WorldWideScience

Sample records for regions growing seasons

  1. Assessment of the Growing Season Regime Region of Tanzania ...

    African Journals Online (AJOL)

    The growing period for most crops continues beyond the rainy season and, to a greater or lesser extent, crops often mature on moisture reserves stored in the soil profile. When the rains start early the season is likely to be· longer, however, early rainfall (November) over unimodal areas is variable (Mhita and Nassib, 1988).

  2. Impact of climate change on mid-twenty-first century growing seasons in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kerry H.; Vizy, Edward K. [The University of Texas at Austin, Department of Geological Sciences, Jackson School of Geosciences, Austin, TX (United States)

    2012-12-15

    Changes in growing seasons for 2041-2060 across Africa are projected using a regional climate model at 90-km resolution, and confidence in the predictions is evaluated. The response is highly regional over West Africa, with decreases in growing season days up to 20% in the western Guinean coast and some regions to the east experiencing 5-10% increases. A longer growing season up to 30% in the central and eastern Sahel is predicted, with shorter seasons in parts of the western Sahel. In East Africa, the short rains (boreal fall) growing season is extended as the Indian Ocean warms, but anomalous mid-tropospheric moisture divergence and a northward shift of Sahel rainfall severely curtails the long rains (boreal spring) season. Enhanced rainfall in January and February increases the growing season in the Congo basin by 5-15% in association with enhanced southwesterly moisture transport from the tropical Atlantic. In Angola and the southern Congo basin, 40-80% reductions in austral spring growing season days are associated with reduced precipitation and increased evapotranspiration. Large simulated reductions in growing season over southeastern Africa are judged to be inaccurate because they occur due to a reduction in rainfall in winter which is over-produced in the model. Only small decreases in the actual growing season are simulated when evapotranspiration increases in the warmer climate. The continent-wide changes in growing season are primarily the result of increased evapotranspiration over the warmed land, changes in the intensity and seasonal cycle of the thermal low, and warming of the Indian Ocean. (orig.)

  3. Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland

    Directory of Open Access Journals (Sweden)

    P. PELTONEN-SAINIO

    2008-12-01

    Full Text Available Climate change offers new opportunities for Finnish field crop production, which is currently limited by the short growing season. A warmer climate will extend the thermal growing season and the physiologically effective part of it. Winters will also become milder, enabling introduction of winter-sown crops to a greater extent than is possible today. With this study we aim to characterise the likely regional differences in capacity to grow different seed producing crops. Prolongation of the Finnish growing season was estimated using a 0.5º latitude × 0.5º longitude gridded dataset from the Finnish Meteorological Institute. The dataset comprised an average estimate from 19 global climate models of the response of Finnish climate to low (B1 and high (A2 scenarios of greenhouse gas and aerosol emissions for 30-year periods centred on 2025, 2055 and 2085 (Intergovernmental Panel on Climate Change. Growing season temperature sums that suit crop growth and are agronomically feasible in Finland are anticipated to increase by some 140 °Cd by 2025, 300 °Cd by 2055 and 470 °Cd by 2085 in scenario A2, when averaged over regions, and earlier sowing is expected to take place, but not later harvests. Accordingly, the extent of cultivable areas for the commonly grown major and minor crops will increase considerably. Due to the higher base temperature requirement for maize (Zea mays L. growth than for temperate crops, we estimate that silage maize could become a Finnish field crop for the most favourable growing regions only at the end of this century. Winters are getting milder, but it will take almost the whole century until winters such as those that are typical for southern Sweden and Denmark are experienced on a wide scale in Finland. It is possible that introduction of winter-sown crops (cereals and rapeseed will represent major risks due to fluctuating winter conditions, and this could delay their adaptation for many decades. Such risks need to be

  4. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    Science.gov (United States)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  5. Regional and seasonal analyses of weights in growing Angus cattle.

    Science.gov (United States)

    Bradford, H L; Fragomeni, B O; Bertrand, J K; Lourenco, D A L; Misztal, I

    2016-10-01

    This study evaluated the impact of region and season on growth in Angus seed stock. To assess geographic differences, the United States was partitioned into 9 regions based on similar climate and topography related to cow-calf production. Seasonal effects were associated with the month that animals were weighed. The American Angus Association provided growth data, and records were assigned to regions based on the owner's zip code. Most Angus cattle were in the Cornbelt, Lower Plains, Rocky Mountain, Upper Plains, and Upper South regions, with proportionally fewer Angus in Texas compared with the national cow herd. Most calves were born in the spring, especially February and March. Weaning weights (WW; = 49,886) and yearling weights (YW; = 45,168) were modeled with fixed effects of age-of-dam class (WW only), weigh month, region, month-region interaction, and linear covariate of age. Random effects included contemporary group nested within month-region combination and residual. The significant month-region interaction ( Angus seed stock producers have used calving seasons to adapt to the specific environmental conditions in their regions and to optimize growth in young animals.

  6. Temperature Sensitivity of Soil Respiration to Nitrogen Fertilization: Varying Effects between Growing and Non-Growing Seasons

    Science.gov (United States)

    Liu, Qingfang; Wang, Rui; Li, Rujian; Hu, Yaxian; Guo, Shengli

    2016-01-01

    Nitrogen (N) fertilization has a considerable effect on food production and carbon cycling in agro-ecosystems. However, the impacts of N fertilization rates on the temperature sensitivity of soil respiration (Q10) were controversial. Five N rates (N0, N45, N90, N135, and N180) were applied to a continuous winter wheat (Triticum aestivum L.) crop on the semi-arid Loess Plateau, and the in situ soil respiration was monitored during five consecutive years from 2008 to 2013. During the growing season, the mean soil respiration rates increased with increasing N fertilization rates, peaking at 1.53 μmol m−2s−1 in the N135 treatment. A similar dynamic pattern was observed during the non-growing season, yet on average with 7.3% greater soil respiration rates than the growing season. In general for all the N fertilization treatments, the mean Q10 value during the non-growing season was significantly greater than that during the growing season. As N fertilization rates increased, the Q10 values did not change significantly in the growing season but significantly decreased in the non-growing season. Overall, N fertilization markedly influenced soil respirations and Q10 values, in particular posing distinct effects on the Q10 values between the growing and non-growing seasons. PMID:27992576

  7. Towards the use of dynamic growing seasons in a chemical transport model

    Science.gov (United States)

    Sakalli, A.; Simpson, D.

    2012-12-01

    Chemical transport models (CTMs), used for the prediction of, for example, nitrogen deposition or air quality changes, require estimates of the growing season of plants for a number of reasons. Typically, the growing seasons are defined in a very simplified way in CTMs, using fixed dates or simple functions. In order to explore the importance of more realistic growing season estimates, we have developed a new and simple method (the T5 method) for calculating the start of the growing season (SGS) of birch (which we use as a surrogate for deciduous trees), suitable for use in CTMs and other modelling systems. We developed the T5 method from observations, and here we compare with these and other methodologies, and show that with just two parameters T5 captures well the spatial variation in SGS across Europe. We use the EMEP MSC-W chemical transport model to illustrate the importance of improved SGS estimates for ozone and two metrics associated with ozone damage to vegetation. This study shows that although inclusion of more realistic growing seasons has only small effects on annual average concentrations of pollutants such as ozone, the metrics associated with vegetation risk from ozone are significantly affected. This work demonstrates a strong need to include more realistic treatments of growing seasons in CTMs. The method used here could also be suitable for other types of models that require information on vegetation cover, such as meteorological and regional climate models. In future work, the T5 and other methods will be further evaluated for other forest species, as well as for agricultural and grassland land covers, which are important for emissions and deposition of reactive nitrogen compounds.

  8. Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland.

    Science.gov (United States)

    Ru, Jingyi; Zhou, Yaqiong; Hui, Dafeng; Zheng, Mengmei; Wan, Shiqiang

    2018-03-01

    Changing precipitation regimes could have profound influences on carbon (C) cycle in the biosphere. However, how soil C release from terrestrial ecosystems responds to changing seasonal distribution of precipitation remains unclear. A field experiment was conducted for 4 years (2013-2016) to examine the effects of altered precipitation distributions in the growing season on soil respiration in a temperate steppe in the Mongolian Plateau. Over the 4 years, both advanced and delayed precipitation peaks suppressed soil respiration, and the reductions mainly occurred in August. The decreased soil respiration could be primarily attributable to water stress and subsequently limited plant growth (community cover and belowground net primary productivity) and soil microbial activities in the middle growing season, suggesting that precipitation amount in the middle growing season is more important than that in the early, late, or whole growing seasons in regulating soil C release in grasslands. The observations of the additive effects of advanced and delayed precipitation peaks indicate semiarid grasslands will release less C through soil respiratory processes under the projected seasonal redistribution of precipitation in the future. Our findings highlight the potential role of intra-annual redistribution of precipitation in regulating ecosystem C cycling in arid and semiarid regions. © 2017 John Wiley & Sons Ltd.

  9. Freezing tolerance of wheat cultivars at the early growing season ...

    African Journals Online (AJOL)

    Cold stress is a worldwide abiotic stress in temperate regions that affects plant development and yield of winter wheat (Triticum aestivum L.) cultivars and other winter crops. This study was conducted to evaluate the effect of freezing stress at the early growing season on survival and also the relationship between resistances ...

  10. Reanalysis data underestimate significant changes in growing season weather in Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C K; Henebry, G M [Geographic Information Science Center of Excellence (GIScCE), South Dakota State University, Brookings, SD (United States); De Beurs, K M [Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States); Akhmadieva, Z K [Kazakhstan Scientific Research Institute of Ecology and Climate, Ministry of Environment Protection of the Republic of Kazakhstan, Astana (Kazakhstan); Groisman, P Y, E-mail: Geoffrey.Henebry@sdstate.ed [National Climatic Data Center, University Corporation for Atmospheric Research, Asheville, NC (United States)

    2009-10-15

    We present time series analyses of recently compiled climate station data which allowed us to assess contemporary trends in growing season weather across Kazakhstan as drivers of a significant decline in growing season normalized difference vegetation index (NDVI) recently observed by satellite remote sensing across much of Central Asia. We used a robust nonparametric time series analysis method, the seasonal Kendall trend test to analyze georeferenced time series of accumulated growing season precipitation (APPT) and accumulated growing degree-days (AGDD). Over the period 2000-2006 we found geographically extensive, statistically significant (p<0.05) decreasing trends in APPT and increasing trends in AGDD. The temperature trends were especially apparent during the warm season and coincided with precipitation decreases in northwest Kazakhstan, indicating that pervasive drought conditions and higher temperature excursions were the likely drivers of NDVI declines observed in Kazakhstan over the same period. We also compared the APPT and AGDD trends at individual stations with results from trend analysis of gridded monthly precipitation data from the Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis v4 and gridded daily near surface air temperature from the National Centers for Climate Prediction Reanalysis v2 (NCEP R2). We found substantial deviation between the station and the reanalysis trends, suggesting that GPCC and NCEP data substantially underestimate the geographic extent of recent drought in Kazakhstan. Although gridded climate products offer many advantages in ease of use and complete coverage, our findings for Kazakhstan should serve as a caveat against uncritical use of GPCC and NCEP reanalysis data and demonstrate the importance of compiling and standardizing daily climate data from data-sparse regions like Central Asia.

  11. Reanalysis data underestimate significant changes in growing season weather in Kazakhstan

    International Nuclear Information System (INIS)

    Wright, C K; Henebry, G M; De Beurs, K M; Akhmadieva, Z K; Groisman, P Y

    2009-01-01

    We present time series analyses of recently compiled climate station data which allowed us to assess contemporary trends in growing season weather across Kazakhstan as drivers of a significant decline in growing season normalized difference vegetation index (NDVI) recently observed by satellite remote sensing across much of Central Asia. We used a robust nonparametric time series analysis method, the seasonal Kendall trend test to analyze georeferenced time series of accumulated growing season precipitation (APPT) and accumulated growing degree-days (AGDD). Over the period 2000-2006 we found geographically extensive, statistically significant (p<0.05) decreasing trends in APPT and increasing trends in AGDD. The temperature trends were especially apparent during the warm season and coincided with precipitation decreases in northwest Kazakhstan, indicating that pervasive drought conditions and higher temperature excursions were the likely drivers of NDVI declines observed in Kazakhstan over the same period. We also compared the APPT and AGDD trends at individual stations with results from trend analysis of gridded monthly precipitation data from the Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis v4 and gridded daily near surface air temperature from the National Centers for Climate Prediction Reanalysis v2 (NCEP R2). We found substantial deviation between the station and the reanalysis trends, suggesting that GPCC and NCEP data substantially underestimate the geographic extent of recent drought in Kazakhstan. Although gridded climate products offer many advantages in ease of use and complete coverage, our findings for Kazakhstan should serve as a caveat against uncritical use of GPCC and NCEP reanalysis data and demonstrate the importance of compiling and standardizing daily climate data from data-sparse regions like Central Asia.

  12. Changing water availability during the African maize-growing season, 1979–2010

    International Nuclear Information System (INIS)

    Estes, Lyndon D; Chaney, Nathaniel W; Herrera-Estrada, Julio; Sheffield, Justin; Caylor, Kelly K; Wood, Eric F

    2014-01-01

    Understanding how global change is impacting African agriculture requires a full physical accounting of water supply and demand, but accurate, gridded data on key drivers (e.g., humidity) are generally unavailable. We used a new bias-corrected meteorological dataset to analyze changes in precipitation (supply), potential evapotranspiration (E p , demand), and water availability (expressed as the ratio P/E p ) in 20 countries (focusing on their maize-growing regions and seasons), between 1979 and 2010, and the factors driving changes in E p . Maize-growing areas in Southern Africa, particularly South Africa, benefitted from increased water availability due in large part to demand declines driven primarily by declining net radiation, increasing vapor pressure, and falling temperatures (with no effect from changing windspeed), with smaller increases in supply. Sahelian zone countries in West Africa, as well as Ethiopia in East Africa, had strong increases in availability driven primarily by rainfall rebounding from the long-term Sahelian droughts, with little change or small reductions in demand. However, intra-seasonal supply variability generally increased in West and East Africa. Across all three regions, declining net radiation contributed downwards pressure on demand, generally over-riding upwards pressure caused by increasing temperatures, the regional effects of which were largest in East Africa. A small number of countries, mostly in or near East Africa (Tanzania and Malawi) experienced declines in water availability primarily due to decreased rainfall, but exacerbated by increasing demand. Much of the reduced water availability in East Africa occurred during the more sensitive middle part of the maize-growing season, suggesting negative consequences for maize production. (paper)

  13. Variations in Growing-Season NDVI and Its Response to Permafrost Degradation in Northeast China

    Directory of Open Access Journals (Sweden)

    Jinting Guo

    2017-04-01

    Full Text Available Permafrost is extremely sensitive to climate change. The degradation of permafrost has strong and profound effects on vegetation. The permafrost zone of northeastern China is the second largest region of permafrost in China and lies on the south edge of the Eurasian cryolithozone. This study analyzed the spatiotemporal variations of the growing-season Normalization Difference Vegetation Index (NDVI in the permafrost zone of northeastern China and analyzed the correlation between NDVI and ground surface temperatures (GST during the years 1981–2014. Mean growing-season NDVI (MGS-NDVI experienced a marked increase of 0.003 year−1 across the entire permafrost zone. The spatial dynamics of vegetation cover had a high degree of heterogeneity on a per pixel scale. The MGS-NDVI value increased significantly (5% significance level in 80.57%, and this increase was mostly distributed in permafrost zone except for the western steppe region. Only 7.72% experienced a significant decrease in NDVI, mainly in the cultivated and steppe portions. In addition, MGS-NDVI increased significantly with increasing growing-season mean ground surface temperature (GS-MGST. Our results suggest that a warming of GS-MGST (permafrost degradation in the permafrost region of northeastern China played a positive role in increasing plant growth and activities. Although increasing ground surface temperature resulted in increased vegetation cover and growth in the short time of permafrost degradation, from the long term point of view, permafrost degradation or disappearance may weaken or even hinder vegetation activities.

  14. [Temporal and spatial change of climate resources and meteorological disasters under climate change during winter crop growing season in Guangdong Province, China.

    Science.gov (United States)

    Wang, Hua; Chen, Hui Hua; Tang, Li Sheng; Wang, Juan Huai; Tang, Hai Yan

    2018-01-01

    Trend analysis method was applied to analyze the general variation characteristics of the climate resources and meteorological disasters of growing season of the winter planting in Guangdong before (1961-1996) and after climate warming (1997-2015). Percentile method was employed to determine thresholds for extreme cold and drought in major planting regions, and the characteristics of extreme disasters since climate warming were analyzed. The results showed that, by comparing 1997-2015 with 1961-1996, the heat value in winter growing season increased significantly. The belt with a higher heat value, where the average temperature was ≥15 ℃ and accumulated temperature was ≥2200 ℃·d, covered the main winter production regions as Shaoguan, Zhanjiang, Maoming, Huizhou, Meizhou and Guangzhou. Meanwhile, the precipitation witnessed a slight increase. The regions with precipitations of 250-350 mm included Zhanjiang, Maoming, Huizhou, Guangzhou and Meizhou. Chilling injury in the winter planting season in the regions decreased, the belt with an accumulated chilling of climate resources and the occurrence law of meteorological disasters in growing season.

  15. Technological quality of common bean grains obtained in different growing seasons

    Directory of Open Access Journals (Sweden)

    Eliana Francischinelli Perina

    2014-03-01

    Full Text Available The traits that provide technological quality to common bean grains exhibit genetic and environmental variation and variation in the genotype x environment interaction. In this context, the aim of this study was to assess the effect of different periods of the growing season on the technological quality of common bean grains. The experiment was conducted with 25 bean genotypes (carioca [beige with brown stripes] and black commercial group that are part of the Value for Cultivation and Use (Valor de Cultivo e Uso - VCU trials in three growing seasons, namely, the 2009/2010 rainy season, the 2010/2011 dry season and the 2010/2011 winter season, in a randomized block experimental design with three replications in which the following items were assessed: cooking time (CT, water absorption capacity before cooking (Peanc and after cooking (Peapc, percentage of whole grains (PWG, total soluble solids in the broth (TSSb, volume expansion before cooking (EXPVbc and after cooking (EXPVac, and dry grain density (DD, grain density after maceration (SD and grain density after cooking (CD. Assessments showed that the different growing seasons for obtaining grains for the purpose of analysis of technological quality have an effect on the results and on differentiation among genotypes, indicating genotype x environment interaction. They also showed that the genotypes C2-1-6-1, C4-8-1-1, LP04-03, IAC-Imperador, P5-4-4-1 and Pr11-6-4-1-2 had the best results in relation to cooking time in the mean values of the three growing seasons. The use of early selection based on phenotypic correlations that exist among the technological features is not expressive, due to the variation of magnitude among the different growing seasons.

  16. Trend Analysis of Droughts during Crop Growing Seasons of Nigeria

    Directory of Open Access Journals (Sweden)

    Mohammed Sanusi Shiru

    2018-03-01

    Full Text Available This study assesses the impacts of recent climate changes on drought-affected areas and the occurrence of droughts during different cropping seasons of Nigeria using the standardized precipitation evapotranspiration index (SPEI. The crop growing seasons are considered because the droughts for those periods are more destructive to national agricultural production. The Mann–Kendall test and binary logistic regression were used to quantify the trends in drought-affected areas and the occurrence of crop droughts with different areal extents, respectively. Gauge-based gridded rainfall and temperature data for the period 1961–2010 with spatial resolutions of 0.5° were used. Results showed an increase in the areal extent of droughts during some of the cropping seasons. The occurrences of droughts, particularly moderate droughts with smaller areal extents, were found to increase for all of the seasons. The SPEI values calculated decreased mostly in the regions where rainfall was decreasing. That is, the recent changes in climate were responsible for the increase in the occurrences of droughts with smaller areal extents. These trends in climate indicate that the occurrence of larger areal extent droughts may happen more frequently in Nigeria in the future.

  17. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Yang Fu

    Full Text Available Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2 product, we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model, 79% (the Biome-BGC phenology model, 73% (the Number of Growing Days model and 68% (the Number of Chilling Days-Growing Degree Day model of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.

  18. Comparison of phenology models for predicting the onset of growing season over the Northern Hemisphere.

    Science.gov (United States)

    Fu, Yang; Zhang, Haicheng; Dong, Wenjie; Yuan, Wenping

    2014-01-01

    Vegetation phenology models are important for examining the impact of climate change on the length of the growing season and carbon cycles in terrestrial ecosystems. However, large uncertainties in present phenology models make accurate assessment of the beginning of the growing season (BGS) a challenge. In this study, based on the satellite-based phenology product (i.e. the V005 MODIS Land Cover Dynamics (MCD12Q2) product), we calibrated four phenology models, compared their relative strength to predict vegetation phenology; and assessed the spatial pattern and interannual variability of BGS in the Northern Hemisphere. The results indicated that parameter calibration significantly influences the models' accuracy. All models showed good performance in cool regions but poor performance in warm regions. On average, they explained about 67% (the Growing Degree Day model), 79% (the Biome-BGC phenology model), 73% (the Number of Growing Days model) and 68% (the Number of Chilling Days-Growing Degree Day model) of the BGS variations over the Northern Hemisphere. There were substantial differences in BGS simulations among the four phenology models. Overall, the Biome-BGC phenology model performed best in predicting the BGS, and showed low biases in most boreal and cool regions. Compared with the other three models, the two-phase phenology model (NCD-GDD) showed the lowest correlation and largest biases with the MODIS phenology product, although it could catch the interannual variations well for some vegetation types. Our study highlights the need for further improvements by integrating the effects of water availability, especially for plants growing in low latitudes, and the physiological adaptation of plants into phenology models.

  19. Snowmelt timing, phenology, and growing season length in conifer forests of Crater Lake National Park, USA

    Science.gov (United States)

    O'Leary, Donal S.; Kellermann, Jherime L.; Wayne, Chris

    2018-02-01

    Anthropogenic climate change is having significant impacts on montane and high-elevation areas globally. Warmer winter temperatures are driving reduced snowpack in the western USA with broad potential impacts on ecosystem dynamics of particular concern for protected areas. Vegetation phenology is a sensitive indicator of ecological response to climate change and is associated with snowmelt timing. Human monitoring of climate impacts can be resource prohibitive for land management agencies, whereas remotely sensed phenology observations are freely available at a range of spatiotemporal scales. Little work has been done in regions dominated by evergreen conifer cover, which represents many mountain regions at temperate latitudes. We used moderate resolution imaging spectroradiometer (MODIS) data to assess the influence of snowmelt timing and elevation on five phenology metrics (green up, maximum greenness, senescence, dormancy, and growing season length) within Crater Lake National Park, Oregon, USA from 2001 to 2012. Earlier annual mean snowmelt timing was significantly correlated with earlier onset of green up at the landscape scale. Snowmelt timing and elevation have significant explanatory power for phenology, though with high variability. Elevation has a moderate control on early season indicators such as snowmelt timing and green up and less on late-season variables such as senescence and growing season length. PCA results show that early season indicators and late season indicators vary independently. These results have important implications for ecosystem dynamics, management, and conservation, particularly of species such as whitebark pine ( Pinus albicaulis) in alpine and subalpine areas.

  20. Changes in the thermal growing season in Nordic countries during the past century and prospects for the future

    Directory of Open Access Journals (Sweden)

    Timothy R. Carter

    1998-01-01

    Full Text Available The start, end, duration and intensity of the thermal growing season (the period with mean daily temperatures exceeding 5°C during the past century (1890-1995 was analysed at nine sites in the Nordic region. Statistical comparisons were made between three adjacent 35-year periods. The results indicate that the growing season lengthened considerably at all sites between 1891-1925 and 1926-1960. Lengthening has continued at a slower rate up to the present at the eight Fennoscandian sites but not at the Icelandic site. In contrast, the intensity of the growing season, expressed by effective temperature sum above 5°C, which increased at all sites between the first two periods, has decreased slightly at all locations except Turku in recent decades. Under three scenarios, representing the range of estimated greenhouse gas-induced warming by the 2050s, the growing season is expected to lengthen at all sites. For a “Central” scenario, the greatest lengthening is computed for southern and western Scandinavia (7-8 weeks with smaller changes in Finland (4 weeks and Iceland (3 weeks. With a lengthening growing season during the past century in Fennoscandia, there are likely to have been impacts on natural and managed ecosystems. Some evidence of recent biotic and abiotic effects already exists, but other indicators of long-term change remain to be analysed.

  1. Changes in the thermal growing season in Nordic countries during the past century and prospects for the future

    Directory of Open Access Journals (Sweden)

    T.R. CARTER

    2008-12-01

    Full Text Available The start, end, duration and intensity of the thermal growing season (the period with mean daily temperatures exceeding 5°C during the past century (1890-1995 was analysed at nine sites in the Nordic region. Statistical comparisons were made between three adjacent 35-year periods. The results indicate that the growing season lengthened considerably at all sites between 1891-1925 and 1926-1960. Lengthening has continued at a slower rate up to the present at the eight Fennoscandian sites but not at the Icelandic site. In contrast, the intensity of the growing season, expressed by effective temperature sum above 5°C, which increased at all sites between the first two periods, has decreased slightly at all locations except Turku in recent decades. Under three scenarios, representing the range of estimated greenhouse gas-induced warming by the 2050s, the growing season is expected to lengthen at all sites. For a "Central" scenario, the greatest lengthening is computed for southern and western Scandinavia (7-8 weeks with smaller changes in Finland (4 weeks and Iceland (3 weeks. With a lengthening growing season during the past century in Fennoscandia, there are likely to have been impacts on natural and managed ecosystems. Some evidence of recent biotic and abiotic effects already exists, but other indicators of long-term change remain to be analysed. ;

  2. Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus Germplasm Grown in Six Countries

    Directory of Open Access Journals (Sweden)

    Christopher Nunn

    2017-05-01

    Full Text Available The development of models to predict yield potential and quality of a Miscanthus crop must consider climatic limitations and the duration of growing season. As a biomass crop, yield and quality are impacted by the timing of plant developmental transitions such as flowering and senescence. Growth models are available for the commercially grown clone Miscanthus x giganteus (Mxg, but breeding programs have been working to expand the germplasm available, including development of interspecies hybrids. The aim of this study was to assess the performance of diverse germplasm beyond the range of environments considered suitable for a Miscanthus crop to be grown. To achieve this, six field sites were planted as part of the EU OPTIMISC project in 2012 in a longitudinal gradient from West to East: Wales—Aberystwyth, Netherlands—Wageningen, Stuttgart—Germany, Ukraine—Potash, Turkey—Adana, and Russia—Moscow. Each field trial contained three replicated plots of the same 15 Miscanthus germplasm types. Through the 2014 growing season, phenotypic traits were measured to determine the timing of developmental stages key to ripening; the tradeoff between growth (yield and quality (biomass ash and moisture content. The hottest site (Adana showed an accelerated growing season, with emergence, flowering and senescence occurring before the other sites. However, the highest yields were produced at Potash, where emergence was delayed by frost and the growing season was shortest. Flowering triggers varied with species and only in Mxg was strongly linked to accumulated thermal time. Our results show that a prolonged growing season is not essential to achieve high yields if climatic conditions are favorable and in regions where the growing season is bordered by frost, delaying harvest can improve quality of the harvested biomass.

  3. Phenology Shifts at Start vs. End of Growing Season in Temperate Vegetation Over the Northern Hemisphere for the Period 1982-2008

    Science.gov (United States)

    Jeong, Su-Jong; Ho, Chang-Hoi; Gim, Hyeon-Ju; Brown, Molley E.

    2011-01-01

    Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite-measured normalized difference vegetation index and reanalysis temperature during 1982 2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982-1999) but advanced by only 0.2 days in the later period (2000-2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January-April) before SOS compared with the magnitude of warming in the preseason (June September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer-lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf-out. Keywords: climate change, growing season, NDVI (normalized difference vegetation index), Northern Hemisphere, phenology,

  4. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    Science.gov (United States)

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall

  5. World climate patterns in grassland and savanna and their relation to growing seasons

    Directory of Open Access Journals (Sweden)

    R. Kirk Steinhorst

    1977-11-01

    Full Text Available The climate at eleven IBP savanna or grassland study sites from five continents are described and principal components analysis is used to compare them. A multivariate linear discriminant function based on mean monthly precipitation, mean monthly temperature, latitude and altitude, is used to predict the length of the growing season at each site. At most sites, the actual and predicted start and end of the growing season agreed closely. It is concluded that growing season on a world-wide basis may be predicted fairly reliably from a small number of abiotic variables by means of a multivariate discriminant function.

  6. The Effect of Agricultural Growing Season Change on Market Prices in Africa

    Science.gov (United States)

    deBeurs, K.M.; Brown, M. E.

    2013-01-01

    Local agricultural production is a key element of food security in many agricultural countries in Africa. Climate change and variability is likely to adversely affect these countries, particularly as they affect the ability of smallholder farmers to raise enough food to feed themselves. Seasonality influences farmers' decisions about when to sow and harvest, and ultimately the success or failure of their crops. At a 2009 conference in the United Kingdom hosted by the Institute of Development Studies, Jennings and Magrath (2009) described farmer reports from East Asia, South Asia, Southern Africa, East Africa and Latin America. Farmers indicate significant changes in the timing of rainy seasons and the pattern of rains within seasons, including: More erratic rainfall, coming at unexpected times in and out of season; Extreme storms and unusually intense rainfall are punctuated by longer dry spells within the rainy season; Increasing uncertainty as to the start of rainy seasons in many areas; Short or transitional second rainy seasons are becoming stronger than normal or are disappearing altogether. These farmer perceptions of change are striking in that they are geographically widespread and are remarkably consistent across diverse regions (Jennings and Magrath, 2009). The impact of these changes on farmers with small plots and few resources is large. Farming is becoming riskier because of heat stress, lack of water, pests and diseases that interact with ongoing pressures on natural resources. Lack of predictability in the start and length of the growing season affects the ability of farmers to invest in appropriate fertilizer levels or improved, high yielding varieties. These changes occur at the same time as the demand for food is rising and is projected to continue to rise for the next fifty years (IAASTD, 2008). Long-term data records derived from satellite remote sensing can be used to verify these reports, providing necessary analysis and documentation required

  7. Civil conflict sensitivity to growing-season drought

    OpenAIRE

    von Uexkull, Nina; Croicu, Mihai; Fjelde, Hanne; Buhaug, Halvard

    2016-01-01

    Understanding the conflict potential of drought is critical for dealing effectively with the societal implications of climate change. Using new georeferenced ethnicity and conflict data for Asia and Africa since 1989, we present an actor-oriented analysis of growing-season drought and conflict involvement among ethnic groups. Results from naive models common in previous research suggest that drought generally has little impact. However, context-sensitive models accounting for the groups’ leve...

  8. Land–Atmosphere Exchange of Water and Heat in the Arid Mountainous Grasslands of Central Asia during the Growing Season

    Directory of Open Access Journals (Sweden)

    Xiaotao Huang

    2017-09-01

    Full Text Available Arid grassland ecosystems are widely distributed across Central Asia. However, there is a lack of research and observations of the land–atmosphere exchange of water and heat in the arid grasslands in this region, particularly over complex surfaces. In this study, systematic observations were conducted from 2013 to 2015 using an HL20 Bowen ratio and TDR300 and WatchDog1400 systems to determine the characteristics of these processes during the growing season (April–October of the arid mountainous grasslands of this region. (1 The latent heat flux (Le was lower than the sensible heat flux (He overall, and a small transient decrease in Le was observed before its daytime maximum; daily comparative variations in both fluxes were closely related to vegetation growth. (2 Evapotranspiration (ET showed substantial variation across different years, seasons and months, and monthly variations in ET were closely related to vegetation growth. Water condensation (Q was low and relatively stable. Relatively high levels of soil water were measured in spring followed by a decreasing trend. The land–atmosphere exchange of water and heat during the growing season in this region was closely associated with phenology, available precipitation and terrain. This study provides data support for the scientific management of arid mountainous grasslands.

  9. Civil conflict sensitivity to growing-season drought.

    Science.gov (United States)

    von Uexkull, Nina; Croicu, Mihai; Fjelde, Hanne; Buhaug, Halvard

    2016-11-01

    To date, the research community has failed to reach a consensus on the nature and significance of the relationship between climate variability and armed conflict. We argue that progress has been hampered by insufficient attention paid to the context in which droughts and other climatic extremes may increase the risk of violent mobilization. Addressing this shortcoming, this study presents an actor-oriented analysis of the drought-conflict relationship, focusing specifically on politically relevant ethnic groups and their sensitivity to growing-season drought under various political and socioeconomic contexts. To this end, we draw on new conflict event data that cover Asia and Africa, 1989-2014, updated spatial ethnic settlement data, and remote sensing data on agricultural land use. Our procedure allows quantifying, for each ethnic group, drought conditions during the growing season of the locally dominant crop. A comprehensive set of multilevel mixed effects models that account for the groups' livelihood, economic, and political vulnerabilities reveals that a drought under most conditions has little effect on the short-term risk that a group challenges the state by military means. However, for agriculturally dependent groups as well as politically excluded groups in very poor countries, a local drought is found to increase the likelihood of sustained violence. We interpret this as evidence of the reciprocal relationship between drought and conflict, whereby each phenomenon makes a group more vulnerable to the other.

  10. Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2.

    NARCIS (Netherlands)

    Martin, M.; Gavazov, K.S.; Körner, S.; Rixen, C.

    2010-01-01

    The frequency of freezing events during the early growing season and the vulnerability to freezing of plants in European high-altitude environments could increase under future atmospheric and climate change. We tested early growing season freezing sensitivity in 10 species, from four plant

  11. Growing Season Conditions Mediate the Dependence of Aspen on Redistributed Snow Under Climate Change.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2016-12-01

    Precipitation regimes in many semiarid ecosystems are becoming increasingly dominated by winter rainfall as a result of climate change. Across these regions, snowpack plays a vital role in the distribution and timing of soil moisture availability. Rising temperatures will result in a more uniform distribution of soil moisture, advanced spring phenology, and prolonged growing seasons. Productive and wide ranging tree species like aspen, Populus tremuloides, may experience increased vulnerability to drought and mortality resulting from both reduced snowpack and increased evaporative demand during the growing season. We simulated the net primary production (NPP) of aspen stands spanning the rain:snow transition zone in the Reynolds Creek Critical Zone Observatory (RCCZO) in southwest Idaho, USA. Within the RCCZO, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. The biogeochemical process model Biome-BGC was used to simulate aspen NPP at three stands located directly below snowdrifts that provide melt water late into the spring. After adjusting precipitation inputs to account for the redistribution of snow, we assessed climate change impacts on future aspen productivity. Mid-century (2046-2065) aspen NPP was simulated using temperature projections from a multi-model average under high emission conditions using the Multivariate Adaptive Constructed Analogs (MACA) data set. While climate change simulations indicated over a 20% decrease in annual NPP for some years, NPP rates for other mid-century years remained relatively unchanged due to variations in growing season conditions. Mid-century years with the largest decreases in NPP typically showed increased spring transpiration rates resulting from earlier leaf flush combined with warmer spring conditions. During these years, the onset of drought stress occurred

  12. Plasticity of maritime pine (Pinus pinaster) wood-forming tissues during a growing season.

    Science.gov (United States)

    Paiva, J A P; Garnier-Géré, P H; Rodrigues, J C; Alves, A; Santos, S; Graça, J; Le Provost, G; Chaumeil, G; Da Silva-Perez, D; Bosc, A; Fevereiro, P; Plomion, C

    2008-01-01

    The seasonal effect is the most significant external source of variation affecting vascular cambial activity and the development of newly divided cells, and hence wood properties. Here, the effect of edapho-climatic conditions on the phenotypic and molecular plasticity of differentiating secondary xylem during a growing season was investigated. Wood-forming tissues of maritime pine (Pinus pinaster) were collected from the beginning to the end of the growing season in 2003. Data from examination of fibre morphology, Fourier-transform infrared spectroscopy (FTIR), analytical pyrolysis, and gas chromatography/mass spectrometry (GC/MS) were combined to characterize the samples. Strong variation was observed in response to changes in edapho-climatic conditions. A genomic approach was used to identify genes differentially expressed during this growing season. Out of 3512 studied genes, 19% showed a significant seasonal effect. These genes were clustered into five distinct groups, the largest two representing genes over-expressed in the early- or late-wood-forming tissues, respectively. The other three clusters were characterized by responses to specific edapho-climatic conditions. This work provides new insights into the plasticity of the molecular machinery involved in wood formation, and reveals candidate genes potentially responsible for the phenotypic differences found between early- and late-wood.

  13. Change in Length of Growing Season by State, 1895-2015

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map shows the total change in length of the growing season, time of first fall frost and time of last spring frost from 1895 to 2015 for each of the contiguous...

  14. Effects of Repeated Growing Season Prescribed Fire on the Structure and Composition of Pine–Hardwood Forests in the Southeastern Piedmont, USA

    Directory of Open Access Journals (Sweden)

    Matthew J. Reilly

    2016-12-01

    Full Text Available We examined the effects of repeated growing season prescribed fire on the structure and composition of mixed pine–hardwood forests in the southeastern Piedmont region, Georgia, USA. Plots were burned two to four times over an eight-year period with low intensity surface fires during one of four six-week long periods from early April to mid-September. Density of saplings (0.25–11.6 cm diameter at breast height was significantly reduced after one or two fires during the first four-year period. Sapling density declined with additional burning over the next four years, but density of mesic hardwoods including sweetgum (Liquidambar styraciflua and red maple (Acer rubrum remained relatively high (~865 stems ha−1. Repeated burning had little effect on density or basal area of trees (≥11.7 cm dbh and changes in overstory structure were limited to small increases in the quadratic mean diameter of all trees and pines. We found little evidence to suggest differential effects on structure or composition due to timing of burn within the growing season. Although repeated growing season burning alters midstory structure and composition, burning alone is unlikely to result in immediate shifts in overstory composition or structure in mixed pine–hardwood forests of the southeastern Piedmont region.

  15. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966-2015

    Science.gov (United States)

    Tomczyk, Arkadiusz M.; Szyga-Pluta, Katarzyna

    2018-03-01

    The aim of the study was to identify the thermal and precipitation conditions and their changes in the growing season in Poland in the years 1966-2015. Data on average daily air temperature and daily precipitation totals for 30 stations from the period of 1966-2015 were used. The data were obtained from the collections of the Institute of Meteorology and Water Management—National Research Institute. The growing season was defined as the period of average daily air temperature ≥ 5 °C. The mathematical formulas proposed by Gumiński (1948) were used to determine its start and end dates. In the growing season in Poland in the years 1966-2015, there were more significant changes in the thermal conditions than there were in the precipitation conditions. In terms of long-term trends over the study period, thermal conditions during the growing season are characterised by an increase in mean air temperature, an increase in the sum of air temperatures and an increasing occurrence of seasons classified as above-normal seasons. Precipitation conditions of the growing season show large temporal and spatial variations in precipitation and a predominance of normal conditions. The changes in precipitation were not statistically significant, except for Świnoujście.

  16. Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps.

    Science.gov (United States)

    Moser, Lea; Fonti, Patrick; Büntgen, Ulf; Esper, Jan; Luterbacher, Jürg; Franzen, Julia; Frank, David

    2010-02-01

    The 2007 European larch (Larix decidua Mill.) growing season was monitored along two elevational transects in the Lötschental valley in the Swiss Alps. Phenological observations and weekly microcore sampling of 28 larch trees were conducted between April and October 2007 at seven study sites regularly spaced from 1350 to 2150 m a.s.l. on northwest- and southeast-facing slopes. The developmental stages of nearly 75,000 individual cells assessed on 1200 thin sections were used to investigate the links between the trees' thermal regimes and growth phases including the beginning and ending of cell enlargement, wall thickening and maturation of the stem wood. Needles appeared approximately 3-4 weeks earlier than stem growth. The duration of ring formation lasted from mid-May to the end of October, with the length of the growing season decreasing along elevation from 137 to 101 days. The onset of the different growing seasons changed by 3-4 days per 100 m elevation; the ending of the growing season, however, appeared minimally related to altitude. If associated with the monitored altitudinal lapse rate of -0.5 degrees C per 100 m, these results translate into a lengthening of the growing season by approximately 7 days per degree Celsius. This study provides new data on the timing and duration of basic growth processes and contributes to quantification of the impacts of global warming on tree growth and productivity.

  17. Growing season temperature and precipitation variability and extremes in the U.S. Corn Belt from 1981 to 2012

    Science.gov (United States)

    Dai, S.; Shulski, M.

    2013-12-01

    Climate warming and changes in rainfall patterns and increases in extreme events are resulting in higher risks of crop failures. A greater sense of urgency has been induced to understand the impacts of past climate on crop production in the U.S. As one of the most predominant sources of feed grains, corn is also the main source of U.S. ethanol. In the U.S. Corn Belt, region-scale evaluation on temperature and precipitation variability and extremes during the growing season is not well-documented yet. This study is part of the USDA-funded project 'Useful to Usable: Transforming climate variability and change information for cereal crop producers'. The overall goal of our work is to study the characteristics of average growing season conditions and changes in growing season temperature- and precipitation-based indices that are closely correlated with corn grain yield in the U.S. Corn Belt. The research area is the twelve major Corn Belt states, including IL, IN, IA, KS, MI, MN, MO, NE, OH, SD, ND, and WI. Climate data during 1981-2010 from 132 meteorological stations (elevation ranges from 122 m to 1,202 m) are used in this study, including daily minimum, maximum, and mean temperature, and daily precipitation. From 1981 to 2012, beginning date (BD), ending date (ED), and growing season length (GSL) in the climatological corn growing season are studied. Especially, during the agronomic corn growing season, from Apr to Oct, temperature- and precipitation-based indices are analyzed. The temperature-based indices include: number of days with daily mean temperature below 10°C, number of days with daily mean temperature above 30°C, the sum of growing degree days (GDD) between 10°C to 30°C (GDD10,30, growth range for corn), the sum of growing degree days above 30°C (GDD30+, exposure to harmful warming for corn), the sum of growing degree days between 0°C and 44°C (GDD0,44, survival range limits for corn), the sum of growing degree days between 5°C and 35°C (GDD5

  18. Estimating the Sensitivity of CLM-Crop to Plant Date and Growing Season Length

    Science.gov (United States)

    Drewniak, B. A.; Kotamarthi, V. R.

    2012-12-01

    The Community Land Model (CLM), the land component of the Community Earth System Model (CESM), is designed to estimate the land surface response to climate through simulated vegetation phenology and soil carbon and nitrogen dynamics. Since human influences play a significant role shaping the land surface, the vegetation has been expanded to include agriculture (CLM-Crop) for three crop types: corn, soybean, and spring wheat. CLM-Crop parameters, which define crop phenology, are optimized against AmeriFlux observations of gross primary productivity, net ecosystem exchange, and stored biomass and carbon, for two sites in the U.S. growing corn and soybean. However, there is uncertainty in the measurements and using a small subset of data to determine model parameters makes validation difficult. In order to account for the differences in plant behavior across climate zones, an input dataset is used to define the planting dates and the length of the growing season. In order to improve model performance, and to understand the impacts of uncertainty from the input data, we evaluate the sensitivity of crop productivity and production against planting date and the length of the growing season. First, CLM-Crop is modified to establish plant date based on temperature trends for the previous 10-day period, constrained against the range of observed planting dates. This new climate-based model is compared with the standard fixed plant dates to determine how sensitive the model is to when seeding occurs, and how comparable the climate calculated plant dates are to the fixed dates. Next, the length of the growing season will be revised to account for an alternative climate. Finally, both the climate-based planting and new growth season will be simulated together. Results of the different model runs will be compared to the standard model and to observations to determine the importance of planting date and growing season length on crop productivity and yield.

  19. Spatio-Temporal Changes in Vegetation Activity and Its Driving Factors during the Growing Season in China from 1982 to 2011

    Directory of Open Access Journals (Sweden)

    Bo Qu

    2015-10-01

    Full Text Available Using National Oceanographic and Atmospheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR and Climatic Research Unit (CRU climate datasets, we analyzed interannual trends in the growing-season Normalized Difference Vegetation Index (NDVI in China from 1982 to 2011, as well as the effects of climatic variables and human activities on vegetation variation. Growing-season (period between the onset and end of plant growth NDVI significantly increased (p < 0.01 on a national scale and showed positive trends in 52.76% of the study area. A multiple regression model was used to investigate the response of vegetation to climatic factors during recent and previous time intervals. The interactions between growing-season NDVI and climatic variables were more complex than expected, and a lag existed between climatic factors and their effects on NDVI. The regression residuals were used to show that over 6% of the study area experienced significantly human-induced vegetation variations (p < 0.05. These regions were mostly located in densely populated, reclaimed agriculture, afforestation, and conservation areas. Similar conclusions were drawn based on land-use change over the study period.

  20. New England observed and predicted growing season maximum stream/river temperature points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted growing season maximum stream/river temperatures in New England based on a spatial statistical...

  1. Breeding value of the second generation of soybean populations for «growing season» trait

    Directory of Open Access Journals (Sweden)

    О. З. Щербина

    2016-02-01

    Full Text Available Purpose. Studying the inheritance of such trait of soybean (Glucine max (L. Merrill as growing season length in F2 and assessing hybrid combinations to identify more quick-ripening phenotypes as compared to parents. Methods. Laboratory test, mathematico-statistical evaluation. Results. In most crossbreeding combinations, when parents differed by growing season length, late ripeness was dominated in F2, in one combination – early ripeness, in two combinations, when parents scarcely differed by growing season length, complementary effect was observed for this index. It was found that ‘Anzhelika’/‘Mageva’ combination generated the highest number of more quick-ripening forms than any of the parents (13.1%, a smaller number was identified in ‘Legenda’/‘Vizhion’ (6.4% and ‘Anzhelika’/‘Gentleman’ (4.0%, and barely noticeable number was observed in ‘Legenda’/‘Yelena’ combination (1.3%. Conclusions. In the following crossbreeding combinations as ‘Legenda’/‘Vizhion’, Legenda’/‘Korado’, ‘Legenda’/‘Ustia’, ‘Legenda’/‘Yelena’, ‘Yug-30’/‘Gentleman’, ‘No. 894’/‘Vizhion’, ‘Anzhelika’/‘Annushka’, ‘No. 894’/‘Annushka’, ‘Legenda’/‘Annushka’, ‘No. 441’/‘Gentleman’, ‘No. 441’/‘Vizhion’, ‘No. 441’/‘Annushka’, ‘Anzheli­ka’/‘Gentleman’ and ‘Anzhelika’/‘Prypiat’ when parents considerably and insignificantly differ by growing season length, late ripeness was dominated in F2. ‘Ustia’/‘Vizhion’ and ‘Yug-30’/‘ Vizhion’ crossbreeding combinations in which parents hardly differ by growing season, complementary effect was observed in F2 for this index.

  2. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    Science.gov (United States)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  3. Observed and Projected Changes in Thermal Growing Degree-Days and Growing Season and Their Divergent Responses to Warming over China

    Science.gov (United States)

    Deng, H.

    2017-12-01

    Vegetation growth and phenology are largely regulated by the growing degree-days (GDD) and growing season (GS). By choosing 0°C, 5°C and 10°C, three key based temperatures (Tb) for vegetation growth, the GDD and GS in China during the observed period (1960-2011) were developed using homogenized daily mean temperatures (Td) in 536 meteorological stations. In addition, the GDD10 and GS10 in China were projected under the representative concentration pathway scenarios (RCPs) during 1961-2099, using the Td (0.5°×0.5°) derived from five general circulation models (GCMs), after model evaluation. Advance in the start of the growing season (SOS; 4.86-6.71 days; SOS0 > SOS5 > SOS10) and delay in the end of the growing season (EOS; 4.32-6.19 days; EOS0 GDD5 > GDD10), in China as a whole. Each observed variation has a substantial acceleration mostly in 1987 or 1996, and a speed reduction or a trend reversal in the early 2000s. Increases in the GDD10 and GS10 would continue in the 21st century, causing northward shifts in the temperature zones. Finally in the long-term (2071-2099), the nationally average GDD10 and GS10 would be 279.1°C·d higher and 16.5 d longer for RCP 2.6, and 964.4°C·d higher and 50.3 d longer for RCP 8.5, relative to 1981-2010. Regionally, the GDD enhancement were stronger in the tropics, east, northeast and northwest China during the observed period, and tend to be in southern China in the future. The largest GS extensions are consistently in the eastern and southern parts of the Tibetan Alpine zone, particularly in the future. During the observed period, advance in SOS and delay in EOS drove the GS extensions in the eastern monsoon zone and northwest arid/semi-arid zone respectively. In the future, an advanced SOS drives the GS extension in the northern (> ca. 33°N) Tibetan Alpine zone, the mountainous areas in northeast China, and south of the Tropic of Cancer. The GDD and GS showed positive sensitivity to the temperature (GDD0 > GDD5 > GDD10

  4. Tundra shrub effects on growing season energy and carbon dioxide exchange

    Science.gov (United States)

    Lafleur, Peter M.; Humphreys, Elyn R.

    2018-05-01

    Increased shrub cover on the Arctic tundra is expected to impact ecosystem-atmosphere exchanges of carbon and energy resulting in feedbacks to the climate system, yet few direct measurements of shrub tundra-atmosphere exchanges are available to corroborate expectations. Here we present energy and carbon dioxide (CO2) fluxes measured using the eddy covariance technique over six growing seasons at three closely located tundra sites in Canada’s Low Arctic. The sites are dominated by the tundra shrub Betula glandulosa, but percent cover varies from 17%–60% and average shrub height ranges from 18–59 cm among sites. The site with greatest percent cover and height had greater snow accumulation, but contrary to some expectations, it had similar late-winter albedo and snow melt dates compared to the other two sites. Immediately after snowmelt latent heat fluxes increased more slowly at this site compared to the others. Yet by the end of the growing season there was little difference in cumulative latent heat flux among the sites, suggesting evapotranspiration was not increased with greater shrub cover. In contrast, lower albedo and less soil thaw contributed to greater summer sensible heat flux at the site with greatest shrub cover, resulting in greater total atmospheric heating. Net ecosystem exchange of CO2 revealed the potential for enhanced carbon cycling rates under greater shrub cover. Spring CO2 emissions were greatest at the site with greatest percent cover of shrubs, as was summer net uptake of CO2. The seasonal net sink for CO2 was ~2 times larger at the site with the greatest shrub cover compared to the site with the least shrub cover. These results largely agree with expectations that the growing season feedback to the atmosphere arising from shrub expansion in the Arctic has the potential to be negative for CO2 fluxes but positive for turbulent energy fluxes.

