS)
Majda, Andrew J; Harlim, John
2013-01-01
A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)
Directory of Open Access Journals (Sweden)
Marjan Čeh
2018-05-01
Full Text Available The goal of this study is to analyse the predictive performance of the random forest machine learning technique in comparison to commonly used hedonic models based on multiple regression for the prediction of apartment prices. A data set that includes 7407 records of apartment transactions referring to real estate sales from 2008–2013 in the city of Ljubljana, the capital of Slovenia, was used in order to test and compare the predictive performances of both models. Apparent challenges faced during modelling included (1 the non-linear nature of the prediction assignment task; (2 input data being based on transactions occurring over a period of great price changes in Ljubljana whereby a 28% decline was noted in six consecutive testing years; and (3 the complex urban form of the case study area. Available explanatory variables, organised as a Geographic Information Systems (GIS ready dataset, including the structural and age characteristics of the apartments as well as environmental and neighbourhood information were considered in the modelling procedure. All performance measures (R2 values, sales ratios, mean average percentage error (MAPE, coefficient of dispersion (COD revealed significantly better results for predictions obtained by the random forest method, which confirms the prospective of this machine learning technique on apartment price prediction.
Gelsomino, Sandro; Lucà, Fabiana; Parise, Orlando; Lorusso, Roberto; Rao, Carmelo Massimiliano; Vizzardi, Enrico; Gensini, Gian Franco; Maessen, Jos G
2013-11-01
We explored the influence of global longitudinal strain (GLS) measured with two-dimensional speckle-tracking echocardiography on left ventricular mass regression (LVMR) in patients with pure aortic stenosis (AS) and normal left ventricular function undergoing aortic valve replacement (AVR). The study population included 83 patients with severe AS (aortic valve area regression (all P regression in patients with pure AS undergoing AVR. Our findings must be confirmed by further larger studies.
Tax System in Poland – Progressive or Regressive?
Directory of Open Access Journals (Sweden)
Jacek Tomkiewicz
2016-03-01
Full Text Available Purpose: To analyse the impact of the Polish fiscal regime on the general revenue of the country, and specifically to establish whether the cumulative tax burden borne by Polish households is progressive or regressive.Methodology: On the basis of Eurostat and OECD data, the author has analysed fiscal regimes in EU Member States and in OECD countries. The tax burden of households within different income groups has also been examined pursuant to applicable fiscal laws and data pertaining to the revenue and expenditure of households published by the Central Statistical Office (CSO.Conclusions: The fiscal regime in Poland is regressive; that is, the relative fiscal burden decreases as the taxpayer’s income increases.Research Implications: The article contributes to the on-going discussion on social cohesion, in particular with respect to economic policy instruments aimed at the redistribution of income within the economy.Originality: The author presents an analysis of data pertaining to fiscal policies in EU Member States and OECD countries and assesses the impact of the legal environment (fiscal regime and social security system in Poland on income distribution within the economy. The impact of the total tax burden (direct and indirect taxes, social security contributions on the economic situation of households from different income groups has been calculated using an original formula.
Detecting overdispersion in count data: A zero-inflated Poisson regression analysis
Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Nor, Maria Elena; Mohamed, Maryati; Ismail, Norradihah
2017-09-01
This study focusing on analysing count data of butterflies communities in Jasin, Melaka. In analysing count dependent variable, the Poisson regression model has been known as a benchmark model for regression analysis. Continuing from the previous literature that used Poisson regression analysis, this study comprising the used of zero-inflated Poisson (ZIP) regression analysis to gain acute precision on analysing the count data of butterfly communities in Jasin, Melaka. On the other hands, Poisson regression should be abandoned in the favour of count data models, which are capable of taking into account the extra zeros explicitly. By far, one of the most popular models include ZIP regression model. The data of butterfly communities which had been called as the number of subjects in this study had been taken in Jasin, Melaka and consisted of 131 number of subjects visits Jasin, Melaka. Since the researchers are considering the number of subjects, this data set consists of five families of butterfly and represent the five variables involve in the analysis which are the types of subjects. Besides, the analysis of ZIP used the SAS procedure of overdispersion in analysing zeros value and the main purpose of continuing the previous study is to compare which models would be better than when exists zero values for the observation of the count data. The analysis used AIC, BIC and Voung test of 5% level significance in order to achieve the objectives. The finding indicates that there is a presence of over-dispersion in analysing zero value. The ZIP regression model is better than Poisson regression model when zero values exist.
Histopathology confirms white-nose syndrome in bats in Europe.
Pikula, Jiri; Bandouchova, Hana; Novotny, Ladislav; Meteyer, Carol U; Zukal, Jan; Irwin, Nancy R; Zima, Jan; Martínková, Natália
2012-01-01
White-nose syndrome, associated with the fungal skin infection geomycosis, caused regional population collapse in bats in North America. Our results, based on histopathology, show the presence of white-nose syndrome in Europe. Dermatohistopathology on two bats (Myotis myotis) found dead in March 2010 with geomycosis in the Czech Republic had characteristics resembling Geomyces destructans infection in bats confirmed with white-nose syndrome in US hibernacula. In addition, a live M. myotis, biopsied for histopathology during hibernation in April 2011, had typical fungal infection with cupping erosion and invasion of muzzle skin diagnostic for white-nose syndrome and conidiospores identical to G. destructans that were genetically confirmed as G. destructans.
Histopathology confirms white-nose syndrome in bats in Europe
Pikula, J.; Bandouchova, H.; Novotny, L.; Meteyer, C.U.; Zukal, J.; Irwin, N.R.; Zima, J.; Martinkova, N.
2012-01-01
White-nose syndrome, associated with the fungal skin infection geomycosis, caused regional population collapse in bats in North America. Our results, based on histopathology, show the presence of white-nose syndrome in Europe. Dermatohistopathology on two bats (Myotis myotis) found dead in March 2010 with geomycosis in the Czech Republic had characteristics resembling Geomyces destructans infection in bats confirmed with white-nose syndrome in US hibernacula. In addition, a live M. myotis, biopsied for histopathology during hibernation in April 2011, had typical fungal infection with cupping erosion and invasion of muzzle skin diagnostic for white-nose syndrome and conidiospores identical to G. destructans that were genetically confirmed as G. destructans. ?? Wildlife Disease Association 2012.
Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA
Energy Technology Data Exchange (ETDEWEB)
Walters, Mark A.
2013-04-25
The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour
Confirmation tests of PWR surveillance capsule shipping container
International Nuclear Information System (INIS)
Tomita, N.; Ue, K.; Ohashi, M.; Asada, K.; Yoneda, Y.
1980-01-01
Mitsubishi Heavy Industries, Ltd. carried out the confirmation tests to confirm the reliability of the PWR surveillance capsule shipping container and to collect cask design data using a 10-ton weight full scale model at Kobe Shipyard and Engine Works. This report presents the outline of these tests. The B Type container was a cylinder 3289 mm long, 1080 mm in diameter and designed in accordance with the new modified Japanese regulations similar to IAEA regulation. These tests consist of four 9 m drop tests, two 1 m puncture tests, a fire test and an immersion test. In conclusion, safetyness of this container has been proved and various technical data for cask design were also collected through these tests. (author)
Confirmation of the decontamination ability using the dry blasting device
International Nuclear Information System (INIS)
Izuka, Hirotaka; Tsuhara, Yuuki; Ito, Hajime; Fukuda, Kazuhiro; Sugahara, Yasuhiro; Kanamori, Yoji
2017-01-01
The decontamination method of metallic waste was considered to reduce the radioactive waste in decommissioning a nuclear power plant. Stainless steel occupies most for the material of the system equipment of PWR. The contamination by radioactive materials is stuck in the surface in the equipment as the metal oxide (e.g. chromium oxide, iron oxide). The method of efficient abrasion by the dry blasting device was considered to remove metal oxide from stainless steel. The kind of blasting abrasives material and the abrasive operation condition (the blasting angle, rate) were considered to investigate the abrasion ability to stainless steel. The abrasive condition which was appropriate abrasive ability was investigated and appropriate blasting abrasives was selected to stainless steel. The decontamination test by selected blasting abrasives and abrasive operation condition was performed using samples and the relation between abrasive rate and activity concentration was confirmed. The metallic radioactive waste was confirmed to be able to decontaminate to the clearance level. (author)
Confirmation of the definitive structure of Fleishmann's lactone by NMR
International Nuclear Information System (INIS)
Figueroa Villar, Jose Daniel
1993-01-01
The reaction between 4-hydroxy-6-methyl-pyrone and ethyl-acetic-acetate produces a compound known since the beginning of the century, named Fleishman lactone in honor to its discover. The structure of this compound has been the aim of several researches due to its similarity with several poly-pyrones which are important in synthesis of important products. This work presents the accurate determination of the structure of the Fleishman lactone. The methodology is presented as well as confirmation tests
First confirmation of Pseudogymnoascus destructans in British bats and hibernacula.
