WorldWideScience

Sample records for registered antimicrobial products

  1. Antimicrobial Products Registered for Disinfection Use against Avian Influenza on Poultry Farms and Other Facilities

    Science.gov (United States)

    EPA registers disinfectants against Avian Influenza A. Although there are no antimicrobial products registered for the H5N2 subtype of Avian Influenza A virus, based on available scientific information these products will work against other HPAI strains.

  2. 75 FR 16109 - Antimicrobial Pesticide Products; Registration Applications

    Science.gov (United States)

    2010-03-31

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2009-0936; FRL-8806-9] Antimicrobial Pesticide...: This notice announces receipt of applications to register new antimicrobial pesticide products... identified. II. Registration Applications EPA received applications as follows to register new antimicrobial...

  3. Computional algorithm for lifetime exposure to antimicrobials in pigs using register data − the LEA algorithm

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Dalhoff Andersen, Vibe; Hisham Beshara Halasa, Tariq

    2017-01-01

    Accurate and detailed data on antimicrobial exposure in pig production are essential when studying the association between antimicrobial exposure and antimicrobial resistance. Due to difficulties in obtaining primary data on antimicrobial exposure in a large number of farms, there is a need...... for a robust and valid method to estimate the exposure using register data. An approach that estimates the antimicrobial exposure in every rearing period during the lifetime of a pig using register data was developed into a computational algorithm. In this approach data from national registers on antimicrobial...... purchases, movements of pigs and farm demographics registered at farm level are used. The algorithm traces batches of pigs retrospectively from slaughter to the farm(s) that housed the pigs during their finisher, weaner, and piglet period. Subsequently, the algorithm estimates the antimicrobial exposure...

  4. Practical use of registered veterinary medicinal products in Macedonia in identifying the risk of developing of antimicrobial resistance

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2013-07-01

    Full Text Available The use of antimicrobial agents is the key risk factor for the development and spread of antimicrobial resistance. It is therefore generally recognized that data on the usage of antimicrobial agents in food-producing animals are essential for identifying and quantifying the risk of developing and spreading of antimicrobial resistance in the food-chain. According to the WHO guidelines, the Anatomical Therapeutic Chemical system for the classification of veterinary medicines (ATC-vet is widely recognized as a classification tool. The aim of this work is to analyze the list of registered veterinary medicinal products in R. Macedonia and to evaluate the quality and practical use of this list according to the ATC-vet classification in order to identify the risk of developing and spreading of antimicrobial resistance.

  5. A register-based study of the antimicrobial usage in Danish veal calves and young bulls

    DEFF Research Database (Denmark)

    Fertner, Mette Ely; Toft, Nils; Martin, Henrik Læssøe

    2016-01-01

    High antimicrobial usage and multidrug resistance have been reported in veal calves in Europe. This may be attributed to a high risk of disease as veal calves are often purchased from numerous dairy herds, exposed to stress related to the transport and commingling of new animals, and fed a new...... ration. In this study, we used national register data to characterize the use of antimicrobials registered for large Danish veal calf and young bull producing herds in 2014. A total of 325 herds with veal calf and potentially young bull production were identified from the Danish Cattle database....... According to the national Danish database on drugs for veterinary use (VetStat), a total of 537,399 Animal Daily Doses (ADD200) were registered for these 325 herds during 2014. The amount of antimicrobials registered in 2014 varied throughout the year, with the highest amounts registered in autumn...

  6. 75 FR 30829 - Antimicrobial Pesticide Products; Registration Applications

    Science.gov (United States)

    2010-06-02

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0325; FRL-8824-2] Antimicrobial Pesticide...: This notice announces receipt of an application to register new antimicrobial pesticide products... telephone number is (703) 305-5805. FOR FURTHER INFORMATION CONTACT: Demson Fuller, Antimicrobials Division...

  7. Computional algorithm for lifetime exposure to antimicrobials in pigs using register data-The LEA algorithm.

    Science.gov (United States)

    Birkegård, Anna Camilla; Andersen, Vibe Dalhoff; Halasa, Tariq; Jensen, Vibeke Frøkjær; Toft, Nils; Vigre, Håkan

    2017-10-01

    Accurate and detailed data on antimicrobial exposure in pig production are essential when studying the association between antimicrobial exposure and antimicrobial resistance. Due to difficulties in obtaining primary data on antimicrobial exposure in a large number of farms, there is a need for a robust and valid method to estimate the exposure using register data. An approach that estimates the antimicrobial exposure in every rearing period during the lifetime of a pig using register data was developed into a computational algorithm. In this approach data from national registers on antimicrobial purchases, movements of pigs and farm demographics registered at farm level are used. The algorithm traces batches of pigs retrospectively from slaughter to the farm(s) that housed the pigs during their finisher, weaner, and piglet period. Subsequently, the algorithm estimates the antimicrobial exposure as the number of Animal Defined Daily Doses for treatment of one kg pig in each of the rearing periods. Thus, the antimicrobial purchase data at farm level are translated into antimicrobial exposure estimates at batch level. A batch of pigs is defined here as pigs sent to slaughter at the same day from the same farm. In this study we present, validate, and optimise a computational algorithm that calculate the lifetime exposure of antimicrobials for slaughter pigs. The algorithm was evaluated by comparing the computed estimates to data on antimicrobial usage from farm records in 15 farm units. We found a good positive correlation between the two estimates. The algorithm was run for Danish slaughter pigs sent to slaughter in January to March 2015 from farms with more than 200 finishers to estimate the proportion of farms that it was applicable for. In the final process, the algorithm was successfully run for batches of pigs originating from 3026 farms with finisher units (77% of the initial population). This number can be increased if more accurate register data can be

  8. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    Energy Technology Data Exchange (ETDEWEB)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A [Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ovsianikov, A; Chichkov, B N [Laser Zentrum Hannover, Hollerithallee 8, 30419 Hannover (Germany); Stafslien, S; Chisholm, B, E-mail: roger_narayan@msn.co [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States)

    2009-12-15

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  9. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    International Nuclear Information System (INIS)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A; Ovsianikov, A; Chichkov, B N; Stafslien, S; Chisholm, B

    2009-01-01

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  10. Weaner production with low antimicrobial usage: a descriptive study

    DEFF Research Database (Denmark)

    Fertner, Mette Ely; Boklund, Anette; Dupont, Nana Hee

    2015-01-01

    Background: Health, productivity and antimicrobial use in the production of pigs are expected to be interrelated to some extent. Previous studies on register-based data have investigated these correlations with a subsequent large variation residing at the farm level. In order to study such farm f...

  11. List M: Registered Antimicrobial Products with Label Claims for Avian (Bird) Flu Disinfectants

    Science.gov (United States)

    These EPA disinfectant products are registered and labeled with a claim to inactivate Avian influenza A viruses on hard, non-porous surfaces. The label specifies the use sites (e.g., poultry houses and farm premises) for application of the product.

  12. Weaner production with low antimicrobial usage: a descriptive study

    DEFF Research Database (Denmark)

    Fertner, Mette Ely; Boklund, Anette; Dupont, Nana Hee

    2015-01-01

    Background: Health, productivity and antimicrobial use in the production of pigs are expected to be interrelated to some extent. Previous studies on register-based data have investigated these correlations with a subsequent large variation residing at the farm level. In order to study such farm...... factors in more detail we designed an elaborate interview-guide. By in-depth interviews of farmers with well-managed 7-30 kg (weaner) productions we sought to describe a set of common key-factors characterizing their management practices. Identification of such common practices could be used in follow......-up projects, investigating whether identified factors really are characteristic for good-practicing famers.Results: Eleven farms were selected for a farm visit and in-depth interview. Participating farms used less antimicrobials than the national median (8.2 animal daily doses/100 weaners/day), had...

  13. Draft PRN 2006-A: Use of Antimicrobial Pesticide Products in Heating, Ventilation, Air Conditioning and Refrigeration Systems (HVAC&R)

    Science.gov (United States)

    This draft notice provides guidance to registrants of EPA-registered antimicrobial products whose labels bear general directions related to hard, non-porous or porous surfaces, but which are not but which are not specifically registered for HVAC uses.

  14. Antimicrobial use in Belgian broiler production.

    Science.gov (United States)

    Persoons, Davy; Dewulf, Jeroen; Smet, Annemieke; Herman, Lieve; Heyndrickx, Marc; Martel, An; Catry, Boudewijn; Butaye, Patrick; Haesebrouck, Freddy

    2012-08-01

    The use of antimicrobials in production animals has become a worldwide concern in the face of rising resistance levels in commensal, pathogenic and zoonotic bacteria. In the years 2007 and 2008 antimicrobial consumption records were collected during two non consecutive production cycles in 32 randomly selected Belgian broiler farms. Antimicrobials were used in 48 of the 64 monitored production cycles, 7 farms did not use any antimicrobials in both production cycles, 2 farms only administered antimicrobials in one of the two production cycles, the other 23 farms applied antimicrobial treatment in both production cycles. For the quantification of antimicrobial drug use, the treatment incidences (TI) based on the defined daily doses (the dose as it should be applied: DDD) and used daily doses (the actual dose applied: UDD) were calculated. A mean antimicrobial treatment incidence per 1000 animals of 131.8 (standard deviation 126.8) animals treated daily with one DDD and 121.4 (SD 106.7) animals treated daily with one UDD was found. The most frequently used compounds were amoxicillin, tylosin and trimethoprim-sulphonamide with a mean TI(UDD) of 37.9, 34.8, and 21.7, respectively. The ratio of the UDD/DDD gives an estimate on correctness of dosing. Tylosin was underdosed in most of the administrations whereas amoxicillin and trimethoprim-sulphonamide were slightly overdosed in the average flock. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Antimicrobial Pesticide Use Site Index

    Science.gov (United States)

    This Use Site Index provides guidance to assist applicants for antimicrobial pesticide registration by helping them identify the data requirements necessary to register a pesticide or support their product registrations.

  16. Antimicrobial resistance issues in beef production

    Science.gov (United States)

    Antimicrobial resistance threats to human health as identified have been recognized as a critical global public health concern. Linkage of some threats to beef production is discussed. The relevance to beef production of recent government actions will be examined. Prominent antimicrobial resistance ...

  17. Assessment of Human Pharmaceutical Products Registered in ...

    African Journals Online (AJOL)

    ... in order to determine the most common routes of administration and type of dosage forms that are used. Registered pharmaceutical products were categorized by route of administration and then sub-categorized by the dosage form. Oral dosage forms were the most common accounting for 73% of all registered products.

  18. Antimicrobial usage and resistance in beef production

    OpenAIRE

    Cameron, Andrew; McAllister, Tim A.

    2016-01-01

    Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harm...

  19. Antimicrobial use in Chinese swine and broiler poultry production.

    Science.gov (United States)

    Krishnasamy, Vikram; Otte, Joachim; Silbergeld, Ellen

    2015-01-01

    Antimicrobial use for growth promotion in food animal production is now widespread. A major concern is the rise of antimicrobial resistance and the subsequent impact on human health. The antimicrobials of concern are used in concentrated animal feeding operations (CAFOs) which are responsible for almost all meat production including swine and poultry in the US. With global meat consumption rising, the CAFO model has been adopted elsewhere to meet this demand. One such country where this has occurred is China, and evidence suggests 70% of poultry production now occurs outside of traditional small farms. Moreover, China is now the largest aggregate consumer of meat products in the world. With this rapid rise in consumption, the Chinese production model has changed along with the use of antimicrobials in feeds. However, the specific antibiotic use in the Chinese food animal production sector is unclear. Additionally, we are aware of high quantities of antimicrobial use because of reports of high concentrations of antimicrobials in animal waste and surface waters surrounding animal feeding operations. In this report, we estimate the volume of antibiotics used for swine and poultry production as these are the two meat sources with the highest levels of production and consumption in China. We adopt a model developed by Mellon et al. in the US for estimating drug use in feed for poultry and swine production to estimate overall antimicrobial use as well as antimicrobial use by class. We calculate that 38.5 million kg [84.9 million lbs] were used in 2012 in China's production of swine and poultry. By antibiotic class, the highest weights are tetracyclines in swine and coccidiostats in poultry. The volume of antimicrobial use is alarming. Although there are limitations to these data, we hope our report will stimulate further analysis and a sense of urgency in assessing the consequences of such high levels of utilization in terms of antibiotic resistance in the food supply

  20. Impact of antimicrobial use during beef production on fecal occurrence of antimicrobial resistance

    Science.gov (United States)

    Objective: To determine the impact of typical antimicrobial use during cattle production on fecal occurrence of antimicrobial resistance by culture, quantitative PCR, and metagenomic sequencing. Experimental Design & Analysis: Feces were recovered from colons of 36 lots of "conventional" (CONV) ca...

  1. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance.

    Science.gov (United States)

    Holman, Devin B; Chénier, Martin R

    2015-11-01

    Antimicrobials have been used in swine production at subtherapeutic levels since the early 1950s to increase feed efficiency and promote growth. In North America, a number of antimicrobials are available for use in swine. However, the continuous administration of subtherapeutic, low concentrations of antimicrobials to pigs also provides selective pressure for antimicrobial-resistant bacteria and resistance determinants. For this reason, subtherapeutic antimicrobial use in livestock remains a source of controversy and concern. The swine gut microbiota demonstrates a number of changes in response to antimicrobial administration depending on the dosage, duration of treatment, age of the pigs, and gut location that is sampled. Both culture-independent and -dependent studies have also shown that the swine gut microbiota contains a large number of antimicrobial resistance determinants even in the absence of antimicrobial exposure. Heavy metals, such as zinc and copper, which are often added at relatively high doses to swine feed, may also play a role in maintaining antimicrobial resistance and in the stability of the swine gut microbiota. This review focuses on the use of antimicrobials in swine production, with an emphasis on the North American regulatory context, and their effect on the swine gut microbiota and on antimicrobial resistance determinants in the gut microbiota.

  2. Australian Mining's product register 1992-93

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This annual product register contains an assessment of resources in Australia; statistical information on mine production of principal minerals; mineral industry statistics; directory of exploration and mining companies; buyers' guide; directory of consultants; list of services and a company index.

  3. Quality of Antimicrobial Products Used in Striped Catfish (Pangasianodon hypophthalmus) Aquaculture in Vietnam

    Science.gov (United States)

    Phu, Tran Minh; Phuong, Nguyen Thanh; Scippo, Marie-Louise; Dalsgaard, Anders

    2015-01-01

    Antimicrobial usage is common in Asian aquaculture. This study aimed to determine the quality of antimicrobial products used by Vietnamese striped catfish (Pangasianodon hypophthalmus) farmers. Twenty one antimicrobial products (11 products contained a single antimicrobial and 10 products contained a mixture of two different antimicrobials) commonly used by catfish farmers were obtained from so-called chemical shops located in the Mekong Delta, Vietnam. Ultra High Performance Liquid Chromatography Mass Spectrometry was used to analyze concentration of sulfonamides, trimethoprim, amoxicillin, cefalexin and ciprofloxacin whereas concentrations of florfenicol and doxycycline were analyzed by High Performance Liquid Chromatography with UV detection. Results revealed that only 4/11 products with a single antimicrobial and 2/10 products with a mixture of antimicrobials contained active substances within ±10% of the concentration declared on the product label. Two products with antimicrobial mixtures did not contain any of the declared antimicrobials. Comparing two batches, analysis of 11 products revealed that only one product contained a concentration of active compound that varied with less than 10% in both batches. Several product labels provided inadequate information on how to calculate therapeutic dosage and further stated withdrawal time despite lack of pharmacokinetic data on the antimicrobials in catfish. There is an urgent need to strengthen approval procedures and in particular regularly to monitor the quality of antimicrobials used in Vietnamese aquaculture. PMID:25897517

  4. Quality of Antimicrobial Products Used in Striped Catfish (Pangasianodon hypophthalmus Aquaculture in Vietnam.

    Directory of Open Access Journals (Sweden)

    Tran Minh Phu

    Full Text Available Antimicrobial usage is common in Asian aquaculture. This study aimed to determine the quality of antimicrobial products used by Vietnamese striped catfish (Pangasianodon hypophthalmus farmers. Twenty one antimicrobial products (11 products contained a single antimicrobial and 10 products contained a mixture of two different antimicrobials commonly used by catfish farmers were obtained from so-called chemical shops located in the Mekong Delta, Vietnam. Ultra High Performance Liquid Chromatography Mass Spectrometry was used to analyze concentration of sulfonamides, trimethoprim, amoxicillin, cefalexin and ciprofloxacin whereas concentrations of florfenicol and doxycycline were analyzed by High Performance Liquid Chromatography with UV detection. Results revealed that only 4/11 products with a single antimicrobial and 2/10 products with a mixture of antimicrobials contained active substances within ±10% of the concentration declared on the product label. Two products with antimicrobial mixtures did not contain any of the declared antimicrobials. Comparing two batches, analysis of 11 products revealed that only one product contained a concentration of active compound that varied with less than 10% in both batches. Several product labels provided inadequate information on how to calculate therapeutic dosage and further stated withdrawal time despite lack of pharmacokinetic data on the antimicrobials in catfish. There is an urgent need to strengthen approval procedures and in particular regularly to monitor the quality of antimicrobials used in Vietnamese aquaculture.

  5. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review

    Directory of Open Access Journals (Sweden)

    Nguyen T. Nhung

    2016-11-01

    Full Text Available Southeast Asia is an area of great economic dynamism. In recent years, it has experienced a rapid rise in the levels of animal product production and consumption. The region is considered to be a hotspot for infectious diseases and antimicrobial resistance (AMR. We reviewed English-language peer-reviewed publications related to antimicrobial usage (AMU and AMR in animal production, as well as antimicrobial residues in meat and fish from 2000 to 2016, in the region. There is a paucity of data from most countries and for most bacterial pathogens. Most of the published work relates to non-typhoidal Salmonella (NTS, Escherichia coli (E. coli, and Campylobacter spp. (mainly from Vietnam and Thailand, Enterococcus spp. (Malaysia, and methicillin-resistant Staphylococcus aureus (MRSA (Thailand. However, most studies used the disk diffusion method for antimicrobial susceptibility testing; breakpoints were interpreted using Clinical Standard Laboratory Institute (CSLI guidelines. Statistical models integrating data from publications on AMR in NTS and E. coli studies show a higher overall prevalence of AMR in pig isolates, and an increase in levels of AMR over the years. AMU studies (mostly from Vietnam indicate very high usage levels of most types of antimicrobials, including beta-lactams, aminoglycosides, macrolides, and quinolones. This review summarizes information about genetic determinants of resistance, most of which are transferrable (mostly plasmids and integrons. The data in this review provide a benchmark to help focus research and policies on AMU and AMR in the region.

  6. Antimicrobial Consumption in Medicated Feeds in Vietnamese Pig and Poultry Production.

    Science.gov (United States)

    Van Cuong, Nguyen; Nhung, Nguyen Thi; Nghia, Nguyen Huu; Mai Hoa, Nguyen Thi; Trung, Nguyen Vinh; Thwaites, Guy; Carrique-Mas, Juan

    2016-09-01

    Antimicrobials are extensively used as growth promoters in animal feeds worldwide, but reliable estimates are lacking. We conducted an internet-based survey of commercial chicken and pig feed products officially approved for sale in Vietnam over the period March-June 2015. Information on the antimicrobial contents in feed products, alongside animal production data, was used to estimate in-feed antimicrobial consumption to produce one kilogram of live animal (chicken, pig), as well as to estimate country-wide antimicrobial consumption through animal feeds. A total of 1462 commercial feed formulations were examined. The survey-adjusted estimated antimicrobial contents were 25.7 and 62.3 mg/kg in chicken and pig feeds, respectively. Overall, it was estimated that 77.4 mg [95% CI 48.1-106.8] and 286.6 mg [95% CI 191.6-418.3] of in-feed antimicrobials were used to raise 1 kg of live chicken and pig, respectively. Bacitracin (15.5% feeds), chlortetracycline (11.4%), and enramycin (10.8%) were the most common antimicrobials present in chicken feed formulations, whereas bacitracin (24.8%), chlortetracycline (23.9%), and florfenicol (17.4%) were the most common in pig feed formulations. Overall, 57% of the total quantitative usage consisted of antimicrobials regarded by WHO of importance for human medicine, including amoxicillin, colistin, tetracyclines, neomycin, lincomycin, and bacitracin. These figures confirm a very high magnitude of in-feed consumption of antimicrobials, especially in pig production. Results from this study should encourage further monitoring of antimicrobials used in animal production, and foster discussion about existing policies on inclusion of antimicrobials in animal feed rations.

  7. Australian Mining's product register 1990-91

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Australian Minings' Product Register 1990-91 contains an industry review, resource assessment, mineral industry statistics, directory of exploration and mining companies, buyers guide and directory of consultants.

  8. Assessment of Veterinary Pharmaceutical Products Registered in ...

    African Journals Online (AJOL)

    Topical, intramammary, intrauterine and ophthalmic routes accounted for 4.7%, 3.3%, 1.0% and 0.1% of the registered products respectively. ... Dosage forms for oral administration included solids (53.4%) namely powders, tablets, boluses, freeze dried products, granules; liquids (46.3%) namely suspensions, solutions, ...

  9. Risk assessment of antimicrobial usage in Danish pig production on the human exposure to antimicrobial resistant bacteria from pork

    DEFF Research Database (Denmark)

    Struve, Tina

    to antimicrobials are influenced by the use of antimicrobial agents, and the prudence of antimicrobial use have been emphasized since the Swann report in 1969 recommended that antibiotics used in human medicine should not be used as growth promoters in food-producing animals. In 2007, the World Health Organisation...... the human exposure to cephalosporin resistance from pork purchased in retail shops was assessed using different scenarios for the amount of antimicrobial used in the primary production. Also, farm-related factors affecting the antimicrobial usage were investigated as a part of this thesis. The thesis...... producing E. coli through the purchase of pork chops Objective 3: Identification of management factors in the Danish finishing pig production important for antimicrobial usage In Objective 1, the occurrence (presence/non-presence) of ESC producing E. coli in samples from healthy pigs at slaughter...

  10. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products.

    Science.gov (United States)

    Katla, A K; Kruse, H; Johnsen, G; Herikstad, H

    2001-07-20

    Commercial starter culture bacteria are widely used in the production of dairy products and could represent a potential source for spread of genes encoding resistance to antimicrobial agents. To learn more about the antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products, a total of 189 isolates of lactic acid bacteria were examined for susceptibility to ampicillin, penicillin G, cephalothin, vancomycin, bacitracin, gentamicin, streptomycin, erythromycin, tetracycline, chloramphenicol, quinupristin/dalfopristin, ciprofloxacin, trimethoprim and sulphadiazine using Etest for MIC determination. Most of the isolates (140) originated from 39 dairy products (yoghurt, sour cream, fermented milk and cheese), while 49 were isolated directly from nine commercial cultures. The bacteria belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Streptococcus. Only one of the 189 isolates was classified as resistant to an antimicrobial agent included in the study. This isolate, a lactobacillus, was classified as high level resistant to streptomycin. The remaining isolates were not classified as resistant to the antimicrobial agents included other than to those they are known to have a natural reduced susceptibility to. Thus, starter culture bacteria in Norwegian dairy products do not seem to represent a source for spread of genes encoding resistance to antimicrobial agents.

  11. Proper context: Comparison studies demonstrate that United States food-animal production antimicrobial uses have minimal impact on antimicrobial resistance

    Science.gov (United States)

    In the United States (US) it is estimated that food-animal production agriculture accounts for >70% of antimicrobial (AM) use leading to concerns that agricultural uses "substantially drive" antimicrobial resistance (AMR). Many studies report AMR in food-animal production settings without comparison...

  12. Persistent Spatial Clusters of Prescribed Antimicrobials among Danish Pig Farms – A Register-Based Study

    Science.gov (United States)

    Fertner, Mette; Sanchez, Javier; Boklund, Anette; Stryhn, Henrik; Dupont, Nana; Toft, Nils

    2015-01-01

    The emergence of pathogens resistant to antimicrobials has prompted political initiatives targeting a reduction in the use of veterinary antimicrobials in Denmark, especially for pigs. This study elucidates the tendency of pig farms with a significantly higher antimicrobial use to remain in clusters in certain geographical regions of Denmark. Animal Daily Doses/100 pigs/day were calculated for all three age groups of pigs (weaners, finishers and sows) for each quarter during 2012–13 in 6,143 commercial indoor pig producing farms. The data were split into four time periods of six months. Repeated spatial cluster analyses were performed to identify persistent clusters, i.e. areas included in a significant cluster throughout all four time periods. Antimicrobials prescribed for weaners did not result in any persistent clusters. In contrast, antimicrobial use in finishers clustered persistently in two areas (157 farms), while those issued for sows clustered in one area (51 farms). A multivariate analysis including data on antimicrobial use for weaners, finishers and sows as three separate outcomes resulted in three persistent clusters (551 farms). Compared to farms outside the clusters during this period, weaners, finishers and sows on farms within these clusters had 19%, 104% and 4% higher use of antimicrobials, respectively. Production type, farm type and farm size seemed to have some bearing on the clustering effect. Adding these factors as categorical covariates one at a time in the multivariate analysis reduced the persistent clusters by 24.3%, 30.5% and 34.1%, respectively. PMID:26317206

  13. Quality of antimicrobial products used in white leg shrimp (Litopenaeus vannamei) aquaculture in Northern Vietnam

    DEFF Research Database (Denmark)

    Tran, Kim Chi; Tran, Minh Phu; Phan, Thi Van

    2018-01-01

    Antimicrobials are important to treat diseases in aquaculture and the objective of this study was to evaluate the quality of antimicrobial products commonly used in white leg shrimp (Litopenaeus vannamei) aquaculture in Northern Vietnam. A total of 25 antimicrobial products were obtained from 20...... to strengthen diagnostic services, legislation and control of antimicrobial products in shrimp aquaculture and educate farmers on prudent antimicrobial use practices....

  14. Studies performed in the proper context suggest that antimicrobial use during swine and cattle production minimally impact antimicrobial resistance

    Science.gov (United States)

    In the United States (U.S.) it is estimated that food-animal production agriculture accounts for >70% of antimicrobial (AM) use leading to concerns that agricultural uses are the primary source of antimicrobial resistance (AMR). Many studies report AMR in food-animal production settings without comp...

  15. Antimicrobials Products Tested or Pending Testing

    Science.gov (United States)

    The agency has completed testing of the majority of registered hospital disinfectants and tuberculocide products. The list of products can assist users in making informed choices regarding infection control in their facilities.

  16. Antimicrobial Substances for Food Packaging Products: The Current Situation.

    Science.gov (United States)

    Pellerito, Alessandra; Ameen, Sara M; Micali, Maria; Caruso, Giorgia

    2018-04-04

    Antimicrobial substances are widely used in many anthropic activities, including sanitary and military services for the human population. These compounds are also known to be used in food production, agricultural activities, and partially correlated industrial sectors. However, there are concerns regarding the link between the abuse of antimicrobial agents in these ambits and the possible detection of antibiotic-resistant microorganisms. Modern food and beverage products are generally found on the market as prepackaged units, with several exceptions. Consequently, positive and negative features of a specific food or beverage should be considered as the result of the synergic action of different components, including the container (or the assembled sum of packaging materials). At present, the meaning of food container also includes the creation and development of new packaging materials that are potentially able to interact with the contained food. "Active" packaging systems can be realized with antimicrobial substances. On the other hand, a careful evaluation of risks and advantages correlated with antimicrobial agents is needed because of possible negative and/or unexpected failures.

  17. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials.

    Science.gov (United States)

    Choudhary, Alka; Naughton, Lynn M; Montánchez, Itxaso; Dobson, Alan D W; Rai, Dilip K

    2017-08-28

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012-2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.

  18. Changes in the use of antimicrobials and the effects on productivity of swine farms in Denmark

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Jensen, Vibeke Frøkjær; Emborg, Hanne-Dorthe

    2010-01-01

    -Antimicrobial consumption by Danish swine farms from 1992 to 2008 was determined and evaluated in light of policies to regulate antimicrobial consumption, changes in disease patterns, and productivity data. Trend analyses of productivity data were conducted before and after a ban on use of antimicrobial growth promoters......Objective-To evaluate changes in antimicrobial consumption and productivity by Danish swine farms during 1992 to 2008. Sample Population-All Danish swine farms for antimicrobial consumption data and a representative sample of Danish swine herds for productivity data. Procedures...... of antimicrobials in 1994 and termination of AGP use by January 2000. Pig production increased from 18.4 to 271 million pigs, and the mean number of pigs per sow per year raised for slaughter increased from 21 in 1992 to 25 in 2007 Average daily gain for weaning ( 35 kg) pigs was higher...

  19. Antimicrobial-resistant faecal organisms in algae products marketed as health supplements

    LENUS (Irish Health Repository)

    2017-09-01

    Dietary supplements are increasingly popular in Irish society. One of these is blue-green algae which is used with a variety health benefits in mind. A batch of Chlorella powder was found to be contaminated with Salmonella species in Ireland in 2015. This prompted additional testing of a total of 8 samples of three different products (Chlorella, Spirulina and Super Greens), for other faecal flora and antimicrobial resistance in any bacteria isolated. All 8 samples cultured enteric flora such as Enterococci, Enterobacteriaceae and Clostridium species. Antimicrobial susceptibility testing revealed one isolate with extended-spectrum β-lactamase (ESBL) activity and one with carbapenemase activity. Clinicians caring for vulnerable patients should be aware of the potential risk of exposure to antimicrobial resistant bacteria associated with these products

  20. Integrated Interventions to Tackle Antimicrobial Usage in Animal Production Systems: The ViParc Project in Vietnam.

    Science.gov (United States)

    Carrique-Mas, Juan J; Rushton, Jonathan

    2017-01-01

    Antimicrobial usage and antimicrobial resistance (AMR) in animal production is now recognized to be an important contributor to the global problem of AMR. Initiatives to curb indiscriminate antimicrobial use in animal production are currently being discussed in many low- and middle-income countries. Well-designed, scientifically sound interventions aimed to tackle excessive antimicrobial usage should provide scientists and policy makers with evidence of the highest quality to guide changes in policy and to formulate better targeted research initiatives. However, since large-scale interventions are costly, they require careful planning in order not to waste valuable resources. Here, we describe the components of the ViParc project (www.viparc.org), one of the first large-scale interventions of its kind to tackle excessive antimicrobial usage in Southeast Asian animal production systems. The project has been formulated as a "randomized before-and-after controlled study" targeting small-scale poultry farms in the Mekong Delta region of Vietnam. It aims to provide farmers with a locally-adapted veterinary support service to help them reduce their reliance on antimicrobials. ViParc has been developed in the backdrop of efforts by the Government of Vietnam to develop a National Action Plan to reduce Antimicrobials in Livestock and Aquaculture. Crucially, the project integrates socio-economic analyses that will provide insights into the drivers of antimicrobial usage, as well as an assessment of the cost-effectiveness of the proposed intervention. Information generated from ViParc should help the Government of Vietnam refine its policies to curb excessive antimicrobial usage in poultry production, while lessons from ViParc will help tackle excessive antimicrobial usage in other productions systems in Vietnam and in the broader Southeast Asian region.

  1. Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: a new approach for risk management of antimicrobial veterinary medicinal products in Japan.

    Science.gov (United States)

    Asai, Tetsuo; Hiki, Mototaka; Ozawa, Manao; Koike, Ryoji; Eguchi, Kaoru; Kawanishi, Michiko; Kojima, Akemi; Endoh, Yuuko S; Hamamoto, Shuichi; Sakai, Masato; Sekiya, Tatsuro

    2014-03-01

    Antimicrobial agents are essential for controlling bacterial disease in food-producing animals and contribute to the stable production of safe animal products. The use of antimicrobial agents in these animals affects the emergence and prevalence of antimicrobial resistance in bacteria isolated from animals and animal products. As disease-causing bacteria are often transferred from food-producing animals to humans, the food chain is considered a route of transmission for the resistant bacteria and/or resistance genes. The Food Safety Commission of Japan (FSC) has been assessing the risk posed to human health by the transmission of antimicrobial-resistant bacteria from livestock products via the food chain. In addition to the FSC's risk assessments, the Japanese Ministry of Agriculture, Forestry and Fisheries has developed risk-management guidelines to determine feasible risk-management options for the use of antimicrobial veterinary medicinal products during farming practices. This report includes information on risk assessment and novel approaches for risk management of antimicrobial veterinary medicinal products for mitigating the risk of development and prevalence of antimicrobial resistance in bacteria originating from food-producing animals in Japan.

  2. Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation

    Directory of Open Access Journals (Sweden)

    Irais Sánchez-Ortega

    2014-01-01

    Full Text Available Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics.

  3. Co-production of parasporal crystal toxins and antimicrobial ...

    African Journals Online (AJOL)

    Co-production of antimicrobial substances and insecticidal compounds by Bacillus thuringiensis BAR 3 was investigated. The cell free supernatant (CFS) of B. thuringiensis showed inhibitory activities against both Gram positive (B. thuringiensis IFO13866 and Staphylococcus aureus ATCC 25923) and Gram negative ...

  4. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey

    Science.gov (United States)

    2013-01-01

    Background The administration of antimicrobial drugs to food animals at low doses for extended durations for growth promotion and disease prevention has been linked to the global health crisis of antimicrobial resistance. Internationally, multiple jurisdictions have responded by restricting antimicrobial use for these purposes, and by requiring a veterinary prescription to use these drugs in food animals. Opponents of these policies have argued that restrictions have been detrimental to food animal production where they have been adopted. Methods We surveyed the antimicrobial use policies of 17 political jurisdictions outside of the United States with respect to growth promotion, disease prevention, and veterinary oversight, and reviewed the available evidence regarding their production impacts, including measures of animal health. Jurisdictions were included if they were a top-five importer of a major U.S. food animal product in 2011, as differences between the policies of the U.S. and other jurisdictions may lead to trade barriers to U.S. food animal product exports. Jurisdictions were also included if information on their policies was publicly available in English. We searched the peer-reviewed and grey literatures and corresponded with jurisdictions’ U.S. embassies, regulators, and local experts. Results Jurisdictions were categorized by whether they prohibit use of antimicrobials for growth promotion and/or use of antimicrobials without a veterinary prescription. Of the 17 jurisdictions surveyed, six jurisdictions have prohibited both types of use, five jurisdictions have prohibited one use but not the other use, and five jurisdictions have not prohibited either use, while information was not available for one jurisdiction. Data on the production impacts of these prohibitions were limited, although available data, especially from Denmark and Sweden, suggest that restrictions on growth promotion use can be implemented with minimal production consequences

  5. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey.

    Science.gov (United States)

    Maron, Dina Fine; Smith, Tyler J S; Nachman, Keeve E

    2013-10-16

    The administration of antimicrobial drugs to food animals at low doses for extended durations for growth promotion and disease prevention has been linked to the global health crisis of antimicrobial resistance. Internationally, multiple jurisdictions have responded by restricting antimicrobial use for these purposes, and by requiring a veterinary prescription to use these drugs in food animals. Opponents of these policies have argued that restrictions have been detrimental to food animal production where they have been adopted. We surveyed the antimicrobial use policies of 17 political jurisdictions outside of the United States with respect to growth promotion, disease prevention, and veterinary oversight, and reviewed the available evidence regarding their production impacts, including measures of animal health. Jurisdictions were included if they were a top-five importer of a major U.S. food animal product in 2011, as differences between the policies of the U.S. and other jurisdictions may lead to trade barriers to U.S. food animal product exports. Jurisdictions were also included if information on their policies was publicly available in English. We searched the peer-reviewed and grey literatures and corresponded with jurisdictions' U.S. embassies, regulators, and local experts. Jurisdictions were categorized by whether they prohibit use of antimicrobials for growth promotion and/or use of antimicrobials without a veterinary prescription. Of the 17 jurisdictions surveyed, six jurisdictions have prohibited both types of use, five jurisdictions have prohibited one use but not the other use, and five jurisdictions have not prohibited either use, while information was not available for one jurisdiction. Data on the production impacts of these prohibitions were limited, although available data, especially from Denmark and Sweden, suggest that restrictions on growth promotion use can be implemented with minimal production consequences. A majority of leading U.S. trade

  6. Antimicrobial Peptide Production and Purification.

    Science.gov (United States)

    Suda, Srinivas; Field, Des; Barron, Niall

    2017-01-01

    Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.

  7. Integrated Interventions to Tackle Antimicrobial Usage in Animal Production Systems: The ViParc Project in Vietnam

    Directory of Open Access Journals (Sweden)

    Juan J. Carrique-Mas

    2017-06-01

    Full Text Available Antimicrobial usage and antimicrobial resistance (AMR in animal production is now recognized to be an important contributor to the global problem of AMR. Initiatives to curb indiscriminate antimicrobial use in animal production are currently being discussed in many low- and middle-income countries. Well-designed, scientifically sound interventions aimed to tackle excessive antimicrobial usage should provide scientists and policy makers with evidence of the highest quality to guide changes in policy and to formulate better targeted research initiatives. However, since large-scale interventions are costly, they require careful planning in order not to waste valuable resources. Here, we describe the components of the ViParc project (www.viparc.org, one of the first large-scale interventions of its kind to tackle excessive antimicrobial usage in Southeast Asian animal production systems. The project has been formulated as a “randomized before-and-after controlled study” targeting small-scale poultry farms in the Mekong Delta region of Vietnam. It aims to provide farmers with a locally-adapted veterinary support service to help them reduce their reliance on antimicrobials. ViParc has been developed in the backdrop of efforts by the Government of Vietnam to develop a National Action Plan to reduce Antimicrobials in Livestock and Aquaculture. Crucially, the project integrates socio-economic analyses that will provide insights into the drivers of antimicrobial usage, as well as an assessment of the cost-effectiveness of the proposed intervention. Information generated from ViParc should help the Government of Vietnam refine its policies to curb excessive antimicrobial usage in poultry production, while lessons from ViParc will help tackle excessive antimicrobial usage in other productions systems in Vietnam and in the broader Southeast Asian region.

  8. Use estimates of in-feed antimicrobials in swine production in the United States.

    Science.gov (United States)

    Apley, Michael D; Bush, Eric J; Morrison, Robert B; Singer, Randall S; Snelson, Harry

    2012-03-01

    When considering the development of antimicrobial resistance in food animals, comparing gross use estimates of different antimicrobials is of little value due to differences in potencies, duration of activity, relative effect on target and commensal bacteria, and mechanisms of resistance. However, it may be valuable to understand quantities of different antimicrobials used in different ages of swine and for what applications. Therefore, the objective of this project was to construct an estimate of antimicrobial use through the feed in swine production in the United States. Estimates were based on data from the National Animal Health Monitoring System (NAHMS) Swine 2006 Study and from a 2009 survey of swine-exclusive practitioners. Inputs consisted of number of pigs in a production phase, feed intake per day, dose of the antimicrobial in the feed, and duration of administration. Calculations were performed for a total of 102 combinations of antimicrobials (n=17), production phases (n=2), and reasons for use (n=3). Calculations were first conducted on farm-level data, and then extrapolated to the U.S. swine population. Among the nursery phase estimates, chlortetracycline had the largest estimate of use, followed by oxytetracycline and tilmicosin. In the grower/finisher phase, chlortetracycline also had the largest use estimate, followed by tylosin and oxytetracycline. As an annual industry estimate for all phases, chlortetracycline had the highest estimated use at 533,973 kg. The second and third highest estimates were tylosin and oxytetracycline with estimated annual uses of 165,803 kg and 154,956 kg, respectively. The estimates presented here were constructed to accurately reflect available data related to production practices, and to provide an example of a scientific approach to estimating use of compounds in production animals.

  9. Health risk from veterinary antimicrobial use in China's food animal production and its reduction.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2016-12-01

    The overuse and misuse of veterinary drugs, particularly antimicrobials, in food animal production in China cause environmental pollution and wide food safety concerns, and pose public health risk with the selection of antimicrobial resistance (AMR) that can spread from animal populations to humans. Elevated abundance and diversity of antimicrobial resistance genes (ARGs) and resistant bacteria (including multi-drug resistant strains) in food-producing animals, food products of animal origin, microbiota of human gut, and environmental media impacted by intensive animal farming have been reported. To rein in drug use in food animal production and protect public health, the government made a total of 227 veterinary drugs, including 150 antimicrobial products, available only by prescription from licensed veterinarians for curing, controlling, and preventing animal diseases in March 2014. So far the regulatory ban on non-therapeutic use has failed to bring major changes to the long-standing practice of drug overuse and misuse in animal husbandry and aquaculture, and significant improvement in its implementation and enforcement is necessary. A range of measures, including improving access to veterinary services, strengthening supervision on veterinary drug production and distribution, increasing research and development efforts, and enhancing animal health management, are recommended to facilitate transition toward rational use of veterinary drugs, particularly antimicrobials, and to reduce the public health risk arising from AMR development in animal agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Spanish scientific production in antimicrobial agents and susceptibility procedures during period 1990-2002].

    Science.gov (United States)

    Ramos, J M; Gutiérrez, F; Royo, G

    2005-03-01

    The aim of this study was to analyze the scientific production of Spanish authors on antimicrobial agents and susceptibility tests during the period 1990-2002. Articles from Spanish scientific institutions of microbiology, bacteriology, mycology and parasitology published and recorded in the MEDLINE database (WEBSPIRS version 4.2) during the period 1990-2002 were selected. Only articles about antimicrobial agents and susceptibility procedures were reviewed. A total of 5,259 documents were analyzed, of which 1,041 (19.8%) were about antimicrobal agents. The annual number of documents increased by two-fold (from 48 in 1990 to 101 in 2002). The journal that published most documents was Antimicrobial Agents and Chemotherapy, with 183 (17.1%). The main field of interest of the documents was antimicrobial agents and susceptibility tests (765; 73.5%) and in vitro resistance analyses (265; 25.5%). The highest number of contributions came from hospitals (571; 54.9%), followed by universities (351; 33.7%). The institutions with most documents published were the Ramón y Cajal Hospital (8.6%), and Seville University Faculty of Medicine (6%). The most productive autonomous communities were Madrid (43.4%), Catalonia (16.4%) and Andalusia (4.7%). A total of 787 documents (75.6%) were published in journals with impact factors and the mean expected impact factor was 2.390 +/- 1.546. It was concluded that the scientific production of Spanish researchers in antimicrobial agents had increased during the period 1990-2002, and that hospitals were the most productive institutions in this area of microbiology, with the main areas of interest being antimicrobial agents and susceptibility tests.

  11. Persistent Spatial Clusters of Prescribed Antimicrobials among Danish Pig Farms - A Register-Based Study

    DEFF Research Database (Denmark)

    Fertner, Mette Ely; Sanchez, Javier; Boklund, Anette

    2015-01-01

    The emergence of pathogens resistant to antimicrobials has prompted political initiatives targeting a reduction in the use of veterinary antimicrobials in Denmark, especially for pigs. This study elucidates the tendency of pig farms with a significantly higher antimicrobial use to remain...... in clusters in certain geographical regions of Denmark. Animal Daily Doses/100 pigs/day were calculated for all three age groups of pigs (weaners, finishers and sows) for each quarter during 2012-13 in 6,143 commercial indoor pig producing farms. The data were split into four time periods of six months....... Repeated spatial cluster analyses were performed to identify persistent clusters, i.e. areas included in a significant cluster throughout all four time periods. Antimicrobials prescribed for weaners did not result in any persistent clusters. In contrast, antimicrobial use in finishers clustered...

  12. Antimicrobial potential of bacteriocins in poultry and swine production.

    Science.gov (United States)

    Ben Lagha, Amel; Haas, Bruno; Gottschalk, Marcelo; Grenier, Daniel

    2017-04-11

    The routine use of antibiotics in agriculture has contributed to an increase in drug-resistant bacterial pathogens in animals that can potentially be transmitted to humans. In 2000, the World Health Organization identified resistance to antibiotics as one of the most significant global threats to public health and recommended that the use of antibiotics as additives in animal feed be phased out or terminated, particularly those used to treat human infections. Research is currently being carried out to identify alternative antimicrobial compounds for use in animal production. A number of studies, mostly in vitro, have provided evidence indicating that bacteriocins, which are antimicrobial peptides of bacterial origin, may be promising alternatives to conventional antibiotics in poultry and swine production. This review provides an update on bacteriocins and their potential for use in the poultry and swine industries.

  13. Antimicrobial susceptibility and internalization of Salmonella Typhimurium in vacuum-tumbled marinated beef products.

    Science.gov (United States)

    Pokharel, S; Brooks, J C; Martin, J N; Brashears, M M

    2016-12-01

    As the incidence of multidrug resistance (MDR) Salmonella enterica serotype Typhimurium is increasing, data regarding the antimicrobial interventions and pathogen internalization in marinated meat products are important. This study evaluated the antimicrobial intervention and internalization of Salm. Typhimurium in marinated beef sirloin steaks. Beef bottom sirloin flaps (IMPS #185A; USDA Select) inoculated (10 8  log 10  CFU ml -1 ) with Salm. Typhimurium were sprayed (lactic acid (4%) and buffered vinegar (2%)) prior to vacuum-tumbled marination (0·35% sodium chloride and 0·45% sodium tripolyphosphate) for 30 min. Pathogen presence after antimicrobial spray, vacuum-tumbled marination, and translocation was determined by direct plating on Xylose Lysine Deoxycholate (XLD) agar with tryptic soy agar (TSA) overlay. The data imply varied internalization and antimicrobial susceptibility pattern of Salm. Typhimurium in marinated meat. Lactic acid (4%) spray (P internalization and potential survival of Salmonella spp. in marinated beef products is a major concern. These results highlight the internalization of pathogens in vacuum-tumbled meat products and emphasize the importance of considering these products as nonintact. Similarly, these data confirm the efficacy and utility of interventions prior to vacuum-tumbled marination. Further research is needed to identify additional strategies to mitigate internalization and translocation of pathogens into vacuum-marinated meat products. © 2016 The Society for Applied Microbiology.

  14. Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products.

    Science.gov (United States)

    Amna, Touseef; Yang, Jieun; Ryu, Kyeong-Seon; Hwang, I H

    2015-07-01

    To prevent the development and spread of spoilage/pathogenic microorganisms via meat foodstuffs, antimicrobial nanocomposite packaging can serve as a potential alternative. The objective of this study was to develop a new class of antimicrobial hybrid packaging mat composed of biodegradable polyurethane supplemented with virgin olive oil and zinc oxide via electrospinning. Instead of mixing antimicrobial compounds directly with food, incorporation in packaging materials allows the functional effect at food surfaces where microbial activity is localized. The nanofibers were characterized by SEM, EDX, XRD and TEM. The antibacterial activity was tested against two common foodborne pathogens viz., Staphylococcus aureus and Salmonella typhimurium. The present results indicated that incorporation of olive oil in the polymer affected morphology of PU nanofibers and nanocomposite packaging were able to inhibit growth of pathogens. Thus; as-spun mat can be used as prospective antimicrobial packaging, which potentially reduces contamination of meat/meat-products. Moreover, introduced biodegradable packaging for meat products could serve to replace PVC films and simultaneously help to protect natural environment.

  15. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative.

    Science.gov (United States)

    Przybylski, Rémi; Firdaous, Loubna; Châtaigné, Gabrielle; Dhulster, Pascal; Nedjar, Naïma

    2016-11-15

    Bovine cruor, a slaughterhouse by-product, contains mainly hemoglobin, broadly described as a rich source of antimicrobial peptides. In the current context of food safety, bioactive peptides could be of interest as preservatives in the distribution of food products. The aim of this work was to study the α137-141 fragment of hemoglobin (Thr-Ser-Lys-Tyr-Arg), a small (653Da) and hydrophilic antimicrobial peptide. Its production was fast, with more 65% finally produced at 24h already produced after 30min of hydrolysis with pepsin. Moreover, increasing substrate concentration (from 1 to 8% (w/v)) resulted in a proportional augmentation of α137-141 production (to 807.95±41.03mgL(-1)). The α137-141 application on meat as preservative (0.5%, w/w) reduced the lipid oxidation about 60% to delay meat rancidity. The α137-141 peptide also inhibited the microbial growths under refrigeration during 14days. These antimicrobial effects were close to those of the butylated hydroxytoluene (BHT). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Antimicrobial resistance of Staphylococcus species isolated from Lebanese dairy-based products.

    Science.gov (United States)

    Zouhairi, O; Saleh, I; Alwan, N; Toufeili, I; Barbour, E; Harakeh, S

    2012-12-04

    The study evaluated the antimicrobial resistance of molecularly characterized strains of Staphylococcus aureus and S. saprophyticus isolated from 3 Lebanese dairy-based food products that are sometimes consumed raw: kishk, shanklish and baladi cheese. Suspected Staphylococcus isolates were identified initially using standard biochemical tests, then strains that were confirmed by polymerase chain reaction (29 S. aureus and 17 S. saprophyticus) were evaluated for their susceptibility to different antimicrobials. The highest levels of contamination with staphylococci were in baladi cheese. Resistance rates ranged from 67% to gentamicin to 94% to oxacillin and clindamycin. The results suggest that these locally made dairy-based foods may act as vehicles for the transmission of antimicrobial-resistant Staphylococcus spp.

  17. Registering coherent change detection products associated with large image sets and long capture intervals

    Science.gov (United States)

    Perkins, David Nikolaus; Gonzales, Antonio I

    2014-04-08

    A set of co-registered coherent change detection (CCD) products is produced from a set of temporally separated synthetic aperture radar (SAR) images of a target scene. A plurality of transformations are determined, which transformations are respectively for transforming a plurality of the SAR images to a predetermined image coordinate system. The transformations are used to create, from a set of CCD products produced from the set of SAR images, a corresponding set of co-registered CCD products.

  18. A comparison of antimicrobial usage in human and veterinary medicine in France from 1999 to 2005.

    Science.gov (United States)

    Moulin, Gérard; Cavalié, Philippe; Pellanne, Isabelle; Chevance, Anne; Laval, Arlette; Millemann, Yves; Colin, Pierre; Chauvin, Claire

    2008-09-01

    The antimicrobials allowed and amounts sold in veterinary and human medicine in France were compared to see if the same antimicrobial drugs are used in veterinary and human medicine, and to the same extent. Registers of all approved antimicrobial commercial products, kept by the French Agency for Veterinary Medicinal Products (AFSSA ANMV) for animals and the French Health Products Safety Agency (AFSSAPS) for humans, were compared to determine whether the same antimicrobials were approved in 2007 for use in both human and animal populations. Sales data were collected from pharmaceutical companies between 1999 and 2005 by the AFSSA ANMV and AFSSAPS. Usage of the different antimicrobial anatomical therapeutic chemical (ATC) classes in human and veterinary medicines was recorded. Data were expressed in tonnes of active ingredients and were then related to the animal and human biomasses to compare usages expressed in mg/kg. All antimicrobial ATC classes were used in both human and veterinary medicine. Tetracyclines accounted for the most sales in veterinary medicine. beta-Lactams predominated in human medicine. A decrease in the amounts consumed by both human and animal populations was observed during the study. In 2005, 760 tonnes were used in human medicine and 1320 tonnes in veterinary medicine, corresponding to 199 and 84 mg/kg of live weight in human and animal populations, respectively. The same antimicrobial drugs were used in human and veterinary medicines but the quantitative patterns of use were different. Expression of antimicrobial usage is a key point to address when comparing usage trends.

  19. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  20. Optimization of the medium composition for production of antimicrobial substances by bacillus subtilis ATCC 6633

    Directory of Open Access Journals (Sweden)

    Rončević Zorana Z.

    2017-01-01

    Full Text Available In the effort to overcome the increase in antimicrobial resistance of different pathogens, natural products from microbial sources appear to be the most favorable alternative to current antibiotics. Production of antimicrobial compounds is highly dependent on the nutritional conditions. Hence, in order to achieve high product yields, selection of the media constituents and optimization of their concentrations are required. In this research, the possibility of antimicrobial substances production using Bacillus subtilis ATCC 6633 was investigated. Also, optimization of the cultivation medium composition in terms of contents of glycerol, sodium nitrite and phosphates was done. Response surface methodology and the method of desirability function were applied for determination of optimal values of the examined factors. The developed model predicts that the maximum inhibition zone diameters for Bacillus cereus ATCC 10876 (33.50 mm and Pseudomonas aeruginosa ATCC 27853 (12.00 mm are achieved when the initial contents of glycerol, sodium nitrite and phosphates were 43.72 g/L, 1.93 g/L and 5.64 g/L, respectively. The results of these experiments suggest that further research should include the utilization of crude glycerol as a carbon source and optimization of composition of such media and cultivation conditions in order to improve production of antimicrobial substances using Bacillus subtilis ATCC 6633.

  1. Production of Antimicrobial Agent by Streptomyces violachromogenes

    International Nuclear Information System (INIS)

    Ahmed, Arwa A.

    2007-01-01

    The isolation of antibiotics from microorganisms improved the discovery of novel antibiotics, which is relatively easy as compared to chemical synthesis of antimicrobial agents. This study starts from isolation and purification of the antimicrobial producing Sterptomycetes obtained from soil habitat of Yemen. The good antimicrobial producing Sterptomycetes isolate was selected from a batch of Sterptomycetes isolates then identified. This isolate has bioactivity against some G+ve and G-ve bacteria. The antimicrobial agent isolated from Streptomyces violachromogenes (isolate no.YA118) was extracted with ethyl acetate at pH 3. The residue was applied to a silica gel column chromatography and eluted stepwise with many solvent systems. The active fractions were tested with B. subtilis NCTC10400. The purification of the antibiotic has been carried out by thin layer chromatography then the physical and chemical properties were studied to identify the antimicrobial agent. The isolated antimicrobial agent is an antibiotic belonging to the neomycin group. (author)

  2. Antimicrobial resistance of Enterococcus faecium strains isolated from commercial probiotic products used in cattle and swine.

    Science.gov (United States)

    Amachawadi, Raghavendra G; Giok, Felicia; Shi, Xiaorong; Soto, Jose; Narayanan, Sanjeev K; Tokach, Mike D; Apley, Mike D; Nagaraja, T G

    2018-04-03

    Probiotics, an antibiotic alternative, are widely used as feed additives for performance benefits in cattle and swine production systems. Among bacterial species contained in probiotics, Enterococcus faecium is common. Antimicrobial resistance (AMR), particularly multidrug resistance, is a common trait among enterococci because of their propensity to acquire resistance and horizontally transfer AMR genes. Also, E. faecium is an opportunistic pathogen, and in the United States, it is the second most common nosocomial pathogen. There has been no published study on AMR and virulence potential in E. faecium contained in probiotic products used in cattle and swine in the United States. Therefore, our objectives were to determine phenotypic susceptibilities or resistance to antimicrobials, virulence genes (asa1, gelE, cylA, esp, and hyl) and assess genetic diversity of E. faecium isolated from commercial products. Twenty-two commercially available E. faecium-based probiotic products used in cattle (n = 13) and swine (n = 9) were procured and E. faecium was isolated and species confirmed. Antimicrobial susceptibility testing to determine minimum inhibitory concentrations was done by micro-broth dilution method using National Antimicrobial Resistance Monitoring Systems Gram-positive Sensititre panel plate (CMV3AGPF), and categorization of strains as susceptible or resistant was as per Clinical Laboratory and Standards Institute's guidelines. E. faecium strains from 7 products (3 for swine and 4 for cattle) were pan-susceptible to the 16 antimicrobials tested. Strains from 15 products (6 for swine and 9 for cattle) exhibited resistance to at least one antimicrobial and a high proportion of strains was resistant to lincomycin (10/22), followed by tetracycline (4/22), daptomycin (4/22), ciprofloxacin (4/22), kanamycin (3/22), and penicillin (2/22). Four strains were multidrug resistant, with resistant phenotypes ranging from 3 to 6 antimicrobials or class. None of the E

  3. Antimicrobial activity of thin metallic silver flakes, waste products of a manufacturing process.

    Science.gov (United States)

    Anzano, Manuela; Tosti, Alessandra; Lasagni, Marina; Campiglio, Alfredo; Pitea, Demetrio; Collina, Elena

    2011-01-01

    The aim of the research was to develop new products and processes from a manufacturing waste from an Italian metallurgic company. The company produced thin silver metallic films and the production scraps were silver flakes. The possibility to use the silver flakes in water disinfection processes was studied. The antimicrobial activity of the flakes was investigated in batch using Escherichia coli as Gram-negative microorganism model. The flakes did not show any antimicrobial activity, so they were activated with two different processes: thermal activation in reducing atmosphere and chemical activation, obtaining, respectively, reduced flakes (RF) and chemical flakes (CF). The flakes, activated with either treatment, showed antimicrobial activity against E. coli. The kill rate was dependent on the type of activated flakes. The chemical flakes were more efficient than reduced flakes. The kill rate determined for 1 g of CF, 1.0 +/- 0.2 min(-1), was greater than the kill rate determined for 1 g of RF, 0.069 +/- 0.004 min(-1). This was confirmed also by the minimum inhibitory concentration values. It was demonstrated that the antimicrobial capability was dependent on flakes amount and on the type of aqueous medium. Furthermore, the flakes maintained their properties also when used a second time. Finally, the antimicrobial activities of flakes were tested in an effluent of a wastewater treatment plant where a variety of heterotrophic bacteria were present.

  4. Impact of "raised without antibiotics" beef cattle production practices on occurrences of antimicrobial resistance

    Science.gov (United States)

    The specific antimicrobial resistance (AMR) decreases that can be expected from reducing antimicrobial (AM) use in U.S. beef production have not been defined. To address this data gap, feces were recovered from 36 lots of “raised without antibiotics” (RWA) and 36 lots of “conventional” (CONV) beef c...

  5. 40 CFR 152.15 - Pesticide products required to be registered.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pesticide products required to be registered. 152.15 Section 152.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... actual or constructive knowledge that the substance will be used, or is intended to be used, for a...