  5. A GIS TOOL TO EVALUATE THE SPATIAL EVOLUTION OF HYDRO-THERMIC FEATURES DURING GROWING SEASON OF VEGETABLE CROPS IN ELBE RIVER LOWLAND (POLABI

    Directory of Open Access Journals (Sweden)

    VERA POTOP

    2012-11-01

    Full Text Available A GIS tool to evaluate the spatial evolution of hydro-thermic features during growing season of vegetable crops in Elbe River lowland (Polabi. This article presents the results of the first study on combined mezoclimatological, microclimatological and topographical tools for evaluating precision farming in the growth of vegetable crops in the Elbe River lowland (Polabi region from the Czech Republic. We assess the variability of basically climatological characteristics in relation to topographic characteristics at the regional (Polabi and local (agricultural farm scales. At regional scale, interpolation approach is based on local linear regression and universal kriging interpolation. At local scale, two conventional interpolation methods, spline and local ordinary kriging with a Gaussian model variance across the fields, were applied. The local spline interpolators have been used in developing digital elevation models (DEMs and to determine the slope angle inclination of vegetable fields. The DEMs of the vegetable crops fields was developed at a 10 m x 10 m resolution based on elevation data collected in the field by a hand-held RTK- Global Positioning System receiver. This tool allowed the distinction of microclimatic conditions that produce altitude-slope-related patterns of the spatial-temporal distribution of the basic meteorological elements during growing season of vegetable crops. The effect of slope on diurnal extreme temperatures in the vegetable cropped field conditions was more pronounced than that of elevation. Accordingly to developed maps, the warmest and longest duration of sunshine, and the least precipitation totals during growing season occurred in the middle part of Polabi.

  6. Temporal and spatial variability of frost-free seasons in the Great Lakes region of the United States

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman; Jeffrey A. Andresen

    2014-01-01

    The frequency and timing of frost events and the length of the growing season are critical limiting factors in many human and natural ecosystems. This study investigates the temporal and spatial variability of the date of last spring frost (LSF), the date of first fall frost (FFF), and the length of the frost-free season (FFS) in the Great Lakes region of the United...

  7. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau.

    Science.gov (United States)

    Tian, Li; Chen, Jiquan; Zhang, Yangjian

    2017-01-01

    The Tibetan Plateau has experienced higher-than-global-average climate warming in recent decades, resulting in many significant changes in ecosystem structure and function. Among them is albedo, which bridges the causes and consequences of land surface processes and climate. The plateau is covered by snow/ice and vegetation in the non-growing season (nGS) and growing season (GS), respectively. Based on the MODIS products, we investigated snow/ice cover and vegetation greenness in relation to the spatiotemporal changes of albedo on the Tibetan Plateau from 2000 through 2013. A synchronous relationship was found between the change in GSNDVI and GSalbedo over time and across the Tibetan landscapes. We found that the annual average albedo had a decreasing trend, but that the albedo had slightly increased during the nGS and decreased during the GS. Across the landscapes, the nGSalbedo fluctuated in a synchronous pattern with snow/ice cover. Temporally, monthly snow/ice coverage also had a high correspondence with albedo, except in April and October. We detected clear dependencies of albedo on elevation. With the rise in altitude, the nGSalbedo decreased below 4000 m, but increased for elevations of 4500-5500 m. Above 5500 m, the nGSalbedo decreased, which was in accordance with the decreased amount of snow/ice coverage and the increased soil moisture on the plateau. More importantly, the decreasing albedo in the most recent decade appeared to be caused primarily by lowered growing season albedo.

  8. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Li Tian

    Full Text Available The Tibetan Plateau has experienced higher-than-global-average climate warming in recent decades, resulting in many significant changes in ecosystem structure and function. Among them is albedo, which bridges the causes and consequences of land surface processes and climate. The plateau is covered by snow/ice and vegetation in the non-growing season (nGS and growing season (GS, respectively. Based on the MODIS products, we investigated snow/ice cover and vegetation greenness in relation to the spatiotemporal changes of albedo on the Tibetan Plateau from 2000 through 2013. A synchronous relationship was found between the change in GSNDVI and GSalbedo over time and across the Tibetan landscapes. We found that the annual average albedo had a decreasing trend, but that the albedo had slightly increased during the nGS and decreased during the GS. Across the landscapes, the nGSalbedo fluctuated in a synchronous pattern with snow/ice cover. Temporally, monthly snow/ice coverage also had a high correspondence with albedo, except in April and October. We detected clear dependencies of albedo on elevation. With the rise in altitude, the nGSalbedo decreased below 4000 m, but increased for elevations of 4500-5500 m. Above 5500 m, the nGSalbedo decreased, which was in accordance with the decreased amount of snow/ice coverage and the increased soil moisture on the plateau. More importantly, the decreasing albedo in the most recent decade appeared to be caused primarily by lowered growing season albedo.

  9. Complex interaction between genotypes and growing seasons of carioca common bean in Goiás/Distrito Federal

    Directory of Open Access Journals (Sweden)

    Helton Santos Pereira

    2011-01-01

    Full Text Available The objectives of this study were to assess the importance of the complex interaction between common beangenotypes and growing seasons in the state of Goiás and the Distrito Federal and verify the need for evaluation and indication ofcultivars for each season. Yield data of 16 genotypes in 16 trials conducted in two growing seasons (winter and rainy were used. Thecoefficient of determination was estimated in the analyses of variance with decomposition of the genotype x environment interaction.The complex percentage of the interaction was estimated and the Spearman correlation between seasons. Differences were detectedbetween seasons and presence of genotype - season (GS interaction, with greater significance than the other double interactionswith genotypes. The correlations indicated a predominantly complex GS interaction. This predominantly complex nature of the GSinteraction calls for an assessment of the genotypes in both seasons, which may however identify cultivars with general adaptation.

  10. Incorporating Edge Information into Best Merge Region-Growing Segmentation

    Science.gov (United States)

    Tilton, James C.; Pasolli, Edoardo

    2014-01-01

    We have previously developed a best merge region-growing approach that integrates nonadjacent region object aggregation with the neighboring region merge process usually employed in region growing segmentation approaches. This approach has been named HSeg, because it provides a hierarchical set of image segmentation results. Up to this point, HSeg considered only global region feature information in the region growing decision process. We present here three new versions of HSeg that include local edge information into the region growing decision process at different levels of rigor. We then compare the effectiveness and processing times of these new versions HSeg with each other and with the original version of HSeg.

  11. Variations of Mercury Concentrations in American Beech Foliage over a Growing Season

    Science.gov (United States)

    Stinson, I.; Tsui, M. T. K.; Chow, A. T.

    2017-12-01

    Accumulation of atmospheric gaseous mercury (Hg) in foliage is well known, however, a small fraction of Hg always exists as highly bioavailable methylmercury (MeHg) in foliage but the source of MeHg in foliage is unknown. Recent studies suggested in-vivo Hg methylation in foliage while others suggested external inputs (e.g., precipitation) as sources of MeHg in foliage. This study assesses the accumulation of total Hg and MeHg within the foliage of a small sample set of American Beech trees, one of the common tree species in the east coast and the study site is located within the campus of University of North Carolina - Greensboro, over the growing season in 2017 (spring, summer, and fall). In addition, this study evaluates the Hg concentrations in foliage as related to other physiological parameters (e.g., stomatal density, leaf area, chlorophyll, and carbon/nitrogen content) and the changes in environmental characteristics (e.g., sunlight) over the growing season. For this investigation, five American Beech trees with varying characteristics (height, age, and location) were selected. On a biweekly basis, starting late April 2017, foliage samples were collected and composited from different positions on each tree. For the samples processed to date, our results indicate that total Hg accumulation is occurring for all five trees with an initial mean value of 5.79 ng/g, increasing to a mean value of 13.9 ng/g over a ten-week period. Coincidentally, there has been a similar increase in chlorophyll (a+b) concentrations for the foliage, and there is a strong, positive relationship between chlorophyll and total-Hg concentrations. However, we found no relationships between total Hg concentrations and stomatal density of foliage or carbon/nitrogen content. This study is still ongoing and will continue through the end of the growing season in 2017. Additionally, from the same sample sets, besides total Hg analysis and other ancillary parameters in foliage, MeHg analysis

  12. Spatio-Temporal Variations of Soil Water Use in the Growing Season in Northeast China Using Modis Data

    Science.gov (United States)

    Chang, s.; Huang, F.; Li, B.; Qi, H.; Zhai, H.

    2018-04-01

    Water use efficiency is known as an important indicator of carbon and water cycle and reflects the transformation capacity of vegetation water and nutrients into biomass. In this study, we presented a new indicator of water use efficiency, soil water use level (SWUL), derived from satellite remote sensing based gross primary production and the Visible and Shortwave Infrared Drought Index (VSDI). SWUL based on MODIS data was calculated for the growing season of 2014 in Northeast China, and the spatial pattern and the variation trend were analyzed. Results showed that the highest SWUL was observed in forestland with the value of 36.65. In cropland and grassland, the average SWUL were 26.18 and 29.29, respectively. SWUL showed an increased trend in the first half period of the growing season and peaked around the 200th day. After the 220th day, SWUL presented a decreasing trend. Compared to the soil water use efficiency (SWUE), SWUL might depict the water use status at finer spatial resolution. The new indicator SWUL can help promote understanding the water use efficiency for regions of higher spatial heterogeneity.

  13. Effects of plant cover on soil N mineralization during the growing season in a sandy soil

    Science.gov (United States)

    Yao, Y.; Shao, M.; Wei, X.; Fu, X.

    2017-12-01

    Soil nitrogen (N) mineralization and its availability plays a vital role in regulating ecosystem productivity and C cycling, particularly in semiarid and desertified ecosystems. To determine the effect of plant cover on N turnover in a sandy soil ecosystem, we measured soil N mineralization and inorganic N pools in soil solution during growing season in a sandy soil covered with various plant species (Artemisia desertorum, Salix psammophila, and Caragana korshinskii). A bare sandy soil without any plant was selected as control. Inorganic N pools and N mineralization rates decreased overtime during the growing season, and were not affected by soil depth in bare land soils, but were significantly higher at the 0-10 cm layer than those at the 10-20 cm soil layer under any plant species. Soil inorganic N pool was dominated by ammonium, and N mineralization was dominated by nitrification regardless of soil depth and plant cover. Soils under C. korshinskii have significant higher inorganic N pools and N mineralization rate than soils under bare land and A. desertorum and S. psammophila, and the effects of plant cover were greater at the 0-10 cm soil layer than at the 10-20 cm layer. The effects of C. korshinskii on soil inorganic N pools and mineralization rate varied with the stage of growing season, with greater effects on N pools in the middle growing season, and greater effects on mineralization rate at the last half of the growing season. The results from this study indicate that introduction of C. korshinskii has the potential to increase soil N turnover and availability in sandy soils, and thus to decrease N limitation. Caragana korshinskii is therefore recommend for the remediation of the desertified land.

  14. Underestimated effects of low temperature during early growing season on carbon sequestration of a subtropical coniferous plantation

    Directory of Open Access Journals (Sweden)

    W.-J. Zhang

    2011-06-01

    Full Text Available The impact of air temperature in early growing season on the carbon sequestration of a subtropical coniferous plantation was discussed through analyzing the eddy flux observations at Qianyanzhou (QYZ site in southern China from 2003 to 2008. This site experienced two cold early growing seasons (with temperature anomalies of 2–5 °C in 2005 and 2008, and a severe summer drought in 2003.
    Results indicated that the low air temperature from January to March was the major factor controlling the inter-annual variations in net carbon uptake at this site, rather than the previously thought summer drought. The accumulative air temperature from January to February showed high correlation (R2=0.970, p<0.001 with the annual net ecosystem production (NEP. This was due to the controls of early-month temperature on the plant phenology developing and the growing season length at this subtropical site. The cold spring greatly shortened the growing season length and therefore reduced the carbon uptake period. The eddy flux observations showed a carbon loss of 4.04 g C m−2 per growing-season day at this coniferous forest site. On the other hand, the summer drought also reduced the net carbon uptake strength because the photosynthesis was more sensitive to water deficit stress than the ecosystem respiration. However, the impact of summer drought occurred within a relatively shorter period and the carbon sequestration went back to the normal level once the drought was relieved.

  15. Effects of repeated growing season prescribed fire on the structure and composition of pine-hardwood forests in the southeastern Piedmont, USA

    Science.gov (United States)

    Matthew Reilly; Kenneth Outcalt; Joseph O’Brien; Dale Wade

    2016-01-01

    We examined the effects of repeated growing season prescribed fire on the structure and composition of mixed pine–hardwood forests in the southeastern Piedmont region, Georgia, USA. Plots were burned two to four times over an eight-year period with low intensity surface fires during one of four six-week long periods from early April to mid-September. Density...

  16. Seasonal anomalies in electricity intensity across Chinese regions

    International Nuclear Information System (INIS)

    Herrerias, M.J.

    2013-01-01

    Highlights: ► We analyze seasonal anomalies in electricity intensity in China. ► Regional and time dimensions are investigated from 2003 to 2009. ► Results suggest that seasonality is stochastic. ► We find four main effects: Summer, Winter, Spring and Lunar New Year effects. ► Differences are observed between northern regions and east-south of China. - Abstract: This paper provides evidence on the relevance of modeling the seasonal nature of electricity intensity across Chinese regions in a suitable manner with monthly data from 2003 to 2009. In contrast to previous works, this study relaxes the assumption of deterministic seasonality, allowing for time and regional variation in the Chinese economy. In doing so, unobserved-components models are used to analyze the type of seasonality – stochastic or deterministic – that prevails. Regional differences in the seasonal patterns and their evolution over time are also examined. Results provide new empirical evidence on the stochastic nature of electricity intensity in the majority of the provinces. In addition, we find four main effects as regards seasonal patterns: (i) Lunar New Year, (ii) Summer, (iii) Spring, and (iv) Winter effects. In the first two effects seasonality becomes positive, thus indicating that electricity intensity increases, and the last two are negative, showing improvements in the use of electricity per unit of output. However, differences are observed between northern regions and the east-south of China. In addition, once we control our estimates for temperature and prices, no significant differences are seen in the results. Conclusions from this analysis are useful for empirical modeling in the energy-economics literature, and also for designing energy policies to improve the efficiency of the use of energy resources across Chinese regions

  17. THE INFLUENCE OF WEATHER CONDITIONS OF EASTERN POLAND ON SWEET CORN YIELDS AND LENGTH OF GROWING SEASON

    Directory of Open Access Journals (Sweden)

    Robert Rosa

    2016-09-01

    Full Text Available The aim of the study was to determine the effect of weather components (air temperature, precipitation on the growth, yield and the length of the growing season of sweet corn cultivated in eastern Poland. The results come from a field experiment conducted in 2006–2011. Weather conditions in the successive years of the study significantly modified the yield of ears, weight and number of formatted ears, high of plants and the length of the growing season of sweet corn. Good yielding of sweet corn favoured years with moderate air temperatures in July and uniform distribution of precipitation during the growing season. The highest yield of ears was found in 2011, the lowest in the very difficult in terms of weather 2006. The shortest growing season was characterized corn grown in the years 2006 and 2010 with the high air temperatures in July and August, the longest in the years 2009 and 2011, in which the temperatures in the period June-August were the lowest of all the years of research. Irrespective of the year of study, cv ‘Sheba F1’ was formatted eras with higher weight than cv ‘Sweet Nugget F1’.

  18. USDA Cranberry Entomology Laboratory (CEL) research priorities in the 2016 growing season

    Science.gov (United States)

    Research priorities during the 2016 growing season will be focused on 1) discovery and screening of native WI nematodes as bio-control agents, and 2) continued refinement of the drone-deployed mating disruption system. Extramural funding will be needed for both, and the degree of funding will dictat...

  19. Growing Season Definition and Use in Wetland Delineation: A Literature Review

    Science.gov (United States)

    2010-08-01

    obvious bud set) unreliable indicators of the end of the growing season. For example, drought can induce premature leaf abscission, and woody plant...as well as privet (Ligustrum japonicum), loblolly pine ( Pinus taeda), and yellow poplar (Liriodendron tulipifera). The lack of water uptake was...the effects of four flooding/drying regimes on shortleaf pine ( Pinus echinata), loblolly pine, and pond pine ( Pinus serotina). The expected result

  20. Crop water stress maps for an entire growing season from visible and thermal UAV imagery

    DEFF Research Database (Denmark)

    Hoffmann, Helene; Jensen, Rasmus; Thomsen, Anton

    2016-01-01

    This study investigates whether a water deficit index (WDI) based on imagery from unmanned aerial vehicles (UAVs) can provide accurate crop water stress maps at different growth stages of barley and in differing weather situations. Data from both the early and late growing season are included...... to investigate whether the WDI has the unique potential to be applicable both when the land surface is partly composed of bare soil and when crops on the land surface are senescing. The WDI differs from the more commonly applied crop water stress index (CWSI) in that it uses both a spectral vegetation index (VI...... season because at this stage the remote sensing data represent crop water availability to a greater extent than they do in the early growing season, and because the WDI accounts for areas of ripe crops that no longer have the same need for irrigation. WDI maps can potentially serve as water stress maps...

  1. Regional seasonal warming anomalies and land-surface feedbacks

    Science.gov (United States)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  2. New England observed and predicted Julian day of maximum growing season stream/river temperature points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted Julian day of maximum growing season stream/river temperatures in New England based on a spatial...

  3. Early and late seasonal carbon sequestration and allocation in larch trees growing on permafrost in Central Siberia

    Science.gov (United States)

    Masyagina, Oxana; Prokushkin, Anatoly; Kirdyanov, Alexander; Artyukhov, Aleksey; Udalova, Tatiana; Senchenkov, Sergey; Rublev, Aleksey

    2014-05-01

    Despite large geographic extent of deciduous conifer species Larix gmelinii, its seasonal photosynthetic activity and translocation of photoassimilated carbon within a tree remain poorly studied. To get better insight into productivity of larch trees growing on permafrost soils in Siberian larch biome we aimed to analyze dynamics of foliage parameters (i.e. leaf area, biomass, %N, %P etc.), seasonal dynamics of photosynthetic activity and apply whole tree labeling by 13CO2, which is powerful and effective tool for tracing newly developed assimilates translocation to tissues and organs of a tree (Kagawa et al., 2006; Keel et al., 2012). Experimental plot has been established in mature 105 year-old larch stand located within the continuous permafrost area near Tura settlement (Central Siberia, 64o17'13" N, 100o11'55" E, 148 m a.s.l.). Trees selected for experiments represented mean tree of the stand. Measurements of seasonal photosynthetic activity and foliar biomass sampling were arranged from early growing season (June 8, 2013) until yellowing and senescence of needles on September 17, 2013. Labeling by 13C in whole tree chamber was conducted by three pulses ([CO2]max ≤ 2,500 ppmv, 13CO2 (30% v/v)) at the early (June) and late (August) phase of growing season for different trees in 3 replicates each time. Both early season and late season labeling experiments demonstrated high rate of 13CO2 assimilation and respective enrichment of needle tissues by 13C: δ13C increased from -28.7 up to +670‰ just after labeling. However, there was distinct post-labeling dynamics of needle δ13C among two seasonal experiments. At the early season 13C depletion in labeled needles was slower, and δ13C approached after 40 days ca. +110 ‰ and remained constant till senescence. In the late season (August) needles were losing labeled C with much faster rate and approached only +1.5 ‰ upon senescence (28 days exposition). These findings suggest that in early season ca. 20% of

  4. Effects of urban green infrastructure (UGI) on local outdoor microclimate during the growing season

    NARCIS (Netherlands)

    Wang, Yafei; Bakker, Frank; Groot, de Rudolf; Wörtche, Heinrich; Leemans, Rik

    2015-01-01

    This study analyzed how the variations of plant area index (PAI) and weather conditions alter the influence of urban green infrastructure (UGI) on microclimate. To observe how diverse UGIs affect the ambient microclimate through the seasons, microclimatic data were measured during the growing

  5. Ecohydrology in Mediterranean areas: a numerical model to describe growing seasons out of phase with precipitations

    Directory of Open Access Journals (Sweden)

    D. Pumo

    2008-02-01

    Full Text Available The probabilistic description of soil moisture dynamics is a relatively new topic in hydrology. The most common ecohydrological models start from a stochastic differential equation describing the soil water balance, where the unknown quantity, the soil moisture, depends both on spaces and time. Most of the solutions existing in literature are obtained in a probabilistic framework and under steady-state condition; even if this last condition allows the analytical handling of the problem, it has considerably simplified the same problem by subtracting generalities from it.

    The steady-state hypothesis, appears perfectly applicable in arid and semiarid climatic areas like those of African's or middle American's savannas, but it seems to be no more valid in areas with Mediterranean climate, where, notoriously, the wet season foregoes the growing season, recharging water into the soil. This moisture stored at the beginning of the growing season (known as soil moisture initial condition has a great importance, especially for deep-rooted vegetation, by enabling survival in absence of rainfalls during the growing season and, however, keeping the water stress low during the first period of the same season.

    The aim of this paper is to analyze the soil moisture dynamics using a simple non-steady numerical ecohydrological model. The numerical model here proposed is able to reproduce soil moisture probability density function, obtained analytically in previous studies for different climates and soils in steady-state conditions; consequently it can be used to compute both the soil moisture time-profile and the vegetation static water stress time-profile in non-steady conditions.

    Here the differences between the steady-analytical and the non-steady numerical probability density functions are analyzed, showing how the proposed numerical model is able to capture the effects of winter recharge on the soil moisture. The dynamic

  6. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season.

    Science.gov (United States)

    Kaakinen, Seija; Jolkkonen, Annika; Iivonen, Sari; Vapaavuori, Elina

    2004-06-01

    One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.

  7. Impacts of short-rotation early-growing season prescribed fire on a ground nesting bird in the central hardwoods region of North America

    Science.gov (United States)

    Pittman, H. Tyler; Krementz, David G.

    2016-01-01

    Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha). This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS) Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated) and units absent of prescribed fire (untreated). Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%). We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (20 cm DBH) but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5cm ground diameter) but did not select for small shrubs or large

  8. Impacts of Short-Rotation Early-Growing Season Prescribed Fire on a Ground Nesting Bird in the Central Hardwoods Region of North America.

    Directory of Open Access Journals (Sweden)

    H Tyler Pittman

    Full Text Available Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha. This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated and units absent of prescribed fire (untreated. Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%. We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (20 cm DBH but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5 cm ground diameter but did not select for small

  9. Impacts of Short-Rotation Early-Growing Season Prescribed Fire on a Ground Nesting Bird in the Central Hardwoods Region of North America.

    Science.gov (United States)

    Pittman, H Tyler; Krementz, David G

    2016-01-01

    Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha). This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS) Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated) and units absent of prescribed fire (untreated). Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%). We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (20 cm DBH) but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5 cm ground diameter) but did not select for small shrubs or

  10. Transmittance of young Norway spruce stand canopy for photosynthetically active radiation during the growing season

    International Nuclear Information System (INIS)

    Markova, I.; Kubasek, J.

    2013-01-01

    Analysis of transmittance of young Norway spruce stand canopy for photosynthetically active radiation (PAR) was made at the study site of Bily Kriz (the Moravian-Silesian Beskids Mts., the Czech Republic) at different sky conditions during the growing season in 2010. For the description of PAR transmittance different phenological phases of the spruce stand development in clear and overcast days were chosen. The mean daily PAR transmittance of the spruce canopy was significantly higher in overcast days compared with clear ones. Diffuse PAR thus penetrated into lower parts of the canopy more efficiently than direct one. PAR transmittance of young Norway spruce stand canopy was different in individual phenological phases of the spruce stand canopy which was caused by changes in the stand structure during the growing season. Thus monitoring of transmittance of young Norway spruce stand canopy for PAR can help to describe the development of spruce stand canopy

  11. Effects of dormant and growing season burning on surface fuels and potential fire behavior in northern Florida longleaf pine (Pinus palustris) flatwoods

    Science.gov (United States)

    James B. Cronan; Clinton S. Wright; Maria Petrova

    2015-01-01

    Prescribed fire is widely used to manage fuels in high-frequency, low-severity fire regimes including pine flatwoods of the southeastern USA where prescribed burning during the growing season (the frost-free period during the calendar year) has become more common in recent decades. Growing season prescribed fires address ecological management objectives that focus on...

  12. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentrations for four growing seasons' exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU YuMei; HAN ShiJie; ZHANG HaiSen; XIN LiHua; ZHENG JunQiang

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous species-Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. Koraiensis and P. Sylvestriformis were exposed to 700,500μmol·mol-1 CO2 and ambient CO2(approx.350 μmol·mol-1)for four growing seasons. Needle dark respiration was measurd during the second, third and fourth growing seasons' exposure to elevated CO2.The results showed that needle dark respiration rate increased for P. Koraiensis and P. Sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. Koraiensis was stimulated and that of P. Sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. Koraiensis and P. Sylvestriformis during the fourth growing season. There was consistent trend between the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. Sylvestriformis during the third growing season by changing measurement CO2 concentrations. However, the short-term effect was different from the long-term effect for P. Koraiensis. Response of dark respiration of P. Koraiensis and P. Sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  13. Environmental and Physiographic Controls on Inter-Growing Season Variability of Carbon Dioxide and Water Vapour Fluxes in a Minerotrophic Fen

    Science.gov (United States)

    van der Kamp, G.; Sonnentag, O.; Chen, J. M.; Barr, A.; Hedstrom, N.; Granger, R.

    2008-12-01

    The interaction of fens with groundwater is spatially and temporally highly variable in response to meteorological conditions, resulting in frequent changes of groundwater fluxes in both vertical and lateral directions (flow reversals) across the mineral soil-peat boundary. However, despite the importance of the topographic and hydrogeological setting of fens, no study has been reported in the literature that explores a fen's atmospheric CO2 and energy flux densities under contrasting meteorological conditions in response to its physiographic setting. In our contribution we report four years of growing season eddy covariance and supporting measurements from the Canada Fluxnet-BERMS fen (formerly BOREAS southern peatland) in Saskatchewan, Canada. We first analyze hydrological data along two piezometer transects across the mineral soil-peat boundary with the objective of assessing changes in water table configuration and thus hydraulic gradients, indicating flow reversals, in response to dry and wet meteorological conditions. Next we quantify and compare growing season totals and diurnal and daily variations in evapotranspiration (ET) and net ecosystem exchange (NEE) and its component fluxes gross ecosystem productivity (GPP) and terrestrial ecosystem respiration (TER) to identify their controls with a major focus on water table depth. While ET growing season totals were similar (~ 310 mm) under dry and wet meteorological conditions, the CO2 sink- source strength of Sandhill fen varied substantially from carbon neutral (NEE = -2 [+-7] g C m-2 per growing season) under dry meteorological condition (2003) to a moderate CO2- sink with NEE ranging between 157 [+- 10] and 190 [+- 11] g C m-2 per growing season under wet meteorological conditions (2004, 2005, and 2006). Using a process-oriented ecosystem model, BEPS-TerrainLab, we investigate how different canopy components at Sandhill contribute to total ET and GPP, and thus water use efficiency, under dry and wet

  14. Variation in damage from growing-season frosts among open-pollinated families of red alder.

    Science.gov (United States)

    Kevin C. Peeler; Dean S. DeBell

    1987-01-01

    Repeated growing-season frosts during late April and early May 1985 caused extensive damage to red alder (Alnus rubra Bong.) seedlings in a newly planted research trial in western Washington. About two-thirds of the seedlings were severely damaged (entire stem damaged or necrotic). Such damage varied by family, from 50 percent of seedlings in the...

  15. Assessment of drought during corn growing season in Northeast China

    Science.gov (United States)

    Zhang, Qi; Hu, Zhenghua

    2018-04-01

    Northeast China has experienced extensive climate change during the past decades. Corn is the primary production crop in China and is sensitive to meteorological disasters, especially drought. Drought has thus greatly endangered crop production and the country's food security. The majority of previous studies has not highlighted farming adaptation activities undertaken within the changed climate, which should not be neglected. In this study, we assessed drought hazard in the corn vegetation growing period, the reproductive growing period, and the whole growing period based on data for yearly corn phenology, daily precipitation, and temperature gathered at 26 agro-meteorological stations across Northeast China from 1981 to 2009. The M-K trend test was used to detect trends in sowing date and drought. The standardized precipitation evapotranspiration index (SPEI) was used to describe drought. Drought frequency and intensity were used to assess the drought hazard in the region. We found that the sowing date was delayed in the southern part of the study area, coupled with a trend towards a shorter and more humid vegetation growing period. In the northern part of the study area, an earlier sowing date increased the length of the vegetation growing period and the reproductive growing period, while drying trends occurred within the two corn growing periods. We assessed the drought hazard during each growing period: the reproductive growing period faced a more severe drought hazard and was also the period where corn was most sensitive to water stress. Drought hazard during the total growing period was closely related to corn yield.

  16. How well do growing season dynamics of photosynthetic capacity correlate with leaf biochemistry and climate fluctuations?

    Science.gov (United States)

    Way, Danielle A; Stinziano, Joseph R; Berghoff, Henry; Oren, Ram

    2017-07-01

    Accurate values of photosynthetic capacity are needed in Earth System Models to predict gross primary productivity. Seasonal changes in photosynthetic capacity in these models are primarily driven by temperature, but recent work has suggested that photoperiod may be a better predictor of seasonal photosynthetic capacity. Using field-grown kudzu (Pueraria lobata (Willd.) Ohwi), a nitrogen-fixing vine species, we took weekly measurements of photosynthetic capacity, leaf nitrogen, and pigment and photosynthetic protein concentrations and correlated these with temperature, irradiance and photoperiod over the growing season. Photosynthetic capacity was more strongly correlated with photoperiod than with temperature or daily irradiance, while the growing season pattern in photosynthetic capacity was uncoupled from changes in leaf nitrogen, chlorophyll and Rubisco. Daily estimates of the maximum carboxylation rate of Rubisco (Vcmax) based on either photoperiod or temperature were correlated in a non-linear manner, but Vcmax estimates from both approaches that also accounted for diurnal temperature fluctuations were similar, indicating that differences between these models depend on the relevant time step. We advocate for considering photoperiod, and not just temperature, when estimating photosynthetic capacity across the year, particularly as climate change alters temperatures but not photoperiod. We also caution that the use of leaf biochemical traits as proxies for estimating photosynthetic capacity may be unreliable when the underlying relationships between proxy leaf traits and photosynthetic capacity are established outside of a seasonal framework. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Topoclimate effects on growing season length and montane conifer growth in complex terrain

    Science.gov (United States)

    Barnard, D. M.; Barnard, H. R.; Molotch, N. P.

    2017-05-01

    Spatial variability in the topoclimate-driven linkage between forest phenology and tree growth in complex terrain is poorly understood, limiting our understanding of how ecosystems function as a whole. To characterize the influence of topoclimate on phenology and growth, we determined the start, end, and length of the growing season (GSstart, GSend, and GSL, respectively) using the correlation between transpiration and evaporative demand, measured with sapflow. We then compared these metrics with stem relative basal area increment (relative BAI) at seven sites among elevation and aspects in a Colorado montane forest. As elevation increased, we found shorter GSL (-50 d km-1) due to later GSstart (40 d km-1) and earlier GSend (-10 d km-1). North-facing sites had a 21 d shorter GSL than south-facing sites at similar elevations (i.e. equal to 200 m elevation difference on a given aspect). Growing season length was positively correlated with relative BAI, explaining 83% of the variance. This study shows that topography exerts strong environmental controls on GSL and thus forest growth. Given the climate-related dependencies of these controls, the results presented here have important implications for ecosystem responses to changes in climate and highlight the need for improved phenology representation in complex terrain.

  18. Grazing exclusion increases soil CO2 emission during the growing season in alpine meadows on the Tibetan Plateau

    Science.gov (United States)

    Guo, Na; Wang, Aidong; Allan Degen, A.; Deng, Bin; Shang, Zhanhuan; Ding, Luming; Long, Ruijun

    2018-02-01

    Soil CO2 emission is a key part of the terrestrial carbon cycle. Grazing exclusion by fencing is often considered a beneficial grassland management option to restore degraded grassland, but its effect on soil CO2 emission on the northeastern Tibetan Plateau is equivocal and is the subject of this study. Using a closed static chamber, we measured diurnal soil CO2 flux weekly from July, 2008, to April, 2009, in response to grazing and grazing exclusion in the alpine meadow and alpine shrub meadow. Concomitantly, soil temperature was measured at depths of 5 cm, 10 cm, 15 cm and 20 cm with digital temperature sensors. It emerged that: 1) non-grazed grasslands emitted more soil CO2 than grazed grasslands over the growing season; 2) the alpine shrub meadow emitted more soil CO2 than the alpine meadow; the annual cumulative soil CO2 emissions of alpine meadow and alpine shrub meadow were 241.5-326.5 g C/m2 and 429.0-512.5 g C/m2, respectively; 3) seasonal patterns were evident with more soil CO2 flux in the growing than in the non-growing season; and 4) the diurnal soil CO2 flux exhibited a single peak across all sampling sites. In addition, soil CO2 flux was correlated positively with soil temperature at 5 cm, but not at the other depths. We concluded that grazing exclusion enhanced soil CO2 emission over the growing season, and decreased carbon sequestration of alpine meadow and alpine shrub meadow on the northeastern Tibetan Plateau. Since an increase in soil temperature increased soil CO2 flux, global warming could have an effect on soil CO2 emission in the future.

  19. Southern African Regional Science Initiative (SAFARI 2000): wet season campaigns

    CSIR Research Space (South Africa)

    Otter, LB

    2002-03-01

    Full Text Available The Southern African Regional Science Initiative (SAFARI 2000) involved two wet season and one dry season field campaigns. This paper reports on the wet season campaigns. The first was conducted at five sites along the Kalahari Transect in Zambia...

  20. At site and regional analysis of maximum annual and seasonal discharges and precipitation depths in the upper Hron region

    International Nuclear Information System (INIS)

    Kohnova, S.; Hlavcova, K.

    2004-01-01

    In this presentation authors deal with the regional analysis of maximum annual and seasonal discharges and precipitation depths in the upper Hron region (Slovak Republic). This work has two objectives: (1) At site and regional analysis of annual and seasonal maximum design discharges in the upper Hron region; (2) Analysis of annual and seasonal maximum design precipitations in the connection of extreme runoff condition in the upper Hron region

  1. The flux of ozone to a maize crop and the underlying soil during a growing season

    NARCIS (Netherlands)

    Pul, van W.A.J.

    1992-01-01

    To observe the flux or deposition of ozone above a maize crop, experiments were carried out during the growing season of maize in 1988. The flux of ozone was determined using meteorological techniques. The measurements used in the present study were carried out under atmospheric conditions

  2. Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA

    Science.gov (United States)

    Skalbeck, J.D.; Reed, D.M.; Hunt, R.J.; Lambert, J.D.

    2009-01-01

    Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types. ?? Springer-Verlag 2008.

  3. Non-growing season soil CO2 efflux patterns in five land-use types in northern China

    Science.gov (United States)

    Overgrazing and unsuitable farming practices have led to grassland degradation in northern China. This studhy examined soil CO2 efflux (Fc) from five land-use types during the non-growing season on the southeastern edge of the Mongolian Plateau in China. The land-use types included three native v...

  4. Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model

    Science.gov (United States)

    Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia

    2017-01-01

    Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.

  5. Projections for the changes in growing season length of tree-ring formation on the Tibetan Plateau based on CMIP5 model simulations.

    Science.gov (United States)

    He, Minhui; Yang, Bao; Shishov, Vladimir; Rossi, Sergio; Bräuning, Achim; Ljungqvist, Fredrik Charpentier; Grießinger, Jussi

    2018-04-01

    The response of the growing season to the ongoing global warming has gained considerable attention. In particular, how and to which extent the growing season will change during this century is essential information for the Tibetan Plateau, where the observed warming trend has exceeded the global mean. In this study, the 1960-2014 mean length of the tree-ring growing season (LOS) on the Tibetan Plateau was derived from results of the Vaganov-Shashkin oscilloscope tree growth model, based on 20 composite study sites and more than 3000 trees. Bootstrap and partial correlations were used to evaluate the most significant climate factors determining the LOS in the study region. Based on this relationship, we predicted the future variability of the LOS under three emission scenarios (Representative Concentration Pathways (RCP) 2.6, 6.0, and 8.5, representing different concentrations of greenhouse gasses) derived from 17 Earth system models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The averaged LOS on the Tibetan Plateau is 103 days during the period 1960-2014, and April-September minimum temperature is the strongest factor controlling the LOS. We detected a general increase in the LOS over the twenty-first century under all the three selected scenarios. By the middle of this century, LOS will extend by about 3 to 4 weeks under the RCPs 2.6 and 6.0, and by more than 1 month (37 days) under the RCP 8.5, relative to the baseline period 1960-2014. From the middle to the end of the twenty-first century, LOS will further extend by about 3 to 4 weeks under the RCPs 6.0 and 8.5, respectively. Under the RCP 2.6 scenario, however, the extension reaches a plateau at around 2050 and about 2 weeks LOS extension. In total, we found an average rate of 2.1, 3.6, and 5.0 days decade -1 for the LOS extension from 2015 to 2100 under the RCPs 2.6, 6.0, and 8.5, respectively. However, such estimated LOS extensions may be offset by other ecological

  6. Identification of proteins from cambium tissues of the chinese white poplar (populus tomentosa) sampled during the growing season

    International Nuclear Information System (INIS)

    Xie, J.; Liu, S.; Qi, Q.; Hou, Y.

    2014-01-01

    Various protein extraction methods have been used to investigate Chinese white poplar (Populus tomentosa) proteomics. However, extracting and characterizing proteins from woody plants remains a challenge. Two-dimensional gel electrophoresis is a powerful, widely used method for the analysis of complex protein mixtures extracted from biological samples. The technique separates mixtures of proteins along two dimensions, by isoelectric point and molecular weight, and can resolve thousands of different proteins. Here, we report a new application of two-dimensional gel electrophoresis to investigate the proteomics of P. tomentosa cambium tissues over the course of a growing season. Of three protein extraction methods that we compared (the Tris-phenol method, trichloroacetic acid-acetone method, and trichloroacetic acid-acetone-phenol method), trichloroacetic acid-acetone was the most efficient approach for protein extraction from cambium tissues of P. tomentosa. After extraction, the proteins were separated using two-dimensional gel electrophoresis. The protein quantities of six spots changed over the course of the growing season from February to July. Five spots were identified using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry, and the sixth spot was identified by liquid chromatography-mass spectrometry. The proteins included enolase, class Ia chitinase, and four unnamed proteins. Our results show the best approach to proteomics in P. tomentosa and reveal trends in protein activities during a growing season in this tree species. (author)

  7. Parallelized Seeded Region Growing Using CUDA

    Directory of Open Access Journals (Sweden)

    Seongjin Park

    2014-01-01

    Full Text Available This paper presents a novel method for parallelizing the seeded region growing (SRG algorithm using Compute Unified Device Architecture (CUDA technology, with intention to overcome the theoretical weakness of SRG algorithm of its computation time being directly proportional to the size of a segmented region. The segmentation performance of the proposed CUDA-based SRG is compared with SRG implementations on single-core CPUs, quad-core CPUs, and shader language programming, using synthetic datasets and 20 body CT scans. Based on the experimental results, the CUDA-based SRG outperforms the other three implementations, advocating that it can substantially assist the segmentation during massive CT screening tests.

  8. The variation of methane flux rates from boreal tree species at the beginning of the growing season

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2016-04-01

    Boreal forests are considered as net sink for atmospheric methane (CH4) because of the CH4 oxidizing bacteria in the aerobic soil layer. However, within the last decades it has become more evident that trees play an important role in the global CH4 budget by offering pathways for anaerobically produced CH4 from deeper soil layers to the atmosphere. Furthermore, trees may also act as independent sources of CH4. To confirm magnitude, variability and the origin of the tree mediated CH4 emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured tree stem and shoot CH4 exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in southern Finland (61° 51'N, 24° 17'E, 181 asl). The fluxes were measured from silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation and forest structure by using the static chamber technique. Scaffold towers were used for measurements at multiple stem heights and shoots. The aim was to study the vertical profile of CH4 fluxes at stem and shoot level and compare these fluxes among the studied species, and to observe temporal changes in CH4 flux over the beginning of the growing season. We found that all the trees emitted CH4 from their stems and shoots. Overall, the birches showed higher emissions compared to the spruces. The emission rates were considerably larger in the lower parts of the birch stems than upper parts, and these emissions increased during the growing season. The spruces had more variation in the stem CH4 flux, but the emission rates of the upper parts of the stem exceeded the birch emissions at the same height. The shoot fluxes of all the studied trees indicated variable CH4 emissions without a clear pattern regarding the vertical profile and

  9. Land Surface Phenologies and Seasonalities of Croplands and Grasslands in the US Prairie Pothole Region Using Passive Microwave Data (2003-2015)

    Science.gov (United States)

    Alemu, W. G.; Henebry, G. M.

    2017-12-01

    Grasslands and wetlands in the Prairie Pothole Region (PPR) have been converted to croplands in recent years. Crops cultivated in the PPR are also changing: spring wheat and alfalfa/hay are being switched to corn and soybean due to biofuel demand. According to the USDA Cropland Data Layer (CDL) from 2003 to 2015, spring wheat significantly decreased (r2 = 0.74), while corn and soybeans significantly increased (r2 = 0.86). We characterized land surface phenologies and land surface seasonalities across the PPR using the finer temporal (twice daily) but much lower spatial (25 km) resolution Advanced Microwave Scanning Radiometer (AMSR: blended from AMSR-E and AMSR2) enhanced land surface parameters for 2003-2015 (DOY 91-330 annual cycles). We tracked the temporal development of these land surface parameters as a function of accumulated growing degree-days (AGDD) based on the AMSR retrieved air temperature data. Growing degree-days (GDD) revealed distinct seasonality typical to temperate grasslands and croplands. GDD peaks were 23°C and it peaks at 1700°C AGDD. Precipitable water vapor (V) displayed seasonality comparable to GDD. Vegetation optical depth (VOD) revealed distinct land surface phenologies for grasslands versus croplands. We explored the changing crop fractions within the 25 km AMSR pixels using the CDL. Crop-dominated sites VOD time series caught the early spring growth, ploughing, and crop growth dynamics. In contrast, the VOD time series at grass-dominated sites exhibited a lower but more extended amplitude throughout the non-frozen season. VODs peaked at 1.6 and 1.3 for croplands and grasslands, respectively. Croplands peaked about a month later than grasslands (2200 °C AGDD vs. 1600 °C AGDD). The other parameters available from the AMSR dataset—soil moisture (sm), and fractional open water (fw)—together with the AGDD time series constructed from the AMSR air temperature data revealed the passage of storm systems during the growing season. Soil

  10. Changes in composition, cellulose degradability and biochemical methane potential of Miscanthus species during the growing season.

    Science.gov (United States)

    Peng, Xiaowei; Li, Chao; Liu, Jing; Yi, Zili; Han, Yejun

    2017-07-01

    The composition, cellulose degradability and biochemical methane potential (BMP) of M. sinensis, M. floridulus, Miscanthus×giganteus and M. lutarioriparius were investigated concomitantly at different growth/harvest times during their growing season. For all the four species, there was only a slight change in the compositional content. Meanwhile there was a huge change in the BMP values. At the growth time of 60days the BMPs ranged from 247.1 to 266.5mlg -1 VS. As growth time was prolonged, the BMPs decreased by 11-35%. For each species, the BMP was positively correlated to the cellulose degradability with the correlation coefficients (R 2 ) ranging from 0.8055 to 0.9925. This suggests that besides the biomass yield, it is justifiable to consider cellulose degradability when selecting the suitable harvest time for biofuels production from Miscanthus, especially in tropical and subtropical regions where Miscanthus can be harvested twice or more within a year. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Intraseasonal carbon sequestration and allocation in larch trees growing on permafrost in Siberia after 13C labeling (two seasons of 2013-2014 observation).

    Science.gov (United States)

    Masyagina, Oxana; Prokushkin, Anatoly; Kirdyanov, Alexander; Artyukhov, Aleksey; Udalova, Tatiana; Senchenkov, Sergey; Rublev, Aleksey

    2016-12-01

    This research is an attempt to study seasonal translocation patterns of photoassimilated carbon within trees of one of the high latitudes widespread deciduous conifer species Larix gmelinii (Rupr. Rupr). For this purpose, we applied whole-tree labeling by 13 CO 2 , which is a powerful and effective tool for tracing newly developed assimilates translocation to tissues and organs of a tree. Experimental plot has been established in a mature 105-year-old larch stand located within the continuous permafrost area near Tura settlement (Central Siberia, 64°17'13″N, 100°11'55″E, 148 m a.s.l.). Measurements of seasonal photosynthetic activity and foliage parameters (i.e., leaf length, area, biomass, etc.), and sampling were arranged from early growing season (June 8, 2013; May 14, 2014) until yellowing and senescence of needles (September 17, 2013; September 14, 2014). Labeling by 13 C of the tree branch (June 2013, for 3 branch replicates in 3 different trees) and the whole tree was conducted at early (June 2014), middle (July 2014), and late (August 2013) phase of growing season (for different trees in 3 replicates each time) by three pulses [(CO 2 )max = 3000-4000 ppmv, 13 CO 2 (30 % v/v)]. We found at least two different patterns of carbon translocation associated with larch CO 2 assimilation depending on needle phenology. In early period of growing season (June), 13 C appearing in newly developed needles is a result of remobilized storage material use for growth purposes. Then approximately at the end of June, growth processes is switching to storage processes lasting to the end of growing season.

  12. SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela Mayumi; Carvalho, E.A.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P.; Oliveira, I.N.S.

    2010-05-22

    This paper presents an approach to accomplish synthetic aperture radar (SAR) image segmentation, which are corrupted by speckle noise. Some ordinary segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, eliminating preprocessing steps, an advantage over most of the current methods. The algorithm comprises a statistical region growing procedure combined with hierarchical region merging to extract regions of interest from SAR images. The region growing step over-segments the input image to enable region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for the process coordination. We have tested and assessed the proposed technique on artificially speckled image and real SAR data containing different types of targets.

  13. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests

    Science.gov (United States)

    Elmore, A.J.; Guinn, S.M.; Minsley, B.J.; Richardson, A.D.

    2012-01-01

    The timing of spring leaf development, trajectories of summer leaf area, and the timing of autumn senescence have profound impacts to the water, carbon, and energy balance of ecosystems, and are likely influenced by global climate change. Limited field-based and remote-sensing observations have suggested complex spatial patterns related to geographic features that influence climate. However, much of this variability occurs at spatial scales that inhibit a detailed understanding of even the dominant drivers. Recognizing these limitations, we used nonlinear inverse modeling of medium-resolution remote sensing data, organized by day of year, to explore the influence of climate-related landscape factors on the timing of spring and autumn leaf-area trajectories in mid-Atlantic, USA forests. We also examined the extent to which declining summer greenness (greendown) degrades the precision and accuracy of observations of autumn offset of greenness. Of the dominant drivers of landscape phenology, elevation was the strongest, explaining up to 70% of the spatial variation in the onset of greenness. Urban land cover was second in importance, influencing spring onset and autumn offset to a distance of 32 km from large cities. Distance to tidal water also influenced phenological timing, but only within ~5 km of shorelines. Additionally, we observed that (i) growing season length unexpectedly increases with increasing elevation at elevations below 275 m; (ii) along gradients in urban land cover, timing of autumn offset has a stronger effect on growing season length than does timing of spring onset; and (iii) summer greendown introduces bias and uncertainty into observations of the autumn offset of greenness. These results demonstrate the power of medium grain analyses of landscape-scale phenology for understanding environmental controls on growing season length, and predicting how these might be affected by climate change.

  14. The Growing Use of GMES across Europe’s Regions

    Directory of Open Access Journals (Sweden)

    Redazione GEOmedia

    2013-03-01

    Full Text Available Una guida per i decisori politici sulle potenzialità e ibenefici derivanti dall’uso delle tecnologie di monitoraggiodella Terra nelle regioni Europee Abstract The Growing Use of GMES across Europe’s Regions” LaunchEvent at the European Parliament.NEREUS – Network of European Regions Using Space Technologiesand ESA – European Space Agency, are pleased to announce the launch of a joint publication with the title “TheGrowing Use of GMES across Europe’s Regions”, a collection of 67 illustrative articles on regional GMES applications. Addressed to a non-specialist audience, the collection illustrates the strategic value of the Programme for regional administrations and authorities in the context of territorial management and forward planning. The variety of existing andpotential regional uses across Europe shows how GMES not only contributes to better informed decision making but also how the data can be exploited to support sustainable environmental protection with a long term perspective. Quoting end user experiences, the publication gives a first-hand impression on the impact of GMES on regional development and policy implementation.

  15. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Science.gov (United States)

    Hu, Tongxin; Sun, Long; Hu, Haiqing; Guo, Futao

    2017-01-01

    In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent) after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April) in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth) was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March). Mean spring freeze-thaw cycle (FTC) period (April) soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  16. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    Science.gov (United States)

    Robin, Jessica; Dubayah, Ralph; Sparrow, Elena; Levine, Elissa

    2008-03-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region. Six quadratic regression models with NDVI as a function of accumulated growing degree days (AGDD) were developed from 2001 through 2004 AVHRR and MODIS NDVI data sets for urban, mixed, and forested land covers. Model parameters determined NDVI values for start of the observational period as well as peak and length of the growing season. NDVI values for start of the growing season were determined from the model equations and field observations of SOS made by GLOBE students and researchers at University of Alaska Fairbanks. AGDD was computed from daily air temperature. AVHRR and MODIS models were significantly different from one another with differences in the start of the observational season as well as start, peak, and length of the growing season. Furthermore, AGDD for SOS was significantly lower during the 1990s than the 1980s. NDVI values at SOS did not detect this change. There are limitations with using NDVI to monitor phenological changes in these regions because of snow, the large extent of conifers, and clouds, which restrict the composite period. In addition, differing processing and spectral characteristics restrict continuity between AVHRR and MODIS NDVI data sets.