Barlow, A M; Worledge, L; Miller, H; Drees, K P; Wright, P; Foster, J T; Sobek, C; Borman, A M; Fraser, M
2015-07-18
White-nose syndrome (WNS) is a fatal fungal infection of bats in North America caused by Pseudogymnoascus destructans. P. destructans has been confirmed in Continental Europe but not associated with mass mortality. Its presence in Great Britain was unknown. Opportunistic sampling of bats in GB began during the winter of 2009. Any dead bats or samples from live bats with visible fungal growths were submitted to the Animal Health and Veterinary Laboratories Agency for culture. Active surveillance by targeted environmental sampling of hibernacula was carried out during the winter of 2012/2013. Six hibernacula were selected by their proximity to Continental Europe. Five samples, a combination of surface swabs or sediment samples, were collected. These were sent to the Center for Microbial Genetics and Genomics, Northern Arizona University, for P. destructans PCR. Forty-eight incidents were investigated between March 2009 and July 2013. They consisted of 46 bat carcases and 31 other samples. A suspected P. destructans isolate was cultured from a live Daubenton's bat (Myotis daubentonii) sampled in February 2013. This isolate was confirmed by the Mycology Reference Laboratory, Bristol (Public Health England), as P. destructans. A variety of fungi were isolated from the rest but all were considered to be saprophytic or incidental. P. destructans was also confirmed by the Center for Microbial Genetics and Genomics in five of the six sites surveyed. British Veterinary Association.
Lin, Yingzhi; Deng, Xiangzheng; Li, Xing; Ma, Enjun
2014-12-01
Spatially explicit simulation of land use change is the basis for estimating the effects of land use and cover change on energy fluxes, ecology and the environment. At the pixel level, logistic regression is one of the most common approaches used in spatially explicit land use allocation models to determine the relationship between land use and its causal factors in driving land use change, and thereby to evaluate land use suitability. However, these models have a drawback in that they do not determine/allocate land use based on the direct relationship between land use change and its driving factors. Consequently, a multinomial logistic regression method was introduced to address this flaw, and thereby, judge the suitability of a type of land use in any given pixel in a case study area of the Jiangxi Province, China. A comparison of the two regression methods indicated that the proportion of correctly allocated pixels using multinomial logistic regression was 92.98%, which was 8.47% higher than that obtained using logistic regression. Paired t-test results also showed that pixels were more clearly distinguished by multinomial logistic regression than by logistic regression. In conclusion, multinomial logistic regression is a more efficient and accurate method for the spatial allocation of land use changes. The application of this method in future land use change studies may improve the accuracy of predicting the effects of land use and cover change on energy fluxes, ecology, and environment.
International Nuclear Information System (INIS)
Geiser, Achim
2015-12-01
A variety of possible future analyses of HERA data in the context of the HERA data preservation programme is collected, motivated, and commented. The focus is placed on possible future analyses of the existing ep collider data and their physics scope. Comparisons to the original scope of the HERA pro- gramme are made, and cross references to topics also covered by other participants of the workshop are given. This includes topics on QCD, proton structure, diffraction, jets, hadronic final states, heavy flavours, electroweak physics, and the application of related theory and phenomenology topics like NNLO QCD calculations, low-x related models, nonperturbative QCD aspects, and electroweak radiative corrections. Synergies with other collider programmes are also addressed. In summary, the range of physics topics which can still be uniquely covered using the existing data is very broad and of considerable physics interest, often matching the interest of results from colliders currently in operation. Due to well-established data and MC sets, calibrations, and analysis procedures the manpower and expertise needed for a particular analysis is often very much smaller than that needed for an ongoing experiment. Since centrally funded manpower to carry out such analyses is not available any longer, this contribution not only targets experienced self-funded experimentalists, but also theorists and master-level students who might wish to carry out such an analysis.
Energy Technology Data Exchange (ETDEWEB)
Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies
1996-12-31
The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)
Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
Directory of Open Access Journals (Sweden)
Zhongyi Hu
2013-01-01
Full Text Available Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA based memetic algorithm (FA-MA to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.
Vaeth, Michael; Skovlund, Eva
2004-06-15
For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.
Preliminary Analysis of Remote Monitoring and Robotic Concepts for Performance Confirmation
International Nuclear Information System (INIS)
McAffee, D.A.
1997-01-01
As defined in 10 CFR Part 60.2, Performance Confirmation is the ''program of tests, experiments and analyses which is conducted to evaluate the accuracy and adequacy of the information used to determine with reasonable assurance that the performance objectives for the period after permanent closure will be met''. The overall Performance Confirmation program begins during site characterization and continues up to repository closure. The main purpose of this document is to develop, explore and analyze initial concepts for using remotely operated and robotic systems in gathering repository performance information during Performance Confirmation. This analysis focuses primarily on possible Performance Confirmation related applications within the emplacement drifts after waste packages have been emplaced (post-emplacement) and before permanent closure of the repository (preclosure). This will be a period of time lasting approximately 100 years and basically coincides with the Caretaker phase of the project. This analysis also examines, to a lesser extent, some applications related to Caretaker operations. A previous report examined remote handling and robotic technologies that could be employed during the waste package emplacement phase of the project (Reference 5.1). This analysis is being prepared to provide an early investigation of possible design concepts and technical challenges associated with developing remote systems for monitoring and inspecting activities during Performance Confirmation. The writing of this analysis preceded formal development of Performance Confirmation functional requirements and program plans and therefore examines, in part, the fundamental Performance Confirmation monitoring needs and operating conditions. The scope and primary objectives of this analysis are to: (1) Describe the operating environment and conditions expected in the emplacement drifts during the preclosure period. (Presented in Section 7.2). (2) Identify and discuss the
Controlling attribute effect in linear regression
Calders, Toon; Karim, Asim A.; Kamiran, Faisal; Ali, Wasif Mohammad; Zhang, Xiangliang
2013-01-01
In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.
Stochastic development regression using method of moments
DEFF Research Database (Denmark)
Kühnel, Line; Sommer, Stefan Horst
2017-01-01
This paper considers the estimation problem arising when inferring parameters in the stochastic development regression model for manifold valued non-linear data. Stochastic development regression captures the relation between manifold-valued response and Euclidean covariate variables using...... the stochastic development construction. It is thereby able to incorporate several covariate variables and random effects. The model is intrinsically defined using the connection of the manifold, and the use of stochastic development avoids linearizing the geometry. We propose to infer parameters using...... the Method of Moments procedure that matches known constraints on moments of the observations conditional on the latent variables. The performance of the model is investigated in a simulation example using data on finite dimensional landmark manifolds....
Beta-binomial regression and bimodal utilization.
Liu, Chuan-Fen; Burgess, James F; Manning, Willard G; Maciejewski, Matthew L
2013-10-01
To illustrate how the analysis of bimodal U-shaped distributed utilization can be modeled with beta-binomial regression, which is rarely used in health services research. Veterans Affairs (VA) administrative data and Medicare claims in 2001-2004 for 11,123 Medicare-eligible VA primary care users in 2000. We compared means and distributions of VA reliance (the proportion of all VA/Medicare primary care visits occurring in VA) predicted from beta-binomial, binomial, and ordinary least-squares (OLS) models. Beta-binomial model fits the bimodal distribution of VA reliance better than binomial and OLS models due to the nondependence on normality and the greater flexibility in shape parameters. Increased awareness of beta-binomial regression may help analysts apply appropriate methods to outcomes with bimodal or U-shaped distributions. © Health Research and Educational Trust.
Testing homogeneity in Weibull-regression models.
Bolfarine, Heleno; Valença, Dione M
2005-10-01
In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.
Are increases in cigarette taxation regressive?
Borren, P; Sutton, M
1992-12-01
Using the latest published data from Tobacco Advisory Council surveys, this paper re-evaluates the question of whether or not increases in cigarette taxation are regressive in the United Kingdom. The extended data set shows no evidence of increasing price-elasticity by social class as found in a major previous study. To the contrary, there appears to be no clear pattern in the price responsiveness of smoking behaviour across different social classes. Increases in cigarette taxation, while reducing smoking levels in all groups, fall most heavily on men and women in the lowest social class. Men and women in social class five can expect to pay eight and eleven times more of a tax increase respectively, than their social class one counterparts. Taken as a proportion of relative incomes, the regressive nature of increases in cigarette taxation is even more pronounced.
Controlling attribute effect in linear regression
Calders, Toon
2013-12-01
In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.
Regression Models For Multivariate Count Data.
Zhang, Yiwen; Zhou, Hua; Zhou, Jin; Sun, Wei
2017-01-01
Data with multivariate count responses frequently occur in modern applications. The commonly used multinomial-logit model is limiting due to its restrictive mean-variance structure. For instance, analyzing count data from the recent RNA-seq technology by the multinomial-logit model leads to serious errors in hypothesis testing. The ubiquity of over-dispersion and complicated correlation structures among multivariate counts calls for more flexible regression models. In this article, we study some generalized linear models that incorporate various correlation structures among the counts. Current literature lacks a treatment of these models, partly due to the fact that they do not belong to the natural exponential family. We study the estimation, testing, and variable selection for these models in a unifying framework. The regression models are compared on both synthetic and real RNA-seq data.
Model selection in kernel ridge regression
DEFF Research Database (Denmark)
Exterkate, Peter
2013-01-01
Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...