  6. Antimicrobial drugs for treating cholera.

    Science.gov (United States)

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-06-19

    Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are differences between classes of antimicrobials or dosing schedules. We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; African Index Medicus; LILACS; Science Citation Index; metaRegister of Controlled Trials; WHO International Clinical Trials Registry Platform; conference proceedings; and reference lists to March 2014. Randomized and quasi-randomized controlled clinical trials in adults and children with cholera that compared: 1) any antimicrobial treatment with placebo or no treatment; 2) different antimicrobials head-to-head; or 3) different dosing schedules or different durations of treatment with the same antimicrobial. Two reviewers independently applied inclusion and exclusion criteria, and extracted data from included trials. Diarrhoea duration and stool volume were defined as primary outcomes. We calculated mean difference (MD) or ratio of means (ROM) for continuous outcomes, with 95% confidence intervals (CI), and pooled data using a random-effects meta-analysis. The quality of evidence was assessed using the GRADE approach. Thirty-nine trials were included in this review with 4623 participants. Antimicrobials versus placebo or no treatment Overall, antimicrobial therapy shortened the mean duration of diarrhoea by about a day and a half compared to placebo or no treatment (MD -36.77 hours, 95% CI -43.51 to -30.03, 19 trials, 1013 participants, moderate quality evidence). Antimicrobial therapy also

  7. Maillard reaction products as antimicrobial components for packaging films.

    Science.gov (United States)

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Antimicrobials Treatment

    Science.gov (United States)

    Drosinos, Eleftherios H.; Skandamis, Panagiotis N.; Mataragas, Marios

    The use of antimicrobials is a common practice for preservation of foods. Incorporation, in a food recipe, of chemical antimicrobials towards inhibition of spoilage and pathogenic micro-organisms results in the compositional modification of food. This treatment is nowadays undesirable for the consumer, who likes natural products. Scientific community reflecting consumers demand for natural antimicrobials has made efforts to investigate the possibility to use natural antimicrobials such us bacteriocins and essential oils of plant origin to inhibit microbial growth.

  9. Activities and influence of veterinary drug marketers on antimicrobial usage in livestock production in Oyo and Kaduna States, Nigeria

    OpenAIRE

    Olufemi Ernest Ojo; Olajoju Jokotola Awoyomi; Eniola Fabusoro; Morenike Atinuke Dipeolu

    2017-01-01

    Antimicrobial usage in animals contributes to the emergence of antimicrobial resistant bacterial strains. Investigations were carried out on how the characteristics, knowledge, attitude and practices of antimicrobial marketers influenced antimicrobials usage in animal production in Oyo and Kaduna States, Nigeria. Focus group discussions, in-depth interviews and structured questionnaires were used to gather information about the characteristics and activities of antimicrobial marketers. Overal...

  10. Exploring the potential of antimicrobial hand hygiene products in reducing the infectious burden in low-income countries: An integrative review.

    Science.gov (United States)

    de Witt Huberts, Jessie; Greenland, Katie; Schmidt, Wolf-Peter; Curtis, Val

    2016-07-01

    The purpose of this review was to understand whether adding antimicrobial agents to hand hygiene products could increase the health benefits of handwashing with plain soap (HWWS) in low-income settings. A review of experimental studies comparing the effects of HWWS with antimicrobial soap and waterless hand sanitizer on health and hand contamination in naturalistic conditions was conducted. In addition, an analysis was completed of the evidence from laboratory studies examining the factors that may affect the impact of antimicrobial soap, taking into account the conditions in low-income settings. The review found no evidence for a superior effect of antimicrobial products compared with HWWS on disease incidence and limited evidence for an effect on hand contamination under naturalistic conditions. An analysis of the effectiveness of antimicrobial soap in laboratory settings suggested that it was only more effective than HWWS when handwashing frequency, duration, and product concentrations were above levels that could be expected in low-income settings. The limited available evidence suggests that under naturalistic conditions, antimicrobial products are no more effective than HWWS in removing pathogens from hands. Without significant improvement in efficacy, antimicrobial products are unlikely to produce greater health gains than HWWS in low-income settings. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  11. 75 FR 16111 - Antimicrobial Pesticide Products; Registration Applications

    Science.gov (United States)

    2010-03-31

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2009-0935; FRL-8807-1] Antimicrobial Pesticide... . List of Subjects Environmental protection, Antimicrobial pesticides and pest. Dated: March 15, 2010. Joan Harrigan Farrelly, Director, Antimicrobial Division, Office of Pesticide Programs. [FR Doc. 2010...

  12. Activities and influence of veterinary drug marketers on antimicrobial usage in livestock production in Oyo and Kaduna States, Nigeria

    Directory of Open Access Journals (Sweden)

    Olufemi Ernest Ojo

    2017-09-01

    Full Text Available Antimicrobial usage in animals contributes to the emergence of antimicrobial resistant bacterial strains. Investigations were carried out on how the characteristics, knowledge, attitude and practices of antimicrobial marketers influenced antimicrobials usage in animal production in Oyo and Kaduna States, Nigeria. Focus group discussions, in-depth interviews and structured questionnaires were used to gather information about the characteristics and activities of antimicrobial marketers. Overall, 70 (56.9 % of 123 marketers had post-secondary education while 76 (61.8 % were trained on the use of antimicrobials. Eighteen (14.6 % of the marketers were licensed veterinarians. Only 51 (41.5 % marketers displayed adequate knowledge about antimicrobials and antimicrobial usage. Sixty-seven (54.6 % marketers requested a prescription before selling antimicrobials while 113 (91.9 % marketer recommended antimicrobials for use in animals. Two-third of the marketers (66.7 % prescribed antimicrobials without physically examining sick animals but based their prescriptions on verbal reports of clinical signs by farmers and on their personal experience. Marketers with higher educational qualification displayed more adequate knowledge of antimicrobials and antimicrobial usage than those with basic education background only. More years of experience in antimicrobial marketing did not translate to better knowledge on antimicrobial usage. Only 45 (36.6 % respondents were aware of the existence of regulatory agencies monitoring the use of antimicrobials in animals. Farmers ignored the services of veterinarians in the diagnosis and control of animal diseases but resorted to drug marketers for help. Effective communication of existing legislations on antimicrobial usage, improved access to veterinary services and strict enforcement of regulatory policies are recommended for checking non-judicious use of antimicrobial agents in animal production. Sales of

  13. Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage.

    Science.gov (United States)

    Wesgate, Rebecca; Grasha, Pierre; Maillard, Jean-Yves

    2016-04-01

    In this study we assessed the propensity of biocide exposure in the development of antimicrobial resistance in bacteria. Our protocol is based on reporting changes in established antimicrobial susceptibility profiles in biocides and antibiotics after during use exposure to a product. The during use exposure reflects worse conditions of product use during application. It differs from the term low concentration, which usually reflects a concentration below the minimal inhibitory concentration, but not necessarily a concentration that occurs in practice. Our results showed that exposure to triclosan (0.0004%) was associated with a high risk of developing resistance and cross-resistance in Staphylococcus aureus and Escherichia coli. This was not observed with exposure to chlorhexidine (0.00005%) or a hydrogen peroxide-based biocidal product (in during use conditions). Interestingly, exposure to a low concentration of hydrogen peroxide (0.001%) carried a risk of emerging resistance to antibiotics if the presence of the oxidizing agent was maintained. We observed a number of unstable clinical resistances to antibiotics after exposure to the cationic biocide and oxidizing agent, notably to tobramycin and ticarcillin-clavulanic acid. Using a decision tree based on the change in antimicrobial susceptibility test results, we were able to provide information on the effect of biocide exposure on the development of bacterial resistance to antimicrobials. Such information should address the call from the U.S. Food and Drug Administration and European Union Biocidal Products Regulation for manufacturers to provide information on antimicrobial resistance and cross-resistance in bacteria after the use of their product. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  14. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms.

    Science.gov (United States)

    Zacchino, Susana A; Butassi, Estefanía; Cordisco, Estefanía; Svetaz, Laura A

    2017-12-15

    Biofilms contribute to the pathogenesis of many chronic and difficult-to eradicate infections whose treatment is complicated due to the intrinsic resistance to conventional antibiotics. As a consequence, there is an urgent need for strategies that can be used for the prevention and treatment of biofilm-associated infections. The combination therapy comprising an antimicrobial drug with a low molecular weight (MW) natural product and an antimicrobial drug (antifungal or antibacterial) appeared as a good alternative to eradicate biofilms. The aims of this review were to perform a literature search on the different natural products that have showed the ability of potentiating the antibiofilm capacity of antimicrobial drugs, to analyze which are the antimicrobial drugs most used in combination, and to have a look on the microbial species most used to prepare biofilms. Seventeen papers, nine on combinations against antifungal biofilms and eight against antibacterial biofilms were collected. Within the text, the following topics have been developed: breaf history of the discovery of biofilms; stages in the development of a biofilm; the most used methodologies to assess antibiofilm-activity; the natural products with capacity of eradicating biofilms when acting alone; the combinations of low MW natural products with antibiotics or antifungal drugs as a strategy for eradicating microbial biofilms and a list of the low MW natural products that potentiate the inhibition capacity of antifungal and antibacterial drugs against biofilms. Regarding combinations against antifungal biofilms, eight over the nine collected works were carried out with in vitro studies while only one was performed with in vivo assays by using Caenorhabditis elegans nematode. All studies use biofilms of the Candida genus. A 67% of the potentiators were monoterpenes and sesquiterpenes and six over the nine works used FCZ as the antifungal drug. The activity of AmpB and Caspo was enhanced in one and two

  15. Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment.

    Science.gov (United States)

    Gómez, Diego; Azón, Ester; Marco, Noelia; Carramiñana, Juan J; Rota, Carmina; Ariño, Agustín; Yangüela, Javier

    2014-09-01

    A total of 336 Listeria isolates from ready-to-eat (RTE) meat products and meat-processing environments, consisting of 206 Listeria monocytogenes, and 130 Listeria innocua isolates, were characterized by disc diffusion assay and minimum inhibitory concentration (MIC) values for antimicrobial susceptibility against twenty antimicrobials. Resistance to one or two antimicrobials was observed in 71 L. monocytogenes isolates (34.5%), and 56 L. innocua isolates (43.1%). Multidrug resistance was identified in 24 Listeria isolates, 18 belonging to L. innocua (13.9%) and 6 to L. monocytogenes (2.9%). Oxacillin resistance was the most common resistance phenotype and was identified in 100% Listeria isolates. A medium prevalence of resistance to clindamycin (39.3% isolates) and low incidence of resistance to tetracycline (3.9% isolates) were also detected. Listeria isolates from RTE meat products displayed higher overall antimicrobial resistance (31.3%) than those from the environment (13.4%). All the strains assayed were sensitive to the preferred antibiotics used to treat listeriosis. Results showed that although antimicrobial resistance in L. monocytogenes still occurs at a low prevalence, L. innocua can form a reservoir of resistance genes which may transfer between bacterial species, including transference to organisms capable of causing disease in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Effect of Antimicrobial Consumption and Production Type on Antibacterial Resistance in the Bovine Respiratory and Digestive Tract.

    Directory of Open Access Journals (Sweden)

    Boudewijn Catry

    Full Text Available The aim of this study was to investigate the relationship between antimicrobial use and the occurrence of antimicrobial resistance in the digestive and respiratory tract in three different production systems of food producing animals. A longitudinal study was set up in 25 Belgian bovine herds (10 dairy, 10 beef, and 5 veal herds for a 2 year monitoring of antimicrobial susceptibilities in E. coli and Pasteurellaceae retrieved from the rectum and the nasal cavity, respectively. During the first year of observation, the antimicrobial use was prospectively recorded on 15 of these farms (5 of each production type and transformed into the treatment incidences according to the (animal defined daily dose (TIADD and (actually used daily dose (TIUDD. Antimicrobial resistance rates of 4,174 E. coli (all herds and 474 Pasteurellaceae (beef and veal herds only isolates for 12 antimicrobial agents demonstrated large differences between intensively reared veal calves (abundant and inconstant and more extensively reared dairy and beef cattle (sparse and relatively stable. Using linear mixed effect models, a strong relation was found between antimicrobial treatment incidences and resistance profiles of 1,639 E. coli strains (p<0.0001 and 309 Pasteurellaceae (p≤0.012. These results indicate that a high antimicrobial selection pressure, here found to be represented by low dosages of oral prophylactic and therapeutic group medication, converts not only the commensal microbiota from the digestive tract but also the opportunistic pathogenic bacteria in the respiratory tract into reservoirs of multi-resistance.

  17. Characterization of antimicrobial resistance in Salmonella enterica strains isolated from Brazilian poultry production.

    Science.gov (United States)

    Mattiello, Samara P; Drescher, Guilherme; Barth, Valdir C; Ferreira, Carlos A S; Oliveira, Sílvia D

    2015-11-01

    Antimicrobial resistance profiles and presence of resistance determinants and integrons were evaluated in Salmonella enterica strains from Brazilian poultry. The analysis of 203 isolates showed that those from the poultry environment (88 isolates) were significantly more resistant to antimicrobials than isolates from other sources, particularly those isolated from poultry by-product meal (106 isolates). Thirty-seven isolates were resistant to at least three antimicrobial classes. Class 1 integrons were detected in 26 isolates, and the analysis of the variable region between the 5' conserved segment (CS) and 3' CS of each class 1 integron-positive isolate showed that 13 contained a typical 3' CS and 14 contained an atypical 3' CS. One Salmonella Senftenberg isolate harbored two class 1 integrons, showing both typical and atypical 3' CSs. The highest percentage of resistance was found to sulfonamides, and sul genes were detected in the majority of the resistant isolates. Aminoglycoside resistance was detected in 50 isolates, and aadA and aadB were present in 28 and 32 isolates, respectively. In addition, strA and strB were detected in 78.1 and 65.6% isolates resistant to streptomycin, respectively. Twenty-one isolates presented reduced susceptibility to β-lactams and harbored bla(TEM), bla(CMY), and/or bla(CTX-M). Forty isolates showed reduced susceptibility to tetracycline, and most presented tet genes. These results highlight the importance of the environment as a reservoir of resistant Salmonella, which may enable the persistence of resistance determinants in the poultry production chain, contributing, therefore, to the debate regarding the impacts that antimicrobial use in animal production may exert in human health.

  18. Trends in slaughter pig production and antimicrobial consumption in Danish slaughter pig herds, 2002-2008

    DEFF Research Database (Denmark)

    Vieira, Antonio; Pires, Sara Monteiro; Houe, H.

    2011-01-01

    Overuse of antimicrobials in food-animal production is thought to be a major risk factor for the development of resistant bacterial populations. Data on non-human antimicrobial usage is essential for planning of intervention strategies to lower resistance levels at the country, region or herd...... levels. In this study we evaluated Danish national antimicrobial usage data for five antimicrobial classes used in slaughter pigs in different herd sizes and data on the number of slaughter pigs produced per herd, between 2002 and 2008, in Denmark. The objective was to ascertain...... if there is an association between herd size and amount of antimicrobials consumed. During this period, the overall number of herds with slaughter pigs decreased by 43%, with larger herds becoming more prevalent. The tetracycline treatment incidence (TI) rate increased from 0·28 to 0·70 animal-defined daily dose (ADD)/100...

  19. Antimicrobial usage in chicken production in the mekong delta of Vietnam

    NARCIS (Netherlands)

    Carrique-Mas, Juan J.; Trung, Nguyen V.; Hoa, Ngo T.; Mai, Ho Huynh; Thanh, Tuyen H.; Campbell, James I.; Wagenaar, Jaap A.; Hardon, Anita; Hieu, Thai Quoc; Schultsz, Constance

    2015-01-01

    Antimicrobials are used extensively in chicken production in Vietnam, but to date no quantitative data are available. A 2012-2013 survey of 208 chicken farms in Tien Giang province, stratified by size (10-200 chickens; >200-2000), was carried out to describe and quantify the use of antibacterial

  20. Antimicrobial usage in chicken production in the Mekong Delta of Vietnam

    NARCIS (Netherlands)

    Carrique-Mas, J.J.; Trung, N.V.; Hoa, N.T.; Mai, H.H.; Thanh, T.H.; Campbell, J.I.; Wagenaar, J.A.; Hardon, A.; Hieu, T.Q.; Schultsz, C.

    2015-01-01

    Antimicrobials are used extensively in chicken production in Vietnam, but to date no quantitative data are available. A 2012-2013 survey of 208 chicken farms in Tien Giang province, stratified by size (10-200 chickens; >200-2000), was carried out to describe and quantify the use of antibacterial

  1. Production of Recombinant Antimicrobial Polymeric Protein Beta Casein-E 50-52 and Its Antimicrobial Synergistic Effects Assessment with Thymol

    Directory of Open Access Journals (Sweden)

    Shohreh Fahimirad

    2017-05-01

    Full Text Available Accelerating emergence of antimicrobial resistance among food pathogens and consumers’ increasing demands for preservative-free foods are two contemporary challenging aspects within the food industry. Antimicrobial packaging and the use of natural preservatives are promising solutions. In the present study, we used beta-casein—one of the primary self-assembly proteins in milk with a high polymeric film production capability—as a fusion partner for the recombinant expression of E 50-52 antimicrobial peptide in Escherichia coli. The pET21a-BCN-E 50-52 construct was transformed to E. coli BL21 (DE3, and protein expression was induced under optimized conditions. Purified protein obtained from nickel affinity chromatography was refolded under optimized dialysis circumstances and concentrated to 1600 µg/mL fusion protein by ultrafiltration. Antimicrobial activities of recombinant BCN-E 50-52 performed against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Aspergillus flavus, and Candida albicans. Subsequently, the synergistic effects of BCN-E 50-52 and thymol were assayed. Results of checkerboard tests showed strong synergistic activity between two compounds. Time–kill and growth kinetic studies indicated a sharp reduction of cell viability during the first period of exposure, and SEM (scanning electron microscope results validated the severe destructive effects of BCN E 50-52 and thymol in combination on bacterial cells.

  2. Animation of Antimicrobial Resistance

    Science.gov (United States)

    ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin ...

  3. Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production.

    Science.gov (United States)

    Yu, Zhongyi; Gunn, Lynda; Wall, Patrick; Fanning, Séamus

    2017-06-01

    Antimicrobial resistance is a recognized public health challenge that since its emergence limits the therapeutic options available to veterinarians and clinicians alike, when treatment is warranted. This development is further compounded by the paucity of new antibiotics. The agri-food industry benefits from the availability of antimicrobial compounds for food-animal production and crop protection. Nonetheless, their improper use can result in the selection for bacteria that are phenotypically resistant to these compounds. Another class of agents used in agriculture includes various cationic metals that can be included in animal diets as nutritional supplements or spread on pastures to support crop growth and protection. Heavy metals, in particular, are giving rise to concerns among public health professionals, as they can persist in the environment remaining stable for prolonged periods. Moreover, bacteria can also exhibit resistance to these chemical elements and the genes encoding this phenotype can be physically localized to plasmids that may also contain one or more antimicrobial resistance-encoding gene(s). This paper reviews our current understanding of the role that bacteria play in expressing resistance to heavy metals. It will describe how heavy metals are used in agri-food production, and explore evidence available to link resistance to heavy metals and antimicrobial compounds. In addition, possible solutions to reduce the impact of heavy metal resistance are also discussed, including using organic minerals and reducing the level of trace minerals in animal feed rations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies for the Use of Antimicrobials in Food Production Animals

    DEFF Research Database (Denmark)

    Collignon, P.; Powers, J. H.; Chiller, T. M.

    2009-01-01

    stakeholders can use this ranking when developing risk management strategies for the use of antimicrobials in food production animals. The ranking allows stakeholders to focus risk management efforts on drugs used in food animals that are the most important to human medicine and, thus, need to be addressed......The use of antimicrobials in food animals creates an important source of antimicrobial-resistant bacteria that can spread to humans through the food supply. Improved management of the use of antimicrobials in food animals, particularly reducing the usage of those that are "critically important...

  5. ACVIM Consensus Statement on Therapeutic Antimicrobial Use in Animals and Antimicrobial Resistance

    OpenAIRE

    Weese, J.S.; Gigu?re, S.; Guardabassi, L.; Morley, P.S.; Papich, M.; Ricciuto, D.R.; Sykes, J.E.

    2015-01-01

    The epidemic of antimicrobial resistant infections continues to challenge, compromising animal care, complicating food animal production and posing zoonotic disease risks. While the overall role of therapeutic antimicrobial use in animals in the development AMR in animal and human pathogens is poorly defined, veterinarians must consider the impacts of antimicrobial use in animal and take steps to optimize antimicrobial use, so as to maximize the health benefits to animals while minimizing the...

  6. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin ...

  7. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    Science.gov (United States)

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Kinetic modelling and optimisation of antimicrobial compound production by Candida pyralidae KU736785 for control of Candida guilliermondii.

    Science.gov (United States)

    Mewa-Ngongang, Maxwell; du Plessis, Heinrich W; Hutchinson, Ucrecia F; Mekuto, Lukhanyo; Ntwampe, Seteno Ko

    2017-06-01

    Biological antimicrobial compounds from yeast can be used to address the critical need for safer preservatives in food, fruit and beverages. The inhibition of Candida guilliermondii, a common fermented beverage spoilage organism, was achieved using antimicrobial compounds produced by Candida pyralidae KU736785. The antimicrobial production system was modelled and optimised using response surface methodology, with 22.5 ℃ and pH of 5.0 being the optimum conditions. A new concept for quantifying spoilage organism inhibition was developed. The inhibition activity of the antimicrobial compounds was observed to be at a maximum after 17-23 h of fermentation, with C. pyralidae concentration being between 0.40 and 1.25 × 10 9 CFU ml -1 , while its maximum specific growth rate was 0.31-0.54 h -1 . The maximum inhibitory activity was between 0.19 and 1.08 l contaminated solidified media per millilitre of antimicrobial compound used. Furthermore, the antimicrobial compound formation rate was 0.037-0.086 l VZI ml -1 ACU h -1 , respectively. The response surface methodology analysis showed that the model developed sufficiently described the antimicrobial compound formation rate 1.08 l VZI ml -1 ACU, as 1.17 l VZI ml -1 ACU, predicted under the optimum production conditions.

  9. Herd-specific interventions to reduce antimicrobial usage in pig production without jeopardising technical and economic performance.

    Science.gov (United States)

    Collineau, L; Rojo-Gimeno, C; Léger, A; Backhans, A; Loesken, S; Nielsen, E Okholm; Postma, M; Emanuelson, U; Beilage, E Grosse; Sjölund, M; Wauters, E; Stärk, K D C; Dewulf, J; Belloc, C; Krebs, S

    2017-09-01

    Pig farmers are strongly encouraged to reduce their antimicrobial usage in order to reduce the risk of antimicrobial resistance. Herd-level intervention is needed to achieve national and European reduction targets. Alternative, especially preventive measures, have to be implemented to reduce the need for antimicrobial treatments. However, little is known about the feasibility, effectiveness and return on investment of such measures. The objective of this study was to assess, across four countries, the technical and economic impact of herd-specific interventions aiming at reducing antimicrobial usage in pig production while implementing alternative measures. An intervention study was conducted between February 2014 and August 2015 in 70 farrow-to-finish pig farms located in Belgium, France, Germany and Sweden. Herd-specific interventions were defined together with the farmer and the herd veterinarian. Farms were followed over one year and their antimicrobial usage and technical performance were compared with values from the year before intervention. Compliance with the intervention plan was also monitored. Changes in margin over feed cost and net farm profit were estimated in a subset of 33 Belgian and French farms with sufficient data, using deterministic and stochastic modeling. Following interventions, a substantial reduction in antimicrobial use was achieved without negative impact the overall farm technical performance. A median reduction of 47.0% of antimicrobial usage was achieved across four countries when expressed in terms of treatment incidence from birth to slaughter, corresponding to a 30.5% median reduction of antimicrobial expenditures. Farm compliance with intervention plans was high (median: 93%; min-max: 20; 100) and farms with higher compliance tended to achieve bigger reduction (ρ=-0.18, p=0.162). No association was found between achieved reduction and type or number of alternative measures implemented. Mortality in suckling piglets, weaners and

  10. World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies to Control Antimicrobial Resistance From Food Animal Production.

    Science.gov (United States)

    Collignon, Peter C; Conly, John M; Andremont, Antoine; McEwen, Scott A; Aidara-Kane, Awa; Agerso, Yvonne; Andremont, Antoine; Collignon, Peter; Conly, John; Dang Ninh, Tran; Donado-Godoy, Pilar; Fedorka-Cray, Paula; Fernandez, Heriberto; Galas, Marcelo; Irwin, Rebecca; Karp, Beth; Matar, Gassan; McDermott, Patrick; McEwen, Scott; Mitema, Eric; Reid-Smith, Richard; Scott, H Morgan; Singh, Ruby; DeWaal, Caroline Smith; Stelling, John; Toleman, Mark; Watanabe, Haruo; Woo, Gun-Jo

    2016-10-15

    Antimicrobial use in food animals selects for antimicrobial resistance in bacteria, which can spread to people. Reducing use of antimicrobials-particularly those deemed to be critically important for human medicine-in food production animals continues to be an important step for preserving the benefits of these antimicrobials for people. The World Health Organization ranking of antimicrobials according to their relative importance in human medicine was recently updated. Antimicrobials considered the highest priority among the critically important antimicrobials were quinolones, third- and fourth-generation cephalosporins, macrolides and ketolides, and glycopeptides. The updated ranking allows stakeholders in the agriculture sector and regulatory agencies to focus risk management efforts on drugs used in food animals that are the most important to human medicine. In particular, the current large-scale use of fluoroquinolones, macrolides, and third-generation cephalosporins and any potential use of glycopeptides and carbapenems need to be addressed urgently. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Antimicrobial Resistance of Faecal Escherichia coli Isolates from Pig Farms with Different Durations of In-feed Antimicrobial Use.

    Science.gov (United States)

    Gibbons, J F; Boland, F; Egan, J; Fanning, S; Markey, B K; Leonard, F C

    2016-05-01

    Antimicrobial use and resistance in animal and food production are of concern to public health. The primary aims of this study were to determine the frequency of resistance to 12 antimicrobials in Escherichia coli isolates from 39 pig farms and to identify patterns of antimicrobial use on these farms. Further aims were to determine whether a categorization of farms based on the duration of in-feed antimicrobial use (long-term versus short-term) could predict the occurrence of resistance on these farms and to identify the usage of specific antimicrobial drugs associated with the occurrence of resistance. Escherichia coli were isolated from all production stages on these farms; susceptibility testing was carried out against a panel of antimicrobials. Antimicrobial prescribing data were collected, and farms were categorized as long term or short term based on these. Resistance frequencies and antimicrobial use were tabulated. Logistic regression models of resistance to each antimicrobial were constructed with stage of production, duration of antimicrobial use and the use of 5 antimicrobial classes included as explanatory variables in each model. The greatest frequencies of resistance were observed to tetracycline, trimethoprim/sulphamethoxazole and streptomycin with the highest levels of resistance observed in isolates from first-stage weaned pigs. Differences in the types of antimicrobial drugs used were noted between long-term and short-term use farms. Categorization of farms as long- or short-term use was sufficient to predict the likely occurrence of resistance to 3 antimicrobial classes and could provide an aid in the control of resistance in the food chain. Stage of production was a significant predictor variable in all models of resistance constructed and did not solely reflect antimicrobial use at each stage. Cross-selection and co-selection for resistance was evident in the models constructed, and the use of trimethoprim/sulphonamide drugs in particular was

  12. Usage of Intramammary Antimicrobial Veterinary Medicinal Products in The Republic of Serbia from 2011 to 2014

    Directory of Open Access Journals (Sweden)

    Andjelkovic Jelena

    2017-03-01

    Full Text Available Prudent use of antimicrobial medicine is an imperative in both human and veterinary medicine today. Antibiotic usage in humans and animals has increased over the years, consequently giving rise to antimicrobial resistance in pathogenic microorganisms. Mastitis is one of the most common conditions in bovine species, and intramammary antibacterial medicinal products are used in animal husbandry for mastitis treatment and prophylaxis.

  13. The effect of discontinuing the use of antimicrobial growth promoters on the productivity in the Danish broiler production

    DEFF Research Database (Denmark)

    Emborg, Hanne-Dorthe; Ersboll, A. K.; Heuer, Ole Eske

    2001-01-01

    On 15 February 1998, the Danish poultry industry voluntarily decided to discontinue the use of all antimicrobial growth promoters (AGPs). To investigate how the removal of AGPs influenced the broiler productivity in Denmark, data from 6815 flocks collected from November 1995 to July 1999...

  14. Zinc oxide as a new antimicrobial preservative of topical products: interactions with common formulation ingredients.

    Science.gov (United States)

    Pasquet, Julia; Chevalier, Yves; Couval, Emmanuelle; Bouvier, Dominique; Bolzinger, Marie-Alexandrine

    2015-02-01

    Zinc oxide (ZnO) appears as a promising preservative for pharmaceutical or cosmetic formulations. The other ingredients of the formulations may have specific interactions with ZnO that alter its antimicrobial properties. The influence of common formulation excipients on the antimicrobial efficacy of ZnO has been investigated in simple model systems and in typical topical products containing a complex formulation. A wide variety of formulation excipients have been investigated for their interactions with ZnO: antioxidants, chelating agents, electrolytes, titanium dioxide pigment. The antimicrobial activity of ZnO against Escherichia coli was partially inhibited by NaCl and MgSO4 salts. A synergistic influence of uncoated titanium dioxide has been observed. The interference effects of antioxidants and chelating agents were quite specific. The interactions of these substances with ZnO particles and with the soluble species released by ZnO were discussed so as to reach scientific guidelines for the choice of the ingredients. The preservative efficacy of ZnO was assessed by challenge testing in three different formulations: an oil-in-water emulsion; a water-in-oil emulsion and a dry powder. The addition of ZnO in complex formulations significantly improved the microbiological quality of the products, in spite of the presence of other ingredients that modulate the antimicrobial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Uses of antimicrobial genes from microbial genome

    Science.gov (United States)

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  16. The effect of production type and antimicrobial usage on the occurrence of tetracycline resistant E. coli in danish slaughter pig farms

    DEFF Research Database (Denmark)

    Struve, Tina; Vigre, Håkan; Wingstrand, Anne

    The Qualysafe project was initiated in 2007 to support and strengthen the sustainable production systems in Danish food production. One of the objectives of the epidemiological investigation was to find new methods to improve food safety in conventional as well as in alternative pig production sy...... of potential risk factors on the occurrence of antimicrobial resistance in animal production....... (organic, free range and conventional farms) was a risk factor for occurrence of antimicrobial resistance and Tetracycline usage was regarded as an intervening factor between production type and occurrence of antimicrobial resistance. Therefore, the effect of production type and Tetracycline usage...... was estimated in two separate models using logistic regression, taking into account the correlation of results obtained from the same farm. Among the 411 isolates, 129 was found resistant to Tetracycline (Organic: 10%, Free Range: 27 % Conventional: 39 %). Differences was seen in the consumption pattern among...

  17. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration ... Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet ...

  18. Use and Misuse of Antimicrobial Drugs in Poultry and Livestock: Mechanisms of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Toni Poole* and Cynthia Sheffield

    2013-07-01

    Full Text Available Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among food–production animals antimicrobials are used for growth promotion, disease prophylaxis or disease treatment, and are generally administered to the entire flock or herd. Over many decades bacteria have become resistant to multiple antimicrobial classes in a cumulative manner. Bacteria exhibit a number of well characterized mechanisms of resistance to antimicrobials that include: 1 modification of the antimicrobial; 2 alteration of the drug target; 3 decreased access of drug to target; and 4 implementation of an alternative metabolic pathway not affected by the drug. The mechanisms of resistance are complex and depend on the type of bacterium involved (e.g. Gram–positive or Gram–negative and the class of drug. Some bacterial species have accumulated resistance to nearly all antimicrobial classes due to a combination of intrinsic and acquired processes. This has and will continue to lead to clinical failures of antimicrobial treatment in both human and animal medicine.

  19. Production and properties of artificial antimicrobial marble; Jushikei zinzo dairiseki no kokin kako

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Ryozo; Miyamoto, Hiroyuki [INAX Corp., Aichi (Japan)

    1999-11-01

    There are many cases in which they are suitable for the growth of the microorganism on bathrooms and lavatories, kitchens, etc., which are the place where the artificial marble product is installed. Therefore, the generation of the fouling of the microorganism by the aberrant growth is also abounding. Then, it developed the antimicrobe artificial marble for the purpose of suppressing growth of bacteria in the surface of the product. Here, this paper describes the gist in doing antimicrobial treatment in the resin systems artificial marble product. (NEDO)

  20. Do the ban on use of anti-microbial growth promoter impact on technical change and the efficiency of slaughter-pig production

    DEFF Research Database (Denmark)

    Lawson, Lartey; Otto, Lars; Jensen, Peter Vig

    2005-01-01

    infections, and in effect stimu-lated the utilization of feedstuff and reduced the mortality rate. However, fears for increas-ing bacteria resistance with subsequent health hazards for humans and livestock has lead to societal debates about the pros and cons of its use in livestock production. Antibiotic......This study aims at investigating the effects of the ban on the use of anti-microbial growth promoters in the production of “Finishing Pigs” for slaughter. We investigate if the ban on the use of anti-microbial growth promoters has for specialised pig-producers altered the productivity of inputs......, technical change and the efficiency of production. This paper complements an earlier paper that investigated the impact of the ban on weaned-pig produc-tion. Background: The study is motivated by the fact that antimicrobial growth promoters have been known world wide to protect livestock from bacteria...

  1. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... menu Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration ... Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More ...

  2. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products.

    Science.gov (United States)

    Hygreeva, Desugari; Pandey, M C; Radhakrishna, K

    2014-09-01

    Growing concern about diet and health has led to development of healthier food products. In general consumer perception towards the intake of meat and meat products is unhealthy because it may increase the risk of diseases like cardiovascular diseases, obesity and cancer, because of its high fat content (especially saturated fat) and added synthetic antioxidants and antimicrobials. Addition of plant derivatives having antioxidant components including vitamins A, C and E, minerals, polyphenols, flavanoids and terpenoids in meat products may decrease the risk of several degenerative diseases. To change consumer attitudes towards meat consumption, the meat industry is undergoing major transformations by addition of nonmeat ingredients as animal fat replacers, natural antioxidants and antimicrobials, preferably derived from plant sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Comparison of the antimicrobial consumption in weaning pigs in Danish sow herds with different vaccine purchase patterns during 2013

    DEFF Research Database (Denmark)

    Temtem, Carolina; Kruse, Amanda Brinch; Nielsen, Liza Rosenbaum

    2016-01-01

    Background: There is growing concern about development of antimicrobial resistance due to use of antimicrobials (AMs) in livestock production. Identifying efficient alternatives, including vaccination, is a priority. The objective of this study was to compare the herd-level amount of AMs prescribed...... for weaner pigs, between Danish sow herds using varying combinations of vaccines against Porcine Circovirus Type 2 (PCV2), Mycoplasma hyopneumoniae (MYC) and Lawsonia intracellularis (LAW). It was hypothesised that herds purchasing vaccines, use these to prevent disease, and hence reduce their AM consumption......, compared to herds purchasing fewer or no vaccines against these pathogens. Data summarised over year 2013 were obtained from the Danish Central Husbandry Register and the Danish VetStat database, in which prescriptions of medication are recorded. All one-site indoor pig herds with >50 sows and >200 weaners...

  4. Antimicrobial Resistance in the Food Chain: A Review

    Science.gov (United States)

    Verraes, Claire; Van Boxstael, Sigrid; Van Meervenne, Eva; Van Coillie, Els; Butaye, Patrick; Catry, Boudewijn; de Schaetzen, Marie-Athénaïs; Van Huffel, Xavier; Imberechts, Hein; Dierick, Katelijne; Daube, George; Saegerman, Claude; De Block, Jan; Dewulf, Jeroen; Herman, Lieve

    2013-01-01

    Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance. PMID:23812024

  5. Scoping review to identify potential non-antimicrobial interventions to mitigate antimicrobial resistance in commensal enteric bacteria in North American cattle production systems.

    Science.gov (United States)

    Murphy, C P; Fajt, V R; Scott, H M; Foster, M J; Wickwire, P; McEwen, S A

    2016-01-01

    A scoping review was conducted to identify modifiable non-antimicrobial factors to reduce the occurrence of antimicrobial resistance in cattle populations. Searches were developed to retrieve peer-reviewed published studies in animal, human and in vitro microbial populations. Citations were retained when modifiable non-antimicrobial factors or interventions potentially associated with antimicrobial resistance were described. Studies described resistance in five bacterial genera, species or types, and 40 antimicrobials. Modifiable non-antimicrobial factors or interventions ranged widely in type, and the depth of evidence in animal populations was shallow. Specific associations between a factor or intervention with antimicrobial resistance in a population (e.g. associations between organic systems and tetracycline susceptibility in E. coli from cattle) were reported in a maximum of three studies. The identified non-antimicrobial factors or interventions were classified into 16 themes. Most reported associations between the non-antimicrobial modifiable factors or interventions and antimicrobial resistance were not statistically significant (P > 0·05 and a confidence interval including 1), but when significant, the results were not consistent in direction (increase or decrease in antimicrobial resistance) or magnitude. Research is needed to better understand the impacts of promising modifiable factors or interventions on the occurrence of antimicrobial resistance before any recommendations can be offered or adopted.

  6. Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria

    Science.gov (United States)

    Saeb, Amr T. M.; Alshammari, Ahmad S.; Al-Brahim, Hessa; Al-Rubeaan, Khalid A.

    2014-01-01

    Aims. To synthesize, characterize, and analyze antimicrobial activity of AgNPs of Escherichia hermannii (SHE), Citrobacter sedlakii (S11P), and Pseudomonas putida (S5). Methods. The synthesized AgNPs were examined using ultraviolet-visible spectroscopy (UV-vis) and, zeta potential, and the size and the morphology obtained from the three different isolates were also confirmed by TEM. Results. Among the three isolates tested, SHE showed the best antimicrobial activity due to the presence of small (4–12 nm) and stable (−22 mV) AgNPs. Stability of AgNPs was also investigated and found to be dependent on the nature of isolates. Conclusion. Produced AgNPs showed particle stability and antimicrobial efficacy up to 90 days of production. Our AgNPs exhibited greater antimicrobial activity compared with gentamicin against P. aeruginosa isolates and vancomycin against S. aureus and MRSA isolates at very low concentration (0.0002 mg per Microliters). PMID:25093206

  7. Antimicrobials for reduction of Salmonella contamination in uncooked, surface-browned breaded chicken products.

    Science.gov (United States)

    Moschonas, Galatios; Geornaras, Ifigenia; Stopforth, Jarret D; Wach, Damien; Woerner, Dale R; Belk, Keith E; Smith, Gary C; Sofos, John N

    2012-06-01

    Surface-browned but uncooked frozen breaded chicken products have been associated with salmonellosis outbreaks due to inadequate or no cooking of the products before consumption. This study was conducted to evaluate the effect of three antimicrobials against Salmonella during manufacture of a surface-browned, uncooked frozen breaded chicken meat product. Fresh chicken breast meat portions (5 by 5 by 5 cm) were inoculated (4 to 5 log CFU/g) with Salmonella and mixed with caprylic acid (CAA; 0.5 and 1.0%), carvacrol (CAR; 0.3 and 0.5%), ε-polylysine (POL; 0.125 and 0.25%), or distilled water (control). Sodium chloride (1.2%) and sodium tripolyphosphate (0.3%) were added to all treatments, and the mixtures were ground (5% total moisture enhancement level) and formed into portions (9 by 5 by 3 cm). The products were breaded and surface browned by baking in an oven (208°C for 15 min) or deep frying in vegetable oil (190°C for 15 s), packaged in polyethylene bags, and stored at -20°C for 7 days. Total reductions of inoculated Salmonella in untreated control oven- or fryer-browned products after frozen storage were 1.2 and 0.8 log CFU/g, respectively. In comparison, treatment with CAA, CAR, or POL reduced initial pathogen counts by 3.3 to >4.5, 4.1 to >4.7, and 1.1 to 1.6 log CFU/g, respectively, regardless of the antimicrobial concentration and browning method. Treatment with 1.0% CAA (oven browned) or 0.5% CAR (oven or fryer browned) reduced Salmonella to nondetectable levels (chicken products.

  8. Antimicrobial compounds as side products from the agricultural processing industry

    NARCIS (Netherlands)

    Sumthong, Pattarawadee

    2007-01-01

    Antimicrobial compounds have many applications, in medicines, food, agriculture, livestock, textiles, paints, and wood protectants. Microorganisms resistant to most antibiotics are rapidly spreading. Consequently there is an urgent and continuous need for novel antimicrobial compounds. Most

  9. Impact of raised without antibiotics practices on occurrences of antimicrobial resistance

    Science.gov (United States)

    Background: The increasing occurrence of antimicrobial-resistant human infections has been attributed to the use of antimicrobials in a variety of applications including food-animal production. "Raised without antibiotics" (RWA) meat production has been offered as a practice to reduce antimicrobial-...

  10. Antimicrobial food packaging: potential and pitfalls

    Science.gov (United States)

    Malhotra, Bhanu; Keshwani, Anu; Kharkwal, Harsha

    2015-01-01

    Nowadays food preservation, quality maintenance, and safety are major growing concerns of the food industry. It is evident that over time consumers’ demand for natural and safe food products with stringent regulations to prevent food-borne infectious diseases. Antimicrobial packaging which is thought to be a subset of active packaging and controlled release packaging is one such promising technology which effectively impregnates the antimicrobial into the food packaging film material and subsequently delivers it over the stipulated period of time to kill the pathogenic microorganisms affecting food products thereby increasing the shelf life to severe folds. This paper presents a picture of the recent research on antimicrobial agents that are aimed at enhancing and improving food quality and safety by reduction of pathogen growth and extension of shelf life, in a form of a comprehensive review. Examination of the available antimicrobial packaging technologies is also presented along with their significant impact on food safety. This article entails various antimicrobial agents for commercial applications, as well as the difference between the use of antimicrobials under laboratory scale and real time applications. Development of resistance amongst microorganisms is considered as a future implication of antimicrobials with an aim to come up with actual efficacies in extension of shelf life as well as reduction in bacterial growth through the upcoming and promising use of antimicrobials in food packaging for the forthcoming research down the line. PMID:26136740

  11. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi

    Science.gov (United States)

    Yogabaanu, U.; Weber, Jean-Frederic Faizal; Convey, Peter; Rizman-Idid, Mohammed; Alias, Siti Aisyah

    2017-12-01

    The Arctic and Antarctic share environmental extremes. To survive in such environments, microbes such as soil fungi need to compete with or protect themselves effectively from other soil microbiota and to obtain the often scarce nutrients available, and many use secondary metabolites to facilitate this. We therefore (i) screened for antimicrobial properties of cold-environment Arctic and Antarctic soil fungi, and (ii) identified changes in the secreted secondary metabolite profiles of a subset of these strains in response to temperature variation. A total of 40 polar soil fungal strains from King George Island, maritime Antarctic and Hornsund, Svalbard, High Arctic, were obtained from the Malaysian National Antarctic Research Centre culture collections. The plug assay technique was used to screen for antimicrobial potential against Gram-positive and Gram-negative human pathogenic bacteria (Bacillus subtilis, B. cereus, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli). About 45% of the tested fungal strains showed antimicrobial activity against at least one tested microorganism. Three fungal isolates showed good bioactivity and were subjected to secondary metabolite profiling at different temperatures (4, 10, 15 and 28 °C). We observed a range of responses in fungal metabolite production when incubated at varying temperatures, confirming an influence of environmental conditions such as temperature on the production of secondary metabolites.

  12. Global trends in antimicrobial use in food animals

    Science.gov (United States)

    Van Boeckel, Thomas P.; Brower, Charles; Gilbert, Marius; Grenfell, Bryan T.; Levin, Simon A.; Robinson, Timothy P.; Teillant, Aude; Laxminarayan, Ramanan

    2015-01-01

    Demand for animal protein for human consumption is rising globally at an unprecedented rate. Modern animal production practices are associated with regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Despite the significant potential consequences for antimicrobial resistance, there has been no quantitative measurement of global antimicrobial consumption by livestock. We address this gap by using Bayesian statistical models combining maps of livestock densities, economic projections of demand for meat products, and current estimates of antimicrobial consumption in high-income countries to map antimicrobial use in food animals for 2010 and 2030. We estimate that the global average annual consumption of antimicrobials per kilogram of animal produced was 45 mg⋅kg−1, 148 mg⋅kg−1, and 172 mg⋅kg−1 for cattle, chicken, and pigs, respectively. Starting from this baseline, we estimate that between 2010 and 2030, the global consumption of antimicrobials will increase by 67%, from 63,151 ± 1,560 tons to 105,596 ± 3,605 tons. Up to a third of the increase in consumption in livestock between 2010 and 2030 is imputable to shifting production practices in middle-income countries where extensive farming systems will be replaced by large-scale intensive farming operations that routinely use antimicrobials in subtherapeutic doses. For Brazil, Russia, India, China, and South Africa, the increase in antimicrobial consumption will be 99%, up to seven times the projected population growth in this group of countries. Better understanding of the consequences of the uninhibited growth in veterinary antimicrobial consumption is needed to assess its potential effects on animal and human health. PMID:25792457

  13. Register-based studies of healthcare costs

    DEFF Research Database (Denmark)

    Kruse, Marie; Christiansen, Terkel

    2011-01-01

    Introduction: The aim of this paper is to provide an overview and a few examples of how national registers are used in analyses of healthcare costs in Denmark. Research topics: The paper focuses on health economic analyses based on register data. For the sake of simplicity, the studies are divided...... into three main categories: economic evaluations of healthcare interventions, cost-of-illness analyses, and other analyses such as assessments of healthcare productivity. Conclusion: We examined a number of studies using register-based data on healthcare costs. Use of register-based data renders...

  14. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam.

    OpenAIRE

    Nhung, NT; Van, NTB; Cuong, NV; Duong, TTQ; Nhat, TT; Hang, TTT; Nhi, NTH; Kiet, BT; Hien, VB; Ngoc, PT; Campbell, J; Thwaites, G; Carrique-Mas, J

    2017-01-01

    Excessive antimicrobial usage and deficiencies in hygiene in meat production systems may result in undesirable human health hazards, such as the presence of antimicrobial drug residues and non-typhoidal Salmonella (NTS), including antimicrobial resistant (AMR) NTS. Recently, Vietnam has witnessed the emergence of integrated intensive animal production systems, coexisting with more traditional, locally-sourced wet markets. To date no systematic studies have been carried out to compare health h...

  15. Testing methods for antimicrobial activity of TiO2 photocatalyst

    Directory of Open Access Journals (Sweden)

    Markov Siniša L.

    2014-01-01

    Full Text Available In recent years, a lot of commercial TiO2 photocatalyst products have been developed and extensively studied for prospective and safe antimicrobial application in daily life, medicine, laboratories, food and pharmaceutical industry, waste water treatments and in development of new self-cleaning and antimicrobial materials, surfaces and paints. This paper reviews the studies published worldwide on killing microorganisms, methods for testing the antimicrobial activity, light sources and intensities, as well as calculation methods usually used when evaluating the antimicrobial properties of the TiO2-based products. Additionally, some strengths and weaknesses of the available methods for testing the antimicrobial activity of TiO2 photocatalyst products have been pointed out.[Projekat Ministarstva nauke Republike Srbije, br. III45008

  16. ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS

    OpenAIRE

    Dıblan, Sevgin; Kaya, Sevim

    2017-01-01

    Active packaging technology is one of the innovativemethods for preserving of food products, and antimicrobial packaging films is amajor branch and promising application of this technology. In order to controlmicrobial spoilage and also contamination of pathogen onto processed or fresh food,antimicrobial agent(s) is/are incorporated into food packaging structure.Polymer type as a carrier of antimicrobial can be petroleum-based plastic orbiopolymer: because of environmental concerns researcher...

  17. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Guo, Huiyuan; Zhang, Zhiyun; Xing, Baoshan; Mukherjee, Arnab; Musante, Craig; White, Jason C; He, Lili

    2015-04-07

    Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.

  18. Effects of irradiation, antimicrobial agents and modified packaging on histamine production by Morganella morganii in mackerel fillets

    International Nuclear Information System (INIS)

    Aytac, S.A.; Ozbas, Z.Y.; Vural, H.

    2000-01-01

    The effects of gamma irradiation (0.5 and 2.0 kGy), antimicrobial agents (5% sodium chloride and 1% potassium sorbate) and modified atmosphere (100% CO2) packaging (MAP) on histamine production by Morganella morganii were examined in mackerel fillets during 8 days of cold storage. MAP combined with antimicrobial agents was also applied to the fillets. The changes in histamine levels, M. morganii and total aerobic bacterial counts were determined during the storage. All methods used in this study showed beneficial effect in controlling bacterial growth and histamine production on mackerel fillets during 2-3 days of storage. MAP combined with 5% sodium chloride has more retarding effect on production of histamine than the other methods. For M. morganii, maximum inhibition effect was found at the dose of 2.0 kGy. Irradiation with a dose of 2.0 kGy, MAP combined with sodium chloride and MAP were also found to have the most inhibiting effects on total aerobic bacterial count during the storage

  19. Antimicrobial Activity of Lactic Acid Bacteria in Dairy Products and Gut: Effect on Pathogens

    Directory of Open Access Journals (Sweden)

    Juan L. Arqués

    2015-01-01

    Full Text Available The food industry seeks alternatives to satisfy consumer demands of safe foods with a long shelf-life able to maintain the nutritional and organoleptic quality. The application of antimicrobial compounds-producing protective cultures may provide an additional parameter of processing in order to improve the safety and ensure food quality, keeping or enhancing its sensorial characteristics. In addition, strong evidences suggest that certain probiotic strains can confer resistance against infection with enteric pathogens. Several mechanisms have been proposed to support this phenomenon, including antimicrobial compounds secreted by the probiotics, competitive exclusion, or stimulation of the immune system. Recent research has increasingly demonstrated the role of antimicrobial compounds as protective mechanism against intestinal pathogens and therefore certain strains could have an effect on both the food and the gut. In this aspect, the effects of the combination of different strains keep unknown. The development of multistrain probiotic dairy products with good technological properties and with improved characteristics to those shown by the individual strains, able to act not only as protective cultures in foods, but also as probiotics able to exert a protective action against infections, has gained increased interest.

  20. Antagonistic interactions and production of halocin antimicrobial peptides among extremely halophilic prokaryotes isolated from the solar saltern of Sfax, Tunisia.

    Science.gov (United States)

    Ghanmi, Fadoua; Carré-Mlouka, Alyssa; Vandervennet, Manon; Boujelben, Ines; Frikha, Doniez; Ayadi, Habib; Peduzzi, Jean; Rebuffat, Sylvie; Maalej, Sami

    2016-05-01

    Thirty-five extremely halophilic microbial strains isolated from crystallizer (TS18) and non-crystallizer (M1) ponds in the Sfax solar saltern in Tunisia were examined for their ability to exert antimicrobial activity. Antagonistic assays resulted in the selection of eleven strains that displayed such antimicrobial activity and they were further characterized. Three cases of cross-domain inhibition (archaea/bacteria or bacteria/archaea) were observed. Four archaeal strains exerted antimicrobial activity against several other strains. Three strains, for which several lines of evidence suggested the antimicrobial activity was, at least in part, due to peptide/protein agents (Halobacterium salinarum ETD5, Hbt. salinarum ETD8, and Haloterrigena thermotolerans SS1R12), were studied further. Optimal culture conditions for growth and antimicrobial production were determined. Using DNA amplification with specific primers, sequencing and RT-PCR analysis, Hbt. salinarum ETD5 and Hbt. salinarum ETD8 were shown to encode and express halocin S8, a hydrophobic antimicrobial peptide targeting halophilic archaea. Although the gene encoding halocin H4 was amplified from the genome of Htg. thermotolerans SS1R12, no transcript could be detected and the antimicrobial activity was most likely due to multiple antimicrobial compounds. This is also the first report that points to four different strains isolated from different geographical locations with the capacity to produce identical halocin S8 proteins.

  1. Novel food packaging systems with natural antimicrobial agents.

    Science.gov (United States)

    Irkin, Reyhan; Esmer, Ozlem Kizilirmak

    2015-10-01

    A new type of packaging that combines food packaging materials with antimicrobial substances to control microbial surface contamination of foods to enhance product microbial safety and to extend shelf-life is attracting interest in the packaging industry. Several antimicrobial compounds can be combined with different types of packaging materials. But in recent years, since consumer demand for natural food ingredients has increased because of safety and availability, these natural compounds are beginning to replace the chemical additives in foods and are perceived to be safer and claimed to alleviate safety concerns. Recent research studies are mainly focused on the application of natural antimicrobials in food packaging system. Biologically derived compounds like bacteriocins, phytochemicals, enzymes can be used in antimicrobial food packaging. The aim of this review is to give an overview of most important knowledge about application of natural antimicrobial packagings with model food systems and their antimicrobial effects on food products.

  2. Antimicrobial polymers.

    Science.gov (United States)

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [Prevalence and antimicrobial susceptibility of Salmonella isolated from broiler whole production process in four provinces of China].

    Science.gov (United States)

    Li, W W; Bai, L; Zhang, X L; Xu, X J; Tang, Z; Bi, Z W; Guo, Y C

    2018-04-06

    Objective: To determine the prevalence and antimicrobial susceptibility of Salmonella isolated from broiler production process in 4 provinces of China. Methods: Using convenience sampling method, 238 sample sites from broiler whole production process were chosen in Henan, Jiangsu, Heilongjiang and Shandong provinces in 2012. A total of 11 592 samples were collected and detected to analyze prevalence baseline, including 2 090 samples from breeding chicken farms and hatcheries, 1 421 samples from broiler farms, 5 610 samples from slaughterhouses and 2 471 samples from distribution and retail stores. All Salmonella strains were isolated through selective enrichment, and were serotyped according to Kauffmann-White scheme. The antimicrobial susceptibilities of selected Salmonella strains were determined by the broth microdilution method and fourteen antimicrobial agents were examined. Results: During incubation course, the average prevalence of Salmonella was 5.5% in feces of breeding hens, feces of chicks, and hatching eggs, 123 Salmonella strains were isolated. During cultivation course, the prevalence of Salmonella was 8.0% in feces from broiler farms, soil, feed, and workers, 114 Salmonella strains were isolated. During slaughter course, the prevalence of Salmonella was 24.9% in swabs pre-slaughter, dressed broiler carcasses, pre-cooled broiler carcasses, water from precooling pool, cutter and chipping boards, frozen chicken portions, and workers, 1 438 Salmonella strains were isolated. During distribution and sale course, the prevalence of Salmonella was 20.9% in transport carts, frozen chicken portions, retail chicken portions and workers, 551 Salmonella strains were isolated. The dominant Salmonella serotypes were Salmonella Enteritidis ( n= 1 229) and Salmonella Indiana ( n= 621). Among 1 231 examined strains, 97.2% Salmonella isolates were resistant to at least one antimicrobial, 69.9% Salmonella strains were multi-drug resistant isolates. Conclusion: Our

  4. Contact allergy to preservatives in patients with occupational contact dermatitis and exposure analysis of preservatives in registered chemical products for occupational use.

    Science.gov (United States)

    Schwensen, Jakob Ferløv; Friis, Ulrik Fischer; Menné, Torkil; Flyvholm, Mari-Ann; Johansen, Jeanne Duus

    2017-05-01

    The aim of the study is to investigate risk factors for sensitization to preservatives and to examine to which extent different preservatives are registered in chemical products for occupational use in Denmark. A retrospective epidemiological observational analysis of data from a university hospital was conducted. All patients had occupational contact dermatitis and were consecutively patch tested with 11 preservatives from the European baseline series and extended patch test series during a 5-year period: 2009-2013. Information regarding the same preservatives in chemical products for occupational use ('substances and materials') registered in the Danish Product Register Database (PROBAS) was obtained. The frequency of preservative contact allergy was 14.2% (n = 141) in 995 patients with occupational contact dermatitis. Patients with preservative contact allergy had significantly more frequently facial dermatitis (19.9 versus 13.1%) and age > 40 years (71.6 versus 45.8%) than patients without preservative contact allergy, whereas atopic dermatitis was less frequently observed (12.1 versus 19.8%). Preservative contact allergy was more frequent in painters with occupational contact dermatitis as compared to non-painters with occupational contact dermatitis (p contact allergy to methylisothiazolinone and contact allergy to formaldehyde. Analysis of the registered substances and materials in PROBAS revealed that preservatives occurred in several product categories, e.g., 'paints and varnishes', 'cleaning agents', 'cooling agents', and 'polishing agents'. Formaldehyde and isothiazolinones were extensively registered in PROBAS. The extensive use of formaldehyde and isothiazolinones in chemical products for occupational use may be problematic for the worker. Appropriate legislation, substitution, and employee education should be prioritized.

  5. Oral antimicrobials increase antimicrobial resistance in porcine E. coli--a systematic review.

    Science.gov (United States)

    Burow, E; Simoneit, C; Tenhagen, B-A; Käsbohrer, A

    2014-03-01

    Administration of antimicrobials to livestock increases the risk of antimicrobial resistance (AMR) in commensal bacteria. Antimicrobials in pig production are usually administered per pen via feed which implies treatment of sick alongside with healthy animals. The objective of this systematic literature review was to investigate the effect of orally administered antimicrobials on AMR in Escherichia coli of swine. Studies published in peer reviewed journals were retrieved from the international online databases ISI Web of Knowledge, PubMed, Scopus and the national electronic literature data base of Deutsches Institut für Medizinische Dokumentation und Information. The studies were assessed using the eligibility criteria English or German language, access to full paper version, defined treatment and control group (initial value or non-treatment) as well as administration and resistance testing of the same antimicrobial class. In the qualitative synthesis, only studies were included presenting the summary measures odds ratio or prevalence of resistance, the category of the applied antimicrobial and the dosage. An effect of the antimicrobial on AMR in E. coli was evaluated as an "increase", "no effect" or "decrease" if the odds or alternatively the prevalence ratio were >1.0, 1.0 or antimicrobial substance and dosage was missing in 4 and 5 of the 11 finally selected studies. The 36 identified trials were inhomogenous in usage and provision of information on sample size. Oral administration of antimicrobials increases the risk of AMR in E. coli from swine. There is however a lack of studies on the impact of dosage and longitudinal effects of treatment. The published studies have a number of issues concerning their scientific quality. More high quality research is needed to better address and quantifiy the effect of orally administered antimicrobials on AMR in swine. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The antimicrobial activity of lavender essential oil (Lavandula angustifolia) and its influence on the production performance of broiler chickens.