  17. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    Science.gov (United States)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    Agriculture is the main productive sector and a major water-consuming sector in the seasonally-dry Guanacaste region of north-western Costa Rica. Agriculture in the region is intensifying at the same time that seasonal water scarcity is increasing. The climate of this region is characterized by a prolonged dry season from December to March, followed by a bimodal wet season from April to November. The wet season has historically experienced periodic oscillations in rainfall timing and amounts resulting from variations of several large-scale climatic features (El Niño Southern Oscillation, the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation). However, global circulation models now project more recurrent variations in total annual rainfall, changes in rainfall temporal distribution, and increased temperatures in this region. This may result in a lengthening of the dry season and an increase in water scarcity and water-related conflicts as water resources are already limited and disputed in this area. In fact, this region has just undergone a four-year drought over the 2012-2015 period, which has intensified water related conflicts and put agricultural production at risk. In turn, the recent drought has also increased awareness of the local communities regarding the regional threat of water scarcity and the need of a regional water planning. The overall goal of this research is to generate data to characterize water use by the agricultural sector in this region and asses its sustainability in the regional context. Towards this goal, eddy-covariance flux towers were deployed on two extensive farms growing regionally-representative crops (melon/rice rotation and sugarcane) to evaluate, monitor and quantify water use in large-scale farms. The two identically instrumented stations provide continuous measurements of evapotranspiration and CO2 fluxes, and are equipped with additional instrumentation to monitor

  18. Medicinal plants growing in the Judea region: network approach for searching potential therapeutic targets

    Directory of Open Access Journals (Sweden)

    Arie Budovsky

    2012-09-01

    Full Text Available Plants growing in the Judea region are widely used in traditional medicine of the Levant region. Nevertheless, they have not so far been sufficiently analyzed and their medicinal potential has not been evaluated. This study is the first attempt to fill the gap in the knowledge of the plants growing in the region. Comprehensive data mining of online botanical databases and peer-reviewed scientific literature including ethno-pharmacological surveys from the Levant region was applied to compile a full list of plants growing in the Judea region, with the focus on their medicinal applications. Around 1300 plants growing in the Judea region were identified. Of them, 25% have medicinal applications which were analyzed in this study. Screening for chemical-protein interactions, together with the network-based analysis of potential targets, will facilitate discovery and therapeutic applications of the Judea region plants. Such an approach could also be applied as an integrative platform for further searching the potential therapeutic targets of plants growing in other regions of the world.

  19. Downscaling 250-m MODIS growing season NDVI based on multiple-date landsat images and data mining approaches

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2015-01-01

    The satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High temporal resolution with a wide range of wavelengths make the MODIS land surface products robust and reliable. The long-term 30-m Landsat data provide spatial detailed information for characterizing human-scale processes and have been used for land cover and land change studies. The main goal of this study is to combine 250-m MODIS GSN and 30-m Landsat observations to generate a quality-improved high spatial resolution (30-m) GSN database. A rule-based piecewise regression GSN model based on MODIS and Landsat data was developed. Results show a strong correlation between predicted GSN and actual GSN (r = 0.97, average error = 0.026). The most important Landsat variables in the GSN model are Normalized Difference Vegetation Indices (NDVIs) in May and August. The derived MODIS-Landsat-based 30-m GSN map provides biophysical information for moderate-scale ecological features. This multiple sensor study retains the detailed seasonal dynamic information captured by MODIS and leverages the high-resolution information from Landsat, which will be useful for regional ecosystem studies.

  20. Growing season length as a key factor of cumulative net ecosystem exchange over the pine forest ecosystems in Europe

    Czech Academy of Sciences Publication Activity Database

    Danielewska, A.; Urbaniak, M.; Olejnik, Janusz

    2015-01-01

    Roč. 29, č. 2 (2015), s. 129-135 ISSN 0236-8722 Institutional support: RVO:67179843 Keywords : forest * carbon dioxide * eddy covariance * growing season length Subject RIV: EH - Ecology, Behaviour Impact factor: 1.067, year: 2015

  1. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Directory of Open Access Journals (Sweden)

    Tongxin Hu

    Full Text Available In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March. Mean spring freeze-thaw cycle (FTC period (April soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  2. Efficiency of nitrogen fertilizer applied at corn sowing in contrasting growing seasons in Paraguay

    Directory of Open Access Journals (Sweden)

    Telmo Jorge Carneiro Amado

    2013-12-01

    Full Text Available In order to select soil management practices that increase the nitrogen-use efficiency (NUE in agro-ecosystems, the different indices of agronomic fertilizer efficiency must be evaluated under varied weather conditions. This study assessed the NUE indices in no-till corn in southern Paraguay. Nitrogen fertilizer rates from 0 to 180 kg ha-1 were applied in a single application at corn sowing and the crop response investigated in two growing seasons (2010 and 2011. The experimental design was a randomized block with three replications. Based on the data of grain yield, dry matter, and N uptake, the following fertilizer indices were assessed: agronomic N-use efficiency (ANE, apparent N recovery efficiency (NRE, N physiological efficiency (NPE, partial factor productivity (PFP, and partial nutrient balance (PNB. The weather conditions varied largely during the experimental period; the rainfall distribution was favorable for crop growth in the first season and unfavorable in the second. The PFP and ANE indices, as expected, decreased with increasing N fertilizer rates. A general analysis of the N fertilizer indices in the first season showed that the maximum rate (180 kg ha-1 obtained the highest corn yield and also optimized the efficiency of NPE, NRE and ANE. In the second season, under water stress, the most efficient N fertilizer rate (60 kg ha-1 was three times lower than in the first season, indicating a strong influence of weather conditions on NUE. Considering that weather instability is typical for southern Paraguay, anticipated full N fertilization at corn sowing is not recommended due the temporal variability of the optimum N fertilizer rate needed to achieve high ANE.

  3. Positive feedback of greenhouse gas balances to warming is determined by non-growing season emissions in an alpine meadow

    Science.gov (United States)

    Niu, S.; Wang, J.; Quan, Q.; Chen, W.; Wen, X.; Yu, G.

    2017-12-01

    Large uncertainties exist in the sources and sinks of greenhouse gases (CO2, CH4, N2O) in response to climate warming and human activity. So far, numerous previous studies have evaluated the CO2 budget, but little attention has paid to CH4 and N2O budgets and the concurrent balance of these three gases in combination, especially in the non-growing season. Here, we synthesized eddy covariance measurement with the automatic chamber measurements of CO2, CH4, and N2O exposed to three levels of temperature treatments (ambient, +1.5 °C, +2.5 °C) and two disturbance treatments (ummowing, mowing) in an alpine meadow on the Tibetan Plateau. We have found that warming caused increase in CH4 uptake and decrease in N2O emission offset little of the enhancement in CO2 emission, triggering a positive feedback to climate warming. Warming switches the ecosystem from a net sink (-17 ± 14 g CO2-eq m-2 yr-1) in the control to a net source of greenhouse gases of 94 ± 36 gCO2-eq m-2 yr-1 in the plots with +1.5 °C warming treatment, and 177 ± 6 gCO2-eq m-2 yr-1 in the plots with +2.5 °C warming treatment. The changes in the non-growing season balance, rather than those in the growing season, dominate the warming responses of annual greehouse gas balance. And this is not changed by mowing. The dominant role of responses of winter greenhouse gas balance in the positive feedback of ecosystem to climate warming highlights that greenhouse gas balance in cold season has to be considered when assessing climate-carbon cycle feedback.

  4. Comparison of infiltration capacity of permanent grassland and arable land during the 2011 growing season

    OpenAIRE

    Tomáš Mašíček; F. Toman; M. Vičanová

    2012-01-01

    The aim of this paper was to compare the rate of infiltration and cumulative infiltration in permanent grassland (PG) and in arable land over the course of the 2011 growing season. The measurement of water infiltration into soil was conducted via ponded infiltration method based on the use of two concentric cylinders in field conditions. Kostiakov equations were applied to evaluate the ponded infiltration. Based on field measurements, the dependence of infiltration rate (v) on time (t) was de...

  5. 317/319 phytoremediation site monitoring report - 2003 growing season.

    Energy Technology Data Exchange (ETDEWEB)

    Negri, M. C.; Gopalakrishnan, G.; Hamilton, C.; Energy Systems

    2004-02-20

    In 1999, Argonne National Laboratory-East (ANL-E) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various methods including Applied Natural Science's TreeWell{reg_sign} system. The goal of the installation was to protect downgradient surface and groundwater by hydraulic control of the contaminated plume by intercepting the contaminated groundwater with the tree roots, removing moisture from the upgradient soil area, reducing water infiltration, preventing soil erosion, degrading and/or transpiring the residual volatile organic compounds (VOCs), and removing tritium from the subsoil and groundwater. This report presents the results of the monitoring activities conducted by Argonne's Energy Systems Division (ES) in the growing season of 2003. ES was tasked with the biomonitoring of the plantation to determine contaminant uptake and groundwater contact. VOCs were found in plant tissue both at the French Drain and the Hydraulic Control locations in varying concentrations, and tritium levels in transpirate was found to continue a trend of higher concentrations compared to the background in the ANL-E area.

  6. The Effects of Climate Change on Variability of the Growing Seasons in the Elbe River Lowland, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Potopová, V.; Zahradníček, Pavel; Türkot, L.; Štěpánek, Petr; Soukup, J.

    2015-01-01

    Roč. 2015, č. 546920 (2015), s. 546920 ISSN 1687-9309 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : Central Europe * extremes * climate change * growing seasons * Elbe River Lowland Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.107, year: 2015

  7. Seasonality in the alpine water logistic system on a regional basis

    Science.gov (United States)

    Vanham, D.; Fleischhacker, E.; Rauch, W.

    2007-08-01

    In this study the water logistic system is defined as the interaction of the subsystems water resources, water supply and water demand in terms of water flow. The analysis of a water balance in alpine regions is strongly influenced by both temporal and spatial seasonal fluctuations within these elements, the latter due to the vertical dimension of mountainous areas. Therefore the determination of different seasons plays a key role within the assessment of alpine water logistic systems. In most studies a water balance for a certain region is generated on an annual, monthly or classic 4-seasonal basis. This paper presents a GIS-based multi criteria method to determine an optimal winter and summer period, taking into account different water demand stakeholders, alpine hydrology and the characteristic present day water supply infrastructure of the Alps. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon the geographical datasets mean snow cover start and end date, winter was defined as the period from December to March, and summer as the period from April to November.

  8. Video data of flowers, fruitlets, and fruit in apple trees during the 2017 growing season at USDA-ARS-AFRS

    Science.gov (United States)

    This record contains videos of apple trees acquired from a ground vehicle throughout the growing season at the USDA-ARS, Appalachian Fruit Research Station. Research in precision management methods in orchard crops revolve around locating objects of interest, namely flowers, fruitlets, and fruit, a...

  9. Effect of average growing season temperature on seedling germination, survival and growth in jack pine (Pinus banksiana Lamb.)

    Science.gov (United States)

    A. David; E. Humenberger

    2017-01-01

    Because jack pine (Pinus banksiana Lamb.) is serotinous, it retains multiple years of cones until environmental conditions are favorable for releasing seed. These cones, which contain seed cohorts that developed under a variety of growing seasons, can be accurately aged using bud scale scars on twigs and branches. By calculating the average daily...

  10. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel

    Science.gov (United States)

    Zhang, Wenmin; Brandt, Martin; Tong, Xiaoye; Tian, Qingjiu; Fensholt, Rasmus

    2018-01-01

    Climate change in drylands has caused alterations in the seasonal distribution of rainfall including increased heavy-rainfall events, longer dry spells, and a shifted timing of the wet season. Yet the aboveground net primary productivity (ANPP) in drylands is usually explained by annual-rainfall sums, disregarding the influence of the seasonal distribution of rainfall. This study tested the importance of rainfall metrics in the wet season (onset and cessation of the wet season, number of rainy days, rainfall intensity, number of consecutive dry days, and heavy-rainfall events) for growing season ANPP. We focused on the Sahel and northern Sudanian region (100-800 mm yr-1) and applied daily satellite-based rainfall estimates (CHIRPS v2.0) and growing-season-integrated normalized difference vegetation index (NDVI; MODIS) as a proxy for ANPP over the study period: 2001-2015. Growing season ANPP in the arid zone (100-300 mm yr-1) was found to be rather insensitive to variations in the seasonal-rainfall metrics, whereas vegetation in the semi-arid zone (300-700 mm yr-1) was significantly impacted by most metrics, especially by the number of rainy days and timing (onset and cessation) of the wet season. We analysed critical breakpoints for all metrics to test if vegetation response to changes in a given rainfall metric surpasses a threshold beyond which vegetation functioning is significantly altered. It was shown that growing season ANPP was particularly negatively impacted after > 14 consecutive dry days and that a rainfall intensity of ˜ 13 mm day-1 was detected for optimum growing season ANPP. We conclude that the number of rainy days and the timing of the wet season are seasonal-rainfall metrics that are decisive for favourable vegetation growth in the semi-arid Sahel and need to be considered when modelling primary productivity from rainfall in the drylands of the Sahel and elsewhere.

  11. Energy productivity and efficiency of maize accounting for the choice of growing season and environmental factors: An empirical analysis from Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Sanzidur; Rahman, Md. Sayedur

    2013-01-01

    The paper evaluates sustainability of maize cultivation in Bangladesh in terms of energy use while taking into account factors affecting choice of the growing season and farmers' production environment using a sample selection framework applied to stochastic frontier models. Results reveal that the probability of growing winter maize is influenced positively by gross return, irrigation, subsistence pressure, soil suitability and temperature variability whereas extension contact influences choice negatively. Significant differences exist between winter and summer maize regarding yield, specific energy, net energy balance, energy use efficiency and technical energy efficiency although both systems are highly sustainable and efficient. The energy output from winter maize is 199,585 MJ/ha which is 53.9% higher than the summer maize output of 129,701 MJ/ha. Also, energy input use of winter maize is 110.6% higher than the summer maize. Energy inputs from mechanical power, seeds, fertilizers and organic manures significantly increase energy productivity of winter maize whereas only mechanical power influences summer maize productivity. However, temperature variation and rainfall significantly reduce energy productivity of summer maize. Policy implications include investments in soil conservation and irrigation, development of weather resistant varieties and raising maize price will boost maize cultivation in Bangladesh, a highly sustainable production technology. -- Highlights: ► Maize energy productivity is evaluated subject to season and environmental factors. ► Maize farming for both seasons is highly sustainable in terms of energy use. ► Socio-economic and environmental factors influence choice of growing winter maize. ► Mechanical power, rainfall and temperature influence summer maize productivity. ► Maize farmers of both seasons are highly technically efficient.

  12. Seasonal variations of the high-latitude F region for

    International Nuclear Information System (INIS)

    Sojka, J.J.; Schunk, R.W.; Raitt, W.J.

    1982-01-01

    We combined a plasma convection model with an inosphere-atmospheric composition model in order to study the seasonal variations of the high-latitude F region for strong convection. Our numerical study produced time-dependent, three-dimensional, ion density distributions for the ions NO + , O 2 + , N 2 + , O + , N + , and He + . We covered the high-latitude ionosphere above 42 0 N magnetic latitude and at altitudes between 160 and 800 km for a time period of one complete day. From our study we found the following: (1) For strong convection, the high-altitude ionosphere exhibits a significant UT variation both during winter and summer. (2) In general, the electron density is lower in winter than in summer. However, at certain universal times the electron density in the dayside polar cap is larger in winter than in summer owing to the effect of the mid-latitude 'winter anomaly' in combination with strong antisunward convection. (3) In both summer and winter, the major region of low electron density is associated with the main or mid-latitudde trough. The trough is deeper and its local time extend is much greater in winter than in summer. (4) Typically, the electron density exhibits a much larger variation with altitude in winter than in summer. (5) The ion composition and molecular/atomic ion transition altitude are highly UT dependent in both summer and winter. (6) The ion composition also displays a significant seasonal variation. However, at a given location the seasonal variation can be opposite at different universal times. (7) High-speed convection cells should display a marked seasonal variation, with a much larger concentration of molecular ions near the F region peak in summer than in winter

  13. Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season

    Science.gov (United States)

    Yadong Qi; Shuju Bai; Gordon M. Heisler

    2003-01-01

    UV-B (280-320 nm) and visible (400-760 nm) spectral reflectance, transmittance, and absorptance; chlorophyll content; UV-B absorbing compound concentration; and leaf thickness were measured for pecan (Carya illinoensis) leaves over a growing season (April-October). Leaf samples were collected monthly from a pecan plantation located on the Southern...

  14. High methane emissions from restored Norway spruce swamps in southern Finland over one growing season

    Directory of Open Access Journals (Sweden)

    M. Koskinen

    2016-02-01

    Full Text Available Forestry-drained peatlands in the boreal region are currently undergoing restoration in order to bring these ecosystems closer to their natural (undrained state. Drainage affects the methane (CH4 dynamics of a peatland, often changing sites from CH4 sources to sinks. Successful restoration of a peatland would include restoration of not only the surface vegetation and hydrology, but also the microbial populations and thus CH4 dynamics. As a pilot study, CH4 emissions were measured on two pristine, two drained and three restored boreal spruce swamps in southern Finland for one growing season. Restoration was successful in the sense that the water table level in the restored sites was significantly higher than in the drained sites, but it was also slightly higher than in the pristine sites. The restored sites were surprisingly large sources of CH4 (mean emissions of 52.84 mg CH4 m-2 d-1, contrasting with both the pristine (1.51 mg CH4 m-2 d-1 and the drained sites (2.09 mg CH4 m-2 d-1. More research is needed to assess whether the high CH4 emissions observed in this study are representative of restored spruce mires in general.

  15. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China

    Science.gov (United States)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Baker, Andy; Tan, Ming

    2016-06-01

    This study presents new stable isotope data for precipitation (δ18Op) and drip water (δ18Od) from eight cave sites in the monsoon regions of China (MRC), with monthly to bi-monthly sampling intervals from May-2011 to April-2014, to investigate the regional-scale climate forcing on δ18Op and how the isotopic signals are transmitted to various drip sites. The monthly δ18Op values show negative correlation with surface air temperature at all the cave sites except Shihua Cave, which is opposite to that expected from the temperature effect. In addition, although the monthly δ18Op values are negatively correlated with precipitation at all the cave sites, only three sites are significant at the 95% level. These indicate that, due to the various vapor sources, a large portion of variability in δ18Op in the MRC cannot be explained simply by either temperature or precipitation alone. All the thirty-four drip sites are classified into three types based on the δ18Od variability. About 82% of them are static drips with little discernable variation in δ18Od through the whole study period, but the drip rates of these drips are not necessary constant. Their discharge modes are site-specific and the oxygen isotopic composition of the stalagmites growing from them may record the average of multi-year climatic signals, which are modulated by the seasonality of recharge and potential effects of evaporation, and in some cases infiltration from large rainfall events. About 12% of the thirty-four drip sites are seasonal drips, although the amplitude of δ18Od is narrower than that of δ18Op, the monthly response of δ18Od to coeval precipitation is not completely damped, and some of them follow the seasonal trend of δ18Op very well. These drips may be mainly recharged by present-day precipitation, mixing with some stored water. Thus, the stalagmites growing under them may record portions of the seasonal climatic signals embedded in δ18Op. About 6% of the thirty-four drip sites

  16. Evaluation of performance of seasonal precipitation prediction at regional scale over India

    Science.gov (United States)

    Mohanty, U. C.; Nageswararao, M. M.; Sinha, P.; Nair, A.; Singh, A.; Rai, R. K.; Kar, S. C.; Ramesh, K. J.; Singh, K. K.; Ghosh, K.; Rathore, L. S.; Sharma, R.; Kumar, A.; Dhekale, B. S.; Maurya, R. K. S.; Sahoo, R. K.; Dash, G. P.

    2018-03-01

    The seasonal scale precipitation amount is an important ingredient in planning most of the agricultural practices (such as a type of crops, and showing and harvesting schedules). India being an agroeconomic country, the seasonal scale prediction of precipitation is directly linked to the socioeconomic growth of the nation. At present, seasonal precipitation prediction at regional scale is a challenging task for the scientific community. In the present study, an attempt is made to develop multi-model dynamical-statistical approach for seasonal precipitation prediction at the regional scale (meteorological subdivisions) over India for four prominent seasons which are winter (from December to February; DJF), pre-monsoon (from March to May; MAM), summer monsoon (from June to September; JJAS), and post-monsoon (from October to December; OND). The present prediction approach is referred as extended range forecast system (ERFS). For this purpose, precipitation predictions from ten general circulation models (GCMs) are used along with the India Meteorological Department (IMD) rainfall analysis data from 1982 to 2008 for evaluation of the performance of the GCMs, bias correction of the model results, and development of the ERFS. An extensive evaluation of the performance of the ERFS is carried out with dependent data (1982-2008) as well as independent predictions for the period 2009-2014. In general, the skill of the ERFS is reasonably better and consistent for all the seasons and different regions over India as compared to the GCMs and their simple mean. The GCM products failed to explain the extreme precipitation years, whereas the bias-corrected GCM mean and the ERFS improved the prediction and well represented the extremes in the hindcast period. The peak intensity, as well as regions of maximum precipitation, is better represented by the ERFS than the individual GCMs. The study highlights the improvement of forecast skill of the ERFS over 34 meteorological subdivisions

  17. An integrated, probabilistic model for improved seasonal forecasting of agricultural crop yield under environmental uncertainty

    Directory of Open Access Journals (Sweden)

    Nathaniel K. Newlands

    2014-06-01

    Full Text Available We present a novel forecasting method for generating agricultural crop yield forecasts at the seasonal and regional-scale, integrating agroclimate variables and remotely-sensed indices. The method devises a multivariate statistical model to compute bias and uncertainty in forecasted yield at the Census of Agricultural Region (CAR scale across the Canadian Prairies. The method uses robust variable-selection to select the best predictors within spatial subregions. Markov-Chain Monte Carlo (MCMC simulation and random forest-tree machine learning techniques are then integrated to generate sequential forecasts through the growing season. Cross-validation of the model was performed by hindcasting/backcasting it and comparing its forecasts against available historical data (1987-2011 for spring wheat (Triticum aestivum L.. The model was also validated for the 2012 growing season by comparing its forecast skill at the CAR, provincial and Canadian Prairie region scales against available statistical survey data. Mean percent departures between wheat yield forecasted were under-estimated by 1-4 % in mid-season and over-estimated by 1 % at the end of the growing season. This integrated methodology offers a consistent, generalizable approach for sequentially forecasting crop yield at the regional-scale. It provides a statistically robust, yet flexible way to concurrently adjust to data-rich and data-sparse situations, adaptively select different predictors of yield to changing levels of environmental uncertainty, and to update forecasts sequentially so as to incorporate new data as it becomes available. This integrated method also provides additional statistical support for assessing the accuracy and reliability of model-based crop yield forecasts in time and space.

  18. Technical Note: Seasonality in alpine water resources management - a regional assessment

    Science.gov (United States)

    Vanham, D.; Fleischhacker, E.; Rauch, W.

    2008-01-01

    Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.

  19. Long-term enhanced winter soil frost alters growing season CO2 fluxes through its impact on vegetation development in a boreal peatland.

    Science.gov (United States)

    Zhao, Junbin; Peichl, Matthias; Nilsson, Mats B

    2017-08-01

    At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO 2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO 2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short-term (1-3 years) and long-term (11 years) effects on CO 2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m -2  s -1 , corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m -2  s -1 ) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO 2 fluxes, suggesting that winter climate change could considerably alter the growing season CO 2 exchange in boreal peatlands through its effect on vegetation development. © 2017 John Wiley & Sons Ltd.

  20. Environmental and societal consequences of a possible CO/sub 2/-induced climate change. Volume II, Part 8. Impacts of rising atmospheric carbon dioxide levels on agricultural growing seasons and crop water use efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J. E.

    1982-09-01

    The researchable areas addressed relate to the possible impacts of climate change on agricultural growing seasons and crop adaptation responses on a global basis. The research activities proposed are divided into the following two main areas of investigation: anticipated climate change impacts on the physical environmental characteristics of the agricultural growing seasons and, the most probable food crop responses to the possible changes in atmospheric CO/sub 2/ levels in plant environments. The main physical environmental impacts considered are the changes in temperature, or more directly, thermal energy levels and the growing season evapotranspiration-precipitation balances. The resulting food crop, commercial forest and rangeland species response impacts addressed relate to potential geographical shifts in agricultural growing seasons as determined by the length in days of the frost free period, thermal energy changes and water balance changes. In addition, the interaction of possible changes in plant water use efficiencies during the growing season in relationship to changing atmospheric CO/sub 2/ concentrations, is also considered under the scenario of global warming due to increases in atmospheric CO/sub 2/ concentration. These proposed research investigations are followed by adaptive response evaluations.

  1. Rain-season trends in precipitation and their effect in different climate regions of China during 1961-2008

    International Nuclear Information System (INIS)

    Song Yanling; Achberger, Christine; Linderholm, Hans W

    2011-01-01

    Using high-quality precipitation data from 524 stations, the trends of a set of precipitation variables during the main rain season (May-September) from 1961 to 2008 for different climate regions in China were analysed. However, different characteristics were displayed in different regions of China. In most temperate monsoon regions (north-eastern China), total rain-season precipitation and precipitation days showed decreasing trends; positive tendencies in precipitation intensity were, however, noted for most stations in this region. It is suggested that the decrease in rain-season precipitation is mainly related to there being fewer rain days and a change towards drier conditions in north-eastern China, and as a result, the available water resources have been negatively affected in the temperate monsoon regions. In most subtropical and tropical monsoon climate regions (south-eastern China), the rain-season precipitation and precipitation days (11-50, with > 50 mm) showed slightly positive trends. However, precipitation days with ≤ 10 mm decreased in these regions. Changes towards wetter conditions in this area, together with more frequent heavy rainfall events causing floods, have a severe impact on peoples' lives and socio-economic development. In general, the rain-season precipitation, precipitation days and rain-season precipitation intensity had all increased in the temperate continental and plateau/mountain regions of western China. This increase in rain-season precipitation has been favourable to pasture growth.

  2. The terroir of vineyards - climatic variability in an Austrian wine-growing region

    Science.gov (United States)

    Gerersdorfer, T.

    2010-09-01

    The description of a terroir is a concept in viticulture that relates the sensory attributes of wine to the environmental conditions in which the grapes grow. Many factors are involved including climate, soil, cultivar, human practices and all these factors interact manifold. The study area of Carnuntum is a small wine-growing region in the eastern part of Austria. It is rich of Roman remains which play a major role in tourism and the marketing strategies of the wines as well. An interdisciplinary study on the environmental characteristics particularly with regard to growing conditions of grapes was started in this region. The study is concerned with the description of the physiogeographic properties of the region and with the investigation of the dominating viticultural functions. Grape-vines depend on climatic conditions to a high extent. Compared to other influencing factors like soil, climate plays a significant role. In the framework of this interdisciplinary project climatic variability within the Carnuntum wine-growing region is investigated. On the one hand microclimatic variations are influenced by soil type and by canopy management. On the other hand the variability is a result of the topoclimate (altitude, aspect and slope) and therefore relief is a major terroir factor. Results of microclimatic measurements and variations are presented with focus on the interpretation of the relationship between relief, structure of the vineyards and the climatic conditions within the course of a full year period.

  3. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  4. Contribution of black spruce (Picea mariana) transpiration to growing season evapotranspiration in a subarctic discontinuous permafrost peatland complex

    Science.gov (United States)

    Helbig, M.; Warren, R. K.; Pappas, C.; Sonnentag, O.; Berg, A. A.; Chasmer, L.; Baltzer, J. L.; Quinton, W. L.; Patankar, R.

    2016-12-01

    Partitioning the components of evapotranspiration (ET), evaporation and transpiration, has been increasingly important for the better understanding and modeling of carbon, water, and energy dynamics, and for reliable water resources quantification and management. However, disentangling its individual processes remains highly uncertain. Here, we quantify the contribution of black spruce transpiration, the dominant overstory, to ET of a boreal forest-wetland landscape in the southern Taiga Plains. In these ecosystems, thawing permafrost induces rapid landscape change, whereby permafrost-supported forested plateaus are transformed into bogs or fens (wetlands), resulting in tree mortality. Using historical and projected rates of forest-wetland changes, we assess how the contribution of black spruce transpiration to landscape ET might be altered with continued permafrost loss, and quantify the resulting water balance changes. We use two nested eddy covariance flux towers and a footprint model to quantify ET over the entire landscape. Sap flux density of black spruce is measured using the heat ratio method during the 2013 (n=22) and 2014 (n=3) growing seasons, and is used to estimate tree-level transpiration. Allometric relations between tree height, diameter at breast height and sapwood area are derived to upscale tree-level transpiration to overstory transpiration within the eddy covariance footprint. Black spruce transpiration accounts for <10% of total landscape ET. The largest daily contribution of overstory transpiration to landscape ET is observed shortly after the landscape becomes snow-free, continually decreasing throughout the progression of the growing season. Total transpiration is notably lower in 2014 (2.34 mm) than 2013 (2.83 mm) over the same 40-day period, corresponding to 3% of cumulative landscape ET in both years. This difference is likely due to the antecedent moisture conditions, where the 2014 growing season was proceeded by lower than average

  5. MELNIK VINE-GROWING REGION – HISTORY AND TRADITIONS

    Directory of Open Access Journals (Sweden)

    Radoslava Ganeva

    2017-06-01

    Full Text Available The region of Melnik (Southwest Bulgaria has exclusively appropriate climate for wine growing. Its borders are defined by the dissemination of the wide Melnik grape vine, revealed by experts as an old local variety. Few are the wine-growing centers that carry such an effective ampelographic tradition. A few are the viticulture centers, bearing such effective tradition. The vine is grown here from the Thracian antiquity and is the basis for a livelihood, preserved and retransmitted for many generations. It is characterized by a specialization in the production and marketing of high quality red dry wines. The article deals with the development of the Melnik vineyard as a result of different political and economic conditions in the course of historical development. Various archival materials, specialized studies and personal fieldwork research have been used.

  6. Seasonality of dizziness and vertigo in a tropical region.

    Science.gov (United States)

    Pereira, Alcione Botelho; Almeida, Leonardo Alves Ferreira; Pereira, Nayara Gorette; Menezes, Patrícia Andrade Freitas de; Felipe, Lilian; Volpe, Fernando Madalena

    2015-06-01

    Vertigo and dizziness are among the most common medical complaints in the emergency room, and are associated with a considerable personal and health care burden. Scarce and conflicting reports indicate those symptoms may present a seasonal distribution. This study aimed at investigating the existence of a seasonal distribution of vertigo/dizziness in a tropical region, and the correlations of these findings with climatic variables. The charts of all patients consecutively admitted between 2009 and 2012 in the emergency room of a Brazilian general hospital were reviewed. A total of 4920 cases containing these terms were sorted from a sample of 276,076 emergency records. Seasonality was assessed using Cosinor Analysis. Pearson's correlations were performed between the incidence of consultations, considering separately dizziness and vertigo and each of the predictor climatic variables of that index month. Significant seasonal patterns were observed for dizziness and vertigo in the emergency room. Vertigo was more frequent in late winter-spring, negatively correlating to humidity (r = -0.374; p = 0.013) and rainfall (r = -0.334; p = 0.020). Dizziness peaked on summer months, and positively correlated to average temperatures (r = 0.520; p vertigo indicate possible distinct underlying mechanisms of how seasons may influence the occurrence of those symptoms.

  7. Green manuring with Calotropis procera for the production of coriander in two growing seasons

    Directory of Open Access Journals (Sweden)

    Ênio Gomes Flôr Souza

    Full Text Available ABSTRACT The use of spontaneous species of the Caatinga biome can contribute significantly to the nutritional demand of vegetable crops, thereby providing an agroecological and sustainable form of production. The objective of this research was to determine the effects of different biomasses of Calotropis procera (rooster tree and times of incorporation into the soil of green manure during two growing seasons on the agronomic performance of coriander cv. Verdão produced in Serra Talhada, a semi-arid region of Pernambuco, Brazil. The experimental design was randomized blocks with three replications. The treatments were arranged in a 4 x 4 factorial scheme, with the first factor consisting of biomass amounts of C. procera (5.4, 8.8, 12.2 and 15.6 t ha-1 on a dry basis and the second by the incorporation times into the soil (0, 10, 20 and 30 days before coriander planting. The evaluated characteristics were plant height, number of stems per plant, yield of green mass and dry mass of shoot. The best productive performance of coriander was observed in amounts of 12.2 (spring and 8.8 (autumn-winter t ha-1 C. procera added to the soil, with an ideal incorporation time of 13 (spring and 23 (autumn-winter days before sowing of the crop and with larger accumulations of green and dry mass of the shoot being obtained in autumn-winter.

  8. Spatial Patterns in Biogeochemical Processes During Peak Growing Season in Oiled and Unoiled Louisiana Salt Marshes: A Multi-Year Analysis

    Science.gov (United States)

    Chelsky, A.; Marton, J. M.; Bernhard, A. E.; Giblin, A. E.; Setta, S. P.; Hill, T. D.; Roberts, B. J.

    2016-02-01

    Louisiana salt marshes are important sites for carbon and nitrogen cycling because they can mitigate fluxes of nutrients and carbon to the Gulf of Mexico where a large hypoxic zone develops annually. The aim of this study was to investigate spatial and temporal patterns of biogeochemical processes in Louisiana coastal wetlands during peak growing season, and to investigate whether the Deepwater Horizon oil spill resulted in persistent changes to these rates. We measured nitrification potential and sediment characteristics at two pairs of oiled/unoiled marshes in three regions across the Louisiana coast (Terrebonne and east and west Barataria Bay) in July from 2012 to 2015, with plots along a gradient from the salt marsh edge to the interior. Rates of nitrification potential across the coast (overall mean of 901 ± 115 nmol gdw-1 d-1 from 2012-2014) were high compared to other published rates for salt marshes but displayed high variability at the plot level (4 orders of magnitude). Within each region interannual means varied by factors of 2-5. Nitrification potential did not differ with oiling history, but did display consistent spatial patterns within each region that corresponded to changes in relative elevation and inundation, which influence patterns of soil properties and microbial communities. In 2015, we also measured greenhouse gas (CO2, N2O and CH4) production and denitrification enzyme activity rates in addition to nitrification potential across the region to investigate spatial relationships between these processes.

  9. Geographically Sourcing Cocaine’s Origin - Delineation of the Nineteen Major Coca Growing Regions in South America

    Science.gov (United States)

    Mallette, Jennifer R.; Casale, John F.; Jordan, James; Morello, David R.; Beyer, Paul M.

    2016-03-01

    Previously, geo-sourcing to five major coca growing regions within South America was accomplished. However, the expansion of coca cultivation throughout South America made sub-regional origin determinations increasingly difficult. The former methodology was recently enhanced with additional stable isotope analyses (2H and 18O) to fully characterize cocaine due to the varying environmental conditions in which the coca was grown. An improved data analysis method was implemented with the combination of machine learning and multivariate statistical analysis methods to provide further partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating from one of 19 growing regions within South America. The data obtained through this approach can be used to describe current coca cultivation and production trends, highlight trafficking routes, as well as identify new coca growing regions.

  10. Seasonal variability of planktonic copepods (Copepoda: Crustacea in a tropical estuarine region in Brazil

    Directory of Open Access Journals (Sweden)

    Cristina de Oliveira Dias

    2009-12-01

    Full Text Available The Caravelas River estuary and adjacent coastal region were studied during the rainy and dry seasons of 2003-2004 to assess the copepod community structure. Abiotic and biotic parameters were measured, and the total density, frequency and percentage of copepod taxa were determined for each sampling period. Copepod densities showed significant differences between sampling periods, with higher densities in the rainy seasons (Mean: 90,941.80 ind.m-3; S.D.: 26,364.79. The sampling stations located to the north and south, in the coastal region adjacent to the Caravelas River estuary presented the lowest copepod density values. The copepod assemblage was composed mainly of estuarine and estuarine/coastal copepods. The seasonal variations in temperature and salinity influenced the abundance of species during the rainy and dry seasons, with the following dominant species alternating: Paracalanus quasimodo Bowman, 1971 in the rainy season of 2003, Parvocalanus crassirostris Dahl, 1894 in the dry season of 2003 and Acartia lilljeborgii Giesbrecht, 1892 in the rainy and dry seasons of 2004. Non-parametric multidimensional scaling indicated differences in copepod assemblages between sampling periods, but not between sampling stations.

  11. Seasonal cycle of hydrography in the Bab el Mandab region ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The seasonal cycle of temperature - salinity variations in the Bab el Mandab region ... Sea water that flows into the Gulf of Aden is maximum during the winter and minimum during the summer. ..... stress the importance of both thermohaline and.

  12. Growing season changes in Fennoscandia and Kola peninsula during the period 1982 to 1999 - Implications for reindeer husbandry (In Norwegian with Summary in English

    Directory of Open Access Journals (Sweden)

    Hans Tømmervik

    2005-04-01

    the length of the growing season in Fennoscandia and Kola Peninsula during the last two decades. We used phenological observation data for birch (Betula pubescens, and birch give a significant contribution to the reflectance from the ground in order to analyze the satellite data. A method using an individual threshold NDVI value for defining the onset of the growing season applied to each pixel for each year was chosen, and a high correlation was found between the NDVI data and in-situ phenological data on onset of leafing of birch. Determining the end of growing season based on a threshold NDVI value shows a lower correlation with surface data, but the timing by the set threshold is observed to measure somewhere in-between the onset of yellowing and all leaves fallen. In general, the results show a pattern according to vegetation zones and the altitude gradient, and partly according to vegetation sections. There are high regional differences in trends in the onset of spring. In the southern part of Fennoscandia, and on the oceanic west coast of Norway, the spring starts considerably earlier in the late nineties compared to the early eighties. The spring is stable or delayed in the northern boreal zone, which occupies large areas of northern Fennoscandia and Kola peninsula, and the same trend is also found in the alpine areas which occupies parts of both southern and northern Norway. The strongest delay occurred in the most continental section of the northern boreal zone. In the entire boreo-nemoral and nemoral zone, which occupy most of the southern part of Fennoscandia, the trend is opposite. In these areas the spring starts considerably earlier, in some parts several weeks. In the most oceanic section, the coastline of Western Norway, the spring also starts earlier. This earlier trend fits with the pattern from western and central Europe, and is likely to be related to increased spring temperature. At the same time the autumn is delayed in the whole area except in

  13. Growing Degree Vegetation Production Index (GDVPI): A Novel and Data-Driven Approach to Delimit Season Cycles

    Science.gov (United States)

    Graham, W. D.; Spruce, J.; Ross, K. W.; Gasser, J.; Grulke, N.

    2014-12-01

    Growing Degree Vegetation Production Index (GDVPI) is a parametric approach to delimiting vegetation seasonal growth and decline cycles using incremental growing degree days (GDD), and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) 8-day composite cumulative integral data. We obtain a specific location's daily minimum and maximum temperatures from the nearest National Oceanic and Atmospheric Administration (NOAA) weather stations posted on the National Climate Data Center (NCDC) Climate Data Online (CDO) archive and compute GDD. The date range for this study is January 1, 2000 through December 31, 2012. We employ a novel process, a repeating logistic product (RLP), to compensate for short-term weather variability and data drops from the recording stations and fit a curve to the median daily GDD values, adjusting for asymmetry, amplitude, and phase shift that minimize the sum of squared errors when comparing the observed and predicted GDD. The resulting curve, here referred to as the surrogate GDD, is the time-temperature phasing parameter used to convert Cartesian NDVI values into polar coordinate pairs, multiplying the NDVI values as the radial by the cosine and sine of the surrogate GDD as the angular. Depending on the vegetation type and the original NDVI curve, the polar NDVI curve may be nearly circular, kidney-shaped, or pear-shaped in the case of conifers, deciduous, or agriculture, respectively. We examine the points of tangency about the polar coordinate NDVI curve, identifying values of 1, 0, -1, or infinity, as each of these represent natural inflection points. Lines connecting the origin to each tangent point illustrate and quantify the parametrically segmentation of the growing season based on the GDD and NDVI ostensible dependency. Furthermore, the area contained by each segment represents the apparent vegetation production. A particular benefit is that the inflection points are determined

  14. Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons.

    Science.gov (United States)

    Brockway, Dale G; Gatewood, Richard G; Paris, Randi B

    2002-06-01

    Prior to Anglo-European settlement, fire was a major ecological process influencing the structure, composition and productivity of shortgrass prairie ecosystems on the Great Plains. However during the past 125 years, the frequency and extent of grassland fire has dramatically declined as a result of the systematic heavy grazing by large herds of domestic cattle and sheep which reduced the available levels of fine fuel and organized fire suppression efforts that succeeded in altering the natural fire regime. The greatly diminished role of recurrent fire in these ecosystems is thought to be responsible for ecologically adverse shifts in the composition, structure and diversity of these grasslands, leading specifically to the rise of ruderal species and invasion by less fire-tolerant species. The purpose of this study was to evaluate the ecological effects of fire season and frequency on the shortgrass prairie and to determine the means by which prescribed fire can best be restored in this ecosystem to provide the greatest benefit for numerous resource values. Plant cover, diversity, biomass and nutrient status, litter cover and soil chemistry were measured prior to and following fire treatments on a buffalograss-blue grama shortgrass prairie in northeastern New Mexico. Dormant-season fire was followed by increases in grass cover, forb cover, species richness and concentrations of foliar P, K, Ca, Mg and Mn. Growing-season fire produced declines in the cover of buffalograss, graminoids and forbs and increases in litter cover and levels of foliar P, K, Ca and Mn. Although no changes in soil chemistry were observed, both fire treatments caused decreases in herbaceous production, with standing biomass resulting from growing-season fire approximately 600 kg/ha and dormant-season fire approximately 1200 kg/ha, compared with controls approximately 1800 kg/ha. The initial findings of this long-term experiment suggest that dormant-season burning may be the preferable method

  15. Seasonal hydroclimatic impacts of Sun Corridor expansion

    International Nuclear Information System (INIS)

    Georgescu, M; Mahalov, A; Moustaoui, M

    2012-01-01

    Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona’s Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C). Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for

  16. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available Carbon dioxide (CO2 exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE of a cultivated pasture in the Three-River Source Region (TRSR on the Qinghai-Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were -7.89 and 5.03 μmol CO2 m-2 s-1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (-2.91 g C m-2 d-1 and July 28 (5.04 g C m-2 day-1, respectively. The annual total NEE and Re were -140.01 and 403.57 g C m-2 year-1, respectively. The apparent quantum yield (α was -0.0275 μmol μmol-1 for the entire growing period, and the α values for the pasture's light response curve varied with the leaf area index (LAI, air temperature (Ta, soil water content (SWC and vapor pressure deficit (VPD. Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10 was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil was the most important environmental factor affecting daily variations in NEE during the growing season, and the photosynthetic photon

  17. Effects of Foliar Application of Nitrogen, Zinc and Manganese on Yield, Yield Components and Grain Quality of Chickpea in Two Growing Seasons

    Directory of Open Access Journals (Sweden)

    B. Shirani

    2015-09-01

    Full Text Available To study the effects of foliar application of zinc, manganese and nitrogen on yield, yield components and grain quality of chickpea (Cicer arientinum L. two experiments, one in autumn and the other in spring were conducted at Research Farm, Shahrekord University in 2009-2010 growing season each as a randomized complete block design with three replications. The treatments were foliar application of zinc sulfate, manganese sulfate zinc sulfate and manganese sulfate mixture, nitrogen and distilled water (as control. The results showed that planting season had a significant effect on plant height, 100-seed weight and seed yield. All measured traits, except plant height, increased in winter compared to spring growing season. This increase was more than 12% for grain yield. Foliar application of nutrients significantly affected seed yield and seed yield components. Foliar application of nitrogen, presumably, through significant increase in number of pods per plant, number of seeds per plant and 100-seed weight, increased the grain yield by 6.2% compared to control. Foliar application × planting season interactions were significant for plant height and number of pods per plant. Foliar application of nitrogen caused a significant increase in grain yield and protein content. Foliar application of zinc sulphate significantly increased Zn content of grains however it did not affect seed yield. In conclusion, foliar application of nitrogen could be suggested for increasing protein and grain yield in chickpea under similar conditions to that of the present study.

  18. Seasonality of livebirths and climatic factors in Italian regions (1863-1933

    Directory of Open Access Journals (Sweden)

    Gabriele Ruiu

    2017-07-01

    Full Text Available Birth seasonality is a phenomenon that characterizes almost all the populations of the world. In spite of this, the causes underlying these seasonal fluctuations represent an as yet unsolved puzzle. Two main theoretical approaches have been proposed to explain birth seasonality. The first encompasses a social explanation and emphasizes the role of social, economic and cultural factors in determining the optimal moment (from a social perspective for conception (e.g., according to the cycle of agricultural workload, religious festivity, marriage seasonality, etc.. The second theoretical approach encompasses an environmental explanation and focuses on the role that climatic factors (e.g., temperature, rainfall, light intensity, etc. play in determining the optimal moment of conception from a biological perspective. Our paper may be collocated in the latter strand of the literature. The aim is to investigate the effects of temperature on conceptions, and subsequently on the seasonality of livebirths, while controlling for a possible social confounding effect, i.e. the seasonal pattern of marriage. To achieve this end, we empirically investigate the role of temperature as well as that of marriage seasonality in Italian regions for the period stretching from the Italian unification to the eve of World War II. We find that extreme temperatures (both cold and hot negatively affect the number of births. At the same time, marriage seasonality also seems to be an important explicative factor of the seasonal fluctuation of live births.

  19. Regional climate scenarios for use in Nordic water resources studies

    DEFF Research Database (Denmark)

    Rummukainen, Markku; Räisänen, J.; Bjørge, D.

    2003-01-01

    in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models......-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding....

  20. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    Science.gov (United States)

    Freund, Mandy; Henley, Benjamin J.; Karoly, David J.; Allen, Kathryn J.; Baker, Patrick J.

    2017-11-01

    Australian seasonal rainfall is strongly affected by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April-September) and warm (October-March) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997-2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation Drought

  1. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    Directory of Open Access Journals (Sweden)

    M. Freund

    2017-11-01

    Full Text Available Australian seasonal rainfall is strongly affected by large-scale ocean–atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April–September and warm (October–March season rainfall in eight natural resource management (NRM regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997–2009 appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental

  2. New wine-growing regions of Brazil and their importance in the evolution of Brazilian wine

    Directory of Open Access Journals (Sweden)

    Wurz Douglas André

    2017-01-01

    Full Text Available The objective of this work is to characterize the new Brazilian wine regions, describing their edaphoclimatic and productive characteristics, wine types, and their importance in the evolution of Brazilian wine industry. The Campanha Gaúcha is characterized by flat lands, presents a high number of hours of light, and dry summers, guaranteeing a complete maturation of the grapes. Including the locations The Southeastern Region of Rio Grande do Sul presents pronounced ripples, located in altitudes between 400 and 600 m, presenting dry and sunny summers with cold nights, stony soil; Merlot and Cabernet Franc are the outstanding varieties. In the northern plateau of Rio Grande do Sul, at 1000 m a.s.l., the region of Campos de Cima da Serra has a characteristic high solar incidence, and due to the low nocturnal temperatures. The Altitude Region of Santa Catarina State presents similar characteristics to those found in the Campos de Cima da Serra, with vineyards located between 900 and 1400 m, the slow maturation promotes the preservation of acidity and high levels of aromatic compounds, which confer freshness and typical white wines, respectively, especially those made from the Sauvignon Blanc. Located at medium elevations of 900 to 1100 m, the region of Greater Curitiba with hot days and mild nights, stands out for the production of varieties of short to medium cycle, because it presents humid summers favoring the occurrence of diseases fungal infections. The South of Minas Gerais State presents mean altitudes of 800 and 1000 m, in which the technique of double pruning was adopted, leading the grapes maturation to occur during the winter, when a dry season with mild temperatures is found, making it an ideal place to produce high quality Syrah wines. In São Paulo State, altitudes between 1,000 and 1,300 m a.s.l. are found, where cool nights and excellent sunshine during the day provide thermal amplitude of 10°C at the time of harvest

  3. Automatic segmentation of MRI head images by 3-D region growing method which utilizes edge information

    International Nuclear Information System (INIS)

    Jiang, Hao; Suzuki, Hidetomo; Toriwaki, Jun-ichiro

    1991-01-01

    This paper presents a 3-D segmentation method that automatically extracts soft tissue from multi-sliced MRI head images. MRI produces a sequence of two-dimensional (2-D) images which contains three-dimensional (3-D) information of organs. To utilize such information we need effective algorithms to treat 3-D digital images and to extract organs and tissues of interest. We developed a method to extract the brain from MRI images which uses a region growing procedure and integrates information of uniformity of gray levels and information of the presence of edge segments in the local area around the pixel of interest. First we generate a kernel region which is a part of brain tissue by simple thresholding. Then we grow the region by means of a region growing algorithm under the control of 3-D edge existence to obtain the region of the brain. Our method is rather simple because it uses basic 3-D image processing techniques like spatial difference. It is robust for variation of gray levels inside a tissue since it also refers to the edge information in the process of region growing. Therefore, the method is flexible enough to be applicable to the segmentation of other images including soft tissues which have complicated shapes and fluctuation in gray levels. (author)

  4. Segmentation of Extrapulmonary Tuberculosis Infection Using Modified Automatic Seeded Region Growing

    Directory of Open Access Journals (Sweden)

    Nordin Abdul

    2009-01-01

    Full Text Available Abstract In the image segmentation process of positron emission tomography combined with computed tomography (PET/CT imaging, previous works used information in CT only for segmenting the image without utilizing the information that can be provided by PET. This paper proposes to utilize the hot spot values in PET to guide the segmentation in CT, in automatic image segmentation using seeded region growing (SRG technique. This automatic segmentation routine can be used as part of automatic diagnostic tools. In addition to the original initial seed selection using hot spot values in PET, this paper also introduces a new SRG growing criterion, the sliding windows. Fourteen images of patients having extrapulmonary tuberculosis have been examined using the above-mentioned method. To evaluate the performance of the modified SRG, three fidelity criteria are measured: percentage of under-segmentation area, percentage of over-segmentation area, and average time consumption. In terms of the under-segmentation percentage, SRG with average of the region growing criterion shows the least error percentage (51.85%. Meanwhile, SRG with local averaging and variance yielded the best results (2.67% for the over-segmentation percentage. In terms of the time complexity, the modified SRG with local averaging and variance growing criterion shows the best performance with 5.273 s average execution time. The results indicate that the proposed methods yield fairly good performance in terms of the over- and under-segmentation area. The results also demonstrated that the hot spot values in PET can be used to guide the automatic segmentation in CT image.