Confidence bands for inverse regression models
International Nuclear Information System (INIS)
Birke, Melanie; Bissantz, Nicolai; Holzmann, Hajo
2010-01-01
We construct uniform confidence bands for the regression function in inverse, homoscedastic regression models with convolution-type operators. Here, the convolution is between two non-periodic functions on the whole real line rather than between two periodic functions on a compact interval, since the former situation arguably arises more often in applications. First, following Bickel and Rosenblatt (1973 Ann. Stat. 1 1071–95) we construct asymptotic confidence bands which are based on strong approximations and on a limit theorem for the supremum of a stationary Gaussian process. Further, we propose bootstrap confidence bands based on the residual bootstrap and prove consistency of the bootstrap procedure. A simulation study shows that the bootstrap confidence bands perform reasonably well for moderate sample sizes. Finally, we apply our method to data from a gel electrophoresis experiment with genetically engineered neuronal receptor subunits incubated with rat brain extract
Regressing Atherosclerosis by Resolving Plaque Inflammation
2017-07-01
regression requires the alteration of macrophages in the plaques to a tissue repair “alternatively” activated state. This switch in activation state... tissue repair “alternatively” activated state. This switch in activation state requires the action of TH2 cytokines interleukin (IL)-4 or IL-13. To...regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med. 2011;208(9):1901–1916. 35. Xu H, Exner BG, Chilton PM
Determination of regression laws: Linear and nonlinear
International Nuclear Information System (INIS)
Onishchenko, A.M.
1994-01-01
A detailed mathematical determination of regression laws is presented in the article. Particular emphasis is place on determining the laws of X j on X l to account for source nuclei decay and detector errors in nuclear physics instrumentation. Both linear and nonlinear relations are presented. Linearization of 19 functions is tabulated, including graph, relation, variable substitution, obtained linear function, and remarks. 6 refs., 1 tab
Directional quantile regression in Octave (and MATLAB)
Czech Academy of Sciences Publication Activity Database
Boček, Pavel; Šiman, Miroslav
2016-01-01
Roč. 52, č. 1 (2016), s. 28-51 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : quantile regression * multivariate quantile * depth contour * Matlab Subject RIV: IN - Informatics, Computer Science Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/bocek-0458380.pdf
Logistic regression a self-learning text
Kleinbaum, David G
1994-01-01
This textbook provides students and professionals in the health sciences with a presentation of the use of logistic regression in research. The text is self-contained, and designed to be used both in class or as a tool for self-study. It arises from the author's many years of experience teaching this material and the notes on which it is based have been extensively used throughout the world.
Directory of Open Access Journals (Sweden)
Waters Lauren
2012-08-01
Full Text Available Abstract Background Unanticipated control group improvements have been observed in intervention trials targeting various health behaviours. This phenomenon has not been studied in the context of behavioural weight loss intervention trials. The purpose of this study is to conduct a systematic review and meta-regression of behavioural weight loss interventions to quantify control group weight change, and relate the size of this effect to specific trial and sample characteristics. Methods Database searches identified reports of intervention trials meeting the inclusion criteria. Data on control group weight change and possible explanatory factors were abstracted and analysed descriptively and quantitatively. Results 85 trials were reviewed and 72 were included in the meta-regression. While there was no change in control group weight, control groups receiving usual care lost 1 kg more than control groups that received no intervention, beyond measurement. Conclusions There are several possible explanations why control group changes occur in intervention trials targeting other behaviours, but not for weight loss. Control group participation may prevent weight gain, although more research is needed to confirm this hypothesis.
Multitask Quantile Regression under the Transnormal Model.
Fan, Jianqing; Xue, Lingzhou; Zou, Hui
2016-01-01
We consider estimating multi-task quantile regression under the transnormal model, with focus on high-dimensional setting. We derive a surprisingly simple closed-form solution through rank-based covariance regularization. In particular, we propose the rank-based ℓ 1 penalization with positive definite constraints for estimating sparse covariance matrices, and the rank-based banded Cholesky decomposition regularization for estimating banded precision matrices. By taking advantage of alternating direction method of multipliers, nearest correlation matrix projection is introduced that inherits sampling properties of the unprojected one. Our work combines strengths of quantile regression and rank-based covariance regularization to simultaneously deal with nonlinearity and nonnormality for high-dimensional regression. Furthermore, the proposed method strikes a good balance between robustness and efficiency, achieves the "oracle"-like convergence rate, and provides the provable prediction interval under the high-dimensional setting. The finite-sample performance of the proposed method is also examined. The performance of our proposed rank-based method is demonstrated in a real application to analyze the protein mass spectroscopy data.
Satellite rainfall retrieval by logistic regression
Chiu, Long S.
1986-01-01
The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.
Bayesian Inference of a Multivariate Regression Model
Directory of Open Access Journals (Sweden)
Marick S. Sinay
2014-01-01
Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.
Modeling oil production based on symbolic regression
International Nuclear Information System (INIS)
Yang, Guangfei; Li, Xianneng; Wang, Jianliang; Lian, Lian; Ma, Tieju
2015-01-01
Numerous models have been proposed to forecast the future trends of oil production and almost all of them are based on some predefined assumptions with various uncertainties. In this study, we propose a novel data-driven approach that uses symbolic regression to model oil production. We validate our approach on both synthetic and real data, and the results prove that symbolic regression could effectively identify the true models beneath the oil production data and also make reliable predictions. Symbolic regression indicates that world oil production will peak in 2021, which broadly agrees with other techniques used by researchers. Our results also show that the rate of decline after the peak is almost half the rate of increase before the peak, and it takes nearly 12 years to drop 4% from the peak. These predictions are more optimistic than those in several other reports, and the smoother decline will provide the world, especially the developing countries, with more time to orchestrate mitigation plans. -- Highlights: •A data-driven approach has been shown to be effective at modeling the oil production. •The Hubbert model could be discovered automatically from data. •The peak of world oil production is predicted to appear in 2021. •The decline rate after peak is half of the increase rate before peak. •Oil production projected to decline 4% post-peak
Face Alignment via Regressing Local Binary Features.
Ren, Shaoqing; Cao, Xudong; Wei, Yichen; Sun, Jian
2016-03-01
This paper presents a highly efficient and accurate regression approach for face alignment. Our approach has two novel components: 1) a set of local binary features and 2) a locality principle for learning those features. The locality principle guides us to learn a set of highly discriminative local binary features for each facial landmark independently. The obtained local binary features are used to jointly learn a linear regression for the final output. This approach achieves the state-of-the-art results when tested on the most challenging benchmarks to date. Furthermore, because extracting and regressing local binary features are computationally very cheap, our system is much faster than previous methods. It achieves over 3000 frames per second (FPS) on a desktop or 300 FPS on a mobile phone for locating a few dozens of landmarks. We also study a key issue that is important but has received little attention in the previous research, which is the face detector used to initialize alignment. We investigate several face detectors and perform quantitative evaluation on how they affect alignment accuracy. We find that an alignment friendly detector can further greatly boost the accuracy of our alignment method, reducing the error up to 16% relatively. To facilitate practical usage of face detection/alignment methods, we also propose a convenient metric to measure how good a detector is for alignment initialization.
Geographically weighted regression model on poverty indicator
Slamet, I.; Nugroho, N. F. T. A.; Muslich
2017-12-01
In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.
Mixed-effects regression models in linguistics
Heylen, Kris; Geeraerts, Dirk
2018-01-01
When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed. In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...
On logistic regression analysis of dichotomized responses.
Lu, Kaifeng
2017-01-01
We study the properties of treatment effect estimate in terms of odds ratio at the study end point from logistic regression model adjusting for the baseline value when the underlying continuous repeated measurements follow a multivariate normal distribution. Compared with the analysis that does not adjust for the baseline value, the adjusted analysis produces a larger treatment effect as well as a larger standard error. However, the increase in standard error is more than offset by the increase in treatment effect so that the adjusted analysis is more powerful than the unadjusted analysis for detecting the treatment effect. On the other hand, the true adjusted odds ratio implied by the normal distribution of the underlying continuous variable is a function of the baseline value and hence is unlikely to be able to be adequately represented by a single value of adjusted odds ratio from the logistic regression model. In contrast, the risk difference function derived from the logistic regression model provides a reasonable approximation to the true risk difference function implied by the normal distribution of the underlying continuous variable over the range of the baseline distribution. We show that different metrics of treatment effect have similar statistical power when evaluated at the baseline mean. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
General regression and representation model for classification.
Directory of Open Access Journals (Sweden)
Jianjun Qian
Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.
Image superresolution using support vector regression.
Ni, Karl S; Nguyen, Truong Q
2007-06-01
A thorough investigation of the application of support vector regression (SVR) to the superresolution problem is conducted through various frameworks. Prior to the study, the SVR problem is enhanced by finding the optimal kernel. This is done by formulating the kernel learning problem in SVR form as a convex optimization problem, specifically a semi-definite programming (SDP) problem. An additional constraint is added to reduce the SDP to a quadratically constrained quadratic programming (QCQP) problem. After this optimization, investigation of the relevancy of SVR to superresolution proceeds with the possibility of using a single and general support vector regression for all image content, and the results are impressive for small training sets. This idea is improved upon by observing structural properties in the discrete cosine transform (DCT) domain to aid in learning the regression. Further improvement involves a combination of classification and SVR-based techniques, extending works in resolution synthesis. This method, termed kernel resolution synthesis, uses specific regressors for isolated image content to describe the domain through a partitioned look of the vector space, thereby yielding good results.