    Science.gov (United States)

    Adaszyńska-Skwirzyńska, M; Szczerbińska, D

    2018-04-14

    The aim of the study was the evaluation of the antimicrobial activity (in vitro) of lavender (Lavandula angustifolia) essential oil (LEO) and the effect of its addition to the drinking water of broiler chickens on their production performance. Antimicrobial activity was determined by establishing the minimum inhibitory concentration (MIC) using a series of microdilutions. Bird experiments were carried out on a commercial farm on 300 Ross 308 broilers. One-day-old chicks were randomly assigned to three experimental groups of 100 individuals (five replications of 20 individuals each). In the control group, chickens received drinking water without added essential oil throughout the rearing period. In the LEO 0.2 and LEO 0.4 groups, from 1 to 42 days of bird life, the LEO 0.2 group had 0.2 ml/L of essential lavender oil added to the drinking water, while LEO 0.4 had 0.4 ml/L added. The results of the experiment showed the antimicrobial activity of LEO and its positive effect on the production results of broiler chickens. Application of higher concentration of essential oil (0.4 ml/L) significantly affected production results (BW, FCR, WCR-p  .05). In vitro studies indicate a significant effect of LEO on the inhibition of microbial growth. These results encourage further studies on a larger scale that will confirm antimicrobial efficiency and define the mechanisms of action of Lavandula angustifolia essential oil and its individual components. © 2018 Blackwell Verlag GmbH.

  7. Rauvolfia grandiflora (Apocynaceae extract interferes with staphylococcal density, enterotoxin production and antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Lanamar de Almeida Carlos

    2010-10-01

    Full Text Available Staphylococci bacteria are involved in many human and animal infections and development of alternative antimicrobial drugs against pathogenic bacteria is of great interest to the pharmaceutical industry. This study investigated the in vitro effect of Rauvolfia grandiflora methanol extract (root bark fraction (RGE on the density of ATCC strains of Staphylococcus aureus and Staphylococcus epidermidis, and a clinical enterotoxin-producer, S. aureus bovine strain. The alkaloid, isoreserpiline, obtained from dichloromethane extract of R. grandiflora was ineffective against the strains tested. After incubation of staphylococci strains in the presence of 1.2 mg.mL-1 RGE, a significant inhibition of cell growth was observed using both spectrophotometry and ELISA assays. Twelve drugs were evaluated for their antimicrobial effects on culture RGE-treated cells using the disk diffusion method. Penicillin resistant strains became sensitive to the drug after RGE treatment. Furthermore, enterotoxin production by RGE-treated S. aureus was evaluated using a standardized ELISA method. Although staphylococcal LSA 88 bovine strain cells remained viable after exposure to the extract, enterotoxin production was precluded in 20% after RGE treatment. Significant interference in staphylococci cell density, drug sensitivity and enterotoxin secretion was observed after treatment. The study highlights the necessity to find new methods of disease prevention and new antibiotic therapies against staphylococcal infections.

  8. Rauvolfia grandiflora (apocynaceae) extract interferes with staphylococcal density, enterotoxin production and antimicrobial activity.

    Science.gov (United States)

    de Almeida Carlos, Lanamar; da Silva Amaral, Kenas Aguiar; Curcino Vieira, Ivo José; Mathias, Leda; Braz-Filho, Raimundo; Silva Samarão, Solange; Vieira-da-Motta, Olney

    2010-07-01

    Staphylococci bacteria are involved in many human and animal infections and development of alternative antimicrobial drugs against pathogenic bacteria is of great interest to the pharmaceutical industry. This study investigated the in vitro effect of Rauvolfia grandiflora methanol extract (root bark fraction) (RGE) on the density of ATCC strains of Staphylococcus aureus and Staphylococcus epidermidis, and a clinical enterotoxin-producer, S. aureus bovine strain. The alkaloid, isoreserpiline, obtained from dichloromethane extract of R. grandiflora was ineffective against the strains tested. After incubation of staphylococci strains in the presence of 1.2 μg.mL(-1) RGE, a significant inhibition of cell growth was observed using both spectrophotometry and ELISA assays. Twelve drugs were evaluated for their antimicrobial effects on culture RGE-treated cells using the disk diffusion method. Penicillin resistant strains became sensitive to the drug after RGE treatment. Furthermore, enterotoxin production by RGE-treated S. aureus was evaluated using a standardized ELISA method. Although staphylococcal LSA 88 bovine strain cells remained viable after exposure to the extract, enterotoxin production was precluded in 20% after RGE treatment. Significant interference in staphylococci cell density, drug sensitivity and enterotoxin secretion was observed after treatment. The study highlights the necessity to find new methods of disease prevention and new antibiotic therapies against staphylococcal infections.

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  10. Genome-Wide Identification of Antimicrobial Intrinsic Resistance Determinants in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Leng, Bingfeng; Haaber, Jakob

    2016-01-01

    The emergence of antimicrobial resistance severely threatens our ability to treat bacterial infections. While acquired resistance has received considerable attention, relatively little is known of intrinsic resistance that allows bacteria to naturally withstand antimicrobials. Gene products...... that confer intrinsic resistance to antimicrobial agents may be explored for alternative antimicrobial therapies, by potentiating the efficacy of existing antimicrobials. In this study, we identified the intrinsic resistome to a broad spectrum of antimicrobials in the human pathogen, Staphylococcus aureus. We...... with the atpA mutant compared to wild type cells with gentamicin at a clinically relevant concentration. Our results demonstrate that many gene products contribute to the intrinsic antimicrobial resistance of S. aureus. Knowledge of these intrinsic resistance determinants provides alternative targets...

  11. Detection of biofilm production of Yersinia enterocolitica strains isolated from infected children and comparative antimicrobial susceptibility of biofilm versus planktonic forms.

    Science.gov (United States)

    Ioannidis, A; Kyratsa, A; Ioannidou, V; Bersimis, S; Chatzipanagiotou, S

    2014-06-01

    The ability of Yersinia species to produce biofilms has not been hitherto systematically studied, although there is evidence, that Y. enterocolitica is able to form biofilms on inanimate surfaces. The present study aimed to detect the production of biofilms by 60 clinical strains of Y. enterocolitica and to compare the antimicrobial susceptibility of planktonic versus biofilm-forming bacteria. Y. enterocolitica strains were collected from stool and blood cultures collected from β-thalassaemic children, with gastroenteritis and/or septicemia. The isolated bacterial strains were grouped by biotyping and serotyping and the antimicrobial susceptibility of the planktonic forms was investigated by MIC determination. Biofilm formation was detected by the use of silicone disks and for the biofilm forming strains the minimum inhibitory concentration for bacterial regrowth (MICBR) of 11 clinically important antimicrobials was determined. The presence of the waaE, a gene reported to be related with biofilm formation was investigated in all the strains. All of 60 strains were positive for biofilm production by the use of silicone disks. The great majority of the biofilm forms were resistant to all the antimicrobials. In antimicrobial concentrations far higher than the CLSI breakpoints, bacterial regrowth from the biofilms was still possible. None of the strains bore the waaE gene. These results, indicate that biofilm formation by Y. enterocolitica might be an inherent feature. The presence of biofilms increased dramatically the MICBR in all antimicrobials. The way in which biofilms could contribute to Y. enterocolitica pathogenicity in humans is a matter needing further investigation.

  12. Antimicrobial drugs for treating cholera

    Science.gov (United States)

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-01-01

    Background Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. Objectives To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are differences between classes of antimicrobials or dosing schedules. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; African Index Medicus; LILACS; Science Citation Index; metaRegister of Controlled Trials; WHO International Clinical Trials Registry Platform; conference proceedings; and reference lists to March 2014. Selection criteria Randomized and quasi-randomized controlled clinical trials in adults and children with cholera that compared: 1) any antimicrobial treatment with placebo or no treatment; 2) different antimicrobials head-to-head; or 3) different dosing schedules or different durations of treatment with the same antimicrobial. Data collection and analysis Two reviewers independently applied inclusion and exclusion criteria, and extracted data from included trials. Diarrhoea duration and stool volume were defined as primary outcomes. We calculated mean difference (MD) or ratio of means (ROM) for continuous outcomes, with 95% confidence intervals (CI), and pooled data using a random-effects meta-analysis. The quality of evidence was assessed using the GRADE approach. Main results Thirty-nine trials were included in this review with 4623 participants. Antimicrobials versus placebo or no treatment Overall, antimicrobial therapy shortened the mean duration of diarrhoea by about a day and a half compared to placebo or no treatment (MD -36.77 hours, 95% CI -43

  13. Exploring the potential of antimicrobial hand hygiene products in reducing the infectious burden in low-income countries: An integrative review.

    OpenAIRE

    de Witt Huberts, J; Greenland, K; Schmidt, WP; Curtis, V

    2016-01-01

    The purpose of this review was to understand whether adding antimicrobial agents to hand hygiene products could increase the health benefits of handwashing with plain soap (HWWS) in low-income settings. A review of experimental studies comparing the effects of HWWS with antimicrobial soap and waterless hand sanitizer on health and hand contamination in naturalistic conditions was conducted. In addition, an analysis was completed of the evidence from laboratory studies examining the factors th...

  14. Antimicrobial effect of lactobacillus and bacillus derived ...

    African Journals Online (AJOL)

    This study focused on the screening, production, extraction of biosurfactants from Lactobacillus and Bacillus bacteria and their antimicrobial properties against causal microorganisms of food borne infections (food borne pathogens). The biosurfactants were investigated for potential antimicrobial activity using disk diffusion.

  15. Antimicrobial substances produced by bacteria isolated from ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... We report here the preliminary antimicrobial activity of substances produced by Bacillus subtilis NB-6. (air flora isolate) ... Key words: Antimicrobial activity, Bacillus, Burkholderia, Corynebacterium, methicillin-resistant Staphylococcus aureus. .... products contaminated with animal MRSA is very plausible ...

  16. Use of antimicrobial agents in aquaculture.

    Science.gov (United States)

    Park, Y H; Hwang, S Y; Hong, M K; Kwon, K H

    2012-04-01

    The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria.

  17. Epilepsy in Sweden: health care costs and loss of productivity--a register-based approach.

    Science.gov (United States)

    Bolin, Kristian; Lundgren, Anders; Berggren, Fredrik; Källén, Kristina

    2012-12-01

    The objective was to estimate health care costs and productivity losses due to epilepsy in Sweden and to compare these estimates to previously published estimates. Register data on health care utilisation, pharmaceutical sales, permanent disability and mortality were used to calculate health care costs and costs that accrue due to productivity losses. By linkage of register information, we were able to distinguish pharmaceuticals prescribed against epilepsy from prescriptions that were prompted by other indications. The estimated total cost of epilepsy in Sweden in 2009 was 441 million, which corresponds to an annual per-patient cost of 8,275. Health care accounted for about 16% of the estimated total cost, and drug costs accounted for about 7% of the total cost. The estimated health care cost corresponded to about 0.2% of the total health care cost in Sweden in 2009. Indirect costs were estimated at 370 million, 84% of which was due to sickness absenteeism. Costs resulting from epilepsy-attributable premature deaths or permanent disability to work accounted for about 1% of the total indirect cost in Sweden in 2009. The per-patient cost of epilepsy is substantial. Thus, even though the prevalence of the illness is relatively small, the aggregated cost that epilepsy incurs on society is significant.

  18. 30 CFR 45.4 - Independent contractor register.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Independent contractor register. 45.4 Section... ADMINISTRATIVE REQUIREMENTS INDEPENDENT CONTRACTORS § 45.4 Independent contractor register. (a) Each independent contractor shall provide the production-operator in writing the following information: (1) The independent...

  19. Guidance to Companies on Referring to Registered Disinfectant Products that Meet the CDC Criteria for Use Against the Ebola Virus

    Science.gov (United States)

    There are no EPA-registered products with label claims against the Ebola virus, but enveloped viruses such as Ebola are susceptible to many hospital disinfectants used to disinfect hard, non-porous surfaces. CDC guidance addresses use of such products.

  20. Prevalence, seasonal occurrence and antimicrobial resistance of Salmonella in poultry retail products in Greece.

    Science.gov (United States)

    Zdragas, A; Mazaraki, K; Vafeas, G; Giantzi, V; Papadopoulos, T; Ekateriniadou, L

    2012-10-01

    To detect the prevalence, the seasonal occurrence and distribution of Salmonella serotypes in poultry products and to determine the resistance profile of Salmonella isolates. A total of 96 skin-on chicken carcasses and 30 liver samples were analysed between May 2007 and May 2009 from twenty-two different commercial farm brands found in retail market countrywide. Salmonella was isolated from 38 (39·5%) of 96 chicken carcasses and from 10 (33·3%) of 30 liver samples. Higher isolation rate (60·4%) was observed in carcasses detected during summer (May to October), and lower isolation rate (18·7%) was observed in carcasses detected during winter (November to April); in liver samples, the positive rates were 53·4 and 13·2%, respectively. Twelve serotypes were detected with the serotypes Hadar, Enteritidis and Blockley being the most prevalent at 29·2, 22·9 and 12·5%, respectively. Nine of 11 Salm. Enteritidis isolates occurred during summer. Of 48 isolates, 38 (79%) were resistant to one or more of the antimicrobial agents used. The highest resistance rates were found to the following antimicrobials: streptomycin (64·5%), tetracycline (56·2%), nalidixic acid (39·5%), ampicillin and rifampicin (33·3%). The relatively high Salmonella spp. contamination rates of raw chicken meat and liver have been detected. Salm. Enteritidis isolates peaked in summer, increasing the risk to human health. Antibiotic resistance of Salmonella still remains a threat as resistance plasmids may be extensively shared between animal and humans. The study enabled us to improve the data on the seasonal occurrence of Salmonella and to determine the antimicrobial pattern profile and trends in Salmonella strains isolated from poultry retail products in Greece. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  1. Local and systemic antimicrobial therapy in periodontics.

    Science.gov (United States)

    Herrera, David; Matesanz, Paula; Bascones-Martínez, Antonio; Sanz, Mariano

    2012-09-01

    This review aimed to update the current evidence on the efficacy of the adjunctive use of local and systemic antimicrobials in the treatment of periodontitis and to assess whether it might improve the clinical limitations and shortcomings of standard nonsurgical treatment in the management of periodontitis. Relevant randomized clinical trials (RCT) with more than 3 months of follow-up, published from 2010 to 2012 for systemic antimicrobials and from 2008 to 2012 for local antimicrobials, were searched in Medline and critically analyzed. Scientific evidence evaluated in different systematic reviews and reviews presented at European and World Workshops were also included. Only adjunctive therapies were considered in the present review: articles comparing debridement alone or plus placebo, versus debridement plus systemic or local antimicrobials were included. Adjunctive systemic antimicrobials have been evaluated both in aggressive and chronic periodontitis: in aggressive periodontitis, amoxicillin and metronidazole have been extensively studied, reporting clinical and microbiological benefits; in chronic periodontitis, different products are under scrutiny, such as azithromycin. The clinical efficacy of local antimicrobials, although extensively demonstrated, is still surrounded by a constant debate on the cost-effectiveness evaluation and on its adequate indications. Despite the clinical efficacy of the adjunctive use of local and systemic antimicrobials, demonstrated in RCTs and in systematic reviews, there is a lack of evidence to support well-defined clinical protocols, including products and dosages. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Indications and patterns of therapeutic use of antimicrobial agents in the Danish pig production from 2002 to 2008

    DEFF Research Database (Denmark)

    Jensen, Vibeke Frøkjær; Emborg, Hanne-Dorthe; Aarestrup, Frank Møller

    2011-01-01

    This study describes trends in the use and indications for prescriptions of antimicrobial agents in the Danish pig production in the period between 2002 and 2008 and is the first description of a complete prescription pattern for one animal species in an entire country. Data on all prescription...... for pigs in Denmark were retrieved from the VetStat database. Antimicrobial use was measured in defined animal daily doses (ADD) for the specific age-group and in ADDkg as a measure of amounts used. According to the results of the ADDkg data, 26% of all antimicrobials were prescribed for sows, 38....../piglets, by 141% for weaning pigs, and by 81% for finisher pig. The most commonly used class of antibiotics was tetracycline for all age-groups, replacing the previously used macrolide/lincosamide group. The use of pleuromutilin increased in 2008 to the level of macrolides. In sow/piglets, the second most used...

  3. Improved antimicrobial compound production by a new isolate Streptomyces hygroscopicus MTCC 4003 using Plackett-Burman design and response Surface methodology.

    Science.gov (United States)

    Singh, Neha; Rai, Vibhuti

    2012-01-01

    An active strain, isolated from soil of Chhattisgarh, India, showed broad-spectrum antimicrobial activity against various pathogenic bacteria and fungi in glucose soybean meal broth. Strain was characterized as Streptomyces hygroscopicus MTCC 4003 based on 16S rRNA sequencing from Microbial Type culture Collection (MTCC), IMTECH, Chandigarh, India. Identification of the purified antimicrobial compound was done by using Infra-red (IR), Mass, Ultraviolet (UV), 1H and 13C nuclear magnetic resonance (NMR) spectra. Plackett-Burman design (PBD) and response surface methodology (RSM) methods were used for the optimization of antibiotic production. Effects of the four medium components soybean meal, glucose, CaCO3 and MgSO4 showed positive effect on antibiotic production, were investigated with the help of PBD. The individual and interaction effects of the selected variables were determined by RSM using central composite design (CCD). Applying statistical design, antibiotic production was improved nearly ten times (412 mg/L) compared with unoptimized production medium (37 mg/L).

  4. Comparative evaluation of antimicrobials for textile applications.

    Science.gov (United States)

    Windler, Lena; Height, Murray; Nowack, Bernd

    2013-03-01

    Many antimicrobial technologies are available for textiles. They may be used in many different textile applications to prevent the growth of microorganisms. Due to the biological activity of the antimicrobial compounds, the assessment of the safety of these substances is an ongoing subject of research and regulatory scrutiny. This review aims to give an overview on the main compounds used today for antimicrobial textile functionalization. Based on an evaluation of scientific publications, market data as well as regulatory documents, the potential effects of antimicrobials on the environment and on human health were considered and also life cycle perspectives were taken into account. The characteristics of each compound were summarized according to technical, environmental and human health criteria. Triclosan, silane quaternary ammonium compounds, zinc pyrithione and silver-based compounds are the main antimicrobials used in textiles. The synthetic organic compounds dominate the antimicrobials market on a weight basis. On the technical side the application rates of the antimicrobials used to functionalize a textile product are an important parameter with treatments requiring lower dosage rates offering clear benefits in terms of less active substance required to achieve the functionality. The durability of the antimicrobial treatment has a strong influence on the potential for release and subsequent environmental effects. In terms of environmental criteria, all compounds were rated similarly in effective removal in wastewater treatment processes. The extent of published information about environmental behavior for each compound varies, limiting the possibility for an in-depth comparison of all textile-relevant parameters across the antimicrobials. Nevertheless the comparative evaluation showed that each antimicrobial technology has specific risks and benefits that should be taken into account in evaluating the suitability of different antimicrobial products. The

  5. Contact allergy to preservatives in patients with occupational contact dermatitis and exposure analysis of preservatives in registered chemical products for occupational use

    DEFF Research Database (Denmark)

    Schwensen, Jakob Ferløv; Friis, Ulrik Fischer; Menné, Torkil

    2017-01-01

    PURPOSE: The aim of the study is to investigate risk factors for sensitization to preservatives and to examine to which extent different preservatives are registered in chemical products for occupational use in Denmark. METHODS: A retrospective epidemiological observational analysis of data from...... a university hospital was conducted. All patients had occupational contact dermatitis and were consecutively patch tested with 11 preservatives from the European baseline series and extended patch test series during a 5-year period: 2009-2013. Information regarding the same preservatives in chemical products...... in several product categories, e.g., 'paints and varnishes', 'cleaning agents', 'cooling agents', and 'polishing agents'. Formaldehyde and isothiazolinones were extensively registered in PROBAS. CONCLUSIONS: The extensive use of formaldehyde and isothiazolinones in chemical products for occupational use may...

  6. Photocatalytic hydrogen production on SOLECTRO {sup registered} titanium dioxide layers. Investigation of reaction processes and of the influence of various reaction parameters; Photokatalytische Wasserstoffgewinnung an SOLECTRO {sup registered} -Titandioxidschichten. Untersuchung der ablaufenden Reaktionsprozesse und des Einflusses verschiedener Reaktionsparameter

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Doreen

    2010-04-14

    The dissertation investigated the reaction processes of photocatalytic hydrogen production on palladium and copper-doped SOLECTRO {sup registered} titanium dioxide layers. Methanol was used as electron donor. [German] In dieser Doktorarbeit werden die ablaufenden Reaktionsprozesse der photokatalytischen Wasserstoffentwicklung an palladium- und kupferbeladenen SOLECTRO {sup registered} -Titandioxidschichten untersucht. Als Elektronendonator wurde Methanol verwendet.

  7. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by acquired resistance...... genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  8. Providing context: antimicrobial resistance from multiple environmental sources

    Science.gov (United States)

    Background: Animal agriculture has been identified as encouraging the spread of resistance due to the use of large quantities of antimicrobials for animal production purposes. When antimicrobial resistance (AMR) is reported in agricultural settings without comparison to other environments there is a...

  9. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    Science.gov (United States)

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Influence of factors on release of antimicrobials from antimicrobial packaging materials.

    Science.gov (United States)

    Wu, Yu-Mei; Wang, Zhi-Wei; Hu, Chang-Ying; Nerín, Cristina

    2018-05-03

    Antimicrobial packaging materials (films or coatings) (APMs) have aroused great interest among the scientists or the experts specialized in material science, food science, packaging engineering, biology and chemistry. APMs have been used to package the food, such as dairy products, poultry, meat (e.g., beef), salmon muscle, pastry dough, fresh pasta, bakery products, fruits, vegetables and beverages. Some materials have been already commercialized. The ability of APMs to extend the shelf-life of the food depends on the release rate of the antimicrobials (AMs) from the materials to the food. The optimum rate is defined as target release rate (TRR). To achieve TRR, the influencing factors of the release rate should be considered. Herein we reviewed for the first time these factors and their influence on the release. These factors mainly include the AMs, food (or food simulant), packaging materials, the interactions among them, the temperature and environmental relative humidity (RH).

  11. A survey of antimicrobial usage in animals in South Africa with specific reference to food animals.

    Science.gov (United States)

    Eagar, Hayley; Swan, Gerry; van Vuuren, Moritz

    2012-08-01

    The purpose of this study was to set a benchmark for a monitoring and surveillance programme on the volumes of antimicrobials available and consumed by animals for the benefit of animal health in South Africa. This survey was collated from data available from 2002 to 2004. The authorised antimicrobials available in South Africa were firstly reviewed. The majority of available antimicrobials were registered under the Stock Remedies Act 36 1947. Secondly, volumes of antimicrobials consumed were then surveyed and it was found that the majority of consumed antimicrobials were from the macrolide and pleuromutilin classes, followed by the tetracycline class, the sulphonamide class and lastly the penicillin class.Results showed that 68.5% of the antimicrobials surveyed were administered as in-feed medications. 17.5% of the total volume of antimicrobials utilised were parenteral antimicrobials, whereas antimicrobials for water medication constituted 12% of the total and 'other' dosage forms, for example the topical and aural dosage forms, constituted 1.5% of the total. Intramammary antimicrobials represented 0.04% of the total. The surveillance systems for veterinary antimicrobials used by other countries were scrutinised and compared. It was concluded that a combination of the surveillance systems applied by Australia and the United Kingdom is the best model (with modifications) to apply to the animal health industry in South Africa. Such a surveillance system, of the volumes of veterinary antimicrobials consumed, should ideally be implemented in conjunction with a veterinary antimicrobial resistance surveillance and monitoring programme. This will generate meaningful data that will contribute to the rational administration of antimicrobials in order to preserve the efficacy of the existing antimicrobials in South Africa.

  12. A survey of antimicrobial usage in animals in South Africa with specific reference to food animals

    Directory of Open Access Journals (Sweden)

    Hayley Eagar

    2012-04-01

    Full Text Available The purpose of this study was to set a benchmark for a monitoring and surveillance programme on the volumes of antimicrobials available and consumed by animals for the benefit of animal health in South Africa. This survey was collated from data available from 2002 to 2004. The authorised antimicrobials available in South Africa were firstly reviewed. The majority of available antimicrobials were registered under the Stock Remedies Act 36 1947. Secondly, volumes of antimicrobials consumed were then surveyed and it was found that the majority of consumed antimicrobials were from the macrolide and pleuromutilin classes, followed by the tetracycline class, the sulphonamide class and lastly the penicillin class.Results showed that 68.5% of the antimicrobials surveyed were administered as in-feed medications. 17.5% of the total volume of antimicrobials utilised were parenteral antimicrobials, whereas antimicrobials for water medication constituted 12% of the total and ’other‘ dosage forms, for example the topical and aural dosage forms, constituted 1.5% of the total. Intramammary antimicrobials represented 0.04% of the total. The surveillance systems for veterinary antimicrobials used by other countries were scrutinised and compared. It was concluded that a combination of the surveillance systems applied by Australia and the United Kingdom is the best model (with modifications to apply to the animal health industry in South Africa. Such a surveillance system, of the volumes of veterinary antimicrobials consumed, should ideally be implemented in conjunction with a veterinary antimicrobial resistance surveillance and monitoring programme. This will generate meaningful data that will contribute to the rational administration of antimicrobials in order to preserve the efficacy of the existing antimicrobials in South Africa.

  13. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    Science.gov (United States)

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain.

    Science.gov (United States)

    Escolar, Cristina; Gómez, Diego; Del Carmen Rota García, María; Conchello, Pilar; Herrera, Antonio

    2017-06-01

    The objective of this work was to investigate the antimicrobial resistance in Listeria spp. isolated from food of animal origin. A total of 50 Listeria strains isolated from meat and dairy products, consisting of 7 Listeria monocytogenes and 43 Listeria innocua strains, were characterized for antimicrobial susceptibility against nine antimicrobials. The strains were screened by real-time PCR for the presence of antimicrobial resistance genes: tet M, tet L, mef A, msr A, erm A, erm B, lnu A, and lnu B. Multidrug resistance was identified in 27 Listeria strains, 4 belonging to L. monocytogenes. Resistance to clindamycin was the most common resistance phenotype and was identified in 45 Listeria strains; the mechanisms of resistance are still unknown. A medium prevalence of resistance to tetracycline (15 and 9 resistant and intermediate strains) and ciprofloxacin (13 resistant strains) was also found. Tet M was detected in Listeria strains with reduced susceptibility to tetracycline, providing evidence that both L. innocua and L. monocytogenes displayed acquired resistance. The presence of antimicrobial resistance genes in L. innocua and L. monocytogenes indicates that these genes may be transferred to commensal and pathogenic bacteria via the food chain; besides this, antibiotic resistance in L. monocytogenes could compromise the effective treatment of listeriosis in humans.

  15. Antimicrobial effect of essential oils on the seafood spoilage micro-organism Photobacterium phosphoreum in liquid media and fish products

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Dalgaard, Paw

    2002-01-01

    Aims: To evaluate the antimicrobial effect of nine essential oils (EO) on P. phosphoreum and determine the effect of oregano oil on the shelf-life of modified atmosphere-packed (MAP) cod fillets. Methods and Results: The antimicrobial effect of EO was studied in a liquid medium and in product...... storage trials. Oils of oregano and cinnamon had strongest antimicrobial activity, followed by lemongrass, thyme, clove, bay, marjoram, sage and basil oils. Oregano oil (0.05%, v/w) reduced growth of P. phosphoreum in naturally contaminated MAP cod fillets and extended shelf-life from 11-12 d to 21-26 d...... at 2degreesC. Conclusions: Oregano oil reduced the growth of P. phosphoreum and extended the shelf-life of MAP cod fillets. Significance and Impact of the Study: Mild and natural preservation using EO can extend the shelf-life of MAP seafood through inhibiting the specific spoilage organism P...

  16. Register for Suicide Attempts

    DEFF Research Database (Denmark)

    Christiansen, Erik; Jensen, Børge Frank

    2004-01-01

    The Register for Suicide Attempts (RSA) is a product of the WHO research project "WHO/Euro Multicentre Study on Parasuicide", which, among other things, had the purpose of collecting data on suicide attempts from 13 European countries. Data is collected in order to calculate trends and identify...

  17. Efficacy of triclosan as an antimicrobial hand soap and its potential impact on antimicrobial resistance: a focused review.

    Science.gov (United States)

    Giuliano, Christopher A; Rybak, Michael J

    2015-03-01

    Triclosan is a synthetic biocide found in many household products, including antimicrobial hand soap. Levels of triclosan have been found throughout the environment and in human urine, blood, and even breast milk. Increasing levels of exposure to triclosan have led to concerns over the development of resistance to triclosan and cross-resistance to other antimicrobials. We performed a literature search to assess whether the widespread use of triclosan displays a favorable benefit: risk ratio, defined by evaluation of triclosan's efficacy as an antimicrobial hand soap and its potential effect on the development of antimicrobial resistance. Data from laboratory-based studies regarding the efficacy of triclosan are conflicting, although well-designed studies suggest no significant difference in efficacy over nonantimicrobial soap. In addition, when triclosan was introduced in a community setting, no beneficial effects were observed on the reduction of infections over nonantimicrobial soap. Resistance to triclosan and cross-resistance to antimicrobials have been consistently demonstrated in laboratory settings, although overall resistance rates and cross-resistance rates in the community setting are low. Based on the available evidence, the risk of potential antimicrobial resistance outweighs the benefit of widespread triclosan use in antimicrobial soaps. © 2015 Pharmacotherapy Publications, Inc.

  18. Declines in Outpatient Antimicrobial Use in Canada (1995–2010)

    Science.gov (United States)

    Finley, Rita; Glass-Kaastra, Shiona K.; Hutchinson, Jim; Patrick, David M.; Weiss, Karl; Conly, John

    2013-01-01

    Background With rising reports of antimicrobial resistance in outpatient communities, surveillance of antimicrobial use is imperative for supporting stewardship programs. The primary objective of this article is to assess the levels of antimicrobial use in Canada over time. Methods Canadian antimicrobial use data from 1995 to 2010 were acquired and assessed by four metrics: population-adjusted prescriptions, Defined Daily Doses, spending on antimicrobials (inflation-adjusted), and average Defined Daily Doses per prescription. Linear mixed models were built to assess significant differences among years and antimicrobial groups, and to account for repeated measurements over time. Measures were also compared to published reports from European countries. Results Temporal trends in antimicrobial use in Canada vary by metric and antimicrobial grouping. Overall reductions were seen for inflation-adjusted spending, population-adjusted prescription rates and Defined Daily Doses, and increases were observed for the average number of Defined Daily Doses per prescription. The population-adjusted prescription and Defined Daily Doses values for 2009 were comparable to those reported by many European countries, while the average Defined Daily Dose per prescription for Canada ranked high. A significant reduction in the use of broad spectrum penicillins occurred between 1995 and 2004, coupled with increases in macrolide and quinolone use, suggesting that replacement of antimicrobial drugs may occur as new products arrive on the market. Conclusions There have been modest decreases of antimicrobial use in Canada over the past 15 years. However, continued surveillance of antimicrobial use coupled with data detailing antimicrobial resistance within bacterial pathogens affecting human populations is critical for targeting interventions and maintaining the effectiveness of these products for future generations. PMID:24146863

  19. Longitudinal study of distributions of similar antimicrobial-resistant Salmonella serovars in pigs and their environment in two distinct swine production systems.

    Science.gov (United States)

    Keelara, Shivaramu; Scott, H Morgan; Morrow, William M; Gebreyes, Wondwossen A; Correa, Maria; Nayak, Rajesh; Stefanova, Rossina; Thakur, Siddhartha

    2013-09-01

    The aim of this longitudinal study was to determine and compare the prevalences and genotypic profiles of antimicrobial-resistant (AR) Salmonella isolates from pigs reared in antimicrobial-free (ABF) and conventional production systems at farm, at slaughter, and in their environment. We collected 2,889 pig fecal and 2,122 environmental (feed, water, soil, lagoon, truck, and floor swabs) samples from 10 conventional and eight ABF longitudinal cohorts at different stages of production (farrowing, nursery, finishing) and slaughter (postevisceration, postchill, and mesenteric lymph nodes [MLN]). In addition, we collected 1,363 carcass swabs and 205 lairage and truck samples at slaughter. A total of 1,090 Salmonella isolates were recovered from the samples; these were isolated with a significantly higher prevalence in conventionally reared pigs (4.0%; n = 66) and their environment (11.7%; n = 156) than in ABF pigs (0.2%; n = 2) and their environment (0.6%; n = 5) (P antimicrobial resistance (AR) were exhibited to tetracycline (71%), sulfisoxazole (42%), and streptomycin (17%). Multidrug resistance (resistance to ≥ 3 antimicrobials; MDR) was detected in 27% (n = 254) of the Salmonella isolates from the conventional system. Our study reports a low prevalence of Salmonella in both production systems in pigs on farms, while a higher prevalence was detected among the carcasses at slaughter. The dynamics of Salmonella prevalence in pigs and carcasses were reciprocated in the farm and slaughter environment, clearly indicating an exchange of this pathogen between the pigs and their surroundings. Furthermore, the phenotypic and genotypic fingerprint profile results underscore the potential role played by environmental factors in dissemination of AR Salmonella to pigs.

  20. Antimicrobial use and antimicrobial susceptibility in Escherichia coli on small- and medium-scale pig farms in north-eastern Thailand

    Directory of Open Access Journals (Sweden)

    G. Ström

    2017-07-01

    Full Text Available Abstract Background Intensification of livestock production seen in many low- and middle-income countries is often believed to be associated with increased use of antimicrobials, and may hence contribute to the emergence of antimicrobial resistance. The aim of this study was to map antimicrobial use on small- (n = 25 and medium-scale (n = 27 pig farms in north-eastern Thailand, and to compare antimicrobial susceptibility of commensal Escherichia coli isolated from sows on these farms. Methods Information regarding pig husbandry and antimicrobial treatment regimens was obtained by the use of semi-structured questionnaires. Faecal samples were collected from three healthy sows at each farm, and Escherichia coli was cultured and analysed for antimicrobial susceptibility using the broth microdilution method. Multilevel regression models were used to compare antimicrobial susceptibility between isolates from small- and medium-scale farms. Results All farms included in the study administered antimicrobials to their sows. Small-scale farmers most commonly (64% decided themselves when to give antimicrobials and the majority (60% bought the medicines at the local store or pharmacy, whereas farmers on medium-scale farms always discussed antimicrobial treatment with a veterinarian. Medium-scale farms used a greater diversity of antimicrobials than small-scale farms and did also administer antimicrobials in feed to a higher extent. High levels of antimicrobial resistance to several critically important antimicrobials for human medicine (including ciprofloxacin, streptomycin and ampicillin were found in isolates from both small- and medium-scale farms. Resistance levels were significantly (P < 0.05 higher in isolates from medium-scale farms for several of the antimicrobials tested, as well as the level of multidrug-resistance (P = 0.026. Conclusion The routines regarding access and administration of antimicrobials differed between the small- and

  1. Antimicrobial use on Canadian dairy farms.

    Science.gov (United States)

    Saini, V; McClure, J T; Léger, D; Dufour, S; Sheldon, A G; Scholl, D T; Barkema, H W

    2012-03-01

    Antimicrobial use (AMU) data are critical for formulating policies for containing antimicrobial resistance. The present study determined AMU on Canadian dairy farms and characterized variation in AMU based on herd-level factors such as milk production, somatic cell count, herd size, geographic region and housing type. Drug use data were collected on 89 dairy herds in 4 regions of Canada, Alberta, Ontario, Québec, and the Maritime provinces (Prince Edward Island, New Brunswick, and Nova Scotia) for an average of 540 d per herd. Dairy producers and farm personnel were asked to deposit empty drug containers into specially provided receptacles. Antimicrobial use was measured as antimicrobial drug use rate (ADUR), with the unit being number of animal defined-daily doses (ADD)/1,000 cow-days. Antimicrobial drug use rates were determined at farm, region, and national level. Combined ADUR of all antimicrobial classes was 14.35 ADD/1,000 cow-days nationally. National level ADUR of the 6 most commonly used antimicrobial drug classes, cephalosporins, penicillins, penicillin combinations, tetracyclines, trimethoprim-sulfonamide combinations, and lincosamides were 3.05, 2.56, 2.20, 1.83, 0.87, and 0.84 ADD/1,000 cow-days, respectively. Dairy herds in Ontario were higher users of third-generation cephalosporins (ceftiofur) than in Québec. Alberta dairy herds were higher users of tetracyclines in comparison to Maritimes. Antimicrobial drug use rate was higher via systemic route as compared with intramammary and other routes of administration (topical, oral, and intrauterine). The ADUR of antimicrobials used intramammarily was higher for clinical mastitis treatment than dry cow therapy. For dry cow therapy, penicillin ADUR was greater than ADUR of first-generation cephalosporins. For clinical mastitis treatment, ADUR of intramammary penicillin combinations was greater than ADUR of cephapirin. Herd-level milk production was positively associated with overall ADUR, ADUR of

  2. Antimicrobial resistance mechanisms among Campylobacter.

    Science.gov (United States)

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  3. IN-VITRO ANTIMICROBIAL ACTIVITY OF BRONCHOSOL.

    Science.gov (United States)

    Witkowska-Banaszczak, Ewa; Michalak, Anna; Kędzia, Anna

    2015-01-01

    Bronchosol is a traditional medicinal product in the form of syrup used in cough and impeded expectoration. The active ingredients that it contains include extracts from the herb of thyme, the root of primrose and thymol. It is recommended in disorders of the respiratory tract when expectoration is impeded and secretion of liquid mucus in bronchi is insufficient. Antimicrobial activity of the components of Bronchosol, especially thyme and thymol, has frequently been reported in the literature. To date, there have not been any studies to confirm such activity of Bronchosol, though. The results of our research are the first one to point to the great activity of Bronchosol against microorganisms causing infections of the respiratory tract. It has been demonstrated that this product displayed antimicrobial activity against reference strains as well as strains of anaerobic and aerobic bacteria and fungi isolated from patients. The confirmation of the antimicrobial activity of Bronchosol provides an explanation of its effectiveness in the therapy of the respiratory tract infections.

  4. original article antimicrobial susceptibility pattern of lactic acid

    African Journals Online (AJOL)

    User

    Abstract. Currently, the efficacies of antimicrobials have been threatened due to the development of resistance to antibiotics by some microorganisms. Lactic acid bacteria (LAB) from fermented products, may act as reservoir of antimicrobial resistance-genes that could be transferred to pathogens, either in the food matrix or ...

  5. Nisin and its Antimicrobial Effect in Foods

    Directory of Open Access Journals (Sweden)

    Hamparsun Hampikyan

    2007-04-01

    Full Text Available Nisin is a bacteriocin which is produced by Lactococcus lactis and takes its place in I. class bacteriocins which are known as lantibiotics. Nisin has antimicrobial and bactericidal activity against a broad spectrum of gram positive bacteria and spores of Clostridium spp. and Bacillus spp. According to toxicity studies nisin is considered not toxic to humans. Its first established used was as a preservative in processed cheese products and since than numerous other applications in various foods such as meat and meat products, poultry products, sea products and beverages such as beer, wine have been used safely. In this review, the characteristics of nisin, its usage in food and its antimicrobial effect are considered. [TAF Prev Med Bull 2007; 6(2.000: 142-147

  6. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    OpenAIRE

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i....

  7. Campylobacter coli in Swine Production: Antimicrobial Resistance Mechanisms and Molecular Epidemiology

    OpenAIRE

    Thakur, Siddhartha; Gebreyes, Wondwossen A.

    2005-01-01

    The aim of this study was to determine antimicrobial resistance, to evaluate and compare the use of two genotyping methods for molecular epidemiology purposes, and to determine the genotypic diversity of Campylobacter coli of porcine origin. A total of 100 C. coli isolates from swine were tested for susceptibility to six antimicrobials using the agar dilution method and genotyped using two high-resolution fingerprinting approaches: multilocus sequence typing (MLST) and pulsed-field gel electr...

  8. 'Prevalence and antimicrobial susceptibility of Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains from raw meat and meat products in Zaria, Nigeria.

    Science.gov (United States)

    Ndahi, M D; Kwaga, J K P; Bello, M; Kabir, J; Umoh, V J; Yakubu, S E; Nok, A J

    2014-03-01

    The bacterial genera Listeria and Staphylococcus have been frequently isolated from food products and are responsible for a number of animal and human diseases. The aim of the study was to simultaneously isolate and characterize L. monocytogenes and Staphylococcus species from 300 samples of raw meat and meat products, to determine the susceptibility of the organisms to commonly used antimicrobial agents and to determine the presence of haemolysin A (hyl) virulence gene in L. monocytogenes and staphylococcal cassette chromosome mecA (SCCmec) gene in the Staph. aureus isolates using PCR. Of the 85 Listeria isolates tested, 12 L. monocytogenes were identified and tested for their sensitivity to 14 antimicrobial agents. All the 12 isolates (100%) were resistant to nine antimicrobial agents, but however sensitive to gentamicin. Only one isolate was found to harbour the hylA gene. Twenty-nine isolates were confirmed as Staph. aureus by the Microbact 12S identification system and were all presumptively identified as methicillin-resistant Staph. aureus species using oxacillin-resistant Staph. aureus basal medium (ORSAB). The 29 Staph. aureus isolates were tested for their sensitivity to 16 antimicrobial agents, and 11 were resistant to methicillin. None of the 11 Staph. aureus isolates harboured the methicillin resistance, mecA gene. Listeria monocytogenes and Staphylococcus aureus are important agents of foodborne diseases. Occurrence of these infectious agents was established in meat and meat products in Zaria, Nigeria. Majority of isolates obtained from this study, displayed multidrug resistance to commonly used antimicrobial agents, including methicillin resistance among the Staph. aureus isolates. The potential virulence of L. monocytogenes found in ready-to-eat food was documented by the carriage of hly A gene by one of the isolates. A different mechanism of methicillin resistance or different homologue of mec A gene may be circulating among Nigerian

  9. Das sprachliche Register (Speech Registers)

    Science.gov (United States)

    Hess-Luttich, Ernest W. B.

    1974-01-01

    The linguistic behavior of a given individual varies; he will on different occasions speak (or write) differently according to what may be roughly described as different social situations: he will use a number of different registers. The application of such registers both in the field of text analysis and in the preparation of teaching materials…

  10. Antimicrobial resistance of Listeria monocytogenes isolated from dairy-based food products.

    Science.gov (United States)

    Harakeh, Steve; Saleh, Imane; Zouhairi, Omar; Baydoun, Elias; Barbour, Elie; Alwan, Nisreen

    2009-06-15

    In this study Listeria monocytogenes (L. monocytogenes) was isolated from three traditionally consumed Lebanese dairy-based food products. One hundred and sixty four samples (45 samples of Baladi cheese, 36 samples of Shankleesh and 83 of Kishk) were collected from the Bekaa Valley in the Northeast region of Lebanon. Suspected Listeria colonies were selected and initially identified by using standard biochemical tests. Initial identification of the positive L. monocytogenes colonies was confirmed at the molecular level by Polymerase Chain Reaction (n=30) and the confirmed isolates were evaluated for their susceptibility to 10 commonly used antimicrobials. All of the 30 isolates were confirmed to be L. monocytogenes yielding a PCR product of approximately 660 base pairs (bp). L. monocytogenes was detected in 26.67%, 13.89% and 7.23% of the Baladi cheese, Shankleesh and Kishk samples, respectively. The highest resistance in L. monocytogenes isolates was noted against oxacillin (93.33%) followed by penicillin (90%). The results provide an indication of the contamination levels of dairy-based foods in Lebanon and highlight the emergence of multi-drug resistant Listeria in the environment.

  11. Impact of Denmark's ban on antimicrobials for growth promotion.

    Science.gov (United States)

    Jensen, Helen H; Hayes, Dermot J

    2014-06-01

    Denmark was among the first countries to ban the use of antimicrobials for growth promotion (AGPs) in animal production through an on-going series of actions and regulations since 1995. In 2010 the Yellow Card scheme was adopted to decrease total antimicrobial consumption in pig production through additional restrictions on pig farmers. The withdrawal of AGPs and other restrictions have reduced total antimicrobial use, but at the same time therapeutic drug use has increased and resistance in key zoonotic bacteria has not decreased. Improved use of vaccines and management practices can help reduce losses especially for weaner pigs, but come with additional costs to producers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture

    DEFF Research Database (Denmark)

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance...... in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic....... used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have...

  13. Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products.

    Science.gov (United States)

    Dehkordi, Farhad Safarpoor; Yazdani, Farshad; Mozafari, Jalal; Valizadeh, Yousef

    2014-04-07

    From a clinical perspective, it is essential to know the microbial safety of fermented dairy products. Doogh and kashk are fermented dairies. These products are used by millions of people but their microbial qualities are unknown. Shiga toxin producing Escherichia coli (STEC) is one of the most commonly detected pathogens in the cases of food poisoning and food-borne illnesses. The present investigation was carried out in order to study the molecular characterization and antimicrobial resistance properties of STEC strains isolated from fermented dairy products. Six hundred fermented dairy samples were collected and immediately transferred to the laboratory. All samples were cultured immediately and those that were E. coli-positive were analyzed for the presence of O157 , O26, O103, O111, O145, O45, O91, O113, O121 and O128 STEC serogroups, tetA, tetB, blaSHV, CITM, cmlA, cat1, aadA1, dfrA1, qnr, aac (3)-IV, sul1 and ereA antibiotic resistance genes and stx1, stx2, eaeA, ehly, cnf1, cnf2, iutA, cdtB, papA, traT, sfaS and fyuA virulence factors using PCR. Antimicrobial susceptibility testing was performed also using disk diffusion methodology with Mueller-Hinton agar. Fifty out of 600 (8.33%) dairy samples harbored E. coli. In addition, yoghurt was the most commonly contaminated dairy. O157 (26%) and O26 (12%) were the most commonly detected serogroups. A significant difference was found between the frequency of Attaching and Effacing E. coli and Enterohaemorrhagic E. coli (P Fermented dairy products can easily become contaminated by antibiotic resistant STEC strains. Our findings should raise awareness about antibiotic resistance in Iran. Clinicians should exercise caution when prescribing antibiotics, especially in veterinary treatments.

  14. Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity.

    Science.gov (United States)

    Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J

    2014-02-01

    A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.

  15. Physicochemical and antimicrobial properties of copaiba oil: implications on product quality control.

    Science.gov (United States)

    Fonseca, Renata G; Barros, Francisco M; Apel, Miriam A; Poser, Gilsane L von; Andriolli, Jo O L; Filho, Pedro C Campos; Sousa, Dhierlate F; Lobo, Ivon P; Conceiç O, Aline O

    2015-01-01

    The copaiba oil is a common natural product used in cosmetic industry and as a nutraceutical product. However, lack of quality control and scarce knowledge about its antimicrobial activity is a point of concern. The proposal of this study was to investigate the physicochemical properties and the antimicrobial activity of five commercial brands of copaiba oil. Acidity and ester index, refractory index, solubility in alcohol, and thin layer chromatography were performed to verify the physicochemical properties of five commercial copaiba oils sold in local pharmacies. Ultra performance liquid chromatography coupled with diode-array detection and electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-DAD/ESI-Q-TOF-MS) was used to investigate diterpene acids while the volatile compounds were analysed by gas chromatography-mass spectrometry (GC-MS). Antibacterial and antifungal activities were also evaluated by agar diffusion technique; and minimal inhibitory concentration and maximal bactericidal concentration were defined for each sample and bacteria. The physical-chemical analysis revealed heterogeneity between all samples analysed. The A1 sample showed characteristics of copaiba oil and was mainly composed by hydrocarbon sesquiterpenes (29.95% β-bisabolene, 25.65% Z-α-bergamotene and 10.27% β-cariophyllene). Among diterpene acids, the UPLCDAD/ESI-Q-TOF-MS data are compatible with presence of copalic and/or kolavenic acid (m/z 305 [M + H]+). Candida albicans was sensitive to almost all samples at high concentration and Saccaromyces. Cerevisiae showed sensitivity to A1 sample at 100 mg/mL. Although variable, all samples showed antibacterial activity. Significant activity was seen for A3 (19.0 ±0 and 15.6 ±0.5 mm), A4 (16.6 ±0.5 and 15.6 ±0 mm), and A5 (17.1 ±0 and 17.1 ±0 mm) on Staphylococcus saprophyticus and S. aureus, respectively. All samples were active against Klebsiella pneumoniae showing ≥15 mm diameter halo inhibition; and only A

  16. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2005-01-01

    In the production of food animals, large amounts of antimicrobial agents are used for therapy and prophylaxis of bacterial infections and in feed to promote growth. There are large variations in the amounts of antimicrobial agents used to produce the same amount of meat among the different Europe...... monitoring the occurrence and development of resistance and consumption of antimicrobial agents are strongly desirable, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine....

  17. Quality of Milk for Cheese Production on Registered Agricultural Holdings in Vojvodina

    Directory of Open Access Journals (Sweden)

    Popović Vranješ Anka

    2017-12-01

    Full Text Available Currently, milk producers in Vojvodina on registered agricultural holdings (RAHs have great experience and knowledge in managing their farms, including primary production, processing and sales. However, for a smaller number of manufacturers, there is still room for organizational and technological improvement of production. Nowadays, goat breeding is a very important part of sustainable production, rural development, and represents a very important part of rural development and employment of people. The course of goat breeding in our country is milk-meat, where milk is usually a priority. For the successful production of cheese, the quality of raw milk plays a critical role. It affects the quality of cheese in terms of a chemical composition, microbiological quality, the presence of chemical residues and organoleptic properties. Cheese is mostly made from cow, goat and sheep milk. The valuable components of milk are proteins and fats. These can also be defined as parameters of utilization, since they indicate how much cheese can be obtained from milk. On average, cow milk contains 3.64% fat, 3.22% protein, and 8.52% non-fat dry matter (NFDM. Higher differences in milk fat content (minimum 3.25%, maximum 4.36% were found in milk from RAHs. Recently, the production of milk with higher fat content has become important, since in Serbian milk there is not enough milk fat, so some processors are obliged to import it in the form of butter and cream. In addition to the chemical composition, the microbiological quality of milk is important to maintain successful cheese production. Regarding our findings, the standard plate count (SPC and the somatic cell count (SCC in samples from most RAHs did not exceed the values specified in Regulation (EC 853/2004. Moreover, goat and sheep milk was in agreement with the technological quality of milk for cheese production, in terms of chemical composition.

  18. Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation.

    Science.gov (United States)

    Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia

    2012-01-01

    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.

  19. Genome-wide identification of antimicrobial intrinsic resistance determinants in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Martin Vestergaard

    2016-12-01

    Full Text Available The emergence of antimicrobial resistance severely threatens our ability to treat bacterial infections. While acquired resistance has received considerable attention, relatively little is known of intrinsic resistance that allows bacteria to naturally withstand antimicrobials. Gene products that confer intrinsic resistance to antimicrobial agents may be explored for alternative antimicrobial therapies, by potentiating the efficacy of existing antimicrobials. In this study, we identified the intrinsic resistome to a broad spectrum of antimicrobials in the human pathogen, Staphylococcus aureus. We screened the Nebraska Transposon Mutant Library of 1920 single-gene inactivations in S. aureus strain JE2, for increased susceptibility to the anti-staphylococcal antimicrobials (ciprofloxacin, oxacillin, linezolid, fosfomycin, daptomycin, mupirocin, vancomycin and gentamicin. 68 mutants were confirmed by E-test to display at least two-fold increased susceptibility to one or more antimicrobial agents. The majority of the identified genes have not previously been associated with antimicrobial susceptibility in S. aureus. For example, inactivation of genes encoding for subunits of the ATP synthase, atpA, atpB, atpG and atpH, reduced the minimum inhibitory concentration (MIC of gentamicin 16-fold. To elucidate the potential of the screen, we examined treatment efficacy in the Galleria mellonella infection model. Gentamicin efficacy was significantly improved, when treating larvae infected with the atpA mutant compared to wild type cells with gentamicin at a clinically relevant concentration. Our results demonstrate that many gene products contribute to the intrinsic antimicrobial resistance of S. aureus. Knowledge of these intrinsic resistance determinants provides alternative targets for compounds that may potentiate the efficacy of existing antimicrobial agents against this important pathogen.

  20. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections

    Directory of Open Access Journals (Sweden)

    Letizia Romeo

    2018-03-01

    Full Text Available The use of plant-derived products as antimicrobial agents has been investigated in depth. Isothiocyanates (ITCs are bioactive products resulting from enzymatic hydrolysis of glucosinolates (GLs, the most abundant secondary metabolites in the botanical order Brassicales. Although the antimicrobial activity of ITCs against foodborne and plant pathogens has been well documented, little is known about their antimicrobial properties against human pathogens. This review collects studies that focus on this topic. Particular focus will be put on ITCs’ antimicrobial properties and their mechanism of action against human pathogens for which the current therapeutic solutions are deficient and therefore of prime importance for public health. Our purpose was the evaluation of the potential use of ITCs to replace or support the common antibiotics. Even though ITCs appear to be effective against the most important human pathogens, including bacteria with resistant phenotypes, the majority of the studies did not show comparable results and thus it is very difficult to compare the antimicrobial activity of the different ITCs. For this reason, a standard method should be used and further studies are needed.

  1. Photocatalytic hydrogen production on SOLECTRO {sup registered} titanium dioxide layers. Development and characterization of an efficient catalyst; Photokatalytische Wasserstoffgewinnung an SOLECTRO {sup registered} -Titandioxidschichten. Entwicklung und Charakterisierung eines geeigneten Katalysators

    Energy Technology Data Exchange (ETDEWEB)

    Saborowski, Sarah

    2010-03-03

    A catalyst for photocatalytic hydrogen production from methanol and water was developed on the basis of SOLECTRO {sup registered} titanium dioxide layers. A test facility was constructed in which several modified catalysts could be tested for this reaction. Detailed characterization of the electronic and optical characteristics of these catalysts made it possible to gain deeper insight into the processes involved in the reaction. (orig.) [German] Auf Basis der SOLECTRO {sup registered} -TiO{sub 2} -Schichten wurde ein Katalysator fuer die photokatalytische Wasserstoffdarstellung aus Methanol und Wasser entwickelt. Der Aufbau einer geeigneten Versuchsanlage ermoeglichte es, verschieden modifizierte Katalysatoren fuer diese Reaktion zu testen. Durch die ausfuehrliche Charakterisierung insbesondere der elektronischen und optischen Eigenschaften dieser Katalysatoren konnten vertiefende Erkenntnisse zu den waehrend der Reaktion ablaufenden Prozessen gewonnen werden. (orig.)

  2. Antimicrobial Resistance of Staphylococcal Strains Isolated from Various Pathological Products

    Directory of Open Access Journals (Sweden)

    Laura-Mihaela SIMON

    2010-12-01

    Full Text Available Background: The optimal choice of antimicrobial therapy is an important problem in hospital environment in which the selection of resistant and virulent strains easy occurs. S. aureus and especially MRSA(methicillin-resistant S. aureus creates difficulties in both treatment and prevention of nosocomial infections. Aim: The purpose of this study is to determine the sensitivity and the resistance to chemotherapy of staphylococci strains isolated from various pathological products. Material and Method: We identified Staphylococccus species after morphological appearance, culture properties, the production of coagulase, hemolisines and the enzyme activity. The susceptibility tests were performed on Mueller-Hinton medium according to CLSI (Clinical and Laboratory Standards Institute. Results: The strains were: MSSA (methicillin-susceptible S. aureus (74%, MRSA (8%, MLS B (macrolides, lincosamides and type B streptogramines resistance (12% and MRSA and MLS B (6%. MRSA strains were more frequently isolated from sputum. MRSA associated with the MLS B strains were more frequently isolated from pus. MLS B strains were more frequently isolated from sputum and throat secretions. All S. aureus strains were susceptible to vancomycin and teicoplanin. Conclusions: All staphylococcal infections require resistance testing before treatment. MLS B shows a high prevalence among strains of S. aureus. The association between MLS B and MRSA remains a major problem in Romania.

  3. Registered indians and tobacco taxation: a culturally-appropriate strategy?

    Science.gov (United States)

    Wardman, A E Dennis; Khan, Nadia A

    2005-01-01

    Taxation of tobacco is a widely-used strategy that prompts smoking cessation among adults and reduces cigarette consumption among continuing smokers. Registered Indian tobacco use prevalence is at least double that of the rest of Canadians and is in part due to the lower cost of tobacco products purchased on reserve by Registered Indians (RIs) as they are tax exempt. Although registered Indian communities have the ability to collect tax on tobacco products and direct the use of these revenues, this strategy is rarely utilized. Tobacco taxation could have substantial health and economic benefits to RI communities, but perhaps is not culturally-appropriate. In order to better support RI communities, governments and other organizations need to examine this policy instrument in the context of RI populations.

  4. Partial budget analysis of prepartum antimicrobial therapy and Escherichia coli J5 vaccination of dairy heifers and their effect on milk production and milk quality parameters

    Directory of Open Access Journals (Sweden)

    Renison T. Vargas

    2016-02-01

    Full Text Available Abstract: This study aimed to determine whether prepartum antimicrobial and/or Escherichia coli J5 vaccination in dairy heifers influence the milk production, milk quality, and estimate their economic benefit. Thus, 33 dairy heifers were enrolled in four groups using a split-splot design. Groups were: (G1 prepartum antimicrobial infusion and vaccination with an E. coli J5 bacterin, (G2 prepartum antimicrobial infusion, (G3 vaccination with an E. coli J5 bacterin, and (G4 control heifers. Composite milk samples for somatic cell count, total bacteria count and milk composition were collected 15 days after calving and every 15 days until the end of the experiment. Bacteriological analysis was carried out at the end of study. The milk production and the incidence of clinical cases of mastitis, as well as the costs associated with them were recorded. The results demonstrate a reduction on clinical mastitis rates by preventive strategies, which implicated in lower volume of discarded milk (0.99, 1.01, 1.04 and 3.98% for G1, G2, G3 and G4, respectively and higher economic benefit. Thus, in well-managed dairy herds the prevention of heifer mastitis by vaccination or antimicrobial therapy can reduce the amount of antimicrobials needed to treat clinical mastitis cases and the days of discarded milk.