  5. Determinations of adaptation level of wine grape varieties in terms of climatic data in wine growing regions of turkey

    Directory of Open Access Journals (Sweden)

    Ateş Fadime

    2017-01-01

    Full Text Available Wine grapes are adapted to a wide range of climate; the best production occurs in regions that meet certain specific climatic conditions. Temperatures during the growing season can affect grape quality and viability. Beneficial climatic conditions will improve the wine's quality. In this study it is aimed that to determine suitable wine grape varieties for the cultivation in some areas of Southeastern Anatolia Region, Eastern Anatolia, Central Anatolia Region, Central Black Sea Region, Aegean Region and Marmara Region in Turkey with related to climate requirements. For this reason, long-term climatic data were collected by meteorological stations including, Diyarbakır (Çermik, Çüngüş, Central-Elazığ, Nevşehir (Central and Ürgüp, Ankara (Kalecik Tokat (Central, Erbaa, Niksar, İzmir (Seferihisar, Menderes, Urla ve Denizli (Çal ve Güney, Çanakkale (Bozcaada, Bayramiç, Tekirdağ. In this study heliotermic and hdyrothermic indices were calculated and evaluated for appropriate viticultural practice in this region. It was found that Boğazkere and Öküzgözü in Southeastern Anatolia Region and Eastern Anatolia Region; Kalecik Karası, Dimrit and Narince in Central Anatolia Region and Emir in Central Black Sea Region; Bornova Misketi, Cabernet Sauvignon, Syrah, Alicante Bouschet, Carignane, Kalecik Karası, Merlot, Öküzgözü, Çal Karası, Boğazkere, Sultani Çekirdeksiz in Aegean Region; Karasakız,Karalahana, Vasilaki, Cabernet Sauvignon, Merlot, Syrah, Alicante Bouschet, Semillion, Cinsaut, Yapıncak, Gamay, Merlot, Cabernet Sauvignon can be adapted and grown well in terms of climatic conditions in Marmara Region respectively.

  6. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  7. Leaf ontogeny dominates the seasonal exchange of volatile organic compounds (VOC) in a SRC-poplar plantation during an entire growing season

    Science.gov (United States)

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Zenone, Terenzio; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan; Ceulemans, Reinhart

    2015-04-01

    The declining cost of many renewable energy technologies and changes in the prices of fossil fuels have recently encouraged governments policies to subsidize the use of biomass as a sustainable source of energy. Deciduous poplars (Populus spp.) trees are often selected for biomass production in short rotation coppiced (SRC) for their high CO2 photosynthetic assimilation rates and their capacity to develop dense canopies with high values of leaf area index (LAI). So far, observations and projections of seasonal variations of many VOC fluxes has been limited to strong isoprenoids emitting evergreen ecosystems such tropical and Mediterranean forests as well as Citrus and oil palm plantation, all having constant values of LAI. We run a long-term field campaign where the exchange of VOC, together with CO2 and water vapor was monitored during an entire growing season (June - November, 2012) above a SRC-based poplar plantation. Our results confirmed that isoprene and methanol were the most abundant fluxes emitted, accounting for more than 90% of the total carbon released in form of VOC. However, Northern climates characterized by fresh summertime temperatures and recurring precipitations favored poplar growth while inhibiting the development of isoprene emission that resulted in only 0.7% of the net ecosystem carbon exchange (NEE). Besides, measurements of a multitude of VOC fluxes by PTR-TOF-MS showed bi-directional exchange of oxygenated-VOC (OVOC) such as: formaldehyde, acetaldehyde, acetone, isoprene oxidation products (iox, namely MVK, MAC and MEK) as well as ethanol and formic acid. The application of Self Organizing Maps to visualize the relationship between the full time-series of many VOC fluxes and the observed seasonal variations of environmental, physiological and structural parameters proved the most abundant isoprene ad methanol fluxes to occur mainly on the hottest days under mid-high light intensities when also NEE and evapotraspiration reached the highest

  8. Growing container seedlings: Three considerations

    Science.gov (United States)

    Kas Dumroese; Thomas D. Landis

    2015-01-01

    The science of growing reforestation and conservation plants in containers has continually evolved, and three simple observations may greatly improve seedling quality. First, retaining stock in its original container for more than one growing season should be avoided. Second, strongly taprooted species now being grown as bareroot stock may be good candidates...

  9. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology

    Science.gov (United States)

    Lei, Yanbin; Yao, Tandong; Yang, Kun; Sheng, Yongwei; Kleinherenbrink, Marcel; Yi, Shuang; Bird, Broxton W.; Zhang, Xiaowen; Zhu, La; Zhang, Guoqing

    2017-01-01

    The recent growth and deepening of inland lakes in the Tibetan Plateau (TP) may be a salient indicator of the consequences of climate change. The seasonal dynamics of these lakes is poorly understood despite this being potentially crucial for disentangling contributions from glacier melt and precipitation, which are all sensitive to climate, to lake water budget. Using in situ observations, satellite altimetry and gravimetry data, we identified two patterns of lake level seasonality. In the central, northern, and northeastern TP, lake levels are characterized by considerable increases during warm seasons and decreases during cold seasons, which is consistent with regional mass changes related to monsoon precipitation and evaporation. In the northwestern TP, however, lake levels exhibit dramatic increases during both warm and cold seasons, which deviate from regional mass changes. This appears to be more connected with high spring snowfall and large summer glacier melt. The variable lake level response to different drivers indicates heterogeneous sensitivity to climate change between the northwestern TP and other regions.

  10. Monitoring Grassland Tourist Season of Inner Mongolia, China Using Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Quansheng Ge

    2014-01-01

    Full Text Available Phenology-driven events, such as spring wildflower displays or fall tree colour, are generally appreciated by tourists for centuries around the world. Monitoring when tourist seasons occur using satellite data has been an area of growing research interest in recent decades. In this paper, a valid methodology for detecting the grassland tourist season using remote sensing data was presented. On average, the beginning, the best, and the end of grassland tourist season of Inner Mongolia, China, occur in late June (±30 days, early July (±30 days, and late July (±50 days, respectively. In south region, the grassland tourist season appeared relatively late. The length of the grassland tourist season is about 90 days with strong spatial trend. South areas exhibit longer tourist season.

  11. Changes in growth rate and macroelement and trace element accumulation in Hydrocharis morsus-ranae L. during the growing season in relation to environmental contamination.

    Science.gov (United States)

    Polechońska, Ludmiła; Samecka-Cymerman, Aleksandra; Dambiec, Małgorzata

    2017-02-01

    The temporal variations in plant chemistry connected with its life cycle may affect the cycling of elements in an ecosystem as well as determine the usefulness of the species in phytoremediation and bioindication. In this context, there is a gap in knowledge on the role of floating plants for elements cycling in aquatic reservoirs. The aim of the study was to determine if there are variations in Hydrocharis morsus-ranae (European frog-bit) bioaccumulation capacity and the growth rate of its population during the growing season and to test the impact of environmental pollution on these features. The content of macroelements (Ca, K, Mg, N, Na, P, S) and trace metals (Cd, Co, Cu, Cr, Hg, Fe, Mn, Ni, Pb, Zn) was determined in H. morsus-ranae collected monthly from June to October from habitats differing in environmental contamination. The results showed that the highest content of most trace metals (Co, Cr, Cu, Hg, Mn, Ni, Zn) and some nutrients (N, P) in plants as well as the greatest bioaccumulation efficiency occurred simultaneously in the beginning of the growing season. In the following months, a dilution effect (manifested by a decrease in content) related to the rapid growth was observed. Co, Mn, and Ni content in plant tissues reflected the level of environmental contamination throughout the growing season which makes H. morsus-ranae a potential biomonitor of pollution for these metals. Considering the great bioaccumulation ability, high sensitivity to contamination, and low biomass of European frog-bit in polluted systems, further investigation is required to assess the real phytoremediation capability of the species.

  12. The Sabethines of Northern Andean Coffee-Growing Regions of Colombia.

    Science.gov (United States)

    Suaza-Vasco, Juan; López-Rubio, Andrés; Galeano, Juan; Uribe, Sandra; Vélez, Iván; Porter, Charles

    2015-06-01

    Sampling for sabethine mosquitoes occurred intermittently from September 2007 to April 2013 in 17 municipalities, located in 5 departments (divisions) in the northern Andean coffee-growing regions of Colombia. Of the 9 genera within the Sabethini tribe known to occur in the Neotropical region, 6 were encountered including 15 species: Jonhbelkinia ulopus, Limatus durhamii, Sabethes ignotus, Sa. luxodens, Sa. undosus, Shannoniana fluviatilis, Trichoprosopon compressum, Tr. digitatum, Tr. evansae, Tr. pallidiventer s.l., Tr. pallidiventer s.s., Wyeomyia arthrostigma, Wy. oblita, Wy. ulocoma, and Wy. undulata. The species Sa. luxodens and Wy. undulata constitute new records for Colombia. These records broaden the knowledge of this important group that includes some important species related to the arbovirus transmission. Records are from the northern Colombian Andes, a region noted for coffee cultivation and ecotourism.

  13. Automated Segmentation of Coronary Arteries Based on Statistical Region Growing and Heuristic Decision Method

    Directory of Open Access Journals (Sweden)

    Yun Tian

    2016-01-01

    Full Text Available The segmentation of coronary arteries is a vital process that helps cardiovascular radiologists detect and quantify stenosis. In this paper, we propose a fully automated coronary artery segmentation from cardiac data volume. The method is built on a statistics region growing together with a heuristic decision. First, the heart region is extracted using a multi-atlas-based approach. Second, the vessel structures are enhanced via a 3D multiscale line filter. Next, seed points are detected automatically through a threshold preprocessing and a subsequent morphological operation. Based on the set of detected seed points, a statistics-based region growing is applied. Finally, results are obtained by setting conservative parameters. A heuristic decision method is then used to obtain the desired result automatically because parameters in region growing vary in different patients, and the segmentation requires full automation. The experiments are carried out on a dataset that includes eight-patient multivendor cardiac computed tomography angiography (CTA volume data. The DICE similarity index, mean distance, and Hausdorff distance metrics are employed to compare the proposed algorithm with two state-of-the-art methods. Experimental results indicate that the proposed algorithm is capable of performing complete, robust, and accurate extraction of coronary arteries.

  14. Seasonal Variations of Atmospheric CO2 over Fire Affected Regions Based on GOSAT Observations

    Science.gov (United States)

    Shi, Y.; Matsunaga, T.

    2016-12-01

    Abstract: The carbon dioxide (CO2) emissions released from biomass burning significantly affect the temporal variations of atmospheric CO2 concentrations. Based on a long-term (July 2009-June 2015) retrieved datasets by the Greenhouse Gases Observing Satellite (GOSAT), the seasonal cycle and interannual variations of column-averaged volume mixing ratios of atmospheric carbon dioxide (XCO2) in four fire affected continental regions were investigated. The results showed Northern Africa had the largest seasonal variations after removing its regional long-term trend of XCO2 with peak-to-peak amplitude of 6.2 ppm within the year, higher than central South America (2.4 ppm), Southern Africa (3.8 ppm) and Australia (1.7 ppm). The detrended regional XCO2 was found to be positively correlated with the fire CO2 emissions during fire activity period and negatively correlated with vegetation photosynthesis activity with different seasonal variabilities. Northern Africa recorded the largest change of seasonal variations of detrended XCO2 with a total of 12.8 ppm during fire seasons, higher than central South America, Southern Africa and Australia with 5.4 ppm, 6.7 ppm and 2.2 ppm, respectively. During fire episode, the positive detrended XCO2 was noticed during June-November in central South America, December-June in Northern Africa, May-November in Southern Africa. The Pearson correlation coefficients between the variations of detrended XCO2 and fire CO2 emissions from GFED4 (Global Fire Emissions Database v4) achieved best correlations in Southern Africa (R=0.77, p<0.05). Meanwhile, Southern Africa also experienced a significant negative relationship between the variations of detrended XCO2 and vegetation activity (R=-0.84, p<0.05). This study revealed that fire CO2 emissions and vegetation activity contributed greatly to the seasonal variations of GOSAT XCO2 dataset.

  15. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    Science.gov (United States)

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Performance of machinery in potato production in one growing season

    Directory of Open Access Journals (Sweden)

    Kun Zhou

    2015-12-01

    Full Text Available Statistics on the machinery performance are essential for farm managers to make better decisions. In this paper, the performance of all machineries in five sequential operations, namely bed forming, stone separation, planting, spraying and harvesting in the potato production system, were investigated during one growing season. In order to analyse and decompose the recorded GPS data into various time and distance elements for estimation of the machinery performance, an automatic GPS analysis tool was developed. The field efficiency and field capacity were estimated for each operation. Specifically, the measured average field efficiency was 71.3% for bed forming, 68.5% for stone separation, 40.3% for planting, 69.7% for spraying, and 67.4% for harvesting. The measured average field capacities were 1.46 ha/h, 0.53 ha/h, 0.47 ha/h, 10.21 ha/h, 0.51 ha/h, for the bed forming, stone separation, planting, spraying, and harvesting operations, respectively. These results deviate from the corresponding estimations calculated based on norm data from the American Society of Agricultural and Biological Engineers (ASABE. The deviations indicate that norms provided by ASABE cannot be used directly for the prediction of performance of the machinery used in this work. Moreover, the measured data of bed forming and stone separation could be used as supplementary data for the ASABE which does not provide performance norms for these two operations. The gained results can help farm managers to make better management and operational decisions that result in potential improvement in productivity and profitability as well as in potential environmental benefits.

  17. Performance of machinery in potato production in one growing season

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, K.; Jensen, A.L.; Bochtis, D.D.; Sørensen, C.G.

    2015-07-01

    Statistics on the machinery performance are essential for farm managers to make better decisions. In this paper, the performance of all machineries in five sequential operations, namely bed forming, stone separation, planting, spraying and harvesting in the potato production system, were investigated during one growing season. In order to analyse and decompose the recorded GPS data into various time and distance elements for estimation of the machinery performance, an automatic GPS analysis tool was developed. The field efficiency and field capacity were estimated for each operation. Specifically, the measured average field efficiency was 71.3% for bed forming, 68.5% for stone separation, 40.3% for planting, 69.7% for spraying, and 67.4% for harvesting. The measured average field capacities were 1.46 ha/h, 0.53 ha/h, 0.47 ha/h, 10.21 ha/h, 0.51 ha/h, for the bed forming, stone separation, planting, spraying, and harvesting operations, respectively. These results deviate from the corresponding estimations calculated based on norm data from the American Society of Agricultural and Biological Engineers (ASABE). The deviations indicate that norms provided by ASABE cannot be used directly for the prediction of performance of the machinery used in this work. Moreover, the measured data of bed forming and stone separation could be used as supplementary data for the ASABE which does not provide performance norms for these two operations. The gained results can help farm managers to make better management and operational decisions that result in potential improvement in productivity and profitability as well as in potential environmental benefits. (Author)

  18. CAMSHIFT IMPROVEMENT WITH MEAN-SHIFT SEGMENTATION, REGION GROWING, AND SURF METHOD

    Directory of Open Access Journals (Sweden)

    Ferdinan Ferdinan

    2013-10-01

    Full Text Available CAMSHIFT algorithm has been widely used in object tracking. CAMSHIFT utilizescolor features as the model object. Thus, original CAMSHIFT may fail when the object color issimilar with the background color. In this study, we propose CAMSHIFT tracker combined withmean-shift segmentation, region growing, and SURF in order to improve the tracking accuracy.The mean-shift segmentation and region growing are applied in object localization phase to extractthe important parts of the object. Hue-distance, saturation, and value are used to calculate theBhattacharyya distance to judge whether the tracked object is lost. Once the object is judged lost,SURF is used to find the lost object, and CAMSHIFT can retrack the object. The Object trackingsystem is built with OpenCV. Some measurements of accuracy have done using frame-basedmetrics. We use datasets BoBoT (Bonn Benchmark on Tracking to measure accuracy of thesystem. The results demonstrate that CAMSHIFT combined with mean-shift segmentation, regiongrowing, and SURF method has higher accuracy than the previous methods.

  19. Long-term temporal changes in central European tree phenology (1946-2010) confirm the recent extension of growing seasons

    Science.gov (United States)

    Kolářová, Eva; Nekovář, Jiří; Adamík, Peter

    2014-10-01

    One of the ways to assess the impacts of climate change on plants is analysing their long-term phenological data. We studied phenological records of 18 common tree species and their 8 phenological phases, spanning 65 years (1946-2010) and covering the area of the Czech Republic. For each species and phenophase, we assessed the changes in its annual means (for detecting shifts in the timing of the event) and standard deviations (for detecting changes in duration of the phenophases). The prevailing pattern across tree species was that since around the year 1976, there has been a consistent advancement of the onset of spring phenophases (leaf unfolding and flowering) and subsequent acceleration of fruit ripening, and a delay of autumn phenophases (leaf colouring and leaf falling). The most considerable shifts in the timing of spring phenophases were displayed by early-successional short-lived tree species. The most pronounced temporal shifts were found for the beginning of seed ripening in conifers with an advancement in this phenophase of up to 2.2 days year-1 in Scots Pine ( Pinus sylvestris). With regards to the change in duration of the phenophases, no consistent patterns were revealed. The growing season has extended on average by 23.8 days during the last 35 years. The most considerable prolongation was found in Pedunculate Oak ( Quercus robur): 31.6 days (1976-2010). Extended growing season lengths do have the potential to increase growth and seed productivity, but unequal shifts among species might alter competitive relationships within ecosystems.

  20. Cold season emissions dominate the Arctic tundra methane budget

    Science.gov (United States)

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y-1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  1. Seasonally and regionally determined indication potential of bioassays in contaminated river sediments.

    Science.gov (United States)

    Hilscherová, Klára; Dusek, Ladislav; Sídlová, Tereza; Jálová, Veronika; Cupr, Pavel; Giesy, John P; Nehyba, Slavomír; Jarkovský, Jirí; Klánová, Jana; Holoubek, Ivan

    2010-03-01

    River sediments are a dynamic system, especially in areas where floods occur frequently. In the present study, an integrative approach is used to investigate the seasonal and spatial dynamics of contamination of sediments from a regularly flooded industrial area in the Czech Republic, which presents a suitable model ecosystem for pollutant distribution research at a regional level. Surface sediments were sampled repeatedly to represent two different hydrological situations: spring (after the peak of high flow) and autumn (after longer period of low flow). Samples were characterized for abiotic parameters and concentrations of priority organic pollutants. Toxicity was assessed by Microtox test; genotoxicity by SOS-chromotest and green fluorescent protein (GFP)-yeast test; and the presence of compounds with specific mode of action by in vitro bioassays for dioxin-like activity, anti-/androgenicity, and anti-/estrogenicity. Distribution of organic contaminants varied among regions and seasonally. Although the results of Microtox and genotoxicity tests were relatively inconclusive, all other specific bioassays led to statistically significant regional and seasonal differences in profiles and allowed clear separation of upstream and downstream regions. The outcomes of these bioassays indicated an association with concentrations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as master variables. There were significant interrelations among dioxin-like activity, antiandrogenicity and content of organic carbon, clay, and concentration of PAHs and PCBs, which documents the significance of abiotic factors in accumulation of pollutants. The study demonstrates the strength of the specific bioassays in indicating the changes in contamination and emphasizes the crucial role of a well-designed sampling plan, in which both spatial and temporal dynamics should be taken into account, for the correct interpretations of information in risk assessments.

  2. California Hass Avocado: Profiling of Carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas

    Science.gov (United States)

    Lu, Qing-Yi; Zhang, Yanjun; Wang, Yue; Wang, David; Lee, Ru-po; Gao, Kun; Byrns, Russell; Heber, David

    2009-01-01

    The California Hass avocado (Persea Americana) is an example of a domesticated berry fruit that matures on the tree during its growing season but ripens only after being harvested. Avocados are typically harvested multiple times during the growing season in California. Previous research has demonstrated potential health benefits of avocados and extracts of avocado against inflammation and cancer cell growth, but seasonal variations in the phytochemical profile of the fruits being studied may affect the results obtained in future research. Therefore in the present study, avocados were harvested in January, April, July and September 2008 from four different growing locations in California (San Luis Obispo, Ventura, Riverside and San Diego), and analyzed fortotal fat content, fatty acid profile, carotenoids and vitamin E. A significant increase in total carotenoid and fat content of avocados from all regions was noted as the season progressed from January to September. Four carotenoids not previously described in the avocado were quantified. The total content of carotenoids was highly correlated with total fat content (r=0.99, pavocado.. Future clinical research on the health benefits of the avocado should specify the time of harvest, degree of ripening, growing area and the total phytochemical profile of the fruit or extract being studied. These steps will enable researchers to account for potential nutrient-nutrient interactions that might affect the research outcomes. PMID:19813713

  3. What is the current state of scientific knowledge with regard to seasonal and decadal forecasting?

    International Nuclear Information System (INIS)

    Smith, Doug M; Scaife, Adam A; Kirtman, Ben P

    2012-01-01

    Environmental factors, such as the frequency, intensity and duration of extreme weather events, are important drivers of migration and displacement of people. There is therefore a growing need for regional climate predictions for the coming seasons to decades. This paper reviews the current state of the art of seasonal to decadal climate prediction, focusing on the potential sources of skill, forecasting techniques, current capability and future prospects. (letter)

  4. Effects of urban green infrastructure (UGI) on local outdoor microclimate during the growing season.

    Science.gov (United States)

    Wang, Yafei; Bakker, Frank; de Groot, Rudolf; Wörtche, Heinrich; Leemans, Rik

    2015-12-01

    This study analyzed how the variations of plant area index (PAI) and weather conditions alter the influence of urban green infrastructure (UGI) on microclimate. To observe how diverse UGIs affect the ambient microclimate through the seasons, microclimatic data were measured during the growing season at five sites in a local urban area in The Netherlands. Site A was located in an open space; sites B, C, and D were covered by different types and configurations of green infrastructure (grove, a single deciduous tree, and street trees, respectively); and site E was adjacent to buildings to study the effects of their façades on microclimate. Hemispherical photography and globe thermometers were used to quantify PAI and thermal comfort at both shaded and unshaded locations. The results showed that groves with high tree density (site B) have the strongest effect on microclimate conditions. Monthly variations in the differences of mean radiant temperature (∆Tmrt) between shaded and unshaded areas followed the same pattern as the PAI. Linear regression showed a significant positive correlation between PAI and ∆Tmrt. The difference of daily average air temperature (∆T a ) between shaded and unshaded areas was also positively correlated to PAI, but with a slope coefficient below the measurement accuracy (±0.5 °C). This study showed that weather conditions can significantly impact the effectiveness of UGI in regulating microclimate. The results of this study can support the development of appropriate UGI measures to enhance thermal comfort in urban areas.

  5. Global left ventricular function in cardiac CT. Evaluation of an automated 3D region-growing segmentation algorithm

    International Nuclear Information System (INIS)

    Muehlenbruch, Georg; Das, Marco; Hohl, Christian; Wildberger, Joachim E.; Guenther, Rolf W.; Mahnken, Andreas H.; Rinck, Daniel; Flohr, Thomas G.; Koos, Ralf; Knackstedt, Christian

    2006-01-01

    The purpose was to evaluate a new semi-automated 3D region-growing segmentation algorithm for functional analysis of the left ventricle in multislice CT (MSCT) of the heart. Twenty patients underwent contrast-enhanced MSCT of the heart (collimation 16 x 0.75 mm; 120 kV; 550 mAseff). Multiphase image reconstructions with 1-mm axial slices and 8-mm short-axis slices were performed. Left ventricular volume measurements (end-diastolic volume, end-systolic volume, ejection fraction and stroke volume) from manually drawn endocardial contours in the short axis slices were compared to semi-automated region-growing segmentation of the left ventricle from the 1-mm axial slices. The post-processing-time for both methods was recorded. Applying the new region-growing algorithm in 13/20 patients (65%), proper segmentation of the left ventricle was feasible. In these patients, the signal-to-noise ratio was higher than in the remaining patients (3.2±1.0 vs. 2.6±0.6). Volume measurements of both segmentation algorithms showed an excellent correlation (all P≤0.0001); the limits of agreement for the ejection fraction were 2.3±8.3 ml. In the patients with proper segmentation the mean post-processing time using the region-growing algorithm was diminished by 44.2%. On the basis of a good contrast-enhanced data set, a left ventricular volume analysis using the new semi-automated region-growing segmentation algorithm is technically feasible, accurate and more time-effective. (orig.)

  6. Impact of mulches and growing season on indicator bacteria survival during lettuce cultivation.

    Science.gov (United States)

    Xu, Aixia; Buchanan, Robert L; Micallef, Shirley A

    2016-05-02

    In fresh produce production, the use of mulches as ground cover to retain moisture and control weeds is a common agricultural practice, but the influence that various mulches have on enteric pathogen survival and dispersal is unknown. The goal of this study was to assess the impact of different mulching methods on the survival of soil and epiphytic fecal indicator bacteria on organically grown lettuce during different growing seasons. Organically managed lettuce, cultivated with various ground covers--polyethylene plastic, corn-based biodegradable plastic, paper and straw mulch--and bare ground as a no-mulch control, was overhead inoculated with manure-contaminated water containing known levels of generic Escherichia coli and Enterococcus spp. Leaves and soil samples were collected at intervals over a two week period on days 0, 1, 3, 5, 7, 10 and 14, and quantitatively assessed for E. coli, fecal coliforms and Enterococcus spp. Data were analyzed using mixed models with repeated measures and an exponential decline with asymptote survival model. Indicator bacterial concentrations in the lettuce phyllosphere decreased over time under all treatments, with more rapid E. coli declines in the fall than in the spring (plettuce compared to mulches. In fall 2014, the E. coli decline rate on paper mulch-grown lettuce was higher (plettuce phyllosphere, and mulch type was a factor for fecal coliform levels (plettuce production may impact the fate of enteric bacteria in soil or on lettuce, most likely in relation to soil moisture retention, and other weather-related factors, such as temperature and rainfall. The data suggest that the time between exposure to a source of enteric bacteria and harvesting of the crop is season dependent, which has implications for determining best harvest times. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    Science.gov (United States)

    Dowdy, Andrew J

    2016-02-11

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  8. An Updated Decision Support Interface: A Tool for Remote Monitoring of Crop Growing Conditions

    Science.gov (United States)

    Husak, G. J.; Budde, M. E.; Rowland, J.; Verdin, J. P.; Funk, C. C.; Landsfeld, M. F.

    2014-12-01

    Remote sensing of agroclimatological variables to monitor food production conditions is a critical component of the Famine Early Warning Systems Network portfolio of tools for assessing food security in the developing world. The Decision Support Interface (DSI) seeks to integrate a number of remotely sensed and modeled variables to create a single, simplified portal for analysis of crop growing conditions. The DSI has been reformulated to incorporate more variables and give the user more freedom in exploring the available data. This refinement seeks to transition the DSI from a "first glance" agroclimatic indicator to one better suited for the differentiation of drought events. The DSI performs analysis of variables over primary agricultural zones at the first sub-national administrative level. It uses the spatially averaged rainfall, normalized difference vegetation index (NDVI), water requirement satisfaction index (WRSI), and actual evapotranspiration (ETa) to identify potential hazards to food security. Presenting this information in a web-based client gives food security analysts and decision makers a lightweight portal for information on crop growing conditions in the region. The crop zones used for the aggregation contain timing information which is critical to the DSI presentation. Rainfall and ETa are accumulated from different points in the crop phenology to identify season-long deficits in rainfall or transpiration that adversely affect the crop-growing conditions. Furthermore, the NDVI and WRSI serve as their own seasonal accumulated measures of growing conditions by capturing vegetation vigor or actual evapotranspiration deficits. The DSI is currently active for major growing regions of sub-Saharan Africa, with intention of expanding to other areas over the coming years.

  9. A two-stage rule-constrained seedless region growing approach for mandibular body segmentation in MRI.

    Science.gov (United States)

    Ji, Dong Xu; Foong, Kelvin Weng Chiong; Ong, Sim Heng

    2013-09-01

    Extraction of the mandible from 3D volumetric images is frequently required for surgical planning and evaluation. Image segmentation from MRI is more complex than CT due to lower bony signal-to-noise. An automated method to extract the human mandible body shape from magnetic resonance (MR) images of the head was developed and tested. Anonymous MR images data sets of the head from 12 subjects were subjected to a two-stage rule-constrained region growing approach to derive the shape of the body of the human mandible. An initial thresholding technique was applied followed by a 3D seedless region growing algorithm to detect a large portion of the trabecular bone (TB) regions of the mandible. This stage is followed with a rule-constrained 2D segmentation of each MR axial slice to merge the remaining portions of the TB regions with lower intensity levels. The two-stage approach was replicated to detect the cortical bone (CB) regions of the mandibular body. The TB and CB regions detected from the preceding steps were merged and subjected to a series of morphological processes for completion of the mandibular body region definition. Comparisons of the accuracy of segmentation between the two-stage approach, conventional region growing method, 3D level set method, and manual segmentation were made with Jaccard index, Dice index, and mean surface distance (MSD). The mean accuracy of the proposed method is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The mean accuracy of CRG is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The mean accuracy of the 3D level set method is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The proposed method shows improvement in accuracy over CRG and 3D level set. Accurate segmentation of the body of the human mandible from MR images is achieved with the

  10. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  11. What controls the seasonal cycle of columnar methane observed by GOSAT over different regions in India?

    Science.gov (United States)

    Chandra, Naveen; Hayashida, Sachiko; Saeki, Tazu; Patra, Prabir K.

    2017-10-01

    Methane (CH4) is one of the most important short-lived climate forcers for its critical roles in greenhouse warming and air pollution chemistry in the troposphere, and the water vapor budget in the stratosphere. It is estimated that up to about 8 % of global CH4 emissions occur from South Asia, covering less than 1 % of the global land. With the availability of satellite observations from space, variability in CH4 has been captured for most parts of the global land with major emissions, which were otherwise not covered by the surface observation network. The satellite observation of the columnar dry-air mole fractions of methane (XCH4) is an integrated measure of CH4 densities at all altitudes from the surface to the top of the atmosphere. Here, we present an analysis of XCH4 variability over different parts of India and the surrounding cleaner oceanic regions as measured by the Greenhouse gases Observation SATellite (GOSAT) and simulated by an atmospheric chemistry-transport model (ACTM). Distinct seasonal variations of XCH4 have been observed over the northern (north of 15° N) and southern (south of 15° N) parts of India, corresponding to the peak during the southwestern monsoon (July-September) and early autumn (October-December) seasons, respectively. Analysis of the transport, emission, and chemistry contributions to XCH4 using ACTM suggests that a distinct XCH4 seasonal cycle over northern and southern regions of India is governed by both the heterogeneous distributions of surface emissions and a contribution of the partial CH4 column in the upper troposphere. Over most of the northern Indian Gangetic Plain regions, up to 40 % of the peak-to-trough amplitude during the southwestern (SW) monsoon season is attributed to the lower troposphere ( ˜ 1000-600 hPa), and ˜ 40 % to uplifted high-CH4 air masses in the upper troposphere ( ˜ 600-200 hPa). In contrast, the XCH4 seasonal enhancement over semi-arid western India is attributed mainly ( ˜ 70 %) to the

  12. STUDY ON THE EVOLUTION OF SEASONALITY IN AGRI-TOURISM, BY REGIONS OF ROMANIA

    Directory of Open Access Journals (Sweden)

    Florentina Daniela Matei

    2015-03-01

    Full Text Available Tourist activity, in general, is influenced by seasonality phenomenon, which means that the company's marketing policy must adapt supply to the specific needs of consumers, no matter the time of year. However, the services demand have identified opportunities in tourism, while implicit threats. It is therefore necessary to analyze the material, financial, technical and managerial aspects of agro pension. These resources illustrates the possibility of upgrading the capacity of existing accommodation. In the study we used as indicators the number of arrivals and the number of overnight stays in agro hostels in Romania, by region, for 2010 and 2014,by months, thus obtaining data on the influence of seasonality. We concluded that agri-tourism records the highest number of tourists in summer (July-September, but in some regions it begins to develop in winter also. The only region with almost permanent activity is Bucharest-Ilfov, which has the lowest number of rural locations.

  13. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region.

    Science.gov (United States)

    Dallimer, Martin; Tang, Zhiyao; Gaston, Kevin J; Davies, Zoe G

    2016-04-01

    Urbanization is one of the major environmental challenges facing the world today. One of its particularly pressing effects is alterations to local and regional climate through, for example, the Urban Heat Island. Such changes in conditions are likely to have an impact on the phenology of urban vegetation, which will have knock-on implications for the role that urban green infrastructure can play in delivering multiple ecosystem services. Here, in a human-dominated region, we undertake an explicit comparison of vegetation phenology between urban and rural zones. Using satellite-derived MODIS-EVI data from the first decade of the 20th century, we extract metrics of vegetation phenology (date of start of growing season, date of end of growing season, and length of season) for Britain's 15 largest cities and their rural surrounds. On average, urban areas experienced a growing season 8.8 days longer than surrounding rural zones. As would be expected, there was a significant decline in growing season length with latitude (by 3.4 and 2.4 days/degree latitude in rural and urban areas respectively). Although there is considerable variability in how phenology in urban and rural areas differs across our study cities, we found no evidence that built urban form influences the start, end, or length of the growing season. However, the difference in the length of the growing season between rural and urban areas was significantly negatively associated with the mean disposable household income for a city. Vegetation in urban areas deliver many ecosystem services such as temperature mitigation, pollution removal, carbon uptake and storage, the provision of amenity value for humans and habitat for biodiversity. Given the rapid pace of urbanization and ongoing climate change, understanding how vegetation phenology will alter in the future is important if we wish to be able to manage urban greenspaces effectively.

  14. Seasonal climatology of hydrographic conditions in the upwelling region off northern Chile

    Science.gov (United States)

    Blanco, J. L.; Thomas, A. C.; Carr, M.-E.; Strub, P. T.

    2001-06-01

    Over 30 years of hydrographic data from the northern Chile (18°S-24°S) upwelling region are used to calculate the surface and subsurface seasonal climatology extending 400 km offshore. The data are interpolated to a grid with sufficient spatial resolution to preserve cross-shelf gradients and then presented as means within four seasons: austral winter (July-September), spring (October-December), summer (January-March), and fall (April-June). Climatological monthly wind forcing, surface temperature, and sea level from three coastal stations indicate equatorward (upwelling favorable) winds throughout the year, weakest in the north. Seasonal maximum alongshore wind stress is in late spring and summer (December-March). Major water masses of the region are identified in climatological T-S plots and their sources and implied circulation discussed. Surface fields and vertical transects of temperature and salinity confirm that upwelling occurs year-round, strongest in summer and weakest in winter, bringing relatively fresh water to the surface nearshore. Surface geostrophic flow nearshore is equatorward throughout the year. During summer, an anticyclonic circulation feature in the north which extends to at least 200 m depth is evident in geopotential anomaly and in both temperature and geopotential variance fields. Subsurface fields indicate generally poleward flow throughout the year, strongest in an undercurrent near the coast. This undercurrent is strongest in summer and most persistent and organized in the south (south of 21°S). A subsurface oxygen minimum, centered at ˜250 m, is strongest at lower latitudes. Low-salinity subsurface water intrudes into the study area near 100 m, predominantly in offshore regions, strongest during summer and fall and in the southernmost portion of the region. The climatological fields are compared to features off Baja within the somewhat analogous California Current and to measurements from higher latitudes within the Chile

  15. Seasonal phenology and species composition of the aphid fauna in a northern crop production area.

    Directory of Open Access Journals (Sweden)

    Sascha M Kirchner

    Full Text Available BACKGROUND: The species diversity of aphids and seasonal timing of their flight activity can have significant impacts on crop production, as aphid species differ in their ability to transmit plant viruses and flight timing affects virus epidemiology. The aim of the study was to characterise the species composition and phenology of aphid fauna in Finland in one of the northernmost intensive crop production areas of the world (latitude 64°. METHODOLOGY/PRINCIPAL FINDINGS: Flight activity was monitored in four growing seasons (2007-010 using yellow pan traps (YPTs placed in 4-8 seed potato fields and a Rothamsted suction trap. A total of 58,528 winged aphids were obtained, identified to 83 taxa based on morphology, and 34 species were additionally characterised by DNA barcoding. Seasonal flight activity patterns analysed based on YPT catch fell into three main phenology clusters. Monoecious taxa showed early or middle-season flight activity and belonged to species living on shrubs/trees or herbaceous plants, respectively. Heteroecious taxa occurred over the entire potato growing season (ca. 90 days. Abundance of aphids followed a clear 3-year cycle based on suction trap data covering a decade. Rhopalosiphum padi occurring at the end of the potato growing season was the most abundant species. The flight activity of Aphis fabae, the main vector of Potato virus Y in the region, and Aphis gossypii peaked in the beginning of potato growing season. CONCLUSIONS/SIGNIFICANCE: Detailed information was obtained on phenology of a large number aphid species, of which many are agriculturally important pests acting as vectors of plant viruses. Aphis gossypii is known as a pest in greenhouses, but our study shows that it occurs also in the field, even far in the north. The novel information on aphid phenology and ecology has wide implications for prospective pest management, particularly in light of climate change.

  16. Thermal conditions of the grape growing season within the North-Eastern steppe land of Ukraine (on the example of Kharkiv region

    Directory of Open Access Journals (Sweden)

    Борис Шуліка

    2016-10-01

    Full Text Available The article analyzes the results of the thermal conditions observations within the North-Eastern steppe land of Ukraine as one of the most important factors for successful cultivation of grapes, thus providing crop productivity. Considering the effect of thermal factors, it can be noted that the intensity and speed of life processes of plants are well- defined under temperature conditions only in the circumstances where other environmental factors are not limited. The thermal regime was initially taken into account in practice in XVII century. In XIX century the agro-climatic areas to grow grapes were determined in North-Eastern steppe land of Ukraine. Detailed studies of agro-climatic conditions of specific areas can more thoroughly to make conclusions and recommendations for the cultivation of grapes as a whole in the territory, and specifically in those areas were given. In studying the thermal balance of the territory the average and extreme temperature should be paid attention to. Characteristic features of the thermal regime are given in this paper based on the study of atmospheric phenomena, geomorphology and territories with radiation influence and water flow regime. Thermal treatment is subjected to anthropogenic influence, and in cultivating tenants can use appropriate agricultural practices (conceal bushes, warm soil and air, and even crops in protective ground, in greenhouses. Characteristically, technology of greenhouses growers is even used in Kherson region. These data can be used in neighborhood and the adjacent areas, especially they are useful for the practice of growing grapes. The possibility of successful cultivation of dozens of grape varieties in the North-Eastern steppe land of Ukraine has been well-grounded.

  17. Video Segmentation Using Fast Marching and Region Growing Algorithms

    Directory of Open Access Journals (Sweden)

    Eftychis Sifakis

    2002-04-01

    Full Text Available The algorithm presented in this paper is comprised of three main stages: (1 classification of the image sequence and, in the case of a moving camera, parametric motion estimation, (2 change detection having as reference a fixed frame, an appropriately selected frame or a displaced frame, and (3 object localization using local colour features. The image sequence classification is based on statistical tests on the frame difference. The change detection module uses a two-label fast marching algorithm. Finally, the object localization uses a region growing algorithm based on the colour similarity. Video object segmentation results are shown using the COST 211 data set.

  18. Drivers of seasonality in Arctic carbon dioxide fluxes

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe

    , while there were no discernable drivers of CO2 fluxes in Stordalen, growing season length showed significant controls on net ecosystem exchange (NEE) in Zackenberg and with gross primary production (GPP) and ecosystem respiration (Re) in Daring Lake. This is important considering the recent observations...... compensates for the shorter growing season due to increase snow cover and duration. Other drivers of growing season CO2 fluxes were mainly air temperature, growing degree days and photosynthetic active radiation in a high and a low Arctic tundra ecosystem. Upscaling Arctic tundra NEE based on an acquired...... understanding of the drivers of NEE during this research venture, shows an estimation of reasonable fluxes at three independent sites in low Arctic Alaska. However, this later project is still ongoing and its findings are only preliminary....

  19. Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing.

    Science.gov (United States)

    Sarrafzadeh, Omid; Dehnavi, Alireza Mehri

    2015-01-01

    Segmentation of leukocytes acts as the foundation for all automated image-based hematological disease recognition systems. Most of the time, hematologists are interested in evaluation of white blood cells only. Digital image processing techniques can help them in their analysis and diagnosis. The main objective of this paper is to detect leukocytes from a blood smear microscopic image and segment them into their two dominant elements, nucleus and cytoplasm. The segmentation is conducted using two stages of applying K-means clustering. First, the nuclei are segmented using K-means clustering. Then, a proposed method based on region growing is applied to separate the connected nuclei. Next, the nuclei are subtracted from the original image. Finally, the cytoplasm is segmented using the second stage of K-means clustering. The results indicate that the proposed method is able to extract the nucleus and cytoplasm regions accurately and works well even though there is no significant contrast between the components in the image. In this paper, a method based on K-means clustering and region growing is proposed in order to detect leukocytes from a blood smear microscopic image and segment its components, the nucleus and the cytoplasm. As region growing step of the algorithm relies on the information of edges, it will not able to separate the connected nuclei more accurately in poor edges and it requires at least a weak edge to exist between the nuclei. The nucleus and cytoplasm segments of a leukocyte can be used for feature extraction and classification which leads to automated leukemia detection.

  20. Nonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing season

    DEFF Research Database (Denmark)

    Campioli, Matteo; Samson, Roeland; Michelsen, Anders

    2009-01-01

    significant when vascular plants are less active and ecosystems act as a source of carbon (C). To clarify these dynamics, nonvascular and vascular aboveground NPP was compared for a subarctic heath during two contrasting periods of the growing season, viz. early-mid summer and late summer-early autumn...... measurements of shoot length increase. Vascular NPP was determined by harvesting shrub and herb apical growth and considering production due to stem secondary growth of shrubs. Hylocomium splendens and Pleurozium schreberi showed highest biomass growth in late summer, whereas for D. elongatum this occurred...... weight m-2 d-1, in early and late summer, respectively, whereas in the same periods vascular NPP was 3.6 and 1.1 g dry weight m-2 d-1. The contribution of nonvascular NPP to total aboveground NPP was therefore minor in early summer but substantial in late summer, when 25% of the C accumulated...

  1. 317/319 Phytoremediation site monitoring report - 2009 growing season : final report.

    Energy Technology Data Exchange (ETDEWEB)

    Negri, C .N.; Benda, P. L.; Gopalakrishnan, G.; Energy Systems

    2010-02-10

    In 1999, Argonne National Laboratory (Argonne) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various methods including Applied Natural Science's TreeWell{reg_sign} system. The goal of the installation was to protect downgradient surface and groundwater by intercepting the contaminated groundwater with the tree roots, removing moisture from the upgradient soil area, reducing water infiltration, preventing soil erosion, degrading and/or transpiring the residual volatile organic compounds (VOCs), and removing tritium from the subsoil and groundwater. This report presents the results of the monitoring activities conducted by Argonne's Energy Systems (ES) Division in the growing season of 2009. Monitoring of the planted trees began soon after the trees were installed in 1999 and has been conducted every summer since then. As the trees grew and consolidated their growth into the contaminated soil and groundwater, their exposure to the contaminants was progressively shown through tissue sampling. During the 2009 sampling campaign, VOC concentrations found in the French Drain area were in general consistent with or slightly lower than the 2008 results. Additionally, closely repeated, stand wide analyses showed contaminant fluctuations that may indicate short-term contaminant depletion in the area of interest of roots. This data will be useful to determine short-term removal rate by the trees. As in previous years, levels in the Hydraulic Control Area were close to background levels except for a few exceptions.

  2. Occurrence of annual growth rings in Rhizophora mangle in a region with low climate seasonality

    Directory of Open Access Journals (Sweden)

    BRUNNA T. SOUZA

    2016-01-01

    Full Text Available ABSTRACT The formation of annual growth rings has been confirmed for several mangrove species in the last decade, among which is the Rhizophora mangle. However, the record of annual rings for this species was made in a region with high hydric seasonality, a widely recognized induction factor of annual rings in tropical species. In this sense, the present study aimed to verify the occurrence of annual growth rings in R. mangle in the mangroves of Guaratiba (Rio de Janeiro, Southeastern Brazil, a region with low hydric seasonality. For this purpose, the crossdating technique was applied in ten trees collected with known age (seven years. The growth rings are characterized by alternating layers of low vessel density (earlywood and high vessel density (latewood. Multiple regression analysis indicated that growth rings width variation is driven by precipitation, water surplus, water deficit and water storage. Crossdating analysis confirmed the existence of annual growth rings in the R. mangle in Guaratiba. This discovery in a region with low hydric seasonality increases the dendrocronological potential of this species and suggests the importance of biological factors (eg. phenological behavior as complementary inductors for the formation of growth rings in this species.

  3. Greenhouse Gas Induced Changes in the Seasonal Cycle of the Amazon Basin in Coupled Climate-Vegetation Regional Model

    Directory of Open Access Journals (Sweden)

    Flavio Justino

    2016-01-01

    Full Text Available Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal separation of the dominance of the annual and semi-annual seasonal cycles. This behavior is strongly modified under greenhouse warming conditions, with the annual cycle becoming dominant throughout the Amazon basin, increasing differences between the dry and wet seasons. In particular, there are substantial changes in the annual cycle of temperature due to the increase in the temperature of the warmest month, but the lengthening of the dry season is believed to be particularly important for vegetation-climate feedbacks. Harmonic analysis performed to regional climate model simulations yields results that differ from the global climate model that it is forced from, with the regional model being more sensitive to changes in the seasonal cycle.

  4. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies.

    Science.gov (United States)

    Castagneri, Daniele; Fonti, Patrick; von Arx, Georg; Carrer, Marco

    2017-04-01

    During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August-September temperature at high elevation. Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our

  5. Landscape planning for agridevelopment at regional scale: an example from cotton growing Yavatmal district, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Bhaskara Phaneendra Bhaskar

    2015-12-01

    Full Text Available The basaltic landscape planning on the hot semiarid ecosystem in cotton growing Yavatmal district, Maharashtra tends to concentrate on 52 per cent of total cultivated area with 43 per cent of rural families living below poverty line posing major problem for environmental protection and resource management. Concepts of sustainable development at regional-level planning suggested that there is a growing concern for the landscape community to develop a strategic regional agricultural planning perspective in order to assist landscape planning goals. These challenges were explored with particular reference to the cotton growing Yavatmal district in Maharashtra through baseline land resource / agronomic surveys and assessing the production potential of regional rural landscapes for crop planning. Landscape analysis, premised on the geopedological and elevation constructs, culminated in a spatial coverage of hills and ridges (12.6 per cent of total area in northern and central parts whereas plateaus (29.3 per cent in association with isolated hills, mesas and butte and escarpments (17.7 per cent, pediplains (28.8 per cent and plains (8.1 per cent in south western parts of the district. Regional level analysis revealed spatially variable soil typologies dominated by vertisols and vertic intergrades. An exploration and brief account of integration landscape planning was discussed with some reflections on the experience and highlighting some of the problems and potentials of this approach within the regional context.

  6. Cabernet Sauvignon grapevine grafted onto rootstocks during the autumn-winter season in southeastern Brazilian

    Directory of Open Access Journals (Sweden)

    Claudia Rita de Souza

    2015-02-01

    Full Text Available The change of grape (Vitis vinifera harvest from summer to winter through double pruning management has improved the fine wine quality in southern Brazil. High altitude, late cultivar and grafting combination all need to be investigated to optimize this new viticulture management. For this purpose, this study was carried out during the 2011 and 2012 growing seasons in a high altitude region of the state of Minas Gerais, Brazil, using eight grafting combinations for five year old Cabernet Sauvignon vines. The stem water potential, photosynthetic rate and stomatal conductance were not affected by rootstock type. The rootstocks IAC 766 and 101-14 induced, respectively, the highest and lowest vegetative vigor in Cabernet Sauvignon, as shown by leaf area and pruning weight. In the 2011 growing season, the leaf chlorophyll contents were increased in IAC 766, whereas vines grafted onto 101-14 accumulated more leaf starch, probably due to reduced vegetative and reproductive growth. In general, rootstocks K5BB, 1045P, SO4 and IAC 766 had the highest yield as compared to 1103P and 101-14. Berries from the grapevine with the highest yield did not differ in pH, total soluble solids and acidity. The rootstocks did not influence the anthocyanins and total phenols in both growing seasons. Quality parameters were better in the 2011 than in the 2012 growing season due to better climatic conditions, mainly less rainfall. The best performance of Cabernet Sauvignon was achieved when grafted onto K5BB, 1045P, SO4 and IAC 766 rootstocks.

  7. Monitoring Start of Season in Alaska

    Science.gov (United States)

    Robin, J.; Dubayah, R.; Sparrow, E.; Levine, E.

    2006-12-01

    In biomes that have distinct winter seasons, start of spring phenological events, specifically timing of budburst and green-up of leaves, coincides with transpiration. Seasons leave annual signatures that reflect the dynamic nature of the hydrologic cycle and link the different spheres of the Earth system. This paper evaluates whether continuity between AVHRR and MODIS normalized difference vegetation index (NDVI) is achievable for monitoring land surface phenology, specifically start of season (SOS), in Alaska. Additionally, two thresholds, one based on NDVI and the other on accumulated growing degree-days (GDD), are compared to determine which most accurately predicts SOS for Fairbanks. Ratio of maximum greenness at SOS was computed from biweekly AVHRR and MODIS composites for 2001 through 2004 for Anchorage and Fairbanks regions. SOS dates were determined from annual green-up observations made by GLOBE students. Results showed that different processing as well as spectral characteristics of each sensor restrict continuity between the two datasets. MODIS values were consistently higher and had less inter-annual variability during the height of the growing season than corresponding AVHRR values. Furthermore, a threshold of 131-175 accumulated GDD was a better predictor of SOS for Fairbanks than a NDVI threshold applied to AVHRR and MODIS datasets. The NDVI threshold was developed from biweekly AVHRR composites from 1982 through 2004 and corresponding annual green-up observations at University of Alaska-Fairbanks (UAF). The GDD threshold was developed from 20+ years of historic daily mean air temperature data and the same green-up observations. SOS dates computed with the GDD threshold most closely resembled actual green-up dates observed by GLOBE students and UAF researchers. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska.

  8. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico

    Science.gov (United States)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.

    1991-01-01

    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  9. Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake

    Science.gov (United States)

    Kelsey, Katharine C.; Leffler, A. Joshua; Beard, Karen H.; Choi, Ryan T.; Schmutz, Joel A.; Welker, Jeffery M.

    2018-04-01

    High latitude ecosystems are prone to phenological mismatches due to climate change- driven advances in the growing season and changing arrival times of migratory herbivores. These changes have the potential to alter biogeochemical cycling and contribute to feedbacks on climate change by altering greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) through large regions of the Arctic. Yet the effects of phenological mismatches on gas fluxes are currently unexplored. We used a three-year field experiment that altered the start of the growing season and timing of grazing to investigate how phenological mismatch affects GHG exchange. We found early grazing increased mean GHG emission to the atmosphere despite lower CH4 emissions due to grazing-induced changes in vegetation structure that increased uptake of CO2. In contrast, late grazing reduced GHG emissions because greater plant productivity led to an increase in CO2 uptake that overcame the increase in CH4 emission. Timing of grazing was an important control on both CO2 and CH4 emissions, and net GHG exchange was the result of opposing fluxes of CO2 and CH4. N2O played a negligible role in GHG flux. Advancing the growing season had a smaller effect on GHG emissions than changes to timing of grazing in this study. Our results suggest that a phenological mismatch that delays timing of grazing relative to the growing season, a change which is already developing along in western coastal Alaska, will reduce GHG emissions to the atmosphere through increased CO2 uptake despite greater CH4 emissions.