Bonellie, Sandra R
2012-10-01
To illustrate the use of regression and logistic regression models to investigate changes over time in size of babies particularly in relation to social deprivation, age of the mother and smoking. Mean birthweight has been found to be increasing in many countries in recent years, but there are still a group of babies who are born with low birthweights. Population-based retrospective cohort study. Multiple linear regression and logistic regression models are used to analyse data on term 'singleton births' from Scottish hospitals between 1994-2003. Mothers who smoke are shown to give birth to lighter babies on average, a difference of approximately 0.57 Standard deviations lower (95% confidence interval. 0.55-0.58) when adjusted for sex and parity. These mothers are also more likely to have babies that are low birthweight (odds ratio 3.46, 95% confidence interval 3.30-3.63) compared with non-smokers. Low birthweight is 30% more likely where the mother lives in the most deprived areas compared with the least deprived, (odds ratio 1.30, 95% confidence interval 1.21-1.40). Smoking during pregnancy is shown to have a detrimental effect on the size of infants at birth. This effect explains some, though not all, of the observed socioeconomic birthweight. It also explains much of the observed birthweight differences by the age of the mother. Identifying mothers at greater risk of having a low birthweight baby as important implications for the care and advice this group receives. © 2012 Blackwell Publishing Ltd.
Confirmation test of powder mixing process in J-MOX
International Nuclear Information System (INIS)
Ota, Hiroshi; Osaka, Shuichi; Kurita, Ichiro
2009-01-01
Japan Nuclear Fuel Ltd. (hereafter, JNFL) MOX Fuel Fabrication Plant (hereafter, J-MOX) is what fabricates MOX fuel for domestic light water power plants. Development of design concept of J-MOX was started mid 90's and the frame of J-MOX process was clarified around 2000 including adoption of MIMAS process as apart of J-MOX powder process. JNFL requires to take an answer to any technical question that has not been clarified ever before by world's MOX and/or Uranium fabricators before it commissions equipment procurement. J-MOX is to be constructed adjacent to the Rokkasho Reprocessing Plant (RRP) and to utilize MH-MOX powder recovered at RRP. The combination of the MIMAS process and the MH-MOX powder is what has never tried in the world. Therefore JNFL started a series of confirmation tests of which the most important is the powder test to confirm the applicability of MH-MOX powder to the MIMAS process. The MH-MOX powder, consisting of 50% plutonium oxide and 50% uranium oxide, originates JAEA development utilizing microwave heating (MH) technology. The powder test started with laboratory scale small equipment utilizing both uranium and the MOX powder in 2000, left a solution to tough problem such as powder adhesion onto equipment, and then was followed by a large scale equipment test again with uranium and the MOX powder. For the MOX test, actual size equipment within glovebox was manufactured and installed in JAEA plutonium fuel center in 2005, and based on results taken so far an understanding that the MIMAS equipment, with the MH-MOX powder, can present almost same quality MOX pellet as what is introduced as fabricated in Europe was developed. The test was finished at the end of Japanese fiscal year (JFY) 2007, and it was confirmed that the MOX pellets fabricated in this test were almost satisfied with the targeted specifications set for domestic LWR MOX fuels. (author)
A CoGeNT confirmation of the DAMA signal
International Nuclear Information System (INIS)
Foot, R.
2010-01-01
The CoGeNT Collaboration has recently reported a rising low energy spectrum in their ultra low noise Germanium detector. This is particularly interesting as the energy range probed by CoGeNT overlaps with the energy region in which DAMA has observed their annual modulation signal. We show that the mirror dark matter candidate can simultaneously explain both the DAMA annual modulation signal and the rising low energy spectrum observed by CoGeNT. This constitutes a model dependent confirmation of the DAMA signal and adds weight to the mirror dark matter paradigm.
U.S. Senate confirms new USGS director
Showstack, Randy
Shortly before adjourning in October, the U.S. Senate confirmed Charles Groat as the new director of the U.S. Geological Survey. Interior Secretary Bruce Babbitt is expected to swear him in shortly as the agency's 13th director. Groat takes over from Thomas Casadevall, who has served as acting director since Gordon Eaton resigned in September 1997.Groat, an AGU member, has more than 25 years of experience in the Earth science fields, including energy and minerals resource assessment, groundwater occurrence and protection, geomorphic processes and landform evolution in desert areas, and coastal studies.
[First confirmed case of laryngeal diphtheria in Djibouti].
Koeck, J L; Merle, C; Bimet, F; Kiredjian, M; Goullin, B; Teyssou, R
2000-01-01
The first bacteriologically confirmed case of laryngeal diphtheria in Djibouti was reported in 1998. It involved a three-year-old native-born infant who had been vaccinated during the first year of life with three doses of a combined vaccine against diphtheria, tetanus, poliomyelitis, and pertussis. A rapid clinical improvement was observed under erythromycin treatment. Other cases of laryngeal diphtheria have been observed. It is important to reverse decreasing vaccinal coverage in Djibouti and to warn incoming travelers of the need to be adequate immunized against diphtheria. Enhanced epidemiologic surveillance of this disease is also needed.
International Nuclear Information System (INIS)
Jafri, Y.Z.; Kamal, L.
2007-01-01
Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)
Energy Technology Data Exchange (ETDEWEB)
Lawson, E.M. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Physics Division
1998-03-01
The major use of ANTARES is Accelerator Mass Spectrometry (AMS) with {sup 14}C being the most commonly analysed radioisotope - presently about 35 % of the available beam time on ANTARES is used for {sup 14}C measurements. The accelerator measurements are supported by, and dependent on, a strong sample preparation section. The ANTARES AMS facility supports a wide range of investigations into fields such as global climate change, ice cores, oceanography, dendrochronology, anthropology, and classical and Australian archaeology. Described here are some examples of the ways in which AMS has been applied to support research into the archaeology, prehistory and culture of this continent`s indigenous Aboriginal peoples. (author)
International Nuclear Information System (INIS)
Lawson, E.M.
1998-01-01
The major use of ANTARES is Accelerator Mass Spectrometry (AMS) with 14 C being the most commonly analysed radioisotope - presently about 35 % of the available beam time on ANTARES is used for 14 C measurements. The accelerator measurements are supported by, and dependent on, a strong sample preparation section. The ANTARES AMS facility supports a wide range of investigations into fields such as global climate change, ice cores, oceanography, dendrochronology, anthropology, and classical and Australian archaeology. Described here are some examples of the ways in which AMS has been applied to support research into the archaeology, prehistory and culture of this continent's indigenous Aboriginal peoples. (author)
Ole E. Barndorff-Nielsen; Neil Shephard
2002-01-01
This paper analyses multivariate high frequency financial data using realised covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis and covariance. It will be based on a fixed interval of time (e.g. a day or week), allowing the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions and covariances change through time. In particular w...
Use of urinary pregnanediol 3-glucuronide to confirm ovulation.
Ecochard, R; Leiva, R; Bouchard, T; Boehringer, H; Direito, A; Mariani, A; Fehring, R
2013-10-01
Urinary hormonal markers may assist in increasing the efficacy of Fertility Awareness Based Methods (FABM). This study uses urinary pregnanediol-3a-glucuronide (PDG) testing to more accurately identify the infertile phase of the menstrual cycle in the setting of FABM. Secondary analysis of an observational and simulation study, multicentre, European study. The study includes 107 women and tracks daily first morning urine (FMU), observed the changes in cervical mucus discharge, and ultrasonography to identify the day of ovulation over 326 menstrual cycles. The following three scenarios were tested: (A) use of the daily pregnandiol-3a-glucuronide (PDG) test alone; (B) use of the PDG test after the first positive urine luteinizing hormone (LH) kit result; (C) use of the PDG test after the disappearance of fertile type mucus. Two models were used: (1) one day of PDG positivity; or (2) waiting for three days of PDG positivity before declaring infertility. After the first positivity of a LH test or the end of fertile mucus, three consecutive days of PDG testing over a threshold of 5μg/mL resulted in a 100% specificity for ovulation confirmation. They were respectively associated an identification of an average of 6.1 and 7.6 recognized infertile days. The results demonstrate a clinical scenario with 100% specificity for ovulation confirmation and provide the theoretical background for a future development of a competitive lateral flow assay for the detection of PDG in the urine. Copyright © 2013 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Takeda, Tatsuoki
1985-01-01
In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)
Laboratory confirmation of the diagnosis of cystic fibrosis.
Tocci, P M; McKey, R M
1976-11-01
The recent commercial introduction of a method for detecting albumin in meconium makes screening for cystic fibrosis feasible for many hospitals. If the tests is adopted, confirmatory tests should be available. Quantitative analyses of sweat for sodium by flame photometry and for chloride by silver titration and ion-sleective electrodes are now used as confirmatory tests. We compare results of these confirmatory methods applied to presons with cystic fibrosis, respiratory disorders, or digestive disorders, and to control subjects.