  5. Use of Nanostructured ZnO for Production of Antimicrobial Textiles

    International Nuclear Information System (INIS)

    Chit Ko Ko Htwe

    2011-12-01

    An awareness of general sanitation, contact disease transmission, and personal protection has led to the development of antimicrobial textiles. The development of antimicrobial fabrics using nanostructure ZnO has been investigated in this present work. The nanostructure ZnO were produced using a microwave irradiation without any other calcinations and were directly applied on to the fabric using pad-dry-cure method.Synthesized nanostructure ZnO were characterized by XRD and SEM for ZnO purification and particle size examination. The antibacterial activity of the finished fabrics was assessed qualitatively by agar diffusion method. The results show that the finished fabric demonstrated significant antibacterial activity against Staphylococcus aureus and Escherichia coli in qualitative test.

  6. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam.

    Science.gov (United States)

    Nhung, Nguyen Thi; Van, Nguyen Thi Bich; Cuong, Nguyen Van; Duong, Truong Thi Quy; Nhat, Tran Thi; Hang, Tran Thi Thu; Nhi, Nguyen Thi Hong; Kiet, Bach Tuan; Hien, Vo Be; Ngoc, Pham Thi; Campbell, James; Thwaites, Guy; Carrique-Mas, Juan

    2018-02-02

    Excessive antimicrobial usage and deficiencies in hygiene in meat production systems may result in undesirable human health hazards, such as the presence of antimicrobial drug residues and non-typhoidal Salmonella (NTS), including antimicrobial resistant (AMR) NTS. Recently, Vietnam has witnessed the emergence of integrated intensive animal production systems, coexisting with more traditional, locally-sourced wet markets. To date no systematic studies have been carried out to compare health hazards in beef, pork and chicken in different production systems. We aimed to: (1) estimate the prevalence of antimicrobial residues in beef, pork and chicken meat; (2) investigate the prevalence and levels of NTS contamination; and (3) investigate serovar distribution and AMR against critically important antimicrobials by animal species and type of retail (wet market vs. supermarket) in Vietnam. Fresh pork, beef and chicken meat samples (N=357) sourced from wet markets and supermarkets in Ho Chi Minh City (HCMC), Hanoi and Dong Thap were screened for antimicrobial residues by PremiTest, and were further investigated by Charm II. Samples from HCMC (N=113) were cultured using ISO 6579:2002/Amd 1:2007. NTS bacteria were quantified using a minimum probable number (MPN) technique. NTS isolates were assigned to serovar by Multilocus Sequence Typing (MLST), and were investigated for their phenotypic susceptibility against 32 antimicrobials. A total of 26 (7.3%) samples tested positive by PremiTest (9.5% beef, 4.1% pork and 8.4% chicken meat). Sulfonamides, tetracyclines and macrolides were detected by Charm in 3.1%, 2.8% and 2.0% samples, respectively. Overall, meat samples from wet markets had a higher prevalence of residues than those from supermarkets (9.6% vs. 2.6%) (p=0.016). NTS were isolated from 68.4% samples from HCMC. Chicken samples from wet markets had by far the highest NTS counts (median 3.2 logMPN/g). NTS isolates displayed high levels of resistance against quinolones

  7. Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin

    DEFF Research Database (Denmark)

    Hammerum, A. M.; Heuer, Ole Eske

    2009-01-01

    of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth......Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may...... cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use...

  8. Development of antimicrobial optimum glass ionomer

    International Nuclear Information System (INIS)

    Angioletto, E.; Tezza, V.B.; Santos, M.J.; Montedo, O.R.K.; Pich, C.T.; Fiori, M.A.; Angioletto, Ev.

    2010-01-01

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  9. Effect of Antimicrobials on Salmonella Spp. Strains Isolated from Poultry Processing Plants

    Directory of Open Access Journals (Sweden)

    L Mion

    Full Text Available ABSTRACT The routine use of antimicrobials in animal production for the treatment of infections, disease prevention, or as growth promoters is a predisposing factor for the development and dissemination of antimicrobial resistance. In food industries, sanitizers are used for the control of microbial colonization, and their efficacy depends on contact time and on the dilution of the products used. The present study assessed the effect of 12 antimicrobials and four commercial sanitizers on 18 Salmonella spp. strains isolated from poultry processing plants. None of the evaluated antimicrobials was 100% effective against the tested Salmonella spp. strains; however, 94% of the isolates were susceptible to ciprofloxacin, 77% to amoxicillin + clavulanic acid and to ampicillin, and 72% to enrofloxacin, whereas 100% of the isolates were resistant to penicillin G, 16% to tetracycline, and 11% to sulfonamide. The tested Salmonella spp. strains were 100% inhibited by peracetic acid after five minutes of contact, 0.5% by quaternary ammonium after 15 minutes, and 85.7% by chlorhexidine after 15 minutes. The results indicate the importance of testing of efficacy of antimicrobials used in animal production and in public health to monitor their action and the development of resistance.

  10. Biosurfactants production potential of native strains of Bacillus cereus and their antimicrobial, cytotoxic and antioxidant activities.

    Science.gov (United States)

    Basit, Madiha; Rasool, Muhammad Hidayat; Naqvi, Syed Ali Raza; Waseem, Muhammad; Aslam, Bilal

    2018-01-01

    Present study was designed to evaluate the biosurfactant production potential by native strains of Bacillus cereus as well as determine their antimicrobial and antioxidant activities. The strains isolated from garden soil were characterized as B. cereus MMIC 1, MMIC 2 and MMIC 3. Biosurfactants were extracted as grey white precipitates. Optimum conditions for biosurfactant production were 37°C, the 7th day of incubation, 0.5% NaCl, pH 7.0. Moreover, corn steep liquor was the best carbon source. Biuret test, Thin Layer Chromatography (TLC), agar double diffusion and Fourier Transform Infrared Spectroscopy (FTIR) characterized the biosurfactants as cationic lipopeptides. Biosurfactants exhibited significant antibacterial and antifungal activity against S. aureus, E. coli, P. aeruginosa, K. pneumoniae, A. niger and C. albicans at 30 mg/ml. Moreover, they also possessed antiviral activity against NDV at 10 mg/ml. Cytotoxicity assay in BHK-21 cell lines revealed 63% cell survival at 10 mg/ml of biosurfactants and thus considered as safe. They also showed very good antioxidant activity by ferric-reducing activity and DPPH scavenging activity at 2 mg/ml. Consequently, the study offers an insight for the exploration of new bioactive molecules from the soil. It was concluded that lipopeptide biosurfactants produced from native strains of B. cereus may be recommended as safe antimicrobial, emulsifier and antioxidant agent.

  11. Antimicrobial biosurfactants from marine Bacillus circulans: extracellular synthesis and purification.

    Science.gov (United States)

    Mukherjee, S; Das, P; Sivapathasekaran, C; Sen, R

    2009-03-01

    To purify the biosurfactant produced by a marine Bacillus circulans strain and evaluate the improvement in surface and antimicrobial activities. The study of biosurfactant production by B. circulans was carried out in glucose mineral salts (GMS) medium using high performance thin layer chromatography (HPTLC) for quantitative estimation. The biosurfactant production by this strain was found to be growth-associated showing maximum biosurfactant accumulation at 26 h of fermentation. The crude biosurfactants were purified using gel filtration chromatography with Sephadex G-50 matrix. The purification attained by employing this technique was evident from UV-visible spectroscopy and TLC analysis of crude and purified biosurfactants. The purified biosurfactants showed an increase in surface activity and a decrease in critical micelle concentration values. The antimicrobial action of the biosurfactants was also enhanced after purification. The marine B. circulans used in this study produced biosurfactants in a growth-associated manner. High degree of purification could be obtained by using gel filtration chromatography. The purified biosurfactants showed enhanced surface and antimicrobial activities. The antimicrobial biosurfactant produced by B. circulans could be effectively purified using gel filtration and can serve as new potential drugs in antimicrobial chemotherapy.

  12. Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Dhouha Ghribi

    2012-01-01

    Full Text Available During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size. Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.

  13. Comparison of antimicrobial consumption patterns in the Swiss and Danish cattle and swine production (2007-2013)

    DEFF Research Database (Denmark)

    Carmo, Luis Pedro; Nielsen, Liza Rosenbaum; Alban, Lis

    2017-01-01

    antimicrobials are reported at sales level without any information on the consumption by different animal species. This hinders a proper comparison of antimicrobial consumption at the species level between countries. However, it is imperative to improve our understanding on antimicrobial usage patterns...... consumption of different antimicrobial classes were also evident. Sulfonamides/trimethoprim and tetracyclines were consumed in a higher proportion in Switzerland than in Denmark, whereas the relative consumption of penicillins was higher in Denmark. The differences observed in veterinary antimicrobial...... consumption are not solely related to animal demographic characteristics in these two countries. Other factors, such as the level of biosecurity and farming practices, veterinarians and farmers’ education, or governmental/industry programs put in place might also partly explain these variations...

  14. Phylogenetic Analysis Reveals Common Antimicrobial Resistant Campylobacter coli Population in Antimicrobial-Free (ABF) and Commercial Swine Systems

    Science.gov (United States)

    Quintana-Hayashi, Macarena P.; Thakur, Siddhartha

    2012-01-01

    The objective of this study was to compare the population biology of antimicrobial resistant (AR) Campylobacter coli isolated from swine reared in the conventional and antimicrobial-free (ABF) swine production systems at farm, slaughter and environment. A total of 200 C. coli isolates selected from fecal, environmental, and carcass samples of ABF (n = 100) and conventional (n = 100) swine production systems were typed by multilocus sequence typing (MLST). Sequence data from seven housekeeping genes was analyzed for the identification of allelic profiles, sequence types (STs) and clonal complex determination. Phylogenetic trees were generated to establish the relationships between the genotyped isolates. A total of 51 STs were detected including two novel alleles (glnA 424 and glyA 464) and 14 novel STs reported for the first time. The majority of the C. coli isolates belonged to ST-854 (ABF: 31, conventional: 17), and were grouped in clonal complex ST-828 (ABF: 68%, conventional: 66%). The mean genetic diversity (H) for the ABF (0.3963+/−0.0806) and conventional (0.4655+/−0.0714) systems were similar. The index of association () for the ABF ( = 0.1513) and conventional ( = 0.0991) C. coli populations were close to linkage equilibrium, indicative of a freely recombining population. Identical STs were detected between the pigs and their environment both at farm and slaughter. A minimum spanning tree revealed the close clustering of C. coli STs that originated from swine and carcass with those from the environment. In conclusion, our study reveals a genotypic diverse C. coli population that shares a common ancestry in the conventional and ABF swine production systems. This could potentially explain the high prevalence of antimicrobial resistant C. coli in the ABF system in the absence of antimicrobial selection pressure. PMID:22984540

  15. Antimicrobial screening of Cichorium intybus seed extracts

    Directory of Open Access Journals (Sweden)

    Tauseef shaikh

    2016-11-01

    Full Text Available Medicinal plants play an important role in the field of natural products and human health care system. Chemical constituents present in the various parts of the plants can resist to parasitic attack by using several defense mechanisms. One such mechanism is the synthesis of antimicrobial compound. Cichorium intybus is one of the important medicinal plants which belong to Asteraceae family. In the present work, antimicrobial screening of C. intybus seed extract was studied by agar well diffusion assay by using aqueous and organic extracts. The pathogenic microorganisms tested include Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Escherichia coli. All the seed extracts showed antimicrobial activity against tested microorganisms whereas S. aureus was found to be most sensitive against aqueous extract and had the widest zone of inhibition. Ethyl acetate and ethanol extract were found to be significant against P. aeruginosa and S. aureus. The results obtained from antimicrobial screening scientifically support the effectiveness of the medicinal plant.

  16. Relational coordination is associated with productivity in general practice: a survey and register based study

    DEFF Research Database (Denmark)

    Lundstrøm, Sanne Lykke; Edwards, Kasper; Reventlow, Susanne

    2014-01-01

    In this paper we investigate the association between relational coordination among the practice team in general practice and number of consultations performed in a general practice per staff, i.e. a proxy of productivity. We measured relational coordination using the Relational Coordination Survey...... and combined the results with register data. We found that relational coordination was statistically significant associated with number of consultation per staff per year. We later divided consultations in to three types: Face-to-face, Email and phone consultations. We found a statistically significant...... associating between relational coordination and with number of face-to-face consultation per staff per year....

  17. Monitoring of antimicrobial resistance among food animals: Principles and limitations

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2004-01-01

    Large amounts of antimicrobial agents are in the production of food animals used for therapy and prophylactics of bacterial infections and in feed to promote growth. The use of antimicrobial agents causes problems in the therapy of infections through the selection for resistance among bacteria...... pathogenic for animals or humans. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimes to limit the development of resistance......, there are major differences between programmes designed to detect changes in a national population, individual herds or groups of animals. In addition, programmes have to be designed differently according to whether the aim is to determine changes in resistance for all antimicrobial agents or only...

  18. Use practices of antimicrobials and other compounds by shrimp and fish farmers in Northern Vietnam

    DEFF Research Database (Denmark)

    Thi Kim Chi, Tran; Clausen, Jesper H.; Van, Phan Thi

    2017-01-01

    that 20 different antimicrobial products were used for disease prevention and treatment in shrimp and marine fish culture. Banned products used included chloramphenicol, enrofloxacin and malachite green. Cage fish farmers said they purchased antimicrobial tablets readily available at a local pharmacy...

  19. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles

    International Nuclear Information System (INIS)

    Chong, Eui-seok; Hwang, Gi Byoung; Nho, Chu Won; Kwon, Bo Mi; Lee, Jung Eun; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee

    2013-01-01

    Airborne biological particles containing viruses, bacteria, and/or fungi can be toxic and cause infections and allergy symptoms. Recently, natural materials such as tea tree oil and Sophora flavescens have shown promising antimicrobial activity when applied as air filter media. Although many of these studies demonstrated excellent antimicrobial efficacy, only a few of them considered external environmental effects such as the surrounding humidity, temperature, and natural degradation of chemicals, all of which can affect the antimicrobial performance of these natural materials. In this study, we investigated the antimicrobial durability of air filters containing airborne nanoparticles from S. flavescens for 5 months. Antimicrobial tests and quantitative chemical analyses were performed every 30 days. Morphological changes in the nanoparticles were also evaluated by scanning electron microscopy. The major antimicrobial compounds remained stable and active for ∼ 90 days at room temperature. After about 90 days, the quantities of major antimicrobial compounds decreased noticeably with a consequent decrease in antimicrobial activity. These results are promising for the implementation of new technologies using natural antimicrobial products and provide useful information regarding the average life expectancy of antimicrobial filters using nanoparticles of S. flavescens. - Graphical abstract: Variations in (a) the concentrations of major antimicrobial chemical compounds on S. flavescens nanoparticle-coated filters: kurarinone, kuraridin, and sophoraflavanone-G and (b) the inactivation rate of antimicrobial filters as a function of time.

  20. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Eui-seok; Hwang, Gi Byoung [Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Nho, Chu Won [Functional Food Center, Korea Institute of Science and Technology (KIST Gangneung Institute), Gangneung, Gangwon-do 210-340 (Korea, Republic of); Kwon, Bo Mi [Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Jung Eun [Biosafety Research Team, National Institute of Environmental Research, Kyungseo-Dong, Seo-Gu, Incheon 404-170 (Korea, Republic of); Seo, SungChul [Department of Environmental Health, College of Medicine, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Bae, Gwi-Nam, E-mail: gnbae@kist.re.kr [Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Jung, Jae Hee, E-mail: jaehee@kist.re.kr [Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2013-02-01

    Airborne biological particles containing viruses, bacteria, and/or fungi can be toxic and cause infections and allergy symptoms. Recently, natural materials such as tea tree oil and Sophora flavescens have shown promising antimicrobial activity when applied as air filter media. Although many of these studies demonstrated excellent antimicrobial efficacy, only a few of them considered external environmental effects such as the surrounding humidity, temperature, and natural degradation of chemicals, all of which can affect the antimicrobial performance of these natural materials. In this study, we investigated the antimicrobial durability of air filters containing airborne nanoparticles from S. flavescens for 5 months. Antimicrobial tests and quantitative chemical analyses were performed every 30 days. Morphological changes in the nanoparticles were also evaluated by scanning electron microscopy. The major antimicrobial compounds remained stable and active for ∼ 90 days at room temperature. After about 90 days, the quantities of major antimicrobial compounds decreased noticeably with a consequent decrease in antimicrobial activity. These results are promising for the implementation of new technologies using natural antimicrobial products and provide useful information regarding the average life expectancy of antimicrobial filters using nanoparticles of S. flavescens. - Graphical abstract: Variations in (a) the concentrations of major antimicrobial chemical compounds on S. flavescens nanoparticle-coated filters: kurarinone, kuraridin, and sophoraflavanone-G and (b) the inactivation rate of antimicrobial filters as a function of time.

  1. Use and misuse of antimicrobial drugs in poultry and livestock: Mechanisms of antimicrobial resistance

    Science.gov (United States)

    Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal, antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among fo...

  2. Antimicrobial stewardship in a Gastroenterology Department: Impact on antimicrobial consumption, antimicrobial resistance and clinical outcome.

    Science.gov (United States)

    Bedini, Andrea; De Maria, Nicola; Del Buono, Mariagrazia; Bianchini, Marcello; Mancini, Mauro; Binda, Cecilia; Brasacchio, Andrea; Orlando, Gabriella; Franceschini, Erica; Meschiari, Marianna; Sartini, Alessandro; Zona, Stefano; Paioli, Serena; Villa, Erica; Gyssens, Inge C; Mussini, Cristina

    2016-10-01

    A major cause of the increase in antimicrobial resistance is the inappropriate use of antimicrobials. To evaluate the impact on antimicrobial consumption and clinical outcome of an antimicrobial stewardship program in an Italian Gastroenterology Department. Between October 2014 and September 2015 (period B), a specialist in infectious diseases (ID) controlled all antimicrobial prescriptions and decided about the therapy in agreement with gastroenterologists. The defined daily doses of antimicrobials (DDDs), incidence of MDR-infections, mean length of stay and overall in-hospital mortality rate were compared with those of the same period in the previous 12-months (period A). During period B, the ID specialist performed 304 consultations: antimicrobials were continued in 44.4% of the cases, discontinued in 13.8%, not recommended in 12.1%, de-escalated 9.9%, escalated in 7.9%, and started in 4.0%. Comparing the 2 periods, we observed a decreased of antibiotics consumption (from 109.81 to 78.45 DDDs/100 patient-days, p=0.0005), antifungals (from 41.28 to 24.75 DDDs/100pd, p=0.0004), carbapenems (from 15.99 to 6.80 DDDsx100pd, p=0.0032), quinolones (from 35.79 to 17.82 DDDsx100pd, p=0.0079). No differences were observed in incidence of MDR-infections, length of hospital stay (LOS), and mortality rate. ASP program had a positive impact on reducing the consumption of antimicrobials, without an increase in LOS and mortality. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... of Animation of Antimicrobial Resistance More in Antimicrobial ... Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated ...

  4. Antimicrobial activity of yeasts against some pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Gamal Younis

    2017-08-01

    Full Text Available Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR for detection of khs (kievitone hydratase and pelA (pectate degrading enzyme genes. Results: The recovery rate of yeasts from sausage was 20% (2/10 followed by kareish cheese, processed cheese, and butter 10% (1/10 each as well as raw milk 9% (9/100, and fruit yoghurt 30% (6/20. Different yeast species were recovered, namely, Candida kefyr (5 isolates, Saccharomyces cerevisiae (4 isolates, Candida intermedia (3 isolates, Candida tropicalis (2 isolates, Candida lusitaniae (2 isolates, and Candida krusei (1 isolate. khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.

  5. Antimicrobial activity of fluoride and its in vivo importance: identification of research questions.

    Science.gov (United States)

    Van Loveren, C

    2001-01-01

    This manuscript discusses the antimicrobial activity of fluoride and its in vivo importance in order to identify research questions. There is a lot of information on mechanisms by which fluoride may interfere with bacterial metabolism and dental plaque acidogenicity. The antimicrobial activity of fluoride products is enhanced when fluoride is associated with antimicrobial cations like Sn(2+) and amine. It is not clear whether the antimicrobial mechanisms of fluoride are operating in vivo or even to what extent antimicrobial activity can contribute to caries prevention. This latter question may be the most important one in research. Copyright 2001 S. Karger AG, Basel.

  6. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry.

    Science.gov (United States)

    Joy, Stacey R; Bartelt-Hunt, Shannon L; Snow, Daniel D; Gilley, John E; Woodbury, Bryan L; Parker, David B; Marx, David B; Li, Xu

    2013-01-01

    Due to the use of antimicrobials in livestock production, residual antimicrobials and antimicrobial resistance genes (ARGs) could enter the environment following the land application of animal wastes and could further contaminate surface and groundwater. The objective of this study was to determine the effect of various manure land application methods on the fate and transport of antimicrobials and ARGs in soil and runoff following land application of swine manure slurry. Swine manure slurries were obtained from facilities housing pigs that were fed chlortetracyline, tylosin or bacitracin and were land applied via broadcast, incorporation, and injection methods. Three rainfall simulation tests were then performed on amended and control plots. Results show that land application methods had no statistically significant effect on the aqueous concentrations of antimicrobials in runoff. However, among the three application methods tested broadcast resulted in the highest total mass loading of antimicrobials in runoff from the three rainfall simulation tests. The aqueous concentrations of chlortetracyline and tylosin in runoff decreased in consecutive rainfall events, although the trend was only statistically significant for tylosin. For ARGs, broadcast resulted in significantly higher erm genes in runoff than did incorporation and injection methods. In soil, the effects of land application methods on the fate of antimicrobials in top soil were compound specific. No clear trend was observed in the ARG levels in soil, likely because different host cells may respond differently to the soil environments created by various land application methods.

  7. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antimicrobial efficacy of well-known commercial antibiotics.

  8. Prediction, production and characterization of post-translationally modified antimicrobial peptides

    NARCIS (Netherlands)

    van Heel, Auke Johan

    2016-01-01

    Pathogenic bacteria are rapidly becoming resistant to the currently used antibiotics therefore we need novel antibiotics, preferably with new mechanisms of action. One potential source are the so called antimicrobial peptides that are produced by many different organisms. To gain access to these

  9. EPA-Registered Repellents for Mosquitoes Transmitting Emerging Viral Disease.

    Science.gov (United States)

    Patel, Radha V; Shaeer, Kristy M; Patel, Pooja; Garmaza, Aleksey; Wiangkham, Kornwalee; Franks, Rachel B; Pane, Olivia; Carris, Nicholas W

    2016-12-01

    In many parts of the United States, mosquitoes were previously nuisance pests. However, they now represent a potential threat in the spread of viral diseases. The Aedes aegypti, Aedes albopictus, and Culex species mosquitoes are endemic to the United States and together may transmit a variety of viral diseases of growing concern, including West Nile virus, chikungunya, dengue fever, and Zika virus. The Centers for Disease Control and Prevention and the Environmental Protection Agency (EPA) recommend N,N-diethyl-meta-toluamide (DEET) as a first-line mosquito repellent, but for patients refusing to use DEET or other conventional repellents, guidance is limited to any EPA-registered product. Therefore, we conducted a systematic review of the literature to identify which EPA-registered personal mosquito repellent provides the best protection from A. aegypti, A. albopictus, and Culex spp. mosquitoes. We abstracted data from 62 published reports of EPA-registered mosquito repellents. The conventional repellent picaridin has the strongest data to support its use as a second-line agent, while IR3535 and oil of lemon eucalyptus are reasonably effective natural products. Citronella, catnip, and 2-undecanone offer limited protection or have limited data. These results can be used by pharmacists and other health care professionals to advise patients on the selection of an EPA-registered mosquito repellent. Regardless of the repellent chosen, it is vital for patients to follow all instructions/precautions in the product labeling to ensure safe and effective use. © 2016 Pharmacotherapy Publications, Inc.

  10. Risk Factors for Antimicrobial Resistance in Escherichia coli in Pigs Receiving Oral Antimicrobial Treatment: A Systematic Review.

    Science.gov (United States)

    Burow, Elke; Käsbohrer, Annemarie

    2017-03-01

    The aim of this literature review was to identify risk factors in addition to antimicrobial treatment for antimicrobial resistance (AMR) occurrence in commensal Escherichia coli in pigs. A variety of studies were searched in 2014 and 2015. Studies identified as potentially relevant were assessed against eligibility criteria such as observation or experiment (no review), presentation of risk factors in addition to (single dosage) antimicrobial use, risk factors for but not resulting from AMR, and the same antimicrobial used and tested. Thirteen articles (nine on observational, four on experimental studies) were finally selected as relevant. It was reported that space allowance, production size/stage, cleanliness, entry of animals and humans into herds, dosage/frequency/route of administration, time span between treatment and sampling date, herd size, distance to another farm, coldness, and season had an impact on AMR occurrence. Associations were shown by one to four studies per factor and differed in magnitude, direction, and level of significance. The risk of bias was unclear in nearly half of the information of observational studies and in most of the information from experimental studies. Further research on the effects of specific management practices is needed to develop well-founded management advice.

  11. Comparative analysis of copper and zinc based agrichemical biocide products: materials characteristics, phytotoxicity and in vitro antimicrobial efficacy

    Directory of Open Access Journals (Sweden)

    Harikishan Kannan

    2016-07-01

    Full Text Available In the past few decades, copper based biocides have been extensively used in food crop protection including citrus, small fruits and in all garden vegetable production facilities. Continuous and rampant use of copper based biocides over decades has led to accumulation of this metal in the soil and the surrounding ecosystem. Toxic levels of copper and its derivatives in both the soil and in the run off pose serious environmental and public health concerns. Alternatives to copper are in great need for the agriculture industry to produce food crops with minimal environmental risks. A combination of copper and zinc metal containing biocide such as Nordox 30/30 or an improved version of zinc-only containing biocide would be a good alternative to copper-only products if the efficacy can be maintained. As of yet there is no published literature on the comparative study of the materials characteristics and phyto-compatibility properties of copper and zinc-based commercial products that would allow us to evaluate the advantages and disadvantages of both versions of pesticides. In this report, we compared copper hydroxide and zinc oxide based commercially available biocides along with suitable control materials to assess their efficacy as biocides. We present a detailed material characterization of the biocides including morphological studies involving electron microscopy, molecular structure studies involving X-ray diffraction, phytotoxicity studies in model plant (tomato and antimicrobial studies involving surrogate plant pathogens (Xanthomonas alfalfae subsp. citrumelonis, Pseudomonas syringae pv. syringae and Clavibacter michiganensis subsp. michiganensis. Zinc based compounds were found to possess comparable to superior antimicrobial properties while exhibiting significantly lower phytotoxicity when compared to copper based products thus suggesting their potential as an alternative.

  12. Application of nanotechnology in antimicrobial finishing of biomedical textiles

    International Nuclear Information System (INIS)

    Zille, Andrea; Almeida, Luís; Amorim, Teresa; Carneiro, Noémia; Esteves, Maria Fátima; Souto, António Pedro; Silva, Carla J

    2014-01-01

    In recent years, the antimicrobial nanofinishing of biomedical textiles has become a very active, high-growth research field, assuming great importance among all available material surface modifications in the textile industry. This review offers the opportunity to update and critically discuss the latest advances and applications in this field. The survey suggests an emerging new paradigm in the production and distribution of nanoparticles for biomedical textile applications based on non-toxic renewable biopolymers such as chitosan, alginate and starch. Moreover, a relationship among metal and metal oxide nanoparticle (NP) size, its concentration on the fabric, and the antimicrobial activity exists, allowing the optimization of antimicrobial functionality. (topical review)

  13. Application of nanotechnology in antimicrobial finishing of biomedical textiles

    Science.gov (United States)

    Zille, Andrea; Almeida, Luís; Amorim, Teresa; Carneiro, Noémia; Fátima Esteves, Maria; Silva, Carla J.; Souto, António Pedro

    2014-09-01

    In recent years, the antimicrobial nanofinishing of biomedical textiles has become a very active, high-growth research field, assuming great importance among all available material surface modifications in the textile industry. This review offers the opportunity to update and critically discuss the latest advances and applications in this field. The survey suggests an emerging new paradigm in the production and distribution of nanoparticles for biomedical textile applications based on non-toxic renewable biopolymers such as chitosan, alginate and starch. Moreover, a relationship among metal and metal oxide nanoparticle (NP) size, its concentration on the fabric, and the antimicrobial activity exists, allowing the optimization of antimicrobial functionality.

  14. In Vitro Antimicrobial Potential of the Lichen Parmotrema sp. Extracts against Various Pathogens

    OpenAIRE

    Chauhan, Ritika; Abraham, Jayanthi

    2013-01-01

      Objective(s):   The ongoing increasing antibiotic resistance is one of the biggest challenges faced by global public health. The perennial need for new antimicrobials against a background of increasing antibiotic resistance in pathogenic and opportunistic microorganisms obliges the scientific community to constantly develop new drugs and antimicrobial agents. Lichens are known prolific sources of natural antimicrobial drugs and biologically active natural products. This study ...

  15. Antimicrobial activity and phytochemical characterization of Carya illinoensis.

    Science.gov (United States)

    Bottari, Nathieli Bianchin; Lopes, Leonardo Quintana Soares; Pizzuti, Kauana; Filippi Dos Santos Alves, Camilla; Corrêa, Marcos Saldanha; Bolzan, Leandro Perger; Zago, Adriana; de Almeida Vaucher, Rodrigo; Boligon, Aline Augusti; Giongo, Janice Luehring; Baldissera, Matheus Dellaméa; Santos, Roberto Christ Vianna

    2017-03-01

    Carya illinoensis is a widespread species, belonging to the Juglandaceae family, commonly known as Pecan. Popularly, the leaves have been used in the treatment of smoking as a hypoglycemic, cleansing, astringent, keratolytic, antioxidant, and antimicrobial agent. The following research aimed to identify for the first time the phytochemical compounds present in the leaves of C. illinoensis and carry out the determination of antimicrobial activity of aqueous and ethanolic extracts. The antimicrobial activity was tested against 20 microorganisms by determining the minimum inhibitory concentration (MIC). Phenolic acids (gallic acid and ellagic acid), flavonoids (rutin), and tannins (catechins and epicatechins) were identified by HPLC-DAD and may be partially responsible for the antimicrobial activity against Gram-positive, Gram-negative, and yeast. The results showed MIC values between 25 mg/mL and 0.78 mg/mL. The extracts were also able to inhibit the production of germ tubes by Candida albicans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Antimicrobial packaging with natural compunds - a review

    Directory of Open Access Journals (Sweden)

    Renata Dobrucka

    2016-12-01

    Full Text Available Background:  Packaging problems are an integral part of logistics and the implementation of packaging significantly affects the effectiveness of logistics processes, as a factor which increases the safety and the quality of products being transported. Active packaging is an area of technology needed to meet the requirements of the contemporary consumer. Active packaging creates additional opportunities in systems for packing goods, as well as offering a solution in which the packaging, the product and surroundings interact. Furthermore, active packaging allows packaging to interact with food and the environment and play a dynamic role in food preservation. The main role of antimicrobial packaging is to inhibit the growth of microorganisms that reduce the quality of the packaged product. Methods: The application of natural antimicrobial agents appears to be safe for food products. Also, these compounds have potential applications as a natural preservative in the food packaging industry. This study presents some antibacterial agents, namely chitosan, nisin and pectins. Results and conclusion: Natural substances used in active packaging can eliminate the danger of chemical substances migrating to food.

  17. Factors associated with the inappropriate use of antimicrobials.

    Science.gov (United States)

    McIntosh, W; Dean, W

    2015-04-01

    Antimicrobial resistance continues to grow and antimicrobial use in food animal production and to a lesser extent in human patients is under fire. Much of the criticism has to do with the misapplication of these drugs in both settings. Research indicates that patients, food animal producers, physicians and veterinarians have all played a part in misusing antimicrobials, often because of mistaken beliefs. This paper reviews this research and introduces a theoretical perspective, the Theory of Planned Behavior (TPB), which broadens our understanding of the motivations for misuse. In particular this approach shows that individuals making decisions about antimicrobial use take into account social pressures from and a sense of obligation to significant others in their social networks. Our own work summarized in this paper indicates that both feedlot veterinarians and feedlot managers' antimicrobial decisions are influenced by both expectations from and obligations to a variety of actors in the feedlot network (other veterinarians, feedlot clients, consumers, pharmaceutical companies, and regulatory bodies). Generally across 4 circumstances of antimicrobial use (for acutely sick cattle, chronically-sick cattle, at-risk cattle, high-risk cattle), it is largely the perception that peers and clients expect feedlot veterinarians to use antimicrobials and feedlot veterinarians sense of obligation to these groups that have the most influence on their decisions to recommend antimicrobials. Based on these findings, the question of engaging in changing the choices made by those working with food animals must start with those who influence the decision to proscribe or use antimicrobials. As our data come from the United States and may be unique relative to other countries, these efforts should begin by ascertaining who influences these decisions. The next step is to then change the beliefs of these significant others. © 2014 Blackwell Verlag GmbH.

  18. Effect of in-feed Chlortetracycline prophylaxis in beef cattle on levels of 10 antimicrobial resistance genes

    Science.gov (United States)

    Background: The majority of antimicrobial products used in food-animal production are administered in-feed to control or prevent disease. These uses are controversial since it has been argued that they have contributed to increased occurrence of antimicrobial resistance (AMR). Beef cattle are suscep...

  19. Antimicrobial resistance in Salmonella enterica subsp. enterica serovar typhimurium from humans and production animals

    DEFF Research Database (Denmark)

    Seyfarth, Anne Mette; Wegener, Henrik Caspar; FrimodtMoller, N.

    1997-01-01

    : Poultry strains were usually resistant only to ampicillin, white pig and cattle isolates were most often resistant to sulphonamide, tetracycline and streptomycin. Typing of the strains showed that some animal strains and human strains were indistinguishable. In conclusion, while antimicrobial resistance......We have studied the frequency of antimicrobial resistance and epidemiological relatedness among 473 isolates of Salmonella enterica subsp, enterica serovar typhimurium (S. typhimurium) from human and veterinary sources. The human strains were clinical isolates from patients with diarrhoea sent...... to the State Serum Institute during August 1993 (228 isolates). The animal strains were isolated from clinical or subclinical infections in cattle (48 isolates), pigs (99 isolates) or poultry (98 isolates), all from 1993. All strains were tested against 22 different antimicrobial agents used in both human...

  20. Utilization of Low-Cost Ellagitannins for Ellagic Acid Production and Antimicrobial Phenolics Enhancing By Aspergillus awamorii and Aspergillus oryzae

    International Nuclear Information System (INIS)

    El-Bialy, H.A.; Abd EL-Aziz, A.B.

    2009-01-01

    Three fungal strains, Aspergillus awamorii A 9 , Aspergillus awamorii A 2 3 and Aspergillus oryzae O 2 , were selected out of ten fungal strains for their activeness in converting pomegranate peel ellagitannins into ellagic acid. When pomegranate peel was fermented by Aspergillus awamorii A 9 , the highest yields of ellagic acid (7.93±0.23 mg/g solid substrate) and total soluble phenolics (14.61±0.36 mg/g solid substrate) were produced at 5 and 10 days of incubation, respectively. Also, blue berry pomace, red grape pomace, strawberry pomace were evaluated as low cost ellagitannin sources for ellagic acid and soluble phenolics production. The antimicrobial activity of soluble phenolics extracted from fermented pomegranate peel and strawberry pomace was tested against two food-borne pathogens (Escherichia coli and Salmonella typhimurium). This study also revealed that 3 kGy enhanced the activity of antimicrobial phenolics

  1. NATURAL ANTIMICROBIAL AGENT USE IN THE PRESERVATION OF FRUITS AND VEGETABLES

    Directory of Open Access Journals (Sweden)

    Elvia Nereyda Rodríguez Sauceda

    2011-01-01

    Full Text Available Today has been a need to find alternatives of conservation, because it has been associated with consumption of poison chemical preservatives. The demand for minimally processed fresh products is increasing, and interest in natural antimicrobial agents (derived from plants, so now looking for the combination of two or more factors that interact additively or synergistically controlling population microbial, allowing it to fresh produce similar products with less additives, it should be noted that the rate of microbial spoilage depends not only on microorganisms but also the chemical combination of product and type of initial microbial load. That is why the main aim of food processing is to provide comfort to humans through a safe, nutritionally adequate and meet the expectations of taste, aroma and appearance, so the use of natural food additives involves the isolation, purification, stabilization and incorporation of these compounds to food antimicrobial purposes, without adversely affecting the sensory characteristics. In general, every time we discover more plants or parts thereof which contain natural antimicrobials, such as including phenolic compounds from bark, stems, leaves, flowers, organic acids present in fruits and phytoalexins produced in plants, so as will not only safer, but better food quality and type of antimicrobials that are regarded as potentially safer sources.

  2. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants.

    Science.gov (United States)

    Silva, N C C; Barbosa, L; Seito, L N; Fernandes, A

    2012-01-01

    We aimed to establish a phytochemical analysis of the crude extracts and performed GC-MS of the essential oils (EOs) of Eugenia uniflora L. (Myrtaceae) and Asteraceae species Baccharis dracunculifolia DC, Matricaria chamomilla L. and Vernonia polyanthes Less, as well as determining their antimicrobial activity. Establishment of the minimal inhibitory concentrations of the crude extracts and EOs against 16 Staphylococcus aureus and 16 Escherichia coli strains from human specimens was carried out using the dilution method in Mueller-Hinton agar. Some phenolic compounds with antimicrobial properties were established, and all EOs had a higher antimicrobial activity than the extracts. Matricaria chamomilla extract and E. uniflora EO were efficient against S. aureus strains, while E. uniflora and V. polyanthes extracts and V. polyanthes EO showed the best antimicrobial activity against E. coli strains. Staphylococcus aureus strains were more susceptible to the tested plant products than E. coli, but all natural products promoted antimicrobial growth inhibition.

  3. Antimicrobial Susceptibility and Biofilm Production by Salmonella sp. Strains Isolated from Frozen Poultry Carcasses

    Directory of Open Access Journals (Sweden)

    MJ Sereno

    Full Text Available ABSTRACT The objectives of this study were to evaluate the antimicrobial resistance and the biofilm-producing ability of Salmonella sp. strains isolated from frozen poultry carcasses. Antimicrobial susceptibility was tested by the disk-diffusion method. Biofilm-producing ability was determined in 96-well polystyrene microplates stained with crystal violet at 1%. Out of the 22 strains tested, all were multiresistant, that is, resistant to more than three antimicrobial classes, and 72.7% were able to form biofilms. The highest resistance rates obtained were against sulfonamides, tetracycline, and quinolones. On the other hand, 100% of the strains were sensitive to chloramphenicol. According to the rate of biofilm formation, 3 (13.6% and 13 (59.1% strains were classified as moderate and weak biofilm-producers, respectively, and 27.3% did not form biofilms. Biofilms increase the tolerance of microorganisms to stress, reducing their sensitivity to disinfectants and antimicrobials; favor equipment corrosion; and act as substrates for the adhesion of bacteria with lower biofilm-producing capacity. The results of the present study stress the importance of cleaning procedures in food processing plants and highlight the public health risks related to the emergence of multiresistant strains.

  4. The effect of heat treatment on the antimicrobial properties of honey

    Directory of Open Access Journals (Sweden)

    Cuilan eChen

    2012-07-01

    Full Text Available There is increasing interest in the antimicrobial properties of honey. In most honey samples, antimicrobial activity is due to the generation of hydrogen peroxide (H2O2 by the bee-derived enzyme glucose oxidase, however the amount of H2O2 produced can vary greatly among samples. In addition, honey is a complex product, and other components may contribute to or modulate this activity, which may be further affected by processing procedures used in large-scale commercial production. In this study we examined honey derived from three native Australian floral sources that had previously been associated with H2O2-dependent activity: spotted gum (Eucalyptus maculata, red stringybark (Eucalyptus macrorrhyncha and yellowbox (Eucalyptus melliodora. Antimicrobial activity was measured using standardized assays against the bacterial pathogen Staphylococcus aureus and the fungal pathogen Candida albicans. Antibacterial activity was only seen in four of the six red stringybark samples and ranged from 12-21.1% phenol equivalence. No antibacterial activity was detected in the spotted gum or yellowbox samples. Antifungal activity ranged from MIC values of 19-38.3 % (w/v, and although all samples were significantly more active than an osmotically equivalent sugar solution, most had relatively low activity. All honey samples were provided unprocessed and underwent standard heating and filtration procedures (45˚C for 8 hours followed by filtration with a 100 µm filter, allowing the effects of commercial heating and filtration methods on antimicrobial activity and H2O2 levels to be assessed. Average antibacterial and antifungal activities decreased, but while processing was usually detrimental, occasionally the reverse was seen and antimicrobial activity increased. Significant activity was eliminated from all samples by the addition of catalase, indicating that H2O2 was chiefly responsible for their antimicrobial action, and H2O2 production was measured in the

  5. SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ...

    African Journals Online (AJOL)

    Preferred Customer

    The synthesized chelating agent and metal(II) complexes were screened for ... Coordination compounds, Antimicrobial study ... The biological activity of Zn(II), Cu(II), Co(II) and Ni(II) with imidazole derivative (DIPO) ... product in 86% yield. .... [Ni(DIPO)Br2]. 2.0. 2.5. 2.5. 3.0. 3.0. 3.0. 9. Maxipime. 10.6. D iam eter o f in h ib itio.

  6. Antimicrobial peptides of buffalo and their role in host defenses.

    Science.gov (United States)

    Chanu, Khangembam Victoria; Thakuria, Dimpal; Kumar, Satish

    2018-02-01

    Antimicrobial peptides (AMPs) are highly conserved components of the innate immune system found among all classes of life. Buffalo ( Bubalus bubalis ), an important livestock for milk and meat production, is known to have a better resistance to many diseases as compared to cattle. They are found to express many AMPs such as defensins, cathelicidins, and hepcidin which play an important role in neutralizing the invading pathogens. Buffalo AMPs exhibit broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria. Similar to its natural form, synthetic analogs of buffalo AMPs are also antimicrobial against bacteria and even fungus making them a good target for the development of therapeutic antimicrobials. In addition to its antimicrobial effect, AMPs have been demonstrated to have a number of immunomodulatory functions, and their genes are responsive to infections. Further, induction of their gene expression by external factors may help in preventing infectious diseases. This review briefly discusses the AMPs of buffalo identified to date and their possible role in innate immunity.

  7. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2015-01-01

    Full Text Available Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.

  8. Human Health Consequences of Use of Antimicrobial Agents in Aquaculture

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Kruse, H.; Grave, K.

    2009-01-01

    industry in many regions of the world and the widespread, intensive, and often unregulated use of antimicrobial agents in this area of animal production, efforts are needed to prevent development and spread of antimicrobial resistance in aquaculture to reduce the risk to human health....... in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture...... gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used...

  9. Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens.

    Science.gov (United States)

    Tanhaiean, Abass; Azghandi, Marjan; Razmyar, Jamshid; Mohammadi, Elyas; Sekhavati, Mohammad Hadi

    2018-06-08

    Over the last decades, poultry industry faced to the rapid emergence of multidrug-resistant bacteria as a global concern. Antimicrobial peptide (AMPs) known as potential antibiotic alternative and were considered as a new antimicrobial agent. Current methods of production and purification of AMPs have several limitations such as: costly, time-consuming and killing the producing host cells in recombinant form. In the present study, a chimeric peptide derived from camel lactoferrin was produced in Escherichia coli periplasmic space using a pET-based expression system and its antibacterial activity was determined on some avian pathogens in vitro. A carboxy-terminal polyhistidine tag was used for purification by Ni 2+ affinity chromatography with an average yield of 0.42 g/L. The His-tagged chimeric peptide showed different range of antimicrobial activity against clinically isolated avian pathogens with low chicken blood hemolysis activity and high serum stability. Overall, the results of this investigation showed the recombinant chimeric peptide was successfully expressed in pET-based expression system and could be considered as a proper alternative for some currently used antibiotics in poultry industry and drugs veterinary medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Antimicrobial use surveillance in broiler chicken flocks in Canada, 2013-2015.

    Science.gov (United States)

    Agunos, Agnes; Léger, David F; Carson, Carolee A; Gow, Sheryl P; Bosman, Angelina; Irwin, Rebecca J; Reid-Smith, Richard J

    2017-01-01

    There is a paucity of data on the reason for and the quantity of antimicrobials used in broiler chickens in Canada. To address this, the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) implemented surveillance of antimicrobial use (AMU) and antimicrobial resistance (AMR) in broiler chicken flocks in 2013. Shortly after this (2014), the poultry industry banned the preventive use of ceftiofur in broiler chickens. The objectives of this analysis were to describe antimicrobial use (AMU) in Canadian broiler chickens between 2013 and 2015 (n = 378 flocks), compare these results to other animal species in Canada, to highlight the utility of farm surveillance data to evaluate the impact of a policy change, and to explore how different antimicrobial use metrics might affect data interpretation and communication. The surveillance data indicated that the poultry industry policy resulted in lower antimicrobial use and resistance, and they successfully captured information on when, where, why, and how much antimicrobials were being used. The majority of antimicrobials were administered via the feed (95%). The relative frequency of antimicrobial classes used in broiler chickens differed from those used in swine or in food animal production in general. Coccidiostats were the most frequently used antimicrobial classes (53% of total kg). Excluding coccidiostats, the top three most frequently used antimicrobial classes were bacitracin (53% of flocks), virginiamycin (25%) and avilamycin (21%), mainly used for the prevention of necrotic enteritis. Depending on the AMU metric utilized, the relative rankings of the top antimicrobials changed; hence the choice of the AMU metric is an important consideration for any AMU reporting. When using milligrams/Population Correction Unit (mg/PCU) the top three antimicrobial classes used were bacitracins (76 mg/PCU), trimethoprim-sulfonamides (24 mg/PCU), and penicillins (15 mg/PCU), whereas when using a number of

  11. Antimicrobial use surveillance in broiler chicken flocks in Canada, 2013-2015.

    Directory of Open Access Journals (Sweden)

    Agnes Agunos

    Full Text Available There is a paucity of data on the reason for and the quantity of antimicrobials used in broiler chickens in Canada. To address this, the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS implemented surveillance of antimicrobial use (AMU and antimicrobial resistance (AMR in broiler chicken flocks in 2013. Shortly after this (2014, the poultry industry banned the preventive use of ceftiofur in broiler chickens. The objectives of this analysis were to describe antimicrobial use (AMU in Canadian broiler chickens between 2013 and 2015 (n = 378 flocks, compare these results to other animal species in Canada, to highlight the utility of farm surveillance data to evaluate the impact of a policy change, and to explore how different antimicrobial use metrics might affect data interpretation and communication. The surveillance data indicated that the poultry industry policy resulted in lower antimicrobial use and resistance, and they successfully captured information on when, where, why, and how much antimicrobials were being used. The majority of antimicrobials were administered via the feed (95%. The relative frequency of antimicrobial classes used in broiler chickens differed from those used in swine or in food animal production in general. Coccidiostats were the most frequently used antimicrobial classes (53% of total kg. Excluding coccidiostats, the top three most frequently used antimicrobial classes were bacitracin (53% of flocks, virginiamycin (25% and avilamycin (21%, mainly used for the prevention of necrotic enteritis. Depending on the AMU metric utilized, the relative rankings of the top antimicrobials changed; hence the choice of the AMU metric is an important consideration for any AMU reporting. When using milligrams/Population Correction Unit (mg/PCU the top three antimicrobial classes used were bacitracins (76 mg/PCU, trimethoprim-sulfonamides (24 mg/PCU, and penicillins (15 mg/PCU, whereas when using a number

  12. Comparing antimicrobial exposure based on sales data

    DEFF Research Database (Denmark)

    Bondt, Nico; Jensen, Vibeke Frøkjær; Puister-Jansen, Linda F.

    2013-01-01

    with information about estimated average dosages, to make model calculations of the average number of treatment days per average animal per year, at first based on the assumption that the treatment incidence is the same in all species and production types. Secondly, the exposure in respectively animals for meat......This paper explores the possibilities of making meaningful comparisons of the veterinary use of antimicrobial agents among countries, based on national total sales data. Veterinary antimicrobial sales data on country level and animal census data in both Denmark and the Netherlands were combined...... production and dairy and other cattle (excluding veal and young beef) was estimated, assuming zero use in the dairy and other cattle, and thirdly by assuming respectively 100% oral and 100% parenteral administration. Subsequently, the outcomes of these model calculations were compared with treatment...

  13. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    Science.gov (United States)

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    OpenAIRE

    Nurit Beyth; Yael Houri-Haddad; Avi Domb; Wahid Khan; Ronen Hazan

    2015-01-01

    Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The ...

  15. Effect of mixed antimicrobial agents and flavors in active packaging films.

    Science.gov (United States)

    Gutiérrez, Laura; Escudero, Ana; Batlle, Ramón; Nerín, Cristina

    2009-09-23

    Active packaging is an emerging food technology to improve the quality and safety of food products. Many works have been developed to study the antimicrobial activity of essential oils. Essential oils have been traditionally used as flavorings in food, so they have an important odor impact but they have as well antimicrobial properties that could be used to protect the food. Recent developments in antimicrobial active packaging showed the efficiency of essential oils versus bread and bakery products among other applications. However, one of the main problems to face is the odor and taste they could provide to the packaged food. Using some aromas to mask the odor could be a good approach. That is why the main objective of this paper is to develop an antimicrobial packaging material based on the combination of the most active compounds of essential oils (hydrocinnamaldehyde, oregano essential oil, cinnamaldehyde, thymol, and carvacrol) together with some aromas commonly used in the food industry. A study of the concentration required to get the antimicrobial properties, the organoleptic compatibility with typical aroma present in many food systems (vanilla, banana, and strawberry), and the right combination of both systems has been carried out. Antimicrobial tests of both the mentioned aromas, the main components of some essential oils, and the combination of both groups were carried out against bacteria (Enterococcus faecalis, Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Salmonella choleraesuis, Yersinia enterocolitica, Escherichia coli), yeasts (Candida albicans, Debaryomyces hansenii, Zygosaccharomyces rouxii), and molds (Botrytis cinerae, Aspergillus flavus, Penicillium roqueforti, Eurotium repens, Penicillium islandicum, Penicillium commune, Penicillium nalgiovensis). The sensory properties of the combinations were evaluated with a triangular test and classification was by an order test; the odor threshold of the aroma compounds was also

  16. Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine as Exemplified by the Swine Pathogen Streptococcus suis.

    Science.gov (United States)

    Seitz, Maren; Valentin-Weigand, Peter; Willenborg, Jörg

    2016-01-01

    Use of antimicrobial agents in veterinary medicine is essential to control infectious diseases, thereby keeping animals healthy and animal products safe for the consumer. On the other hand, development and spread of antimicrobial resistance is of major concern for public health. Streptococcus (S.) suis reflects a typical bacterial pathogen in modern swine production due to its facultative pathogenic nature and wide spread in the pig population. Thus, in the present review we focus on certain current aspects and problems related to antimicrobial use and resistance in S. suis as a paradigm for a bacterial pathogen affecting swine husbandry worldwide. The review includes (i) general aspects of antimicrobial use and resistance in veterinary medicine with emphasis on swine, (ii) genetic resistance mechanisms of S. suis known to contribute to bacterial survival under antibiotic selection pressure, and (iii) possible other factors which may contribute to problems in antimicrobial therapy of S. suis infections, such as bacterial persister cell formation, biofilm production, and co-infections. The latter shows that we hardly understand the complexity of factors affecting the success of antimicrobial treatment of (porcine) infectious diseases and underlines the need for further research in this field.

  17. Antimicrobial efficacy of alcohol-based hand gels.

    Science.gov (United States)

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers. Copyright 2009 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  18. Antimicrobial Peptides for Therapeutic Applications: A Review

    Directory of Open Access Journals (Sweden)

    Tsogbadrakh Mishig-Ochir

    2012-10-01

    Full Text Available Antimicrobial peptides (AMPs have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.

  19. Assessment of Antimicrobial Treatment Strategies in Pig Production Using Mathematical Models

    DEFF Research Database (Denmark)

    Ahmad, Amais

    strategies. Dosing factors, along with the in vivo epidemiological parameters, govern the relation between resistance and antimicrobial use. Mathematical modeling and simulation techniques have been used over the past two decades to evaluate the effect of these factors on the development of resistance......, and are considered to be powerful tools in designing treatment strategies. The overall aim of the thesis was to develop an in vivo bacterial growth model to predict and assess the effect of dosing factor on resistance growth in order to optimize treatment strategies. Specific aims were to a) estimate pharmacodynamic...... concentration (MIC). These parameters along with MIC should be taken into account when studying the effect of antimicrobials on the bacterial growth. These parameters were used as an input to the in vivo growth model of multiple bacterial strains. For almost all treatments, high resistance levels were found...

  20. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance.

    Science.gov (United States)

    Karp, Beth E; Tate, Heather; Plumblee, Jodie R; Dessai, Uday; Whichard, Jean M; Thacker, Eileen L; Hale, Kis Robertson; Wilson, Wanda; Friedman, Cindy R; Griffin, Patricia M; McDermott, Patrick F

    2017-10-01

    Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated "One Health" approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats, changes in

  1. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases

    Science.gov (United States)

    Orchard, Ané

    2017-01-01

    Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils. PMID:28546822

  2. A Scandinavian Experience of Register Collaboration: The Nordic Arthroplasty Register Association (NARA)

    DEFF Research Database (Denmark)

    Havelin, Leif I; Robertsson, Otto; Fenstad, Anne M

    2011-01-01

    The Nordic (Scandinavian) countries have had working arthroplasty registers for several years. However, the small numbers of inhabitants and the conformity within each country with respect to preferred prosthesis brands and techniques have limited register research.......The Nordic (Scandinavian) countries have had working arthroplasty registers for several years. However, the small numbers of inhabitants and the conformity within each country with respect to preferred prosthesis brands and techniques have limited register research....

  3. Josephson shift registers

    International Nuclear Information System (INIS)

    Przybysz, J.X.

    1989-01-01

    This paper gives a review of Josephson shift register circuits that were designed, fabricated, or tested, with emphasis on work in the 1980s. Operating speed is most important, since it often limits system performance. Older designs used square-wave clocks, but most modern designs use offset sine waves, with either two or three phases. Operating margins and gate bias uniformity are key concerns. The fastest measured Josephson shift register operated at 2.3 GHz, which compares well with a GaAs shift register that consumes 250 times more power. The difficulties of high-speed testing have prevented many Josephson shift registers from being operated at their highest speeds. Computer simulations suggest that 30-GHz operation is possible with current Nb/Al 2 O 3 /Nb technology. Junctions with critical current densities near 10 kA/cm 2 would make 100-GHz shift registers feasible

  4. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products.

    Science.gov (United States)

    Rodriguez-Garcia, I; Silva-Espinoza, B A; Ortega-Ramirez, L A; Leyva, J M; Siddiqui, M W; Cruz-Valenzuela, M R; Gonzalez-Aguilar, G A; Ayala-Zavala, J F

    2016-07-26

    Food consumers and industries urged the need of natural alternatives to assure food safety and quality. As a response, the use of natural compounds from herbs and spices is an alternative to synthetic additives associated with toxic problems. This review discusses the antimicrobial and antioxidant activity of oregano essential oil (OEO) and its potential as a food additive. Oregano is a plant that has been used as a food seasoning since ancient times. The common name of oregano is given to several species: Origanum (family: Lamiaceae) and Lippia (family: Verbenaceae), amongst others. The main compounds identified in the different OEOs are carvacrol and thymol, which are responsible for the characteristic odor, antimicrobial, and antioxidant activity; however, their content may vary according to the species, harvesting season, and geographical sources. These substances as antibacterial agents make the cell membrane permeable due to its impregnation in the hydrophobic domains, this effect is higher against gram positive bacteria. In addition, the OEO has antioxidant properties effective in retarding the process of lipid peroxidation in fatty foods, and scavenging free radicals. In this perspective, the present review analyzes and discusses the state of the art about the actual and potential uses of OEO as an antimicrobial and antioxidant food additives.

  5. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics......-the-counter sale of antibiotics, the use of antimicrobial stewardship programmes, the active participation of clinicians in audits, the utilization of valid rapid point-of-care tests, the promotion of delayed antibiotic prescribing strategies, the enhancement of communication skills with patients with the aid...

  6. Action of Antimicrobial Copper on Bacteria and Fungi Isolated from Commercial Poultry Hatcheries

    Directory of Open Access Journals (Sweden)

    RFR Depner

    Full Text Available ABSTRACT Since 2008, when the US Environmental Protection Agency (EPA registered copper and its alloys as an antimicrobial agent for contact surfaces, research has demonstrated their antimicrobial activity. The aim of this study was to evaluate the efficacy of antimicrobial copper against bacteria and fungi isolated from commercial poultry hatcheries in order to develop a microbiological control alternative in these environments. Samples were collected from the surfaces of hatcher baskets from two hatcheries. Mesophilic microorganisms and fungi/yeasts were isolated and standardized in concentration of 105 cells/mL. Four copper plates and four stainless steel plates were completely immersed for one minute in bacteria and fungi/yeasts solutions and left to dry for a day at room temperature. Subsequently, samples were collected from the metal plates with the aid of sterile swab and delimiter. These samples were planted onto Plate Count Agar (for mesophilic culture and Sabouraud Dextrose Agar (for fungi and yeast culture and incubated at 36°C for 48 hours and at 25°C for 5-7 days, respectively. After incubation, the colonies recovered from the plates were counted according to IN 62 of the Brazilian Ministry of Agriculture. Almost all contamination was eliminated from the surface of copper plates in a single day, while the stainless steel plates proved to be innocuous to the screened microorganisms. Copper, as a contact surface, proved to have important antimicrobial action on bacteria, fungi and yeasts common to hatcheries.