  10. Phenological mismatch in coastal western Alaska may increase summer season greenhouse gas uptake

    Science.gov (United States)

    Kelsey, Katharine C.; Leffler, A. Joshua; Beard, Karen H.; Choi, Ryan T.; Schmutz, Joel A.; Welker, Jeffery M.

    2018-01-01

    High latitude ecosystems are prone to phenological mismatches due to climate change- driven advances in the growing season and changing arrival times of migratory herbivores. These changes have the potential to alter biogeochemical cycling and contribute to feedbacks on climate change by altering greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) through large regions of the Arctic. Yet the effects of phenological mismatches on gas fluxes are currently unexplored. We used a three-year field experiment that altered the start of the growing season and timing of grazing to investigate how phenological mismatch affects GHG exchange. We found early grazing increased mean GHG emission to the atmosphere despite lower CH4 emissions due to grazing-induced changes in vegetation structure that increased uptake of CO2. In contrast, late grazing reduced GHG emissions because greater plant productivity led to an increase in CO2 uptake that overcame the increase in CH4 emission. Timing of grazing was an important control on both CO2 and CH4 emissions, and net GHG exchange was the result of opposing fluxes of CO2 and CH4. N2O played a negligible role in GHG flux. Advancing the growing season had a smaller effect on GHG emissions than changes to timing of grazing in this study. Our results suggest that a phenological mismatch that delays timing of grazing relative to the growing season, a change which is already developing along in western coastal Alaska, will reduce GHG emissions to the atmosphere through increased CO2 uptake despite greater CH4 emissions.

  11. Occupancy modeling reveals territory-level effects of nest boxes on the presence, colonization, and persistence of a declining raptor in a fruit-growing region.

    Science.gov (United States)

    Shave, Megan E; Lindell, Catherine A

    2017-01-01

    Nest boxes for predators in agricultural regions are an easily implemented tool to improve local habitat quality with potential benefits for both conservation and agriculture. The potential for nest boxes to increase raptor populations in agricultural regions is of particular interest given their positions as top predators. This study examined the effects of cherry orchard nest boxes on the local breeding population of a declining species, the American Kestrel (Falco sparverius), in a fruit-growing region of Michigan. During the 2013-2016 study, we added a total of 23 new nest boxes in addition to 24 intact boxes installed previously; kestrels used up to 100% of our new boxes each season. We conducted temporally-replicated surveys along four roadside transects divided into 1.6 km × 500 m sites. We developed a multi-season occupancy model under a Bayesian framework and found that nest boxes had strong positive effects on first-year site occupancy, site colonization, and site persistence probabilities. The estimated number of occupied sites increased between 2013 and 2016, which correlated with the increase in number of sites with boxes. Kestrel detections decreased with survey date but were not affected by time of day or activity at the boxes themselves. These results indicate that nest boxes determined the presence of kestrels at our study sites and support the conclusion that the local kestrel population is likely limited by nest site availability. Furthermore, our results are highly relevant to the farmers on whose properties the boxes were installed, for we can conclude that installing a nest box in an orchard resulted in a high probability of kestrels occupying that orchard or the areas adjacent to it.

  12. Seasonal and Interannual Trends in Largest Cholera Endemic Megacity: Water Sustainability - Climate - Health Challenges in Dhaka, Bangladesh

    Science.gov (United States)

    Akanda, Ali S.; Jutla, Antarpreet; Faruque, Abu S. G.; Huq, Anwar; Colwell, Rita R.

    2014-05-01

    The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city in the world - Dhaka, Bangladesh. Emerging megacities in the region, especially those located in coastal areas also remain vulnerable to large scale drivers of cholera outbreaks. However, there has not been any systematic study on linking long-term disease trends with related changes in natural or societal variables. Here, we analyze the 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or anthropogenic forcings: regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, as well as shifting climate patterns and frequency of natural disasters. An interesting change is observed in the seasonal trends of cholera prevalence; while an endemic upward trend is seen in the dry season, the post-monsoon trend is epidemic in nature. In addition, the trend in the pre-monsoon dry season is significantly stronger than the post-monsoon wet season; and thus spring is becoming the dominant cholera season of the year. Evidence points to growing urbanization and rising population in unplanned settlements along the city peripheries. The rapid pressure of growth has led to an unsustainable and potentially disastrous situation with negligible-to-poor water and sanitation systems compounded by changing climatic patterns and increasing number of extreme weather events. Growing water scarcity in the dry season and lack of sustainable water and sanitation infrastructure for urban settlements have increased endemicity of cholera outbreaks in spring, while record flood events and prolonged post-monsoon inundation have contributed to increased epidemic outbreaks in fall. We analyze our findings with the World Health Organization recommended guidelines and investigate large scale water sustainability challenges in the context of climatic and anthropogenic changes in the

  13. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune

    Science.gov (United States)

    Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Westervelt, Daniel M.; Xia, Karen R.; Fiore, Arlene M.; Mickley, Loretta J.; Cusworth, Daniel H.; Milly, George

    2018-01-01

    Air pollution in many of India's cities exceeds national and international standards, and effective pollution control strategies require knowledge of the sources that contribute to air pollution and their spatiotemporal variability. In this study, we examine the influence of a single pollution source, outdoor biomass burning, on particulate matter (PM) concentrations, surface visibility, and aerosol optical depth (AOD) from 2007 to 2013 in three of the most populous Indian cities. We define the upwind regions, or ;airsheds,; for the cities by using atmospheric back trajectories from the HYSPLIT model. Using satellite fire radiative power (FRP) observations as a measure of fire activity, we target pre-monsoon and post-monsoon fires upwind of the Delhi National Capital Region and pre-monsoon fires surrounding Bengaluru and Pune. We find varying contributions of outdoor fires to different air quality metrics. For the post-monsoon burning season, we find that a subset of local meteorological variables (air temperature, humidity, sea level pressure, wind speed and direction) and FRP as the only pollution source explained 39% of variance in Delhi station PM10 anomalies, 77% in visibility, and 30% in satellite AOD; additionally, per unit increase in FRP within the daily airshed (1000 MW), PM10 increases by 16.34 μg m-3, visibility decreases by 0.155 km, and satellite AOD increases by 0.07. In contrast, for the pre-monsoon burning season, we find less significant contributions from FRP to air quality in all three cities. Further, we attribute 99% of FRP from post-monsoon outdoor fires within Delhi's average airshed to agricultural burning. Our work suggests that although outdoor fires are not the dominant air pollution source in India throughout the year, post-monsoon fires contribute substantially to regional air pollution and high levels of population exposure around Delhi. During 3-day blocks of extreme PM2.5 in the 2013 post-monsoon burning season, which coincided

  14. Climatic change in the Great Plains region of Canada

    International Nuclear Information System (INIS)

    Rizzo, B.

    1991-01-01

    Implications of global warming to Canada's Great Plains region are discussed, with reference to the climate predictions of the Goddard Institute for Space Studies (GISS) general circulation model under a two times atmospheric carbon dioxide concentration scenario. Two sets of climate variables for a geographic area located in the Great Plains are tabulated, for the current (1951-1980) climate normals and under the doubled carbon dioxide scenario. Simple univariate statistics were calculated for the two areas, for the variables of mean annual temperature, mean summer temperature, mean winter temperature, mean July temperature, mean growing season temperature, total annual precipitation, total summer precipitation, total winter precipitation, and total growing season precipitation. Under the GISS scenario, temperature values are on average 4 degree C higher than 1951-1980 normals, while precipitation remains about the same. Locations of ecoclimatic regions are graphed for the whole of Canada. 1 fig., 1 tab

  15. FORWINE - Statistical Downscaling of Seasonal forecasts for wine

    Science.gov (United States)

    Cardoso, Rita M.; Soares, Pedro M. M.; Miranda, Pedro M. A.

    2016-04-01

    The most renowned viticulture regions in the Iberian Peninsula have a long standing tradition in winemaking and are considered world-class grapevine (Vitis Vinifera L.) producing regions. Portugal is the 11th wine producer in the world, with internationally acclaimed wines, such as Port wine, and vineyards across the whole territory. Climate is widely acknowledged of one of the most important factors for grapevine development and growth (Fraga et al. 2014a and b; Jackson et al. 1993; Keller 2010). During the growing season (April-October in the Northern Hemisphere) of this perennial and deciduous crop, the climatic conditions are responsible for numerous morphologically and physiological changes. Anomalously low February-March mean temperature, anomalously high May mean temperature and anomalously high March precipitation tend to be favourable to wine production in the Douro Valley. Seasonal forecast of precipitation and temperature tailored to fit critical thresholds, for crucial seasons, can be used to inform management practices (viz. phytosanitary measures, land operations, marketing campaigns) and develop a wine production forecast. Statistical downscaling of precipitation, maximum, minimum temperatures is used to model wine production following Santos et al. (2013) and to calculate bioclimatic indices. The skill of the ensemble forecast is evaluated through anomaly correlation, ROC area, spread-error ratio and CRPS

  16. Projected changes of thermal growing season over Northern Eurasia in a 1.5 °C and 2 °C warming world

    Science.gov (United States)

    Zhou, Baiquan; Zhai, Panmao; Chen, Yang; Yu, Rong

    2018-03-01

    Projected changes of the thermal growing season (TGS) over Northern Eurasia at 1.5 °C and 2 °C global warming levels are investigated using 22 CMIP5 models under both RCP4.5 and RCP8.5 scenarios. The multi-model mean projections indicate Northern Eurasia will experience extended and intensified TGSs in a warmer world. The prolongation of TGSs under 1.5 °C and 2 °C warming is attributed to both earlier onset and later termination, with the latter factor playing a dominating role. Interestingly, earlier onset is of greater importance under RCP4.5 than under RCP8.5 in prolonging TGS as the world warms by an additional 0.5 °C. Under both RCPs, growing degree day sum (GDD) above 5 °C is anticipated to increase by 0 °C-450 °C days and 0 °C-650 °C days over Northern Eurasia at 1.5 °C and 2 °C warming, respectively. However, effective GDD (EGDD) which accumulates optimum temperature for the growth of wheat, exhibits a decline in the south of Central Asia under warmer climates. Therefore, for wheat production over Northern Eurasia, adverse effects incurred by scorching temperatures and resultant inadequacy in water availability may counteract benefits from lengthening and warming TGS. In response to a future 1.5 °C and 2 °C warmer world, proper management and scientifically-tailored adaptation are imperative to optimize local-regional agricultural production.

  17. Seasonal evaluation of the land surface sheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian regions in Hungary

    NARCIS (Netherlands)

    Wipfler, E.L.; Metselaar, K.; Dam, van J.C.; Feddes, R.A.; Meijgaard, van E.; Ulft, van L.H.; Hurk, van den B.; Zwart, S.J.; Bastiaanssen, W.G.M.

    2011-01-01

    The skill of the land surface model HTESSEL is assessed to reproduce evaporation in response to land surface characteristics and atmospheric forcing, both being spatially variable. Evaporation estimates for the 2005 growing season are inferred from satellite observations of the Western part of

  18. Artificial intelligence techniques coupled with seasonality measures for hydrological regionalization of Q90 under Brazilian conditions

    Science.gov (United States)

    Beskow, Samuel; de Mello, Carlos Rogério; Vargas, Marcelle M.; Corrêa, Leonardo de L.; Caldeira, Tamara L.; Durães, Matheus F.; de Aguiar, Marilton S.

    2016-10-01

    Information on stream flows is essential for water resources management. The stream flow that is equaled or exceeded 90% of the time (Q90) is one the most used low stream flow indicators in many countries, and its determination is made from the frequency analysis of stream flows considering a historical series. However, stream flow gauging network is generally not spatially sufficient to meet the necessary demands of technicians, thus the most plausible alternative is the use of hydrological regionalization. The objective of this study was to couple the artificial intelligence techniques (AI) K-means, Partitioning Around Medoids (PAM), K-harmonic means (KHM), Fuzzy C-means (FCM) and Genetic K-means (GKA), with measures of low stream flow seasonality, for verification of its potential to delineate hydrologically homogeneous regions for the regionalization of Q90. For the performance analysis of the proposed methodology, location attributes from 108 watersheds situated in southern Brazil, and attributes associated with their seasonality of low stream flows were considered in this study. It was concluded that: (i) AI techniques have the potential to delineate hydrologically homogeneous regions in the context of Q90 in the study region, especially the FCM method based on fuzzy logic, and GKA, based on genetic algorithms; (ii) the attributes related to seasonality of low stream flows added important information that increased the accuracy of the grouping; and (iii) the adjusted mathematical models have excellent performance and can be used to estimate Q90 in locations lacking monitoring.

  19. Integrating multiscale polar active contours and region growing for microcalcifications segmentation in mammography

    International Nuclear Information System (INIS)

    Arikidis, N S; Karahaliou, A; Skiadopoulos, S; Panagiotakis, G; Costaridou, L; Likaki, E

    2009-01-01

    Morphology of individual microcalcifications is an important clinical factor in microcalcification clusters diagnosis. Accurate segmentation remains a difficult task due to microcalcifications small size, low contrast, fuzzy nature and low distinguishability from surrounding tissue. A novel application of active rays (polar transformed active contours) on B-spline wavelet representation is employed, to provide initial estimates of microcalcification boundary. Then, a region growing method is used with pixel aggregation constrained by the microcalcification boundary estimates, to obtain the final microcalcification boundary. The method was tested on dataset of 49 microcalcification clusters (30 benign, 19 malignant), originating from the DDSM database. An observer study was conducted to evaluate segmentation accuracy of the proposed method, on a 5-point rating scale (from 5:excellent to 1:very poor). The average accuracy rating was 3.98±0.81 when multiscale active rays were combined to region growing and 2.93±0.92 when combined to linear polynomial fitting, while the difference in rating of segmentation accuracy was statistically significant (p < 0.05).

  20. Dynamical Downscaling of Seasonal Climate Prediction over Nordeste Brazil with ECHAM3 and NCEP's Regional Spectral Models at IRI.

    Science.gov (United States)

    Nobre, Paulo; Moura, Antonio D.; Sun, Liqiang

    2001-12-01

    This study presents an evaluation of a seasonal climate forecast done with the International Research Institute for Climate Prediction (IRI) dynamical forecast system (regional model nested into a general circulation model) over northern South America for January-April 1999, encompassing the rainy season over Brazil's Nordeste. The one-way nesting is one in two tiers: first the NCEP's Regional Spectral Model (RSM) runs with an 80-km grid mesh forced by the ECHAM3 atmospheric general circulation model (AGCM) outputs; then the RSM runs with a finer grid mesh (20 km) forced by the forecasts generated by the RSM-80. An ensemble of three realizations is done. Lower boundary conditions over the oceans for both ECHAM and RSM model runs are sea surface temperature forecasts over the tropical oceans. Soil moisture is initialized by ECHAM's inputs. The rainfall forecasts generated by the regional model are compared with those of the AGCM and observations. It is shown that the regional model at 80-km resolution improves upon the AGCM rainfall forecast, reducing both seasonal bias and root-mean-square error. On the other hand, the RSM-20 forecasts presented larger errors, with spatial patterns that resemble those of local topography. The better forecast of the position and width of the intertropical convergence zone (ITCZ) over the tropical Atlantic by the RSM-80 model is one of the principal reasons for better-forecast scores of the RSM-80 relative to the AGCM. The regional model improved the spatial as well as the temporal details of rainfall distribution, and also presenting the minimum spread among the ensemble members. The statistics of synoptic-scale weather variability on seasonal timescales were best forecast with the regional 80-km model over the Nordeste. The possibility of forecasting the frequency distribution of dry and wet spells within the rainy season is encouraging.

  1. Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent

    Science.gov (United States)

    Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.

    2018-03-01

    In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.

  2. Seasonal exposures to triazine and other pesticides in surface waters in the western Highveld corn-production region in South Africa

    International Nuclear Information System (INIS)

    Du Preez, L.H.; Jansen van Rensburg, P.J.; Jooste, A.M.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G.; Solomon, K.R.

    2005-01-01

    The objective of this study was to characterize concentrations of atrazine, terbuthylazine, and other pesticides in amphibian habitats in surface waters of a corn-production area of the western Highveld region (North-West Province) of South Africa. The study was conducted from November 2001 to June 2002, coinciding with the corn-production season. Pesticide residues were measured at regular intervals in surface water from eight ponds, three in a non-corn-growing area (NCGA) and five within the corn-growing area (CGA). Measured atrazine concentrations differed significantly among sites and between samples. In the five CGA sites, the maximum atrazine concentrations measured during the study ranged from 1.2 to 9.3 μg/L. Although no atrazine was recorded as being applied in the catchment of the three NCGA sites, maximum concentrations from 0.39 to 0.84 μg/L were measured during the study, possibly as a result of atmospheric transport. Maximum measured concentrations of terbuthylazine ranged from 1.22 to 2.1 μg/L in the NCGA sites and from 1.04 to 4.1 μg/L in the CGA sites. The source of terbuthylazine in the NCGA sites may have been in use other than in corn. The triazine degradation products, deisopropylatrazine (DIA) and deethylatrazine (DEA) and diaminochlorotriazine (DACT) were also found in water from both the CGA and NCGA sites. Concentrations of DIA were ≥1 μg/L throughout the season, while DEA concentrations were mostly 2 μg/L in some locations. Concentrations of DACT were highly variable (LOD to 8 μg/L) both before and after planting and application, suggesting that they resulted from historical use of triazines in the area. Other herbicides such as simazine and acetochlor were only detected infrequently and pesticides such as S-metolachlor, cypermethrin, monocrotophos, and terbuphos, known to be used in the CGA, were not detected in any of the samples. Because of dilution by higher than normal rainfall in the study period, these concentrations may

  3. Maize response to time of nitrogen application and planting seasons

    Directory of Open Access Journals (Sweden)

    Parbati Adhikari

    2016-12-01

    Full Text Available Nitrogen (N response by maize differs due to growing seasons, growth stages, duration and growing domain as N losses is higher due to leaching as well as volatilization. Objective of this study was to know the response of split applications of N and growing seasons on maize under Chitwan environments. Field experiments were conducted for two consecutive years at the research field of NMRP Rampur during the winter, spring, and summer seasons of 2012/013 and 2013/014. Experiments were laid out in factorial randomized complete block design with four replications for all the seasons. Early maturing maize genotype Arun-1 EV was used for the experiments. Five splits of recommended dose of N were tested. Grain yield, days to flowering, plant height, ear height, kernel rows per ear, no. of kernels per row, ear length and thousand grain weight significantly differed due to growing seasons and split applications of N. Significantly higher grain yield (3911 kg ha-1 was obtained with the application of 30 kg N ha-1 each at 30, 45, 60, and 75 days after sowing as compared to control (2801 kg ha-1. Regarding the growing seasons, highest grain yield was obtained in winter (4393 kg ha-1 followed by spring (3791 kg ha-1 and summer (2468 kg ha-1 season, respectively. Results of these studies revealed that four splits of N viz. application of 30 kg N each at 30, 45, 60, and 75 days after sowing respectively, would be more economical to minimize N losses from the soil and efficient use of N at critical growth and development stages of maize.

  4. Seasonal variation of low-latitude E-region plasma irregularities studied using Gadanki radar and ionosonde

    Directory of Open Access Journals (Sweden)

    D. V. Phanikumar

    2008-07-01

    Full Text Available In this paper, we present seasonal variation of E region field-aligned irregularities (FAIs observed using the Gadanki radar and compare them with the seasonal variation of Es observed from a nearby location SHAR. During daytime, FAIs occur maximum in summer and throughout the day, as compared to other seasons. During nighttime, FAIs occur equally in both summer and winter, and relatively less in equinoxes. Seasonal variations of Es (i.e. ftEs and fbEs show that the daytime activity is maximum in summer and the nighttime activity is maximum in equinoxes. No relation is found between FAIs occurrence/SNR and ftEs/fbEs. FAIs occurrence, however, is found to be related well with (ftEs−fbEs. This aspect is discussed in the light of the present understanding of the mid-latitude Es-FAIs relationship. The seasonal variations of FAIs observed at Gadanki are compared in detail with those of Piura, which show a significant difference in the daytime observations. The observed difference has been discussed considering the factors governing the generation of FAIs.

  5. Occupancy modeling reveals territory-level effects of nest boxes on the presence, colonization, and persistence of a declining raptor in a fruit-growing region.

    Directory of Open Access Journals (Sweden)

    Megan E Shave

    Full Text Available Nest boxes for predators in agricultural regions are an easily implemented tool to improve local habitat quality with potential benefits for both conservation and agriculture. The potential for nest boxes to increase raptor populations in agricultural regions is of particular interest given their positions as top predators. This study examined the effects of cherry orchard nest boxes on the local breeding population of a declining species, the American Kestrel (Falco sparverius, in a fruit-growing region of Michigan. During the 2013-2016 study, we added a total of 23 new nest boxes in addition to 24 intact boxes installed previously; kestrels used up to 100% of our new boxes each season. We conducted temporally-replicated surveys along four roadside transects divided into 1.6 km × 500 m sites. We developed a multi-season occupancy model under a Bayesian framework and found that nest boxes had strong positive effects on first-year site occupancy, site colonization, and site persistence probabilities. The estimated number of occupied sites increased between 2013 and 2016, which correlated with the increase in number of sites with boxes. Kestrel detections decreased with survey date but were not affected by time of day or activity at the boxes themselves. These results indicate that nest boxes determined the presence of kestrels at our study sites and support the conclusion that the local kestrel population is likely limited by nest site availability. Furthermore, our results are highly relevant to the farmers on whose properties the boxes were installed, for we can conclude that installing a nest box in an orchard resulted in a high probability of kestrels occupying that orchard or the areas adjacent to it.

  6. A Study on the Application of Fuzzy Information Seeded Region Growing in Brain MRI Tissue Segmentation

    Directory of Open Access Journals (Sweden)

    Chuin-Mu Wang

    2014-01-01

    Full Text Available After long-term clinical trials, MRI has been proven to be used in humans harmlessly, and it is popularly used in medical diagnosis. Although MR is highly sensitive, it provides abundant organization information. Therefore, how to transform the multi-spectral images which is easier to be used for doctor’s clinical diagnosis. In this thesis, the fuzzy bidirectional edge detection method is used to solve conventional SRG problem of growing order in the initial seed stages. In order to overcome the problems of the different regions, although it is the same Euclidean distance for region growing and merging process stages, we present the peak detection method to improve them. The standard deviation target generation process (SDTGP is applied to guarantee the regions merging process does not cause over- or undersegmentation. Experimental results reveal that FISRG segments a multispectral MR image much more effectively than FAST and K-means.

  7. Biomorphology and rhythm of seasonal development of the relic species Lobelia dortmanna in oligotrophic lakes of Tver region

    Directory of Open Access Journals (Sweden)

    A. G. Lapirov

    2017-07-01

    Full Text Available This article covers the morphology of the vegetative and generative sphere of a rare relic species, Lobelia dortmanna L. (Lobelioideae. This is the first time that using the modular approach a study has analysed the shoot system of this species and described the structures of all three categories: elementary (EM, universal (UM and basic (OM. This paper describes the life form and analyses the rhythm of seasonal development of the species in the lakes of Tver oblast, and provides data on the seed productivity. As a life form, L. dortmanna is a herbaceous polycarpic, un clearly polycentric shallow-rooted plant with a fibrous root system and non-specialized morphological disintegration. The sympodially growing shoot-system of the plant is formed by two types of different-aged anisotropic replacement shoots: dicyclic vegetative-generative semirosette and annual vegetative rosette shoots. The indicator of actual seed productivity equals on average up to 1621 ± 451 seeds per single vegetative-generative shoot. The module structure of L. dortmanna is presented by 10 variants of elementary modules. The main modules are formed on the basis of a monocarpic dicyclic anisotropic monopodial shoot with the following morpho-functional zones distinguished: 1 the lower zone of inhibition; 2 the recovery zone; 3 the upper zone of inhibition 4 the latent generative zone; 5 the main inflorescence. The functional role of the first three morpho-functional zones of a monocarpic shoot is performed by a minimum number of variants of elementary modules. In the rhythm of seasonal development, the authors distinguished 7 consecutive stages: 1 the period of relative rest; 2 vegetative phase; 3 the phase of budding; 4 flowering; 5 frui ting; 6 secondary activities. By the character of rhythm of seasonal development, L. dortmanna belongs to the group of evergreen plants with a long growing season and middle-late summer flowering.

  8. Infiltration and Soil Loss Changes during the Growing Season under Ploughing and Conservation Tillage

    Directory of Open Access Journals (Sweden)

    Gergely Jakab

    2017-09-01

    Full Text Available Decreased water retention and increased runoff and soil loss are of special importance concerning soil degradation of hilly crop fields. In this study, plots under ploughing (conventional tillage (PT and conservation tillage (CT; 15 years were compared. Rainfall simulation on 6 m2 plots was applied to determine infiltration and soil loss during the growing season. Results were compared with those measured from 1200 m2 plots exposed to natural rainfalls in 2016. Infiltration was always higher under CT than PT, whereas the highest infiltration was measured under the cover crop condition. Infiltration under seedbed and stubble resulted in uncertainties, which suggests that natural pore formation can be more effective at improving soil drainage potential than can temporary improvements created by soil tillage operations. Soil erodibility was higher under PT for each soil status; however, the seedbed condition triggered the highest values. For CT, soil loss volume was only a function of runoff volume at both scales. Contrarily, on PT plots, some extreme precipitation events triggered extremely high soil loss owing to linear erosion, which meant no direct connection existed between the scales. Improved soil conditions due to conservation practice are more important for decreasing soil loss than the better surface conditions.

  9. Regional, Seasonal, and Temporal Variations in the Prevalence of Antimicrobial-Resistant Escherichia coli Isolated from Pigs at Slaughter in Denmark (1997-2005)

    DEFF Research Database (Denmark)

    Abatih, E. N.; Emborg, Hanne-Dorthe; Jensen, Vibeke Frøkjær

    2009-01-01

    The aim of this study was to analyze and discuss regional, seasonal, and temporal trends in the occurrence of antimicrobial-resistant Escherichia coli isolated from pigs at slaughter in Denmark between 1997 and 2005. Data on antimicrobial-resistant E. coli were obtained from the Danish Integrated...... Antimicrobial Resistance Monitoring and Research Programme database. The Cochran-Armitage trend test was used to detect the presence and evaluate the significance of regional, seasonal, and annual trends in the occurrence of antimicrobial-resistant E. coli for four drugs. Associations between resistance...... of resistant E. coli as compared to the other seasons of the year. Our study provides evidence of statistically significant regional, seasonal, and temporal variations for ampicillin- and streptomycin-resistant E. coli isolated from pigs at slaughter in Denmark between 1997 and 2005....

  10. Segmentasi Pembuluh Darah Retina Pada Citra Fundus Menggunakan Gradient Based Adaptive Thresholding Dan Region Growing

    Directory of Open Access Journals (Sweden)

    Deni Sutaji

    2016-07-01

    Full Text Available AbstrakSegmentasi pembuluh darah pada citra fundus retina menjadi hal yang substansial dalam dunia kedokteran, karena dapat digunakan untuk mendeteksi penyakit, seperti: diabetic retinopathy, hypertension, dan cardiovascular. Dokter membutuhkan waktu sekitar dua jam untuk mendeteksi pembuluh darah retina, sehingga diperlukan metode yang dapat membantu screening agar lebih cepat.Penelitian sebelumnya mampu melakukan segmentasi pembuluh darah yang sensitif terhadap variasi ukuran lebar pembuluh darah namun masih terjadi over-segmentasi pada area patologi. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan metode segmentasi pembuluh darah pada citra fundus retina yang dapat mengurangi over-segmentasi pada area patologi menggunakan Gradient Based Adaptive Thresholding dan Region Growing.Metode yang diusulkan terdiri dari 3 tahap, yaitu segmentasi pembuluh darah utama, deteksi area patologi dan segmentasi pembuluh darah tipis. Tahap segmentasi pembuluh darah utama menggunakan high-pass filtering dan tophat reconstruction pada kanal hijau citra yang sudah diperbaiki kontrasnya sehingga lebih jelas perbedaan antara pembuluh darah dan background. Tahap deteksi area patologi menggunakan metode Gradient Based Adaptive Thresholding. Tahap segmentasi pembuluh darah tipis menggunakan Region Growing berdasarkan informasi label pembuluh darah utama dan label area patologi. Hasil segmentasi pembuluh darah utama dan pembuluh darah tipis kemudian digabungkan sehingga menjadi keluaran sistem berupa citra biner pembuluh darah. Berdasarkan hasil uji coba, metode ini mampu melakukan segmentasi pembuluh darah retina dengan baik pada citra fundus DRIVE, yaitu dengan akurasi rata-rata 95.25% dan nilai Area Under Curve (AUC pada kurva Relative Operating Characteristic (ROC sebesar 74.28%.                           Kata Kunci: citra fundus retina, gradient based adaptive thresholding, patologi, pembuluh darah retina, region growing

  11. Intra-seasonal and Inter-annual variability of Bowen Ratio over rain-shadow region of North peninsular India

    Science.gov (United States)

    Morwal, S. B.; Narkhedkar, S. G.; Padmakumari, B.; Maheskumar, R. S.; Deshpande, C. G.; Kulkarni, J. R.

    2017-05-01

    Intra-seasonal and inter-annual variability of Bowen Ratio (BR) have been studied over the rain-shadow region of north peninsular India during summer monsoon season. Daily grid point data of latent heat flux (LHF), sensible heat flux (SHF) from NCEP/NCAR Reanalysis for the period 1970-2014 have been used to compute daily area-mean BR. Daily grid point rainfall data at a resolution of 0.25° × 0.25° from APHRODITE's Water Resources for the available period 1970-2007 have been used to study the association between rainfall and BR. The study revealed that BR rapidly decreases from 4.1 to 0.29 in the month of June and then remains nearly constant at the same value (≤0.1) in the rest of the season. High values of BR in the first half of June are indicative of intense thermals and convective clouds with higher bases. Low values of BR from July to September period are indicative of weak thermals and convective clouds with lower bases. Intra-seasonal and inter-annual variability of BR is found to be inversely related to precipitation over the region. BR analysis indicates that the land surface characteristics of the study region during July-September are similar to that over oceanic regions as far as intensity of thermals and associated cloud microphysical properties are concerned. Similar variation of BR is found in El Nino and La Nina years. During June, an increasing trend is observed in SHF and BR and decreasing trend in LHF from 1976 to 2014. Increasing trend in the SHF is statistically significant.

  12. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

    Science.gov (United States)

    Niu, Hewen; Kang, Shichang; Wang, Hailong; Zhang, Rudong; Lu, Xixi; Qian, Yun; Paudyal, Rukumesh; Wang, Shijin; Shi, Xiaofei; Yan, Xingguo

    2018-05-01

    Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m-3, respectively. Although the annual mean OC / EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC / EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g-1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol-climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  13. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest

    NARCIS (Netherlands)

    Cai, Z.Q.; Schnitzer, S.A.; Bongers, F.

    2009-01-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage

  14. Patterns of Seasonal Heat Uptake and Release Over the Arctic Ocean Between 1979-2016

    Science.gov (United States)

    Helmberger, M. N.; Serreze, M. C.

    2017-12-01

    As the Arctic Ocean loses its sea ice cover, there is a stronger oceanic heat gain from the surface fluxes throughout the spring and summer; ultimately meaning that there is more energy to transfer out of the ocean to the atmosphere and outer space in the autumn and winter. Recent work has shown that the increased oceanic heat content at the end of summer in turn delays autumn ice growth, with implications for marine shipping and other economic activities. Some of the autumn and winter heat loss to the atmosphere is represented by evaporation, which increases the atmospheric water vapor content, and there is growing evidence that this is contributing to increases in regional precipitation. However, depending on patterns of seasonal sea ice retreat and weather conditions, the spring-summer heat uptake and autumn-winter heat loss can be highly variable from year to year and regionally. Here, we examine how the seasonality in upper ocean heat uptake and release has evolved over the past 37 years and the relationships between this seasonal heat gain and loss and the evolution of sea ice cover. We determine which regions have seen the largest increases in total seasonal heat uptake and how variable this uptake can be. Has the timing at which the Arctic Ocean (either as a whole or by region) transitions from an atmospheric energy sink to an atmospheric energy source (or from a source to a sink) appreciably changed? What changes have been observed in the seasonal rates of seasonal heat uptake and release? To begin answering these questions, use is made of surface fluxes from the ERA-Interim reanalysis and satellite-derived sea ice extent spanning the period 1979 through the present. Results from ERA-Interim will be compared to those from other reanalyses and satellite-derived flux estimates.

  15. A data assimilation framework for constraining upscaled cropland carbon flux seasonality and biometry with MODIS

    Directory of Open Access Journals (Sweden)

    O. Sus

    2013-04-01

    Full Text Available Agroecosystem models are strongly dependent on information on land management patterns for regional applications. Land management practices play a major role in determining global yield variability, and add an anthropogenic signal to the observed seasonality of atmospheric CO2 concentrations. However, there is still little knowledge on spatial and temporal variability of important farmland activities such as crop sowing dates, and thus these remain rather crudely approximated within carbon cycle studies. In this study, we present a framework allowing for spatio-temporally resolved simulation of cropland carbon fluxes under observational constraints on land management and canopy greenness. We apply data assimilation methodology in order to explicitly account for information on sowing dates and model leaf area index. MODIS 250 m vegetation index data were assimilated both in batch-calibration for sowing date estimation and sequentially for improved model state estimation, using the ensemble Kalman filter (EnKF, into a crop carbon mass balance model (SPAc. In doing so, we are able to quantify the multiannual (2000–2006 regional carbon flux and biometry seasonality of maize–soybean crop rotations surrounding the Bondville Ameriflux eddy covariance site, averaged over 104 pixel locations within the wider area. (1 Validation at the Bondville site shows that growing season C cycling is simulated accurately with MODIS-derived sowing dates, and we expect that this framework allows for accurate simulations of C cycling at locations for which ground-truth data are not available. Thus, this framework enables modellers to simulate current (i.e. last 10 yr carbon cycling of major agricultural regions. Averaged over the 104 field patches analysed, relative spatial variability for biometry and net ecosystem exchange ranges from ∼7% to ∼18%. The annual sign of net biome productivity is not significantly different from carbon neutrality. (2 Moreover

  16. Genotype by region and season interactions on weaning weight in United States Angus cattle.

    Science.gov (United States)

    Williams, J L; Lukaszewicz, M; Bertrand, J K; Misztal, I

    2012-10-01

    The objective of this study was to determine if weaning weight performance is genetically consistent across different environments in the United States. The American Angus Association provided weight and pedigree data. Weaning weights observed in the Southeast (SoE) and Northwest (NW) were the focus of this study, as these regions are perceived as opposite extremes in climate. The 2 most represented calving seasons in each region were fall and winter in the SoE and winter and spring in the NW. The original data were edited to remove weaning weight records outside of 3 SD from the respective region-season mean, contemporary groups smaller than 20, and single-sire contemporary groups. The final dataset included 884,465 weaning weight records with 64,907 from fall-born calves in the SoE, 74,820 from winter-born calves in the SoE, 346,724 from winter-born calves in the NW and 398,014 from spring-born calves in the NW. Weaning weights of calves born in different region-season classes adjusted to 205 d of age were considered different but genetically correlated traits in a multivariate analysis. The sole fixed effect was weaning contemporary group and random effects included direct, maternal, maternal permanent environment, and a residual. Direct heritability estimates differed little across environments: 0.31 and 0.35 for weight in fall- and winter-born calves in the SoE, and 0.29 and 0.32 for winter- and spring-born calves in NW. Maternal heritability estimates ranged from 0.12 in the NW to 0.16 the SoE. Genetic correlations spanned from 0.69 to 0.93 among direct effects and from 0.65 to 0.95 among maternal effects. All heritability estimates had small (0.01 to 0.04) SE. The most distinct environments appeared to be winter in SoE and spring in NW (correlations of 0.69 and 0.65 for the direct and maternal effects). Different choices of sires for different environments might be justified to achieve the growth performance expected.

  17. Trends and homogeneity of monthly, seasonal, and annual rainfall over arid region of Rajasthan, India

    Science.gov (United States)

    Meena, Hari Mohan; Machiwal, Deepesh; Santra, Priyabrata; Moharana, Pratap Chandra; Singh, D. V.

    2018-05-01

    Knowledge of rainfall variability is important for regional-scale planning and management of water resources in agriculture. This study explores spatio-temporal variations, trends, and homogeneity in monthly, seasonal, and annual rainfall series of 62 stations located in arid region of Rajasthan, India using 55 year (1957-2011) data. Box-whisker plots indicate presence of outliers and extremes in annual rainfall, which made the distribution of annual rainfall right-skewed. Mean and coefficient of variation (CV) of rainfall reveals a high inter-annual variability (CV > 200%) in the western portion where the mean annual rainfall is very low. A general gradient of the mean monthly, seasonal, and annual rainfall is visible from northwest to southeast direction, which is orthogonal to the gradient of CV. The Sen's innovative trend test is found over-sensitive in evaluating statistical significance of the rainfall trends, while the Mann-Kendall test identifies significantly increasing rainfall trends in June and September. Rainfall in July shows prominently decreasing trends although none of them are found statistically significant. Monsoon and annual rainfall show significantly increasing trends at only four stations. The magnitude of trends indicates that the rainfall is increasing at a mean rate of 1.11, 2.85, and 2.89 mm year-1 in August, monsoon season, and annual series. The rainfall is found homogeneous over most of the area except for few stations situated in the eastern and northwest portions where significantly increasing trends are observed. Findings of this study indicate that there are few increasing trends in rainfall of this Indian arid region.

  18. PRODUCTIVITY OF GROWING PONDS WHEN APPLYING THE BACTERIAL FERTILIZER «PHOSPHOBAKTERIN»

    Directory of Open Access Journals (Sweden)

    Т. Hryhorenko

    2017-09-01

    Full Text Available Purpose. To investigate the effect of the bacterial fertilizer "Phosphobacterin" on the formation of the hydrochemical regime, development of the natural food supply and fish productivity in the growing ponds. Methodology. The work was conducted according to generally accepted hydrochemical,, microbiological, hydrobiological and fish farming methods. Findings The article presents the results of a study of the productivity of growing ponds with different methods of the application of the bacterial fertilizer "Phosphobacterin". It was found that the hydrochemical regime of the experimental ponds was formed under the effect of the source of water supply and measures aimed at intensifying the development of the natural food supply and was favorable for the development of feed organisms and the cultivation of fish seeds. Application of the bacterial fertilizer at the beginning of the growing season along the water pond surface proved to be little effective for increasing the productivity of the pond ecosystem as a whole. A more effective method of increasing biological productivity, including fish productivity of growing ponds, was the application of "Phosphobacterin" during the growing season both on the bed and on the water surface in combination with the organic fertilizer - cattle humus. In the experimental pond under complex fertilization, the average phytoplankton biomass during the growing season was 1.5 times, bacterioplankton 1.1 times, zoobenthos 2.6 times higher, and the obtained total fish productivity was 1.2 times higher than in the control pond (when applying only cattle humus. Originality. The peculiarities of formation of hydrochemical and hydrobiological (phyto-, bacterio-, zooplankton, zoobenthos regimes of growing ponds and the fishery indices are studied, both for bacterial fertilizer "Phosphobacterin" independently and together with the traditional organic fertilizer - cattle humus. Practical value. Based on the obtained results

  19. Spatial and seasonal patterns in urban influence on regional concentrations of speciated aerosols across the United States

    Science.gov (United States)

    Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M.; Frank, N. H.

    2014-11-01

    Monthly, seasonal, and annual mean estimates of urban influence on regional concentrations of major aerosol species were computed using speciated aerosol data from the rural IMPROVE network (Interagency Monitoring of Protected Visual Environments) and the United States Environmental Protection Agency's urban Chemical Speciation Network for the 2008 through 2011 period. Aggregated for sites across the continental United States, the annual mean and one standard error in urban excess (defined as the ratio of urban to nearby rural concentrations) was highest for elemental carbon (3.3 ± 0.2), followed by ammonium nitrate (2.5 ± 0.2), particulate organic matter (1.78 ± 0.08), and ammonium sulfate (1.23 ± 0.03). The seasonal variability in urban excess was significant for carbonaceous aerosols and ammonium nitrate in the West, in contrast to the low seasonal variability in the urban influence of ammonium sulfate. Generally for all species, higher excess values in the West were associated with localized urban sources while in the East excess was more regional in extent. In addition, higher excess values in the western United States in winter were likely influenced not only by differences in sources but also by combined meteorological and topographic effects. This work has implications for understanding the spatial heterogeneity of major aerosol species near the interface of urban and rural regions and therefore for designing appropriate air quality management strategies. In addition, the spatial patterns in speciated mass concentrations provide constraints for regional and global models.

  20. Seasonal evaluation of the land surface scheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian region in Hungary

    Directory of Open Access Journals (Sweden)

    E. L. Wipfler

    2011-04-01

    Full Text Available The skill of the land surface model HTESSEL is assessed to reproduce evaporation in response to land surface characteristics and atmospheric forcing, both being spatially variable. Evaporation estimates for the 2005 growing season are inferred from satellite observations of the Western part of Hungary and compared to model outcomes. Atmospheric forcings are obtained from a hindcast run with the Regional Climate Model RACMO2. Although HTESSEL slightly underpredicts the seasonal evaporative fraction as compared to satellite estimates, the mean, 10th and 90th percentile of this variable are of the same magnitude as the satellite observations. The initial water as stored in the soil and snow layer does not have a significant effect on the statistical properties of the evaporative fraction. However, the spatial distribution of the initial soil and snow water significantly affects the spatial distribution of the calculated evaporative fraction and the models ability to reproduce evaporation correctly in low precipitation areas in the considered region. HTESSEL performs weaker in dryer areas. In Western Hungary these areas are situated in the Danube valley, which is partly covered by irrigated cropland and which also may be affected by shallow groundwater. Incorporating (lateral groundwater flow and irrigation, processes that are not included now, may improve HTESSELs ability to predict evaporation correctly. Evaluation of the model skills using other test areas and larger evaluation periods is needed to confirm the results.

    Based on earlier sensitivity analysis, the effect of a number of modifications to HTESSEL has been assessed. A more physically based reduction function for dry soils has been introduced, the soil depth is made variable and the effect of swallow groundwater included. However, the combined modification does not lead to a significantly improved performance of HTESSEL.

  1. Regional Atmospheric CO2 Inversion Reveals Seasonal and Geographic Differences in Amazon Net Biome Exchange

    Science.gov (United States)

    Alden, Caroline B.; Miller, John B.; Gatti, Luciana V.; Gloor, Manuel M.; Guan, Kaiyu; Michalak, Anna M.; van der Laan-Luijkx, Ingrid; Touma, Danielle; Andrews, Arlyn; Basso, Luana G.; hide

    2016-01-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (Approx.1-8 x 10(exp -6) km2) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  2. High seasonal variation in entomologic inoculation rates in Eritrea, a semi-arid region of unstable malaria in Africa.

    Science.gov (United States)

    Shililu, Josephat; Ghebremeskel, Tewolde; Mengistu, Solomon; Fekadu, Helen; Zerom, Mehari; Mbogo, Charles; Githure, John; Novak, Robert; Brantly, Eugene; Beier, John C

    2003-12-01

    Entomologic studies were conducted in eight villages to investigate the patterns of malaria transmission in different ecologic zones in Eritrea. Mosquito collections were conducted for 24 months between September 1999 and January 2002. The biting rates of Anopheles arabiensis were highly seasonal, with activity concentrated in the wet season between June and October in the highlands and western lowlands, and between December and March in the coastal region. The biting rates in the western lowlands were twice as high as in the western escarpment and 20 times higher than in the coastal region. Sporozoite rates were not significantly different among villages. The risk of infection ranged from zero on the coast to 70.6 infective bites per year in the western lowlands. The number of days it would take for an individual to receive an infective bite from an infected An. arabiensis was variable among villages (range = 2.8-203.1 days). The data revealed the presence of only one main malaria transmission period between July and October for the highlands and western lowlands. Peak inoculation rates were recorded in August and September (range = 0.29-43.6 infective bits/person/month) at all sites over the two-year period. The annual entomologic inoculation rates (EIRs) varied greatly depending on year. The EIR profiles indicated that the risk of exposure to infected mosquitoes is highly heterogeneous and seasonal, with high inoculation rates during the rainy season, and with little or no transmission during the dry season. This study demonstrates the need to generate spatial and temporal data on transmission intensity on smaller scales to guide targeted control of malaria operations in semi-arid regions. Furthermore, EIR estimates derived in the present study provide a means of quantifying levels of exposure to infected mosquitoes in different regions of the country and could be important for evaluating the efficacy of vector control measures, since Eritrea has made

  3. Segmentation of Large Unstructured Point Clouds Using Octree-Based Region Growing and Conditional Random Fields

    Science.gov (United States)

    Bassier, M.; Bonduel, M.; Van Genechten, B.; Vergauwen, M.

    2017-11-01

    Point cloud segmentation is a crucial step in scene understanding and interpretation. The goal is to decompose the initial data into sets of workable clusters with similar properties. Additionally, it is a key aspect in the automated procedure from point cloud data to BIM. Current approaches typically only segment a single type of primitive such as planes or cylinders. Also, current algorithms suffer from oversegmenting the data and are often sensor or scene dependent. In this work, a method is presented to automatically segment large unstructured point clouds of buildings. More specifically, the segmentation is formulated as a graph optimisation problem. First, the data is oversegmented with a greedy octree-based region growing method. The growing is conditioned on the segmentation of planes as well as smooth surfaces. Next, the candidate clusters are represented by a Conditional Random Field after which the most likely configuration of candidate clusters is computed given a set of local and contextual features. The experiments prove that the used method is a fast and reliable framework for unstructured point cloud segmentation. Processing speeds up to 40,000 points per second are recorded for the region growing. Additionally, the recall and precision of the graph clustering is approximately 80%. Overall, nearly 22% of oversegmentation is reduced by clustering the data. These clusters will be classified and used as a basis for the reconstruction of BIM models.

  4. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacieri region of the southeastern Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Hewen; Kang, Shichang; Wang, Hailong; Zhang, Rudong; Lu, Xixi; Qian, Yun; Paudyal, Rukumesh; Wang, Shijin; Shi, Xiaofei; Yan, Xingguo

    2018-05-07

    Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  5. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    H. Niu

    2018-05-01

    Full Text Available Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016 of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ basin are analyzed. The average elemental carbon (EC and organic carbon (OC concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l.  of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 % to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  6. Seasonal exposures to triazine and other pesticides in surface waters in the western Highveld corn-production region in South Africa

    Science.gov (United States)

    Du Preez, L.H.; Jansen Van Rensburg, P.J.; Jooste, A.M.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G.; Solomon, K.R.

    2005-01-01

    The objective of this study was to characterize concentrations of atrazine, terbuthylazine, and other pesticides in amphibian habitats in surface waters of a corn-production area of the western Highveld region (North-West Province) of South Africa. The study was conducted from November 2001 to June 2002, coinciding with the corn-production season. Pesticide residues were measured at regular intervals in surface water from eight ponds, three in a non-corn-growing area (NCGA) and five within the corn-growing area (CGA). Measured atrazine concentrations differed significantly among sites and between samples. In the five CGA sites, the maximum atrazine concentrations measured during the study ranged from 1.2 to 9.3 ??g/L. Although no atrazine was recorded as being applied in the catchment of the three NCGA sites, maximum concentrations from 0.39 to 0.84 ??g/L were measured during the study, possibly as a result of atmospheric transport. Maximum measured concentrations of terbuthylazine ranged from 1.22 to 2.1 ??g/L in the NCGA sites and from 1.04 to 4.1 ??g/L in the CGA sites. The source of terbuthylazine in the NCGA sites may have been in use other than in corn. The triazine degradation products, deisopropylatrazine (DIA) and deethylatrazine (DEA) and diaminochlorotriazine (DACT) were also found in water from both the CGA and NCGA sites. Concentrations of DIA were ??? 1 ??g/L throughout the season, while DEA concentrations were mostly 2 ??g/L in some locations. Concentrations of DACT were highly variable (LOD to 8 ??g/L) both before and after planting and application, suggesting that they resulted from historical use of triazines in the area. Other herbicides such as simazine and acetochlor were only detected infrequently and pesticides such as S-metolachlor, cypermethrin, monocrotophos, and terbuphos, known to be used in the CGA, were not detected in any of the samples. Because of dilution by higher than normal rainfall in the study period, these concentrations may

  7. Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season

    Science.gov (United States)

    Bachy, Aurélie; Aubinet, Marc; Schoon, Niels; Amelynck, Crist; Bodson, Bernard; Moureaux, Christine; Heinesch, Bernard

    2016-04-01

    Maize is the most important C4 crop worldwide. It is also the second most important crop worldwide (C3 and C4 mixed), and is a dominant crop in some world regions. Therefore, it can potentially influence local climate and air quality through its exchanges of gases with the atmosphere. Among others, biogenic volatile organic compounds (BVOC) are known to influence the atmospheric composition and thereby modify greenhouse gases lifetime and pollutant formation in the atmosphere. However, so far, only two studies have dealt with BVOC exchanges from maize. Moreover, these studies were conducted on a limited range of meteorological and phenological conditions, so that the knowledge of BVOC exchanges by this crop remains poor. Here, we present the first BVOC measurement campaign performed at ecosystem-scale on a maize field during a whole growing season. It was carried out in the Lonzée Terrestrial Observatory (LTO), an ICOS site. BVOC fluxes were measured by the disjunct by mass-scanning eddy covariance technique with a proton transfer reaction mass spectrometer for BVOC mixing ratios measurements. Outstanding results are (i) BVOC exchanges from soil were as important as BVOC exchanges from maize itself; (ii) BVOC exchanges observed on our site were much lower than exchanges observed by other maize studies, even under normalized temperature and light conditions, (iii) they were also lower than those observed on other crops grown in Europe. Lastly (iv), BVOC exchanges observed on our site under standard environmental conditions, i.e., standard emission factors SEF, were much lower than those currently considered by BVOC exchange up-scaling models. From those observations, we deduced that (i) soil BVOC exchanges should be better understood and should be incorporated in terrestrial BVOC exchanges models, and that (ii) SEF for the C4 crop plant functional type cannot be evaluated at global scale but should be determined for each important agronomic and pedo-climatic region

  8. Algorithms for in-season nutrient management in cereals

    Science.gov (United States)

    The demand for improved decision making products for cereal production systems has placed added emphasis on using plant sensors in-season, and that incorporate real-time, site specific, growing environments. The objective of this work was to describe validated in-season sensor based algorithms prese...