Uncertainty Analyses and Strategy
International Nuclear Information System (INIS)
Kevin Coppersmith
2001-01-01
The DOE identified a variety of uncertainties, arising from different sources, during its assessment of the performance of a potential geologic repository at the Yucca Mountain site. In general, the number and detail of process models developed for the Yucca Mountain site, and the complex coupling among those models, make the direct incorporation of all uncertainties difficult. The DOE has addressed these issues in a number of ways using an approach to uncertainties that is focused on producing a defensible evaluation of the performance of a potential repository. The treatment of uncertainties oriented toward defensible assessments has led to analyses and models with so-called ''conservative'' assumptions and parameter bounds, where conservative implies lower performance than might be demonstrated with a more realistic representation. The varying maturity of the analyses and models, and uneven level of data availability, result in total system level analyses with a mix of realistic and conservative estimates (for both probabilistic representations and single values). That is, some inputs have realistically represented uncertainties, and others are conservatively estimated or bounded. However, this approach is consistent with the ''reasonable assurance'' approach to compliance demonstration, which was called for in the U.S. Nuclear Regulatory Commission's (NRC) proposed 10 CFR Part 63 regulation (64 FR 8640 [DIRS 101680]). A risk analysis that includes conservatism in the inputs will result in conservative risk estimates. Therefore, the approach taken for the Total System Performance Assessment for the Site Recommendation (TSPA-SR) provides a reasonable representation of processes and conservatism for purposes of site recommendation. However, mixing unknown degrees of conservatism in models and parameter representations reduces the transparency of the analysis and makes the development of coherent and consistent probability statements about projected repository
[Application of detecting and taking overdispersion into account in Poisson regression model].
Bouche, G; Lepage, B; Migeot, V; Ingrand, P
2009-08-01
Researchers often use the Poisson regression model to analyze count data. Overdispersion can occur when a Poisson regression model is used, resulting in an underestimation of variance of the regression model parameters. Our objective was to take overdispersion into account and assess its impact with an illustration based on the data of a study investigating the relationship between use of the Internet to seek health information and number of primary care consultations. Three methods, overdispersed Poisson, a robust estimator, and negative binomial regression, were performed to take overdispersion into account in explaining variation in the number (Y) of primary care consultations. We tested overdispersion in the Poisson regression model using the ratio of the sum of Pearson residuals over the number of degrees of freedom (chi(2)/df). We then fitted the three models and compared parameter estimation to the estimations given by Poisson regression model. Variance of the number of primary care consultations (Var[Y]=21.03) was greater than the mean (E[Y]=5.93) and the chi(2)/df ratio was 3.26, which confirmed overdispersion. Standard errors of the parameters varied greatly between the Poisson regression model and the three other regression models. Interpretation of estimates from two variables (using the Internet to seek health information and single parent family) would have changed according to the model retained, with significant levels of 0.06 and 0.002 (Poisson), 0.29 and 0.09 (overdispersed Poisson), 0.29 and 0.13 (use of a robust estimator) and 0.45 and 0.13 (negative binomial) respectively. Different methods exist to solve the problem of underestimating variance in the Poisson regression model when overdispersion is present. The negative binomial regression model seems to be particularly accurate because of its theorical distribution ; in addition this regression is easy to perform with ordinary statistical software packages.
Geodesic least squares regression for scaling studies in magnetic confinement fusion
International Nuclear Information System (INIS)
Verdoolaege, Geert
2015-01-01
In regression analyses for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to scaling laws. We here discuss a new regression method that is robust in the presence of significant uncertainty on both the data and the regression model. The method, which we call geodesic least squares regression (GLS), is based on minimization of the Rao geodesic distance on a probabilistic manifold. We demonstrate the superiority of the method using synthetic data and we present an application to the scaling law for the power threshold for the transition to the high confinement regime in magnetic confinement fusion devices
Directory of Open Access Journals (Sweden)
Juan A. Moreno-Murcia
2012-03-01
Full Text Available This study aimed to cross-validate the psychometric properties of the Basic Psychological Needs in Exercise Scale (BPNES by Vlachopoulos and Michailidou, 2006 in a Spanish context. Two studies were conducted. Confirmatory factor analysis results confirmed the hypothesized three-factor solution In addition, we documented evidence of reliability, analysed as internal consistency and temporal stability. Future studies should analyse the scale's validity and reliability with different populations and check their experimental effect
Directory of Open Access Journals (Sweden)
I. Barbopoulos
2017-08-01
Full Text Available This data article offers a detailed description of analyses pertaining to the development of the Consumer Motivation Scale (CMS, from item generation and the extraction of factors, to confirmation of the factor structure and validation of the emergent dimensions. The established goal structure – consisting of the sub-goals Value for Money, Quality, Safety, Stimulation, Comfort, Ethics, and Social Acceptance – is shown to be related to a variety of consumption behaviors in different contexts and for different products, and should thereby prove useful in standard marketing research, as well as in the development of tailored marketing strategies, and the segmentation of consumer groups, settings, brands, and products.
Barbopoulos, I; Johansson, L-O
2017-08-01
This data article offers a detailed description of analyses pertaining to the development of the Consumer Motivation Scale (CMS), from item generation and the extraction of factors, to confirmation of the factor structure and validation of the emergent dimensions. The established goal structure - consisting of the sub-goals Value for Money, Quality, Safety, Stimulation, Comfort, Ethics, and Social Acceptance - is shown to be related to a variety of consumption behaviors in different contexts and for different products, and should thereby prove useful in standard marketing research, as well as in the development of tailored marketing strategies, and the segmentation of consumer groups, settings, brands, and products.
Directory of Open Access Journals (Sweden)
Mach Łukasz
2017-06-01
Full Text Available The research process aimed at building regression models, which helps to valuate residential real estate, is presented in the following article. Two widely used computational tools i.e. the classical multiple regression and regression models of artificial neural networks were used in order to build models. An attempt to define the utilitarian usefulness of the above-mentioned tools and comparative analysis of them is the aim of the conducted research. Data used for conducting analyses refers to the secondary transactional residential real estate market.
Kempe, P T; van Oppen, P; de Haan, E; Twisk, J W R; Sluis, A; Smit, J H; van Dyck, R; van Balkom, A J L M
2007-09-01
Two methods for predicting remissions in obsessive-compulsive disorder (OCD) treatment are evaluated. Y-BOCS measurements of 88 patients with a primary OCD (DSM-III-R) diagnosis were performed over a 16-week treatment period, and during three follow-ups. Remission at any measurement was defined as a Y-BOCS score lower than thirteen combined with a reduction of seven points when compared with baseline. Logistic regression models were compared with a Cox regression for recurrent events model. Logistic regression yielded different models at different evaluation times. The recurrent events model remained stable when fewer measurements were used. Higher baseline levels of neuroticism and more severe OCD symptoms were associated with a lower chance of remission, early age of onset and more depressive symptoms with a higher chance. Choice of outcome time affects logistic regression prediction models. Recurrent events analysis uses all information on remissions and relapses. Short- and long-term predictors for OCD remission show overlap.
A method for nonlinear exponential regression analysis
Junkin, B. G.
1971-01-01
A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.
Multinomial logistic regression in workers' health
Grilo, Luís M.; Grilo, Helena L.; Gonçalves, Sónia P.; Junça, Ana
2017-11-01
In European countries, namely in Portugal, it is common to hear some people mentioning that they are exposed to excessive and continuous psychosocial stressors at work. This is increasing in diverse activity sectors, such as, the Services sector. A representative sample was collected from a Portuguese Services' organization, by applying a survey (internationally validated), which variables were measured in five ordered categories in Likert-type scale. A multinomial logistic regression model is used to estimate the probability of each category of the dependent variable general health perception where, among other independent variables, burnout appear as statistically significant.
Three Contributions to Robust Regression Diagnostics
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2015-01-01
Roč. 11, č. 2 (2015), s. 69-78 ISSN 1336-9180 Grant - others:GA ČR(CZ) GA13-01930S; Nadační fond na podporu vědy(CZ) Neuron Institutional support: RVO:67985807 Keywords : robust regression * robust econometrics * hypothesis test ing Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/jamsi.2015.11.issue-2/jamsi-2015-0013/jamsi-2015-0013.xml?format=INT
SDE based regression for random PDEs
Bayer, Christian
2016-01-01
A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.
Bayesian regression of piecewise homogeneous Poisson processes
Directory of Open Access Journals (Sweden)
Diego Sevilla
2015-12-01
Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015
Mapping geogenic radon potential by regression kriging
Energy Technology Data Exchange (ETDEWEB)
Pásztor, László [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Szabó, Katalin Zsuzsanna, E-mail: sz_k_zs@yahoo.de [Department of Chemistry, Institute of Environmental Science, Szent István University, Páter Károly u. 1, Gödöllő 2100 (Hungary); Szatmári, Gábor; Laborczi, Annamária [Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Department of Environmental Informatics, Herman Ottó út 15, 1022 Budapest (Hungary); Horváth, Ákos [Department of Atomic Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest (Hungary)
2016-02-15
Radon ({sup 222}Rn) gas is produced in the radioactive decay chain of uranium ({sup 238}U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method
Fixed kernel regression for voltammogram feature extraction
International Nuclear Information System (INIS)
Acevedo Rodriguez, F J; López-Sastre, R J; Gil-Jiménez, P; Maldonado Bascón, S; Ruiz-Reyes, N
2009-01-01
Cyclic voltammetry is an electroanalytical technique for obtaining information about substances under analysis without the need for complex flow systems. However, classifying the information in voltammograms obtained using this technique is difficult. In this paper, we propose the use of fixed kernel regression as a method for extracting features from these voltammograms, reducing the information to a few coefficients. The proposed approach has been applied to a wine classification problem with accuracy rates of over 98%. Although the method is described here for extracting voltammogram information, it can be used for other types of signals
Regression analysis for the social sciences
Gordon, Rachel A
2010-01-01
The book provides graduate students in the social sciences with the basic skills that they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming and interpretation on the same data set and course exercises in which students can choose their own research questions and data set.