  7. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    Science.gov (United States)

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  8. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    Science.gov (United States)

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  9. Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion

    Directory of Open Access Journals (Sweden)

    Yaqi eYou

    2014-06-01

    Full Text Available Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance. Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome of food animals, which is subsequently transferred to animal waste. This waste contains complex constituents that are challenging to treat, including antimicrobial resistance determinants and low-dose antimicrobials. Unconfined storage or land deposition of a large volume of animal waste causes its wide contact with the environment and drives the expansion of the environmental resistome through mobilome facilitated horizontal genet transfer. The expanded environmental resistome, which encompasses both natural constituents and anthropogenic inputs, can persist under multiple stressors from agriculture and may re-enter humans, thus posing a public health risk to humans. For these reasons, this review focuses on agricultural antimicrobial use as a laboratory for understanding low-dose antimicrobials as drivers of resistome expansion, briefly summarizes current knowledge on this topic, highlights the importance of research specifically on environmental microbial ecosystems considering antimicrobial resistance as environmental pollution, and calls attention to the needs for longitudinal studies at the systems level.

  10. Antimicrobial Resistance

    Science.gov (United States)

    ... least 10 countries (Australia, Austria, Canada, France, Japan, Norway, Slovenia, South Africa, Sweden and the United Kingdom ... plan Global report on surveillance Country situation analysis Policy to combat antimicrobial resistance More on antimicrobial resistance ...

  11. Antimicrobial Resistance

    Science.gov (United States)

    ... can prevent and manage antimicrobial resistance. It is collaborating with partners to strengthen the evidence base and ... on the global action plan. WHO has been leading multiple initiatives to address antimicrobial resistance: World Antibiotic ...

  12. Antimicrobial sensitivity pattern of urine isolates from asymptomatic bacteriuria during pregnancy

    International Nuclear Information System (INIS)

    Khattak, A.M.; Khan, H.U.; Mashud, I.U.; Ashiq, B.; Shah, S.H.

    2006-01-01

    Screening women for asymptomatic bacteriuria (ASB) on the first antenatal visit is a part of standard obstetric care. Treating women with ASB decreases the chances of maternal and foetal complications. This study was conducted to find out the spectrum of urine pathogens and their drug susceptibility pattern for ASB during pregnancy. The study was conducted in the Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre Karachi, from September 2001 to March 2002. Two hundred and ninety women, apparently normal with confirmed pregnancy, were registered. A voided midstream urine specimen was collected and cultured. A significant growth i.e. >105 organisms/ml was identified with Analytical Profile Index 20 tests for identification of Enterobacteriaceae (API-20-E) and for Gram positive cocci by other standard methods. The prevalence of ASB was found 6.2%. Antimicrobial sensitivity was determined by disc diffusion Kirby Bauyer method after matching the turbidity with 0.5 McFarland's standard. Most of the recommended drugs were found to have encouraging results, however, Escherichia coli showed 66.67% resistance to ampicillins and sulphonamides. Enterobacters showed 100% resistance to ampicillins, cephalosporins and nitrofurantoin. Staphylococcus saprophyticus showed 66.67% resistance to ampicillins and sulphonamides. It was concluded that detection of ASB during pregnancy and appropriate use of antimicrobials is only possible after culture of urine. Empirical anti-microbial therapy cannot be relied upon because of possible risk of resistance. (author)

  13. Marine Pseudovibrio sp. as a Novel Source of Antimicrobials

    Directory of Open Access Journals (Sweden)

    Susan P. Crowley

    2014-12-01

    Full Text Available Antibiotic resistance among pathogenic microorganisms is becoming ever more common. Unfortunately, the development of new antibiotics which may combat resistance has decreased. Recently, however the oceans and the marine animals that reside there have received increased attention as a potential source for natural product discovery. Many marine eukaryotes interact and form close associations with microorganisms that inhabit their surfaces, many of which can inhibit the attachment, growth or survival of competitor species. It is the bioactive compounds responsible for the inhibition that is of interest to researchers on the hunt for novel bioactives. The genus Pseudovibrio has been repeatedly identified from the bacterial communities isolated from marine surfaces. In addition, antimicrobial activity assays have demonstrated significant antimicrobial producing capabilities throughout the genus. This review will describe the potency, spectrum and possible novelty of the compounds produced by these bacteria, while highlighting the capacity for this genus to produce natural antimicrobial compounds which could be employed to control undesirable bacteria in the healthcare and food production sectors.

  14. Fungi treated with small chemicals exhibit increased antimicrobial activity against facultative bacterial and yeast pathogens.

    Science.gov (United States)

    Zutz, Christoph; Bandian, Dragana; Neumayer, Bernhard; Speringer, Franz; Gorfer, Markus; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2014-01-01

    For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown "cryptic" secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3-4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances.

  15. Antimicrobial and immunomodulatory activities of PR-39 derived peptides.

    Directory of Open Access Journals (Sweden)

    Edwin J A Veldhuizen

    Full Text Available The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics.

  16. Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides

    Science.gov (United States)

    Veldhuizen, Edwin J. A.; Schneider, Viktoria A. F.; Agustiandari, Herfita; van Dijk, Albert; Tjeerdsma-van Bokhoven, Johanna L. M.; Bikker, Floris J.; Haagsman, Henk P.

    2014-01-01

    The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal) amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics. PMID:24755622

  17. Effects of materials containing antimicrobial compounds on food hygiene.

    Science.gov (United States)

    Møretrø, Trond; Langsrud, Solveig

    2011-07-01

    Surfaces with microorganisms may transfer unwanted microorganisms to food through cross-contamination during processing and preparation. A high hygienic status of surfaces that come in contact with food is important in order to reduce the risk of cross-contamination. During the last decade, products containing antimicrobial compounds, such as cutting boards, knives, countertops, kitchen utensils, refrigerators, and conveyor belts, have been introduced to the market, claiming hygienic effects. Such products are often referred to as "treated articles." Here we review various aspects related to treated articles intended for use during preparation and processing of food. Regulatory issues and methods to assess antibacterial effects are covered. Different concepts for treated articles as well as their antibacterial activity are reviewed. The effects of products with antimicrobials on food hygiene and safety are discussed. Copyright ©, International Association for Food Protection

  18. Safety Evaluation of the Coagulase-Negative Staphylococci Microbiota of Salami: Superantigenic Toxin Production and Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Raquel Soares Casaes Nunes

    2015-01-01

    Full Text Available The risks of contracting staphylococci food poisoning by the consumption of improperly manufactured salami and the possibility of this food being reservoirs for antibiotic resistance were evaluated. Nineteen coagulase-negative staphylococci (CNS strains were found in commercial and artisanal salami. The species in commercial salami were S. saprophyticus, S. sciuri, S. xylosus, and S. carnosus. Artisanal salami showed S. succinus, S. epidermidis, and S. hominis but no S. carnosus. Phylogenetic analyses grouped the strains into three major staphylococcal species groups, comprised of 4 refined clusters with similarities superior to 90%. Fifteen strains harbored multiple enterotoxin genes, with high incidence of seb/sec and sea, 57% and 50%, respectively, intermediate incidence of sed/seh/selm and sei/seln/tst-H, 33% and 27%, correspondingly, and low incidence of see/selj/selo and seg, of respectively 13% and 1%. Real time RT-PCR and enzyme-linked-immunosorbent assays confirmed the enterotoxigenicity of the strains, which expressed and produced enterotoxins in vitro. The CNS strains showed multiresistance to several antimicrobials of therapeutic importance in both human and veterinarian medicine, such as β-lactams, vancomycin, and linezolid. The effective control of undue staphylococci in fermented meat products should be adopted to prevent or limit the risk of food poisoning and the spread of antimicrobial-resistant strains.

  19. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... video) Animation of Antimicrobial Resistance (text version) Arabic Translation of Animation of Antimicrobial Resistance Chinese Translation of Animation of Antimicrobial Resistance French Translation of ...

  20. Reliable estimation of antimicrobial use and its evolution between 2010 and 2013 in French swine farms.

    Science.gov (United States)

    Hémonic, Anne; Chauvin, Claire; Delzescaux, Didier; Verliat, Fabien; Corrégé, Isabelle

    2018-01-01

    There has been a strong implication of both the French swine industry and the national authorities on reducing the use of antimicrobials in swine production since 2010. The annual monitoring of antimicrobial sales by the French Veterinary Medicines Agency (Anses-ANMV) provides estimates but not detailed figures on actual on-farm usage of antimicrobials in swine production. In order to provide detailed information on the 2010 and 2013 antimicrobial use in the French swine industry, the methodology of cross-sectional retrospective study on a representative sample of at least 150 farms has been elected. The analysis of the collected data shows a strong and significant decrease in antimicrobial exposure of pigs between 2010 and 2013. Over three years, the average number of days of treatment significantly decreased by 29% in suckling piglets and by 19% in weaned piglets. In fattening pigs, the drop (- 29%) was not statistically significant. Only usage in sows did increase over that period (+ 17%, non-significant), which might be associated with the transition to group-housing of pregnant sows that took place at the time. Also, over that period, the use of third- and fourth generation cephalosporins in suckling piglets decreased by 89%, and by 82% in sows, which confirms that the voluntary moratorium on these classes of antimicrobials decided at the end of 2010 has been effectively implemented. The methodology of random sampling of farms appears as a precise and robust tool to monitor antimicrobial use within a production animal species, able to fulfil industry and national authorities' objectives and requirements to assess the outcome of concerted efforts on antimicrobial use reduction. It demonstrates that the use of antimicrobials decreased in the French swine industry between 2010 and 2013, including the classes considered as critical for human medicine.

  1. High Pressure Laminates with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Sandra Magina

    2016-02-01

    Full Text Available High-pressure laminates (HPLs are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB was incorporated for the first time into melamine-formaldehyde resin (MF matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR. Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms, whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms. The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.

  2. ANTIMICROBIAL ACTIVITY OF ETHANOL EXTRACT OF SATUREJA HORTENSIS L. TOWARDS PATHOGENIC MICROBIAL STRAINS

    Directory of Open Access Journals (Sweden)

    L. A. Kotyuk

    2014-12-01

    increased 32 times the indices of minimum bacteriostatic concentration and 16 times those of minimum bactericidal concentration as to S. aureus. The less marked effect was registered concerning C. albicans. In this case twofold increase of MIC and MFC indices was only observed. In relation to E. coli the components of savory extract intensified two times the bacteriostatic and bacteriocidal effect of 40% ethanol. As to P. aerugionosa the antimicrobial effect was not registered. The paper draws attention to the prospects of the further more detailed study of ethanol extracts of summer savory with the aim of producing antibacterial and antifungal herbal preparations. Key words: Satureja hortensis, ethanol extract, minimal bacteriostatic concentration, minimal bactericidal concentration.

  3. ANTIMICROBIAL ACTIVITY OF ETHANOL EXTRACT OF SATUREJA HORTENSIS L. TOWARDS PATHOGENIC MICROBIAL STRAINS

    Directory of Open Access Journals (Sweden)

    Kotyuk L. A.

    2014-12-01

    increased 32 times the indices of minimum bacteriostatic concentration and 16 times those of minimum bactericidal concentration as to S. aureus. The less marked effect was registered concerning C. albicans. In this case twofold increase of MIC and MFC indices was only observed. In relation to E. coli the components of savory extract intensified two times the bacteriostatic and bacteriocidal effect of 40% ethanol. As to P. aerugionosa the antimicrobial effect was not registered. The paper draws attention to the prospects of the further more detailed study of ethanol extracts of summer savory with the aim of producing antibacterial and antifungal herbal preparations.

  4. Antimicrobial Peptides of Meat Origin - An In silico and In vitro Analysis.

    Science.gov (United States)

    Keska, Paulina; Stadnik, Joanna

    2017-01-01

    The aim of this study was to evaluate the antimicrobial activity of meat protein-derived peptides against selected Gram-positive and Gram-negative bacteria. The in silico and in vitro approach was combined to determine the potency of antimicrobial peptides derived from pig (Sus scrofa) and cow (Bos taurus) proteins. The in silico studies consisted of an analysis of the amino acid composition of peptides obtained from the CAMPR database, their molecular weight and other physicochemical properties (isoelectric point, molar extinction coefficient, instability index, aliphatic index, hydropathy index and net charge). The degree of similarity was estimated between the antimicrobial peptide sequences derived from the slaughtered animals and the main meat proteins. Antimicrobial activity of peptides isolated from dry-cured meat products was analysed (in vitro) against two strains of pathogenic bacteria using the disc diffusion method. There was no evidence of growthinhibitory properties of peptides isolated from dry-cured meat products against Escherichia coli K12 ATCC 10798 and Staphylococcus aureus ATCC 25923. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Antimicrobial peptides of buffalo and their role in host defenses

    Directory of Open Access Journals (Sweden)

    Khangembam Victoria Chanu

    2018-02-01

    Full Text Available Antimicrobial peptides (AMPs are highly conserved components of the innate immune system found among all classes of life. Buffalo (Bubalus bubalis, an important livestock for milk and meat production, is known to have a better resistance to many diseases as compared to cattle. They are found to express many AMPs such as defensins, cathelicidins, and hepcidin which play an important role in neutralizing the invading pathogens. Buffalo AMPs exhibit broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria. Similar to its natural form, synthetic analogs of buffalo AMPs are also antimicrobial against bacteria and even fungus making them a good target for the development of therapeutic antimicrobials. In addition to its antimicrobial effect, AMPs have been demonstrated to have a number of immunomodulatory functions, and their genes are responsive to infections. Further, induction of their gene expression by external factors may help in preventing infectious diseases. This review briefly discusses the AMPs of buffalo identified to date and their possible role in innate immunity.

  6. Arthroplasty register for Germany

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2009-10-01

    Full Text Available Scientific background: The annual number of joint replacement operations in Germany is high. The introduction of an arthroplasty register promises an important contribution to the improvement of the quality of patient’s care. Research questions: The presented report addresses the questions on organization and functioning, benefits and cost-benefits as well as on legal, ethical and social aspects of the arthroplasty registers. Methods: A systematic literature search was conducted in September 2008 in the medical databases MEDLINE, EMBASE etc. and was complemented with a hand search. Documents describing arthroplasty registers and/or their relevance as well as papers on legal, ethical and social aspects of such registers were included in the evaluation. The most important information was extracted and analysed. Results: Data concerning 30 arthroplasty registers in 19 countries as well as one international arthroplasty register were identified. Most of the arthroplasty registers are maintained by national orthopedic societies, others by health authorities or by their cooperation. Mostly, registries are financially supported by governments and rarely by other sources.The participation of the orthopedists in the data collection process of the arthroplasty registry is voluntary in most countries. The consent of the patients is usually required. The unique patient identification is ensured in nearly all registers.Each data set consists of patient and clinic identification numbers, data on diagnosis, the performed intervention, the operation date and implanted prostheses. The use of clinical scores, patient-reported questionnaires and radiological documentation is rare. Methods for data documentation and transfer are paper form, electronic entry as well as scanning of the data using bar codes. The data are mostly being checked for their completeness and validity. Most registers offer results of the data evaluation to the treating orthopedists and

  7. HIF-1α is essential for effective PMN bacterial killing, antimicrobial peptide production and apoptosis in Pseudomonas aeruginosa keratitis.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Berger

    Full Text Available Hypoxia-inducible factor (HIF-1α, is a transcription factor that controls energy metabolism and angiogenesis under hypoxic conditions, and a potent regulator of innate immunity. The studies described herein examined the role of HIF-1α in disease resolution in BALB/c (resistant, cornea heals mice after ocular infection with Pseudomonas (P. aeruginosa. Furthermore, the current studies focused on the neutrophil (PMN, the predominant cell infiltrate in keratitis. Using both siRNA and an antagonist (17-DMAG, the role of HIF-1α was assessed in P. aeruginosa-infected BALB/c mice. Clinical score and slit lamp photography indicated HIF-1α inhibition exacerbated disease and corneal destruction. Real time RT-PCR, immunohistochemistry, ELISA, Greiss and MPO assays, bacterial load, intracellular killing, phagocytosis and apoptosis assays further tested the regulatory role of HIF-1α. Despite increased pro-inflammatory cytokine expression and increased MPO levels after knocking down HIF-1α expression, in vivo studies revealed a decrease in NO production and higher bacterial load. In vitro studies using PMN provided evidence that although inhibition of HIF-1α did not affect phagocytosis, both bacterial killing and apoptosis were significantly affected, as was production of antimicrobial peptides. Overall, data provide evidence that inhibition of HIF-1α converts a normally resistant disease response to susceptible (corneal thinning and perforation after induction of bacterial keratitis. Although this inhibition does not appear to affect PMN transmigration or phagocytosis, both in vivo and in vitro approaches indicate that the transcriptional factor is essential for effective bacterial killing, apoptosis and antimicrobial peptide production.

  8. New developments of the KOMPOFERM {sup registered} system. Lean gas management, SMARTFERM, double membrane roof; Neue Entwicklungen des KOMPOFERM {sup registered} -Systems. Schwachgasmanagement, SMARTFERM, Doppelmembrandach

    Energy Technology Data Exchange (ETDEWEB)

    Striewski, Sandra [KOMPOTEC Kompostierungsanlagen GmbH, Nieheim (Germany)

    2012-11-01

    The KOMPOFERM {sup registered} dry fermentation process is a mesophilic batch process for biogas production from solid biomass. The system is developed continuously for higher economic efficiency, emission reduction and environmental protection. The contribution describes the optimisations of the KOMPOFERM {sup registered} system and presents examples of its practical implementation, e.g. thermophilic process control, the KOMPOFERM {sup registered} double membrane roof for optimum gas utilisation and reduction of the lean gas volume, the KOMPOFERM {sup registered} plus process with a percolate fermenter below the fermenter tunnels, the automatic feeding system for the rotting and/or fermenter tunnels and SMARTFERM, the dry fermentation module for plants up to 4m000 Mg input. (org.) [German] Als mesophiles Batchverfahren hat sich das KOMPOFERM {sup registered} -Trockenvergaerungsverfahren zur Erzeugung von Biogas aus fester Biomasse am Markt etabliert. Das System wird stetig weiterentwickelt, um die Wirtschaftlichkeit wie auch den Emissions- und Umweltschutz der Anlagen zu verbessern. Die Optimierungen des KOMPOFERM {sup registered} -Systems werden in diesem Artikel erlaeutert und Beispiele fuer deren praktische Umsetzung gegeben, wie die thermophile Prozessfuehrung des Systems, das KOMPOFERM {sup registered} -Doppelmembrandach zur optimalen Gasnutzung und Reduzierung von Schwachgas, das KOMPOFERM {sup registered} plus-Verfahren mit einem Perkolatfermenter unterhalb der Fermentertunnel, das automatische Eintragungsgeraet fuer Rotte- und/oder Fermentertunnel sowie SMARTFERM, das Trockenfermentationsmodul fuer Anlagen bis 4.000 Mg Input. (org.)

  9. Public health risk of antimicrobial resistance transfer from companion animals.

    Science.gov (United States)

    Pomba, Constança; Rantala, Merja; Greko, Christina; Baptiste, Keith Edward; Catry, Boudewijn; van Duijkeren, Engeline; Mateus, Ana; Moreno, Miguel A; Pyörälä, Satu; Ružauskas, Modestas; Sanders, Pascal; Teale, Christopher; Threlfall, E John; Kunsagi, Zoltan; Torren-Edo, Jordi; Jukes, Helen; Törneke, Karolina

    2017-04-01

    Antimicrobials are important tools for the therapy of infectious bacterial diseases in companion animals. Loss of efficacy of antimicrobial substances can seriously compromise animal health and welfare. A need for the development of new antimicrobials for the therapy of multiresistant infections, particularly those caused by Gram-negative bacteria, has been acknowledged in human medicine and a future corresponding need in veterinary medicine is expected. A unique aspect related to antimicrobial resistance and risk of resistance transfer in companion animals is their close contact with humans. This creates opportunities for interspecies transmission of resistant bacteria. Yet, the current knowledge of this field is limited and no risk assessment is performed when approving new veterinary antimicrobials. The objective of this review is to summarize the current knowledge on the use and indications for antimicrobials in companion animals, drug-resistant bacteria of concern among companion animals, risk factors for colonization of companion animals with resistant bacteria and transmission of antimicrobial resistance (bacteria and/or resistance determinants) between animals and humans. The major antimicrobial resistance microbiological hazards originating from companion animals that directly or indirectly may cause adverse health effects in humans are MRSA, methicillin-resistant Staphylococcus pseudintermedius, VRE, ESBL- or carbapenemase-producing Enterobacteriaceae and Gram-negative bacteria. In the face of the previously recognized microbiological hazards, a risk assessment tool could be applied in applications for marketing authorization for medicinal products for companion animals. This would allow the approval of new veterinary medicinal antimicrobials for which risk levels are estimated as acceptable for public health. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For

  10. Novel natural food antimicrobials.

    Science.gov (United States)

    Juneja, Vijay K; Dwivedi, Hari P; Yan, Xianghe

    2012-01-01

    Naturally occurring antimicrobial compounds could be applied as food preservatives to protect food quality and extend the shelf life of foods and beverages. These compounds are naturally produced and isolated from various sources, including plants, animals and microorganisms, in which they constitute part of host defense systems. Many naturally occurring compounds, such as nisin, plant essential oils, and natamycin, have been widely studied and are reported to be effective in their potential role as antimicrobial agents against spoilage and pathogenic microorganisms. Although some of these natural antimicrobials are commercially available and applied in food processing, their efficacy, consumer acceptance and regulation are not well defined. This manuscript reviews natural antimicrobial compounds with reference to their applications in food when applied individually or in combination with other hurdles. It also reviews the mechanism of action of selected natural antimicrobials, factors affecting their antimicrobial activities, and future prospects for use of natural antimicrobials in the food industry.

  11. Antimicrobial compounds targeting Gram-negative bacteria in food: Their mode of action and combinational effects

    DEFF Research Database (Denmark)

    Hyldgaard, Morten

    2015-01-01

    compromising food shelf-life or safety. Natural antimicrobial compounds have therefore gained increased interest as a label-friendly alternative that can be added directly to food products. Although natural antimicrobials constitute an interesting source of compounds, it is often not understood how...... they interact with bacterial cells to exert their mechanism of inhibition or killing. Furthermore, natural antimicrobials are often not potent enough as single compounds, and may cause unwanted sensory side-effects, which limit the quantities that can be applied to food. These problems might be circumvented...... by combining antimicrobials to decrease the concentrations needed without compromising their antimicrobial activity. The work described in this dissertation presents two projects concerning the mechanism of action of selected natural antimicrobial compounds primarily against Gram-negative bacteria, and two...

  12. Nanosilver: Potent antimicrobial agent and its biosynthesis

    African Journals Online (AJOL)

    VIKAS

    2014-01-22

    Jan 22, 2014 ... synthesis of silver nanoparticles, potential and the possible mechanism of antimicrobial actions. NANOSILVER SYNTHESIS- AN OVERVIEW. Nano silver are one of the promising products in the nanotechnology industry. The development of consistent processes for the synthesis of silver nanoparticles is an.

  13. Bacterial Resistance to the Tetracyclines and Antimicrobial ...

    African Journals Online (AJOL)

    Optimizing of tetracycline antibiotics dosing and duration in human and animal healthcare and food production might help minimize the emergence of resistance in some situations. New approaches to antimicrobial chemotherapy are needed if we are to survive the increasing rates of tetracycline antibiotic resistance ...

  14. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds.

    Science.gov (United States)

    Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick

    2016-03-10

    The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.

  15. Antimicrobial lipids from the hemolymph of brachyuran crabs

    Digital Repository Service at National Institute of Oceanography (India)

    Ravichandran, S.; Wahidullah, S.; DeSouza, L.; Rameshkumar, G.

    The potential of marine crabs as a source of biologically active products is largely unexplored. In the present study, antimicrobial activity of the hemolymph (plasma) and hemocytes (plasma cells) of six brachyuran crabs was investigated against 16...

  16. Substandard/counterfeit antimicrobial drugs.

    Science.gov (United States)

    Kelesidis, Theodoros; Falagas, Matthew E

    2015-04-01

    Substandard/counterfeit antimicrobial drugs are a growing global problem. The most common substandard/counterfeit antimicrobials include beta-lactams (among antibiotics) and chloroquine and artemisin derivatives (among antimalarials). The most common type of substandard/counterfeit antimicrobial drugs have a reduced amount of the active drug, and the majority of them are manufactured in Southeast Asia and Africa. Counterfeit antimicrobial drugs may cause increased mortality and morbidity and pose a danger to patients. Here we review the literature with regard to the issue of substandard/counterfeit antimicrobials and describe the prevalence of this problem, the different types of substandard/counterfeit antimicrobial drugs, and the consequences for the individuals and global public health. Local, national, and international initiatives are required to combat this very important public health issue. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Improving antimicrobial prescribing: implementation of an antimicrobial i.v.-to-oral switch policy.

    Science.gov (United States)

    McCallum, A D; Sutherland, R K; Mackintosh, C L

    2013-01-01

    Antimicrobial stewardship programmes reduce the risk of hospital associated infections (HAI) and antimicrobial resistance, and include early intravenous-to-oral switch (IVOS) as a key stewardship measure. We audited the number of patients on intravenous antimicrobials suitable for oral switch, assessed whether prescribing guidelines were followed and reviewed prescribing documentation in three clinical areas in the Western General Hospital, Edinburgh, in late 2012. Following this, the first cycle results and local guidelines were presented at a local level and at the hospital grand rounds, posters with recommendations were distributed, joint infection consult and antimicrobial rounds commenced and an alert antimicrobial policy was introduced before re-auditing in early 2013. We demonstrate suboptimal prescribing of intravenous antimicrobials, with 43.9% (43/98) of patients eligible for IVOS at the time of auditing. Only 56.1% (55/98) followed empiric prescribing recommendations. Documentation of antimicrobial prescribing was poor with stop dates recorded in 14.3%, indication on prescription charts in 18.4% and in the notes in 90.8%. The commonest reason for deferring IVOS was deteriorating clinical condition or severe sepsis. Further work to encourage prudent antimicrobial prescribing and earlier consideration of IVOS is required.

  18. Phytoaccumulation of antimicrobials by hydroponic Cucurbita pepo.

    Science.gov (United States)

    Aryal, Niroj; Reinhold, Dawn

    2013-01-01

    Consumer use of antimicrobial-containing products continuously introduces triclocarban and triclosan into the environment. Triclocarban and triclosan adversely affect plants and animals and have the potential to affect human health. Research examined the phytoaccumulation of triclocarban and triclosan by pumpkin (Cucurbita pepo cultivar Howden) and zucchini (Cucurbita pepo cultivar Gold Rush) grown hydroponically. Pumpkin and zucchini were grown in nutrient solution spiked with 0.315 microg/mL triclocarban and 0.289 microg/mL triclosan for two months. Concentrations of triclocarban and triclosan in nutrient solutions were monitored weekly. At the end of the trial, roots and shoots were analyzed for triclocarban and triclosan. Research demonstrated that pumpkin and zucchini accumulated triclocarban and triclosan. Root accumulation factors were 1.78 and 0.64 and translocation factors were 0.001 and 0.082 for triclocarban and triclosan, respectively. The results of this experiment were compared with a previous soil column study that represented environmentally relevant exposure of antimicrobials from biosolids and had similar root mass. Plants were not as efficient in removing triclocarban and triclosan in hydroponic systems as in soil systems. Shoot concentrations of antimicrobials were the same or lower in hydroponic systems than in soil columns, indicating that hydroponic system does not overpredict the concentrations of antimicrobials.

  19. Pharmacoepidemiological observational study of antimicrobial use in outpatients of ophthalmology department in North Indian population

    Directory of Open Access Journals (Sweden)

    Hina Kauser

    2018-01-01

    Full Text Available Background: Recognition of drug usage patterns provides the basis for improving safety and plummeting risks associated with their use. Thus, this study was undertaken to explore the drug usage pattern in ophthalmology with an emphasis on antimicrobial use at a tertiary care teaching hospital. Materials and Methods: An observational study was conducted in the Department of Ophthalmology, Hakeem Abdul Hameed Centenary Hospital, Jamia Hamdard, New Delhi, India for 9 months. Newly registered patients visiting the Outpatient Department for curative complaints were included. All drugs prescribed were recorded, including dose, route, dosage form, frequency of administration, indications for prescription, and duration of therapy, and the data was audited using the indicators prescribed by the World Health Organization. Result: A total of 600 prescriptions were analyzed. The number of drugs prescribed was 1097 with an average drug per prescription being 1.8. The most common disorders diagnosed were infective conjunctivitis (21.5% followed by stye (5.5%. Drugs were prescribed in different dosage forms with eye drops (72.6% being the most common. Drugs were predominantly prescribed by brand name (100%. Antimicrobials (44.7% were the most commonly prescribed drugs followed by lubricants (17.5%. Moxifloxacin (53.5% was the most commonly prescribed antimicrobial agent. Of the antimicrobials prescribed, 89.6% were prescribed topically. Average total cost per prescription was 113 INR. Conclusion: The study concludes with an overall impression of rational prescription in terms of prescribing in consensus with the recommended treatment protocol of ocular diseases. Nevertheless, health-care professionals should be encouraged to prescribe by generic name. Creating awareness regarding selection of drugs from essential drug list to reduce the drug cost is the need of the hour. Last but not least, updating knowledge regarding appropriate antimicrobial use and the

  20. In vitro evaluation of antimicrobial features of vasopressors

    Directory of Open Access Journals (Sweden)

    Habib Bostan

    2014-03-01

    Full Text Available Background: Drugs administered as intravenous infusion may be contaminated during several stages of production or preparation. However studies focusing on antibacterial effects of vasopressor drugs are very rare. This study investigates the in vitro antimicrobial activity of the clinically used forms of vasopressors. Materials and methods: In vitro antimicrobial activities of vasopressor drugs of different concentrations were investigated by using the micro dilution technique. Microorganisms used in the test were Escherichia coli ATCC 25922, Yersinia pseudotuberculosis ATCC 911, Pseudomonas aeruginosa ATCC 10145, Listeria monocytogenes ATCC 43251, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, Bacillus cereus 702 Roma, Mycobacterium smegmatis ATCC607, Candida albicans ATCC 60193, and Saccharomyces cerevisiae RSKK 251. Antibacterial assays were performed in Mueller-Hinton broth at pH 7.3 and antifungal assays were performed in buffered Yeast Nitrogen Base at pH 7.0. Results: Two different dopamine preparations showed antimicrobial activity. No other study drug showed any antimicrobial activity. Conclusions: In our opinion, dopamine's antibacterial effects may be advantageous for inhibiting the spread of bacterial contamination during the preparation of the infusion solutions. However, it is important that strict guidelines regarding the need for sterile equipment and deliverables be adhered to during all procedures performed in the intensive care units. Keywords: Antimicrobial activities, Vasopressor drugs, Drug contamination

  1. Therapeutic drug monitoring of antimicrobials

    Science.gov (United States)

    Roberts, Jason A; Norris, Ross; Paterson, David L; Martin, Jennifer H

    2012-01-01

    Optimizing the prescription of antimicrobials is required to improve clinical outcome from infections and to reduce the development of antimicrobial resistance. One such method to improve antimicrobial dosing in individual patients is through application of therapeutic drug monitoring (TDM). The aim of this manuscript is to review the place of TDM in the dosing of antimicrobial agents, specifically the importance of pharmacokinetics (PK) and pharmacodynamics (PD) to define the antimicrobial exposures necessary for maximizing killing or inhibition of bacterial growth. In this context, there are robust data for some antimicrobials, including the ratio of a PK parameter (e.g. peak concentration) to the minimal inhibitory concentration of the bacteria associated with maximal antimicrobial effect. Blood sampling of an individual patient can then further define the relevant PK parameter value in that patient and, if necessary, antimicrobial dosing can be adjusted to enable achievement of the target PK/PD ratio. To date, the clinical outcome benefits of a systematic TDM programme for antimicrobials have only been demonstrated for aminoglycosides, although the decreasing susceptibility of bacteria to available antimicrobials and the increasing costs of pharmaceuticals, as well as emerging data on pharmacokinetic variability, suggest that benefits are likely. PMID:21831196

  2. Antimicrobial nanocapsules: from new solvent-free process to in vitro efficiency

    Directory of Open Access Journals (Sweden)

    Steelandt J

    2014-09-01

    Full Text Available Julie Steelandt,1 Damien Salmon,1,2 Elodie Gilbert,1 Eyad Almouazen,3 François NR Renaud,4 Laurène Roussel,1 Marek Haftek,5 Fabrice Pirot1,2 1University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Pharmacie Galénique Industrielle, 2Hospital Pharmacy, FRIPharm, Hospital Edouard Herriot, Hospices Civils de Lyon, 3Laboratoire d’Automatique et de Génie des Procédés, University Claude Bernard Lyon 1, 4University Claude Bernard Lyon 1, UMR CNRS 5510/MATEIS, 5University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Dermatologie, Lyon, France Abstract: Skin and mucosal infections constitute recurrent pathologies resulting from either inappropriate antiseptic procedures or a lack of efficacy of antimicrobial products. In this field, nanomaterials offer interesting antimicrobial properties (eg, long-lasting activity; intracellular and tissular penetration as compared to conventional products. The aim of this work was to produce, by a new solvent-free process, a stable and easily freeze-dryable chlorhexidine-loaded polymeric nanocapsule (CHX-NC suspension, and then to assess the antimicrobial properties of nanomaterials. The relevance of the process and the physicochemical properties of the CHX-NCs were examined by the assessment of encapsulation efficiency, stability of the nanomaterial suspension after 1 month of storage, and by analysis of granulometry and surface electric charge of nanocapsules. In vitro antimicrobial activities of the CHX-NCs and chlorhexidine digluconate solution were compared by measuring the inhibition diameters of two bacterial strains (Escherichia coli and Staphylococcus aureus and one fungal strain (Candida albicans cultured onto appropriate media. Based on the findings of this study, we report a new solvent-free process for the

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial ...

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over ...

  6. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  7. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: A mini-review

    Directory of Open Access Journals (Sweden)

    Deyan Stratev

    2016-09-01

    Full Text Available Summary: Aeromonas hydrophila is a Gram-negative, oxidase-positive, facultative, anaerobic, opportunistic aquatic pathogen. A. hydrophila produces virulence factors, such as hemolysins, aerolysins, adhesins, enterotoxins, phospholipase and lipase. In addition to isolation from aquatic sources, A. hydrophila has been isolated from meat and meat products, milk and dairy products, and vegetables. However, various studies showed that this opportunistic pathogen is resistant to commercial antibiotics. This is attributed to factors such as the indiscriminate use of antibiotics in aquaculture, plasmids or horizontal gene transfer. In this report, we highlight the occurrence, prevalence and antimicrobial resistance of A. hydrophila isolated from different food samples. The presence of antimicrobial-resistant A. hydrophila in food poses threats to public and aquatic animal health. Keywords: A. hydrophila, Antimicrobial resistance, Microbial food safety

  8. Prospective study on quantitative and qualitative antimicrobial and anti-inflammatory drug use in white veal calves.

    Science.gov (United States)

    Pardon, Bart; Catry, Boudewijn; Dewulf, Jeroen; Persoons, Davy; Hostens, Miel; De Bleecker, Koen; Deprez, Piet

    2012-04-01

    To document and quantify drug use in white veal calves, an intensive livestock production system where multidrug resistance is abundantly present. Drug consumption data were prospectively collected on 15 white veal production cohorts (n = 5853 calves) in Belgium (2007-09). Treatment incidences (TIs) based on animal defined daily dose (ADD), prescribed daily dose (PDD) and used daily dose (UDD) were calculated. Risk factors were identified by linear regression. The average TI(ADD) of antimicrobial treatments was 416.8 ADD per 1000 animals at risk. Predominantly, oral group antimicrobial treatments were used (95.8%). Of the oral group antimicrobial treatments, 12% and 88% were used for prophylactic or metaphylactic indications, respectively. The main indication for group and individual drug use was respiratory disease. The most frequently used antimicrobials (group treatments) were oxytetracycline (23.7%), amoxicillin (18.5%), tylosin (17.2%) and colistin (15.2%). Deviations from the leaflet dosage recommendations were frequently encountered, with 43.7% of the group treatments underdosed (often oxytetracycline and tylosin to treat dysbacteriosis). In 33.3% of the oral antimicrobial group treatments a combination of two antimicrobial preparations was used. Smaller integrations used more antimicrobials in group treatments than larger ones (P < 0.05); an integration is defined as a company that combines all steps of the production chain by having its own feed plant and slaughterhouse and by placing its calves in veal herds owned by producers that fatten these calves for this integration on contract. Producers used higher dosages than prescribed by the veterinarian in cohorts with a single caretaker (P < 0.01). The present study provided detailed information on the intensive antimicrobial use in the white veal industry. Reduction can only be achieved by reducing the number of oral group treatments.

  9. Molecular characterization and determination of antimicrobial resistance of Mycoplasma gallisepticum isolated from chickens.

    Science.gov (United States)

    Pakpinyo, Somsak; Sasipreeyajan, Jiroj

    2007-11-15

    In this study, three consecutive approaches of molecular characterization, determination of minimum inhibitory concentration (MIC) and antimicrobial tested on Mycoplasma gallisepticum (MG) isolated from chicken farms were investigated. These approaches were conducted between 2004 and 2005 to 134 MG samples collected from five different regions of the intensive farming area of Thailand. Twenty MG isolates and four reference strains including S6, F, ts-11, and 6/85 were classified according to Random Amplification of Polymorphic DNA (RAPD) patterns prior to the antimicrobial tests. These isolates exhibited 5 different genotypes (A-E). Consequently, MG isolates representing each genotype were tested on 11 registered antibiotics. The levels of MIC were determined. Three antibiotics, doxycycline (0.20 microg/ml), tiamulin (0.10 microg/ml), and tylosin (0.33 microg/ml), gave the least MICs among all effective drugs. Break point comparisons of each antimicrobial suggested that the MG isolates were most sensitive to lincomycin, oxytetracycline, tiamulin, and tylosin. Some MG isolates had an intermediate effect on josamycin and were resistant to enrofloxacin and erythromycin. Our results also indicated that MG isolated and collected from the region and nearby districts had similar RAPD patterns showing properties of antimicrobial resistance. The RAPD patterns may imply the frequent use of antibiotics and a resistant strain of MG. This is the first report of genetic characterization using RAPD reflected by the levels of MIC against MG. The information is useful to plan for prophylactic and therapeutic impacts on the poultry industry especially in the area of intensive use of antibiotics.

  10. Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Hisham Beshara Halasa, Tariq; Græsbøll, Kaare

    2017-01-01

    Bacterial antimicrobial resistance (AMR) in pigs is an important public health concern due to its possible transfer to humans. We aimed at quantifying the relationship between the lifetime exposure of antimicrobials and seven antimicrobial resistance genes in Danish slaughter pig farms. AMR gene...... levels were quantified by qPCR of total-community DNA in faecal samples obtained from 681 batches of slaughter pigs. The lifetime exposure to antimicrobials was estimated at batch level for the piglet, weaner, and finisher periods individually for the sampled batches. We showed that the effect...... of antimicrobial exposure on the levels of AMR genes was complex and unique for each individual gene. Several antimicrobial classes had both negative and positive correlations with the AMR genes. From 10-42% of the variation in AMR gene levels could be explained in the final regression models, indicating...

  11. MORPHO-CHEMICAL DESCRIPTION AND ANTIMICROBIAL ACTIVITY OF DIFFERENT OCIMUM SPECIES

    Directory of Open Access Journals (Sweden)

    KAKARAPARTHI PANDU SASTRY

    2012-12-01

    Full Text Available Basil is a popular medicinal and culinary herb, and its essential oils have been used extensively for many years in food products, perfumery, dental and oral products. Basil essential oils and their principal constituents were found to exhibit antimicrobial activity against a wide range of Gram-negative and Gram-positive bacteria, yeast, and mould. The essential oils obtained from aerial parts of three different species of Ocimum comprising twenty one germplasm lines were investigated for their essential oil composition and antimicrobial activity during 2010. Essential oils from seventeen germplasm lines in Ocimum basilicum and two each in Ocimum tenuiflorum and Ocimum gratissimum were investigated for anti-microbial activity against four bacterial strains (Staphylococcus aureus, Bacillus sps., Escherichia coli and Pseudomonas aeruginosa. The morpho-chemotypes exhibited wide variability for morphological and chemical traits. Anti-bacterial activity was found to be high for Staphylococcus aureus, moderate for Escherichia coli, low for Bacillus and Pseudomonas aeruginosa was highly resistant. The essential oils of Pale Green-Broad Leaves (O. basilicum and CIM Ayu (O. gratissimum exhibited significant antibacterial activity against both S. aureus and E. coli signifying them promising for anti-bacterial activity. No relationship was observed between chemotype specificity and anti-bacterial activity, indicating that apart from major components of essential oil, minor components and other factors may be responsible for anti-microbial activities.

  12. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds.

    Science.gov (United States)

    Callens, Bénédicte; Persoons, Davy; Maes, Dominiek; Laanen, Maria; Postma, Merel; Boyen, Filip; Haesebrouck, Freddy; Butaye, Patrick; Catry, Boudewijn; Dewulf, Jeroen

    2012-09-01

    The monitoring of antimicrobial use is an essential step to control the selection and spread of antimicrobial resistance. Between January and October 2010 data on prophylactic and metaphylactic antimicrobial use were collected retrospectively on 50 closed or semi-closed pig herds. Ninety-three percent of the group treatments were prophylactic whereas only 7% were methaphylactic. The most frequently used antimicrobials orally applied at group level were colistin (30.7%), amoxicillin (30.0%), trimethoprim-sulfonamides (13.1%), doxycycline (9.9%) and tylosin (8.1%). The most frequently applied injectable antimicrobials were tulathromycin (45.0%), long acting ceftiofur (40.1%) and long acting amoxicillin (8.4%). The treatment incidences (TI) based on the used daily dose pig (UDD(pig) or the actually administered dose per day per kg pig of a drug) for all oral and injectable antimicrobial drugs was on average 200.7 per 1000 pigs at risk per day (min=0, max=699.0), while the TI based on the animal daily dose pig (ADD(pig) or the national defined average maintenance dose per day per kg pig of a drug used for its main indication) was slightly higher (average=235.8, min=0, max=1322.1). This indicates that in reality fewer pigs were treated with the same amount of antimicrobials than theoretically possible. Injectable products were generally overdosed (79.5%), whereas oral treatments were often underdosed (47.3%). In conclusion, this study shows that prophylactic group treatment was applied in 98% of the visited herds and often includes the use of critically important and broad-spectrum antimicrobials. In Belgium, the guidelines for prudent use of antimicrobials are not yet implemented. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Phytoaccumulation of antimicrobials from biosolids: impacts on environmental fate and relevance to human exposure.

    Science.gov (United States)

    Aryal, Niroj; Reinhold, Dawn M

    2011-11-01

    Triclocarban and triclosan, two antimicrobials widely used in consumer products, can adversely affect ecosystems and potentially impact human health. The application of biosolids to agricultural fields introduces triclocarban and triclosan to soil and water resources. This research examined the phytoaccumulation of antimicrobials, effects of plant growth on migration of antimicrobials to water resources, and relevance of phytoaccumulation in human exposure to antimicrobials. Pumpkin, zucchini, and switch grass were grown in soil columns to which biosolids were applied. Leachate from soil columns was assessed every other week for triclocarban and triclosan. At the end of the trial, concentrations of triclocarban and triclosan were determined for soil, roots, stems, and leaves. Results indicated that plants can reduce leaching of antimicrobials to water resources. Pumpkin and zucchini growth significantly reduced soil concentrations of triclosan to less than 0.001 mg/kg, while zucchini significantly reduced soil concentrations of triclocarban to 0.04 mg/kg. Pumpkin, zucchini, and switch grass accumulated triclocarban and triclosan in mg per kg (dry) concentrations. Potential human exposure to triclocarban from consumption of pumpkin or zucchini was substantially less than exposure from product use, but was greater than exposure from drinking water consumption. Consequently, research indicated that pumpkin and zucchini may beneficially impact the fate of antimicrobials in agricultural fields, while presenting minimal acute risk to human health. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Antimicrobial resistance in Danish pigs: A cross sectional study of the association between antimicrobial resistance and geography, exposure to antimicrobials, and trade

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla

    Antimicrobial resistance is a worldwide problem of paramount importance for both humans and animals. To combat the emergence of antimicrobial resistance, the problem must be targeted in all major reservoirs as it is assumed that a high level of AMR genes in environmental reservoirs can increase...... the risk of human pathogens becoming resistant. Pigs might constitute an important reservoir. Therefore, it is important to manage antimicrobial resistance in pigs. Before effectiveactions can be initiated, it is crucial to know which factors are associated with the levels of antimicrobial resistance...... the collection of information on relevant factors. The aim of this PhD project was to study the relationship between the levels of antimicrobial resistance genes and three factors in Danish pig farms: the geographical location of the farm, the exposure to antimicrobials, and the trade patterns. Data collection...

  15. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  16. [Antimicrobial activity of Laetiporus sulphureus strains grown in submerged culture].

    Science.gov (United States)

    Ershova, E Iu; Tikhonova, O V; Lur'e, L M; Efremenkova, O V; Kamzolkina, O V; Dudnik, Iu V

    2003-01-01

    Cultural conditions for growth and fruit body formation were elaborated to four strains of Laetiporus sulphureus isolated from nature. All strains demonstrated antimicrobial activity against a wide spectrum of gram-positive and gram-negative bacteria during agar and submerged cultivation including methicillin-resistant strain of Staphylococcus aureus (MRSA) and glycopeptide-resistant strain of Leuconostoc mesenteroides. Antifungal activity was not found. The level of antimicrobial activity during submerged cultivation reached maximum after seven days of growth on specific medium with soybean meal and corn liquid; the next four weeks its increasing was not so manifested. Antimicrobial activity correlated with orange pigment secretion and cultural liquid acidification to pH 2.0-2.8 that indicates on acid nature of synthesized products.

  17. Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme

    Directory of Open Access Journals (Sweden)

    Petra Matouskova

    2016-01-01

    Full Text Available Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch. Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus and two Gram-negative (Escherichia coli and Serratia marcescens bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries.

  18. The diversity of antimicrobial resistance genes among staphylococci of animal origin.

    Science.gov (United States)

    Wendlandt, Sarah; Feßler, Andrea T; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan; Kadlec, Kristina

    2013-08-01

    Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Cationic antimicrobial peptides in penaeid shrimp.

    Science.gov (United States)

    Tassanakajon, Anchalee; Amparyup, Piti; Somboonwiwat, Kunlaya; Supungul, Premruethai

    2011-08-01

    Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.

  20. Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion.

    Science.gov (United States)

    You, Yaqi; Silbergeld, Ellen K

    2014-01-01

    Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance (AMR). Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome of food animals, which is subsequently transferred to animal waste. This waste contains complex constituents that are challenging to treat, including AMR determinants and low-dose antimicrobials. Unconfined storage or land deposition of a large volume of animal waste causes its wide contact with the environment and drives the expansion of the environmental resistome through mobilome facilitated horizontal genet transfer. The expanded environmental resistome, which encompasses both natural constituents and anthropogenic inputs, can persist under multiple stressors from agriculture and may re-enter humans, thus posing a public health risk to humans. For these reasons, this review focuses on agricultural antimicrobial use as a laboratory for understanding low-dose antimicrobials as drivers of resistome expansion, briefly summarizes current knowledge on this topic, highlights the importance of research specifically on environmental microbial ecosystems considering AMR as environmental pollution, and calls attention to the needs for longitudinal studies at the systems level.

  1. Antimicrobial profile of Moringa oleifera Lam. Extracts against some

    African Journals Online (AJOL)

    DR. AMINU

    The chloroform and ethanol extracts of seeds and leaf of Moringa oleifera were investigated for antimicrobial activity .... calyx juice (zobo), fresh tomato, bread, lettuce, carrot and fried groundnut. ... variation exist in the production of these.

  2. Antimicrobial activity of four essential oils against pigmenting Pseudomonas fluorescens and biofilmproducing Staphylococcus aureus of dairy origin

    Directory of Open Access Journals (Sweden)

    Francesca Pedonese

    2017-12-01

    Full Text Available Essential oils (EOs are mixtures of secondary metabolites of plant origin with many useful properties, among which the antimicrobial activity is also of interest for the food industry. EOs can exert their antimicrobial potential both directly, in food products and active packaging, and indirectly, as sanitizing and anti-biofilm agents of food facility surfaces. Aim of this research was to evaluate the antimicrobial activity of four EOs (bergamot, cinnamon, manuka and thyme against Pseudomonas fluorescens and Staphylococcus aureus isolated from milk and dairy products. The chemical composition of EOs was evaluated by Gas Chromatography-Mass Spectrometry analysis. Minimum Inhibitory Concentration values were determined by a microplate method against 9 Ps. fluorescens from marketed mozzarella with blue discoloration defect, and 3 biofilm-producing S. aureus from milk. Reference ATCC strains were included. Pigment production activity by Ps. fluorescens was assessed both in culture and in cheese. EOs of manuka (leptospermone 23% and thyme (carvacrol 30%, pcymene 20%, thymol 15% showed the highest antimicrobial activity against S. aureus, MIC values were 0.012%-0.024% and 0.024% v/v, respectively; meanwhile EOs from thyme and cinnamon (cinnamaldehyde 55% exhibited the best activity against Ps. fluorescens with MIC values of 0.098%-0.195% and 0.195%-0.391% v/v, respectively. The antimicrobial activity of these EOs is promising and they could be exploited in the dairy production chain.

  3. In vitro evaluation of antimicrobial features of sugammadex

    Directory of Open Access Journals (Sweden)

    Volkan Hanci

    2014-03-01

    Full Text Available Background: Drugs administered by intravenous routes may be contaminated during several stages of production or preparation. Sugammadex is a modified gamma cyclodextrin. While research into the antibacterial effects of varieties of cyclodextrin is available, there are no studies focusing on the antibacterial effects of sugammadex. This study investigates the in vitro antimicrobial activity of sugammadex. Materials and methods: The in vitro antimicrobial activity of sugammadex was investigated using the broth microdilution method. The pH of the test solution was determined using a pH meter. The test microorganisms included Staphylococcus aureus ATCC 29213, Enterococcus fecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. In the second phase of the study 100 mg/mL sugammadex (50 μg was contaminated with test microorganisms (50 μg, including S. aureus ATCC 29213, E. fecalis ATCC 29212, E. coli ATCC 25922 and P. aeruginosa ATCC 27853, left to incubate for 24 h and then the bacterial production in sugammadex was evaluated. Results: The pH of the test solutions ranged between 7.25 and 6.97. Using the microdilution method, sugammadex had no antibacterial effect on S. aureus, E. fecalis, E. coli and P. aeruginosa at any concentration. In the second phase of the study bacterial production was observed after 24 h in 100 mg/mL sugammadex contaminated with the test microorganisms S. aureus, E. fecalis, E. coli and P. aeruginosa. Conclusions: Sugammadex had no antimicrobial effect on the test microorganisms, S. aureus, E. fecalis, E. coli and P. aeruginosa. Care should be taken that sterile conditions are maintained in the preparation of sugammadex; that the same sugammadex preparation not be used for more than one patient; and that storage conditions are adhered to after sugammadex is put into the injector. Keywords: Sugammadex, Antimicrobial effect, S. aureus, E. fecalis, E. coli, P. aeruginosa

  4. Evaluating the optimal timing of surgical antimicrobial prophylaxis: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Mujagic, Edin; Zwimpfer, Tibor; Marti, Walter R; Zwahlen, Marcel; Hoffmann, Henry; Kindler, Christoph; Fux, Christoph; Misteli, Heidi; Iselin, Lukas; Lugli, Andrea Kopp; Nebiker, Christian A; von Holzen, Urs; Vinzens, Fabrizio; von Strauss, Marco; Reck, Stefan; Kraljević, Marko; Widmer, Andreas F; Oertli, Daniel; Rosenthal, Rachel; Weber, Walter P

    2014-05-24

    Surgical site infections are the most common hospital-acquired infections among surgical patients. The administration of surgical antimicrobial prophylaxis reduces the risk of surgical site infections . The optimal timing of this procedure is still a matter of debate. While most studies suggest that it should be given as close to the incision time as possible, others conclude that this may be too late for optimal prevention of surgical site infections. A large observational study suggests that surgical antimicrobial prophylaxis should be administered 74 to 30 minutes before surgery. The aim of this article is to report the design and protocol of a randomized controlled trial investigating the optimal timing of surgical antimicrobial prophylaxis. In this bi-center randomized controlled trial conducted at two tertiary referral centers in Switzerland, we plan to include 5,000 patients undergoing general, oncologic, vascular and orthopedic trauma procedures. Patients are randomized in a 1:1 ratio into two groups: one receiving surgical antimicrobial prophylaxis in the anesthesia room (75 to 30 minutes before incision) and the other receiving surgical antimicrobial prophylaxis in the operating room (less than 30 minutes before incision). We expect a significantly lower rate of surgical site infections with surgical antimicrobial prophylaxis administered more than 30 minutes before the scheduled incision. The primary outcome is the occurrence of surgical site infections during a 30-day follow-up period (one year with an implant in place). When assuming a 5% surgical site infection risk with administration of surgical antimicrobial prophylaxis in the operating room, the planned sample size has an 80% power to detect a relative risk reduction for surgical site infections of 33% when administering surgical antimicrobial prophylaxis in the anesthesia room (with a two-sided type I error of 5%). We expect the study to be completed within three years. The results of this

  5. Molecular characterization of forest soil based Paenibacillus elgii and optimization of various culture conditions for its improved antimicrobial activity

    Directory of Open Access Journals (Sweden)

    S. N. Kumar

    2015-10-01

    Full Text Available Microorganisms have provided a bounty of bioactive secondary metabolites with very exciting biological activities such as antibacterial, antifungal antiviral, and anticancer, etc. The present study aims at the optimization of culture conditions for improved antimicrobial production of Paenibacillus elgii obtained from Wayanad forest of Western Ghats region of Kerala, India. A bacterial strain isolated from the Western Ghats forest soil of Wayanad, Kerala, India was identified as P. elgii by 16S rRNA gene sequencing. P. elgii recorded significant board spectrum activity against all human and plant pathogenic microorganism tested except Candida albicans. It has been well known that even minor variations in the fermentation medium may impact not only the quantity of desired bioactive metabolites but also the general metabolic profile of the producing microorganisms. Thus, further studies were carried out to assess the impact of medium components on the antimicrobial production of P. elgii and to optimize an ideal fermentation medium to maximize its antimicrobial production. Out of three media [nutrient broth (NA, Luria broth (LB and Trypticase soy broth (TSB] used for fermentation, TSB medium recorded significant activity. Glucose and meat peptone were identified as the best carbon and nitrogen sources, which significantly affected the antibiotic production when supplemented with TSB medium. Next the effect of various fermentation conditions such as temperature, pH, and incubation time on the production of antimicrobial compounds was studied on TSB + glucose + meat peptone and an initial pH of 7 and a temperature of 30°C for 3 days were found to be optimum for maximum antimicrobial production. The results indicate that medium composition in the fermentation media along with cultural parameters plays a vital role in the enhanced production of antimicrobial substances.

  6. Antimicrobial copper alloys decreased bacteria on stethoscope surfaces.

    Science.gov (United States)

    Schmidt, Michael G; Tuuri, Rachel E; Dharsee, Arif; Attaway, Hubert H; Fairey, Sarah E; Borg, Keith T; Salgado, Cassandra D; Hirsch, Bruce E

    2017-06-01

    Stethoscopes may serve as vehicles for transmission of bacteria among patients. The aim of this study was to assess the efficacy of antimicrobial copper surfaces to reduce the bacterial concentration associated with stethoscope surfaces. A structured prospective trial involving 21 health care providers was conducted at a pediatric emergency division (ED) (n = 14) and an adult medical intensive care unit located in tertiary care facilities (n = 7). Four surfaces common to a stethoscope and a facsimile instrument fabricated from U.S. Environmental Protection Agency-registered antimicrobial copper alloys (AMCus) were assessed for total aerobic colony counts (ACCs), methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and vancomycin-resistant enterococci for 90 days. The mean ACCs collectively recovered from all stethoscope surfaces fabricated from the AMCus were found to carry significantly lower concentrations of bacteria (pediatric ED, 11.7 vs 127.1 colony forming units [CFU]/cm 2 , P stethoscopes was the most heavily burdened surface; mean concentrations exceeded the health care-associated infection acquisition concentration (5 CFU/cm 2 ) by at least 25×, supporting that the stethoscope warrants consideration in plans mitigating microbial cross-transmission during patient care. Stethoscope surfaces fabricated with AMCus were consistently found to harbor fewer bacteria. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri.

    Science.gov (United States)

    Greifová, Gabriela; Májeková, Hyacinta; Greif, Gabriel; Body, Patrik; Greifová, Maria; Dubničková, Martina

    2017-11-01

    Antimicrobial and immunomodulatory potential of various Lactobacillus reuteri strains is closely connected to their metabolite production profile under given cultivation conditions. We determined the in vitro production of antimicrobial substances such as organic acids, ethanol, and reuterin by four strains of L. reuteri (L. reuteri E, L. reuteri KO5, L. reuteri CCM 3625, and L. reuteri ATCC 55730). All studied L. reuteri strains showed the ability to produce lactic acid, acetic acid, and ethanol with concominant consumption of glucose and together with phenyllactic acid-a potent antifungal compound-with concominant consumption of phenylalanine. The reuterin production from glycerol was confirmed for all analyzed lactobacilli strains except L. reuteri CCM 3625. Production of organic acids, ethanol, and reuterin is significantly involved in antimicrobial activity of lactobacilli which was determined using the dual-culture overlay diffusion method against six indicator bacteria and five indicator moulds. In comparison to the referential L. reuteri ATCC 55730, the highest inhibition potential was observed against Escherichia coli CCM 3988 and Pseudomonas aeruginosa CCM 3955. Among analyzed indicators of moulds, the growth of Alternaria alternata CCM F-128 was the most inhibited by all four analyzed L. reuteri strains. Finally, the immunomodulatory potential of analyzed lactobacilli were proven by the determination of the in vitro production of biogenic amines histamine and tyramine. L. reuteri CCM 3625 was able to produce tyramine, and L. reuteri E and L. reuteri KO5 were able to produce histamine under given cultivation conditions.