  9. Application of remote sensing for analyzing climatic variation in the boreal and subarctic regions of Canada and for validating the Canadian Regional Climate Model; Application de la teledetection a l'analyse de la variabilite climatique des regions boreales et subarctiques du Canada et a la validation du modele regional canadien du climat

    Energy Technology Data Exchange (ETDEWEB)

    Fillol, E.J.

    2003-07-01

    This study examined climate variations over the past few decades as well as the tools used to model future climate. The study included an interpretation of the National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR) time series data at the continental spatial scale. Data collected over a period of two decades was used to study and monitor Canada's boreal ecosystem activity and to observe recent climatic change. The study involved the use of classical parameters associated with remote sensing in the visible and thermal infrared spectra for vegetation activity and land-surface temperatures. Problems associated with instrumental drift and inter-satellite adjustment were minimized by choosing indicators for the length of the growing season, annual growing degree-days and ecotone displacement. Climate variations over the past twenty years were compared with daily meteorological data of temperature, precipitation and snow cover. Rapid cycle climatic phenomena such as the El Nino and La Nina appear to have influenced the central region of Canada. The North Atlantic Oscillation and Arctic Oscillation also influenced the climate regime of Canada and annual growing degree-days. Indicators for vegetation activity and land-surface temperature suggest that a North-South disparity exists over Canada. A warming trend with an increased growing season was observed for the region north of the 55 parallel, while southern regions appear to be cooling. This study also used remote sensing to validate the Canadian Regional Climate Model (CRCM) through a comparison of ground temperature values modelled by the CRCM with composite satellite temperatures. The results indicate a small under-estimation of the CRCM ground temperature during the summer due to an overestimation of the precipitation rate. It was concluded that climate models such as the CRCM are useful in making reliable predictions of future climate trends.

  10. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey

    Science.gov (United States)

    Kara, Melik; Dumanoglu, Yetkin; Altiok, Hasan; Elbir, Tolga; Odabasi, Mustafa; Bayram, Abdurrahman

    2014-11-01

    Atmospheric bulk deposition (wet + dry deposition) samples (n = 40) were collected concurrently at ten sites in four seasons between June 2009 and April 2010 in the Aliaga heavily industrialized region, Turkey, containing a number of significant air pollutant sources. Analyses of trace elements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). While there were significant differences in the particulate matter (PM) deposition fluxes among the sampling sites, seasonal variations were not statistically significant (Kruskal-Wallis test, p < 0.05). Both PM deposition and elemental fluxes were increased at the sampling sites in the vicinity of industrial activities. The crustal elements (i.e., Ca, Mg) and some anthropogenic elements (such as Fe, Zn, Mn, Pb, Cu, and Cr) were high, and the highest fluxes were mostly measured in summer and winter seasons. The enrichment factor (EF) and principal component analysis (PCA) was applied to the data to determine the possible sources in the study area. High EF values were obtained for the anthropogenic elements such as Ag, Cd, Zn, Pb, Cu and Sb. The possible sources were identified as anthropogenic sources (i.e., iron-steel production) (45.4%), crustal and re-suspended dust (27.1%), marine aerosol (7.9%), and coal and wood combustion (8.2%). Thus, the iron-steel production and its related activities were found to be the main pollutant sources for this region.

  11. Does timing of breeding matter less where the grass is greener? Seasonal declines in breeding performance differ between regions in an endangered endemic raptor

    Directory of Open Access Journals (Sweden)

    Marie-Sophie Garcia-Heras

    2016-09-01

    Full Text Available The timing of breeding can strongly influence individual breeding performance and fitness. Seasonal declines in breeding parameters have been often documented in birds, particularly in the Northern Hemisphere. Fewer studies have investigated whether seasonal declines in productivity vary in space, which would have implications for a species’ population dynamics across its distributional range. We report here on variation in the timing of breeding in the Black Harrier (Circus maurus, an endangered and endemic raptor to Southern Africa. We investigated how key breeding parameters (clutch size, nesting success and productivity varied with the timing of breeding, weather conditions (rainfall and temperature and between contrasted regions (coastal vs. interior-mountain. Black Harrier onset of breeding extended over an 8-month period, with a peak of laying between mid-August and end of September. We show a marked seasonal decline in all breeding parameters. Importantly, for clutch size and productivity these seasonal declines differed regionally, being more pronounced in interior-mountain than in coastal regions, where the breeding season was overall shorter. Timing of breeding, clutch size and productivity were also partly explained by weather conditions. In coastal regions, where environmental conditions, in particular rainfall, appear to be less variable, the timing of breeding matters less for breeding output than in interior-mountain regions, and breeding attempts thus occurred over a longer period. The former areas may act as population sources and be key in protecting the long-term population viability of this threatened endemic raptor. This study provides unique evidence for a regionally variable seasonal decline in breeding performance with implications for population biology and conservation.

  12. Influence of growing and exploatation of bovins on regional agroecosystems

    Directory of Open Access Journals (Sweden)

    Cornel Podar

    2011-12-01

    Full Text Available Scientists all over the are concerned regarding the influence of growing ruminants on regional agro-ecosystems due to green house gases resulted (CO 2, CH4, N2O5. Cattle have contributed to environmental pollution in old industrial farming systems, when the cattle number in Romania, reached 8 million, manure evacuation was not solved and manure was accumulating around the farm polluting the soil, water and air. Low density of ruminants existing in the agricultural sector of the country is not significant in terms of pollution. Currently cattle have positive effects on the environment by the use of legumes, grasses and manure production contributing to the increase of agricultural production: crop production (sugar beet, potato and cereals, animal production (milk, meat, leather production and industrial production also (biogas, befouls, alcohol, oil production.

  13. Real-time monitoring of smallholder farmer responses to intra-seasonal climate variability in central Kenya

    Science.gov (United States)

    Krell, N.; Evans, T. P.; Estes, L. D.; Caylor, K. K.

    2017-12-01

    While international metrics of food security and water availability are generated as spatial averages at the regional to national levels, climate variability impacts are differentially felt at the household level. This project investigated scales of variability of climate impacts on smallholder farmers using social and environmental data in central Kenya. Using sub-daily real-time environmental measurements to monitor smallholder agriculture, we investigated how changes in seasonal precipitation affected food security around Laikipia county from September 2015 to present. We also conducted SMS-based surveys of over 700 farmers to understand farmers' decision-making within the growing season. Our results highlight field-scale heterogeneity in biophysical and social factors governing crop yields using locally sensed real-time environmental data and weekly farmer-reported information about planting, harvesting, irrigation, and crop yields. Our preliminary results show relationships between changes in seasonal precipitation, NDVI, and soil moisture related to crop yields and decision-making at several scales. These datasets present a unique opportunity to collect highly spatially and temporally resolved information from data-poor regions at the household level.

  14. Regional Frequency Analysis of Extreme Dry Spells during Rainy Season in the Wei River Basin, China

    Directory of Open Access Journals (Sweden)

    Dunxian She

    2016-01-01

    Full Text Available Our research analyzes the regional changes of extreme dry spell, represented by the annual maximum dry spell length (noted as AMDSL during the rainy season in the Wei River Basin (WRB of China for 1960–2014 using the L-moments method. The mean AMDSL values increase from the west to the east of the WRB, suggesting a high dry risk in the east compared to the west in the WRB. To investigate the regional frequency more reasonably, the WRB is clustered into four homogenous subregions via the K-means method and some subjective adjustments. The goodness-of-fit test shows that the GEV, PE3, and GLO distribution can be accepted as the “best-fit” model for subregions 1 and 4, subregion 2, and subregion 3, respectively. The quantiles of AMDSL under various return levels figure out a similar spatial distribution with mean AMDSL. We also find that the dry risk in subregion 2 and subregion 4 might be higher than that in subregion 1. The relationship between ENSO events and extreme dry spell events in the rainy season with cross wavelet analysis method proves that ENSO events play a critical role in triggering extreme dry events during rainy season in the WRB.

  15. Central Asia in Asia: Charting growing trans-regional linkages

    Directory of Open Access Journals (Sweden)

    Nicola P. Contessi

    2016-01-01

    Full Text Available As the so-called ‘Asian Century’ unfolds, Central Asian countries are increasingly directing their foreign relations eastward. Meanwhile, Asian states are equally turning to Central Asia in their search for energy resources and new markets. This dual dynamic is giving rise to closer and deeper ties in three key areas. As far as infrastructures are concerned, various Asian powers have adopted Silk Road policies that see Central Asia as a fundamental transit route for their long-haul connectivity projects. In the field of trade, Central Asia's exchanges with other Asian countries have been growing steadily since the 1990s, in some cases even coming to rival, in comparative terms, exchanges with the West. Lastly, in terms of multilateralism, Central Asia is increasingly enmeshed in a web of overlapping institutions with a strong Asian identity, coexisting with the region's Western institutional references. The article then problematizes this emerging pattern by sketching out some of the possible ramifications that could stem from the sustainment and consolidation of these trends for the international order and the global balance of power.

  16. Reptile and amphibian response to season of burn in an upland hardwood forest

    Science.gov (United States)

    Cathryn H. Greenberg; Tyler Seiboldt; Tara L. Keyser; W. Henry McNab; Patrick Scott; Janis Bush; Christopher E. Moorman

    2018-01-01

    Growing-season burns are increasingly used in upland hardwood forest for multiple forest management goals. Many species of reptiles and amphibians are ground-dwelling, potentially increasing their vulnerability to prescribed fire, especially during the growing-season when they are most active. We used drift fences with pitfall traps to experimentally assess how...

  17. Seasonal response of biomass growth and allocation of a boreal bioenergy crop (Phalaris arundinacea L.) to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhang

    2013-06-01

    The aim of this work was to analyse how the seasonal biomass growth and allocation in a boreal bioenergy crop (Phalaris arundinacea L., hereafter RCG) were affected by elevated temperature and CO{sub 2} under different levels of groundwater. For this purpose, plants in peat monoliths representing young and old cultivations were grown in auto-controlled environmental chambers over two growing seasons (April-September, 2009 and 2010) under elevated temperature (ambient + 3.5 deg C) and CO{sub 2} (700 {mu}mol mol{sup -1}). (CON: ambient conditions, EC: elevated CO{sub 2}, ET: elevated temperature, ETC: elevated temperature and CO{sub 2}). Three levels of groundwater, ranging from high (HW, 0 cm below the soil surface), to normal (NW, 20 cm below the soil surface) and low (LW, 40 cm below the soil surface), were used. Compared to growth under CON, ET enhanced leaf development and photosynthesis in the RCG plant. Consequently, ET enhanced biomass growth during early growing periods. It also reduced photosynthesis and caused earlier leaf senescence during later growing periods. ET therefore reduced total biomass growth across the entire growing season. EC significantly increased biomass growth throughout the growing period primarily because of increased leaf area and photosynthesis. LW decreased the growth of RCG, mainly because of lower leaf area and photosynthesis. Furthermore, LW accelerated the cessation of growth, thus making the growing season shorter compared with the effects of higher groundwater levels. The LW- induced reductions in biomass growth were exacerbated by ET and partially mitigated by EC. The ETC slightly increased final plant growth. The age of cultivation did not affect the biomass growth among the three major organs (leaf, stem and root) and thus did not affect total biomass growth. Biomass growth was mainly allocated to leaves (LMF) and stems (SMF) in the early growing season, to stems in the middle of the growing season and to roots (RMF) later

  18. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data.

    Directory of Open Access Journals (Sweden)

    Hongjie Yu

    2013-11-01

    Full Text Available The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs.We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p0.6 in provinces located within 27.4°N-31.3°N, slope of latitudinal gradient with latitude -0.016 [95% CI -0.025 to -0.008], p<0.001. In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces.Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid

  19. Qualidade ambiental em solo com diferentes ciclos de cultivo do meloeiro irrigado Environmental quality in soil with different growing season cultivated w ith muskmelon irrigated

    Directory of Open Access Journals (Sweden)

    Celsemy Eleutério Maia

    2013-04-01

    Full Text Available O solo é um importante componente do ecossistema terrestre, porque preserva reservas de nutrientes e dá suporte a processos biológicos. Para a preservação desse recurso, é necessário em primeiro lugar saber as condições e os processos que acontecem no solo, obtidos por meio de índices que determinam a sua qualidade. O objetivo deste trabalho foi avaliar a qualidade ambiental em Latossolo Vermelho cultivado com diferentes ciclos da cultura do melão. Foram coletadas amostras de solos de nove áreas com diferentes ciclos de cultivo e comparados com as da mata nativa. Concluiu-se que a qualidade ambiental diminuiu com os ciclos de cultivo, quando comparada com a área de referência de mata nativa.Soil is an important component of terrestrial ecosystems because it preserves nutrient reserves, supports many biological. To preserve this resource and its functions, it is necessary first of all to know the conditions and the processes occurring in it, for example, through the determination of soil quality. The aim of this study was to evaluate the environmental quality in Oxisol cultivated with different growing season of muskmelon. Were collected soil samples from nine areas with different growing season and compared with the native forest. It was concluded that environmental quality decreased with crop cycles when compared with the reference area of native forest.

  20. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments.

    Science.gov (United States)

    Vandecasteele, Bart; Laing, Gijs Du; Quataert, Paul; Tack, Filip M G

    2005-04-01

    Several authors suggest that a hydrological regime aiming at wetland creation is a potential management option that favours reducing bioavailability for metal-contaminated sites. The hydrological conditions on a site constitute one of the many factors that may affect the availability of potentially toxic trace metals for uptake by plants. Bioavailability of Cd, Mn and Zn on a contaminated dredged sediment landfill (DSL) with variable duration of submersion was evaluated by measuring metal concentrations in the wetland plant species Salix cinerea in field conditions. Longer submersion periods in the field caused lower Cd and Zn concentrations in the leaves in the first weeks of the growing season. Foliar Cd and Zn concentrations at the end of the growing season were highest on the initially flooded plot that emerged early in the growing season. Foliar Zn concentrations were also high at a sandy-textured oxic plot with low soil metal concentrations. Zn uptake in the leaves was markedly slower than Cd uptake for trees growing on soils with prolonged waterlogging during the growing season, pointing at a different availability. Zn availability was lowest when soil was submerged, but metal transfer from stems and twigs to leaves may mask the lower availability of Cd in submerged soils. Especially for Cd, a transfer effect from one growing season to the next season was observed: oxic conditions at the end of the previous growing season seem to determine at least partly the foliar concentrations for S. cinerea through this metal transfer mechanism. Duration of the submersion period is a key factor for bioavailability inasmuch as initially submerged soils emerging only in the second half of the growing season resulted in elevated Cd and Zn foliar concentrations at that time.

  1. Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI, 1982–2011

    Directory of Open Access Journals (Sweden)

    Assaf Anyamba

    2013-09-01

    Full Text Available A 30-year series of global monthly Normalized Difference Vegetation Index (NDVI imagery derived from the Global Inventory Modeling and Mapping Studies (GIMMS NDVI3g archive was analyzed for the presence of trends in changing seasonality. Using the Seasonal Trend Analysis (STA procedure, over half (56.30% of land surfaces were found to exhibit significant trends. Almost half (46.10% of the significant trends belonged to three classes of seasonal trends (or changes. Class 1 consisted of areas that experienced a uniform increase in NDVI throughout the year, and was primarily associated with forested areas, particularly broadleaf forests. Class 2 consisted of areas experiencing an increase in the amplitude of the annual seasonal signal whereby increases in NDVI in the green season were balanced by decreases in the brown season. These areas were found primarily in grassland and shrubland regions. Class 3 was found primarily in the Taiga and Tundra biomes and exhibited increases in the annual summer peak in NDVI. While no single attribution of cause could be determined for each of these classes, it was evident that they are primarily found in natural areas (as opposed to anthropogenic land cover conversions and that they are consistent with climate-related ameliorations of growing conditions during the study period.

  2. Floristics and biogeography of vegetation in seasonally dry tropical regions

    DEFF Research Database (Denmark)

    Dexter, K.G.; Smart, B.; Baldauf, C.

    2015-01-01

    To provide an inter-continental overview of the floristics and biogeography of drought-adapted tropical vegetation formations, we compiled a dataset of inventory plots in South America (n=93), Africa (n=84), and Asia (n=92) from savannas (subject to fire), seasonally dry tropical forests (not...... similar vegetation formations (e.g. savannas) are floristically highly dissimilar. Neotropical moist forest, savanna and seasonally dry tropical forest are floristically distinct, but elsewhere there is no clear floristic division of savanna and seasonally dry tropical forest, though moist and dry...... of the ecology, biology and conservation of savannas and seasonally dry tropical forests may be difficult....

  3. Seasonal Differences in Climatic Controls of Vegetation Growth in the Beijing-Tianjin Sand Source Region of China.

    Science.gov (United States)

    Wang, H.

    2017-12-01

    Seasonal differences in climatic controls of vegetation growth in the Beijing-Tianjin Sand Source Region of China Bin He1 , Haiyan Wan11 State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Corresponding author: Bin He, email addresses: hebin@bnu.edu.cnPhone:+861058806506, Address: Beijing Normal University, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China. Email addresses of co-authors: wanghaiyan@mail.bnu.edu.cnABSTRACTLaunched in 2000, the Beiing-Tainjin Sand Source Controlling Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of the project. Precipitation and related soil moisture conditions typically are considered to be the main drivers of vegetation growth in this arid region. However, by investigating the relationships between vegetation growth and corresponding climatic factors, we identified seasonal variation in the climatic constraints of vegetation growth. In spring, vegetation growth is stimulated mainly by elevated temperature, whereas precipitation is the lead driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. Furthermore, strong biosphere-atmosphere interactions were observed in this region. Spring warming promotes vegetation growth, but also reduces soil moisture. Summer greening has a strong cooling effect on land surface temperature. These results indicate that 1) precipitation-based projections of vegetation growth may be misleading; and 2) the ecological and environment consequences of ecological projects should be comprehensively evaluated. KEYWORDS: vegetation growth, climatic drivers, seasonal variation, BTSSCP

  4. Seasonal variation of low-latitude E-region plasma irregularities studied using Gadanki radar and ionosonde

    Directory of Open Access Journals (Sweden)

    D. V. Phanikumar

    2008-07-01

    Full Text Available In this paper, we present seasonal variation of E region field-aligned irregularities (FAIs observed using the Gadanki radar and compare them with the seasonal variation of Es observed from a nearby location SHAR. During daytime, FAIs occur maximum in summer and throughout the day, as compared to other seasons. During nighttime, FAIs occur equally in both summer and winter, and relatively less in equinoxes. Seasonal variations of Es (i.e. ftEs and fbEs show that the daytime activity is maximum in summer and the nighttime activity is maximum in equinoxes. No relation is found between FAIs occurrence/SNR and ftEs/fbEs. FAIs occurrence, however, is found to be related well with (ftEs−fbEs. This aspect is discussed in the light of the present understanding of the mid-latitude Es-FAIs relationship. The seasonal variations of FAIs observed at Gadanki are compared in detail with those of Piura, which show a significant difference in the daytime observations. The observed difference has been discussed considering the factors governing the generation of FAIs.

  5. Simulation of water management for fodder beet to reduce yield losses under late season drought

    Directory of Open Access Journals (Sweden)

    T. Noreldin

    2016-12-01

    Full Text Available The objectives of this study were to calibrate CropSyst model for fodder beet grown under full and late season drought and to use the simulation results to analyze the relationship between irrigation amount and yield, as well as in water management to reduce yield losses under full and late season drought. For this reason, two field experiments were implemented at El-Serw Agricultural Research Station in Demiatte governorate, during 2011/12 and 2012/13 growing seasons. Two irrigation treatments were studied: full irrigation and late season drought. The model was calibrated using the data obtained from the two seasons. Results indicated that the reduction in fodder beet yield under late season drought was 11 and 12% in 2011/12 and 2012/13 growing seasons, respectively. Calibration of CropSyst revealed that the percentage of difference between measured and predicted values were low in both growing seasons. The results also indicated that changing irrigation schedule after examining water stress index under full and late season drought led to increase in fodder beet yield, as well as water and land productivity. Thus, CropSyst model can give insight into when to apply irrigation water to minimize yield losses under late season drought.

  6. Managed aquifer recharge through off-season irrigation in agricultural regions

    Science.gov (United States)

    Niswonger, Richard G.; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-08-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7-13%, increase crop consumptive use by 9-12%, and increase natural vegetation consumption by 20-30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  7. Managed aquifer recharge through off-season irrigation in agricultural regions

    Science.gov (United States)

    Niswonger, Richard; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-01-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7–13%, increase crop consumptive use by 9–12%, and increase natural vegetation consumption by 20–30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  8. Impacts of Land Cover and Seasonal Variation on Maximum Air Temperature Estimation Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Yulin Cai

    2017-03-01

    Full Text Available Daily maximum surface air temperature (Tamax is a crucial factor for understanding complex land surface processes under rapid climate change. Remote detection of Tamax has widely relied on the empirical relationship between air temperature and land surface temperature (LST, a product derived from remote sensing. However, little is known about how such a relationship is affected by the high heterogeneity in landscapes and dynamics in seasonality. This study aims to advance our understanding of the roles of land cover and seasonal variation in the estimation of Tamax using the MODIS (Moderate Resolution Imaging Spectroradiometer LST product. We developed statistical models to link Tamax and LST in the middle and lower reaches of the Yangtze River in China for five major land-cover types (i.e., forest, shrub, water, impervious surface, cropland, and grassland and two seasons (i.e., growing season and non-growing season. Results show that the performance of modeling the Tamax-LST relationship was highly dependent on land cover and seasonal variation. Estimating Tamax over grasslands and water bodies achieved superior performance; while uncertainties were high over forested lands that contained extensive heterogeneity in species types, plant structure, and topography. We further found that all the land-cover specific models developed for the plant non-growing season outperformed the corresponding models developed for the growing season. Discrepancies in model performance mainly occurred in the vegetated areas (forest, cropland, and shrub, suggesting an important role of plant phenology in defining the statistical relationship between Tamax and LST. For impervious surfaces, the challenge of capturing the high spatial heterogeneity in urban settings using the low-resolution MODIS data made Tamax estimation a difficult task, which was especially true in the growing season.

  9. Effect of corn dry distiller grains plus solubles supplementation level on performance and digestion characteristics of steers grazing native range during forage growing season.

    Science.gov (United States)

    Martínez-Pérez, M F; Calderón-Mendoza, D; Islas, A; Encinias, A M; Loya-Olguín, F; Soto-Navarro, S A

    2013-03-01

    Two experiments were conducted to evaluate effects of corn dry distiller grains plus condensed solubles (DDGS) supplementation level on performance digestion characteristics of steers grazing native range during the forage growing season. In the performance study, 72 (206 ± 23.6 kg; 2008) and 60 (230 ± 11.3 kg; 2009) English crossbred steer calves were used in a randomized complete block design replicated over 2 yr. The grazing periods lasted 56 and 58 d and started on August 11 and 18 for 2008 and 2009, respectively. Each year, steers were blocked by BW (light, medium, and heavy), stratified by BW within blocks, and randomly assigned to 1 of 4 grazing groups. Each grazing group (6 steers in 2008 and 5 in 2009) was assigned to a DDGS supplementation levels (0, 0.2, 0.4, and 0.6% BW). Grazing group served as the experimental unit with 12 groups per year receiving 1 of 4 treatments for 2 yr (n = 6). In the metabolism study, 16 English crossbred steers (360 ± 28.9 kg) fitted with ruminal cannulas grazing native range during the summer growing season were used in a completely randomized design to evaluate treatment effects on forage intake and digestion. The experiment was conducted during the first and second weeks of October 2008. Steers were randomly assigned to supplement level (0, 0.2, 0.4, and 0.6% BW; n = 4) and grazed a single native range pasture with supplements offered individually once daily at 0700 h. In the performance study, ADG (0.64, 0.75, 0.80, and 0.86 ± 0.03 kg/d for 0, 0.2, 0.4, and 0.6% BW, respectively) increased linearly (P = 0.01) with increasing DDGS supplementation level. In the metabolism study, forage OM, NDF, CP, and ether extract (EE) intake decreased (P ≤ 0.05) linearly with increasing DDGS supplementation level. Total CP and EE intake increased (P ≤ 0.002) with increasing DDGS supplementation level. Digestibility of OM, NDF, and EE increased (linear; P ≤ 0.008) whereas the soluble CP fraction of forage masticate sample

  10. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    International Nuclear Information System (INIS)

    Dyson, Brian; Chang, N.-B.

    2005-01-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues

  11. Seasonality of cavitation and frost fatigue in Acer mono Maxim.

    Science.gov (United States)

    Zhang, Wen; Feng, Feng; Tyree, Melvin T

    2017-12-08

    Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation-refilling and freeze-thaw cycles for a whole year. Cavitation resistance was determined from 'vulnerability curves' showing the percent loss of conductivity versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation-refilling cycle, whereas frost fatigue was caused by a freeze-thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12-month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes. © 2017 John Wiley & Sons Ltd.

  12. A study of regional trends in annual and seasonal precipitation and runoff series

    Energy Technology Data Exchange (ETDEWEB)

    Tveito, O.E.; Hisdal, H.

    1994-03-10

    In this study long and homogeneous time series of runoff and precipitation are studied to identify variations in time and space. The method of empirical orthogonal functions (EOF-method) is applied. Both annual observations, smoothed (using Gauss filter) and seasonal values are analyzed. The analysis shows that the temporal variations in runoff and precipitation coincide. The deviations occurring in the seasonal values are caused by snow accumulation and snow melt. In the filtered series temporal trends are found. A comparison between the different normal periods has been carried out for precipitation. The 1900-30 and 1960-90 periods differ from the 1930-60 period. This may be caused by different weather types dominating the different periods. The different weather types are reflected in different empirical orthogonal functions. This is verified by regional studies. The coinciding patterns in runoff and precipitation are important aspects in climate studies and for extrapolation purposes. 11 refs., 20 figs., 1 tab.

  13. Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam.

    Science.gov (United States)

    Thai, Pham Quang; Choisy, Marc; Duong, Tran Nhu; Thiem, Vu Dinh; Yen, Nguyen Thu; Hien, Nguyen Tran; Weiss, Daniel J; Boni, Maciej F; Horby, Peter

    2015-12-01

    Experimental and ecological studies have shown the role of climatic factors in driving the epidemiology of influenza. In particular, low absolute humidity (AH) has been shown to increase influenza virus transmissibility and has been identified to explain the onset of epidemics in temperate regions. Here, we aim to study the potential climatic drivers of influenza-like illness (ILI) epidemiology in Vietnam, a tropical country characterized by a high diversity of climates. We specifically focus on quantifying and explaining the seasonality of ILI. We used 18 years (1993-2010) of monthly ILI notifications aggregated by province (52) and monthly climatic variables (minimum, mean, maximum temperatures, absolute and relative humidities, rainfall and hours of sunshine) from 67 weather stations across Vietnam. Seasonalities were quantified from global wavelet spectra, using the value of the power at the period of 1 year as a measure of the intensity of seasonality. The 7 climatic time series were characterized by 534 summary statistics which were entered into a regression tree to identify factors associated with the seasonality of AH. Results were extrapolated to the global scale using simulated climatic times series from the NCEP/NCAR project. The intensity of ILI seasonality in Vietnam is best explained by the intensity of AH seasonality. We find that ILI seasonality is weak in provinces experiencing weak seasonal fluctuations in AH (annual power power >17.6). In Vietnam, AH and ILI are positively correlated. Our results identify a role for AH in driving the epidemiology of ILI in a tropical setting. However, in contrast to temperate regions, high rather than low AH is associated with increased ILI activity. Fluctuation in AH may be the climate factor that underlies and unifies the seasonality of ILI in both temperate and tropical regions. Alternatively, the mechanism of action of AH on disease transmission may be different in cold-dry versus hot-humid settings

  14. Environmental Growing Conditions in Five Production Systems Induce Stress Response and Affect Chemical Composition of Cocoa (Theobroma cacao L.) Beans.

    Science.gov (United States)

    Niether, Wiebke; Smit, Inga; Armengot, Laura; Schneider, Monika; Gerold, Gerhard; Pawelzik, Elke

    2017-11-29

    Cocoa beans are produced all across the humid tropics under different environmental conditions provided by the region but also by the season and the type of production system. Agroforestry systems compared to monocultures buffer climate extremes and therefore provide a less stressful environment for the understory cocoa, especially under seasonally varying conditions. We measured the element concentration as well as abiotic stress indicators (polyamines and total phenolic content) in beans derived from five different production systems comparing monocultures and agroforestry systems and from two harvesting seasons. Concentrations of N, Mg, S, Fe, Mn, Na, and Zn were higher in beans produced in agroforestry systems with high stem density and leaf area index. In the dry season, the N, Fe, and Cu concentration of the beans increased. The total phenolic content increased with proceeding of the dry season while other abiotic stress indicators like spermine decreased, implying an effect of the water availability on the chemical composition of the beans. Agroforestry systems did not buffer the variability of stress indicators over the seasons compared to monocultures. The effect of environmental growing conditions on bean chemical composition was not strong but can contribute to variations in cocoa bean quality.

  15. Covariability of seasonal temperature and precipitation over the Iberian Peninsula in high-resolution regional climate simulations (1001-2099)

    Science.gov (United States)

    Fernández-Montes, S.; Gómez-Navarro, J. J.; Rodrigo, F. S.; García-Valero, J. A.; Montávez, J. P.

    2017-04-01

    Precipitation and surface temperature are interdependent variables, both as a response to atmospheric dynamics and due to intrinsic thermodynamic relationships and feedbacks between them. This study analyzes the covariability of seasonal temperature (T) and precipitation (P) across the Iberian Peninsula (IP) using regional climate paleosimulations for the period 1001-1990, driven by reconstructions of external forcings. Future climate (1990-2099) was simulated according to SRES scenarios A2 and B2. These simulations enable exploring, at high spatial resolution, robust and physically consistent relationships. In winter, positive P-T correlations dominate west-central IP (Pearson correlation coefficient ρ = + 0.43, for 1001-1990), due to prevalent cold-dry and warm-wet conditions, while this relationship weakens and become negative towards mountainous, northern and eastern regions. In autumn, negative correlations appear in similar regions as in winter, whereas for summer they extend also to the N/NW of the IP. In spring, the whole IP depicts significant negative correlations, strongest for eastern regions (ρ = - 0.51). This is due to prevalent frequency of warm-dry and cold-wet modes in these regions and seasons. At the temporal scale, regional correlation series between seasonal anomalies of temperature and precipitation (assessed in 31 years running windows in 1001-1990) show very large multidecadal variability. For winter and spring, periodicities of about 50-60 years arise. The frequency of warm-dry and cold-wet modes appears correlated with the North Atlantic Oscillation (NAO), explaining mainly co-variability changes in spring. For winter and some regions in autumn, maximum and minimum P-T correlations appear in periods with enhanced meridional or easterly circulation (low or high pressure anomalies in the Mediterranean and Europe). In spring and summer, the Atlantic Multidecadal Oscillation shows some fingerprint on the frequency of warm/cold modes. For

  16. Regional and climatic controls on seasonal dust deposition in the southwestern U.S.

    Science.gov (United States)

    Reheis, M.C.; Urban, F.E.

    2011-01-01

    Vertical dust deposition rates (dust flux) are a complex response to the interaction of seasonal precipitation, wind, changes in plant cover and land use, dust source type, and local vs. distant dust emission in the southwestern U.S. Seasonal dust flux in the Mojave-southern Great Basin (MSGB) deserts, measured from 1999 to 2008, is similar in summer-fall and winter-spring, and antecedent precipitation tends to suppress dust flux in winter-spring. In contrast, dust flux in the eastern Colorado Plateau (ECP) region is much larger in summer-fall than in winter-spring, and twice as large as in the MSGB. ECP dust is related to wind speed, and in the winter-spring to antecedent moisture. Higher summer dust flux in the ECP is likely due to gustier winds and runoff during monsoonal storms when temperature is also higher. Source types in the MSGB and land use in the ECP have important effects on seasonal dust flux. In the MSGB, wet playas produce salt-rich dust during wetter seasons, whereas antecedent and current moisture suppress dust emission from alluvial and dry-playa sources during winter-spring. In the ECP under drought conditions, dust flux at a grazed-and-plowed site increased greatly, and also increased at three annualized, previously grazed sites. Dust fluxes remained relatively consistent at ungrazed and currently grazed sites that have maintained perennial vegetation cover. Under predicted scenarios of future climate change, these results suggest that an increase in summer storms may increase dust flux in both areas, but resultant effects will depend on source type, land use, and vegetation cover. ?? 2011.

  17. Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland

    Science.gov (United States)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1994-01-01

    Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat

  18. Microtopographic and Hydrological Controls over Respiratory Efflux and Late-Season Arctic Methane Emissions

    Science.gov (United States)

    Wilkman, E.; Zona, D.; Oechel, W. C.

    2014-12-01

    In recent years, Arctic peatlands have released approximately 35 Tg (3.5 x 1012g) of CH4 annually, corresponding to around 1/3 of the aggregate wetland CH4 fluxes and 16% of all natural emissions. As climate models increasingly suggest that current warming trends in the Arctic (4-8 °C higher annual surface air temperatures) will continue by century's end, carbon (C) cycling in these northern climes may be further amplified. Although much has been learned in recent decades, uncertainty remains in regard to the spatial and temporal extent of CO2 and CH4 emissions from these systems. Chamber based carbon flux measurements were gathered for three growing seasons from June 2007 to September 2013 in Barrow, Alaska to investigate the diurnal, weekly, and monthly patterns of CO2 and CH4 flux in the North American Arctic. For the 2007 and 2008 growing seasons, high temporal frequency auto-chambers (LI-8100A Automated Soil Flux System, LI-COR Biosciences) were used to gather over 18,000 individual flux measurements. From July to September 2013 an Ultraportable Greenhouse Gas Analyzer (Los Gatos Research Inc.) was deployed in concert with this soil flux system to gather high temporal frequency soil CO2 and CH4 fluxes. Nearby eddy covariance towers provided auxiliary meteorological and environmental data, while weekly transects amassed further surficial hydrological measures (pH, thaw depth, water table). For earlier periods of data, respiratory fluxes were partitioned into five microtopographic classes (polygon rims and troughs, low centered basins, high ridges, and flat mesic terrain). Conversely, for the later periods of data covered chamber fluxes were partitioned into three 'habitat' types (High, Medium, Wet) based on corresponding aboveground average water table extent. Marked dissimilarities were noted across habitat types and microtopographic classes. In general more mesic, waterlogged regions released greater quantities of CO2 across the growing season, while

  19. Abundance and distribution of microplastics within surface sediments of a key shellfish growing region of Canada.

    Science.gov (United States)

    Kazmiruk, T N; Kazmiruk, V D; Bendell, L I

    2018-01-01

    The abundance and distribution of microplastics within 5 sediment size classes (>5000 μm, 1000-5000 μm, 250-1000 μm, 250-0.63 μm and Microplastics were found at all sampling locations indicating widespread contamination of this region with these particles. Three types of microplastics were recovered: microbeads, which occurred in the greatest number (up to 25000/kg dry sediment) and microfibers and microfragments, which were much less in number compared with microbeads and occurred in similar amounts (100-300/kg dry sediment). Microbeads were recovered primarily in the microplastics were spatially dependent with principal component analysis (PCA) indicating that 84 percent of the variation in abundance and distribution was due to the presence of high numbers of microbeads at three locations within the study region. At these sites, microbeads expressed as a percent component of the sediment by weight was similar to key geochemical components that govern trace metal behavior and availability to benthic organisms. Microbeads have been shown to accumulate metals from the aquatic environment, hence in addition to the traditional geochemical components such as silt and organic matter, microplastics also need to be considered as a sediment component that can influence trace metal geochemistry. Our findings have shown that BC's premier oyster growing region is highly contaminated with microplastics, notably microbeads. It would be prudent to assess the degree to which oysters from this region are ingesting microplastics. If so, it would have direct implications for Canada's oyster farming industry with respect to the health of the oyster and the quality of product that is being farmed and sets an example for other shellfish growing regions of the world.

  20. Seasonal estimates of riparian evapotranspiration using remote and in situ measurements

    Science.gov (United States)

    Goodrich, D.C.; Scott, R.; Qi, J.; Goff, B.; Unkrich, C.L.; Moran, M.S.; Williams, D.; Schaeffer, S.; Snyder, K.; MacNish, R.; Maddock, T.; Pool, D.; Chehbouni, A.; Cooper, D.I.; Eichinger, W.E.; Shuttleworth, W.J.; Kerr, Y.; Marsett, R.; Ni, W.

    2000-01-01

    In many semi-arid basins during extended periods when surface snowmelt or storm runoff is absent, groundwater constitutes the primary water source for human habitation, agriculture and riparian ecosystems. Utilizing regional groundwater models in the management of these water resources requires accurate estimates of basin boundary conditions. A critical groundwater boundary condition that is closely coupled to atmospheric processes and is typically known with little certainty is seasonal riparian evapotranspiration ET). This quantity can often be a significant factor in the basin water balance in semi-arid regions yet is very difficult to estimate over a large area. Better understanding and quantification of seasonal, large-area riparian ET is a primary objective of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program. To address this objective, a series of interdisciplinary experimental Campaigns were conducted in 1997 in the San Pedro Basin in southeastern Arizona. The riparian system in this basin is primarily made up of three vegetation communities: mesquite (Prosopis velutina), sacaton grasses (Sporobolus wrightii), and a cottonwood (Populus fremontii)/willow (Salix goodingii) forest gallery. Micrometeorological measurement techniques were used to estimate ET from the mesquite and grasses. These techniques could not be utilized to estimate fluxes from the cottonwood/willow (C/W) forest gallery due to the height (20-30 m) and non-uniform linear nature of the forest gallery. Short-term (2-4 days) sap flux measurements were made to estimate canopy transpiration over several periods of the riparian growing season. Simultaneous remote sensing measurements were used to spatially extrapolate tree and stand measurements. Scaled C/W stand level sap flux estimates were utilized to calibrate a Penman-Monteith model to enable temporal extrapolation between Synoptic measurement periods. With this model and set of measurements, seasonal riparian vegetation water use

  1. Short-term forecasting of non-OPEC supply: a test of seasonality and seasonal decomposition

    International Nuclear Information System (INIS)

    Jazayeri, S.M.R.T.; Yahyai, A.

    2002-01-01

    The purpose of this study is, first to find out, based on historical data, whether quarterly averages of non-OPEC supply follow a seasonal pattern. If that is mathematically established, then, secondly, it is attempted to estimate the best seasonal factors to decompose the estimated yearly average into seasonal averages. This study applies the Fourier analysis to quarterly supply series to test for seasonality, and provides estimates of seasonal factors for the year 2001 by applying the so-called X-11 decomposition method to the annual estimate. A set of historical data, consisting of quarterly supply averages of individual countries, regional subtotals and aggregate non-OPEC for the period 1971-2000, forms the basis of the analysis. Through the application of the Fourier analysis and X-11 decomposition method, it is demonstrated that quarterly non-OPEC supply, be it by an individual major producer or regional sub-totals, clearly follows a seasonal pattern. This is a very useful conclusion for the market analyst involved with forecasting the quarterly supply. (author)

  2. SHIFTS OF START AND END OF SEASON IN RESPONSE TO AIR TEMPERATURE VARIATION BASED ON GIMMS DATASET IN HYRCANIAN FORESTS

    Directory of Open Access Journals (Sweden)

    K. H. Kiapasha

    2017-09-01

    Full Text Available Climate change is one of the most important environmental challenges in the world and forest as a dynamic phenomenon is influenced by environmental changes. The Hyrcanian forests is a unique natural heritage of global importance and we need monitoring this region. The objective of this study was to detect start and end of season trends in Hyrcanian forests of Iran based on biweekly GIMMS (Global Inventory Modeling and Mapping Studies NDVI3g in the period 1981-2012. In order to find response of vegetation activity to local temperature variations, we used air temperature provided from I.R. Iran Meteorological Organization (IRIMO. At the first step in order to remove the existing gap from the original time series, the iterative Interpolation for Data Reconstruction (IDR model was applied to GIMMS and temperature dataset. Then we applied significant Mann Kendall test to determine significant trend for each pixel of GIMMS and temperature datasets over the Hyrcanian forests. The results demonstrated that start and end of season (SOS & EOS respectively derived from GIMMS3g NDVI time series increased by -0.16 and +0.41 days per year respectively. The trends derived from temperature time series indicated increasing trend in the whole of this region. Results of this study showed that global warming and its effect on growth and photosynthetic activity can increased the vegetation activity in our study area. Otherwise extension of the growing season, including an earlier start of the growing season, later autumn and higher rate of production increased NDVI value during the study period.

  3. Effects of Urbanization and Seasonal Cycle on the Surface Urban Heat Island Patterns in the Coastal Growing Cities: A Case Study of Casablanca, Morocco

    Directory of Open Access Journals (Sweden)

    Hicham Bahi

    2016-10-01

    Full Text Available The urban heat island (UHI phenomenon is a harmful environmental problem in urban areas affecting both climatic and ecological processes. This paper aims to highlight and monitor the spatial distribution of Surface UHI (SUHI in the Casablanca region, Morocco, using remote sensing data. To achieve this goal, a time series of Landsat TM/ETM+/OLI-TIRS images was acquired from 1984 to 2016 and analyzed. In addition, nocturnal MODIS images acquired from 2005 to 2015 were used to evaluate the nighttime SUHI. In order to better analyze intense heat produced by urban core, SUHI intensity (SUHII was computed by quantifying the difference of land surface temperature (LST between urban and rural areas. The urban core SUHII appears more significant in winter seasons than during summer, while the pattern of SUHII becomes moderate during intermediate seasons. During winter, the average daytime SUHII gradually increased in the residential area of Casablanca and in some small peri-urban cities by more than 1 °C from 1984 to 2015. The industrial areas of the Casablanca region were affected by a significant rise in SUHII exceeding 15 °C in certain industrial localities. In contrast, daytime SUHII shows a reciprocal effect during summer with emergence of a heat island in rural areas and development of cool islands in urban and peri-urban areas. During nighttime, the SUHII remains positive in urban areas year-round with higher values in winter as compared to summer. The results point out that the seasonal cycle of daytime SUHII as observed in the Casablanca region is different from other mid-latitude cities, where the highest values are often observed in summer during the day.

  4. Seasonal Precipitation Variability Effects on Carbon Exchange in a Tropical Dry Forest of Northwest Mexico

    Science.gov (United States)

    Verduzco, V.; Garatuza-Payan, J.; Yépez, E. A.; Watts, C. J.; Rodriguez, J. C.; Robles-Morua, A.; Vivoni, E. R.

    2015-12-01

    The Tropical Dry Forest (TDF) cover a large area in tropical and subtropical regions in the Americas and its productivity is thought to have an important contribution to the atmospheric carbon fluxes. However, due to this ecosystem complex dynamics, our understanding about the mechanisms controlling net ecosystem exchange is limited. In this study, five years of continue water and carbon fluxes measurements from eddy covariance complemented with remotely sensed vegetation greenness were used to investigate the ecosystem carbon balance of a TDF in the North American Monsoon region under different hydro climatic conditions. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer a predominant heterotrophic control owed to high decomposition of accumulated labile soil organic matter from prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production over the year, but can be overwhelmed by the strength of the primary productivity during the monsoon season. Precipitation characteristics during the monsoon have significant controls on sustaining carbon fixation in the TDF ecosystem into the fall season. A threshold of ~350 to 400 mm of summer precipitation was identify to switch the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This research points at the needs for understanding the potential effects of changing seasonal precipitation patterns on ecosystem dynamics and carbon sequestration in subtropical regions.

  5. Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region

    NARCIS (Netherlands)

    Alibegovic, G.; Schut, A.G.T.; Wardell-Johnson, G.W.; Robinson, T.P.

    2015-01-01

    Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences,

  6. Assessment of the Vulnerability of Water Resources to Seasonal Fires Across the Northern Sub-Saharan African Region

    Science.gov (United States)

    Ichoku, Charles M.

    2010-01-01

    The northern sub-Saharan African (NSSA) region, extending from the southern fringes of the Sahara to the Equator, and stretching west to east from the Atlantic to the Indian ocean coasts, plays a prominent role in the distribution of Saharan dust and other airborne matter around the region and to other parts of the world, the genesis of global atmospheric circulation, and the birth of such major (and often catastrophic) events as hurricanes. Therefore, this NSSA region represents a critical variable in the global climate change equation. Recent satellite-based studies have revealed that the NSSA region has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be a major driver of the regional carbon, energy, and water cycles. We acknowledge that the rainy season in the NSSA region is from April to September while biomass burning occurs mainly during the dry season (October to March). Nevertheless, these two phenomena are indirectly coupled to each other through a chain of complex processes and conditions, including land-cover and surface-albedo changes, the carbon cycle, evapotranspiration, drought, desertification, surface water runoff, ground water recharge, and variability in atmospheric composition, heating rates, and circulation. In this presentation, we will examine the theoretical linkages between these processes, discuss the preliminary results based on satellite data analysis, and provide an overview of plans for more integrated research to be conducted over the next few years.

  7. Assessment of the performance of CORDEX-SA experiments in simulating seasonal mean temperature over the Himalayan region for the present climate: Part I

    Science.gov (United States)

    Nengker, T.; Choudhary, A.; Dimri, A. P.

    2018-04-01

    The ability of an ensemble of five regional climate models (hereafter RCMs) under Coordinated Regional Climate Downscaling Experiments-South Asia (hereafter, CORDEX-SA) in simulating the key features of present day near surface mean air temperature (Tmean) climatology (1970-2005) over the Himalayan region is studied. The purpose of this paper is to understand the consistency in the performance of models across the ensemble, space and seasons. For this a number of statistical measures like trend, correlation, variance, probability distribution function etc. are applied to evaluate the performance of models against observation and simultaneously the underlying uncertainties between them for four different seasons. The most evident finding from the study is the presence of a large cold bias (-6 to -8 °C) which is systematically seen across all the models and across space and time over the Himalayan region. However, these RCMs with its fine resolution perform extremely well in capturing the spatial distribution of the temperature features as indicated by a consistently high spatial correlation (greater than 0.9) with the observation in all seasons. In spite of underestimation in simulated temperature and general intensification of cold bias with increasing elevation the models show a greater rate of warming than the observation throughout entire altitudinal stretch of study region. During winter, the simulated rate of warming gets even higher at high altitudes. Moreover, a seasonal response of model performance and its spatial variability to elevation is found.

  8. Regional difference of the vertical structure of seasonal thermocline and its impact on sea surface temperature in the North Pacific

    Science.gov (United States)

    Yamaguchi, R.; Suga, T.

    2016-12-01

    Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.

  9. Distributions of Salmonella Subtypes Differ between Two U.S. Produce-Growing Regions

    Science.gov (United States)

    Danyluk, Michelle D.; Worobo, Randy W.; Wiedmann, Martin

    2014-01-01

    Salmonella accounts for approximately 50% of produce-associated outbreaks in the United States, several of which have been traced back to contamination in the produce production environment. To quantify Salmonella diversity and aid in identification of Salmonella contamination sources, we characterized Salmonella isolates from two geographically diverse produce-growing regions in the United States. Initially, we characterized the Salmonella serotype and subtype diversity associated with 1,677 samples collected from 33 produce farms in New York State (NYS). Among these 1,677 samples, 74 were Salmonella positive, yielding 80 unique isolates (from 147 total isolates), which represented 14 serovars and 23 different pulsed-field gel electrophoresis (PFGE) types. To explore regional Salmonella diversity associated with production environments, we collected a smaller set of samples (n = 65) from South Florida (SFL) production environments and compared the Salmonella diversity associated with these samples with the diversity found among NYS production environments. Among these 65 samples, 23 were Salmonella positive, yielding 32 unique isolates (from 81 total isolates), which represented 11 serovars and 17 different PFGE types. The most common serovars isolated in NYS were Salmonella enterica serovars Newport, Cerro, and Thompson, while common serovars isolated in SFL were Salmonella serovars Saphra and Newport and S. enterica subsp. diarizonae serovar 50:r:z. High PFGE type diversity (Simpson's diversity index, 0.90 ± 0.02) was observed among Salmonella isolates across both regions; only three PFGE types were shared between the two regions. The probability of three or fewer shared PFGE types was Salmonella isolates were considerably different between the two sampled regions. These findings suggest the potential for PFGE-based source tracking of Salmonella in production environments. PMID:24747908

  10. Estabilidade fenotípica de linhagens de feijoeiro em três épocas de plantio no Estado de São Paulo Phenotypical stability of common bean lines in three growing seasons in São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    SÉRGIO AUGUSTO MORAIS CARBONELL

    2000-02-01

    Full Text Available Com o objetivo de conhecer o comportamento de linhagens de feijoeiro nas três épocas tradicionais de plantio do Estado de São Paulo, com base em dados de estabilidade fenotípica, dois grupos de experimentos foram instalados nas épocas das águas (setembro-outubro, da seca (janeiro-fevereiro e de inverno (maio-junho. O grupo 1 (G1, com 47 experimentos, foi formado por 16 linhagens e o controle, cultivar Carioca 80SH, e o grupo 2 (G2, com 44 experimentos, formado por 11 linhagens e pelos controles, cultivares Carioca 80SH e Rosinha G2. O delineamento experimental foi o de blocos ao acaso, com cinco repetições e parcelas constituídas de uma linha de 5 m de comprimento. As análises de variância das produções de grãos foram realizadas por experimento dentro de cada grupo (G1/G2 e conjunta (geral e por época de plantio. Os parâmetros de estabilidade foram estimados pelo método proposto por Cruz et al. (1989. Foram observadas várias linhagens adaptadas em ambientes desfavoráveis em pelo menos uma época de plantio. Diversos genótipos comportaram-se como responsivos ou estáveis nos dois conjuntos de experimentos. Os resultados sugerem a possibilidade de direcionar a recomendação de cultivares, com a escolha das linhagens mais adaptadas e responsivas, específicas para as épocas de cultivo.Aiming at knowing the yield potential behavior of selected common bean lines based on data of phenotypical stability, two experimental sets were carried out in the three traditional growing seasons: rainy (September-October, dry (January-February and winter (May-June. The first set, with 47 trials, was made up of 16 experimental lines and the check Carioca 80SH cultivar; the second, with 44 trials, was made up of 11 lines and the checks Carioca 80SH and Rosinha G2 cultivars, allocated to the three growing seasons above cited. The experimental design was a randomized complete block with five replications and plots constituted of a line of 5 m of

  11. A spatial and seasonal description of return-levels for the Berlin-Brandenburg region (Germany)

    Science.gov (United States)

    Fischer, Madlen; Rust, Henning W.; Ulbrich, Uwe

    2016-04-01

    Extreme precipitation events have a strong impact on the environment, society and economy. Besides the direct effect, e.g. damage due to hail, extreme precipitation can cause flood events, mudslides and increased erosion, which in turn lead to serious damage. Typically, return levels derived from annual maxima of daily precipitation sums are used for the design of hydraulic structures or for risk assessment in insurance companies. Seasonally or monthly resolved return levels are rarely considered, although they provide additional information: the higher temporal resolution can be beneficial for risk management, e.g. for agriculture or tourism sector. In addition, annual return levels derived from monthly maxima offer lower uncertainties, since a larger data basis are used for estimation. Here, the generalized extreme value distribution (GEV) is used to calculate monthly resolved return levels for 323 stations in the region Berlin-Brandenburg (Germany). Instead of estimating the parameters of the GEV for each month separately, the seasonal variation is captured by harmonic functions. This natural approach is particularly suitable for an efficient characterization of the seasonal variation of extreme precipitation. In a first step, a statistical model is developed for each station separately to estimate the monthly return levels. Besides the seasonal smoothness, also smoothness in space is exploited here. We use functions of longitude, latitude and altitude to describe the spatial variation of GEV parameters in the second step. Thus, uncertainty is reduced at gauges with short time series and estimates for ungauged sites can be obtained in a meaningful way.