SDE based regression for random PDEs
Bayer, Christian
2016-01-06
A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.
Neutrosophic Correlation and Simple Linear Regression
Directory of Open Access Journals (Sweden)
A. A. Salama
2014-09-01
Full Text Available Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache. Recently, Salama et al., introduced the concept of correlation coefficient of neutrosophic data. In this paper, we introduce and study the concepts of correlation and correlation coefficient of neutrosophic data in probability spaces and study some of their properties. Also, we introduce and study the neutrosophic simple linear regression model. Possible applications to data processing are touched upon.
Spectral density regression for bivariate extremes
Castro Camilo, Daniela
2016-05-11
We introduce a density regression model for the spectral density of a bivariate extreme value distribution, that allows us to assess how extremal dependence can change over a covariate. Inference is performed through a double kernel estimator, which can be seen as an extension of the Nadaraya–Watson estimator where the usual scalar responses are replaced by mean constrained densities on the unit interval. Numerical experiments with the methods illustrate their resilience in a variety of contexts of practical interest. An extreme temperature dataset is used to illustrate our methods. © 2016 Springer-Verlag Berlin Heidelberg
SPE dose prediction using locally weighted regression
International Nuclear Information System (INIS)
Hines, J. W.; Townsend, L. W.; Nichols, T. F.
2005-01-01
When astronauts are outside earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events (SPEs). The total dose received from a major SPE in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be mitigated with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train and provides predictions as accurate as neural network models previously used. (authors)
Mapping geogenic radon potential by regression kriging
International Nuclear Information System (INIS)
Pásztor, László; Szabó, Katalin Zsuzsanna; Szatmári, Gábor; Laborczi, Annamária; Horváth, Ákos
2016-01-01
Radon ( 222 Rn) gas is produced in the radioactive decay chain of uranium ( 238 U) which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on the physical and meteorological parameters of the soil and can enter and accumulate in buildings. Health risks originating from indoor radon concentration can be attributed to natural factors and is characterized by geogenic radon potential (GRP). Identification of areas with high health risks require spatial modeling, that is, mapping of radon risk. In addition to geology and meteorology, physical soil properties play a significant role in the determination of GRP. In order to compile a reliable GRP map for a model area in Central-Hungary, spatial auxiliary information representing GRP forming environmental factors were taken into account to support the spatial inference of the locally measured GRP values. Since the number of measured sites was limited, efficient spatial prediction methodologies were searched for to construct a reliable map for a larger area. Regression kriging (RK) was applied for the interpolation using spatially exhaustive auxiliary data on soil, geology, topography, land use and climate. RK divides the spatial inference into two parts. Firstly, the deterministic component of the target variable is determined by a regression model. The residuals of the multiple linear regression analysis represent the spatially varying but dependent stochastic component, which are interpolated by kriging. The final map is the sum of the two component predictions. Overall accuracy of the map was tested by Leave-One-Out Cross-Validation. Furthermore the spatial reliability of the resultant map is also estimated by the calculation of the 90% prediction interval of the local prediction values. The applicability of the applied method as well as that of the map is discussed briefly. - Highlights: • A new method, regression
SPE dose prediction using locally weighted regression
International Nuclear Information System (INIS)
Hines, J. W.; Townsend, L. W.; Nichols, T. F.
2005-01-01
When astronauts are outside Earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events. The total dose received from a major solar particle event in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be reduced with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train, and provides predictions as accurate as the neural network models that were used previously. (authors)
AIRLINE ACTIVITY FORECASTING BY REGRESSION MODELS
Directory of Open Access Journals (Sweden)
Н. Білак
2012-04-01
Full Text Available Proposed linear and nonlinear regression models, which take into account the equation of trend and seasonality indices for the analysis and restore the volume of passenger traffic over the past period of time and its prediction for future years, as well as the algorithm of formation of these models based on statistical analysis over the years. The desired model is the first step for the synthesis of more complex models, which will enable forecasting of passenger (income level airline with the highest accuracy and time urgency.
Logistic regression applied to natural hazards: rare event logistic regression with replications
Guns, M.; Vanacker, Veerle
2012-01-01
Statistical analysis of natural hazards needs particular attention, as most of these phenomena are rare events. This study shows that the ordinary rare event logistic regression, as it is now commonly used in geomorphologic studies, does not always lead to a robust detection of controlling factors, as the results can be strongly sample-dependent. In this paper, we introduce some concepts of Monte Carlo simulations in rare event logistic regression. This technique, so-called rare event logisti...
Fölsche, C; Staufenbiel, R
2014-01-01
The relationship between milk yield and both fertility and general animal health in dairy herds is discussed from opposing viewpoints. The hypothesis (1) that raising the herd milk yield would decrease fertility results, the number of milk cells as an indicator for udder health and the replacement rate as a global indicator for animal health as well as increasing the occurrence of specific diseases as a herd problem was compared to the opposing hypotheses that there is no relationship (2) or that there is a differentiated and changing relationship (3). A total of 743 herd examinations, considered independent, were performed in 489 herds between 1995 and 2010. The milk yield, fertility rate, milk cell count, replacement rate, categorized herd problems and management information were recorded. The relationship between the milk yield and both the fertility data and animal health was evaluated using simple and multiple regression analyses. The period between calving and the first service displayed no significant relationship to the herd milk yield. Simple regression analysis showed that the period between calving and gestation, the calving interval and the insemination number were significantly positively associated with the herd milk yield. This positive correlation was lost in multiple regression analysis. The milk cell count and replacement rate using both the simple and multiple regression analyses displayed a significant negative relationship to the milk yield. The alternative hypothesis (3) was confirmed. A higher milk yield has no negative influence on the milk cell count and the replacement rate in terms of the udder and general health. When parameterizing the fertility, the herd milk yield should be considered. Extending the resting time may increase the milk yield while preventing a decline in the insemination index.
International Nuclear Information System (INIS)
Lemarchand, G.
1977-01-01
(ee'p) experiments allow to measure the missing energy distribution as well as the momentum distribution of the extracted proton in the nucleus versus the missing energy. Such experiments are presently conducted on SACLAY's A.L.S. 300 Linac. Electrons and protons are respectively analysed by two spectrometers and detected in their focal planes. Counting rates are usually low and include time coincidences and accidentals. Signal-to-noise ratio is dependent on the physics of the experiment and the resolution of the coincidence, therefore it is mandatory to get a beam current distribution as flat as possible. Using new technologies has allowed to monitor in real time the behavior of the beam pulse and determine when the duty cycle can be considered as being good with respect to a numerical basis
Energy Technology Data Exchange (ETDEWEB)
Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)
2009-02-01
The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.
Kent, Jack W
2016-02-03
New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.
Analysing Access Control Specifications
DEFF Research Database (Denmark)
Probst, Christian W.; Hansen, René Rydhof
2009-01-01
When prosecuting crimes, the main question to answer is often who had a motive and the possibility to commit the crime. When investigating cyber crimes, the question of possibility is often hard to answer, as in a networked system almost any location can be accessed from almost anywhere. The most...... common tool to answer this question, analysis of log files, faces the problem that the amount of logged data may be overwhelming. This problems gets even worse in the case of insider attacks, where the attacker’s actions usually will be logged as permissible, standard actions—if they are logged at all....... Recent events have revealed intimate knowledge of surveillance and control systems on the side of the attacker, making it often impossible to deduce the identity of an inside attacker from logged data. In this work we present an approach that analyses the access control configuration to identify the set...
Network class superposition analyses.
Directory of Open Access Journals (Sweden)
Carl A B Pearson
Full Text Available Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., ≈ 10(30 for the yeast cell cycle process, considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix T, which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for T derived from boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying T to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with T. We show how to generate Derrida plots based on T. We show that T-based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on T. We motivate all of these results in terms of a popular molecular biology boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for T, for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.
Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon
2015-01-01
Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.
The Influence of Confirmation Bias on Memory and Source Monitoring.
Frost, Peter; Casey, Bridgette; Griffin, Kaydee; Raymundo, Luis; Farrell, Christopher; Carrigan, Ryan
2015-01-01
Two experiments were conducted to examine whether recognition memory for information and/or its source are influenced by confirmation bias. During Phase 1, subjects were shown a summary about the issue of gun control and asked to indicate a position on the issue. During Phase 2, 12 abstracts (Experiment 1) or social media posts (Experiment 2) were shown, one at a time. Posts in Experiment 2 were associated with either friends or strangers. Participants indicated whether they wanted to read a more extensive version of each abstract (Experiment 1) or post (Experiment 2). Phase 3 was the memory phase. Thirty-two abstract titles (Experiment 1) or posts (Experiment 2) were shown one at a time. Participants indicated yes or no, and whether they recognized the titles/posts from the last phase. Recognition memory for information that supported the participants' viewpoint was higher than that for opposing information.