  8. Influence of applying different units of measurement on reporting antimicrobial consumption data for pig farms.

    Science.gov (United States)

    Taverne, F J; Jacobs, J H; Heederik, Djj; Mouton, J W; Wagenaar, J A; van Geijlswijk, I M

    2015-10-06

    Antimicrobial use in livestock is one of the factors contributing to selection and spread of resistant microorganisms in the environment. National veterinary antimicrobial consumption monitoring programs are therefore in place in a number of countries in the European Union. However, due to differences in methodology, results on veterinary antimicrobial consumption from these national monitoring programs cannot be compared internationally. International comparison is highly needed to establish regulations on veterinary antimicrobial use and reducing antimicrobial resistance. The aim of this study was to assess differences in the outcomes on veterinary antimicrobial consumption by applying three different sets of nationally established animal defined daily dosages to the same antimicrobial drug delivery dataset of Dutch pigs in 2012. Delivery information for the complete Dutch pig sector for the year 2012 reported to the Netherlands Veterinary Medicines Authority (SDa) was analysed with three differently and nationally established animal defined daily dosages from the Netherlands and Denmark: the Defined Daily Dosage AnimalNL (DDDANL), the Animal Daily DosageDK (ADDDK) and Defined Animal Daily DosageDK (DADDDK). For each applied Dutch product equivalent, Danish products were identified based on authorization for pigs, active substance (including form), administration route, concentration and dosage regimen. Consumption in number of ADDDK/Y was lower than in number of DDDANL/Y for sows/piglets and finisher pigs, with proportions of 83.3 % and 98.3 %. Use in number of DADDDK/Y was even lower, 79.7 % for sows/piglets and 88.1 % for finisher pigs compared to number of DDDANL/Y. At therapeutic group level proportions of number of DADDDK/Y to number of DDDANL/Y were 63.6-150.4 % (sows/piglets) and 55.6-171.0 % (finisher pigs). Proportions were > 100 % for the polymyxines (sows/piglets 150.4 % and finisher pigs 149.9 %) and the macrolides/lincosamides (finisher pigs 171

  9. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    Science.gov (United States)

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  10. Antimicrobial activities of grape ( Vitis vinifera L.) pomace ...

    African Journals Online (AJOL)

    Grape pomace is a potential source of winery by-products having useful bioactive components. Antimicrobial activities of enzyme-assisted grape pomace polyphenols (GPP) were assessed against Escherichia coli IFO 3301 and Staphylococcus aureus IFO 12732 using plate count and spectrophotometry assays. GPP have ...

  11. Antimicrobial Peptides in Reptiles

    Science.gov (United States)

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  12. Improving the appropriateness of antimicrobial use in primary care after implementation of a local antimicrobial guide in both levels of care.

    Science.gov (United States)

    Fernández Urrusuno, Rocío; Flores Dorado, Macarena; Vilches Arenas, Angel; Serrano Martino, Carmen; Corral Baena, Susana; Montero Balosa, Ma Carmen

    2014-08-01

    This study aims to assess the effectiveness of multiple interventions carried out during the implementation of a guide, on the improvement of the appropriateness of antimicrobial prescribing in primary care. This is a cross-sectional before/after study carried out in Aljarafe Health Care Area (Andalusia, Spain), with a population of 368,728 inhabitants assisted in 37 health centers. Subjects include patients with antibiotic prescriptions during 2009 (pre-intervention phase) or 2012 (postintervention phase) selected by simple random sampling (confidence level, 95%; accuracy, 5%), with infections registered in the electronic clinical history. This study involve training sessions in primary care centers and hospital services, incorporation of the electronic guide to the Health Care Service Websites, and incorporation of the guide to the Digital Health History as a tool to support decision making. Difference on appropriate antibiotic prescribing before and after interventions resulted from the study. Other variables also include age, gender, type of pharmacy, antibiotic prescribed, number of treatments per year, infection site, and main comorbidities In addition, this study uses computerized pharmacy records of reimbursed and dispensed drugs and electronic medical histories. The percentage of appropriate antibiotic prescribing increased from 36% in 2009 to 57% in 2012 (p levels of care could be an effective strategy to improve the use of antimicrobials in primary care.

  13. Mobile applications of photovoltaic planar antennas - SOLPLANT {sup registered}; Mobile Anwendungen von Solaren Planarantennen - SOLPLANT {sup registered}

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, C.; Kirchhof, J. [Institut fuer Solare Energieversorgungstechnik (ISET), Kassel (Germany); Henze, N. [Kassel Univ. (Gesamthochschule) (Germany). Fachgebiet Hochfrequenztechnik

    2005-07-01

    This paper describes the application of photovoltaic (PV) Solar Planar Antennas in mobile applications. The radiating patch element of a planar antenna is replaced by a solar cell. Furthermore radiating slots can be built due to the cell spacing in a solar cell array. The original feature of a solar cell (DC current generation) remains, but additionally the solar cell is now able to receive and transmit electromagnetic waves. Both single solar cells as well as solar cell arrays can be used as antennas. This new approach, the ''Solar Planar Antenna - SOLPLANT {sup registered} '', avoids disadvantages of conventional applications, when solar cells and antennas are used in combination. Based on these considerations, a product development concept was originated at whose basic idea has been registered as a patent in Germany, Europe, Japan and USA. Four applications are presented: a solar cell GPS antenna for vehicular applications, a solar cell slot antenna for mobile communications (GSM), an environmental metering station with GSM function and a Worldspace Satellite Radio, equipped with a SOLPLANT {sup registered} antenna. The aim of the first two products is to integrate these antennas into vehicular glass roofs which are covered with photovoltaic solar cells in order to deliver the electric power for the indoor ventilation of the car. The GPS antenna provides circular polarisation and a main lobe in zenith direction whereas the GSM antenna is vertically polarized and has a monopole-like radiation pattern. Both antennas are built up with commonly used solar cells. The comparison of measured and simulated antenna properties shows a good agreement. At last, some applications on high altitude platforms for wireless communication services and remote sensing are depicted. (ORIG.)

  14. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review.

    Science.gov (United States)

    Castro-Rosas, Javier; Ferreira-Grosso, Carlos Raimundo; Gómez-Aldapa, Carlos Alberto; Rangel-Vargas, Esmeralda; Rodríguez-Marín, María Luisa; Guzmán-Ortiz, Fabiola Araceli; Falfan-Cortes, Reyna Nallely

    2017-12-01

    Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Antimicrobial Resistance Characteristics and Phylogenetic Groups of Escherichia coli Isolated From Diarrheic Calves in Southeast of Iran

    Directory of Open Access Journals (Sweden)

    Zahedeh Naderi

    2016-11-01

    Full Text Available Background: Antimicrobial resistance is one of the main challenges in diarrheal diseases in human and animals. Regardless to the main reason of the disease, approximately all antimicrobial actions including treatment, control and prevention are mostly centralized against Escherichia coli (E. coli strains. Objectives: This work purposed to antimicrobial resistance (AR and determinate virulence genes and phylogenetic groups in E. coli isolates (n=170 obtained from calves with diarrhea. Materials and methods: Isolates were molecular characterized for 17 AR genes and 3 phylogenetic sequences. AR phenotyping were performed on all strains for 12 antimicrobial agents by using disc diffusion method. Results: All AR genes but qnrS were identified with different prevalence in E. coli isolates that the most common genes were aadA (20%, blaTEM (11.7% and sulII (11.2 % belonging to aminoglycoside, β-lactamase and sulphonamide families, respectively. Resistance to the penicillin and sulphamethoxazole drugs was found in 100% of isolates and followed by tetracycline (73.5%, streptomycin (60%, trimethoprim sulphamethoxazole (56.5% and kanamycin (53.5%. The phylogenetic groups A and B1 considerably surrounded the majority of isolates with the frequency of 65.8% and 30.6%, respectively. Conclusions: In Iran, diarrheic calves have an important role as reservoir of resistant E. coli strains against the some drugs which are registered for treatment of calf diarrhea.

  16. Use practices of antimicrobials and other compounds by shrimp and fish farmers in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Tran Thi Kim Chi

    2017-08-01

    Full Text Available Aquaculture production is increasing in Vietnam, but is hampered by frequent disease outbreaks and widespread use of various compounds used to treat the fish and shrimp. The objective of this study was to analyse factors influencing farmer use practices of antimicrobials and other compounds by a questionnaire and observational survey conducted with 60 whiteleg shrimp (Litopenaeus vannamei and 25 fish farmers in three coastal provinces in Northern Vietnam. Personnel in 22 shops distributing feed and chemicals for aquaculture were interviewed about their advice on sale to the farmers. Results showed that 20 different antimicrobial products were used for disease prevention and treatment in shrimp and marine fish culture. Banned products used included chloramphenicol, enrofloxacin and malachite green. Cage fish farmers said they purchased antimicrobial tablets readily available at a local pharmacy and sold for human use. Chinese traders were the main drug suppliers to the shrimp farmers in Quang Ninh and others provinces. Their products were sold with labels and product information written in Chinese only. Farmers appeared to have little awareness and concern about the disease aetiology when applying specific antimicrobials. Up to 50% of the shrimp farmers used up to 20 different disinfectants, e.g. chlorine-based compounds, to disinfect water in storage ponds, often without knowledge of the type of disinfectants and their mode of action. A variety of probiotics, vitamins, minerals and herbal extracts were routinely used by mainly shrimp farmers to enhance shrimp immunity. There is an urgent need to provide aquaculture farmers access to diagnostic and independent disease control advisory services and quality medicated feed, since the current indiscriminate use of antimicrobials and other compounds are inefficient, costly, and hazardous to the aquatic animal and farmer’s health, the environment and food safety.

  17. Antimicrobial and antifungal activity of 2-(1H-tetrazolo-5-ylanilines and products of their structural modifications

    Directory of Open Access Journals (Sweden)

    O. M. Antypenko

    2016-08-01

    Full Text Available Virtually any molecule of antibiotic can be inactivated in the microbial cell by particular resistance mechanism. In this regard, each antibiotic effectiveness starts to decrease, which necessitates the synthesis of new antimicrobial agents. Aim. To examine the previously synthesized substituted 2-(1H-tetrazolo-5-ylanilines and products of their structural modification for antimicrobial and antifungal activity. Materials and methods. The study of biological activity was conducted by disco-diffusion method on Mueller-Hinton agar on these strains of microorganisms: Gram-positive cocci (Staphylococcus aureus ATCC 25923, Enterococcus aeruginosa, E. faecalis ATCC 29212, Gram-negative bacteria (Pseudomonas aeruginosa PSS27853, Escherichia coli ATCC 25922, facultative anaerobic gram-negative bacteria (Klebsiella pneumonia and fungi (Candida albicans ATCC 885653. Results. The studies showed, that the antifungal activity was characteristic only for S-substituted of tetrazolo[1,5-c]quinazoline-(6H-5-ones(thiones. The growth of gram-positive cocci Staphylococcus aureus and Enterococcus faecalis, more effectively detained 5-(N,N-dialkylaminoethylthio-tetrazolo[1,5-c]quinazolines (4.4-4.6. 1-(2- (1H-tetrazolo-5-yl-R1-phenyl-3-R2-phenyl(ethylureas (2.1-2.31 were more selective against Staphylococcus aureus and Enterococcus faecalis. Analysis of «structure-activity relationship» showed, that the introduction of halogen to the aniline fragment leads to increase of activity. Thus, the compound 2.3 with fluorine stopped the growth of Escherichia coli and Klebsiella pneumonia for 31 mm and 21 mm, respectively. Structures with chlorine (2.4 and bromine (2.5 stopped the growth of Pseudomonas aeruginosa at 20 mm and 23 mm, respectively. And the presence of trifluoromethyl group in the phenylureide fragment and chlorine in aniline fragment of compound 2.27 led to the highest growth delay zone 25 mm. Among the investigated compounds only 1-(4-methoxyphenyl-2

  18. Antimicrobial Stewardship and Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Lilian M. Abbo

    2014-05-01

    Full Text Available Urinary tract infections are the most common bacterial infections encountered in ambulatory and long-term care settings in the United States. Urine samples are the largest single category of specimens received by most microbiology laboratories and many such cultures are collected from patients who have no or questionable urinary symptoms. Unfortunately, antimicrobials are often prescribed inappropriately in such patients. Antimicrobial use, whether appropriate or inappropriate, is associated with the selection for antimicrobial-resistant organisms colonizing or infecting the urinary tract. Infections caused by antimicrobial-resistant organisms are associated with higher rates of treatment failures, prolonged hospitalizations, increased costs and mortality. Antimicrobial stewardship consists of avoidance of antimicrobials when appropriate and, when antimicrobials are indicated, use of strategies to optimize the selection, dosing, route of administration, duration and timing of antimicrobial therapy to maximize clinical cure while limiting the unintended consequences of antimicrobial use, including toxicity and selection of resistant microorganisms. This article reviews successful antimicrobial stewardship strategies in the diagnosis and treatment of urinary tract infections.

  19. An endogenous ribonuclease inhibitor regulates the antimicrobial activity of ribonuclease 7 in the human urinary tract

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L.; Eichler, Tad; Wang, Huanyu; Kline, Jennifer; Justice, Sheryl S.; Cohen, Daniel M.; Hains, David S.

    2013-01-01

    Recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Previously, we have shown that ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that has broad-spectrum antimicrobial activity against uropathogenic bacteria. The urothelium of the lower urinary tract and intercalated cells of the kidney produce RNase 7 but regulation of its antimicrobial activity has not been well defined. Here we characterize the expression of an endogenous inhibitor, ribonuclease inhibitor (RI), in the urinary tract and evaluate its effect on RNase 7’s antimicrobial activity. Using RNA isolated from non-infected human bladder and kidney tissue, quantitative real-time PCR showed that RNH1, the gene encoding RI, is constitutively expressed throughout the urinary tract. With pyelonephritis, RNH1 expression and RI peptide production significantly decrease. Immunostaining localized RI production to the umbrella cells of the bladder and intercalated cells of the renal collecting tubule. In vitro assays showed that RI bound to RNase 7 and suppressed its antimicrobial activity by blocking its ability to bind the cell wall of uropathogenic bacteria. Thus, these results demonstrate a new immunomodulatory role for RI and identified a unique regulatory pathway that may affect how RNase 7 maintains urinary tract sterility. PMID:24107847

  20. Use of antimicrobials in veterinary medicine and mechanisms of resistance.

    Science.gov (United States)

    Schwarz, S; Chaslus-Dancla, E

    2001-01-01

    This review deals with the application of antimicrobial agents in veterinary medicine and food animal production and the possible consequences arising from the widespread and multipurpose use of antimicrobials. The various mechanisms that bacteria have developed to escape the inhibitory effects of the antimicrobials most frequently used in the veterinary field are reported in detail. Resistance of bacteria to tetracyclines, macrolide-lincosamide-streptogramin antibiotics, beta-lactam antibiotics, aminoglycosides, sulfonamides, trimethoprim, fluoroquinolones and chloramphenicol/florfenicol is described with regard to enzymatic inactivation, decreased intracellular drug accumulation and modification/protection/replacement of the target sites. In addition, basic information is given about mobile genetic elements which carry the respective resistance genes, such as plasmids, transposons, and gene cassettes/integrons, and their ways of spreading via conjugation, mobilisation, transduction, and transformation.

  1. Food Animals and Antimicrobials: Impacts on Human Health

    Science.gov (United States)

    Marshall, Bonnie M.; Levy, Stuart B.

    2011-01-01

    Summary: Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the “precautionary principle.” Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans—directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes. PMID:21976606

  2. Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5.

    Science.gov (United States)

    DeFilippi, Stefanie; Groulx, Emma; Megalla, Merna; Mohamed, Rowida; Avis, Tyler J

    2018-04-01

    Bacillus subtilis has shown success in antagonizing plant pathogens where strains of the bacterium produce antimicrobial cyclic lipopeptides (CLPs) in response to microbial competitors in their ecological niche. To gain insight into the inhibitory role of these CLPs, B. subtilis strain B9-5 was co-cultured with three pathogenic fungi. Inhibition of mycelial growth and spore germination was assessed and CLPs produced by B. subtilis B9-5 were quantified over the entire period of microbial interaction. B. subtilis B9-5 significantly inhibited mycelial growth and spore germination of Fusarium sambucinum and Verticillium dahliae, but not Rhizopus stolonifer. LC-MS analysis revealed that B. subtilis differentially produced fengycin and surfactin homologs depending on the competitor. CLP quantification suggested that the presence of Verticillium dahliae, a fungus highly sensitive to the compounds, caused an increase followed by a decrease in CLP production by the bacterium. In co-cultures with Fusarium sambucinum, a moderately sensitive fungus, CLP production increased more gradually, possibly because of its slower rate of spore germination. With co-cultures of the tolerant fungus Rhizopus stolonifer, B. subtilis produced high amounts of CLPs (per bacterial cell) for the duration of the interaction. Variations in CLP production could be explained, in part, by the pathogens' overall sensitivities to the bacterial lipopeptides and/or the relative growth rates between the plant pathogen and B. subtilis. CLP production varied substantially temporally depending on the targeted fungus, which provides valuable insight concerning the effectiveness of B. subtilis B9-5 protecting its ecological niche against the ingress of these pathogens.

  3. Microbial shifts in the swine nasal microbiota in response to parenteral antimicrobial administration.

    Science.gov (United States)

    Zeineldin, Mohamed; Aldridge, Brian; Blair, Benjamin; Kancer, Katherine; Lowe, James

    2018-05-24

    The continuous administration of antimicrobials in swine production has been widely criticized with the increase of antimicrobial-resistant bacteria and dysbiosis of the beneficial microbial communities. While an increasing number of studies investigate the effects of antimicrobial administration on swine gastrointestinal microbiota biodiversity, the impact of their use on the composition and diversity of nasal microbial communities has not been widely explored. The objective of this study was to characterize the short-term impact of different parenteral antibiotics administration on the composition and diversity of nasal microbial communities in growing pigs. Five antimicrobial treatment groups, each consisting of four, eight-week old piglets, were administered one of the antimicrobials; Ceftiofur Crystalline free acid (CCFA), Ceftiofur hydrochloride (CHC), Tulathromycin (TUL), Oxytetracycline (OTC), and Procaine Penicillin G (PPG) at label dose and route. Individual deep nasal swabs were collected immediately before antimicrobial administration (control = day 0), and again on days 1, 3, 7, and 14 after dosing. The nasal microbiota across all the samples were dominated by Firmicutes, proteobacteria and Bacteroidetes. While, the predominant bacterial genera were Moraxella, Clostridium and Streptococcus. Linear discriminant analysis, showed a pronounced, antimicrobial-dependent microbial shift in the composition of nasal microbiota and over time from day 0. By day 14, the nasal microbial compositions of the groups receiving CCFA and OTC had returned to a distribution that closely resembled that observed on day 0. In contrast, pigs that received CHC, TUL and PPG appeared to deviate away from the day 0 composition by day 14. Based on our results, it appears that the impact of parenteral antibiotics on the swine nasal microbiota is variable and has a considerable impact in modulating the nasal microbiota structure. Our results will aid in developing alternative

  4. Antimicrobial (Drug) Resistance

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Antimicrobial (Drug) Resistance Go to Information for Researchers ► Credit: ... and infectious diseases. Why Is the Study of Antimicrobial (Drug) Resistance a Priority for NIAID? Over time, ...

  5. Antimicrobial Resistance Profiles of the Two Porcine Salmonella Typhimurium Isolates

    Directory of Open Access Journals (Sweden)

    Kemal METİNER

    2016-07-01

    Full Text Available The aim of the study is to detect the presence of the Salmonella species in swine with diarrhea, and to investigate their antimicrobial resistance and extended spectrum beta lactamase (ESBL and/or AmpC β-lactamase production. For this purpose, stool samples from three commercial pig farms in Istanbul and Tekirdag were collected and processed for Salmonella isolation by culture and isolates were identified by biochemical activity tests. Salmonella isolates were confirmed by PCR then serotyped. Antimicrobial resistance and ESBL and AmpC production of the isolates were determined according to the Clinical and Laboratory Standards Institute (CLSI standard. In the study, two hundred and thirty eight stool samples were examined. Salmonella spp. were obtained from 2 samples, and the isolation rate was determined as 0.8%. Both of the isolates were defined as Salmonella enterica subsp. enterica serovar Typhimurium (serotype 1, 4, [5], 12: I: 1, 2 by serotyping. Both of them were resistant to cefaclor, cloxacillin and lincomycin (100%. Multidrug resistance (resistance ≥3 antimicrobials observed in all isolates. ESBL and AmpC production were not detected in any of the isolates. To our knowledge, this is the first report of the isolation of S. Typhimurium in pigs with diarrhea in Turkey. This study also represents the first report of multi-drug resistant S. Typhimurium isolates from pig stools in Turkey.

  6. Debug register rootkits : A study of malicious use of the IA-32 debug registers

    OpenAIRE

    Persson, Emil; Mattsson, Joel

    2012-01-01

    The debug register rootkit is a special type of rootkit that has existed for over a decade, and is told to be undetectable by any scanning tools. It exploits the debug registers in Intel’s IA-32 processor architecture. This paper investigates the debug register rootkit to find out why it is considered a threat, and which malware removal tools have implemented detection algorithms against this threat. By implementing and running a debug register rootkit against the most popular Linux tools, ne...

  7. Comparison of antimicrobial activities of brine salting, Chlorinated ...

    African Journals Online (AJOL)

    Chemical preservatives can be used to reduce the overall microbial populations in fish and fish products. This study was set to determine the antimicrobial activities of brine salting, chlorinated solution, and Moringa oleifera plant extracts treatments on enteric bacteria in Rastrineobola argentea and Oreochromis niloticus fish ...

  8. Isolation, identification and antimicrobial suscep- tibility profiles of ...

    African Journals Online (AJOL)

    determine the in vitro antimicrobial resistance profiles of the isolates. A to- tal of 266 samples ... meats), cross contamination through direct contact of foods to contaminated surfaces such as stainless steel, hanging ... of contaminated milk and meat products (Endrias Zewdu and Cornelius 2009), through mutation, acquisition ...

  9. Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs.

    Science.gov (United States)

    Duarte, Antonia Eliene; de Menezes, Irwin Rose Alencar; Bezerra Morais Braga, Maria Flaviana; Leite, Nadghia Figueiredo; Barros, Luiz Marivando; Waczuk, Emily Pansera; Pessoa da Silva, Maria Arlene; Boligon, Aline; Teixeira Rocha, João Batista; Souza, Diogo Onofre; Kamdem, Jean Paul; Melo Coutinho, Henrique Douglas; Escobar Burger, Marilise

    2016-06-08

    Rhaphiodon echinus is a weed plant used in the Brazilian folk medicinal for the treatment of infectious diseases. In this study, the essential oil of R. echinus leaf was investigated for its antimicrobial properties. The chemical constituents of the essential oil were characterized by GC-MS. The antimicrobial properties were determined by studying by the microdilution method the effect of the oil alone, and in combination with antifungal or antibiotic drugs against the fungi Candida albicans, Candida krusei and Candida tropicalis and the microbes Escherichia coli, Staphylococcus aureus and Pseudomonas. In addition, the iron (II) chelation potential of the oil was determined. The results showed the presence of β-caryophyllene and bicyclogermacrene in major compounds, and revealed a low antifungal and antibacterial activity of the essential oil, but a strong modulatory effect on antimicrobial drugs when associated with the oil. The essential oil showed iron (II) chelation activity. The GC-MS characterization revealed the presence of monoterpenes and sesquiterpenes in the essential oil and metal chelation potential, which may be responsible in part for the modulatory effect of the oil. These findings suggest that essential oil of R. echinus is a natural product capable of enhancing the antibacterial and antifungal activity of antimicrobial drugs.

  10. The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Wegener, Henrik Caspar

    1999-01-01

    Modern food animal production depends on use of large amounts of antibiotics for disease control. This provides favourable conditions for the spread and persistence of antimicrobial-resistant zoonotic bacteria such as Campylobacter and E. coli O157. The occurrence of antimicrobial resistance...... to antimicrobials used in human therapy is increasing in human pathogenic Campylobacter and E. coli from animals. There is an urgent need to implement strategies for prudent use of antibiotics in food animal production to prevent further increases in the occurrence of antimicrobial resistance in food-borne human...

  11. Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems.

    Science.gov (United States)

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2016-01-01

    This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use.

  12. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics

    Directory of Open Access Journals (Sweden)

    Wataru Aoki

    2013-08-01

    Full Text Available Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety.

  13. The Danish Adoption Register.

    Science.gov (United States)

    Petersen, Liselotte; Sørensen, Thorkild I A

    2011-07-01

    The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia. The register encompass information on all 14,425 non-familial adoptions of Danish children legally granted in Denmark 1924-1947. It includes name and date of birth of each adoptee and his or her biological and adoptive parents, date of transfer to adoptive parents and date of formal adoption. The linkage to biological and adoptive parents is close to complete, even biological fathers are registered for 91.4% of the adoptees. Adoption registers are a unique source allowing disentangling of genetic and familial environmental influences on traits, risk of diseases, and mortality.

  14. Phenotypic and Genotypic Analysis of Antimicrobial Resistance among Listeria monocytogenes Isolated from Australian Food Production Chains

    Directory of Open Access Journals (Sweden)

    Annaleise Wilson

    2018-02-01

    Full Text Available The current global crisis of antimicrobial resistance (AMR among important human bacterial pathogens has been amplified by an increased resistance prevalence. In recent years, a number of studies have reported higher resistance levels among Listeria monocytogenes isolates, which may have implications for treatment of listeriosis infection where resistance to key treatment antimicrobials is noted. This study examined the genotypic and phenotypic AMR patterns of 100 L. monocytogenes isolates originating from food production supplies in Australia and examined this in the context of global population trends. Low levels of resistance were noted to ciprofloxacin (2% and erythromycin (1%; however, no resistance was observed to penicillin G or tetracycline. Resistance to ciprofloxacin was associated with a mutation in the fepR gene in one isolate; however, no genetic basis for resistance in the other isolate was identified. Resistance to erythromycin was correlated with the presence of the ermB resistance gene. Both resistant isolates belonged to clonal complex 1 (CC1, and analysis of these in the context of global CC1 isolates suggested that they were more similar to isolates from India rather than the other CC1 isolates included in this study. This study provides baseline AMR data for L. monocytogenes isolated in Australia, identifies key genetic markers underlying this resistance, and highlights the need for global molecular surveillance of resistance patterns to maintain control over the potential dissemination of AMR isolates.

  15. ANTIMICROBIAL SUBSTANCES: AN ALTERNATIVE APPROACH TO THE EXTENSION OF SHELF LIFE

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Lukinova

    2017-01-01

    Full Text Available The problem of high losses of raw materials and products in the food industry is reviewed in the article. Brief lists of spoilage types as well as the available approaches to meat preservation are discussed including technological, physical and chemical. Natural antimicrobial substances are considered as alternative approaches, the existence of which has been known for more than 60 years. Antimicrobial peptides are the evolutionary ancient factor of innate immunity and are found in the cells and tissues of vertebrate and invertebrate animals, plants, fungi and bacteria. Present approaches to their classification, structure and mechanisms of action are discussed. The information from the Antimicrobial Peptide Database and the UniProt Protein Database is systematized in relation to the presence of antimicrobial substances in the tissues of pigs and cattle. Such parameters as the molecular weight, isoelectric point, charge, amino acid sequence and share a hydrophobic part, as well as a range of activities: antibacterial, antifungal, antiviral, antiparasitic, etc. are presented in the article. On the basis of the review, alternative sources of antimicrobial proteins and peptides are proposed as well as technology for shelf life prolonging.

  16. Antioxidant and antimicrobial activity of capulin (Prunus serotina subsp capuli) extracts

    OpenAIRE

    Jimenez, M.; Castillo, I.; Azuara, E.; Beristain, C.I.

    2011-01-01

    Capulin (Prunus serotina subsp. capuli) is an annual fruit widely used in Mexico for the elaboration of several traditional products, such as medicinal tea, which is considered to present antioxidant and antimicrobial properties. The aim of this work was to evaluate the antioxidant and antimicrobial properties of aqueous, acetone, ethanol and methanol extracts. The ethanol extract presented a high anthocyanin (102±7.70 mg Cyd-3-glu/100 g extract) and polyphenol (1732±43.40 mg GAE /100 g extra...

  17. Danish registers on aspects of reproduction

    DEFF Research Database (Denmark)

    Blenstrup, Lene Tølbøll; Knudsen, Lisbeth B.

    2011-01-01

    Introduction: The establishing of three Danish population based registers, namely the Fertility Database, the Register of Legally Induced Abortions and the In Vitro Fertilisation register aimed at providing data for surveying of reproductive outcome. Content: The registers include information...... on births, abortions and assisted reproduction as well as selected characteristics of the women (and men) involved. Validity and Coverage: Both the validity and coverage of each register is considered of high quality. Conclusions: These registers provide, both individually and in combination, unique...

  18. Control of Antimicrobial Resistance Requires an Ethical Approach

    Directory of Open Access Journals (Sweden)

    Ben Parsonage

    2017-11-01

    Full Text Available Ethical behavior encompasses actions that benefit both self and society. This means that tackling antimicrobial resistance (AMR becomes an ethical obligation, because the prospect of declining anti-infectives affects everyone. Without preventive action, loss of drugs that have saved lives over the past century, will condemn ourselves, people we know, and people we don’t know, to unacceptable risk of untreatable infection. Policies aimed at extending antimicrobial life should be considered within an ethical framework, in order to balance the choice, range, and quality of drugs against stewardship activities. Conserving availability and effectiveness for future use should not compromise today’s patients. Practices such as antimicrobial prophylaxis for healthy people ‘at risk’ should receive full debate. There are additional ethical considerations for AMR involving veterinary care, agriculture, and relevant bio-industries. Restrictions for farmers potentially threaten the quality and quantity of food production with economic consequences. Antibiotics for companion animals do not necessarily spare those used for humans. While low-income countries cannot afford much-needed drugs, pharmaceutical companies are reluctant to develop novel agents for short-term return only. Public demand encourages over-the-counter, internet, black market, and counterfeit drugs, all of which compromise international control. Prescribers themselves require educational support to balance therapeutic choice against collateral damage to both body and environment. Predicted mortality due to AMR provides justification for international co-operation, commitment and investment to support surveillance and stewardship along with development of novel antimicrobial drugs. Ethical arguments for, and against, control of antimicrobial resistance strategies are presented and discussed in this review.

  19. Ethical conflicts in public health research and practice: antimicrobial resistance and the ethics of drug development.

    Science.gov (United States)

    Aiello, Allison E; King, Nicholas B; Foxman, B

    2006-11-01

    Since the 1960s, scientists and pharmaceutical representatives have called for the advancement and development of new antimicrobial drugs to combat infectious diseases. In January 2005, Senate Majority Leader Bill Frist (R-TN), MD, introduced a biopreparedness bill that included provisions for patent extensions and tax incentives to stimulate industry research on new antimicrobials. Although government stimulus for private development of new antimicrobials is important, it does not resolve long-standing conflicts of interest between private entities and society. Rising rates of antimicrobial resistance have only exacerbated these conflicts. We used methicillin-resistant Staphylococcus aureus as a case study for reviewing these problems, and we have suggested alternative approaches that may halt the vicious cycle of resistance and obsolescence generated by the current model of antimicrobial production.

  20. Antimicrobial-Resistant Campylobacter in Organically and Conventionally Raised Layer Chickens.

    Science.gov (United States)

    Kassem, Issmat I; Kehinde, Olugbenga; Kumar, Anand; Rajashekara, Gireesh

    2017-01-01

    Poultry is a major source of Campylobacter, which can cause foodborne bacterial gastroenteritis in humans. Additionally, poultry-associated Campylobacter can develop resistance to important antimicrobials, which increases the risk to public health. While broiler chickens have been the focus of many studies, the emergence of antimicrobial-resistant Campylobacter on layer farms has not received equal attention. However, the growing popularity of cage-free and organic layer farming necessitates a closer assessment of (1) the impact of these farming practices on the emergence of antimicrobial-resistant Campylobacter and (2) layers as a potential source for the transmission of these pathogens. Here, we showed that the prevalence of Campylobacter on organic and conventional layer farms was statistically similar (p > 0.05). However, the average number of Campylobacter jejuni-positive organically grown hens was lower (p < 0.05) in comparison to conventionally grown hens. Campylobacter isolated from both production systems carried antimicrobial resistance genes. The tet(O) and cmeB were the most frequently detected genes, while the occurrence of aph-3-1 and blaOXA-61 was significantly lower (p < 0.05). Farming practices appeared to have an effect on the antimicrobial resistance phenotype, because the isolates from organically grown hens on two farms (OF-2 and OF-3) exhibited significantly lower resistance (p < 0.05) to ciprofloxacin, erythromycin, and tylosin. However, on one of the sampled organic farms (OF-1), a relatively high number of antimicrobial-resistant Campylobacter were isolated. We conclude that organic farming can potentially impact the emergence of antimicrobial-resistant Campylobacter. Nevertheless, this impact should be regularly monitored to avoid potential relapses.

  1. The Utilization of Ocimum sanctum L. Essential Oil for Antimicrobial Edible Packaging and Its Application for Aloe Vera Dodol

    Directory of Open Access Journals (Sweden)

    Pramono Putro Utomo

    2013-12-01

    Full Text Available Aloe vera dodol is a traditional food of West Kalimantan that has short shelf life because of its microbial activity. Antimicrobial edible packaging could be used to maintain the quality of packaged food product actively.The purpose of this study is to prolong the shelf life of food products using antimicrobial edible packaging from durian peel and basil (Ocimum sanctum L. essential oil. The research was conducted through 4 phases,i.e. the extraction of pectin from durian peel, basil essential oil distillation, Aspergillus flavus inhibition assay, and antimicrobial edible coating production incorporated with Ocimum sanctum L. essential oil. The results showed that pectin extracted from durian peel at pH 4.5 could give yield of 5.9% with a clear coat (Colourless.The concentration of Ocimum sanctum L. essential oil by 0.6% could inhibit the growth of Aspergillus flavus and prolong the shelf life when applied as an antimicrobial ingredient in edible coating.

  2. The distribution of animal antimicrobials in British Columbia for over-the-counter and veterinary sales, 2012 to 2014.

    Science.gov (United States)

    Radke, Brian R

    2018-03-01

    Canadian Animal Health Institute (CAHI) data are used for provincial, national, and international comparisons of Canadian animal antimicrobial use. The objectives of this paper were to: i) use CAHI and British Columbia (BC) antimicrobial distribution data to group BC antimicrobial sales into the following BC retail distribution channels: over-the-counter retail outlets, livestock and poultry feed mills, aquaculture feed mills, livestock and poultry veterinarians, and companion animal veterinarians; and ii) to validate the CAHI BC distribution data and BC's antimicrobial distribution data from 2012 to 2014. Annual total antimicrobial distribution and distribution by antimicrobial class were presented for each distribution channel. The distribution of medically important antimicrobials for production animals was validated, the distribution of ionophores was not. A lack of data precluded any attempt to validate the distribution of antimicrobials for companion animals. Each distribution channel typically experienced substantial fluctuations in total antimicrobial use and use by antibiotic class at least once over the 3-year period. The validated data are useful for evidence-based analysis of a proposed Canadian policy requiring a veterinary prescription for all medically important antimicrobials.

  3. pMPES: A Modular Peptide Expression System for the Delivery of Antimicrobial Peptides to the Site of Gastrointestinal Infections Using Probiotics

    Directory of Open Access Journals (Sweden)

    Kathryn Geldart

    2016-10-01

    Full Text Available Antimicrobial peptides are a promising alternative to traditional antibiotics, but their utility is limited by high production costs and poor bioavailability profiles. Bacterial production and delivery of antimicrobial peptides (AMPs directly at the site of infection may offer a path for effective therapeutic application. In this study, we have developed a vector that can be used for the production and secretion of seven antimicrobial peptides from both Escherichia coli MC1061 F’ and probiotic E.coli Nissle 1917. The vector pMPES (Modular Peptide Expression System employs the Microcin V (MccV secretion system and a powerful synthetic promoter to drive AMP production. Herein, we demonstrate the capacity of pMPES to produce inhibitory levels of MccV, Microcin L (MccL, Microcin N (McnN, Enterocin A (EntA, Enterocin P (EntP, Hiracin JM79 (HirJM79 and Enterocin B (EntB. To our knowledge, this is the first demonstration of such a broadly-applicable secretion system for AMP production. This type of modular expression system could expedite the development of sorely needed antimicrobial technologies

  4. Antimicrobial activity of Nigerian medicinal plants

    Science.gov (United States)

    Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam

    2017-01-01

    Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606

  5. Antimicrobial resistance and production of biofilms in clinical isolates of coagulase-negative Staphylococcus strains.

    Science.gov (United States)

    de Allori, María Cristina Gaudioso; Jure, María Angela; Romero, Cintia; de Castillo, Marta Elena Cecilia

    2006-08-01

    Coagulase-negative Staphylococcus (CNS) strains are frequently associated with bacteremia and hospital-acquired infections. 293 CNS strains were isolated from 744 samples from a dialysis center in S. M. de Tucumán, Argentina, from hemocultures, catheters and urine and identified as S. epidermidis, S. haemolyticus, S. saprophyticus, S. hominis and S. cohnii. 13 antibiotics were tested for antibacterial resistance. 75% of S. saprophyticus, 66% of S. epidermidis and 57% of S. haemolyticus was resistant to erythromycin and 50% of S. haemolyticus was resistant to ciprofloxacin. OXA resistance was found in 43% of S. haemolyticus. Presence of PBP 2a in OXA-R strains was confirmed with the modified agglutination assay (MRSA) and presence of the mecA gene. 15 strains with intermediate halos for vancomycin and teicoplanin showed a MIC in solid and liquid medium resistance to methicillin and biofilm production are decisive for a prompt and appropriate antimicrobial therapy and limited use of inappropriate glycopeptides.

  6. Antimicrobial-Resistance Genetic Markers in Potentially Pathogenic Gram Positive Cocci Isolated from Brazilian Soft Cheese.

    Science.gov (United States)

    Resende, Juliana Alves; Fontes, Cláudia Oliveira; Ferreira-Machado, Alessandra Barbosa; Nascimento, Thiago César; Silva, Vânia Lúcia; Diniz, Cláudio Galuppo

    2018-02-01

    Although most Brazilian dairy products meet high technological standards, there are quality issues regarding milk production, which may reduce the final product quality. Several microbial species may contaminate milk during manufacture and handling. If antimicrobial usage remains uncontrolled in dairy cattle, the horizontal transfer of antimicrobial resistance genes in foodstuffs may be of particular concern for both food producers and dairy industry. This study focused on the evaluation of putative Gram positive cocci in Minas cheese and of antimicrobial and biocide resistance genes among the isolated bacteria. Representative samples of 7 different industrially trademarked Minas cheeses (n = 35) were processed for selective culture and isolation of Gram positive cocci. All isolated bacteria were identified by DNA sequencing of the 16S rRNA gene. Antimicrobial resistance genes were screened by PCR. Overall, 208 strains were isolated and identified as follows: Enterococcus faecalis (47.6%), Macrococcus caseolyticus (18.3%), Enterococcus faecium (11.5%), Enterococcus caseliflavus (7.7%), Staphylococcus haemolyticus (7.2%), Staphylococcus aureus (4.3%), Staphylococcus epidermidis (2.9%), and Enterococcus hirae (0.5%). The genetic markers mecA (78.0%) and smr (71.4%) were the most prevalent, but others were also detected, such as blaZ (65.2%), msrA (60.9%), msrB (46.6%), linA (54.7%), and aacA-aphD (47.6%). The occurrence of opportunist pathogenic bacteria harboring antimicrobial resistance markers in the cheese samples are of special concern, since these bacteria are not considered harmful contaminating agents according to the Brazilian sanitary regulations. However, they are potentially pathogenic bacteria and the cheese may be considered a reservoir for antimicrobial resistance genes available for horizontal transfer through the food chain, manufacturing personnel and consumers. © 2018 Institute of Food Technologists®.

  7. SCREENING OF ANTIMICROBIAL PROPERTIES OF ETHANOLIC EXTRACTS FROM SOME KINDS OF RAW MATERIALS WITH QUINONEDERIVATIVES

    Directory of Open Access Journals (Sweden)

    Boyko N.N.

    2014-12-01

    Full Text Available This paper presents data on screening of antimicrobial properties of extracts from some kinds of raw materials (18 plants with hydroquinone, naphtoquinone or anthraquinone derivatives. Some technological parameters of extracts (density and concentration of extraneous substances have been determined. The most appropriate microbiological method of studying antimicrobial properties of extracts, diffusion method of “well”, has been applied; special mathematic method of comparison of antimicrobial properties of extracts vector analysis has been applied in order to study and to compare antimicrobial properties of extracts. Indexes of antimicrobial properties of extracts have been determined: a complex index of medicinal product antimicrobial activity for quantitative estimation of antimicrobial effect - A, and square of correlation coefficient - r², which demonstrates the spectrum of antimicrobial activity of the extracts (degree of similarity to the standard. The most active extracts have been selected; they have antimicrobial properties of medium strength: from the herb of chimaphila umbellata А=2.20; the fruits of rhamnus cathartica А=2.12; the root of rubia tinctorum А=2.11; the bark of frangula alnus А=2.05; the root of rumex confertus А=2.04; the leaf of pyrola rotundifolia А=2.00; and leaf of arctostaphylos uva-ursi А=2.08 (but extract from uva-ursi did not affected on 2 strains of microorganisms r²=0.64. Low levels of antimicrobial activity have been demonstrated by the extract obtained from the leaf of urtica dioica А=0.72, r²=0.34. The mean result of the complex index of antimicrobial activity for the most of extracts from plants containing quinonederivatives is A = 1.77 (on 70% vol. ethanol at a ratio of raw material : extracting agent – 1:7 wt. : vol. and may range from 0.68 to 2.85. The mean result of the correlation coefficient is r = 0.93 and may range from 0.59 to 0.99. The mean result of the concentration of

  8. Controversies in Antimicrobial Stewardship: Focus on New Rapid Diagnostic Technologies and Antimicrobials

    Directory of Open Access Journals (Sweden)

    Eric Wenzler

    2016-01-01

    Full Text Available Antimicrobial stewardship programs (ASPs are challenged with ensuring appropriate antimicrobial use while minimizing expenditures. ASPs have consistently demonstrated improved patient outcomes and significant cost reductions but are continually required to justify the costs of their existence and interventions due to the silo mentality often adopted by hospital administrators. As new technologies and antimicrobials emerge, ASPs are in a constant tug-of-war between providing optimal clinical outcomes and ensuring cost containment. Additionally, robust data on cost-effectiveness of new rapid diagnostic technologies and antimicrobials with subsequent ASP interventions to provide justification are lacking. As the implementation of an ASP will soon be mandatory for acute care hospitals in the United States, ASPs must find ways to justify novel interventions to align themselves with healthcare administrators. This review provides a framework for the justification of implementing a rapid diagnostic test or adding a new antimicrobial to formulary with ASP intervention, reviews approaches to demonstrating cost-effectiveness, and proposes methods for which ASPs may reduce healthcare expenditures via alternative tactics.

  9. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated from Swine Herds in the United States

    Science.gov (United States)

    Mirajkar, Nandita S.; Davies, Peter R.

    2016-01-01

    Outbreaks of swine dysentery, caused by Brachyspira hyodysenteriae and the recently discovered “Brachyspira hampsonii,” have reoccurred in North American swine herds since the late 2000s. Additionally, multiple Brachyspira species have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determine the antimicrobial susceptibility trends of four Brachyspira species originating from U.S. swine herds and to investigate their associations with the bacterial species, genotypes, and epidemiological origins of the isolates. We evaluated the susceptibility of B. hyodysenteriae, B. hampsonii, Brachyspira pilosicoli, and Brachyspira murdochii to tiamulin, valnemulin, doxycycline, lincomycin, and tylosin by broth microdilution and that to carbadox by agar dilution. In general, Brachyspira species showed high susceptibility to tiamulin, valnemulin, and carbadox, heterogeneous susceptibility to doxycycline, and low susceptibility to lincomycin and tylosin. A trend of decreasing antimicrobial susceptibility by species was observed (B. hampsonii > B. hyodysenteriae > B. murdochii > B. pilosicoli). In general, Brachyspira isolates from the United States were more susceptible to these antimicrobials than were isolates from other countries. Decreased antimicrobial susceptibility was associated with the genotype, stage of production, and production system from which the isolate originated, which highlights the roles of biosecurity and husbandry in disease prevention and control. Finally, this study also highlights the urgent need for Clinical and Laboratory Standards Institute-approved clinical breakpoints for Brachyspira species, to facilitate informed therapeutic and control strategies. PMID:27252458

  10. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated from Swine Herds in the United States.

    Science.gov (United States)

    Mirajkar, Nandita S; Davies, Peter R; Gebhart, Connie J

    2016-08-01

    Outbreaks of swine dysentery, caused by Brachyspira hyodysenteriae and the recently discovered "Brachyspira hampsonii," have reoccurred in North American swine herds since the late 2000s. Additionally, multiple Brachyspira species have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determine the antimicrobial susceptibility trends of four Brachyspira species originating from U.S. swine herds and to investigate their associations with the bacterial species, genotypes, and epidemiological origins of the isolates. We evaluated the susceptibility of B. hyodysenteriae, B. hampsonii, Brachyspira pilosicoli, and Brachyspira murdochii to tiamulin, valnemulin, doxycycline, lincomycin, and tylosin by broth microdilution and that to carbadox by agar dilution. In general, Brachyspira species showed high susceptibility to tiamulin, valnemulin, and carbadox, heterogeneous susceptibility to doxycycline, and low susceptibility to lincomycin and tylosin. A trend of decreasing antimicrobial susceptibility by species was observed (B. hampsonii > B. hyodysenteriae > B. murdochii > B. pilosicoli). In general, Brachyspira isolates from the United States were more susceptible to these antimicrobials than were isolates from other countries. Decreased antimicrobial susceptibility was associated with the genotype, stage of production, and production system from which the isolate originated, which highlights the roles of biosecurity and husbandry in disease prevention and control. Finally, this study also highlights the urgent need for Clinical and Laboratory Standards Institute-approved clinical breakpoints for Brachyspira species, to facilitate informed therapeutic and control strategies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Expression of recombinant Arabian camel lactoferricin-related peptide in Pichia pastoris and its antimicrobial identification.

    Science.gov (United States)

    Chahardooli, Mahmood; Niazi, Ali; Aram, Farzaneh; Sohrabi, Seyyed Mohsen

    2016-01-30

    Lactoferricin (LFcin) is a strong cationic peptide released from the N-terminus of lactoferrin by gastric pepsin digestion. LFcin has some important properties, including high antimicrobial activity. To date, lactoferricins have been isolated and characterised from various animal species, but not from camel. The aim of this study was to characterise and express recombinant camel lactoferricin (LFcinC) in Pichia pastoris and investigate its antimicrobial activity. After methanol induction, LFcinC was expressed and secreted into a culture broth medium and the results determined by concentrated supernatant culture medium showed high antimicrobial activity against the following microorganisms: Escherichia coli PTCC 1330 (ATCC 8739), Staphylococcus aureus PTCC 1112 (ATCC 6538), Pseudomonas aeruginosa PTCC 1074 (ATCC 9027), Bacillus subtilis PTCC 1023 (ATCC 6633), and Candida albicans PTCC 5027 (ATCC 10231). Thermal stability was clarified with antibacterial activity against Escherichia coli PTCC 1330 (ATCC 8739). Results confirmed that camel lactoferricin had suitable antimicrobial activity and its production by Pichia pastoris can be used for recombinant production. © 2015 Society of Chemical Industry.

  12. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Silvia I. Cazorla

    2018-04-01

    Full Text Available The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431 and L. paracasei CNCM I-1518 (Lp 1518 to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus. Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old to old age (180 days old. Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  13. Essential oils as natural food antimicrobial agents: a review.

    Science.gov (United States)

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.

  14. Antimicrobial compounds in tears.

    Science.gov (United States)

    McDermott, Alison M

    2013-12-01

    The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. [The antibiotic policy. The Infection Committee and antimicrobial use].

    Science.gov (United States)

    Cisneros, José Miguel; Pérez-Moreno, M Antonia; Gil-Navarro, M Victoria

    2014-10-01

    The antibiotic policy is the set of strategies and activities undertaken to organize the antimicrobial treatment in the hospital, and achieve health outcomes for patients. The basic principles are to be direct evidence-based medicine, local epidemiology and freedom for prescribing physicians. An antibiotic policy is now more necessary than ever for clinical, epidemiological and economic reasons. The Infection Committee is responsible for the antibiotics policy in hospitals. Its functions as an advisory body to the medical directorate are the analysis of the epidemiology of the infections in the center, measures for its prevention and control, improving the appropriate use of antimicrobials, training, and knowledge production. To achieve clinical, environmental and economic policy objectives of antibiotics is not easy. The agreement of hundreds of professionals for recommendations on indications, dosage and duration of antibiotic treatment, based on the best scientific evidence and local guides is complex, but it can be done. The key to this is that the Infection Committee develops antimicrobial stewardship through a multidisciplinary team and professional leadership, and has the institutional support to ensure that the proper use of antimicrobials is a priority for the center, and therefore of each of the services involved, and that the team has the resources for antimicrobial stewardship. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  16. The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Alicia Boto

    2018-02-01

    Full Text Available Host-defense peptides, also called antimicrobial peptides (AMPs, whose protective action has been used by animals for millions of years, fulfill many requirements of the pharmaceutical industry, such as: (1 broad spectrum of activity; (2 unlike classic antibiotics, they induce very little resistance; (3 they act synergically with conventional antibiotics; (4 they neutralize endotoxins and are active in animal models. However, it is considered that many natural peptides are not suitable for drug development due to stability and biodisponibility problems, or high production costs. This review describes the efforts to overcome these problems and develop new antimicrobial drugs from these peptides or inspired by them. The discovery process of natural AMPs is discussed, as well as the development of synthetic analogs with improved pharmacological properties. The production of these compounds at acceptable costs, using different chemical and biotechnological methods, is also commented. Once these challenges are overcome, a new generation of versatile, potent and long-lasting antimicrobial drugs is expected.

  17. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... If you need help accessing information in different file formats, see Instructions for Downloading ...

  18. Chemical Composition and Antimicrobial Activity of Royal Jelly - Review

    Directory of Open Access Journals (Sweden)

    Lavinia Ioana Bărnuţiu

    2011-10-01

    Full Text Available The present paper presents the literature data regarding the chemical composition and antimicrobial activity of RoyalJelly. Royal Jelly is a secretion from the hypofaringeal glands of worker bees which serves as a food for queen beeand to the growing up larvae. Having biological properties already proven, Royal Jelly has considerable commercialappeal and is today used in many sectors (pharmaceutical, food industries and cosmetic products. Thephysicochemical composition of pure royal jelly are analyzed by determining moisture, ash, lipids, proteins,vitamins,aminoacids, carbohydrates, 10-HDA; RJ is the key substance in the antimicrobial function of the system Apismellifera. The intact Royal Jelly exhibited the highest antibacterial activity.

  19. Antimicrobial Drugs in the Home

    Centers for Disease Control (CDC) Podcasts

    Survey participants in the United Kingdom admitted keeping leftover antimicrobial drugs for future use and taking them without medical advice. Dr. J. Todd Weber, director of CDC's Office of Antimicrobial Resistance, advises against the practice, which can be dangerous and can promote antimicrobial drug resistance.

  20. National Register Historic Districts

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The National Register Historic District layer is a shape file showing the boundaries of Historic Districts that are listed on the National Register of Historic Places.

  1. A Comparative Study on the Antimicrobial Susceptibility Patterns of ...

    African Journals Online (AJOL)

    ... Laboratory of Lagos University Teaching Hospital (LUTH). Isolates were obtained from urine and swabs of wounds, ear, throat and eye. Identification was carried out by conventional methods and antimicrobial susceptibility was investigated by disk diffusion method. All isolates were tested for beta-lactamase production.

  2. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken--a systematic review.

    Science.gov (United States)

    Simoneit, C; Burow, E; Tenhagen, B-A; Käsbohrer, A

    2015-01-01

    Antimicrobials play an important role in animal and human health care. It was the aim of this systematic review to assess the effects of oral administration of antimicrobials on the development of antimicrobial resistance (AMR) in Escherichia coli (E. coli) from chickens. Moreover, the effects of the administration of more than one antimicrobial and of different dosages were studied. Literature was searched in November 2012 from the electronic databases ISI Web of Science, PubMed, Scopus and a national literature database (DIMDI) as well as the database ProQuest LLC. The search was updated in March 2014. Original studies describing a treatment (A) and a control group of either non-treatment (C) or initial value (0) and determining AMR in E. coli at different sample points (SP) were included. The literature search resulted in 35 full text articles on the topic, seven (20%) of which contained sufficient information on the administered antimicrobial and the impact of treatment on AMR. Most papers described the use of more than one antimicrobial, several dosages, controls (non-treatment or pre-treatment) and measured AMR at different SPs leading to a total of 227 SPs on the impact of the use of antimicrobials on AMR in chickens. 74% of the SPs (168/227) described a higher AMR-rate in E. coli from treated animals than from controls. After the administration of a single antimicrobial, AMR increased at 72% of the SPs. Administration of more than one antimicrobial increased AMR at 82% of the SPs. Higher dosages were associated with similar or higher AMR rates. The limited number of studies for each antimicrobial agent and the high variability in the resistance effect call for more well designed studies on the impact of oral administration on AMR development and spread. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-10-01

    In recent years, the antimicrobial resistance (AMR) or multidrug resistance (MDR) has become a serious health concern and major challenging issue, worldwide. After decades of negligence, the AMR has now captured global attention. The increasing number of antibiotic-resistant strains has threatened the achievements of science and medicine since it inactivates conventional antimicrobial therapeutics. Scientists are trying to respond to AMR/MDR threat by exploring innovative platforms and new therapeutic strategies to tackle infections from these resistant strains and bypass treatment limitations related to these pathologies. The present review focuses on the utilization of bio-inspired novel constructs and their potential applications as novel antimicrobial agents. The first part of the review describes plant-based biological macromolecules containing an immense variety of secondary metabolites, which could be potentially used as alternative strategies to combat antimicrobial resistance. The second part discusses the potential of metal-based macromolecules as effective antimicrobial platforms for preventing infections from resistant strains. The third part comprehensively elucidates how nanoparticles, in particular, metal-integrated nanoparticles can overcome this AMR or MDR issue. Towards the end, information is given with critical concluding remarks, gaps, and finally envisioned with future considerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... search Popular ... produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will ...

  5. Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films.

    Science.gov (United States)

    Barzegar, Hassan; Azizi, Mohammad Hossein; Barzegar, Mohsen; Hamidi-Esfahani, Zohreh

    2014-09-22

    Using fresh foods which undergo the least processing operations developed widely in recent years. Active packaging is a novel method for preserving these products. Active starch-clay nanocomposite films which contained potassium sorbate (PS) at a level of 0, 5, 7.5 and 10 g PS/100 g starch were produced and their physical, mechanical and antimicrobial properties were evaluated. In order to evaluate antimicrobial properties of films Aspergillus niger was used. The results showed that 5% of the PS did not produce antimicrobial property in the film, but by increasing the content of the additive in film formulation, antimicrobial effect increased. PS increased water permeability and elongation at break of the films, but decreased tensile strength. The rate of PS migration into the semi-solid medium in starch-nanocomposites was lower than starch films. This shows that nanocomposite films could retain their antimicrobial property for longer time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The Role Of Milk Peptide As Antimicrobial Agent In Supporting Health Status

    Directory of Open Access Journals (Sweden)

    Eni Kusumaningtyas

    2013-06-01

    Full Text Available Antimicrobial peptide is commonly present in all species as a component of their innate immune defense against infection. Antimicrobial peptides derived from milk such as isracidin, casocidin, casecidin and other fragments with variety of amino acid sequence are released upon enzymatic hydrolysis from milk protein К-casein, α-casein, β-casein, α-lactalbumin and β- lactoglobulin. These peptides were produced by the activity of digestive or microbial protease such as trypsin, pepsin, chymosin or alcalase. The mode of action of these peptides is by interaction of their positive with negative charge of target cell membrane leading to disruption of membrane associated with physiological event such as cell division or translocation of peptide across the membrane to interact with cytoplasmic target. Modification of charged or nonpolar aliphatic residues within peptides can enhance or reduce the activities of the peptides against a number of microbial strains and it seems to be strain dependent. Several peptides act not only as an antimicrobial but also as an angiotensin-converting enzyme inhibitor, antioxidant, immunomodulator, antiinflamation, food and feed preservative. Although the commercial production of these peptides is still limited due to lack of suitable large-scale technologies, fast development of some methods for peptide production will hopefully increase the possibility for mass production.

  7. Antimicrobial activities of the bacteriocin-like substances produced ...

    African Journals Online (AJOL)

    A total of 450 different colonies, isolated from 25 samples of dromedary milk collected from Laâyoune region of Morocco, were tested for antimicrobial compounds production. Out of these, 30 were determined to be lactic acid bacteria (LAB) and able to inhibit the growth of the indicator strain Listeria innocua CECT 4030.

  8. Investigation of Industrial Polyurethane Foams Modified with Antimicrobial Copper Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maria Chiara Sportelli

    2016-07-01

    Full Text Available Antimicrobial copper nanoparticles (CuNPs were electrosynthetized and applied to the controlled impregnation of industrial polyurethane foams used as padding in the textile production or as filters for air conditioning systems. CuNP-modified materials were investigated and characterized morphologically and spectroscopically, by means of Transmission Electron Microscopy (TEM, and X-ray Photoelectron Spectroscopy (XPS. The release of copper ions in solution was studied by Electro-Thermal Atomic Absorption Spectroscopy (ETAAS. Finally, the antimicrobial activity of freshly prepared, as well as aged samples—stored for two months—was demonstrated towards different target microorganisms.