  12. Global and Seasonal Scintillation Morphology in the Equatorial Region Derived from ROCSAT-1 In-situ Data

    Directory of Open Access Journals (Sweden)

    Yen-Hung Liu

    2012-01-01

    Full Text Available The global/seasonal distributions of the scintillation occurrence rate are obtained from the in-situ density measurement of the ROCSAT-1 using a modified procedure reported by Wernik et al. (2007. A least-squares curve fitting in the optimal trust region is used to obtain the spectral slope for the density irregularity structure and the outer scale of the scintillation. The distribution of the S4 index for the weak scintillation (S4 < 0.3 is almost identical to that of the equatorial irregularity distribution reported in the literature. However, as the scintillation becomes stronger (0.3 < S4 < 0.6, the latitudinal distribution moves to the equatorial ionization anomaly (EIA region. In addition, the distributions of the outer scale values that are useful for the study of the physical evolution of the irregularity structure are also obtained. The occurrence distribution of scintillation activity with several parameters such as dip-latitude, longitude, local time, solar activity, and geomagnetic activity during different seasons are presented and discussed in this paper.

  13. Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. IV. Changes during the growing season in anatomy and chemical composition in relation to fermentation characteristics of a lower internode

    NARCIS (Netherlands)

    Boon, E.J.M.C.; Struik, P.C.; Engels, F.M.; Cone, J.W.

    2012-01-01

    Improving digestibility of forage maize (Zea mays L.) through breeding is important to optimize the efficiency of ruminant's rations. It can partly be achieved by improving the digestibility of stem tissue, a genetically complex and diverse trait changing drastically during the growing season. We

  14. The effects of season and meteorology on human mortality in tropical climates: a systematic review.

    Science.gov (United States)

    Burkart, Katrin; Khan, Md Mobarak Hossain; Schneider, Alexandra; Breitner, Susanne; Langner, Marcel; Krämer, Alexander; Endlicher, Wilfried

    2014-07-01

    Research in the field of atmospheric science and epidemiology has long recognized the health effects of seasonal and meteorological conditions. However, little scientific knowledge exists to date about the impacts of atmospheric parameters on human mortality in tropical regions. Working within the scope of this systematic review, this investigation conducted a literature search using different databases; original research articles were chosen according to pre-defined inclusion and exclusion criteria. Both seasonal and meteorological effects were considered. The findings suggest that high amounts of rainfall and increasing temperatures cause a seasonal excess in infectious disease mortality and are therefore relevant in regions and populations in which such diseases are prevalent. On the contrary, moderately low and very high temperatures exercise an adverse effect on cardio-respiratory mortality and shape the mortality pattern in areas and sub-groups in which these diseases are dominant. Atmospheric effects were subject to population-specific factors such as age and socio-economic status and differed between urban and rural areas. The consequences of climate change as well as environmental, epidemiological and social change (e.g., emerging non-communicable diseases, ageing of the population, urbanization) suggest a growing relevance of heat-related excess mortality in tropical regions. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Seasonal Occurrence of Key Arthropod Pests and Beneficial Insects in Michigan High Tunnel and Field Grown Raspberries.

    Science.gov (United States)

    Leach, Heather; Isaacs, Rufus

    2018-06-06

    Berry crops are increasingly produced in high tunnels, which provide growers with the opportunity to extend their production season. This is particularly beneficial for the northern region of the United States with short and unpredictable growing seasons and where rainfall limits fruit quality. However, little is known about the effect of high tunnels on the community of pests, natural enemies, or pollinators, especially in berry crops, and there are few reports of the insect community in raspberries in this region. We compared the abundance of these insects during two growing seasons in field-grown and tunnel-grown floricane and primocane producing raspberries through direct observation and trapping at five sites in southwestern and central Michigan. We found eight key pests, including spotted wing Drosophila, leafhoppers, and thrips, and seven key natural enemies including parasitoid wasps, spiders, and lacewings, that were common across all sites. Pest populations were up to 6.6 times higher in tunnels, and pests typical of greenhouse systems became more dominant in this environment. Natural enemies observed on plants under tunnels were also more abundant than in the field, but this trend was reversed for natural enemies trapped on yellow sticky cards. There was also a reduction of both honey bees and wild bees under the high tunnels, which was balanced by use of commercial bumble bees. These data not only provide much-needed information on the phenology of the insect community on raspberry plantings, they also highlight the entomological implications of protected raspberry culture.

  16. Seasonal response of Eragrostis curvula to nitrogen | R | African ...

    African Journals Online (AJOL)

    On the basis of the seasonal response of Eragrostis curvula to nitrogen applied as single dressings to separate plots at the beginning of each of the six months of the growing season, it is deduced that nitrogen can profitably be applied in the Ukulinga environment from early spring though to early January. Late summer and ...

  17. Recent Changes in the Arctic Melt Season

    Science.gov (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  18. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.

  19. Seasonal variability in virtual height of ionospheric f/sub 2/ layer at the pakistan atmospheric region

    International Nuclear Information System (INIS)

    Jilani, A.A.; Afridi, F.A.K.; Mian, K.; Zai, M.A.K.Y.

    2013-01-01

    The aim of this study was to assess the seasonal variability in virtual height of ionospheric F/sub 2/ layer for Pakistan's atmospheric region (PAR). In this communication virtual height variations have been analyzed by the descriptive statistical techniques. These methodologies comprise an autoregressive strategy, linear regression and polynomial regression. The relevance of these models has been illuminated using predicted values of different parameters under the seasonal variation of ionospheric F/sub 2/ layer in virtual height that affect the radio wave propagation through the ionosphere. These techniques are implemented to theorize the physical process of varying the virtual heights that leads this study towards formulating the variations due to interaction of radio wave propagation with this ionospheric layer. (author)

  20. Silvicultural options in ageing holm oak (Quercus ilex L. coppices in Gargano: results after 14 growing seasons

    Directory of Open Access Journals (Sweden)

    Scopigno D

    2008-12-01

    Full Text Available In the frame of a long-term research program concerning management of ageing holm oak coppices, results available after 14 growing seasons are reported in present paper. Experimental treatments include: A 50 standards per hectare, all of the same age; B 250 standards per hectare, all of the same age; C 140 standards per hectare, with two different ages; D conversion to high forest; E natural evolution (control. A total of 15 permanent plots were established (5 treatments x 3 replicates per treatment and the experimental design used is that of randomised blocks. Based on observations concerning seedlings and shoots development and standards growth and competitive effects, the following preliminary results may be highlighted: i recovering the traditional coppicing system with few standards per hectare represents a valid option from both ecological and shoots growth point of view; the stools, with few standards per hectare, showed a larger number of sprouts, provided with a higher average height and larger diameters; ii uneven-aged standards represent a good alternative form the points of view of both landscape impact immediately after felling operations and stand resistance to climatic damages; iii a good alternative is to apply conversion treatments to high forest, whenever their site quality allows these operations.

  1. Meteorological Influences on the Seasonality of Lyme Disease in the United States

    Science.gov (United States)

    Moore, Sean M.; Eisen, Rebecca J.; Monaghan, Andrew; Mead, Paul

    2014-01-01

    Lyme disease (Borrelia burgdorferi infection) is the most common vector-transmitted disease in the United States. The majority of human Lyme disease (LD) cases occur in the summer months, but the timing of the peak occurrence varies geographically and from year to year. We calculated the beginning, peak, end, and duration of the main LD season in 12 highly endemic states from 1992 to 2007 and then examined the association between the timing of these seasonal variables and several meteorological variables. An earlier beginning to the LD season was positively associated with higher cumulative growing degree days through Week 20, lower cumulative precipitation, a lower saturation deficit, and proximity to the Atlantic coast. The timing of the peak and duration of the LD season were also associated with cumulative growing degree days, saturation deficit, and cumulative precipitation, but no meteorological predictors adequately explained the timing of the end of the LD season. PMID:24470565

  2. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  3. [Seasonal and regional distribution of tularemia cases in Amasya, Turkey].

    Science.gov (United States)

    Yanık, Keramettin; Sarıaydın, Muzaffer; Uzun, M Önder; Çoban, Ahmet Yılmaz; Seçilmiş, Halil

    2015-01-01

    Tularemia have attracted attention due to increased number of cases since 2009 in Amasya region which is located at Central Blacksea Region of Turkey. The aims of this letter were to provide information about the disease, to emphasize the importance of early treatment due to the outbreak peak in our province between 2009-2012 and water chlorination in epidemic areas. A total of 250 tularemia-suspected patients (117 female, 133 male; mean age: 42 yrs) who were admitted to our hospital with the symptoms of sore throat, fever, malaise and/or presence of neck mass, from 20 different locations within last four years were included in the study. Serum samples of 73 (29.2%) patients yielded ≥ 1/160 titers with F.tularensis microagglutination test which were considered as positive. All positive cases presented with the oropharyngeal form of the disease. The year with the highest number of tularemia cases was 2010. When the regional distribution was evaluated, it was detected that positive cases have precipitated especially in the southeastern (highland area) and northeastern (lowland area) parts of Amasya (34/73; 46.6%). Majority of the tularemia cases (53/73; 72.6%) were identified in colder seasons. The number of cases in rural and urban centers have decreased after 2010. In conclusion, it is considered that the emergence of new cases is likely to persist due to the geographical characteristics of Amasya and occupational properties (livestock breeding) of the population. Therefore, the clinicians should consider tularemia in differential diagnosis of the cases originated from risky rural areas.

  4. The U2U Corn Growing Degree Day tool: Tracking corn growth across the US Corn Belt

    Directory of Open Access Journals (Sweden)

    James R. Angel

    2017-01-01

    Full Text Available The Corn Growing Degree Day (Corn GDD tool is a web-based product that can provide decision support on a variety of issues throughout the entire growing season by integrating current conditions, historical climate data, and projections of Corn GDD through the end of the growing season based on both National Weather Service computer model forecasts and climatology. The Corn GDD tool can help agricultural producers make a variety of important decisions before and during the growing season. This support can include: assessing the risk of early and late frosts and freezes that can cause crop damage; comparing corn hybrid maturity requirements and Corn GDD projections to select seed varieties and plan activities such as spraying; guiding marketing decisions based on historical and projected Corn GDDs when considering forward crop pricing (i.e., futures market. The Corn GDD tool provides decision support for corn producers in the central U.S. corn-producing states. Survey results, web statistics, and user feedback indicate that this tool is being actively used by decision makers.

  5. Satellite Soil Moisture and Water Storage Observations Identify Early and Late Season Water Supply Influencing Plant Growth in the Missouri Watershed

    Science.gov (United States)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2017-12-01

    We employ an array of continuously overlapping global satellite sensor observations including combined surface soil moisture (SM) estimates from SMAP, AMSR-E and AMSR-2, GRACE terrestrial water storage (TWS), and satellite precipitation measurements, to characterize seasonal timing and inter-annual variations of the regional water supply pattern and its associated influence on vegetation growth estimates from MODIS enhanced vegetation index (EVI), AMSR-E/2 vegetation optical depth (VOD) and GOME-2 solar-induced florescence (SIF). Satellite SM is used as a proxy of plant-available water supply sensitive to relatively rapid changes in surface condition, GRACE TWS measures seasonal and inter-annual variations in regional water storage, while precipitation measurements represent the direct water input to the analyzed ecosystem. In the Missouri watershed, we find surface SM variations are the dominant factor controlling vegetation growth following the peak of the growing season. Water supply to growth responds to both direct precipitation inputs and groundwater storage carry-over from prior seasons (winter and spring), depending on land cover distribution and regional climatic condition. For the natural grassland in the more arid central and northwest watershed areas, an early season anomaly in precipitation or surface temperature can have a lagged impact on summer vegetation growth by affecting the surface SM and the underlying TWS supplies. For the croplands in the more humid eastern portions of the watershed, the correspondence between surface SM and plant growth weakens. The combination of these complementary remote-sensing observations provides an effective means for evaluating regional variations in the timing and availability of water supply influencing vegetation growth.

  6. Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data

    Science.gov (United States)

    Gumma, Murali Krishna; Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Rao, Mahesh N.; Mohammed, Irshad A.; Whitbread, Anthony M.

    2016-01-01

    The goal of this study was to map rainfed and irrigated rice-fallow cropland areas across South Asia, using MODIS 250 m time-series data and identify where the farming system may be intensified by the inclusion of a short-season crop during the fallow period. Rice-fallow cropland areas are those areas where rice is grown during the kharif growing season (June–October), followed by a fallow during the rabi season (November–February). These cropland areas are not suitable for growing rabi-season rice due to their high water needs, but are suitable for a short -season (≤3 months), low water-consuming grain legumes such as chickpea (Cicer arietinum L.), black gram, green gram, and lentils. Intensification (double-cropping) in this manner can improve smallholder farmer’s incomes and soil health via rich nitrogen-fixation legume crops as well as address food security challenges of ballooning populations without having to expand croplands. Several grain legumes, primarily chickpea, are increasingly grown across Asia as a source of income for smallholder farmers and at the same time providing rich and cheap source of protein that can improve the nutritional quality of diets in the region. The suitability of rainfed and irrigated rice-fallow croplands for grain legume cultivation across South Asia were defined by these identifiers: (a) rice crop is grown during the primary (kharif) crop growing season or during the north-west monsoon season (June–October); (b) same croplands are left fallow during the second (rabi) season or during the south-east monsoon season (November–February); and (c) ability to support low water-consuming, short-growing season (≤3 months) grain legumes (chickpea, black gram, green gram, and lentils) during rabi season. Existing irrigated or rainfed crops such as rice or wheat that were grown during kharif were not considered suitable for growing during the rabi season, because the moisture/water demand of these crops is too high. The

  7. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation

    Directory of Open Access Journals (Sweden)

    Y. Miao

    2012-11-01

    Full Text Available Boreal peatlands are significant natural sources of methane and especially vulnerable to abrupt climate change. However, the controlling factors of CH4 emission in boreal peatlands are still unclear. In this study, we investigated CH4 fluxes and abiotic factors (temperature, water table depth, active layer depth, and dissolved CH4 concentrations in pore water during the growing seasons in 2010 and 2011 in both shrub-sphagnum- and sedge-dominated plant communities in the continuous permafrost zone of Northeast China. The objective of our study was to examine the effects of vegetation types and abiotic factors on CH4 fluxes from a boreal peatland. In an Eriophorum-dominated community, mean CH4 emissions were 1.02 and 0.80 mg m−2 h−1 in 2010 and 2011, respectively. CH4 fluxes (0.38 mg m−2 h−1 released from the shrub-mosses-dominated community were lower than that from Eriophorum-dominated community. Moreover, in the Eriophorum-dominated community, CH4 fluxes showed a significant temporal pattern with a peak value in late August in both 2010 and 2011. However, no distinct seasonal variation was observed in the CH4 flux in the shrub-mosses-dominated community. Interestingly, in both Eriophorum- and shrub-sphagnum-dominated communities, CH4 fluxes did not show close correlation with air or soil temperature and water table depth, whereas CH4 emissions correlated well to active layer depth and CH4 concentration in soil pore water, especially in the Eriophorum-dominated community. Our results suggest that CH4 released from the thawed CH4-rich permafrost layer may be a key factor controlling CH4 emissions in boreal peatlands, and highlight that CH4 fluxes vary with vegetation type in boreal peatlands. With

  8. Seasonal influenza vaccine policies, recommendations and use in the World Health Organization’s Western Pacific Region Original Research

    Directory of Open Access Journals (Sweden)

    Members of the Western Pacific Region Global Influenza Surveillance and Response System

    2013-09-01

    Full Text Available Objective: Vaccination is the most effective way to prevent seasonal influenza and its severe outcomes. The objective of our study was to synthesize information on seasonal influenza vaccination policies, recommendations and practices in place in 2011 for all countries and areas in the Western Pacific Region of the World Health Organization (WHO. Methods: Data were collected via a questionnaire on seasonal influenza vaccination policies, recommendations and practices in place in 2011. Results: Thirty-six of the 37 countries and areas (97% responded to the survey. Eighteen (50% reported having established seasonal influenza vaccination policies, an additional seven (19% reported having recommendations for risk groups for seasonal influenza vaccination only and 11 (30% reported having no policies or recommendations in place. Of the 25 countries and areas with policies or recommendations, health-care workers and the elderly were most frequently recommended for vaccination; 24 (96% countries and areas recommended vaccinating these groups, followed by pregnant women (19 [76%], people with chronic illness (18 [72%] and children (15 [60%]. Twenty-six (72% countries and areas reported having seasonal influenza vaccines available through public funding, private market purchase or both. Most of these countries and areas purchased only enough vaccine to cover 25% or less of their populations. Discussion: In light of the new WHO position paper on influenza vaccines published in 2012 and the increasing availability of country-specific data, countries and areas should consider reviewing or developing their seasonal influenza vaccination policies to reduce morbidity and mortality associated with annual epidemics and as part of ongoing efforts for pandemic preparedness.

  9. Responses of inulin content and inulin yield of Jerusalem artichoke genotypes to seasonal environments

    Science.gov (United States)

    Seasonal variation (e.g. temperature and photoperiod) between growing seasons might affect inulin content and inulin yield of Jerusalem artichoke. However, there is limited information on genotypic response to seasons for inulin content and inulin yield. The objective of this study was to investig...

  10. Seasonal patterns in soil N availability in the arctic tundra in response to accelerated snowmelt and warming

    Science.gov (United States)

    Darrouzet-Nardi, A.; Wallenstein, M. D.; Steltzer, H.; Sullivan, P.; Melle, C.; Segal, A.; Weintraub, M. N.

    2010-12-01

    Arctic soils contain large stocks of carbon (C) and may act as a significant CO2 source in response to climate warming. However, nitrogen (N) availability limits both plant growth and decomposition in many Arctic sites, and may thus be a key constraint on climate-carbon feedbacks. While current models of tundra ecosystems and their responses to climate change assume that N limits plant growth and C limits decomposition, there is strong evidence to the contrary showing that N can also limit decomposition. For example, the production of both new microbial biomass and enzymes that degrade organic matter appear to be limited by N during the summer. N availability is strongly seasonal: we have previously observed relatively high availability early in the growing season followed by a pronounced crash in tussock tundra soils. To investigate the drivers of N availability throughout the season, we used a field manipulation of tussock tundra growing season length (~4 days acceleration of snowmelt) and air temperature (open top chambers) and a laboratory soil N addition in both early and late season. Nutrient availability throughout the field season was measured at high temporal resolution (25 measurements from soil thaw through early plant senescence). Results from a laboratory experiment in which N was added to early season and late season soils suggests that soil respiration is in fact N limited at both times of the season, though this limitation is temperature dependent with effects most pronounced at 10°C. High-resolution measurements of nutrients in the soil solution and extractable N throughout the season showed that although a nutrient crash in N can be observed mid-season, N availability can still fluctuate later in the season. Finally, effects of the extended growing season and increased air temperature have so far had few effects on soil nutrient N dynamics throughout the summer growing season, suggesting either an insensitivity of N availability to these

  11. Exploring the mid-infrared region for urban remote sensing: seasonal and view angle effects

    Science.gov (United States)

    Krehbiel, C. P.; Kovalskyy, V.; Henebry, G. M.

    2013-12-01

    Spanning 3-5 microns, the mid-infrared (MIR) region is the mixing zone between reflected sunlight and emitted earthlight in roughly equal proportions. While the MIR has been utilized in atmospheric remote sensing, its potential in terrestrial remote sensing--particularly urban remote sensing, has yet to be realized. One major advantage of the MIR is the ability to penetrate most anthropogenic haze and smog. Green vegetation appears MIR-dark, urban building materials appear MIR-grey, and bare soil and dried vegetation appear MIR-bright. Thus, there is an intrinsic seasonality in MIR radiance dynamics due both to surface type differences and to seasonal change in insolation. These factors merit exploration into the potential applications of the MIR for monitoring urban change. We investigated MIR radiance dynamics in relation to (1) the spectral properties of land cover types, (2) time of year and (3) sensor view zenith angle (VZA). We used Aqua MODIS daily swaths for band 23 (~ 4.05 μm) at 1 km spatial resolution from 2009-2010 and the NLCD Percent Impervious Surface Area (%ISA) 30 m product from 2001 and 2006. We found the effects of time of year, sensor VZA, and %ISA to be three principal factors influencing MIR radiance dynamics. We focused on analyzing the relationship between MIR radiance and %ISA over eight major cities in the Great Plains of the USA. This region is characterized by four distinct seasons, relatively flat terrain, and isolated urban centers situated within a vegetated landscape. We used west-east transects beginning in the agricultural areas outside of each city, passing through the urban core and extending back out into the agricultural periphery to observe the spatial pattern of MIR radiance and how it changes seasonally. Sensor VZA influences radiance dynamics by affecting the proportion of surface elements detected--especially pertinent at the coarse spatial resolution (~1 km) of MODIS. For example, smaller VZAs (30°). Larger VZAs detect

  12. Analysis of seasonal variation in urban heat island effect for West Mediterranean Region of Turkey using Landsat 8 OLI/TIRS data

    Science.gov (United States)

    Aslan, Nagihan; KOC-SAN, Dilek

    2016-07-01

    Technological developments are accelerating day by day in 21st century which has brought social and economic developments. Besides, the word population is increasing rapidly and the majority of population lives in city center. Large and crowded cities, industrial areas and shopping centers are being built for providing human needs and wishes. For these purposes, natural resources are destroyed and urban climate is affected. The temperatures of urban areas can be warmer than the rural areas and differences in temperature between urban and surrounding rural areas were defined as Urban Heat Island (UHI). The objectives of this study are (i) to calculate Land Surface Temperatures (LST) for urban and vegetation areas in the selected cities, (ii) to determine the UHI effects and its change between seasons, (iii) to examine the relationship between city size and UHI effect magnitude. In this study, Landsat 8 OLI/TIRS imageries for winter (23 December 2013), summer (17 June 2014) and autumn (7 October 2014) seasons were used. The Antalya, Burdur and Isparta provinces that are placed in West Mediterranean Region of Turkey were selected as study areas. These three provinces have different characteristics. Antalya is the fifth biggest city of Turkey and its population growth is quite high. In addition, the summer population of this city increases severely, because of its tourism potential. On the other hand, Isparta and Burdur are relatively small cities when compared to Antalya with respect to population and urban area. In this study, firstly, the brightness temperatures and LST values are calculated from Landsat 8 thermal images. Secondly, urban areas are identified by an approach that combines emissivity image, Defense Meteorological Satellite Program - Operational Linescan System (DMSP/OLS) nighttime lights data and ASTER Global Digital Elevation Model (GDEM). In addition, the vegetation areas are defined by using emissivity image. Finally, the UHI effect is determined

  13. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A.; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration. PMID:26629695

  14. Regionally and seasonally differentiated primary production in the North Atlantic

    Science.gov (United States)

    Sathyendranath, Shubha; Longhurst, Alan; Caverhill, Carla M.; Platt, Trevor

    1995-10-01

    A bio-geochemical classification of the N. Atlantic Basin is presented according to which the basin is first divided into four primary algal domains: Polar, West-Wind, Trades and Coastal. These are in turn sub-divided into smaller provinces. The classification is based on differences in the physical environment which are likely to influence regional algal dynamics. The seasonally-differentiated parameters of the photosynthesis-light curve ( P-I curve) and parameters that define the vertical structure in chlorophyll profile are then established for each province, based on an analysis of an archive of over 6000 chlorophyll profiles, and over 1800 P-I curves. These are then combined with satellite-derived chlorophyll data for the N. Atlantic, and information on cloud cover, to compute primary production at the annual scale. using a model that computes spectral transmission of light underwater, and spectral, photosynthetic response of phytoplankton to available light. The results are compared with earlier, satellite-derived, estimates of basin-scale primary production.

  15. Diurnal and seasonal variations of greenhouse gas emissions from a naturally ventilated dairy barn in a cold region

    Science.gov (United States)

    Huang, Dandan; Guo, Huiqing

    2018-01-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions were quantified for a naturally ventilated free-stall dairy barn in the Canadian Prairies climate through continuous measurements for a year from February 2015 to January 2016, with ventilation rate estimated by a CO2 mass balance method. The results were categorized into seasonal emission profiles with monthly data measured on a typical day, and diurnal profiles in cold (January), warm (July), and mild seasons (October) of all three gases. Seasonal CO2, CH4, and N2O concentrations greatly fluctuated within ranges of 593-2433 ppm, 15-152 ppm, and 0.32-0.40 ppm, respectively, with obviously higher concentrations in the cold season. Emission factors of the three gases were summarized: seasonal N2O emission varied between 0.5 and 10 μg s-1 AU-1 with lower emission in the cold season, while seasonal CO2 and CH4 emissions were within narrow ranges of 112-119 mg s-1 AU-1 and 2.5-3.5 mg s-1 AU-1. The result suggested a lower enteric CH4 emission for dairy cows than that estimated by Environment Canada (2014). Significant diurnal effects (P 0.05), but obvious diurnal variations in all seasons. In comparison with previous studies, it was found that the dairy barn in a cold region climate with smaller vent openings had relatively higher indoor CO2 and CH4 concentrations, but comparable CO2 and CH4 emissions to most previous studies. Besides, ventilation rate, temperature, and relative humidity all significantly affected the three gas concentrations with the outdoor temperature being the most relevant factor (P < 0.01); however, they showed less or no statistical relations to emissions.

  16. Seasonal fuel consumption, stoves, and end-uses in rural households of the far-western development region of Nepal

    Science.gov (United States)

    Lam, Nicholas L.; Upadhyay, Basudev; Maharjan, Shovana; Jagoe, Kirstie; Weyant, Cheryl L.; Thompson, Ryan; Uprety, Sital; Johnson, Michael A.; Bond, Tami C.

    2017-12-01

    Understanding how fuels and stoves are used to meet a diversity of household needs is an important step in addressing the factors leading to continued reliance on polluting devices, and thereby improving household energy programs. In Nepal and many other countries dependent on solid fuel, efforts to mitigate the impacts of residential solid fuel use have emphasized cooking while focusing less on other solid fuel dependent end-uses. We employed a four-season fuel assessment in a cohort of 110 households residing in two elevation regions of the Far-Western Development Region (Province 7) of Nepal. Household interviews and direct fuel weights were used to assess seasonality in fuel consumption and its association with stoves that met cooking and non-cooking needs. Per-capita fuel consumption in winter was twice that of other measured seasons, on average. This winter increase was attributed to greater prevalence of use and fuel consumption by supplemental stoves, not the main cooking stove. End-use profiles showed that fuel was used in supplemental stoves to meet the majority of non-meal needs in the home, notably water heating and preparation of animal food. This emphasis on fuels, stoves, and the satisfaction of energy needs—rather than just stoves or fuels—leads to a better understanding of the factors leading to device and fuel choice within households.

  17. GENETIC DIVERGENCE AMONG COTTON GENOTYPES GROWN IN THE MAIN SEASON AND OFF SEASON

    Directory of Open Access Journals (Sweden)

    THIAGO ALEXANDRE SANTANA GILIO

    2017-01-01

    Full Text Available The objective of this work was to evaluate the agronomic performance and estimate the genetic divergence of 18 cotton genotypes grown in the main season (sowed in December, 2012 and off season (sowed in January, 2013, considering their agronomic characteristics and resistance to Ramularia leaf spot. A randomized block experimental design was used, with five replications. The characteristics evaluated were plant height, first branch height, position of first fruiting branch, height of first fruiting branch, length between nodes, number of nodes, average number of bolls per plant, average boll weight, area under the disease progress curve (AUDPC related to the Ramularia leaf spot severity, weight of 100 - seed from the plant middle third, fiber percentage, average production per plant, yield and cotton fiber quality. The results were subjected to individual and joint analysis of variance and the genetic divergence was estimated according to multivariate procedures (Mahalanobis' generalized distance and Tocher's optimization method. The dissimilarity matrices were summed to estimate the genetic divergence, considering both growing periods. Genetic variability was found among the genotypes evaluated, in both the main season and off season. The characteristic that most contributed to the genetic divergence in the main season was the production per plant and, in the off season, was the fiber percentage. According to the results of the present work, the crosses between the genotypes BRS - 335 and FMT - 707; FM - 910 and FMT - 707; and IMA - 08 - 12427 and FMT - 707 are recommended.

  18. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    Science.gov (United States)

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  19. Seasonal Climate Signals in Multiple Tree-Ring Parameters: A Pilot Study of Pinus ponderosa in the Columbia River Basin

    Science.gov (United States)

    Dannenberg, M.; Wise, E. K.; Keung, J. H.

    2014-12-01

    Proxy-based reconstructions of past climate have played an integral role in assessments of historical climate change, and tree-ring widths (TRW) have a long history of use in this paleoclimate research due to their annual resolution, widespread availability, and sensitivity of growth processes to variation in temperature and water availability. Increasingly, studies have shown that additional tree-ring metrics—including earlywood and latewood widths (EW and LW, respectively), maximum latewood density, and the intensity of reflected blue light from latewood (BI)—can provide additional information on seasonal climatic variability that is not present in TRW alone due to different processes that affect growth in different parts of the growing season. Studies of these additional tree-ring metrics highlight their utility in climate reconstructions, but to date they have mostly been limited to a few tree species and regions. Here, we extend the range of previous studies on alternative tree-ring metrics by evaluating the seasonal climate signals in TRW, EW, LW, and BI of Pinus ponderosa at six semiarid sites surrounding the Columbia River basin in the U.S. Pacific Northwest (PNW). Cores from each site were cross-dated and EW, LW, and TRW were measured using standard dendrochronological procedures. BI was obtained using a high-resolution flatbed scanner and CooRecorder software. To evaluate the unique climate processes and seasonalities contributing to different dendrochronological metrics, monthly temperature and precipitation from each site were obtained from the PRISM climate model and were correlated with each of the tree-ring metrics using the MATLAB program SEASCORR. We also evaluate the potential of using multiple tree-ring metrics (rather than a single proxy) in reconstructions of precipitation in the PNW. Initial results suggest that 1) tree growth at each site is water-limited but with substantial differences among the sites in the strength and seasonality of

  20. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    Science.gov (United States)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  1. Soil moisture control over autumn season methane flux, Arctic Coastal Plain of Alaska

    Directory of Open Access Journals (Sweden)

    C. S. Sturtevant

    2012-04-01

    Full Text Available Accurate estimates of annual budgets of methane (CH4 efflux in arctic regions are severely constrained by the paucity of non-summer measurements. Moreover, the incomplete understanding of the ecosystem-level sensitivity of CH4 emissions to changes in tundra moisture makes prediction of future CH4 release from the Arctic extremely difficult. This study addresses some of these research gaps by presenting an analysis of eddy covariance and chamber measurements of CH4 efflux and supporting environmental variables during the autumn season and associated beginning of soil freeze-up at our large-scale water manipulation site near Barrow, Alaska (the Biocomplexity Experiment. We found that the autumn season CH4 emission is significant (accounting for 21–25% of the average growing season emission, and that this emission is mostly controlled by the fraction of inundated landscape, atmospheric turbulence, and the decline in unfrozen water during the period of soil freezing. Drainage decreased autumn CH4 emission by a factor of 2.4 compared to our flooded treatment. Flooding slowed the soil freezing process which has implications for extending elevated CH4 emissions longer into the winter season.

  2. Seasonal Variation of Submesoscale Flow Features in a Mesoscale Eddy-dominant Region in the East Sea

    Science.gov (United States)

    Chang, Yeon S.; Choi, Byoung-Ju; Park, Young-Gyu

    2018-03-01

    Seasonal changes in the distribution of submesoscale (SM) flow features were examined using a fine-resolution numerical simulation. The SM flows are expected to be strong where mesoscale (MS) eddies actively develop and also when the mixed layer depth (MLD) is deep due to enhanced baroclinic instability. In the East Sea (ES), MS eddies more actively develop in summer while the MLD is deeper in winter, which provided the motivation to conduct this study to test the effects of MLD and MS eddies on the SM activity in this region. Finite-scale Liapunov exponents and the vertical velocity components were employed to analyze the SM activities. It was found that the SM intensity was marked by seasonality: it is stronger in winter when the mixed layer is deep but weaker in summer - despite the greater eddy kinetic energy. This is because in summer the mixed layer is so thin that there is not enough available potential energy. When the SM activity was quantified based on parameterization, (MLD × density gradient), it was determined that the seasonal variation of MLD plays a more important role than the lateral density gradient variation on SM flow motion in the ES.

  3. Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of hydrometeorological extremes over East Africa

    Science.gov (United States)

    Shukla, Shraddhanand; Roberts, Jason B.; Hoell. Andrew,; Funk, Chris; Robertson, Franklin R.; Kirtmann, Benjamin

    2016-01-01

    The skill of North American multimodel ensemble (NMME) seasonal forecasts in East Africa (EA), which encompasses one of the most food and water insecure areas of the world, is evaluated using deterministic, categorical, and probabilistic evaluation methods. The skill is estimated for all three primary growing seasons: March–May (MAM), July–September (JAS), and October–December (OND). It is found that the precipitation forecast skill in this region is generally limited and statistically significant over only a small part of the domain. In the case of MAM (JAS) [OND] season it exceeds the skill of climatological forecasts in parts of equatorial EA (Northern Ethiopia) [equatorial EA] for up to 2 (5) [5] months lead. Temperature forecast skill is generally much higher than precipitation forecast skill (in terms of deterministic and probabilistic skill scores) and statistically significant over a majority of the region. Over the region as a whole, temperature forecasts also exhibit greater reliability than the precipitation forecasts. The NMME ensemble forecasts are found to be more skillful and reliable than the forecast from any individual model. The results also demonstrate that for some seasons (e.g. JAS), the predictability of precipitation signals varies and is higher during certain climate events (e.g. ENSO). Finally, potential room for improvement in forecast skill is identified in some models by comparing homogeneous predictability in individual NMME models with their respective forecast skill.

  4. Seasonal variation of radon daughters concentrations in the atmosphere and in precipitation at the Japanese coast of the Sea of Japan

    International Nuclear Information System (INIS)

    Nishikawa, T.; Okabe, S.; Aoki, M.

    1988-01-01

    The atmospheric radon daughters concentration at Fukui in the Japanese coastal region of the Sea of Japan shows a seasonal variation whose high values appear in summer and low values in winter. On the other hand, the radon daughters concentration in precipitation at Fukui and that in the maritime atmosphere over the Sea of Japan are high in winter and low in summer. It is concluded from these phenomena that the greater part of the continental radon and its daughters are transported by seasonal winds from Siberia and China to Japan across the Sea of Japan in winter. However, when the air masses approach the shore, the cumulonimbus grows and the heavy snowfall scavenges out the radon daughters from the air masses in large quantities at the Japanese coastal region of the Sea of Japan. (author)

  5. Trends in land surface phenology and atmospheric CO2 seasonality in the Northern Hemisphere terrestrial ecosystems

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2017-12-01

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystems on the atmospheric CO2 concentration and 13C/12C isotope ratio seasonality. Atmospheric CO2 and 13C/12C seasonality is controlled by vegetation phenology, but is not identical because growth will typically commence some time before and terminate some time after the net carbon exchange changes sign in spring and autumn, respectively. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations to determine how changes in vegetation productivity and phenology affect both the atmospheric CO2 and 13C/12C seasonality. Differences and similarities in recent trends of CO2 and 13C/12C seasonality and vegetation phenology will be discussed. Furthermore, we use the NDVI observations, and atmospheric CO2 and 13C/12C data to show the trends and variability of the timing of peak season plant activity. Preliminary results show that the peak season plant activity of the Northern Hemisphere extra-tropical terrestrial ecosystems is shifting towards spring, largely in response to the warming-induced advance of the start of growing season. Besides, the spring-ward shift of the peak plant activity is contributing the most to the increasing peak season productivity. In other words, earlier start of growing season is highly linked to earlier arrival of peak of season and higher NDVI. Changes in the timing of peak season plant activity are expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.

  6. Should seasonal rainfall forecasts be used for flood preparedness?

    Directory of Open Access Journals (Sweden)

    E. Coughlan de Perez

    2017-09-01

    Full Text Available In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale across sub-Saharan Africa. Given the sparsity of hydrological observations, we input bias-corrected reanalysis rainfall into the Global Flood Awareness System to identify seasonal indicators of floodiness. Results demonstrate that in some regions of western, central, and eastern Africa with typically wet climates, even a perfect tercile forecast of seasonal total rainfall would provide little to no indication of the seasonal likelihood of flooding. The number of extreme events within a season shows the highest correlations with floodiness consistently across regions. Otherwise, results vary across climate regimes: floodiness in arid regions in southern and eastern Africa shows the strongest correlations with seasonal average soil moisture and seasonal total rainfall. Floodiness in wetter climates of western and central Africa and Madagascar shows the strongest relationship with measures of the intensity of seasonal rainfall. Measures of rainfall patterns, such as the length of dry spells, are least related to seasonal floodiness across the continent. Ultimately, identifying the drivers of seasonal flooding can be used to improve forecast information for flood preparedness and to avoid misleading decision-makers.

  7. Characterization of the rainy season in Burkina Faso and it's representation by regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, B.; Karambiri, H. [Institut International d' Ingenierie de l' Eau et de l' Environnement (2iE), Ouagadougou 01 (Burkina Faso); Polcher, J. [Laboratoire de Meteorologie Dynamique du CNRS, Institut Pierre Simon Laplace, Paris Cedex 05 (France); Rockel, B. [Helmholtz-Zentrum Geesthacht Institute of Coastal Research/Group Regional Atmospheric Modeling, Geesthacht (Germany)

    2012-09-15

    West African monsoon is one of the most challenging climate components to model. Five regional climate models (RCMs) were run over the West African region with two lateral boundary conditions, ERA-Interim re-analysis and simulations from two general circulation models (GCMs). Two sets of daily rainfall data were generated from these boundary conditions. These simulated rainfall data are analyzed here in comparison to daily rainfall data collected over a network of ten synoptic stations in Burkina Faso from 1990 to 2004. The analyses are based on a description of the rainy season throughout a number of it's characteristics. It was found that the two sets of rainfall data produced with the two driving data present significant biases. The RCMs generally produce too frequent low rainfall values (between 0.1 and 5 mm/day) and too high extreme rainfalls (more than twice the observed values). The high frequency of low rainfall events in the RCMs induces shorter dry spells at the rainfall thresholds of 0.1-1 mm/day. Altogether, there are large disagreements between the models on the simulate season duration and the annual rainfall amounts but most striking are their differences in representing the distribution of rainfall intensity. It is remarkable that these conclusions are valid whether the RCMs are driven by re-analysis or GCMs. In none of the analyzed rainy season characteristics, a significant improvement of their representation can be found when the RCM is forced by the re-analysis, indicating that these deficiencies are intrinsic to the models. (orig.)

  8. Comparison of regional and seasonal changes and trends in daily surface temperature extremes over India and its subregions

    Science.gov (United States)

    Dimri, A. P.

    2018-04-01

    Regional changes in surface meteorological variables are one of the key issues affecting the Indian subcontinent especially in recent decades. These changes impact agriculture, health, water, etc., hence important to assess and investigate these changes. The Indian subcontinent is characterized by heterogeneous temperature regimes at regional and seasonal scales. The India Meteorological Department (IMD) observations are limited to recent decades as far as its spatial distribution is concerned. In particular, over Hilly region, these observations are sporadic. Due to variable topography and heterogeneous land use/land cover, it is complex to substantiate impacts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim (ERA-I) reanalysis not only covers a larger spatial domain but also provides a greater number of inputs than IMD. This study used ERA-I in conjunction with IMD gridded data to provide a comparative assessment of changing temperature patterns over India and its subregions at both regional and seasonal scales. Warming patterns are observed in both ERA-I and IMD data sets. Cold nights decrease during winter; warm days increase and warm spell duration increased during winter could become a cause of concern for society, agriculture, socio-economic reasons, and health. Increasing warm days over the hilly regions may affect the corresponding snow cover and thus river hydrology and glaciological dynamics. Such changes during monsoon are slower, which could be attributed to moisture availability to dampen the temperature changes. On investigation and comparison thereon, the present study provisions usages of ERA-I-based indices for various impact and adaptation studies.

  9. Grow your own REE deposits: Novel observations from the soils of Southern Portugal

    Science.gov (United States)

    Hardy, Liam; Smith, Martin; Boyce, Adrian; McDonald, Alison; Heller, Shaun; Bamberger, Axel; Blum, Astrid; Hood, Leo

    2017-04-01

    Industrialised eucalyptus farming in Serra de Monchique has been well documented for its regional impacts on water flow, for its destructive centralisation of local economics (Jenkins, 1979) and for its derogatory impacts on local ecology (Brito, 1999) (Matias & Lamberts, 2011), it is another story of cash cropping for short term gain in an area of sensitive environmental balance which had previously been suitably subsistence farmed for some 700 years with no outside influence until the early 1950s (Jenkins, 1979). The farming has irreversibly changed local customs, soil and water systems, but formed new and intricate relationships between the troposol, oxisol and latosol formations and plants which have not previously been studied in this region in terms of soil geochemistry. During research in the region (as part of the SoS Rare/NERC-UK program) into metal and clay interactions in the troposol formations of Monchique, it was noted that rare earth elements (REEs) and other soluble ions were being mobilised in the upper half of the profiles by some seasonal cycle other than the natural meteoric input/leaching expected during classical lateritisation (Tardy, 1997). It was observed that some 40% of Fe and some 30% of Y were leaving the profile during wet season and concentrating at specific depths during dry seasons to a grade of some 160ppm Y and were thus, potentially viable as an economic resource of Heavy REEs. This PICO presentation discusses the proposed anthropogenic/biogenic mechanism for this concentration and how you too could potentially grow an economically viable REE enriched garden. References: Brito, J. G. (1999). Management strategies for conservation of the lizard Lacerta schreiberi in Portugal. Biological conservation, 311-319. Jenkins, R. (1979). The Road to Alto: An account of peasants, capitalists and their soil in the mountains of Southern Portugal. London: Pluto, ISBN: 0861040767. Matias, M., & Lamberts, P. (2011, May 26). Parliamentary

  10. Seasonal and Intraseasonal Variability of Mesoscale Convective Systems over the South Asian Monsoon Region

    Energy Technology Data Exchange (ETDEWEB)

    Virts, Katrina S.; Houze, Robert A.

    2016-12-01

    Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Pre-monsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do pre-monsoon MCSs. During the monsoon season, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30-60 day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeast over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.

  11. Seasonal Prediction of Regional Surface Air Temperature and First-flowering Date in South Korea using Dynamical Downscaling

    Science.gov (United States)

    Ahn, J. B.; Hur, J.

    2015-12-01

    The seasonal prediction of both the surface air temperature and the first-flowering date (FFD) over South Korea are produced using dynamical downscaling (Hur and Ahn, 2015). Dynamical downscaling is performed using Weather Research and Forecast (WRF) v3.0 with the lateral forcing from hourly outputs of Pusan National University (PNU) coupled general circulation model (CGCM) v1.1. Gridded surface air temperature data with high spatial (3km) and temporal (daily) resolution are obtained using the physically-based dynamical models. To reduce systematic bias, simple statistical correction method is then applied to the model output. The FFDs of cherry, peach and pear in South Korea are predicted for the decade of 1999-2008 by applying the corrected daily temperature predictions to the phenological thermal-time model. The WRF v3.0 results reflect the detailed topographical effect, despite having cold and warm biases for warm and cold seasons, respectively. After applying the correction, the mean temperature for early spring (February to April) well represents the general pattern of observation, while preserving the advantages of dynamical downscaling. The FFD predictabilities for the three species of trees are evaluated in terms of qualitative, quantitative and categorical estimations. Although FFDs derived from the corrected WRF results well predict the spatial distribution and the variation of observation, the prediction performance has no statistical significance or appropriate predictability. The approach used in the study may be helpful in obtaining detailed and useful information about FFD and regional temperature by accounting for physically-based atmospheric dynamics, although the seasonal predictability of flowering phenology is not high enough. Acknowledgements This work was carried out with the support of the Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under Grant Project No. PJ009953 and

  12. Updating a synchronous fluorescence spectroscopic virgin olive oil adulteration calibration to a new geographical region.

    Science.gov (United States)

    Kunz, Matthew Ross; Ottaway, Joshua; Kalivas, John H; Georgiou, Constantinos A; Mousdis, George A

    2011-02-23

    Detecting and quantifying extra virgin olive adulteration is of great importance to the olive oil industry. Many spectroscopic methods in conjunction with multivariate analysis have been used to solve these issues. However, successes to date are limited as calibration models are built to a specific set of geographical regions, growing seasons, cultivars, and oil extraction methods (the composite primary condition). Samples from new geographical regions, growing seasons, etc. (secondary conditions) are not always correctly predicted by the primary model due to different olive oil and/or adulterant compositions stemming from secondary conditions not matching the primary conditions. Three Tikhonov regularization (TR) variants are used in this paper to allow adulterant (sunflower oil) concentration predictions in samples from geographical regions not part of the original primary calibration domain. Of the three TR variants, ridge regression with an additional 2-norm penalty provides the smallest validation sample prediction errors. Although the paper reports on using TR for model updating to predict adulterant oil concentration, the methods should also be applicable to updating models distinguishing adulterated samples from pure extra virgin olive oil. Additionally, the approaches are general and can be used with other spectroscopic methods and adulterants as well as with other agriculture products.

  13. Evaluating uncertainties in regional climate simulations over South America at the seasonal scale

    Energy Technology Data Exchange (ETDEWEB)

    Solman, Silvina A. [Centro de Investigaciones del Mar y la Atmosfera CIMA/CONICET-UBA, DCAO/FCEN, UMI-IFAECI/CNRS, CIMA-Ciudad Universitaria, Buenos Aires (Argentina); Pessacg, Natalia L. [Centro Nacional Patagonico (CONICET), Puerto Madryn, Chubut (Argentina)

    2012-07-15

    This work focuses on the evaluation of different sources of uncertainty affecting regional climate simulations over South America at the seasonal scale, using the MM5 model. The simulations cover a 3-month period for the austral spring season. Several four-member ensembles were performed in order to quantify the uncertainty due to: the internal variability; the definition of the regional model domain; the choice of physical parameterizations and the selection of physical parameters within a particular cumulus scheme. The uncertainty was measured by means of the spread among individual members of each ensemble during the integration period. Results show that the internal variability, triggered by differences in the initial conditions, represents the lowest level of uncertainty for every variable analyzed. The geographic distribution of the spread among ensemble members depends on the variable: for precipitation and temperature the largest spread is found over tropical South America while for the mean sea level pressure the largest spread is located over the southeastern Atlantic Ocean, where large synoptic-scale activity occurs. Using nudging techniques to ingest the boundary conditions reduces dramatically the internal variability. The uncertainty due to the domain choice displays a similar spatial pattern compared with the internal variability, except for the mean sea level pressure field, though its magnitude is larger all over the model domain for every variable. The largest spread among ensemble members is found for the ensemble in which different combinations of physical parameterizations are selected. The perturbed physics ensemble produces a level of uncertainty slightly larger than the internal variability. This study suggests that no matter what the source of uncertainty is, the geographical distribution of the spread among members of the ensembles is invariant, particularly for precipitation and temperature. (orig.)

  14. Urban vegetation and income segregation in drylands: a synthesis of seven metropolitan regions in the southwestern United States

    International Nuclear Information System (INIS)

    Jenerette, G Darrel; Buyantuev, Alexander; Miller, Greg; Pataki, Diane E; Gillespie, Thomas W; Pincetl, Stephanie

    2013-01-01

    To better understand how urbanization affects the amount and timing of urban vegetation in drylands we investigated remotely sensed vegetation patterns across seven large metropolitan regions in the southwestern United States. We asked (1) how low density urban land cover differed from adjacent wildland grass, herb, and shrub land covers in both the amount of vegetation and the length of the growing season, (2) how neighborhood income affected patterns of vegetation within low density urban cover, and (3) how cities differed from one another in their vegetation patterns. We found that urbanization generally has a strong influence on vegetation compared to adjacent wildlands. In four of the metropolitan regions the cumulative enhanced vegetation index (EVI) and growing season length in low density developments were higher than grass, herb, and shrub land covers. Within all metropolitan regions, there was a significant socioeconomic effect where higher income areas had a higher cumulative EVI than lower income areas. The large differences in urban vegetation among cities were related to precipitation and total domestic water use. These findings help to identify how urbanization influences vegetation, with implications for the availability of ecosystem services and requirements for irrigation in hot dryland cities. (letter)

  15. Inter-Seasonal Influenza is Characterized by Extended Virus Transmission and Persistence

    Science.gov (United States)

    Patterson Ross, Zoe; Komadina, Naomi; Deng, Yi-Mo; Spirason, Natalie; Kelly, Heath A.; Sullivan, Sheena G.; Barr, Ian G.; Holmes, Edward C.