Experimenter Confirmation Bias and the Correction of Science Misconceptions
Allen, Michael; Coole, Hilary
2012-06-01
This paper describes a randomised educational experiment ( n = 47) that examined two different teaching methods and compared their effectiveness at correcting one science misconception using a sample of trainee primary school teachers. The treatment was designed to promote engagement with the scientific concept by eliciting emotional responses from learners that were triggered by their own confirmation biases. The treatment group showed superior learning gains to control at post-test immediately after the lesson, although benefits had dissipated after 6 weeks. Findings are discussed with reference to the conceptual change paradigm and to the importance of feeling emotion during a learning experience, having implications for the teaching of pedagogies to adults that have been previously shown to be successful with children.
Challenges for molecular and serological ZIKV infection confirmation.
de Vasconcelos, Zilton Farias Meira; Azevedo, Renata Campos; Thompson, Nathália; Gomes, Leonardo; Guida, Letícia; Moreira, Maria Elisabeth Lopes
2018-01-01
Zika Virus (ZIKV), member of Flaviviridae family and Flavivirus genus, has recently emerged as international public health emergency after its association with neonatal microcephaly cases. Clinical diagnosis hindrance involves symptom similarities produced by other arbovirus infections, therefore laboratory confirmation is of paramount importance. The most reliable test available is based on ZIKV RNA detection from body fluid samples. However, short viremia window periods and asymptomatic infections diminish the success rate for RT-PCR positivity. Beyond molecular detection, all serology tests in areas where other Flavivirus circulates proved to be a difficult task due to the broad range of cross-reactivity, especially with dengue pre-exposed individuals. Altogether, lack of serological diagnostic tools brings limitations to any retrospective evaluation. Those studies are central in the context of congenital infection that could occur asymptomatically and mask prevalence and risk rates.
Confirmation of RAX gene involvement in human anophthalmia.
Lequeux, L; Rio, M; Vigouroux, A; Titeux, M; Etchevers, H; Malecaze, F; Chassaing, N; Calvas, P
2008-10-01
Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. Mutations in several genes have been involved in syndromic and non-syndromic anophthalmia. Previously, RAX recessive mutations were implicated in a single patient with right anophthalmia, left microphthalmia and sclerocornea. In this study, we report the findings of novel compound heterozygous RAX mutations in a child with bilateral anophthalmia. Both mutations are located in exon 3. c.664delT is a frameshifting deletion predicted to introduce a premature stop codon (p.Ser222ArgfsX62), and c.909C>G is a nonsense mutation with similar consequences (p.Tyr303X). This is the second report of a patient with anophthalmia caused by RAX mutations. These findings confirm that RAX plays a major role in the early stages of eye development and is involved in human anophthalmia.
Federal Court of Administration confirms preclusion of objections
International Nuclear Information System (INIS)
1982-01-01
1. The preclusion established as a rule of law in sub-section 1 of sect. 3 of the Ordinance concerning the Procedure for Licensing Nuclear Installations is not only applicable to administrative proceedings, but also to administrative court proceedings. 2. In an advanced process situation, the preclusion rule of sub-section 1 of sect. 3 of the Ordinance concerning the Procedure for Licensing Nuclear Installations is applicable, this does not constitute a violation of the principle of having 'fair' proceedings. 3. Objections as defined by the above-mentioned regulation have to be presented with reference to the project and within the period allowed, during the licensing procedure concerning the project. The Federal Court of Administration has confirmed the preclusion of objections. The court dismissed the complainant's appeal against the non-admission of appeal ruled in the decision of the Administrative Court of Baden-Wuerttemberg of Nov. 7, 1980. (orig./HP) [de
Model-independent confirmation of the $Z(4430)^-$ state
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jezabek, Marek; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander
2015-01-01
The decay $B^0\\to \\psi(2S) K^+\\pi^-$ is analyzed using $\\rm 3~fb^{-1}$ of $pp$ collision data collected with the LHCb detector. A model-independent description of the $\\psi(2S) \\pi$ mass spectrum is obtained, using as input the $K\\pi$ mass spectrum and angular distribution derived directly from data, without requiring a theoretical description of resonance shapes or their interference. The hypothesis that the $\\psi(2S)\\pi$ mass spectrum can be described in terms of $K\\pi$ reflections alone is rejected with more than 8$\\sigma$ significance. This provides confirmation, in a model-independent way, of the need for an additional resonant component in the mass region of the $Z(4430)^-$ exotic state.
Improved statistical confirmation of margins for setpoints and transients
International Nuclear Information System (INIS)
Nutt, W.T.
2001-01-01
Framatome ANP Richland, Inc. has developed an integrated, automated, statistical methodology for Pressurized Water Reactors (PWRs). Margins for transients and calculated trips are confirmed using several new applications of probability theory. The methods used for combining statistics reduces the conservatisms inherent in conventional methods and avoids the numerical limitations and time constraints imposed by Monte Carlo techniques. The new methodology represents the state of the art in the treatment of uncertainties for reactor protection systems. It all but eliminates concerns with the calculated trips for PWRs and by improving the margin for all transients will allow for far more aggressive peaking limits and fuel management schemes. The automated nature of the bulk of this process saves Framatome ANP time and effort, minimizes the potential for errors and makes the analysis for all cycles and plants consistent. The enhanced margins remove analytical limitations from the customer and allow for more economical operation of the plant. (authors)
Objective confirmation of asthma diagnosis improves medication adherence
DEFF Research Database (Denmark)
Backer, V; Stensen, L; Sverrild, A
2017-01-01
OBJECTIVE: The impact of diagnostic work-up in asthma management on medication redemption and probably also drug adherence is largely unknown, but we hypothesized that a confirmed diagnosis of asthma in a hospital-based out-patient clinic increases the willingness to subsequent medication...... redemption in a real life setting. METHODS: In a retrospective register-based study, 300 medical records of patients referred with possible asthma during one year were examined, of whom 171 had asthma (57%). One-year data on dispensed medicine was collected using the Danish Registry of Medicinal Product...... more frequently prescribed new therapy compared to those with unverified asthma (88.9% vs. 65.0%, respectively, p time redemption of prescriptions (72% vs. 64%, respectively, p = 0.3), whereas the second (52% vs. 27%, p = 0.001) and third or more asthma...
The first confirmed case of Diphyllobothrium latum in Brazil
Directory of Open Access Journals (Sweden)
FLN Santos
2005-10-01
Full Text Available Diphyllobothriasis is an infection of the small intestine by the broad tapeworm Diphyllobothrium sp. The associated symptomatology is nonspecific, but megaloblastic anemia is a well-described complication. Although the infection is common in temperate regions, descriptions in South America have so far been limited to Chile, Peru, and a few cases in Argentina. This paper presents the first confirmed Brazilian case of diphyllobothriasis. A 29-years-old woman living in Salvador (state of Bahia apparently acquired the infection from eating sushi. The diagnosis was based on fecal examination that revealed a large quantity of operculated eggs. A single dose of praziquantel (600 mg was sufficient to cure the infection.
Confirmation test on confinement performance of improved glove box
International Nuclear Information System (INIS)
Miura, S.; Kanazawa, J.; Nakajima, M.; Sakuno, K.; Miyata, H.
1995-01-01
Glove boxes are used at nuclear facilities to confine radioactive materials by ensuring a high level of airtightness and negative internal pressure. The allowable rate of air leakage is 0.1% vol/hr or less at the pre-service inspection. The negative pressure value is normally maintained at about -30 mm H 2 O. Structural strength and confinement reliability of glove boxes during earthquake are major concerns, and most important glove boxes are designed to withstand seismic class A events is Japan. This paper describes vibration tests done to confirm that improve large-sized glove boxes maintain their confinement performance and structural strength even during earthquake and that the design analysis methods used are appropriate. (author). 1 ref., 6 figs., 3 tabs
BUSTED BUTTE TEST FACILITY GROUND SUPPORT CONFIRMATION ANALYSIS
International Nuclear Information System (INIS)
Bonabian, S.
1998-01-01
The main purpose and objective of this analysis is to confirm the validity of the ground support design for Busted Butte Test Facility (BBTF). The highwall stability and adequacy of highwall and tunnel ground support is addressed in this analysis. The design of the BBTF including the ground support system was performed in a separate document (Reference 5.3). Both in situ and seismic loads are considered in the evaluation of the highwall and the tunnel ground support system. In this analysis only the ground support designed in Reference 5.3 is addressed. The additional ground support installed (still work in progress) by the constructor is not addressed in this analysis. This additional ground support was evaluated by the A/E during a site visit and its findings and recommendations are addressed in this analysis
Clinical epidemiological and echographic characterization of patients with confirmed dengue
International Nuclear Information System (INIS)
Martinez Lopez, Jose Angel
2010-01-01
A descriptive and cross-sectional study of 902 patients with confirmed diagnosis of dengue and admitted at the 'Dr. Juan Bruno Zayas Alfonso' General Hospital was carried out in Santiago de Cuba, from April to October, 2006, in order to characterize them from the clinical, epidemiological and echographic point of view. Women belonging to the 36-45 year-old group were the most affected and the abdominal pain constituted the main clinical symptom of alarm in all those affected. The echographic findings took place between the fourth and sixth days of clinical course, mainly in men, and the onset of the perivesicular edema was very early in this stage, with primacy in women. The patients with cholecystectomy presented fluid infiltration in the vesicular channel, while the loops of bowel were observed loosened and their walls were edematous
The French methodology for EBS confirmation and demonstration
International Nuclear Information System (INIS)
Plas, F.; Voinis, S.; Mayer, S.