  9. Antimicrobial resistance among enterococci from pigs in three European countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik; Jensen, Lars Bogø

    2002-01-01

    to the amounts of antimicrobial agents used in food animal production in those countries. Similar genes were found to encode resistance in the different countries, but the tet(L) and let(S) genes were more frequently found among isolates from Spain. A recently identified transferable copper resistance gene......Enterococci from pigs in Denmark, Spain, and Sweden were examined for susceptibility to antimicrobial agents and copper and the presence of selected resistance genes. The greatest levels of resistance were found among isolates from Spain and Denmark compared to those from Sweden, which corresponds...... was found in all copper-resistant isolates from the different countries....

  10. A European study on the relationship between antimicrobial use and antimicrobial resistance

    NARCIS (Netherlands)

    Bronzwaer, SLAM; Cars, O; Buchholz, U; Molstad, S; Goettsch, W; Veldhuijzen, IK; Kool, JL; Sprenger, MJW; Degener, JE

    In Europe, antimicrobial resistance has been monitored since 1998 by the European Antimicrobial Resistance Surveillance System (EARSS). We examined the relationship between penicillin nonsusceptibility of invasive isolates of Streptococcus pneumoniae and antibiotic sales. Information was collected

  11. Isolation and Identification of Phyllospheric Bacteria Possessing Antimicrobial Activity from Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium and Hippocrepis unisiliqousa.

    Science.gov (United States)

    Mazinani, Zohreh; Zamani, Marzieh; Sardari, Soroush

    2017-01-01

    The widespread utilization of antimicrobial compounds has caused emergence of resistant microorganisms in the world. Hence, the research to probe the products with antimicrobial features has led to finding natural habitats and discovering new pharmaceutical products. In this study, an attempt was made to explore the niche of novel habitat to isolate pyllospheric bacteria from the above ground parts (stems and leaves) of Astragalus obtusifolius , Prosopis juliflora , Xanthium strumarium , and Hippocrepis unisiliqousa to evaluate their antimicrobial features. The inhibitory effects of these strains on the growth of two fungi ( Aspergillus niger , Aspergillus fumigatus ), two yeasts ( Saccharomyces cerevisiae , Candida albicans ) and six bacteria ( Escherichia coli , Staphylococcus aureus , Pseudomonas aeruginosa , Bacillus subtilis , Salmonella typhi , Streptococcus pyogenes ) were tested. In total, 113 bacterial strains were isolated. Twenty five bacterial strains (B-1 to B-25) indicated promising antimicrobial (antibacterial and antifungal) activities against aforementioned pathogens. The identification of the bacterial strains was ascertained by morphological, physiological, biochemical tests and two strains with the strongest antimicrobial activities were further characterized based on 16s rRNA sequencing. These two strains were identified as Bacillus amyloliquefaciens . Our results provide evidence that phyllospheric microorganisms are capable of producing some compounds with antimicrobial properties.

  12. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward.

    Science.gov (United States)

    Aarestrup, Frank M

    2015-06-05

    The purpose of this review was to provide an updated overview on the use of antimicrobial agents in livestock, the associated problems for humans and current knowledge on the effects of reducing resistance in the livestock reservoir on both human health and animal production. There is still limiting data on both use of antimicrobial agents, occurrence and spread of resistance as well as impact on human health. However, in recent years, emerging issues related to methicillin-resistant Staphylococcus aureus, Clostridium difficile, Escherichia coli and horizontally transferred genes indicates that the livestock reservoir has a more significant impact on human health than was estimated 10 years ago, where the focus was mainly on resistance in Campylobacter and Salmonella. Studies have indicated that there might only be a marginal if any benefit from the regular use of antibiotics and have shown that it is possible to substantially reduce the use of antimicrobial agents in livestock production without compromising animal welfare or health or production. In some cases, this should be done in combination with other measures such as biosecurity and use of vaccines. To enable better studies on both the global burden and the effect of interventions, there is a need for global harmonized integrated and continuous surveillance of antimicrobial usage and antimicrobial resistance, preferably associated with data on production and animal diseases to determine the positive and negative impact of reducing antimicrobial use in livestock. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    Science.gov (United States)

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Bioequivalence and in vitro antimicrobial activity between generic and brand-name levofloxacin.

    Science.gov (United States)

    Sun, Hsin-Yun; Liao, Hsiao-Wei; Sheng, Meng-Huei; Tai, Hui-Min; Kuo, Ching-Hua; Sheng, Wang-Huei

    2016-07-01

    Generic agents play a crucial role in reducing the cost of medical care in many countries. However, the therapeutic equivalence remains a great concern. Our study aims to assess the in vitro antimicrobial activity and bioequivalence between generic and brand-name levofloxacin. Enantiomeric purity test, dissolution test, and in vitro antimicrobial susceptibility against seven clinically important pathogens by the agar dilution method were employed to assess the similarity between four generic products and brand-name levofloxacin (Daiichi Sankyo). All the generic and brand-name levofloxacin passed enantiomeric purity test. The results of dissolution tests were not similar among the generic products and the brand-name levofloxacin. Compared with the generic products, the brand-name levofloxacin had the smallest mean variations (-25% to 13%) with reference standard (United States Pharmacopeia levofloxacin Reference Standards). Variations were observed particularly in dissolution profiles and in vitro activity between generic products and brand-name levofloxacin. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Chemical Composition and Antimicrobial Activities of Iranian Propolis

    Science.gov (United States)

    Afrouzan, Houshang; Tahghighi, Azar; Zakeri, Sedigheh; Es-haghi, Ali

    2018-01-01

    Background: With considering the importance of natural products for their remedial and therapeutic value, this research was aimed to analyze the chemical compositions and antimicrobial activity of four propolis samples from different areas of Iran (Chenaran, Taleghan, Morad Beyg, and Kalaleh) with various climates and flora. Methods: Ethanolic (70% EtOH) and dichlromethane (DCM) extracts of Iranian propolis were analyzed by gas chromatography-mass spectrometry (GC-MS) methods, and antimicrobial activity was evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus using disk diffusion antimicrobial method. Results: The results of GC-MS analysis showed the presence of fatty acids, flavonoids, terpenes, aromatic-aliphatic acids, and their related esters. The total flavonoids in DCM extract of Chenaran, Taleghan, Morad Beyg, and Kalaleh propolis were pinocembrin and pinostrobin chalcone. The common phenolic and terpene compounds detected in all four tested EtOH extracts were P-cumaric acid and dimethyl -1,3,5,6-tetramethyl-[1,3-(13C2)] bicycloce [5.5.0] dodeca-1,3,5,6,8,10-hexaene-9,10-dicarboxylate, respectively. The highest inhibitory diameter zone of the Iranian propolis against C. albicans, E. coli, and S. aureus was for DCM extract of Kalaleh propolis (13.33 mm), Morad Beyg propolis (12 mm), and Kalaleh (11.67 mm), respectively. Conclusion: Iranian propolis showed antimicrobial activities against C. albicans, E. coli, and S. aurous, perhaps due to the presence of flavonoids, phenolic acids, and terpenes as active components that can be used alone or in combination with the selected antibiotics to synergize antibiotic effect, as well as to prevent microbial resistance to available antimicrobial drugs. PMID:28558440

  16. Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier.

    Science.gov (United States)

    Atanasova, Nina S; Pietilä, Maija K; Oksanen, Hanna M

    2013-10-01

    The significance of antimicrobial substances, halocins, produced by halophilic archaea and bacteria thriving in hypersaline environments is relatively unknown. It is suggested that their production might increase species diversity and give transient competitive advances to the producer strain. Halocin production is considered to be common among halophilic archaea, but there is a lack of information about halocins produced by bacteria in highly saline environments. We studied the antimicrobial activity of 68 halophilic archaea and 22 bacteria isolated from numerous geographically distant hypersaline environments. Altogether 144 antimicrobial interactions were found between the strains and aside haloarchaea, halophilic bacteria from various genera were identified as halocin producers. Close to 80% of the interactions were detected between microorganisms from different genera and in few cases, even across the domain boundary. Several of the strains produced halocins with a wide inhibitory spectrum as has been observed before. Most of the antimicrobial interactions were found between strains from distant sampling sites indicating that hypersaline environments around the world have similar microorganisms with the potential to produce wide activity range antimicrobials. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Relating timed and register automata

    Directory of Open Access Journals (Sweden)

    Diego Figueira

    2010-11-01

    Full Text Available Timed automata and register automata are well-known models of computation over timed and data words respectively. The former has clocks that allow to test the lapse of time between two events, whilst the latter includes registers that can store data values for later comparison. Although these two models behave in appearance differently, several decision problems have the same (undecidability and complexity results for both models. As a prominent example, emptiness is decidable for alternating automata with one clock or register, both with non-primitive recursive complexity. This is not by chance. This work confirms that there is indeed a tight relationship between the two models. We show that a run of a timed automaton can be simulated by a register automaton, and conversely that a run of a register automaton can be simulated by a timed automaton. Our results allow to transfer complexity and decidability results back and forth between these two kinds of models. We justify the usefulness of these reductions by obtaining new results on register automata.

  18. Prevalence, Antimicrobial Resistance, and Genetic Diversity of Listeria spp. Isolated from Raw Chicken Meat and Chicken-Related Products in Malaysia.

    Science.gov (United States)

    Chin, Pui San; Ang, Geik Yong; Yu, Choo Yee; Tan, Eng Lee; Tee, Kok Keng; Yin, Wai Fong; Chan, Kok Gan; Tan, Geok Yuan Annie

    2018-02-01

    Listeria spp. are ubiquitous in nature and can be found in various environmental niches such as soil, sewage, river water, plants, and foods, but the most frequently isolated species are Listeria monocytogenes and Listeria innocua. In this study, the presence of Listeria spp. in raw chicken meat and chicken-related products sold in local markets in Klang Valley, Malaysia was investigated. A total of 44 Listeria strains (42 L. innocua and 2 L. welshimeri) were isolated from 106 samples. Antibiotic susceptibility tests of the L. innocua strains revealed a high prevalence of resistance to clindamycin (92.9%), ceftriaxone (76.2%), ampicillin (73.8%), tetracycline (69%), and penicillin G (66.7%). Overall, 31 L. innocua and 1 L. welshimeri strain were multidrug resistant, i.e., nonsusceptible to at least one antimicrobial agent in three or more antibiotic classes. The majority of the L. innocua strains were placed into five AscI pulsogroups, and overall 26 distinct AscI pulsotypes were identified. The detection of multidrug-resistant Listeria strains from different food sources and locations warrants attention because these strains could serve as reservoirs for antimicrobial resistance genes and may facilitate the spread and emergence of other drug-resistant strains.

  19. Efficacy of Local and Systemic Antimicrobials in the Non-Surgical Treatment of Smokers With Chronic Periodontitis: A Systematic Review.

    Science.gov (United States)

    Chambrone, Leandro; Vargas, Miguel; Arboleda, Silie; Serna, Maritza; Guerrero, Marcela; de Sousa, Jose; Lafaurie, Gloria Inés

    2016-11-01

    The aim of this systematic review is to evaluate whether use of local or systemic antimicrobials would improve clinical results of non-surgical periodontal therapy for smokers with chronic periodontitis (CP). Medical Literature Analysis and Retrieval System Online, Excerpta Medica Database, and The Cochrane Central Register of Controlled Trials were searched up to and including March 2016. Randomized clinical trials of duration of at least 6 months were included if they reported on treatment of smokers (≥10 cigarettes per day for minimum 12 months) with CP with non-surgical periodontal therapy either alone or associated with local or systemic antimicrobials. Random-effects meta-analyses were undertaken to evaluate mean differences in probing depth (PD) and clinical attachment level (CAL). Of 108 potentially eligible articles, seven were included. Most individual studies (75%) testing locally delivered antibiotics reported that smokers benefited from this treatment approach. Pooled estimates found additional PD reduction of 0.81 mm (P = 0.01) and CAL gain of 0.91 mm (P = 0.01) at sites with baseline PD ≥5 mm. Conversely, meta-analysis on systemic use of antimicrobials failed to detect significant differences in mean changes from baseline, and only one trial supported their use. In smokers with CP, adjunctive use of local antimicrobials improved efficacy of non-surgical periodontal therapy in reducing PD and improving CAL at sites presenting PD ≥5 mm before treatment. Current evidence does not demonstrate similar gains when scaling and root planing plus systemic antimicrobial/antibiotics were associated with therapy.

  20. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: part?2? antimicrobial choice, treatment regimens and compliance

    OpenAIRE

    Beco, L.; Guagu?re, E.; M?ndez, C. Lorente; Noli, C.; Nuttall, T.; Vroom, M.

    2013-01-01

    Systemic antimicrobials are critically important in veterinary healthcare, and resistance is a major concern. Antimicrobial stewardship will be important in maintaining clinical efficacy by reducing the development and spread of antimicrobial resistance. Bacterial skin infections are one of the most common reasons for using systemic antimicrobials in dogs and cats. Appropriate management of these infections is, therefore, crucial in any policy for responsible antimicrobial use. The goals of t...

  1. Optimizing Instruction Scheduling and Register Allocation for Register-File-Connected Clustered VLIW Architectures

    Science.gov (United States)

    Tang, Haijing; Wang, Siye; Zhang, Yanjun

    2013-01-01

    Clustering has become a common trend in very long instruction words (VLIW) architecture to solve the problem of area, energy consumption, and design complexity. Register-file-connected clustered (RFCC) VLIW architecture uses the mechanism of global register file to accomplish the inter-cluster data communications, thus eliminating the performance and energy consumption penalty caused by explicit inter-cluster data move operations in traditional bus-connected clustered (BCC) VLIW architecture. However, the limit number of access ports to the global register file has become an issue which must be well addressed; otherwise the performance and energy consumption would be harmed. In this paper, we presented compiler optimization techniques for an RFCC VLIW architecture called Lily, which is designed for encryption systems. These techniques aim at optimizing performance and energy consumption for Lily architecture, through appropriate manipulation of the code generation process to maintain a better management of the accesses to the global register file. All the techniques have been implemented and evaluated. The result shows that our techniques can significantly reduce the penalty of performance and energy consumption due to access port limitation of global register file. PMID:23970841

  2. Optimizing Instruction Scheduling and Register Allocation for Register-File-Connected Clustered VLIW Architectures

    Directory of Open Access Journals (Sweden)

    Haijing Tang

    2013-01-01

    Full Text Available Clustering has become a common trend in very long instruction words (VLIW architecture to solve the problem of area, energy consumption, and design complexity. Register-file-connected clustered (RFCC VLIW architecture uses the mechanism of global register file to accomplish the inter-cluster data communications, thus eliminating the performance and energy consumption penalty caused by explicit inter-cluster data move operations in traditional bus-connected clustered (BCC VLIW architecture. However, the limit number of access ports to the global register file has become an issue which must be well addressed; otherwise the performance and energy consumption would be harmed. In this paper, we presented compiler optimization techniques for an RFCC VLIW architecture called Lily, which is designed for encryption systems. These techniques aim at optimizing performance and energy consumption for Lily architecture, through appropriate manipulation of the code generation process to maintain a better management of the accesses to the global register file. All the techniques have been implemented and evaluated. The result shows that our techniques can significantly reduce the penalty of performance and energy consumption due to access port limitation of global register file.

  3. In vitro evaluation of antimicrobial features of sugammadex.

    Science.gov (United States)

    Hanci, Volkan; Vural, Ahmet; Hanci, Sevgi Yılmaz; Ali Kiraz, Hasan; Omür, Dilek; Unver, Ahmet

    2014-01-01

    Drugs administered by intravenous routes may be contaminated during several stages of production or preparation. Sugammadex is a modified gamma cyclodextrin. While research into the antibacterial effects of varieties of cyclodextrin is available, there are no studies focusing on the antibacterial effects of sugammadex. This study investigates the in vitro antimicrobial activity of sugammadex. The in vitro antimicrobial activity of sugammadex was investigated using the broth microdilution method. The pH of the test solution was determined using a pH meter. The test microorganisms included Staphylococcus aureus ATCC 29213, Enterococcus fecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. In the second phase of the study 100mg/mL sugammadex (50μg) was contaminated with test microorganisms (50μg), including S. aureus ATCC 29213, E. fecalis ATCC 29212, E. coli ATCC 25922 and P. aeruginosa ATCC 27853, left to incubate for 24h and then the bacterial production in sugammadex was evaluated. The pH of the test solutions ranged between 7.25 and 6.97. Using the microdilution method, sugammadex had no antibacterial effect on S. aureus, E. fecalis, E. coli and P. aeruginosa at any concentration. In the second phase of the study bacterial production was observed after 24h in 100mg/mL sugammadex contaminated with the test microorganisms S. aureus, E. fecalis, E. coli and P. aeruginosa. Sugammadex had no antimicrobial effect on the test microorganisms, S. aureus, E. fecalis, E. coli and P. aeruginosa. Care should be taken that sterile conditions are maintained in the preparation of sugammadex; that the same sugammadex preparation not be used for more than one patient; and that storage conditions are adhered to after sugammadex is put into the injector. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. The Copenhagen School Health Records Register

    DEFF Research Database (Denmark)

    Baker, Jennifer L; Sørensen, Thorkild I A

    2011-01-01

    The Copenhagen School Health Records Register is an electronic register of health examination information on 372,636 children who attended school in Copenhagen, Denmark from 1936 to 2005.......The Copenhagen School Health Records Register is an electronic register of health examination information on 372,636 children who attended school in Copenhagen, Denmark from 1936 to 2005....

  5. Synthesis and characterization of barbitones as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    H. G. SANGANI

    2006-06-01

    Full Text Available Barbitones (3 were synthesised by the condensation of chalcones (2 with barbituric acid. The structure of the synthesized compounds were assigned on the basis of elemental analyses, IR, NMR and mass spectral studies. All the products were evaluated for their in vitro antimicrobial activity against various strains of bacteria and fungi.

  6. Antimicrobial resistance and the guidelines of the International Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products (VICH).

    Science.gov (United States)

    Marion, H

    2012-04-01

    The International Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products (VICH) is an international tripartite cooperation programme that brings together regulatory authorities and industry representatives from the European Union, Japan and the United States, with Australia, New Zealand and Canada as observers. VICH aims to improve international coordination and cooperation to achieve greater harmonisation of the requirements for veterinary product registration in the regions concerned. VICH develops harmonised data requirements, i.e., standards for the scientific studies on quality, safety and efficacy that are required to obtain a marketing authorisation for a veterinary medicinal product. It does this by publishing guidelines that provide uniform and consistent guidance for sponsors to follow in developing data for application dossiers as well as for post-marketing safety monitoring of veterinary medicinal products. Of the 49 VICH guidelines that have been developed so far, two guidelines in particular address issues related to antimicrobial resistance.

  7. The Danish Adoption Register

    DEFF Research Database (Denmark)

    Petersen, Liselotte; Sørensen, Thorkild I A

    2011-01-01

    The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia.......The Danish Adoption Register was established in 1963-1964 to explore the genetic and environmental contribution to familial aggregation of schizophrenia....

  8. National disparities in the relationship between antimicrobial resistance and antimicrobial consumption in Europe: an observational study in 29 countries.

    Science.gov (United States)

    McDonnell, Lucy; Armstrong, David; Ashworth, Mark; Dregan, Alexandru; Malik, Umer; White, Patrick

    2017-11-01

    Antimicrobial resistance in invasive infections is driven mainly by human antimicrobial consumption. Limited cross-national comparative evidence exists about variation in antimicrobial consumption and effect on resistance. We examined the relationship between national community antimicrobial consumption rates (2013) and national hospital antimicrobial resistance rates (2014) across 29 countries in the European Economic Area (EEA). Consumption rates were obtained from the European Surveillance of Antimicrobial Consumption Network (ESAC-Net). Resistance data were obtained from the European Antimicrobial Resistance Surveillance Network (EARS-Net), based on 196480 invasive isolates in 2014. Data availability and consistency were good. Some countries did not report figures for each strain of resistant bacteria. National antimicrobial consumption rates (2013) varied from ≤ 13 DDD (Estonia, the Netherlands and Sweden) to ≥ 30 DDD (France, Greece and Romania) per 1000 inhabitants per day. National antimicrobial resistance rates (hospital isolates, 15 species) also varied from  37.2% (Bulgaria, Greece, Romania and Slovakia). National antimicrobial consumption rates (2013) showed strong to moderate correlation with national hospital antimicrobial resistance rates (2014) in 19 strains of bacteria (r = 0.84 to r = 0.39). Some countries defied the trend with high consumption and low resistance (France, Belgium and Luxembourg) or low consumption and high resistance (Bulgaria, Hungary and Latvia). We found associations between national community antimicrobial consumption and national hospital antimicrobial resistance across a wide range of bacteria. These associations were not uniform. Different mechanisms may drive resistance in hospital-based invasive infections. Future research on international variations in antimicrobial resistance should consider environmental factors, agricultural use, vaccination policies and prescribing quality. © The Author 2017

  9. Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk.

    Science.gov (United States)

    Atanasova, Jivka; Moncheva, Penka; Ivanova, Iskra

    2014-11-02

    We examined 62 strains and 21 trade starter cultures from the collection of LB Bulgaricum PLC for proteolytic and antimicrobial activity of lactic acid bacteria (LAB) grown in goat milk. The aim of this study was to investigate the fermentation of caseins, α-lactalbumin and β-lactoglobulin by LAB, using the o -phthaldialdehyde (OPA) spectrophotometric assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The proteolysis targeted mainly caseins, especially β-casein. Whey proteins were proteolyzed, essentially β-lactoglobulin. The proteolytic activity of Lactococcus lactis l598, Streptococcus thermophilus t3D1, Dt1, Lactobacillus lactis 1043 and L. delbrueckii subsp. bulgaricus b38, b122 and b24 was notably high. The proteolysis process gave rise to medium-sized peptide populations. Most of the examined strains showed antimicrobial activity against some food pathogens, such as Escherichia coli , Staphylococcus aureus , Salmonella cholere enteridis , Listeria monocytogenes , Listeria innocua and Enterobacter aerogenes . The most active producers of antimicrobial-active peptides were strains of L. delbrueckii subsp. bulgaricus and S. thermophilus , which are of practical importance. The starter cultures containing the examined species showed high proteolytic and antimicrobial activity in skimmed goat milk. The greatest antimicrobial activity of the cultures was detected against E. aerogenes . The obtained results demonstrated the significant proteolytic potential of the examined strains in goat milk and their potential for application in the production of dairy products from goat's milk. The present results could be considered as the first data on the proteolytic capacity of strains and starter cultures in goat milk for the purposes of trade interest of LB Bulgaricum PLC.

  10. Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hammer, Anne Sofie; Sørensen, Charlotte Mark

    2009-01-01

    , whereas resistance to other antimicrobials was rare. All P aeruginosa were sensitive to gentamicin and colistin and sensitive or intermediate to enrofloxacin. whereas most isolates were resistant to all other antimicrobials. All P. multocida and haemolytic streptococci were sensitive to penicillin...

  11. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review.

    Science.gov (United States)

    Valencia-Chamorro, Silvia A; Palou, Lluís; Del Río, Miguel A; Pérez-Gago, María B

    2011-01-01

    The use of edible films and coatings is an environmentally friendly technology that offers substantial advantages for shelf-life increase of many food products including fruits and vegetables. The development of new natural edible films and coatings with the addition of antimicrobial compounds to preserve fresh and minimally processed fruits and vegetables is a technological challenge for the industry and a very active research field worldwide. Antimicrobial agents have been successfully added to edible composite films and coatings based on polysaccharides or proteins such as starch, cellulose derivatives, chitosan, alginate, fruit puree, whey protein isolated, soy protein, egg albumen, wheat gluten, or sodium caseinate. This paper reviews the development of edible films and coatings with antimicrobial activity, typically through the incorporation of antimicrobial food additives as ingredients, the effect of these edible films on the control of target microorganisms, the influence of antimicrobial agents on mechanical and barrier properties of stand-alone edible films, and the effect of the application of antimicrobial edible coatings on the quality of fresh and fresh-cut fruits and vegetables.

  12. Antimicrobial Activity of Essential Oils Against Staphylococcus aureus in Fresh Sheep Cheese.

    Science.gov (United States)

    Amatiste, Simonetta; Sagrafoli, Daniele; Giacinti, Giuseppina; Rosa, Giulia; Carfora, Virginia; Marri, Nicla; Tammaro, Andreana; Bovi, Emanuela; Rosati, Remo

    2014-08-28

    Essential oils (EOs) are aromatic oily liquids extracted from different parts of specific plants, well known especially for their aromatic and antibacterial properties. Nowadays, EOs are exploited in the food sector mainly for their aromatic properties. Thanks to their antimicrobial activity, however, they could also be used as additives to increase the safety and the shelf-life of food products. Aim of this study was to assess the antimicrobial activity of Thymus vulgaris L. oil and of Origanum vulgare L. oil against Staphylococcus aureus both in vitro and on fresh cheese, and to determine whether the use of EOs can modify the microbiological and/or chemical-physical properties of the products. The antimicrobial activity against S. aureus in vitro was assessed by preparation of the aromatogram (diffusion in agar test), minimum inhibitory concentration test and minimum bactericidal concentration assessment. Raw sheep milk was experimentally contaminated with a strain of S. aureus ATCC 25922 and was used to produce three types of fresh cheese: without EOs, with thyme and oregano EOs (both EOs at a concentration of 1:1000). The samples were analysed on the day of production, after three and seven days. The results obtained from the tests showed that the concentration of S. aureus and the counts of lactic flora remained unchanged for all types of cheese. Even the chemical-physical parameters were constant. The results of inhibition tests on the cheese disagree with those relating to the in vitro tests. Most likely this is due to the ability of EOs to disperse in the lipids the food: the higher the fat content is, the lower the oil fraction will be able to exert the antimicrobial activity.

  13. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Palloma Rodrigues Marinho

    2009-08-01

    Full Text Available Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3 isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  14. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    Science.gov (United States)

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  15. Microwave Assisted Synthesis of Novel Imidazolopyridinyl Indoles as Potent Antioxidant and Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Jaiprakash S. Biradar

    2014-01-01

    Full Text Available We describe herein the design, synthesis, and pharmacological evaluation of novel series of imidazolopyridinyl indole analogues as potent antioxidants and antimicrobials. These novel compounds (3a–i were synthesized by reacting 3,5-disubstituted-indole-2-carboxylic acid (1a–i with 2,3-diamino pyridine (2 in excellent yield. The novel products were confirmed by their IR, 1H NMR, 13C NMR, mass spectral, and analytical data. These compounds were screened for their antioxidant and antimicrobial activities. Among the compounds tested, 3a–d showed the highest total antioxidant capacity, scavenging, and antimicrobial activities. Compounds 3c-d and 3g-h have shown excellent ferric reducing activity.

  16. Polyphenolic Content, Antioxidant and Antimicrobial Activities of Lycium barbarum L. and Lycium chinense Mill. Leaves

    Directory of Open Access Journals (Sweden)

    Andrei Mocan

    2014-07-01

    Full Text Available This study was performed to evaluate the in vitro antioxidant and antimicrobial activities and the polyphenolic content of Lycium barbarum L. and L. chinense Mill. leaves. The different leave extracts contain important amounts of flavonoids (43.73 ± 1.43 and 61.65 ± 0.95 mg/g, respectively and showed relevant antioxidant activity, as witnessed by the quoted methods. Qualitative and quantitative analyses of target phenolic compounds were achieved using a HPLC-UV-MS method. Rutin was the dominant flavonoid in both analysed species, the highest amount being registered for L. chinense. An important amount of chlorogenic acid was determined in L. chinense and L. barbarum extracts, being more than twice as high in L. chinense than in L. barbarum. Gentisic and caffeic acids were identified only in L. barbarum, whereas kaempferol was only detected in L. chinense. The antioxidant activity was evaluated by DPPH, TEAC, hemoglobin ascorbate peroxidase activity inhibition (HAPX and inhibition of lipid peroxidation catalyzed by cytochrome c assays revealing a better antioxidant activity for the L. chinense extract. Results obtained in the antimicrobial tests revealed that L. chinense extract was more active than L. barbarum against both Gram-positive and Gram-negative bacterial strains. The results suggest that these species are valuable sources of flavonoids with relevant antioxidant and antimicrobial activities.

  17. Cationic Antimicrobial Polymers and Their Assemblies

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  18. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  19. Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry

    Directory of Open Access Journals (Sweden)

    Leandro M Redondo

    2014-03-01

    Full Text Available Antibiotics have been included in the formulation of feed for livestock production for more than 40 years as a strategy to improve feed conversion rates and to reduce costs. The use of antimicrobials as growth-promoting factors (AGP in sub-therapeutic doses for long periods is particularly favorable to select antimicrobial-resistant microorganisms. In the last years, global concern about development of antimicrobial resistance and transference of resistance genes from animal to human strains has been arising. Removal of AGP from animal diets involves a tremendous pressure on the livestock and poultry farmers, one of the main consequences being a substantial increase in the incidence of infectious diseases with the related increase in the use of antibiotics for therapy and, concomitantly, economic cost. Therefore, alternatives to AGP are urgently needed. The challenge is to implement new alternatives without affecting the production performances of livestock and also avoiding the increase of antimicrobial resistant microorganisms. Plant extracts and purified derived substances are showing promising results for food animal production, either from their efficacy as well as from an economical point of view. Tannins are plant derived compounds that are being successfully used as additives in feed poultry to control diseases and to improve animal performance. Successful use of any of these extracts as feed additive must ensure a product of consistent quality in enough quantities to fulfill the actual requirements of the poultry industry. Chestnut (hydrolizable and Quebracho (condennsed tannins are probably the most readily available commercial products that are covering those needs. The present report intends to analyze the available data supporting their use.

  20. The risk of some veterinary antimicrobial agents on public health associated with antimicrobial resistance and their molecular basis

    OpenAIRE

    Haihong Hao; Zahid Iqbal; Yulian Wang; Guyue Cheng; Zong-Hui Yuan

    2016-01-01

    The risk of antimicrobial agents used in food-producing animals on public health associated with antimicrobial resistance continues to be a current topic of discussion as related to animal and human public health. In the present review, resistance monitoring data and risk assessment result of some important antimicrobial agents were cited to elucidate the possible association of antimicrobial use in food animals and antimicrobial resistance in human. From the selected examples, it was obvious...

  1. Vitamin D Is Required for IFN-γ–Mediated Antimicrobial Activity of Human Macrophages

    Science.gov (United States)

    Fabri, Mario; Stenger, Steffen; Shin, Dong-Min; Yuk, Jae-Min; Liu, Philip T.; Realegeno, Susan; Lee, Hye-Mi; Krutzik, Stephan R.; Schenk, Mirjam; Sieling, Peter A.; Teles, Rosane; Montoya, Dennis; Iyer, Shankar S.; Bruns, Heiko; Lewinsohn, David M.; Hollis, Bruce W.; Hewison, Martin; Adams, John S.; Steinmeyer, Andreas; Zügel, Ulrich; Cheng, Genhong; Jo, Eun-Kyeong; Bloom, Barry R.; Modlin, Robert L.

    2012-01-01

    Control of tuberculosis worldwide depends on our understanding of human immune mechanisms, which combat the infection. Acquired T cell responses are critical for host defense against microbial pathogens, yet the mechanisms by which they act in humans remain unclear. We report that T cells, by the release of interferon-γ (IFN-γ), induce autophagy, phagosomal maturation, the production of antimicrobial peptides such as cathelicidin, and antimicrobial activity against Mycobacterium tuberculosis in human macrophages via a vitamin D–dependent pathway. IFN-γ induced the antimicrobial pathway in human macrophages cultured in vitamin D–sufficient sera, but not in sera from African-Americans that have lower amounts of vitamin D and who are more susceptible to tuberculosis. In vitro supplementation of vitamin D–deficient serum with 25-hydroxyvitamin D3 restored IFN-γ–induced antimicrobial peptide expression, autophagy, phagosome-lysosome fusion, and antimicrobial activity. These results suggest a mechanism in which vitamin D is required for acquired immunity to overcome the ability of intracellular pathogens to evade macrophage-mediated antimicrobial responses. The present findings underscore the importance of adequate amounts of vitamin D in all human populations for sustaining both innate and acquired immunity against infection. PMID:21998409

  2. Bioprospecting saline gradient of a Wildlife Sanctuary for bacterial diversity and antimicrobial activities.

    Science.gov (United States)

    DeLuca, Mara; King, Riley; Morsy, Mustafa

    2017-08-11

    Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. Approximately 4500 bacterial colonies were screened for antimicrobial activity and roughly 100 bacteria were identified as antimicrobial producers, which belong to Entrococcaceae (74%), Yersiniaceae (19%), and unidentified families (7%). Several bacterial isolates showed production of broad spectrum inhibitory compounds, while others were more specific to certain pathogens. The data obtained from the current study provide a resource for further characterization of the soil bacteria with antimicrobial activity, with an aim to discover novel ones. The study showed no correlation between soil salt level and the presence of bacteria with antimicrobial activities. However, most of the identified antimicrobial producing bacteria do not belong to actinomycetes, the most common phyla of antibiotic producing bacteria and this could potentially lead to the discovery of novel antibiotics.

  3. Registers of multiple sclerosis in Denmark

    DEFF Research Database (Denmark)

    Koch-Henriksen, N; Magyari, M; Laursen, B

    2015-01-01

    between a number of different environmental exposures in the past and the subsequent risk of MS. Some of these studies have been able to exonerate suspected risk factors. The other register, the nationwide Danish Multiple Sclerosis Treatment Register, is a follow-up register for all patients who have......There are two nationwide population-based registers for multiple sclerosis (MS) in Denmark. The oldest register is The Danish Multiple Sclerosis Registry (DMSR), which is an epidemiological register for estimation of prevalence and incidence of MS and survival, and for identifying exposures earlier...... received disease-modifying treatments since 1996. It has, in particular, contributed to the knowledge of the role of antibodies against the biological drugs used for the treatment of MS....

  4. Antimicrobial Carvacrol-Containing Polypropylene Films: Composition, Structure and Function

    Directory of Open Access Journals (Sweden)

    Max Krepker

    2018-01-01

    Full Text Available Significant research has been directed toward the incorporation of bioactive plant extracts or essential oils (EOs into polymers to endow the latter with antimicrobial functionality. EOs offer a unique combination of having broad antimicrobial activity from a natural source, generally recognized as safe (GRAS recognition in the US, and a volatile nature. However, their volatility also presents a major challenge in their incorporation into polymers by conventional high-temperature-processing techniques. Herein, antimicrobial polypropylene (PP cast films were produced by incorporating carvacrol (a model EO or carvacrol, loaded into halloysite nanotubes (HNTs, via melt compounding. We studied the composition-structure-property relationships in these systems, focusing on the effect of carvacrol on the composition of the films, the PP crystalline phase and its morphology and the films’ mechanical and antimicrobial properties. For the first time, molecular dynamics simulations were applied to reveal the complex interactions between the components of these carvacrol-containing systems. We show that strong molecular interactions between PP and carvacrol minimize the loss of this highly-volatile EO during high-temperature polymer processing, enabling semi-industrial scale production. The resulting films exhibit outstanding antimicrobial properties against model microorganisms (Escherichia coli and Alternaria alternata. The PP/(HNTs-carvacrol nanocomposite films, containing the carvacrol-loaded HNTs, display a higher level of crystalline order, superior mechanical properties and prolonged release of carvacrol, in comparison to PP/carvacrol blends. These properties are ascribed to the role of HNTs in these nanocomposites and their effect on the PP matrix and retained carvacrol content.

  5. Sources and fate of antimicrobials in integrated fish-pig and non-integrated tilapia farms.

    Science.gov (United States)

    Li, Kang; Liu, Liping; Zhan, Jia; Scippo, Marie-Louise; Hvidtfeldt, Kristian; Liu, Yuan; Dalsgaard, Anders

    2017-10-01

    Antimicrobial contamination in aquaculture products constitutes a food safety hazard, but little is known about the introduction and accumulation of antimicrobials in integrated fish-pig aquaculture. This study, conducted in 2013, aimed to determine the residues of 11 types of antimicrobials by UPLC-MS/MS analysis in fish feed (n=37), pig feed (n=9), pig manure (n=9), pond sediment (n=20), fish skin (n=20) and muscle tissue (n=20) sampled from integrated tilapia-pig farms, non-integrated tilapia farms and fish feed supply shops. There was a higher occurrence of antimicrobial residues in fish skin from both integrated and non-integrated farms, and in pig manure. Enrofloxacin (3.9-129.3μg/kg) and sulfadiazine (0.7-7.8μg/kg) were commonly detected in fish skin and muscle, pig manure and pond sediment from integrated farms, with different types of antimicrobials found in pig manure and tilapia samples. In non-integrated farms, sulfadiazine (2.5-89.9μg/kg) was the predominant antimicrobial detected in fish skin and muscle, fish feed and pond sediment. In general, antimicrobials seemed not to be commonly transmitted from pig to fish in tilapia-pig integrated farms, and fish feed, pig feed and pond sediment did not seem as important sources of the antimicrobials found in fish from both systems. The frequent findings of antimicrobial residues in fish skin compared with fish muscle was probably due to different pharmacokinetics in different tissue types, which have practical food safety implications since antimicrobial residues monitoring is usually performed analyzing mixed skin and fish muscle samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Distribution of virulence determinants among antimicrobial-resistant and antimicrobial-susceptible Escherichia coli implicated in urinary tract infections.

    Science.gov (United States)

    Stephenson, Sam; Brown, P D

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) rely on the correlation of virulence expression with antimicrobial resistance to persist and cause severe urinary tract infections (UTIs). We assessed the virulence pattern and prevalence among UPEC strains susceptible and resistant to multiple antimicrobial classes. A total of 174 non-duplicate UPEC strains from patients with clinically significant UTIs were analysed for susceptibility to aminoglycoside, antifolate, cephalosporin, nitrofuran and quinolone antibiotics for the production of extended-spectrum β-lactamases and for the presence of six virulence determinants encoding adhesins (afimbrial, Type 1 fimbriae, P and S-fimbriae) and toxins (cytotoxic necrotising factor and haemolysin). Relatively high resistance rates to nalidixic acid, ciprofloxacin, cephalothin and trimethoprim-sulfamethoxazole (82%, 78%, 62% and 59%, respectively) were observed. Fourteen distinct patterns were identified for the virulence determinants such as afaBC, cnfI, fimH, hylA, papEF and sfaDE. The toxin gene, cnfI (75.3%), was the second most prevalent marker to the adhesin, fimH (97.1%). The significant association of sfaDE/hylA (P < 0.01) among antimicrobial resistant and susceptible strains was also observed notwithstanding an overall greater occurrence of virulence factors among the latter. This study provides a snapshot of UPEC complexity in Jamaica and highlights the significant clonal heterogeneity among strains. Such outcomes emphasise the need for evidence-based strategies in the effective management and control of UTIs.

  7. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes.

    Science.gov (United States)

    Adu-Oppong, Boahemaa; Gasparrini, Andrew J; Dantas, Gautam

    2017-01-01

    Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications. © 2016 New York Academy of Sciences.

  8. The Use of Plant Antimicrobial Compounds for Food Preservation

    Science.gov (United States)

    Hintz, Tana; Matthews, Karl K.

    2015-01-01

    Foodborne disease is a global issue with significant impact on human health. With the growing consumer demand for natural preservatives to replace chemical compounds, plant antimicrobial compounds must be thoroughly investigated for their potential to serve as biopreservatives. This review paper will focus on the plant-derived products as antimicrobial agents for use in food preservation and to control foodborne pathogens in foods. Structure, modes of action, stability, and resistance to these plant compounds will be discussed as well as their application in food industries and possible technologies by which they can be delivered. Benefits as well as challenges, such as the need for further research for implementation and governmental regulation, will be highlighted. PMID:26539472

  9. Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52

    Directory of Open Access Journals (Sweden)

    Priyanka eSharma

    2016-03-01

    Full Text Available A mesophilic actinomycete strain designated as PB-52 was isolated from soil samples of Pobitora Wildlife Sanctuary of Assam, India. Based on phenotypic and molecular characteristics, the strain was identified as Nocardia sp. which shares 99.7% sequence similarity with Nocardia niigatensis IFM 0330 (NR_112195. The strain is a Gram-positive filamentous bacterium with rugose spore surface which exhibited a wide range of antimicrobial activity against Gram-positive bacteria including methicillin resistant Staphylococcus aureus (MRSA, Gram-negative bacteria and yeasts. Optimization for the growth and antimicrobial metabolite production of the strain PB-52 was carried out in batch culture under shaking condition. The optimum growth and the antimicrobial metabolite production by the strain PB-52 was recorded in GLM medium at 28ºC, initial pH 7.4 of the medium and incubation period of eight days. Based on polyketide synthases (PKS and nonribosomal peptide synthetases (NRPS gene-targeted PCR amplification, the occurrence of both of these biosynthetic pathways was detected which might be involved in the production of antimicrobial metabolite in PB-52. Extract of the fermented broth culture of PB-52 was prepared with organic solvent extraction method using ethyl acetate. The ethyl acetate extract of PB-52 (EA-PB-52 showed lowest minimum inhibitory concentration (MIC against Staphylococcus aureus MTCC 96 (0.975 μg/ml whereas highest was recorded against Klebsiella pneumoniae ATCC 13883 (62.5 μg/ml. Scanning electron microscopy (SEM revealed that treatment of the test microorganisms with EA-PB-52 destroyed the targeted cells with prominent loss of cell shape and integrity. In order to determine the constituents responsible for its antimicrobial activity, EA-PB-52 was subjected to chemical analysis using gas chromatography-mass spectrometry (GC-MS. GC-MS analysis showed the presence of twelve different chemical constituents in the extract, some of which

  10. Behavioral approach to appropriate antimicrobial prescribing in hospitals: the Dutch Unique Method for Antimicrobial Stewardship (DUMAS) participatory intervention study.

    NARCIS (Netherlands)

    Sikkens, J.J.; Agtmael, M.A. van; Peters, E.J.G.; Lettinga, K.D.; Kuip, M. van der; Vandenbroucke-Grauls, C.M.J.E.; Wagner, C.; Kramer, M.H.H.

    2017-01-01

    Importance: Inappropriate antimicrobial prescribing leads to antimicrobial resistance and suboptimal clinical outcomes. Changing antimicrobial prescribing is a complex behavioral process that is not often taken into account in antimicrobial stewardship programs. Objective: To examine whether an

  11. The Danish Pathology Register

    DEFF Research Database (Denmark)

    Bjerregaard, Beth; Larsen, Ole B

    2011-01-01

    The National Board of Health, Denmark in 1997 published guidelines for reporting of pathology data and the Danish Pathology Register (DPR) was established.......The National Board of Health, Denmark in 1997 published guidelines for reporting of pathology data and the Danish Pathology Register (DPR) was established....

  12. Antimicrobial Treatments and Efficacy

    Science.gov (United States)

    To limit exposure to indoor biological contamination a risk-management approach which employs various antimicrobial treatments can effectively control contaminants and reduce exposure. Antimicrobial treatment of biological contaminants, especially mold in buildings, it is often n...

  13. Impact of interspecific interactions on antimicrobial activity among soil bacteria

    NARCIS (Netherlands)

    Tyc, O.; Berg, van den M.; Gerards, S.; Veen, van J.A.; Raaijmakers, J.M.; Boer, de W.; Garbeva, P.

    2014-01-01

    Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to

  14. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    International Nuclear Information System (INIS)

    Zhang, Yuping; Zhang, Chiqian; Parker, David B.; Snow, Daniel D.; Zhou, Zhi; Li, Xu

    2013-01-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10 −1 copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent

  15. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhang, Chiqian [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States); Parker, David B. [USDA Meat Animal Research Center, Clay Center, NE (United States); Snow, Daniel D. [Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, Zhi [Department of Civil and Environmental Engineering, National University of Singapore (Singapore); Li, Xu, E-mail: xuli@unl.edu [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States)

    2013-10-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10{sup −1} copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent.

  16. Antimicrobial Resistance in Food Animals and the Environment in Nigeria: A Review

    Directory of Open Access Journals (Sweden)

    Nurudeen Olalekan Oloso

    2018-06-01

    Full Text Available Antimicrobial resistance (AMR has emerged as a global health threat, which has elicited a high-level political declaration at the United Nations General Assembly, 2016. In response, member countries agreed to pay greater attention to the surveillance and implementation of antimicrobial stewardship. The Nigeria Centre for Disease Control called for a review of AMR in Nigeria using a “One Health approach”. As anecdotal evidence suggests that food animal health and production rely heavily on antimicrobials, it becomes imperative to understand AMR trends in food animals and the environment. We reviewed previous studies to curate data and evaluate the contributions of food animals and the environment (2000–2016 to the AMR burden in Nigeria using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA flowchart focused on three areas: Antimicrobial resistance, residues, and antiseptics studies. Only one of the 48 antimicrobial studies did not report multidrug resistance. At least 18 bacterial spp. were found to be resistant to various locally available antimicrobials. All 16 residue studies reported high levels of drug residues either in the form of prevalence or concentration above the recommended international limit. Fourteen different “resistotypes” were found in some commonly used antiseptics. High levels of residues and AMR were found in food animals destined for the human food chain. High levels of residues and antimicrobials discharged into environments sustain the AMR pool. These had evolved into potential public health challenges that need attention. These findings constitute public health threats for Nigeria’s teeming population and require attention.

  17. IT Risk register

    OpenAIRE

    Kohout, Karel

    2011-01-01

    The theoretical part of the thesis analyzes several selected methodologies and best-practices related to information technology risks management, with focus on documents and guidance developed by ISACA. It builds a set of ideas and basic requirements for effective model of an IT risk register. Strong emphasis is placed on mapping CobiT 4.1 based Risk IT to COBIT 5. The practical part describes implementation of an exploratory web-based IT risk register in Python programming language utilizing...

  18. Antimicrobial use in long-term-care facilities

    NARCIS (Netherlands)

    Nicolle, LE; Bentley, DW; Garibaldi, R; Neuhaus, EG; Smith, PW

    There is intense antimicrobial use in long-term-care facilities (LTCFs), and studies repeatedly document that much of this use is inappropriate. The current crisis in antimicrobial resistance, which encompasses the LTCF, heightens concerns of antimicrobial use. Attempts to improve antimicrobial use

  19. Antimicrobial Drugs in the Home

    Centers for Disease Control (CDC) Podcasts

    2006-10-19

    Survey participants in the United Kingdom admitted keeping leftover antimicrobial drugs for future use and taking them without medical advice. Dr. J. Todd Weber, director of CDC's Office of Antimicrobial Resistance, advises against the practice, which can be dangerous and can promote antimicrobial drug resistance.  Created: 10/19/2006 by Emerging Infectious Diseases.   Date Released: 10/26/2006.

  20. Self-stratifying antimicrobial coatings

    NARCIS (Netherlands)

    Yagci, M.B.

    2012-01-01

    Today, antimicrobial polymers/coatings are widely used in various areas, such as biomedical devices, pharmaceuticals, hospital buildings, textiles, food processing, and contact lenses, where sanitation is needed. Such wide application facilities have made antimicrobial materials very attractive for

  1. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2016-01-01

    Full Text Available A convenient synthesis of 2′-(2″,4″-dinitrophenyl-5α-cholestano [5,7-c d] pyrazolines 4–6 from cholest-5-en-7-one 1–3 was performed and structural assignment of the products was confirmed on the basis of IR, 1H NMR, 13C NMR, MS and analytical data. The synthesized compounds were screened for in vitro antimicrobial activity against different strains during which compound 6 showed potent antimicrobial behaviour against Corynebacterium xerosis and Staphylococcus epidermidis. The synthesized compounds were also screened for in vitro anticancer activity against human cancer cell lines during which compound 5 exhibited significant anticancer activity.

  2. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Gi Byoung Hwang

    Full Text Available Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2(filter at 3-, 6-, and 9-min depositions, respectively. In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97% than for M. luteus aerosols (~95%. High-performance liquid chromatography (HPLC and electrospray ionization-tandem mass spectrometry (ESI/MS analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a

  3. Very wide register : an asymmetric register file organization for low power embedded processors.

    NARCIS (Netherlands)

    Raghavan, P.; Lambrechts, A.; Jayapala, M.; Catthoor, F.; Verkest, D.T.M.L.; Corporaal, H.

    2007-01-01

    In current embedded systems processors, multi-ported register files are one of the most power hungry parts of the processor, even when they are clustered. This paper presents a novel register file architecture, which has single ported cells and asymmetric interfaces to the memory and to the

  4. A long and winding road; evolution of antimicrobial drug development - crisis management.

    Science.gov (United States)

    Echols, Roger M

    2012-11-01

    The development of antimicrobial drugs has evolved from observational case reports to complex randomized prospective clinical trials in specific treatment indications. Beginning around the year 2000, the US FDA has evolved its approach on study design and other study characteristics, which has made the conduct of these studies more difficult and the outcomes for sponsors more risky. This has contributed to the decline in the discovery and development of new antimicrobials, which are needed to address the increasing problem of bacterial resistance to existing marketed products. This study reviews the historical basis for the current regulatory climate including the various crises that have led to considerable political pressures on the agency. Recent efforts to resolve development uncertainties and to provide economic incentives for future antimicrobial drug development are presented.

  5. Effect of structural animal health planning on antimicrobial use and animal health variables in conventional dairy farming in the Netherlands.

    Science.gov (United States)

    Speksnijder, David C; Graveland, Haitske; Eijck, Ineke A J M; Schepers, René W M; Heederik, Dick J J; Verheij, Theo J M; Wagenaar, Jaap A

    2017-06-01

    Widespread veterinary use of antimicrobials might contribute to the increasing burden of antimicrobial resistance. Despite many successful efforts to reduce veterinary antimicrobial use in the Netherlands, antimicrobial use on a substantial number of farms has remained relatively high over the past few years. Farm-specific solutions are required to further lower antimicrobial use on these farms. Reducing the burden of animal diseases at the farm level by means of a structured approach to animal health planning could be promising. This intervention study aimed to evaluate the main effects of an animal health planning program developed by an advisory team consisting of a dairy farmer, his veterinarian, and his feed adviser under the guidance of a professional facilitator. During an initial farm visit, the advisory team developed a farm-specific animal health planning program with support from the facilitator. After 1 yr, the effects of this program on animal health, production parameters, and antimicrobial use were evaluated and compared with control farms that did not have a facilitated animal health planning program. Antimicrobial use on intervention farms was significantly reduced between the start and the end of the study period; however, no significant differences in the rate of reduction between the intervention and control groups could be observed (-19% and -14%, respectively). Reduced antimicrobial use did not result in negative effects on animal health and production parameters during the study period in both groups. On intervention farms, a significant positive relationship was found between the percentage of completed action points at farm level and the percentage reduction in antimicrobial use. The level of compliance with action points and the quality of collaboration between farmer and advisers were positively associated with the accomplishment of corresponding objectives. However, the total number of objectives was negatively associated with the level

  6. Recent updates of marine antimicrobial peptides.

    Science.gov (United States)

    Semreen, Mohammad H; El-Gamal, Mohammed I; Abdin, Shifaa; Alkhazraji, Hajar; Kamal, Leena; Hammad, Saba; El-Awady, Faten; Waleed, Dima; Kourbaj, Layal

    2018-03-01

    Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  7. Recent updates of marine antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Mohammad H. Semreen

    2018-03-01

    Full Text Available Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  8. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Benjamin M Hariri

    Full Text Available Flavones are a class of natural plant secondary metabolites that have anti-inflammatory and anti-bacterial effects. Some flavones also activate the T2R14 bitter taste receptor, which is expressed in motile cilia of the sinonasal epithelium and activates innate immune nitric oxide (NO production. Flavones may thus be potential therapeutics for respiratory infections. Our objective was to examine the anti-microbial effects of flavones on the common sinonasal pathogens Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa, evaluating both planktonic and biofilm growth. Flavones had only very low-level antibacterial activity alone. They did not reduce biofilm formation, but did reduce production of the important P. aeruginosa inflammatory mediator and ciliotoxin pyocyanin. However, flavones exhibited synergy against P. aeruginosa in the presence of antibiotics or recombinant human lysozyme. They also enhanced the efficacy of antimicrobials secreted by cultured and primary human airway cells grown at air-liquid interface. This suggests that flavones may have anti-gram-negative potential as topical therapeutics when combined with antibiotics or in the context of innate antimicrobials secreted by the respiratory or other epithelia. This may have an additive effect when combined with T2R14-activated NO production. Additional studies are necessary to understand which flavone compounds or mixtures are the most efficacious.

  9. Transport of three veterinary antimicrobials from feedlot pens via simulated rainfall runoff.

    Science.gov (United States)

    Sura, Srinivas; Degenhardt, Dani; Cessna, Allan J; Larney, Francis J; Olson, Andrew F; McAllister, Tim A

    2015-07-15

    Veterinary antimicrobials are introduced to wider environments by manure application to agricultural fields or through leaching or runoff from manure storage areas (feedlots, stockpiles, windrows, lagoons). Detected in manure, manure-treated soils, and surface and ground water near intensive cattle feeding operations, there is a concern that environmental contamination by these chemicals may promote the development of antimicrobial resistance in bacteria. Surface runoff and leaching appear to be major transport pathways by which veterinary antimicrobials eventually contaminate surface and ground water, respectively. A study was conducted to investigate the transport of three veterinary antimicrobials (chlortetracycline, sulfamethazine, tylosin), commonly used in beef cattle production, in simulated rainfall runoff from feedlot pens. Mean concentrations of veterinary antimicrobials were 1.4 to 3.5 times higher in surface material from bedding vs. non-bedding pen areas. Runoff rates and volumetric runoff coefficients were similar across all treatments but both were significantly higher from non-bedding (0.53Lmin(-1); 0.27) than bedding areas (0.40Lmin(-1); 0.19). In keeping with concentrations in pen surface material, mean concentrations of veterinary antimicrobials were 1.4 to 2.5 times higher in runoff generated from bedding vs. non-bedding pen areas. Water solubility and sorption coefficient of antimicrobials played a role in their transport in runoff. Estimated amounts of chlortetracycline, sulfamethazine, and tylosin that could potentially be transported to the feedlot catch basin during a one in 100-year precipitation event were 1.3 to 3.6ghead(-1), 1.9ghead(-1), and 0.2ghead(-1), respectively. This study demonstrates the magnitude of veterinary antimicrobial transport in feedlot pen runoff and supports the necessity of catch basins for runoff containment within feedlots. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  10. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.

    Science.gov (United States)

    Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan

    2016-12-05

    Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.

  11. Antimicrobial stewardship: Strategies for a global response

    Directory of Open Access Journals (Sweden)

    Jenny Grunwald

    2014-01-01

    Full Text Available The increasing antimicrobial resistance worldwide, combined with dwindling antimicrobial armamentarium, has resulted in a critical threat to the public health and safety of patients. To combat this hazard, antimicrobial stewardship programs (ASPs have emerged. Antimicrobial stewardship programs prevent or slow the emergence of antimicrobial resistance by coordinated interventions designed to optimize antimicrobial use to achieve the best clinical outcomes and limiting selective pressures that drive the emergence of resistance. This also reduces excessive costs attributable to suboptimal antimicrobial use. Even though an ideal effective ASP should incorporate more than one element simultaneously, it also requires a multidisciplinary team, which should include an infectious diseases physician, a clinical pharmacist with infectious diseases training, infection control professionals, hospital epidemiologist, a clinical microbiologist and an information specialist. However, for antimicrobial stewardship (AMS programs to be successful, they must address the specific needs of individual institutions, must be built on available resources, the limitations and advantages of each institution, and the available staffing and technological infrastructure.

  12. Efficacy of antimicrobials extracted from organic pecan shell for inhibiting the growth of Listeria spp.

    Science.gov (United States)

    Babu, Dinesh; Crandall, Philip G; Johnson, Casey L; O'Bryan, Corliss A; Ricke, Steven C

    2013-12-01

    Growers and processors of USDA certified organic foods are in need of suitable organic antimicrobials. The purpose of the research reported here was to develop and test natural antimicrobials derived from an all-natural by-product, organic pecan shells. Unroasted and roasted organic pecan shells were subjected to solvent free extraction to produce antimicrobials that were tested against Listeria spp. and L. monocytogenes serotypes to determine the minimum inhibitory concentrations (MIC) of antimicrobials. The effectiveness of pecan shell extracts were further tested using a poultry skin model system and the growth inhibition of the Listeria cells adhered onto the skin model were quantified. The solvent free extracts of pecan shells inhibited Listeria strains at MICs as low as 0.38%. The antimicrobial effectiveness tests on a poultry skin model exhibited nearly a 2 log reduction of the inoculated cocktail mix of Listeria strains when extracts of pecan shell powder were used. The extracts also produced greater than a 4 log reduction of the indigenous spoilage bacteria on the chicken skin. Thus, the pecan shell extracts may prove to be very effective alternative antimicrobials against food pathogens and supplement the demand for effective natural antimicrobials for use in organic meat processing. © 2013 Institute of Food Technologists®

  13. Registered Nurse (Associate Degree).

    Science.gov (United States)

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of registered nurse (with an associate degree), lists technical competencies and competency builders for 19 units pertinent to the health technologies cluster in general and 5 units specific to the occupation of registered nurse. The following…

  14. Antimicrobial Activity and Antibiotic Sensitivity of Three Isolates of Lactic Acid Bacteria From Fermented Fish Product, Budu

    Directory of Open Access Journals (Sweden)

    Liasi, S. A.

    2009-01-01

    Full Text Available Three isolates of lactic acid bacteria (LAB from the fermented food product, Budu, were identified as genus lactobacillus (Lactobacillus casei LA17, Lactobacillus plantarum LA22 and L. paracasei LA02, and the highest population was Lb. paracasei LA02. The antibacterial agent produced by the isolates inhibited the growth of a range of gram-positive and gram-negative microorganisms. Antimicrobial sensitivity test to 18 different types of antibiotic were evaluated using the disc diffusion method. Inhibition zone diameter was measured and calculated from the means of five determinations and expressed in terms of resistance or susceptibility. All the LAB isolates were resistant to colestin sulphate, streptomycin, amikacin, norfloxacin, nalidixic acid, mecillinam, sulphanethoxazole/ trimethoprim, kanamycin, neomycin, bacitracin and gentamycin but susceptible to erythromycin, penicillin G, chloramphenicol, tetracycline, ampicillin and nitrofurantion.