2007-01-01
The December 30, 1991 French Waste Act entrusted ANDRA, the French national agency for radioactive waste management, with the task of assessing the feasibility of deep geological disposal of high- and medium-level long-lived waste (HLW and ILW, respectively C-waste and B-waste types in French) plus spent fuel (CU in French). In that context, the 'Dossier 2005 Argile' submitted by ANDRA presents the feasibility assessment - with regard to the technical capacity to accommodate all wastes, to reversibility, and to safety - of a radioactive waste disposal in a clay formation studied at the Meuse/Haute-Marne URL. This report was built upon an iterative approach between site characterisation, design, modelling, phenomenological analysis and safety analysis, in which two principles always guided the elaboration of the safety case: the principle of robustness - repository components must maintain their functionality given reasonable solicitations, taking into account uncertainties on the nature and level of these solicitations; and the principle of demonstrability - safety must be verified without requiring complex demonstrations, and based on multiple lines of evidence/argument (numerical simulation, qualitative arguments such as use of natural analogues, experiments and technological demonstrators). In that respect, the EBS definition, demonstration and confirmation of design is a part of the overall safety case. The 'Dossier 2005 Argile' was submitted to three independent peer reviews. The aim. of this article is to present the methodology that ANDRA implemented in the context of 'Dossier 2005 Argile' for defining, demonstrating and confirming the EBS design as well as the future programme with respect with the new Act of 28 June 2006. (author)
XX males SRY negative: a confirmed cause of infertility.
Vetro, Annalisa; Ciccone, Roberto; Giorda, Roberto; Patricelli, Maria Grazia; Della Mina, Erika; Forlino, Antonella; Zuffardi, Orsetta
2011-10-01
SOX9 is a widely expressed transcription factor playing several relevant functions during development and essential for testes differentiation. It is considered to be the direct target gene of the protein encoded by SRY and its overexpression in an XX murine gonad can lead to male development in the absence of Sry. Recently, a family was reported with a 178 kb duplication in the gene desert region ending about 500 kb upstream of SOX9 in which 46,XY duplicated persons were completely normal and fertile whereas the 46,XX ones were males who came to clinical attention because of infertility. We report a family with two azoospermic brothers, both 46,XX, SRY negative, having a 96 kb triplication 500 kb upstream of SOX9. Both subjects have been analyzed trough oligonucleotide array-CGH and the triplication was confirmed and characterised through qPCR, defining the minimal region of amplification upstream of SOX9 associated with 46,XX infertile males, SRY negative. Our results confirm that even in absence of SRY, complete male differentiation may occur, possibly driven by overexpression of SOX9 in the gonadal ridge, as a consequence of the amplification of a gene desert region. We hypothesize that this region contains gonadal specific long-range regulation elements whose alteration may impair the normal sex development. Our data show that normal XX males, with alteration in copy number or, possibly, in the critical sequence upstream to SOX9 are a new category of infertility inherited in a dominant way with expression limited to the XX background.
Neuroimaging findings in children with retinopathy-confirmed cerebral malaria
Energy Technology Data Exchange (ETDEWEB)
Potchen, Michael J. [Michigan State University, Department of Radiology, 184 Radiology Building, East Lansing, MI 48824-1303 (United States)], E-mail: mjp@rad.msu.edu; Birbeck, Gretchen L. [Michigan State University, International Neurologic and Psychiatric Epidemiology Program, 324 West Fee Hall, East Lansing, MI 48824 (United States)], E-mail: Gretchen.Birbeck@ht.msu.edu; DeMarco, J. Kevin [Michigan State University, Department of Radiology, 184 Radiology Building, East Lansing, MI 48824-1303 (United States)], E-mail: jkd@rad.msu.edu; Kampondeni, Sam D. [University of Malawi, Department of Radiology, Queen Elizabeth Central Hospital, Blantyre (Malawi)], E-mail: kamponde@msu.edu; Beare, Nicholas [St. Paul' s Eye Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP (United Kingdom)], E-mail: nbeare@btinternet.com; Molyneux, Malcolm E. [Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine (Malawi); School of Tropical Medicine, University of Liverpool, Liverpool (United Kingdom)], E-mail: mmolyneux999@google.com; Taylor, Terrie E. [Michigan State University, College of Osteopathic Medicine, B309-B West Fee Hall, East Lansing, MI 48824 (United States); University of Malawi, College of Medicine, Blantyre Malaria Project, Blantyre (Malawi)], E-mail: taylort@msu.edu
2010-04-15
Purpose: To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. Materials and methods: In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Results: Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). Conclusions: The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease.
Neuroimaging findings in children with retinopathy-confirmed cerebral malaria
International Nuclear Information System (INIS)
Potchen, Michael J.; Birbeck, Gretchen L.; DeMarco, J. Kevin; Kampondeni, Sam D.; Beare, Nicholas; Molyneux, Malcolm E.; Taylor, Terrie E.
2010-01-01
Purpose: To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. Materials and methods: In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Results: Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). Conclusions: The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease.
Confirmation of identity and detection limit in neutron activation analysis
International Nuclear Information System (INIS)
Yustina Tri Handayani; Slamet Wiyuniati; Tulisna
2010-01-01
Neutron Activation Analysis (NAA) based on neutron capture by nuclides. Of the various possibilities of radionuclides that occur, radionuclides and gamma radiation which provides the identity of the element were analyzed and the best sensitivity should be determined. Confirmation for elements in sediment samples was done theoretically and experimentally. The result of confirmation shows that Al, V, Cr K, Na, Ca and Zn were analyzed based on radionuclides of Al-28, V-52, Cr-51 , K-42, Na-24, Ca-48, Zn-65. Elements of Mg, Mn, Fe, Co were analyzed based on radionuclides of Mg-27, Mn-56, Fe-59, Co-60 through peak which the highest value of combined probability of radiation emission and efficiency. Cu can be analyzed through Cu-64 or Cu-66, but the second is more sensitive. Detection limit is determined at a certain measurement conditions carried out by a laboratory. Detection limit in the NAA is determined based on the Compton continue area by Curie method. The detection limit of Al, V, Ca, Mg, Mn, As, K, Na, Mg, Ce, Co, Cr, Fe, La, Sc, and Zn in sediment samples are 240, 27, 4750, 2600, 21, 3.3 , 75, 1.4, 1.8, 0.5, 2.7, 29, 1, 0.05, and 37 ppm. Analysis of Cu in sediments which concentrations of 98.6 ppm, Cu-66 is not detected. Tests using pure standard solutions of Cu obtained detection limit of 0.12 µg, or 7.9 ppm in samples of 15 mg. In general, the detection limit obtained was higher than the detection limit of the reference, it was caused by the differences in the sample matrix and analytical conditions. (author)
Bayesian nonlinear regression for large small problems
Chakraborty, Sounak; Ghosh, Malay; Mallick, Bani K.
2012-01-01
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik's ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
Spontaneous regression of intracranial malignant lymphoma
International Nuclear Information System (INIS)
Kojo, Nobuto; Tokutomi, Takashi; Eguchi, Gihachirou; Takagi, Shigeyuki; Matsumoto, Tomie; Sasaguri, Yasuyuki; Shigemori, Minoru.
1988-01-01
In a 46-year-old female with a 1-month history of gait and speech disturbances, computed tomography (CT) demonstrated mass lesions of slightly high density in the left basal ganglia and left frontal lobe. The lesions were markedly enhanced by contrast medium. The patient received no specific treatment, but her clinical manifestations gradually abated and the lesions decreased in size. Five months after her initial examination, the lesions were absent on CT scans; only a small area of low density remained. Residual clinical symptoms included mild right hemiparesis and aphasia. After 14 months the patient again deteriorated, and a CT scan revealed mass lesions in the right frontal lobe and the pons. However, no enhancement was observed in the previously affected regions. A biopsy revealed malignant lymphoma. Despite treatment with steroids and radiation, the patient's clinical status progressively worsened and she died 27 months after initial presentation. Seven other cases of spontaneous regression of primary malignant lymphoma have been reported. In this case, the mechanism of the spontaneous regression was not clear, but changes in immunologic status may have been involved. (author)
Regression testing in the TOTEM DCS
International Nuclear Information System (INIS)
Rodríguez, F Lucas; Atanassov, I; Burkimsher, P; Frost, O; Taskinen, J; Tulimaki, V
2012-01-01
The Detector Control System of the TOTEM experiment at the LHC is built with the industrial product WinCC OA (PVSS). The TOTEM system is generated automatically through scripts using as input the detector Product Breakdown Structure (PBS) structure and its pinout connectivity, archiving and alarm metainformation, and some other heuristics based on the naming conventions. When those initial parameters and automation code are modified to include new features, the resulting PVSS system can also introduce side-effects. On a daily basis, a custom developed regression testing tool takes the most recent code from a Subversion (SVN) repository and builds a new control system from scratch. This system is exported in plain text format using the PVSS export tool, and compared with a system previously validated by a human. A report is sent to the developers with any differences highlighted, in readiness for validation and acceptance as a new stable version. This regression approach is not dependent on any development framework or methodology. This process has been satisfactory during several months, proving to be a very valuable tool before deploying new versions in the production systems.
Supporting Regularized Logistic Regression Privately and Efficiently
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738