  15. African peppermint (Mentha piperita) from Morocco: Chemical composition and antimicrobial properties of essential oil

    OpenAIRE

    Marwa, Chraibi; Fikri-Benbrahim, Kawtar; Ou-Yahia, Douae; Farah, Abdellah

    2017-01-01

    To replace and avoid synthetic chemicals toxicity, there is a growing interest in the investigation of natural products from plant origin for the discovery of active compounds with antimicrobial properties. This work was devoted to determine chemical composition and antimicrobial properties of the EO of M. piperita harvested in the garden of the National Institute of Medicinal and Aromatic Plants of Morocco. Experiments have been conducted at the Microbial Biotechnology Laboratory at the Scie...

  16. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions.

    Science.gov (United States)

    Watts, Joy E M; Schreier, Harold J; Lanska, Lauma; Hale, Michelle S

    2017-06-01

    As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens-singularly or in combination. These systems have been designated as "genetic hotspots" for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health.

  17. Prevalence and antimicrobial susceptibility of thermophilic Campylobacter in organic and conventional broiler flocks

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Pedersen, Karl; Andersen, J.S.

    2001-01-01

    Aims: To determine the flock prevalence and to estimate the within flock prevalence of Campylobacter in broiler flocks from different rearing systems, and to determine the antimicrobial susceptibility of Campylobacter isolates to selected antimicrobial substances. Methods and Results: One hundred...... and sixty broiler flocks originating from organic, conventional and extensive indoor production farms were investigated for the presence of Campylobacter at the time of slaughter. Campylobacter isolates from a subsample of positive flocks were subjected to susceptibility testing. Campylobacter spp. were...... isolated from 100% of organic broiler flocks, from 36.7% of conventional broiler flocks and from 49.2% of extensive indoor broiler flocks. Six of 62 Campylobacter isolates were resistant to one or more of the antimicrobials tested. Conclusions: These results indicate that the special characteristics...

  18. Scottish Antimicrobial Prescribing Group (SAPG): development and impact of the Scottish National Antimicrobial Stewardship Programme.

    Science.gov (United States)

    Nathwani, Dilip; Sneddon, Jacqueline; Malcolm, William; Wiuff, Camilla; Patton, Andrea; Hurding, Simon; Eastaway, Anne; Seaton, R Andrew; Watson, Emma; Gillies, Elizabeth; Davey, Peter; Bennie, Marion

    2011-07-01

    In 2008, the Scottish Management of Antimicrobial Resistance Action Plan (ScotMARAP) was published by the Scottish Government. One of the key actions was initiation of the Scottish Antimicrobial Prescribing Group (SAPG), hosted within the Scottish Medicines Consortium, to take forward national implementation of the key recommendations of this action plan. The primary objective of SAPG is to co-ordinate and deliver a national framework or programme of work for antimicrobial stewardship. This programme, led by SAPG, is delivered by NHS National Services Scotland (Health Protection Scotland and Information Services Division), NHS Quality Improvement Scotland, and NHS National Education Scotland as well as NHS board Antimicrobial Management Teams. Between 2008 and 2010, SAPG has achieved a number of early successes, which are the subject of this review: (i) through measures to optimise prescribing in hospital and primary care, combined with infection prevention measures, SAPG has contributed significantly to reducing Clostridium difficile infection rates in Scotland; (ii) there has been engagement of all key stakeholders at local and national levels to ensure an integrated approach to antimicrobial stewardship within the wider healthcare-associated infection agenda; (iii) development and implementation of data management systems to support quality improvement; (iv) development of training materials on antimicrobial stewardship for healthcare professionals; and (v) improving clinical management of infections (e.g. community-acquired pneumonia) through quality improvement methodology. The early successes achieved by SAPG demonstrate that this delivery model is effective and provides the leadership and focus required to implement antimicrobial stewardship to improve antimicrobial prescribing and infection management across NHS Scotland. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  19. Production of the antimicrobial peptides Caseicin A and B by Bacillus isolates growing on sodium caseinate.

    Science.gov (United States)

    Kent, R M; Guinane, C M; O'Connor, P M; Fitzgerald, G F; Hill, C; Stanton, C; Ross, R P

    2012-08-01

    The aim of this study was to identify Bacillus isolates capable of degrading sodium caseinate and subsequently to generate bioactive peptides with antimicrobial activity. Sodium caseinate (2.5% w/v) was inoculated separately with 16 Bacillus isolates and allowed to ferment overnight. Protein breakdown in the fermentates was analysed using gel permeation-HPLC (GP-HPLC) and screened for peptides (casein. This study highlights the potential to exploit Bacillus sp. or the enzymes they produce for the generation of bioactive antimicrobial peptides from bovine casein. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  20. In vitro antimicrobial activity of Pistacia lentiscus L. edible oil and phenolic extract.

    Science.gov (United States)

    Mezni, F; Aouadhi, C; Khouja, M L; Khaldi, A; Maaroufi, A

    2015-01-01

    Pistacia lentiscus L. is known in some Tunisian forest area by its fixed oil used in traditional medicine as an antiseptic product. This investigation is the first to study the antimicrobial activity of P.lentiscus edible oil and its phenolic extract. Oil was extracted from fruits harvested from six provenances located in Tunisia. The antimicrobial activity was tested using disc diffusion assay and the broth dilution method. Kbouch and Sidi Zid oils were most efficient (p oil and extract.

  1. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Pin it Email Print The Food and Drug Administration's (FDA's) Center for Veterinary Medicine (CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in ...

  2. Antimicrobial Peptides: An Introduction.

    Science.gov (United States)

    Haney, Evan F; Mansour, Sarah C; Hancock, Robert E W

    2017-01-01

    The "golden era" of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.

  3. Optimal Concentration of Organic Solvents to be Used in the Broth Microdilution Method to Determine the Antimicrobial Activity of Natural Products Against Paenibacillus Larvae

    OpenAIRE

    Cugnata Noelia Melina; Guaspari Elisa; Pellegrini Maria Celeste; Fuselli Sandra Rosa; Alonso-Salces Rosa Maria

    2017-01-01

    American Foulbrood (AFB) is a bacterial disease, caused by Paenibacillus larvae, that affects honeybees (Apis mellifera). Alternative strategies to control AFB are based on the treatment of the beehives with antimicrobial natural substances such as extracts, essential oils and/or pure compounds from plants, honey by-products, bacteria and moulds. The broth microdilution method is currently one of the most widely used methods to determine the minimum inhibitory concentration (MIC) of a substan...

  4. Antimicrobial resistance: A global emerging threat to public health systems.

    Science.gov (United States)

    Ferri, Maurizio; Ranucci, Elena; Romagnoli, Paola; Giaccone, Valerio

    2017-09-02

    Antimicrobial resistance (AMR) became in the last two decades a global threat to public health systems in the world. Since the antibiotic era, with the discovery of the first antibiotics that provided consistent health benefits to human medicine, the misuse and abuse of antimicrobials in veterinary and human medicine have accelerated the growing worldwide phenomenon of AMR. This article presents an extensive overview of the epidemiology of AMR, with a focus on the link between food producing-animals and humans and on the legal framework and policies currently implemented at the EU level and globally. The ways of responding to the AMR challenges foresee an array of measures that include: designing more effective preventive measures at farm level to reduce the use of antimicrobials; development of novel antimicrobials; strengthening of AMR surveillance system in animal and human populations; better knowledge of the ecology of resistant bacteria and resistant genes; increased awareness of stakeholders on the prudent use of antibiotics in animal productions and clinical arena; and the public health and environmental consequences of AMR. Based on the global nature of AMR and considering that bacterial resistance does not recognize barriers and can spread to people and the environment, the article ends with specific recommendations structured around a holistic approach and targeted to different stakeholders.

  5. Antimicrobial activity of essential oils against Staphylococcus aureus in fresh sheep cheese

    Directory of Open Access Journals (Sweden)

    Simonetta Amatiste

    2014-08-01

    Full Text Available Essential oils (EOs are aromatic oily liquids extracted from different parts of specific plants, well known especially for their aromatic and antibacterial properties. Nowadays, EOs are exploited in the food sector mainly for their aromatic properties. Thanks to their antimicrobial activity, however, they could also be used as additives to increase the safety and the shelf-life of food products. Aim of this study was to assess the antimicrobial activity of Thymus vulgaris L. oil and of Origanum vulgare L. oil against Staphylococcus aureus both in vitro and on fresh cheese, and to determine whether the use of EOs can modify the microbiological and/or chemical-physical properties of the products. The antimicrobial activity against S. aureus in vitro was assessed by preparation of the aromatogram (diffusion in agar test, minimum inhibitory concentration test and minimum bactericidal concentration assessment. Raw sheep milk was experimentally contaminated with a strain of S. aureus ATCC 25922 and was used to produce three types of fresh cheese: without EOs, with thyme and oregano EOs (both EOs at a concentration of 1:1000. The samples were analysed on the day of production, after three and seven days. The results obtained from the tests showed that the concentration of S. aureus and the counts of lactic flora remained unchanged for all types of cheese. Even the chemical-physical parameters were constant. The results of inhibition tests on the cheese disagree with those relating to the in vitro tests. Most likely this is due to the ability of EOs to disperse in the lipids the food: the higher the fat content is, the lower the oil fraction will be able to exert the antimicrobial activity.

  6. Antimicrobial activity of coriander oil and its effectiveness as food preservative.

    Science.gov (United States)

    Silva, Filomena; Domingues, Fernanda C

    2017-01-02

    ABTRACT Foodborne illness represents a major economic burden worldwide and a serious public health threat, with around 48 million people affected and 3,000 death each year only in the USA. One of the possible strategies to reduce foodborne infections is the development of effective preservation strategies capable of eradicating microbial contamination of foods. Over the last years, new challenges for the food industry have arisen such as the increase of antimicrobial resistance of foodborne pathogens to common preservatives and consumers demand for naturally based products. In order to overcome this, new approaches using natural or bio-based products as food preservatives need to be investigated. Coriander (Coriandrum sativum L.) is a well-known herb widely used as spice, or in folk medicine, and in the pharmacy and food industries. Coriander seed oil is the world's second most relevant essential oil, exhibiting antimicrobial activity against Gram-positive and Gram-negative bacteria, some yeasts, dermatophytes and filamentous fungi. This review highlights coriander oil antimicrobial activity and possible mechanisms of action in microbial cells and discusses the ability of coriander oil usage as a food preservative, pointing out possible paths for the successful evolution for these strategies towards a successful development of a food preservation strategy using coriander oil.

  7. Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts

    Science.gov (United States)

    Akhir, Rabieatul Adawieah Md; Bakar, Mohd Fadzelly Abu; Sanusi, Shuaibu Babaji

    2017-10-01

    Bee bread and propolis are by-products of honey bee. The main objective of this research was to investigate the antioxidant and antimicrobial activity of stingless bee bread and propolis extracted using 70% ethanol and n-hexane. The antioxidant activity of the sample extracts were determined by spectrophotometry analysis while for the antimicrobial activity, the sample extracts were analyzed using disc diffusion and broth dilution assays. For DPPH and ABTS assays, the results showed that ethanolic extract of bee bread showed the highest free radical scavenging (%) as compared to other samples. However, FRAP values for both hexanic extracts are higher as compared to the ethanolic extracts. For disc diffusion assay, the results showed that the ethanolic extract of bee bread and propolis as well as hexanic extract of propolis were able to inhibit all tested bacteria. Meanwhile, broth dilution assay showed minimum inhibition zone (MIC) ranging from <6.67 to 33.33 µL/mL. As the conclusion, both bee bread and propolis produced by stingless bee in this study displayed antioxidant and antimicrobial effect but there are different in the degree of antioxidant and antimicrobial activity exhibited between each of the samples.

  8. Frequency, serotyping and antimicrobial resistance pattern of Salmonella from feces and lymph nodes of pigs

    Directory of Open Access Journals (Sweden)

    João B.P. Guerra Filho

    Full Text Available ABSTRACT: Salmonellosis is a foodborne disease caused by bacteria of the genus Salmonella, being pigs and pork-products potentially important for its occurrence. In recent decades, some serovars of Salmonella have shown increase of resistance to conventional antimicrobials used in human and animal therapy, with serious risks for public health. The aim of this study was to evaluate feces (n=50, mediastinal (n=50, mesenteric (n=50 and mandibular (n=50 lymph nodes obtained from slaughter houses for Salmonella spp. Positive samples were serotyped and subjected to an in vitro antimicrobial susceptibility test, including the extended-spectrum beta-lactamase (ESBL production. Salmonella species were identified in 10% (20/200 of total samples. From these, 20% (10/50 were identified in the submandibular lymph nodes, 18% (9/50 in the mesenteric lymph nodes, 2% (1/50 in feces and 0% (0/50 in the mediastinal lymph nodes. The serotypes found were Salonella Typhimurium (55%, S. enterica subsp. enterica 4,5,12: i: - (35%, S. Brandenburg and S. Derby with 5% (5% each. All strains showed resistance to at least one antimicrobial; 90% were resistant to four or more antimicrobials, and 15% were multidrug-resistant. Resistance to ciprofloxacin, tetracycline and nalidixic acid was particularly prevalent amongst the tested serovars. Here, we highlighted the impact of pigs in the epidemiological chain of salmonellosis in domestic animals and humans, as well as the high antimicrobial resistance rates of Salmonella strains, reinforcing the necessity for responsible use of antimicrobials for animals as an emergent One Health issue, and to keep these drugs for human therapy approaches.

  9. Associations of antimicrobial use with antimicrobial resistance in Campylobacter coli from grow-finish pigs in Japan.

    Science.gov (United States)

    Ozawa, M; Makita, K; Tamura, Y; Asai, T

    2012-10-01

    To determine associations between antimicrobial use and antimicrobial resistance in Campylobacter coli, 155 isolates were obtained from the feces of apparently healthy grow-finish pigs in Japan. In addition, data on the use of antibiotics collected through the national antimicrobial resistance monitoring system in Japan were used for the analysis. Logistic regression was used to identify risk factors to antimicrobial resistance in C. coli in pigs for the following antimicrobials: ampicillin, dihydrostreptomycin, erythromycin, oxytetracycline, chloramphenicol, and enrofloxacin. The data suggested the involvement of several different mechanisms of resistance selection. The statistical relationships were suggestive of co-selection; use of macrolides was associated with enrofloxacin resistance (OR=2.94; CI(95%): 0.997, 8.68) and use of tetracyclines was associated with chloramphenicol resistance (OR=2.37; CI(95%): 1.08, 5.19). The statistical relationships were suggestive of cross-resistance: use of macrolides was associated with erythromycin resistance (OR=9.36; CI(95%): 2.96, 29.62) and the use of phenicols was associated with chloramphenicol resistance (OR=11.83; CI(95%): 1.41, 99.44). These data showed that the use of antimicrobials in pigs selects for resistance in C. coli within and between classes of antimicrobials. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Eggshell bacterial load is related to antimicrobial properties of feathers lining barn swallow nests.

    Science.gov (United States)

    Peralta-Sánchez, Juan Manuel; Soler, Juan José; Martín-Platero, Antonio Manuel; Knight, Rob; Martínez-Bueno, Manuel; Møller, Anders Pape

    2014-02-01

    The use of feathers to line bird's nests has traditionally been interpreted as having a thermoregulatory function. Feather-degrading bacteria growing on feathers lining nests may have antimicrobial properties, which may provide an additional benefit to lining nests with feathers. We test the hypothesis that the production of antimicrobial substances by feather bacteria affects the microbiological environment of the nest, and therefore the bacterial density on eggshells and, indirectly, hatching success. These effects would be expected to differ between nests lined with pigmented and white feathers, because bacteria grow differently on feathers of different colors. We experimentally manipulated the composition of pigmented and unpigmented feathers in nests of the barn swallow (Hirundo rustica) and studied the antimicrobial properties against the keratin-degrading bacterium Bacillus licheniformis of bacteria isolated from feathers of each color. Analyzed feathers were collected at the end of the incubation period, and antimicrobial activity was defined as the proportion of bacteria from the feathers that produce antibacterial substances effective against B. licheniformis. Our experimental manipulation affected antimicrobial activity, which was higher in nests with only white feathers at the beginning of incubation. Moreover, white feathers showed higher antimicrobial activity than black ones. Interestingly, antimicrobial activity in feathers of one of the colors correlated negatively with bacterial density on feather of the opposite color. Finally, antimicrobial activity of white feathers was negatively related to eggshell bacterial load. These results suggest that antimicrobial properties of feathers in general and of white feathers in particular affect the bacterial environment in nests. This environment in turn affects the bacterial load on eggshells, which may affect hatching success.

  11. Food applications of natural antimicrobial compounds

    Science.gov (United States)

    Lucera, Annalisa; Costa, Cristina; Conte, Amalia; Del Nobile, Matteo A.

    2012-01-01

    In agreement with the current trend of giving value to natural and renewable resources, the use of natural antimicrobial compounds, particularly in food and biomedical applications, becomes very frequent. The direct addition of natural compounds to food is the most common method of application, even if numerous efforts have been made to find alternative solutions to the aim of avoiding undesirable inactivation. Dipping, spraying, and coating treatment of food with active solutions are currently applied to product prior to packaging as valid options. The aim of the current work is to give an overview on the use of natural compounds in food sector. In particular, the review will gather numerous case-studies of meat, fish, dairy products, minimally processed fruit and vegetables, and cereal-based products where these compounds found application. PMID:23060862

  12. Food applications of natural antimicrobial compounds.

    Science.gov (United States)

    Lucera, Annalisa; Costa, Cristina; Conte, Amalia; Del Nobile, Matteo A

    2012-01-01

    In agreement with the current trend of giving value to natural and renewable resources, the use of natural antimicrobial compounds, particularly in food and biomedical applications, becomes very frequent. The direct addition of natural compounds to food is the most common method of application, even if numerous efforts have been made to find alternative solutions to the aim of avoiding undesirable inactivation. Dipping, spraying, and coating treatment of food with active solutions are currently applied to product prior to packaging as valid options. The aim of the current work is to give an overview on the use of natural compounds in food sector. In particular, the review will gather numerous case-studies of meat, fish, dairy products, minimally processed fruit and vegetables, and cereal-based products where these compounds found application.

  13. Food applications of natural antimicrobial compounds

    Directory of Open Access Journals (Sweden)

    Matteo Alessandro eDel Nobile

    2012-08-01

    Full Text Available In agreement with the current trend of giving value to natural and renewable resources, the use of natural antimicrobial compounds, particularly in food and biomedical applications, becomes very frequent. The direct addition of natural compounds to food is the most common method of application, even if numerous efforts have been made to find alternative solutions to the aim of avoiding undesirable inactivation. Dipping, spraying and coating treatment of food with active solutions are currently applied to product prior to packaging as valid options. The aim of the current work is to give an overview on the use of natural compounds in food sector. In particular, the review will gather numerous case-studies of meat, fish, dairy products, minimally processed fruit and vegetables and cereal-based products where these compounds found application.

  14. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry.

    Science.gov (United States)

    García-Lomillo, Javier; González-SanJosé, M Luisa; Del Pino-García, Raquel; Rivero-Pérez, M Dolores; Muñiz-Rodríguez, Pilar

    2014-12-31

    Wine pomace (WP) is one of the agricultural byproducts that has received most attention from food scientists due to the wide range of interesting compounds that remain after the winemaking process. Different powdered products rich in phenolic compounds, with interesting antioxidant and antimicrobial activities, were obtained from WP by applying processes that are both environmentally friendly and economically affordable for the food industry. The products obtained showed high global antioxidant activities (ABTS assay), successfully delayed the onset of lipid oxidation in the Rancimat test, and showed different antimicrobial properties. Products derived from seed-free WP showed bactericidal effects against total aerobic mesophilic bacteria (TAMB) and lactic acid bacteria (LAB) and inhibited Enterobacteriaceae growth completely. The product derived from whole WP presented bacteriostatic activity against the three microorganism groups tested, whereas the product obtained from grape seed promoted TAMB and LAB growth but delayed Enterobacteriaceae proliferation.

  15. Prevalence and antimicrobial resistance pattern of Salmonella in animal feed produced in Namibia.

    Science.gov (United States)

    Shilangale, Renatus P; Di Giannatale, Elisabetta; Chimwamurombe, Percy M; Kaaya, Godwin P

    2012-01-01

    The occurrence of Salmonella is a global challenge in the public health and food production sectors. Our study investigated the prevalence, serovar and antimicrobial susceptibility of strains of Salmonella serovars isolated from animal feed (meat-and-bone and blood meal) samples from two commercial abattoirs in Namibia. A total of 650 samples (n=650) were examined for the presence of Salmonella. Results showed that 10.9% (n=71) were positive for Salmonella. Of the Salmonella serovars isolated, S. Chester was the most commonly isolated serovar (19.7%), followed by S. Schwarzengrund at 12.7%. From the Salmonella isolates, 19.7% (n=14) were resistant to one or more of the antimicrobials (nalidixic acid, trimethoprim-sulfamethoxazole, sulfisoxazole, streptomycin and/or tetracycline), whereas 80.3% (n=57) were susceptible to all 16 antimicrobials tested. Resistance to sulfisoxazole and the trimethroprimsuflamethoxazole combination were the most common. The resistant isolates belonged to ten different Salmonella serovars. The susceptibility of most of the Salmonella isolated to the antimicrobials tested indicates that anti-microbial resistance is not as common and extensive in Namibia as has been reported in many other countries. It also appears that there is a range of antimicrobials available that are effective in managing Salmonella infections in Namibia. However, there is some evidence that resistance is developing and this will need further monitoring to ensure it does not become a problem.

  16. State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Arantzazu Valdés

    2017-04-01

    Full Text Available The interest for the development of new active packaging materials has rapidly increased in the last few years. Antimicrobial active packaging is a potential alternative to protect perishable products during their preparation, storage and distribution to increase their shelf-life by reducing bacterial and fungal growth. This review underlines the most recent trends in the use of new edible coatings enriched with antimicrobial agents to reduce the growth of different microorganisms, such as Gram-negative and Gram-positive bacteria, molds and yeasts. The application of edible biopolymers directly extracted from biomass (proteins, lipids and polysaccharides or their combinations, by themselves or enriched with natural extracts, essential oils, bacteriocins, metals or enzyme systems, such as lactoperoxidase, have shown interesting properties to reduce the contamination and decomposition of perishable food products, mainly fish, meat, fruits and vegetables. These formulations can be also applied to food products to control gas exchange, moisture permeation and oxidation processes.

  17. Development of pea protein-based bioplastics with antimicrobial properties.

    Science.gov (United States)

    Perez-Puyana, Víctor; Felix, Manuel; Romero, Alberto; Guerrero, Antonio

    2017-06-01

    In the present work, bioplastics from renewable polymers were studied in order to reduce the huge generation of plastic wastes, causing an environmental problem that continues owing to the increasing demand for plastic products. Bioplastics with much better antimicrobial properties, in particular against Gram-positive bacteria, were obtained with the addition of nisin to the initial protein/plasticizer mixture. However, the addition of nisin produces more rigid but less deformable bioplastics (higher Young's modulus but lower strain at break). The results obtained are useful to demonstrate the antimicrobial properties of pea protein-based bioplastics by adding nisin and make them suitable as potential candidates to replace conventional plastics in food packaging. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. THE ANTIMICROBIAL ACTIVITY OF SOME EXTRACTS OF FERN GAMETOPHYTES

    Directory of Open Access Journals (Sweden)

    Ionica Deliu

    2013-12-01

    Full Text Available The nature freely offers us many resources for health and beauty. The ferns and their therapeutic properties are less exploit in Romania, except Lycopodium clavatum and Equisetum arvense. Some of the fern properties were demonstrated, like antioxidant, antimicrobial, antiviral, antihelmintic properties. Plants are reasonable alternative to synthetic drugs, avoid the side effect and high cost of synthetic drugs production. Also, the drug resistance bacteria can be controlled using plant derived remedies. In this study the antimicrobial effect of methanolic and ethanolic extracts from three fern species were tested. The extracts were gained from gametophytic stage of ferns obtained in vitro. The most obvious effect was observed for Asplenium trichomanes-ramosum extract. The total polyphenols and flavonoids content were established, too.

  19. Correlations between Income inequality and antimicrobial resistance.

    Science.gov (United States)

    Kirby, Andrew; Herbert, Annie

    2013-01-01

    The aim of this study is to investigate if correlations exist between income inequality and antimicrobial resistance. This study's hypothesis is that income inequality at the national level is positively correlated with antimicrobial resistance within developed countries. Income inequality data were obtained from the Standardized World Income Inequality Database. Antimicrobial resistance data were obtained from the European antimicrobial Resistance Surveillance Network and outpatient antimicrobial consumption data, measured by Defined daily Doses per 1000 inhabitants per day, from the European Surveillance of antimicrobial Consumption group. Spearman's correlation coefficient (r) defined strengths of correlations of: > 0.8 as strong, > 0.5 as moderate and > 0.2 as weak. Confidence intervals and p values were defined for all r values. Correlations were calculated for the time period 2003-10, for 15 European countries. Income inequality and antimicrobial resistance correlations which were moderate or strong, with 95% confidence intervals > 0, included the following. Enterococcus faecalis resistance to aminopenicillins, vancomycin and high level gentamicin was moderately associated with income inequality (r= ≥0.54 for all three antimicrobials). Escherichia coli resistance to aminoglycosides, aminopenicillins, third generation cephalosporins and fluoroquinolones was moderately-strongly associated with income inequality (r= ≥0.7 for all four antimicrobials). Klebsiella pneumoniae resistance to third generation cephalosporins, aminoglycosides and fluoroquinolones was moderately associated with income inequality (r= ≥0.5 for all three antimicrobials). Staphylococcus aureus methicillin resistance and income inequality were strongly associated (r=0.87). As income inequality increases in European countries so do the rates of antimicrobial resistance for bacteria including E. faecalis, E. coli, K. pneumoniae and S. aureus. Further studies are needed to confirm these

  20. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors

    Directory of Open Access Journals (Sweden)

    Jones Sara E

    2009-02-01

    Full Text Available Abstract Background Commensal-derived probiotic bacteria inhibit enteric pathogens and regulate host immune responses in the gastrointestinal tract, but studies examining specific functions of beneficial microbes in the context of biofilms have been limited in scope. Results Lactobacillus reuteri formed biofilms that retained functions potentially advantageous to the host including modulation of cytokine output and the production of the antimicrobial agent, reuterin. Immunomodulatory activities of biofilms were demonstrated by the abilities of specific L. reuteri strains to suppress human TNF production by LPS-activated monocytoid cells. Quantification of the antimicrobial glycerol derivative, reuterin, was assessed in order to document the antipathogenic potential of probiotic biofilms. L. reuteri biofilms differed in the quantities of reuterin secreted in this physiological state. Conclusion L. reuteri biofilms secreted factors that confer specific health benefits such as immunomodulation and pathogen inhibition. Future probiotic selection strategies should consider a strain's ability to perform beneficial functions as a biofilm.

  1. Bioactive metabolite production by Streptomyces albolongus in favourable environment

    Directory of Open Access Journals (Sweden)

    Myn Uddin

    2013-06-01

    Full Text Available Objectives: Demand for new antibiotic is rising up due to continuous resistance risk against conventional antibiotic.This attempt was taken to find out a novel antimicrobial metabolite.Methods: Chili field antagonistic actinomycetes Streptomyces albolongus was isolated and tested for optimum antimicrobialmetabolite production. Primary screening was done by selective media and antibiotic assay was done by agarcup plate method. Fermented product was recovered by separating funnel using suitable solvent.Results: Maximum antimicrobial metabolite production was found at temperature 35°C and pH 9.0 and on 6th day ofincubation. The medium consisting of corn steep liquor (0.2%, glucose (1.0%, NaCl (0.5%, K2HPO4 (0.1% was screenedout as suitable medium for maximum antimicrobial production. Sucrose was found as the best carbon source amongfour sources. The antimicrobial metabolite was found to be stable at pH and temperature up to 11.0 and 100°C respectively.The active agent was best extracted with chloroform. The antimicrobial spectrum of the metabolite was wideand shows activity against Shigella dysenteriae (AE14612, Shigella sonnei (CRL, ICDDR, B, Salmonella typhi (AE14296,Vibrio cholerae (AE14748, Pseudomonas aeruginosa (CRL, ICDDR, B, Bacillus cereus (BTCC19, Staphylococcus aureus(ATCC6538, Bacillus subtilis (BTTC17 and Bacillus megaterium (BTTC18.Conclusions: The findings of antibacterial activity of S. albolongus against several species of human pathogens includingboth Gram-positive and Gram-negative bacteria indicated that our produced material might be an alternative antimicrobialsubstance to control human diseases. J Microbiol Infect Dis 2013; 3(2: 75-82Key words: Streptomyces albolongus, antimicrobial metabolite, optimum production, antimicrobial spectrum

  2. Editorial of the Special Issue Antimicrobial Polymers

    Directory of Open Access Journals (Sweden)

    Iolanda Francolini

    2013-09-01

    Full Text Available The special issue “Antimicrobial Polymers” includes research and review papers concerning the recent advances on preparation of antimicrobial polymers and their relevance to industrial settings and biomedical field. Antimicrobial polymers have recently emerged as promising candidates to fight microbial contamination onto surfaces thanks to their interesting properties. In this special issue, the main strategies pursued for developing antimicrobial polymers, including polymer impregnation with antimicrobial agents or synthesis of polymers bearing antimicrobial moieties, were discussed. The future application of these polymers either in industrial or healthcare settings could result in an extremely positive impact not only at the economic level but also for the improvement of quality of life.

  3. Approaches for quantifying antimicrobial consumption per animal species based on national sales data: a Swiss example, 2006 to 2013.

    Science.gov (United States)

    Carmo, Luís P; Schüpbach-Regula, Gertraud; Müntener, Cedric; Chevance, Anne; Moulin, Gérard; Magouras, Ioannis

    2017-02-09

    Antimicrobial use in animals is known to contribute to the global burden of antimicrobial resistance. Therefore, it is critical to monitor antimicrobial sales for livestock and pets. Despite the availability of veterinary antimicrobial sales data in most European countries, surveillance currently lacks consumption monitoring at the animal species level. In this study, alternative methods were investigated for stratifying antimicrobial sales per species using Swiss data (2006-2013). Three approaches were considered: (i) Equal Distribution (ED) allocated antimicrobial sales evenly across all species each product was licensed for; (ii) Biomass Distribution (BMD) stratified antimicrobial consumption, weighting the representativeness of each species' total biomass; and (iii) Longitudinal Study Extrapolation (LSE) assigned antimicrobial sales per species based on a field study describing prescription patterns in Switzerland. LSE is expected to provide the best estimates because it relies on field data. Given the Swiss example, BMD appears to be a reliable method when prescription data are not available, whereas ED seems to underestimate consumption in species with larger populations and higher treatment intensity. These methods represent a valuable tool for improving the monitoring systems of veterinary antimicrobial consumption across Europe. This article is copyright of The Authors, 2017.

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration A to Z Index Follow FDA En Español Search FDA Submit search ... & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet ...

  5. Frequency of interaction-mediated triggering of antibiotic production among soil bacteria

    Directory of Open Access Journals (Sweden)

    Olaf eTyc

    2014-10-01

    Full Text Available Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to screen for the production of antimicrobial activity by monocultures and pair-wise combinations of 146 phylogenetically different bacteria isolated from similar soil habitats. Growth responses of two human pathogenic model organisms, Escherichia coli WA321 and Staphylococcus aureus 533R4, were used to monitor antimicrobial activity. From all isolates, 33% showed antimicrobial activity only in monoculture and 42% showed activity only when tested in interactions. More bacterial isolates were active against S. aureus than against E. coli. The frequency of interaction-mediated induction of antimicrobial activity was 6% (154 interactions out of 2798 indicating that only a limited set of species combinations showed such activity. The screening revealed also interaction-mediated suppression of antimicrobial activity for 22% of all combinations tested. Whereas all patterns of antimicrobial activity (non-induced production, induced production and suppression were seen for various bacterial classes, interaction-mediated induction of antimicrobial activity was more frequent for combinations of Flavobacteria and alpha- Proteobacteria. The results of our study give a first indication on the frequency of interference competitive interactions in natural soil bacterial communities which may forms a basis for selection of bacterial groups that are promising for the discovery of novel, cryptic antibiotics.

  6. Use of zinc oxide nano particles for production of antimicrobial textiles

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 1 (2010) >. Log in or Register to get access to full text downloads.

  7. 1 CFR 11.7 - Federal Register Index.

    Science.gov (United States)

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Federal Register Index. 11.7 Section 11.7... REGISTER PUBLICATIONS SUBSCRIPTIONS § 11.7 Federal Register Index. The annual subscription price for the monthly Federal Register Index, purchased separately, in paper form, is $29. The price excludes postage...

  8. Universal Verification Methodology Based Register Test Automation Flow.

    Science.gov (United States)

    Woo, Jae Hun; Cho, Yong Kwan; Park, Sun Kyu

    2016-05-01

    In today's SoC design, the number of registers has been increased along with complexity of hardware blocks. Register validation is a time-consuming and error-pron task. Therefore, we need an efficient way to perform verification with less effort in shorter time. In this work, we suggest register test automation flow based UVM (Universal Verification Methodology). UVM provides a standard methodology, called a register model, to facilitate stimulus generation and functional checking of registers. However, it is not easy for designers to create register models for their functional blocks or integrate models in test-bench environment because it requires knowledge of SystemVerilog and UVM libraries. For the creation of register models, many commercial tools support a register model generation from register specification described in IP-XACT, but it is time-consuming to describe register specification in IP-XACT format. For easy creation of register model, we propose spreadsheet-based register template which is translated to IP-XACT description, from which register models can be easily generated using commercial tools. On the other hand, we also automate all the steps involved integrating test-bench and generating test-cases, so that designers may use register model without detailed knowledge of UVM or SystemVerilog. This automation flow involves generating and connecting test-bench components (e.g., driver, checker, bus adaptor, etc.) and writing test sequence for each type of register test-case. With the proposed flow, designers can save considerable amount of time to verify functionality of registers.

  9. Illinois I/O Register to FASTBUS Interface

    International Nuclear Information System (INIS)

    Downing, R.; Lesny, D.; Whitten, W.

    1983-01-01

    The I/O Register to FASTBUS Interface (IORFI) is connected to a processor via two 16-bit output registers (OR1,OR2) and two 16-bit output resisters (IR1,IR2). One of the output registers (OR1) is used to specify the interface function which is to be performed when the interface is accessed via the Data-in Register (IR2) or the Data-out Register (OR2). The other input register (IR1) is used to read the direct status of the FASTBUS lines independent of OR1. The changes made to the SLAC design at the University of Illinois are described

  10. Review of antimicrobial and antioxidative activities of chitosans in food.

    Science.gov (United States)

    Friedman, Mendel; Juneja, Vijay K

    2010-09-01

    Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality.

  11. Evolution of antimicrobial resistance of Salmonella enteritidis (1972–2005

    Directory of Open Access Journals (Sweden)

    Jermaine Khumalo

    2014-11-01

    Full Text Available With the extensive use of antibiotics in livestock production, surveillance revealed an increase in Salmonella resistance to the commonly used antimicrobials in veterinary and public health. This serious threat to health care is further exacerbated by the limited epidemiological information about the common zoonotic agent, Salmonella enteritidis, required to determine antibiotic therapy. The aim was to characterise the antimicrobial resistance patterns of S. enteritidis isolates across different timelines (1972–2005 with accompanying genetic changes being investigated. Thirty-seven stored S. enteritidis isolates were collected from the Central Veterinary Laboratory, Harare, with antimicrobial susceptibility determined against eight antibiotics. Plasmids were isolated to analyse any genetic variation. An overall significant increase in resistance (p < 0.05 to nalidixic acid (0% – 10%, ampicillin (14.3% – 50%, tetracycline (14.3% – 30% and erythromycin (71.4% – 100% was observed across the timeline. However, the highest rates of susceptibility were maintained for gentamicin, sulphamethoxazole-trimethoprim, kanamycin and chloramphenicol. We report an increase in multidrug resistance (MDR of 14.2% – 50% with an increase in resistotypes and plasmid profiles across the timeline. Eleven plasmid profiles were obtained in the 37 isolates studied with a minority of isolates (21.6%, 8/37 harbouring a 54 kb plasmid, commonly serovar-specific. A concerning increase in antimicrobial resistance to commonly administered drugs was observed across the timeline. The surge in MDR is of great concern and implies the need for consistent antimicrobial stewardship. No correlation was observed between the plasmid and antibiotic profiles.

  12. Molecular Electronic Shift Registers

    Science.gov (United States)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  13. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated Report Data Meetings ... Deutsch | 日本語 | فارسی | English FDA Accessibility Careers FDA Basics FOIA No FEAR ...

  14. In vitro assessment of the antimicrobial effects of pomegranate (Punica granatum L. peel decoction on saliva samples

    Directory of Open Access Journals (Sweden)

    Solon José de Oliveira Leite

    2014-01-01

    Full Text Available Several products have been developed to eliminate or reduce potential pathogenic microorganisms of the oral microbiome. The continuous use of these synthetic products can result in side effects such as vomiting, diarrhea, darkening of the teeth and the induction of microbial resistance. Pomegranate (Punica granatum peel decoction was tested to assess its antimicrobial activity. In vitro analysis showed the decoction had antimicrobial activity against strains of Pseudomonas aeruginosa and Candida albicans, but none was detected against Enterococcus faecalis. When tested on saliva samples from children, the decoction showed great potential in reducing the load of microorganisms, the inhibition haloes produced with saliva samples being similar to those of the antimicrobial control (0.12% chlorhexidine. The pomegranate peel decoction in water could thus provide a promising source for developing solutions for use against oral diseases.

  15. Evaluation of natural antimicrobials on typical meat spoilage bacteria in vitro and in vacuum-packed pork meat.

    Science.gov (United States)

    Schirmer, Bjørn Christian; Langsrud, Solveig

    2010-03-01

    The aim of this study was to investigate the inhibitory effect of natural antimicrobials on the growth of typical spoilage bacteria from marinated pork. Minimum inhibitory concentrations (MIC) of thymol, cinnamaldehyde, allyl isothiocyanate, citric acid, ascorbic acid, a rosemary extract, and a grapefruit seed extract against Lactobacillus algidus, Leuconostoc mesenteroides, Leuconostoc carnosum, Carnobacterium maltaromaticum, Carnobacterium divergens, Brochothrix thermosphacta, and Serratia proteamaculans were determined in a microplate assay. Combinations of antimicrobials were tested and several combinations showed synergistic effects in inhibiting bacterial growth. Single and combined antimicrobials were added to vacuum-packed pork meat to evaluate preserving effects. Antimicrobial concentrations of up to 10 times the MIC values showed no effect on total bacterial growth in vacuum packed pork meaning that although most antimicrobials inhibited the growth of spoilage bacteria in vitro, results from the microplate assay could not be transferred to the meat system. Most natural antimicrobials possess strong odor and flavor that limit their use as a food preservative. In conclusion, this study showed that the use of natural antimicrobials in meat products is limited and that bacterial quality and shelf life was not enhanced under the chosen conditions.

  16. Validation of a Cerebral Palsy Register

    DEFF Research Database (Denmark)

    Topp, Monica; Langhoff-Roos, Jens; Uldall, P.

    1997-01-01

    OBJECTIVES: To analyse completeness and validity of data in the Cerebral Palsy Register in Denmark, 1979-1982. METHODS: Completeness has been assessed by comparing data from The Danish National Patient Register (DNPR) with the cases included in the Cerebral Palsy Register (CPR). Agreement between......, but gestational age was subject to a systematic error, and urinary infections in pregnancy (kappa = 0.43) and placental abruption (kappa = 0.52) were seriously under-reported in the CPR. CONCLUSIONS: Completeness of the Cerebral Palsy Register in Denmark, 1979-1982, has been assessed to maximal 85%, emphasizing...

  17. The use of antimicrobial drugs in agriculture.

    Science.gov (United States)

    Black, W D

    1984-08-01

    Antibacterial drugs have been used widely in animal production for treatment and prevention of disease and for growth promotion. Concern has been expressed about possible harm to humans, through the use of drugs, in the following ways: increased microbial drug resistance; drug residues in food; allergic reactions and sensitization to antimicrobials; and drug toxicity. Research has shown that microbial resistance in people can develop from drugs used in animals. Farmers, butchers, etc., have been shown to have an increased incidence of drug-resistant organisms. Resistance to antibiotics can develop in two ways; genetic mutation and natural selection, and through R-factor plasmid transfer. Allergic reactions have been reported following the ingestion of penicillin-containing milk; however, residues in other foods have not caused allergic reactions. Sensitization of humans to antimicrobials through the consumption of drug residues in foods has never been documented. Evidence suggests that the residue levels in food are too low to cause sensitization. Drug toxicity, other than allergic reactions, appears not to result from residues of antimicrobial drugs in food. While it has been studied many times, monitoring programs have failed to find any evidence of a problem. This appears to reflect the low toxicity of these agents and the small amounts obtained in the food, however, it could also reflect failure of the monitoring systems.

  18. Register-based studies on migration, ethnicity, and health

    DEFF Research Database (Denmark)

    Norredam, Marie; Kastrup, Marianne; Helweg-Larsen, Karin

    2011-01-01

    INTRODUCTION: Researchers in Denmark have unique possibilities of register-based research in relation to migration, ethnicity, and health. This review article outlines how these opportunities have been used, so far, by presenting a series of examples. RESEARCH TOPICS: We selected six registers...... it discriminatory. Although, we do not register ethnicity in relation to use of health care in Denmark, our possibilities of linkage between population registers and registers on diseases and healthcare utilisation appear to render the same potentials....... to highlight the process of how migrant study populations have been established and studied in relation to different registers: The Danish Cancer Registry, the Danish Central Psychiatric Research Register, the Danish National Patient Register, the Danish National Health Service Register, the Danish Injury...

  19. Antimicrobial reduction measures applied in Danish pig herds following the introduction of the “Yellow Card” antimicrobial scheme

    DEFF Research Database (Denmark)

    Dupont, Nana; Diness, Line Hummelmose; Fertner, Mette Ely

    2017-01-01

    their annual antimicrobial consumption with ≥10% following the introduction of the Yellow Card Scheme comparing June 1, 2009–May 31, 2010 to June 1, 2010–May 31, 2011. Subsequently, questionnaire surveys of both farmers and veterinarians were carried out, resulting in responses from 179 farmers accounting...... for 202 herds (response ratio: 83%) and 58 veterinarians accounting for 140 herds. Prior to the introduction of the Yellow Card Scheme, 24% of the participating herds had an antimicrobial consumption for one or more age groups which exceeded the Yellow Card Scheme threshold values on antimicrobial......Following introduction of the antimicrobial restrictive “Yellow Card Scheme” in summer 2010, a rapid decrease in the Danish national pig antimicrobial consumption was observed. The aims of this study were to (i) investigate which measures had been implemented to reduce the antimicrobial consumption...

  20. Antimicrobial properties of indigenous Lactobacillus sakei strain

    OpenAIRE

    Vesković-Moračanin Slavica; Obradović D.; Velebit B.; Borović Branka; Škrinjar Marija; Turubatović L.

    2010-01-01

    The strain I 154 of Lactobacillus sakei has been isolated from traditionally fermented sausages in the course of the realization of the international project (INCO PROJECT No ICA4-CT-2002-10037). This strain exhibited the ability for bacteriocin production. Antimicrobial properties of the isolated bacteriocin (sakacine), its sensibility towards proteolytic enzymes, as well as the effect of increased to high temperatures on its stability have been examined in this work. Semi purified bacterioc...

  1. Development of antimicrobial optimum glass ionomer; Desenvolvimento de ionomero de vidro antimicrobiano otimo

    Energy Technology Data Exchange (ETDEWEB)

    Angioletto, E.; Tezza, V.B.; Santos, M.J.; Montedo, O.R.K.; Pich, C.T.; Fiori, M.A. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil); Angioletto, Ev. [Biorosam Biotecnologia Ltda., SC (Brazil)

    2010-07-01

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  2. Occupancy-driven smart register for building energy saving (Conference Presentation)

    Science.gov (United States)

    Chen, Zhangjie; Wang, Ya S.

    2017-04-01

    The new era in energy-efficiency building is to integrate automatic occupancy detection with automated heating, ventilation and cooling (HVAC), the largest source of building energy consumption. By closing off some air vents, during certain hours of the day, up to 7.5% building energy consumption could be saved. In the past, smart vent has received increasing attention and several products have been developed and introduced to the market for building energy saving. For instance, Ecovent Systems Inc. and Keen Home Inc. have both developed smart vent registers capable of turning the vent on and off through smart phone apps. However, their products do not have on-board occupancy sensors and are therefore open-loop. Their vent control was achieved by simply positioning the vent blade through a motor and a controller without involving any smart actuation. This paper presents an innovative approach for automated vent control and automatic occupancy (human subjects) detection. We devise this approach in a smart register that has polydimethylsiloxane (PDMS) frame with embedded Shape memory alloy (SMA) actuators. SMAs belong to a class of shape memory materials (SMMs), which have the ability to `memorise' or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations. And it can work as actuators and be applied to vent control. Specifically, a Ni-Ti SMA strip will be pre-trained to a circular shape, wrapped with a Ni-Cr resistive wire that is coated with thermally conductive and electrically isolating material. Then, the SMA strip along with an antagonistic SMA strip will be bonded with PZT sensor and thermal sensors, to be inserted into a 3D printed mould which will be filled with silicone rubber materials. In the end, a demoulding process yields a fully integrated blade of the smart register. Several blades are installed together to form the smart register. The PZT sensors can feedback the shape of the actuator for precise

  3. Nanostructures for delivery of natural antimicrobials in food.

    Science.gov (United States)

    Lopes, Nathalie Almeida; Brandelli, Adriano

    2017-04-10

    Natural antimicrobial compounds are a topic of utmost interest in food science due to the increased demand for safe and high-quality foods with minimal processing. The use of nanostructures is an interesting alternative to protect and delivery antimicrobials in food, also providing controlled release of natural compounds such as bacteriocins and antimicrobial proteins, and also for delivery of plant derived antimicrobials. A diversity of nanostructures are capable of trapping natural antimicrobials maintaining the stability of substances that are frequently sensitive to food processing and storage conditions. This article provides an overview on natural antimicrobials incorporated in nanostructures, showing an effective antimicrobial activity on a diversity of food spoilage and pathogenic microorganisms.

  4. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents.

    Science.gov (United States)

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2015-01-01

    Antimicrobial resistance is one of the most serious public health problems. This is of particular concern when bacteria become resistant to various antimicrobial agents simultaneously and when they form biofilms. Consequently, therapeutic options for the treatment of infections have become limited, leading frequently to recurrent infections, treatment failure and increase of morbidity and mortality. Both, persistence and spread of antibiotic resistance, in combination with decreased effectiveness and increased toxicity of current antibiotics have emphasized the urgent need to search alternative sources of antimicrobial substances. Plants are recognized as a source of unexplored chemical structures with high therapeutic potential, including antimicrobial activity against clinically important microorganisms. Additionally, phytochemicals (plant secondary metabolites) present several advantages over synthetic molecules, including green status and different mechanisms of action from antibiotics which could help to overcome the resistance problem. In this study, an overview of the main classes of phytochemicals with antimicrobial properties and their mode of action is presented. A revision about the application of phytochemicals for biofilm prevention and control is also done. Moreover, the use of phytochemicals as scaffolds of new functional molecules to expand the antibiotics pipeline is reviewed.

  5. Preparation and Characterizations of Chitosan/Citral Nanoemulsions and their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Gehan I. Kh. Marei

    2018-03-01

    Full Text Available Background and Objective: The antimicrobial activity of essential oils has been long recognized, however, they easily evaporate and/or decompose during preparation, owing to direct exposure to heat, pressure and light. The current study deals with the formulation and characterization of bio-based oil in water nanoemulsions and their antimicrobial activity against plant pathogens.Material and Methods: Citral oil and low molecular weight chitosan were used for preparation of nanoemulsions in the presence of sodium tripolyphosphate. Nanoemulsions were prepared by adding dropwise citral at different ratios into an aqueous solution containing chitosan, sodium tripolyphosphate and surfactant with continuous stirring and then ultrasonication. The success of formulation was confirmed by dynamic light scattering and scanning electron microscopy techniques. Physical stability and viscosity were investigated in details. The antimicrobial activity was evaluated against Erwinia carotovora, Aspergillus niger and Rhizopus stolonifer. Results and Conclusion: The nanoemulsions had a polydispersity index ranged from 0.508 to 0.614 and particle size from 27 to 1283 nm. The highest antimicrobial activity was observed with F1 formulation (EC50 = 23, 278 and 221 mg L-1, against Erwinia carotovora, Aspergillus niger and Rhizopus stolonifer, respectively. Based on the antimicrobial activity, the prepared chitosan/citral nanoemulsions can be a cost-effective way to protect crops from microbial pathogens. Because such formulations contain bioactive products, the development of resistant pathogens can be delayed.Conflict of Interest: The authors declare no conflict of interest. 

  6. CHEMICAL COMPOSITION, ANTIMICROBIAL AND ANTIOXYDANT ...

    African Journals Online (AJOL)

    VOUNDI

    2016-04-20

    Apr 20, 2016 ... antimicrobial activities of some spices' essential oils on ... antimicrobial effect of their essential oils on some food pathogenic bacteria, namely, Staphylococcus aureus ...... by Origanum compactum essential oil. J. Appl.

  7. Synthesis and Antimicrobial Studies of Some Novel Pyrazoline and Isoxazoline Derivatives

    Directory of Open Access Journals (Sweden)

    S. B. jadhav

    2009-01-01

    Full Text Available A new series of 1H-3-(4’-substituted phenyl-5-(6’’-methoxy napthaline-2-pyrazolines (4a-e and 1H-3-(4’-substituted phenyl-5-(6’’-methoxynapthaline-2-isoxazolines (5a-e were synthesized by reacting 1-(4’-substituted phenyl-3-(6’’-methoxynapthaline-2-propene-1-one (3a-e with hydrazine hydrate and hydroxylamine hydrochloride respectively. All these compounds were characterized by means of their IR, 1H NMR, spectroscopic data and microanalysis. All the synthesized products were evaluated for their antimicrobial activity. All the compounds exhibited significant to moderate antimicrobial activity.

  8. Antimicrobials, stress and mutagenesis.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2014-10-01

    Full Text Available Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs mostly target the cell wall, a microbial 'Achilles heel', it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient 'weapons' of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the 'Achilles heel' has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.

  9. MOLECULAR-PHYLOGENETIC CHARACTERIZATION AND ANTIMICROBIAL RESISTANCE OF Escherichia coli ISOLATED FROM GOATS WITH DIARRHEA

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida Guimarães

    2015-10-01

    Full Text Available Neonatal diarrhea determines significant changes in feed conversion, causing productivity loss in caprine herds. The antimicrobial resistance in bacteria is characterized as an important public health issue; therefore, Escherichia coli may be characterized as an important pathogen due to expressing virulence mechanisms responsible for significant clinical conditions in humans and animals. The present study evaluated the presence of E. coli among 117 caprine fecal samples and analyzed the isolates for antimicrobial resistance. Suggestive colonies were submitted to biochemical screening followed by genotypic group determination and phylogenetic analysis; further, the samples were submitted to antimicrobials susceptibility test. E. coli, Salmonella spp, Shigella sonnei and Enterobacter aerogenes were identified. E. coli isolates were phylogenetically classified as B2 (9/39, D (19/39, B1 (7/39 e A (4/29 groups. The analysis of the isolates also revealed the presence of K99 (04/39 and Stx (02/39 virulence factors. Antimicrobial susceptibility test revealed sensitive isolates to Chloramphenicol, Streptomycin, Amoxicillin and Ciprofloxacin, being all resistant to Lincomycin, Vancomycin and Penicillin. The results support the need of establishing restricted protocols for antimicrobial use, a fundamental procedure for health improvement in Brazilian caprine herds.

  10. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... Form Controls Cancel Submit Search The CDC Antibiotic / Antimicrobial Resistance Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Antibiotic / Antimicrobial Resistance About Antimicrobial Resistance Biggest Threats Emerging Drug ...

  11. Antimicrobial resistance in healthcare, agriculture and the environment: the biochemistry behind the headlines.

    Science.gov (United States)

    Venter, Henrietta; Henningsen, Michael L; Begg, Stephanie L

    2017-02-28

    The crisis of antimicrobial resistance (AMR) is one of the most serious issues facing us today. The scale of the problem is illustrated by the recent commitment of Heads of State at the UN to coordinate efforts to curb the spread of AMR infections. In this review, we explore the biochemistry behind the headlines of a few stories that were recently published in the public media. We focus on examples from three different issues related to AMR: (i) hospital-acquired infections, (ii) the spread of resistance through animals and/or the environment and (iii) the role of antimicrobial soaps and other products containing disinfectants in the dissemination of AMR. Although these stories stem from three very different settings, the underlying message in all of them is the same: there is a direct relationship between the use of antimicrobials and the development of resistance. In addition, one type of antimicrobial could select for cross-resistance to another type and/or for multidrug resistance. Therefore, we argue the case for increased stewardship to not only cover clinical use of antibiotics, but also the use of antimicrobials in agriculture and stewardship of our crucially important biocides such as chlorhexidine. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Feed additive strategies for replacement of antimicrobial growth promoters and a responsible use of antibiotics

    NARCIS (Netherlands)

    Hartog, den L.A.; Smits, C.H.M.; Hendriks, W.H.

    2016-01-01

    The rapid development of antimicrobial resistance (AMR) in human health care urges the need for effective strategies to reduce antibiotic use in animal production. The Netherlands and Denmark have already implemented successful strategies to reduce antibiotic usage in animal production. Part of the

  13. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    Science.gov (United States)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of

  14. Role of Antimicrobial Selective Pressure and Secondary Factors on Antimicrobial Resistance Prevalence in Escherichia coli from Food-Producing Animals in Japan

    OpenAIRE

    Harada, Kazuki; Asai, Tetsuo

    2010-01-01

    The use of antimicrobial agents in the veterinary field affects the emergence, prevalence, and dissemination of antimicrobial resistance in bacteria isolated from food-producing animals. To control the emergence, prevalence, and dissemination of antimicrobial resistance, it is necessary to implement appropriate actions based on scientific evidence. In Japan, the Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM) was established in 1999 to monitor the antimicrobial suscepti...

  15. Structural, physicochemical characterization and antimicrobial ...

    Indian Academy of Sciences (India)

    Structural, physicochemical characterization and antimicrobial activities of a new Tetraaqua ... Antimicrobial activity of 1 was tested. ... was prepared as good quality yellow single crystals .... at 540 nm. Increase of OD was compared to control.

  16. Campylobacter coli in Organic and Conventional Pig Production in France and Sweden: Prevalence and Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Isabelle Kempf

    2017-05-01

    Full Text Available The purpose of the study was to evaluate and compare the prevalence and antimicrobial resistance of Campylobacter coli in conventional and organic pigs from France and Sweden. Fecal or colon samples were collected at farms or at slaughterhouses and cultured for Campylobacter. The minimum inhibitory concentrations of ciprofloxacin, nalidixic acid, streptomycin, tetracycline, erythromycin, and gentamicin were determined by microdilution for a total of 263 French strains from 114 pigs from 50 different farms and 82 Swedish strains from 144 pigs from 54 different farms. Erythromycin resistant isolates were examined for presence of the emerging rRNA methylase erm(B gene. The study showed that within the colon samples obtained in each country there was no significant difference in prevalence of Campylobacter between pigs in organic and conventional productions [France: conventional: 43/58 (74%; organic: 43/56 (77% and Sweden: conventional: 24/36 (67%; organic: 20/36 (56%]. In France, but not in Sweden, significant differences of percentages of resistant isolates were associated with production type (tetracycline, erythromycin and the number of resistances was significantly higher for isolates from conventional pigs. In Sweden, the number of resistances of fecal isolates was significantly higher compared to colon isolates. The erm(B gene was not detected in the 87 erythromycin resistant strains tested.

  17. In-memory interconnect protocol configuration registers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  18. In-memory interconnect protocol configuration registers

    Science.gov (United States)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  19. Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

    Directory of Open Access Journals (Sweden)

    Dongxia Li

    2015-05-01

    Full Text Available A total of 59 lactic acid bacteria (LAB strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L. plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971T, Micrococcus luteus ATCC 4698T and Escherichia coli ATCC 11775T were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C, but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0, but became inactive under neutral and alkaline condition (pH 7.0 to 9.0. In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

  20. In Vitro Antimicrobial Potential of the Lichen Parmotrema sp. Extracts against Various Pathogens.

    Science.gov (United States)

    Chauhan, Ritika; Abraham, Jayanthi

    2013-07-01

    The ongoing increasing antibiotic resistance is one of the biggest challenges faced by global public health. The perennial need for new antimicrobials against a background of increasing antibiotic resistance in pathogenic and opportunistic microorganisms obliges the scientific community to constantly develop new drugs and antimicrobial agents. Lichens are known prolific sources of natural antimicrobial drugs and biologically active natural products. This study was aimed to explore in vitro antimicrobial activity of lichen Parmotrema sp. The methanol and aqueous extracts of lichen Parmotrema sp. was extracted using Soxhlet extractor. Antibiotic assessment of methanol and aqueous extracts was done against eight bacterial (Escherichia coli, Staphylococcus aureus, Proteus mirabilis, Salmonella sp., Shigella sp., Enterococci faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae,) clinical pathogens and five plant pathogenic fungal strains (Aspergillus terreus strain JAS1, Scedosporium sp. JAS1, Ganoderma sp. JAS4, Candida tropicalis and Fusarium sp.) by Kirby-Bauer method. The methanol lichen Parmotrema sp. extract inhibited all the test organisms. The highest antibacterial activity was found against Pseudomonas aeruginosa and Staphylococcus aureus. The weakest activity was manifested in Salmonella sp. and Scedosporium sp. JAS1. Strong antifungal effect was found against Ganoderma sp. JAS4 and Fusarium sp. The aqueous lichen Parmotrema sp. extract revealed neither antibacterial nor antifungal activity. The present study shows that tested lichen Parmotrema sp. extracts demonstrated a strong antimicrobial effect. That suggests the active components from methanol extracts of the investigated lichen Parmotrema sp. can be used as natural antimicrobial agent against pathogens.