    2015-01-01

    The factors that determine the characteristic seasonality of influenza remain enigmatic. Current models predict that occurrences of influenza outside the normal surveillance season within a temperate region largely reflect the importation of viruses from the alternate hemisphere or from equatorial regions in Asia. To help reveal the drivers of seasonality we investigated the origins and evolution of influenza viruses sampled during inter-seasonal periods in Australia. To this end we conducted an expansive phylogenetic analysis of 9912, 3804, and 3941 hemagglutinnin (HA) sequences from influenza A/H1N1pdm, A/H3N2, and B, respectively, collected globally during the period 2009-2014. Of the 1475 viruses sampled from Australia, 396 (26.8% of Australian, or 2.2% of global set) were sampled outside the monitored temperate influenza surveillance season (1 May – 31 October). Notably, rather than simply reflecting short-lived importations of virus from global localities with higher influenza prevalence, we documented a variety of more complex inter-seasonal transmission patterns including “stragglers” from the preceding season and “heralds” of the forthcoming season, and which included viruses sampled from clearly temperate regions within Australia. We also provide evidence for the persistence of influenza B virus between epidemic seasons, in which transmission of a viral lineage begins in one season and continues throughout the inter-seasonal period into the following season. Strikingly, a disproportionately high number of inter-seasonal influenza transmission events occurred in tropical and subtropical regions of Australia, providing further evidence that climate plays an important role in shaping patterns of influenza seasonality. PMID:26107631

  16. Phylogenetic analysis of influenza A viruses (H3N2 circulating in Zhytomyr region during 2013–2014 epidemic season

    Directory of Open Access Journals (Sweden)

    Boyalska O. G.

    2015-06-01

    Full Text Available Aim. To perform phylogenetic analysis of the hemagglutinin (HA and neuraminidase (NA genes of influenza A(H3N2 viruses circulating in the Zhytomyr region during 2013–2014 epidemic season. To make comparison of the HA and NA genes sequences of the Zhytomyr region isolates with the HA and NA genes sequences of influenza viruses circulating in the world. Methods. Laboratory diagnosis was conducted by real-time polymerase chain reaction (RT-PCR. In this study the sequencing and phylogenetic analysis were carried out. Results. For the first time the genes of influenza A(H3N2 viruses isolated in the Zhytomyr region during 2013–2014 epidemic season, coding hemagglutinin and neuraminidase were compared with their orthologs. According to the results of this comparison the phylogenetic tree was constructed. Additionally, the amino acid substitutions of the influenza viruses circulating in Ukraine and worldwide were analyzed. Conclusions. The nucleotide sequences of the influenza A(H3N2 viruses genes HA and NA isolated in the Zhytomyr region were identified. Based on the nucleotide sequences of HA and NA we constructed the influenza virus phylogenetic tree demonstrating that the virus isolated in the Zhytomyr region was closely related to the Ukrainian isolate from Kharkov and in the world to the isolates from Germany, Romania, Italy.

  17. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    Science.gov (United States)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  18. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest.

    Science.gov (United States)

    Cai, Zhi-Quan; Schnitzer, Stefan A; Bongers, Frans

    2009-08-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in seasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO(2) assimilation per unit mass (A(mass)), nitrogen concentration (N(mass)), and delta(13)C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO(2) assimilation per unit area (A(area)), phosphorus concentration per unit mass (P(mass)), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A(area) decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana delta(13)C increased four times more than tree delta(13)C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A(mass) than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.

  19. Coupling of microbial nitrogen transformations and climate in sclerophyll forest soils from the Mediterranean Region of central Chile.

    Science.gov (United States)

    Pérez, Cecilia A; Armesto, Juan J

    2018-06-01

    The Mediterranean region of central Chile is experiencing extensive "mega-droughts" with detrimental effects for the environment and economy of the region. In the northern hemisphere, nitrogen (N) limitation of Mediterranean ecosystems has been explained by the decoupling between N inputs and plant uptake during the dormant season. In central Chile, soils have often been considered N-rich in comparison to other Mediterranean ecosystems of the world, yet the impacts of expected intensification of seasonal drought remain unknown. In this work, we seek to disentangle patterns of microbial N transformations and their seasonal coupling with climate in the Chilean sclerophyll forest-type. We aim to assess how water limitation affects microbial N transformations, thus addressing the impact of ongoing regional climate trends on soil N status. We studied four stands of the sclerophyll forest-type in Chile. Field measurements in surface soils showed a 67% decline of free-living diazotrophic activity (DA) and 59% decrease of net N mineralization rates during the summer rainless and dormant season, accompanied by a stimulation of in-situ denitrification rates to values 70% higher than in wetter winter. Higher rates of both free-living DA and net N mineralization found during spring, provided evidence for strong coupling of these two processes during the growing season. Overall, the experimental addition of water in the field to litter samples almost doubled DA but had no effect on denitrification rates. We conclude that coupling of microbial mediated soil N transformations during the wetter growing season explains the N enrichment of sclerophyll forest soils. Expected increases in the length and intensity of the dry period, according to climate change models, reflected in the current mega-droughts may drastically reduce biological N fixation and net N mineralization, increasing at the same time denitrification rates, thereby potentially reducing long-term soil N capital

  20. Growing an Emerging Research University

    Science.gov (United States)

    Birx, Donald L.; Anderson-Fletcher, Elizabeth; Whitney, Elizabeth

    2013-01-01

    The emerging research college or university is one of the most formidable resources a region has to reinvent and grow its economy. This paper is the first of two that outlines a process of building research universities that enhance regional technology development and facilitate flexible networks of collaboration and resource sharing. Although the…

  1. Models to quantify excretion of dry matter, nitrogen, phosphorus and carbon in growing pigs fed regional diets

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Poulsen, Hanne Damgaard; Prapaspongsa, Trakarn

    2013-01-01

    used in a digestibility and balance experiment. Excretion of dry matter (DM), nitrogen (N), phosphorus (P) and carbon (C) of the experimental diets were determined. Due to the highest dietary fibre content, VN had the lowest digestibility of N, P and C (73, 49, and 73%, respectively) compared......Modern pig production contributes to many environmental problems that relate to manure, especially in areas with highly intensive production systems and in regions like Asia where the regulative control is not effective. Therefore, the objective of this study was to use three different pig diets...... varying in dietary protein, fibre and fat as representative for Danish (DK), Thai (TH) and Vietnamese (VN) pig production to develop and evaluate different approaches to predict/calculate excretion from growing pigs in comparison with the experimentally determined values. Nine female growing pigs were...

  2. The Southern African Regional Science Initiative (SAFARI 2000). Dry-Season Campaign: An Overview

    Science.gov (United States)

    Swap, R. J.; Annegarn, H. J.; Suttles, J. T.; Haywood, J.; Hely, C.; Hobbs, P. V.; Holben, B. N.; Ji, J.; King, M. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The Southern African Regional Science Initiative (SAFARI 2000) is an international science project investigating the southern African earth-atmosphere-human system. The experiment was conducted over a two-year period March 1999 - March 2001. The dry season field campaign (August-Steptember 2000) was the most intensive activity and involving over 200 scientists from 18 different nations. The main objectives of this campaign were to characterize and quantify the biogenic, pyrogenic and anthropogenic aerosol and trace gas emissions and their transport and transformations in the atmosphere and to validate the NASA Earth Observing System (EOS) satellite Terra within a scientific context. Five aircraft, namely two South African Weather Service aircraft, University of Washington CV-580, the UK Meteorological Office C-130 and the NASA ER-2, with different altitude capabilities, participated in the campaign. Additional airborne sampling of southern African air masses that had moved downwind of the subcontinent was conducted by the CSIRO over Australia. Multiple observations were taken in various sectors for a variety of synoptic conditions. Flight missions were designed to maximize synchronous over-flights of the NASA TERRA satellite platform, above regional ground validation and science targets. Numerous smaller-scale ground validation activities took place throughout the region during the campaign period.

  3. A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends

    Science.gov (United States)

    Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.

  4. Seasonality of cholera from 1974 to 2005: a review of global patterns

    Directory of Open Access Journals (Sweden)

    Feldacker Caryl

    2008-06-01

    Full Text Available Abstract Background The seasonality of cholera is described in various study areas throughout the world. However, no study examines how temporal cycles of the disease vary around the world or reviews its hypothesized causes. This paper reviews the literature on the seasonality of cholera and describes its temporal cycles by compiling and analyzing 32 years of global cholera data. This paper also provides a detailed literature review on regional patterns and environmental and climatic drivers of cholera patterns. Data, Methods, and Results Cholera data are compiled from 1974 to 2005 from the World Health Organization Weekly Epidemiological Reports, a database that includes all reported cholera cases in 140 countries. The data are analyzed to measure whether season, latitude, and their interaction are significantly associated with the country-level number of outbreaks in each of the 12 preceding months using separate negative binomial regression models for northern, southern, and combined hemispheres. Likelihood ratios tests are used to determine the model of best fit. The results suggest that cholera outbreaks demonstrate seasonal patterns in higher absolute latitudes, but closer to the equator, cholera outbreaks do not follow a clear seasonal pattern. Conclusion The findings suggest that environmental and climatic factors partially control the temporal variability of cholera. These results also indirectly contribute to the growing debate about the effects of climate change and global warming. As climate change threatens to increase global temperature, resulting rises in sea levels and temperatures may influence the temporal fluctuations of cholera, potentially increasing the frequency and duration of cholera outbreaks.

  5. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs)

    Science.gov (United States)

    Giraldo Osorio, J. D.; García Galiano, S. G.

    2012-07-01

    SummaryThe Senegal River Basin, located in West Africa, has been affected by several droughts since the end of the 1960s. In its valley, which is densely populated and highly vulnerable to climate variability and water availability, agricultural activities provide the livelihood for thousands of people. Increasing the knowledge about plausible trends of drought events will allow to improve the adaptation and mitigation measures in order to build "adaptive capacity" to climate change in West Africa. An innovative methodology for the non-stationary analysis of droughts events, which allows the prediction of regional trends associated to several return periods, is presented. The analyses were based on Regional Climate Models (RCMs) provided by the European ENSEMBLES project for West Africa, together with observed data. A non-stationary behaviour of the annual series of maximum length of dry spells (AMDSL) in the monsoon season is reflected in temporal changes in mean and variance. The non-stationary nature of hydrometeorological series, due to climate change and anthropogenic activities, is the main criticism to traditional frequency analysis. Therefore, in this paper, the modelling tool GAMLSS (Generalized Additive Models for Location, Scale and Shape), is applied to develop regional probability density functions (pdfs) fitted to AMDSL series for the monsoon season in the Senegal River Basin. The skills of RCMs in the representation of maximum length of dry spells observed for the period 1970-1990, are evaluated considering observed data. Based on the results obtained, a first selection of the RCMs with which to apply GAMLSS to the AMDSL series identified, for the time period 1970-2050, is made. The results of GAMLSS analysis exhibit divergent trends, with different value ranges for parameters of probability distributions being detected. Therefore, in the second stage of the paper, regional pdfs are constructed using bootstrapping distributions based on probabilistic

  6. Adaptive region-growing with maximum curvature strategy for tumor segmentation in 18F-FDG PET

    Science.gov (United States)

    Tan, Shan; Li, Laquan; Choi, Wookjin; Kang, Min Kyu; D'Souza, Warren D.; Lu, Wei

    2017-07-01

    Accurate tumor segmentation in PET is crucial in many oncology applications. We developed an adaptive region-growing (ARG) algorithm with a maximum curvature strategy (ARG_MC) for tumor segmentation in PET. The ARG_MC repeatedly applied a confidence connected region-growing algorithm with increasing relaxing factor f. The optimal relaxing factor (ORF) was then determined at the transition point on the f-volume curve, where the volume just grew from the tumor into the surrounding normal tissues. The ARG_MC along with five widely used algorithms were tested on a phantom with 6 spheres at different signal to background ratios and on two clinic datasets including 20 patients with esophageal cancer and 11 patients with non-Hodgkin lymphoma (NHL). The ARG_MC did not require any phantom calibration or any a priori knowledge of the tumor or PET scanner. The identified ORF varied with tumor types (mean ORF  =  9.61, 3.78 and 2.55 respectively for the phantom, esophageal cancer, and NHL datasets), and varied from one tumor to another. For the phantom, the ARG_MC ranked the second in segmentation accuracy with an average Dice similarity index (DSI) of 0.86, only slightly worse than Daisne’s adaptive thresholding method (DSI  =  0.87), which required phantom calibration. For both the esophageal cancer dataset and the NHL dataset, the ARG_MC had the highest accuracy with an average DSI of 0.87 and 0.84, respectively. The ARG_MC was robust to parameter settings and region of interest selection, and it did not depend on scanners, imaging protocols, or tumor types. Furthermore, the ARG_MC made no assumption about the tumor size or tumor uptake distribution, making it suitable for segmenting tumors with heterogeneous FDG uptake. In conclusion, the ARG_MC was accurate, robust and easy to use, it provides a highly potential tool for PET tumor segmentation in clinic.

  7. Comparison of seasonal variability in European domestic radon measurements

    Science.gov (United States)

    Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.

    2010-03-01

    Analysis of published data characterising seasonal variability of domestic radon concentrations in Europe and elsewhere shows significant variability between different countries and between regions where regional data is available. Comparison is facilitated by application of the Gini Coefficient methodology to reported seasonal variation data. Overall, radon-rich sedimentary strata, particularly high-porosity limestones, exhibit high seasonal variation, while radon-rich igneous lithologies demonstrate relatively constant, but somewhat higher, radon concentrations. High-variability regions include the Pennines and South Downs in England, Languedoc and Brittany in France, and especially Switzerland. Low-variability high-radon regions include the granite-rich Cornwall/Devon peninsula in England, and Auvergne and Ardennes in France, all components of the Devonian-Carboniferous Hercynian belt.

  8. Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite

    Science.gov (United States)

    Van Rampelbergh, M.; Verheyden, S.; Allan, M.; Quinif, Y.; Keppens, E.; Claeys, P.

    2014-10-01

    Speleothems provide paleoclimate information on multimillennial to decadal scales in the Holocene. However, seasonal or even monthly resolved records remain scarce. Such records require fast-growing stalagmites and a good understanding of the proxy system on very short timescales. The Proserpine stalagmite from the Han-sur-Less cave (Belgium) displays well-defined/clearly visible darker and lighter seasonal layers of 0.5 to 2 mm thickness per single layer, which allows a measuring resolution at a monthly scale. Through a regular cave monitoring, we acquired a good understanding of how δ18O and δ13C signals in modern calcite reflect climate variations on the seasonal scale. From December to June, outside temperatures are cold, inducing low cave air and water temperature, and bio-productivity in the soil is limited, leading to lower pCO2 and higher δ13C values of the CO2 in the cave air. From June to December, the measured factors display an opposite behavior. The absence of epikarst water recharge between May and October increases prior calcite precipitation (PCP) in the vadose zone, causing drip water to display increasing pH and δ13C values over the summer months. Water recharge of the epikarst in winter diminishes the effect of PCP and as a result the pH and δ13C of the drip water gradually decrease. The δ18O and δ13C signals of fresh calcite precipitated on glass slabs also vary seasonally and are both reflecting equilibrium conditions. Lowest δ18O values occur during the summer, when the δ13C values are high. The δ18O values of the calcite display seasonal variations due to changes in the cave air and water temperature. The δ13C values reflect the seasonal variation of the δ13CDIC of the drip water, which is affected by the intensity of PCP. This same anticorrelation of the δ18O versus the δ13C signals is seen in the monthly resolved speleothem record that covers the period between 1976 and 1985 AD. Dark layers display lower δ18O and higher δ13C

  9. Chemical diversity of essential oils from flowers, leaves, and stems of Rhanterium epapposum Oliv. growing in northern border region of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Marwa Awad

    2016-09-01

    Conclusions: Essential oils from flowers, leaves and stems of R. epapposum growing in northern border region of Saudi Arabia are considered as a rich source of monoterpenes which have biological activities.

  10. On the reliability of seasonal climate forecasts

    Science.gov (United States)

    Weisheimer, A.; Palmer, T. N.

    2014-01-01

    Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time. PMID:24789559

  11. Incorporating Medium-Range Weather Forecasts in Seasonal Crop Scenarios over the Greater Horn of Africa to Support National/Regional/Local Decision Makers

    Science.gov (United States)

    Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.

    2015-12-01

    The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast

  12. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    Science.gov (United States)

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  13. Boll weevil within season and off-season activity monitored using a pheromone-and-glue reusable tube trap

    Directory of Open Access Journals (Sweden)

    Robério Carlos dos Santos Neves

    Full Text Available ABSTRACT: The boll weevil colonizes cotton fields as early as cotton squaring, causing significant losses due to feeding and protected development inside fruiting structures throughout crop phenology. Successful control depends on control of adults and their accurate detection when they colonize the crops. The commercial trap and boll weevil attract-and-control tubes (BWACT are the only available tools to monitor and attract-and-kill boll weevil, despite limitation in efficacy, and insecticide in BWACT is not allowed in organic production. A grandlure-and-glue reusable and insecticide-free tube (GGT made with polyvinyl chloride tube, smeared with entomological glue, and lured with pheromone was tested to detect boll weevil activity across various seasons. Boll weevil showed activity during growing season and off-season from 2009 to 2012 in the Semiarid and with higher numbers captured in GGT in comparisons to commercial traps. GGT was able to detect early weevils in the field right after planting. Further, the overall averages resulted in 34-, 16.8-, and 7.5-times more weevils captured in GGTs compared to the traps during stalk destruction in the Semiarid 2011 and Cerrado season 2012/13 and during the harvesting period in the Cerrado season 2011/12, respectively. Therefore, boll weevils were captured actively during season and off-season and early captures obtained in GGT compared to traps showed a better correlation between captures and square damage.

  14. Extended season for northern butterflies.

    Science.gov (United States)

    Karlsson, Bengt

    2014-07-01

    Butterflies are like all insects in that they are temperature sensitive and a changing climate with higher temperatures might effect their phenology. Several studies have found support for earlier flight dates among the investigated species. A comparative study with data from a citizen science project, including 66 species of butterflies in Sweden, was undertaken, and the result confirms that most butterfly species now fly earlier during the season. This is especially evident for butterflies overwintering as adults or as pupae. However, the advancement in phenology is correlated with flight date, and some late season species show no advancement or have even postponed their flight dates and are now flying later in the season. The results also showed that latitude had a strong effect on the adult flight date, and most of the investigated species showed significantly later flights towards the north. Only some late flying species showed an opposite trend, flying earlier in the north. A majority of the investigated species in this study showed a general response to temperature and advanced their flight dates with warmer temperatures (on average they advanced their flight dates by 3.8 days/°C), although not all species showed this response. In essence, a climate with earlier springs and longer growing seasons seems not to change the appearance patterns in a one-way direction. We now see butterflies on the wings both earlier and later in the season and some consequences of these patterns are discussed. So far, studies have concentrated mostly on early season butterfly-plant interactions but also late season studies are needed for a better understanding of long-term population consequences.

  15. The role of seasonal, climatic and meteorological conditions in modifying nuclear accident consequences

    International Nuclear Information System (INIS)

    Mueller, H.; Proehl, G.

    1989-01-01

    One of the most important factors which influence the ingestion doses after an accidental release of radionuclides is the season of the year at which the release occurs. This is demonstrated with some examples for German conditions. This seasonal effect depends strongly on the growing periods of the different plants. Therefore it is influenced by the climatic conditions which vary to a large degree in the different countries causing very different growing periods. The influence of the meteorological conditions during and after the passing of a radioactive cloud on the initial contamination of the plants is discussed

  16. Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China.

    Science.gov (United States)

    Cheng, Linjun; Wang, Shuai; Gong, Zhengyu; Li, Hong; Yang, Qi; Wang, Yeyao

    2018-05-01

    Owing to the vast territory of China and strong regional characteristic of ozone pollution, it's desirable for policy makers to have a targeted and prioritized regulation and ozone pollution control strategy in China based on scientific evidences. It's important to assess its current pollution status as well as spatial and temporal variation patterns across China. Recent advances of national monitoring networks provide an opportunity to insight the actions of ozone pollution. Here, we present rotated empirical orthogonal function (REOF) analysis that was used on studying the spatiotemporal characteristics of daily ozone concentrations. Based on results of REOF analysis in pollution seasons for 3years' observations, twelve regions with clear patterns were identified in China. The patterns of temporal variation of ozone in each region were separated well and different from each other, reflecting local meteorological, photochemical or pollution features. A rising trend in annual averaged Eight-hour Average Ozone Concentrations (O 3 -8hr) from 2014 to 2016 was observed for all regions, except for the Tibetan Plateau. The mean values of annual and 90 percentile concentrations for all 338 cities were 82.6±14.6 and 133.9±25.8μg/m 3 , respectively, in 2015. The regionalization results of ozone were found to be influenced greatly by terrain features, indicating significant terrain and landform effects on ozone spatial correlations. Among 12 regions, North China Plain, Huanghuai Plain, Central Yangtze River Plain, Pearl River Delta and Sichuan Basin were realized as priority regions for mitigation strategies, due to their higher ozone concentrations and dense population. Copyright © 2017. Published by Elsevier B.V.

  17. Comparison of seasonal variability in European domestic radon measurements

    Directory of Open Access Journals (Sweden)

    C. J. Groves-Kirkby

    2010-03-01

    Full Text Available Analysis of published data characterising seasonal variability of domestic radon concentrations in Europe and elsewhere shows significant variability between different countries and between regions where regional data is available. Comparison is facilitated by application of the Gini Coefficient methodology to reported seasonal variation data. Overall, radon-rich sedimentary strata, particularly high-porosity limestones, exhibit high seasonal variation, while radon-rich igneous lithologies demonstrate relatively constant, but somewhat higher, radon concentrations. High-variability regions include the Pennines and South Downs in England, Languedoc and Brittany in France, and especially Switzerland. Low-variability high-radon regions include the granite-rich Cornwall/Devon peninsula in England, and Auvergne and Ardennes in France, all components of the Devonian-Carboniferous Hercynian belt.

  18. Experimental observation and combined investigation of high-performance fusion of iron-region isotopes in optimal growing microbiological associations

    International Nuclear Information System (INIS)

    Vysotskii, Vladimir I.; Kornilova, Alla A.; Tashirev, Alexandr B.; Kornilova, Julia

    2006-01-01

    The report represents the results of combined (Moessbauer and mass-spectroscopy) examinations of isotopes transmutation process in growing microbiological associations in the iron-region of atomic mass (50 < A < 60). It was shown that the effectiveness of isotopes transmutation during the process of growth of microbiological associations at optimal conditions is by 10-20 times more than the effectiveness of the same transmutation in one-line' (clean) microbiological cultures. (author)

  19. Seasonal characterization of CDOM for lakes in semiarid regions of Northeast China using excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)

    Science.gov (United States)

    Zhao, Ying; Song, Kaishan; Wen, Zhidan; Li, Lin; Zang, Shuying; Shao, Tiantian; Li, Sijia; Du, Jia

    2016-03-01

    The seasonal characteristics of fluorescent components in chromophoric dissolved organic matter (CDOM) for lakes in the semiarid region of Northeast China were examined by excitation-emission matrix (EEM) spectra and parallel factor analysis (PARAFAC). Two humic-like (C1 and C2) and protein-like (C3 and C4) components were identified using PARAFAC. The average fluorescence intensity of the four components differed under seasonal variation from June and August 2013 to February and April 2014. Components 1 and 2 exhibited a strong linear correlation (R2 = 0.628). Significantly positive linear relationships between CDOM absorption coefficients a(254) (R2 = 0.72, 0.46, p DOC). However, almost no obvious correlation was found between salinity and EEM-PARAFAC-extracted components except for C3 (R2 = 0.469). Results from this investigation demonstrate that the EEM-PARAFAC technique can be used to evaluate the seasonal dynamics of CDOM fluorescent components for inland waters in the semiarid regions of Northeast China, and to quantify CDOM components for other waters with similar environmental conditions.

  20. Exploring the Factors Driving Seasonal Farmland Abandonment: A Case Study at the Regional Level in Hunan Province, Central China

    Directory of Open Access Journals (Sweden)

    Zhonglei Yu

    2017-01-01

    Full Text Available Farmland abandonment, including perennial and seasonal abandonment, is an important process of land use change that matters most to food security. Although there is a great deal of studies on farmland abandonment, seasonal abandonment, which is as serious as perennial abandonment, has attracted little academic attention. This paper takes Hunan Province in central China as its study area and uses a spatial regression model to examine the driving factors of seasonal farmland abandonment at the county level. Our results show that farmland abandonment has striking spatial relativity, and there are two clustering zones with a high index of farmland abandonment (IFA in the Dongting plain and the basin in south-central Hunan, while a clustering zone of low IFA can be found in the mountains of southwest Hunan. Farmland abandonment at the regional level is negatively affected by the land productive potentialities, proportion of mechanized planting, ratio of effective irrigation, and distance to provincial capital, while it is positively associated with the variables mountainous terrain, per capita farmland area, and labor shortage. Additionally, farmland abandonment is also affected by adjacent areas through its spatial dependence. In short, seasonal farmland abandonment is also driven integratedly by the socioeconomic and environmental dimensions and spatial interaction of farm abandonment.

  1. Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain.

    Science.gov (United States)

    Garfí, Marianna; Pedescoll, Anna; Bécares, Eloy; Hijosa-Valsero, María; Sidrach-Cardona, Ricardo; García, Joan

    2012-10-15

    The aim of this study was to examine the effects of climate, season and wastewater quality on contaminant removal efficiency of constructed wetlands implemented in Mediterranean and continental-Mediterranean climate region of Spain. To this end, two experimental horizontal subsurface flow constructed wetlands located in Barcelona and León (Spain) were compared. The two constructed wetland systems had the same experimental set-up. Each wetland had a surface area of 2.95 m(2), a water depth of 25 cm and a granular medium of D(60)=7.3 mm, and was planted with Phragmites australis. Both systems were designed in order to operate with a maximum organic loading rate of 6 g(DBO) m(-2) d(-1). Experimental systems operated with a hydraulic loading rate of 28.5 and 98 mm d(-1) in Barcelona and León, respectively. Total suspended solids, biochemical oxygen demand and ammonium mass removal efficiencies followed seasonal trends, with higher values in the summer (97.4% vs. 97.8%; 97.1% vs. 96.2%; 99.9% vs. 88.9%, in Barcelona and León systems, respectively) than in the winter (83.5% vs. 74.4%; 73.2% vs. 60.6%; 19% vs. no net removal for ammonium in Barcelona and León systems, respectively). During the cold season, biochemical oxygen demand and ammonium removal were significantly higher in Barcelona system than in León, as a result of higher temperature and redox potential in Barcelona. During the warm season, statistical differences were observed only for ammonium removal. Results showed that horizontal subsurface flow constructed wetland is a successful technology for both regions considered, even if winter seemed to be a critical period for ammonium removal in continental climate regions. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire in the broad-leaved forest zone of European Russia

    International Nuclear Information System (INIS)

    Olchev, A; Volkova, E; Karataeva, T; Novenko, E

    2013-01-01

    The spatial and temporal variability of net ecosystem exchange (NEE) of CO 2 and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest–steppe zones in the central part of European Russia in the Tula region was described using results from field measurements. NEE and ET were measured using a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO 2 /H 2 O analyzer, LI-840A (Li-Cor, USA) along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and in May 2013. The results of the field measurements showed significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation and ground water level. The seasonal patterns of NEE and ET within the mire were quite different. During the entire growing season the central part of the mire was a sink of CO 2 for the atmosphere. NEE reached maximal values in June–July (−6.8 ± 4.2 μmol m −2 s −1 ). The southern peripheral part of the mire, due to strong shading by the surrounding forest, was a sink of CO 2 for the atmosphere in June–July only. ET reached maximal values in the well-lighted central parts of the mire in May (0.34 ± 0.20 mm h −1 ) mainly because of high air and surface temperatures and the very wet upper peat horizon and sphagnum moss. Herbaceous species made the maximum contribution to the total gross primary production (GPP) in both the central and the peripheral parts of the mire. The contribution of sphagnum to the total GPP of these plant communities was relatively small and ranged on sunny days of July–August from −1.1 ± 1.1 mgC g −1 of dry weight (DW) per hour in the peripheral zone of the mire to −0.6 ± 0.2 mgC g −1 DW h −1 at the mire center. The sphagnum layer made the maximum contribution to total ET at the mire center (0

  3. Development of a Seasonal Extratropical Cyclone Activity Outlook for the North Pacific, Bering Sea, and Alaskan Regions

    Science.gov (United States)

    Shippee, N. J.; Atkinson, D. E.; Walsh, J. E.; Partain, J.; Gottschalck, J.; Marra, J. J.

    2013-12-01

    Storm activity (i.e. 'storminess') and associated forecasting skill in the North Pacific, Bering Sea, and Alaska is relatively well understood on a daily to weekly scale, however, two important elements are missing from current capacity. First, there is no way to predict storm activity at the monthly to seasonal time frame. Second, storm activity is characterized in terms that best serve weather specialists, and which are often not very informative for different sectors of the public. Increasing the utility of forecasts for end users requires consultation with these groups, and can include expressing storm activity in terms of, for example, strong-wind return intervals or ship hull strength. These types of forecasts can provide valuable information for use in community planning, resource allocation, or potential risk assessment. A preliminary study of seasonal storminess predictability in the North Pacific and Alaska regions has shown that a key factor related to the annual variation of seasonal storminess is the strength of the Aleutian Low as measured using indices such as the North Pacific Index (NPI) or Aleutian Low Pressure Index (ALPI). Use of Empirical Orthogonal Function (EOF) analysis to identify patterns in storminess variability indicates that the primary mode of annual variation is found to be best explained by the variation in the strength of the Aleutian Low. NPI and the first component of storm activity for the entire region are found to be are highly correlated (R = 0.83). This result is supported by the works of others such as Rodionov et al. (2007), who note the impact of the strength of the Aleutian Low on storm track and speed. Additionally, the phase of the Pacific Decadal Oscillation (PDO), along with NPI, have been shown to be highly correlated with annual variance in the seasonal storminess for the North Pacific and Alaska. Additional skill has been identified when the phase of the Pacific Decadal Oscillation (PDO) is explicitly considered

  4. Developing Inventory Projection Models Using Empirical Net Forest Growth and Growing-Stock Density Relationships Across U.S. Regions and Species Group

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2012-01-01

    This paper describes a set of empirical net forest growth models based on forest growing-stock density relationships for three U.S. regions (North, South, and West) and two species groups (softwoods and hardwoods) at the regional aggregate level. The growth models accurately predict historical U.S. timber inventory trends when we incorporate historical timber harvests...

  5. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants.

    Science.gov (United States)

    Nenadis, Nikolaos; Llorens, Laura; Koufogianni, Agathi; Díaz, Laura; Font, Joan; Gonzalez, Josep Abel; Verdaguer, Dolors

    2015-12-01

    The effects of UV radiation and rainfall reduction on the seasonal leaf phenolic content/composition and antioxidant activity of the Mediterranean shrub Arbutus unedo were studied. Naturally growing plants of A. unedo were submitted to 97% UV-B reduction (UVA), 95% UV-A+UV-B reduction (UV0) or near-ambient UV levels (UVBA) under two precipitation regimes (natural rainfall or 10-30% rainfall reduction). Total phenol, flavonol and flavanol contents, levels of eight phenols and antioxidant activity [DPPH(●) radical scavenging and Cu (II) reducing capacity] were measured in sun-exposed leaves at the end of four consecutive seasons. Results showed a significant seasonal variation in the leaf content of phenols of A. unedo, with the lowest values found in spring and the highest in autumn and/or winter. Leaf ontogenetic development and/or a possible effect of low temperatures in autumn/winter may account for such findings. Regardless of the watering regime and the sampling date, plant exposure to UV-B radiation decreased the total flavanol content of leaves, while it increased the leaf content in quercitrin (the most abundant quercetin derivative identified). By contrast, UV-A radiation increased the leaf content of theogallin, a gallic acid derivative. Other phenolic compounds (two quercetin derivatives, one of them being avicularin, and one kaempferol derivative, juglanin), as well as the antioxidant activity of the leaves, showed different responses to UV radiation depending on the precipitation regime. Surprisingly, reduced rainfall significantly decreased the total amount of quantified quercetin derivatives as well as the DPPH scavenging activity in A. unedo leaves. To conclude, present findings indicate that leaves of A. unedo can be a good source of antioxidants throughout the year, but especially in autumn and winter. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2

    Science.gov (United States)

    McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J.

    2014-05-01

    Early and on-going crop production forecasts are important to facilitate food price stability for regions at risk, and for agriculture exporters, to set market value. Most regional and global efforts in forecasting rely on multiple sources of information from the field. With increased access to data from spaceborne Synthetic Aperture Radar (SAR), these sensors could contribute information on crop acreage. But these acreage estimates must be available early in the season to assist with production forecasts. This study acquired TerraSAR-X and RADARSAT-2 data over a region in eastern Canada dominated by economically important corn and soybean production. Using a supervised decision tree classifier, results determined that either sensor was capable of delivering highly accurate maps of corn and soybeans at the end of the growing season. Accuracies far exceeded 90%. Spatial and multi-temporal filtering approaches were compared and small improvements in accuracies were found by applying the multi-temporal filter to the RADARSAT-2 data. Of significant interest, this study determined that by using only three TerraSAR-X images corn could be accurately identified by the end of June, a mere six weeks after planting and at a vegetative growth stage (V6 - sixth leaf collar developed). However, soybeans required additional acquisitions given the variance in planting densities and planting dates in this region of Canada. In this case, accurate soybean classification required TerraSAR-X images until early August at the start of the reproductive stage (R5 - seed development is beginning). Also important, by applying a multi-temporal filter accurate mapping (close to 90%) of corn and soybeans from RADARSAT-2 could occur five weeks earlier (by August 19) than if a spatial filter was used. Thus application of this filtering approach could accelerate delivery of a crop inventory for this region of Canada. Corn and soybeans are important commodities both globally and within Canada. This

  7. GROWING REGIONAL SCIENTIFIC MIGRATION AND MOBILITY: THE EUROPEAN UNION AND THE EASTERN PARTNERSHIP

    Directory of Open Access Journals (Sweden)

    Ganna KHARLAMOVA

    2016-11-01

    Full Text Available The article contributes to the growing strand of the literature on the scientific mobility and migration in the European Union (EU and the Eastern Partnership. The paper provides the quantitative assessment of the costs and benefits of ‘smart’ labour migration in the Eastern Partnership (EaP countries (particularly, Ukraine, explores the potential of future new rules for the mobility within the EU-EaP, and proposes some policy recommendations to enhance the benefits stemming from such flows. One of the rigorous idea – to provide an explanation whether the scientific migration and mobility, and remittances impact on economic development in the donor and recipient states, and, in particular, how important it is as a resource for the EaP enhancing. The convergence effect of scientific migration in the EU and the Eastern Partnership region is considered by means of calculative assessment.

  8. Modeling Aspect Controlled Formation of Seasonally Frozen Ground on Montane Hillslopes: a Case Study from Gordon Gulch, Colorado

    Science.gov (United States)

    Rush, M.; Rajaram, H.; Anderson, R. S.; Anderson, S. P.

    2017-12-01

    The Intergovernmental Panel on Climate Change (2013) warns that high-elevation ecosystems are extremely vulnerable to climate change due to short growing seasons, thin soils, sparse vegetation, melting glaciers, and thawing permafrost. Many permafrost-free regions experience seasonally frozen ground. The spatial distribution of frozen soil exerts a strong control on subsurface flow and transport processes by reducing soil permeability and impeding infiltration. Accordingly, evolution of the extent and duration of frozen ground may alter streamflow seasonality, groundwater flow paths, and subsurface storage, presenting a need for coupled thermal-hydrologic models to project hydrologic responses to climate warming in high-elevation regions. To be useful as predictive tools, such models should incorporate the heterogeneity of solar insolation, vegetation, and snowpack dynamics. We present a coupled thermal-hydrologic modeling study against the backdrop of field observations from Gordon Gulch, a seasonally snow-covered montane catchment in the Colorado Front Range in the Boulder Creek Critical Zone Observatory. The field site features two instrumented hillslopes with opposing aspects: the snowpack on the north-facing slope persists throughout much of the winter season, while the snowpack on the south-facing slope is highly ephemeral. We implemented a surface energy balance and snowpack accumulation and ablation model that is coupled to the subsurface flow and transport code PFLOTRAN-ICE to predict the hydrologic consequences of aspect-controlled frozen soil formation during water years 2013-2016. Preliminary model results demonstrate the occurrence of seasonally-frozen ground on the north-facing slope that directs snowmelt to the stream by way of shallow subsurface flow paths. The absence of persistently frozen ground on the south-facing slope allows deeper infiltration of snowmelt recharge. The differences in subsurface flow paths also suggest strong aspect

  9. Attenuation correction with region growing method used in the positron emission mammography imaging system

    Science.gov (United States)

    Gu, Xiao-Yue; Li, Lin; Yin, Peng-Fei; Yun, Ming-Kai; Chai, Pei; Huang, Xian-Chao; Sun, Xiao-Li; Wei, Long

    2015-10-01

    The Positron Emission Mammography imaging system (PEMi) provides a novel nuclear diagnosis method dedicated for breast imaging. With a better resolution than whole body PET, PEMi can detect millimeter-sized breast tumors. To address the requirement of semi-quantitative analysis with a radiotracer concentration map of the breast, a new attenuation correction method based on a three-dimensional seeded region growing image segmentation (3DSRG-AC) method has been developed. The method gives a 3D connected region as the segmentation result instead of image slices. The continuity property of the segmentation result makes this new method free of activity variation of breast tissues. The threshold value chosen is the key process for the segmentation method. The first valley in the grey level histogram of the reconstruction image is set as the lower threshold, which works well in clinical application. Results show that attenuation correction for PEMi improves the image quality and the quantitative accuracy of radioactivity distribution determination. Attenuation correction also improves the probability of detecting small and early breast tumors. Supported by Knowledge Innovation Project of The Chinese Academy of Sciences (KJCX2-EW-N06)

  10. [Characteristics and adaptation of seasonal drought in southern China under the background of climate change. V. Seasonal drought characteristics division and assessment in southern China].

    Science.gov (United States)

    Huang, Wan-Hua; Sui, Yue; Yang, Xiao-Guang; Dai, Shu-Wei; Li, Mao-Song

    2013-10-01

    Zoning seasonal drought based on the study of drought characteristics can provide theoretical basis for formulating drought mitigation plans and improving disaster reduction technologies in different arid zones under global climate change. Based on the National standard of meteorological drought indices and agricultural drought indices and the 1959-2008 meteorological data from 268 meteorological stations in southern China, this paper analyzed the climatic background and distribution characteristics of seasonal drought in southern China, and made a three-level division of seasonal drought in this region by the methods of combining comprehensive factors and main factors, stepwise screening indices, comprehensive disaster analysis, and clustering analysis. The first-level division was with the annual aridity index and seasonal aridity index as the main indices and with the precipitation during entire year and main crop growing season as the auxiliary indices, dividing the southern China into four primary zones, including semi-arid zone, sub-humid zone, humid zone, and super-humid zone. On this basis, the four primary zones were subdivided into nine second-level zones, including one semi-arid area-temperate-cold semi-arid hilly area in Sichuan-Yunnan Plateau, three sub-humid areas of warm sub-humid area in the north of the Yangtze River, warm-tropical sub-humid area in South China, and temperate-cold sub-humid plateau area in Southwest China, three humid areas of temperate-tropical humid area in the Yangtze River Basin, warm-tropical humid area in South China, and warm humid hilly area in Southwest China, and two super-humid areas of warm-tropical super-humid area in South China and temperate-cold super-humid hilly area in the south of the Yangtze River and Southwest China. According to the frequency and intensity of multiple drought indices, the second-level zones were further divided into 29 third-level zones. The distribution of each seasonal drought zone was

  11. Seasonal variation of radon concentrations in UK homes

    International Nuclear Information System (INIS)

    Miles, J C H; Howarth, C B; Hunter, N

    2012-01-01

    The patterns of seasonal variation of radon concentrations were measured in 91 homes in five regions of the UK over a period of two years. The results showed that there was no significant difference between the regions in the pattern or magnitude of seasonal variation in radon concentrations. The arithmetic mean variation was found to be close to that found previously in the UK national survey. Differences in the pattern between the two years of the study were not significant. Two-thirds of homes in the study followed the expected pattern of high radon in the winter and low radon in the summer. Most of the rest showed little seasonal variation, and a few showed a reversed seasonal pattern. The study does not provide any clear evidence for the recorded house characteristics having an effect on the seasonal variation in radon concentrations in UK homes, though the statistical power for determining such effects is limited in this study. The magnitude of the seasonal variation varied widely between homes. Analysis of the individual results from the homes showed that because of the wide variation in the amount of seasonal variation, applying seasonal correction factors to the results of three-month measurements can yield only relatively small improvements in the accuracy of estimates of annual mean concentrations.

  12. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data

    Science.gov (United States)

    Chen, Xingchao; Zhao, Kun; Xue, Ming

    2014-11-01

    This study examines the temporal and spatial characteristics and distributions of convection over the Pearl River Delta region of Guangzhou, China, during the May-September warm season, using, for the first time for such a purpose, 3 years of operational Doppler radar data in the region. Results show that convective features occur most frequently along the southern coast and the windward slope of the eastern mountainous area of Pearl River Delta, with the highest frequency occurring in June and the lowest in September among the 5 months. The spatial frequency distribution pattern also roughly matches the accumulated precipitation pattern. The occurrence of convection in this region also exhibits strong diurnal cycles. During May and June, the diurnal distribution is bimodal, with the maximum frequency occurring in the early afternoon and a secondary peak occurring between midnight and early morning. The secondary peak is much weaker in July, August, and September. Convection near the coast is found to occur preferentially on days when a southerly low-level jet (LLJ) exists, especially during the Meiyu season. Warm, moist, and unstable air is transported from the ocean to land by LLJs on these days, and the lifting along the coast by convergence induced by differential surface friction between the land and ocean is believed to be the primary cause for the high frequency along the coast. In contrast, the high frequency over mountainous area is believed to be due to orographic lifting of generally southerly flows during the warm season.

  13. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    Science.gov (United States)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  14. [Effects of conservation tillage on soil CO2 and N2O emission during the following winter-wheat season].

    Science.gov (United States)

    Pan, Ying; Hu, Zheng-Hu; Wu, Yang-Zhou; Sun, Yin-Yin; Sheng, Lu; Chen, Shu-Tao; Xiao, Qi-Tao

    2014-07-01

    In order to study the effect of conservation tillage on soil CO2 and N2O emissions in the following crop-growing season, field experiments were conducted in the winter wheat-growing season. Four treatments were conventional tillage (T), no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), and conventional tillage with straw incorporation (TS), respectively. The CO2 and N2O fluxes were measured using a static chamber-gas chromatograph technique. The results showed that in the following winter wheat-growing season, conservation tillage did not change the seasonal pattern of CO2 and N2O emission fluxes from soil, and had no significant effect on crop biomass. Conservation tillage significantly reduced the accumulative amount of CO2 and N2O. Compared with the T treatment, the accumulative amount of CO2 under TS, NT, and NTS treatments were reduced by 5.95% (P = 0.132), 12.94% (P = 0.007), and 13.91% (P = 0.004), respectively, and the accumulative amount of N2O were significantly reduced by 31.23% (P = 0.000), 61.29% (P = 0.000), and 33.08% (P = 0.000), respectively. Our findings suggest that conservation tillage significantly reduced CO2 and N2O emission from soil in the following winter wheat-growing season.

  15. Potential for western US seasonal snowpack prediction

    Science.gov (United States)

    Kapnick, Sarah B.; Yang, Xiaosong; Vecchi, Gabriel A.; Delworth, Thomas L.; Gudgel, Rich; Malyshev, Sergey; Milly, Paul C. D.; Shevliakova, Elena; Underwood, Seth; Margulis, Steven A.

    2018-01-01

    Western US snowpack—snow that accumulates on the ground in the mountains—plays a critical role in regional hydroclimate and water supply, with 80% of snowmelt runoff being used for agriculture. While climate projections provide estimates of snowpack loss by the end of th ecentury and weather forecasts provide predictions of weather conditions out to 2 weeks, less progress has been made for snow predictions at seasonal timescales (months to 2 years), crucial for regional agricultural decisions (e.g., plant choice and quantity). Seasonal predictions with climate models first took the form of El Niño predictions 3 decades ago, with hydroclimate predictions emerging more recently. While the field has been focused on single-season predictions (3 months or less), we are now poised to advance our predictions beyond this timeframe. Utilizing observations, climate indices, and a suite of global climate models, we demonstrate the feasibility of seasonal snowpack predictions and quantify the limits of predictive skill 8 month sin advance. This physically based dynamic system outperforms observation-based statistical predictions made on July 1 for March snowpack everywhere except the southern Sierra Nevada, a region where prediction skill is nonexistent for every predictor presently tested. Additionally, in the absence of externally forced negative trends in snowpack, narrow maritime mountain ranges with high hydroclimate variability pose a challenge for seasonal prediction in our present system; natural snowpack variability may inherently be unpredictable at this timescale. This work highlights present prediction system successes and gives cause for optimism for developing seasonal predictions for societal needs.

  16. Photosynthetic properties of C4 plants growing in an African savanna/wetland mosaic

    NARCIS (Netherlands)

    Mantlana, K.B.; Arneth, A.; Veenendaal, E.M.; Wohland, P.; Wolski, P.; Kolle, O.; Wagner, M.; Lloyd, J.

    2008-01-01

    Photosynthesis rates and photosynthesis-leaf nutrient relationships were analysed in nine tropical grass and sedge species growing in three different ecosystems: a rain-fed grassland, a seasonal floodplain, and a permanent swamp, located along a hydrological gradient in the Okavango Delta, Botswana.

  17. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L; Baldocchi, D

    2004-05-01

    well-accepted view that annual production of grass is linearly correlated to precipitation, the large difference in GPP between the two seasons were not caused by the annual precipitation. Instead, a shorter growing season, due to late start of the rainy season, was mainly responsible for the lower GPP in the second season. Furthermore, relatively higher R{sub eco} during the non-growing season occurred after a late spring rain. Thus, for this Mediterranean grassland, the timing of rain events had more impact than the total amount of precipitation on ecosystem GPP and NEE. This is because its growing season is in the cool and wet season when carbon uptake and respiration are usually limited by low temperature and sometimes frost, not by soil moisture.

  18. Modeling phosphorus capture by plants growing in a multi-species riparian buffer

    Science.gov (United States)

    The NST 3.0 mechanistic nutrient uptake model was used to explore phosphorus (P) uptake to a depth of 120 cm over a 126-d growing season in simulated buffer communities composed of mixtures of cottonwood (Populus deltoids Bartr.), switchgrass (Panicum virgatum L.), and smooth brome (Bromis inermis L...

  19. Meta-modeling soil organic carbon sequestration potential and its application at regional scale.

    Science.gov (United States)

    Luo, Zhongkui; Wang, Enli; Bryan, Brett A; King, Darran; Zhao, Gang; Pan, Xubin; Bende-Michl, Ulrike

    2013-03-01

    Upscaling the results from process-based soil-plant models to assess regional soil organic carbon (SOC) change and sequestration potential is a great challenge due to the lack of detailed spatial information, particularly soil properties. Meta-modeling can be used to simplify and summarize process-based models and significantly reduce the demand for input data and thus could be easily applied on regional scales. We used the pre-validated Agricultural Production Systems sIMulator (APSIM) to simulate the impact of climate, soil, and management on SOC at 613 reference sites across Australia's cereal-growing regions under a continuous wheat system. We then developed a simple meta-model to link the APSIM-modeled SOC change to primary drivers, i.e., the amount of recalcitrant SOC, plant available water capacity of soil, soil pH, and solar radiation, temperature, and rainfall in the growing season. Based on high-resolution soil texture data and 8165 climate data points across the study area, we used the meta-model to assess SOC sequestration potential and the uncertainty associated with the variability of soil characteristics. The meta-model explained 74% of the variation of final SOC content as simulated by APSIM. Applying the meta-model to Australia's cereal-growing regions reveals regional patterns in SOC, with higher SOC stock in cool, wet regions. Overall, the potential SOC stock ranged from 21.14 to 152.71 Mg/ha with a mean of 52.18 Mg/ha. Variation of soil properties induced uncertainty ranging from 12% to 117% with higher uncertainty in warm, wet regions. In general, soils in Australia's cereal-growing regions under continuous wheat production were simulated as a sink of atmospheric carbon dioxide with a mean sequestration potential of 8.17 Mg/ha.

  20. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    Science.gov (United States)

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Seasonal and Local Time Variations of E-Region Field-Aligned Irregularities Observed with 30.8-MHz Radar at Kototabang, Indonesia

    Directory of Open Access Journals (Sweden)

    Y. Otsuka

    2012-01-01

    Full Text Available A VHF backscatter radar with operating frequency 30.8 MHz has been operated at Kototabang (0.20°S, 100.32°E; dip latitude 10.36°S, Indonesia, since February 2006. We analyzed E-region field-aligned irregularities (FAIs observed by this radar through a year of 2007 and found that the E-region FAI observed at Kototabang can be classified into two groups. One is “descending FAI”. Altitude of the FAI echo region descends with time from 102 km to 88 km altitude during 0700–1000 and 1900–0000 LT in June solstice season. The other is “low-altitude FAI”, which is observed in an altitude range from 88 to 94 km mainly during nighttime. The observed Doppler velocity show distinct local time and altitude dependence. The seasonally averaged zonal velocity above (below approximately 94 km altitude is westward (eastward during daytime and eastward (westward during nighttime. Meridional/vertical velocity perpendicular to the geomagnetic fields is upward during daytime and downward during nighttime. The direction of the FAI velocity above approximately 94 km altitude is consistent with that of the background E × B plasma drifts reported previously.

  2. Kinship and seasonal migration among the Aymara of southern Peru: human adaptation to energy scarcity

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.

    1981-01-01

    The people of the southern Peruvian highlands have adapted to a condition of energy scarcity through seasonal migration to lowland areas. In the disrict of Sarata (a fictitious name for a real district on the northeastern shore of Lake Titicaca) people spend three to seven months of every year growing coffee in the Tambopata Valley of the eastern Andes. This migratory pattern, which is hundreds of years old, provides the context for an investigation of human adaptive processes. This study presents models of the flow of energy through high-altitude households and shows that energy is a limiting factor for the population. There are two periods when energy subsidies from lowland regions become crucial to the continued survival of highland households. These are the periods of peak growth and reproduction experienced by households early in their developmental cycles, and times of sharply lowered productivity caused by environmental crises such as drought or killing frosts. Seasonal migration provides the subsidies that households rely on during these periods.

  3. Quality of urban runoff in wet and dry seasons: a case study in a semi-arid zone.

    Science.gov (United States)

    Ortiz-Hernández, Joyce; Lucho-Constantino, Carlos; Lizárraga-Mendiola, Liliana; Beltrán-Hernández, Rosa Icela; Coronel-Olivares, Claudia; Vázquez-Rodríguez, Gabriela

    2016-12-01

    Urban runoff (UR) is a promising new resource that may alleviate growing tensions in numerous arid and semi-arid regions of the world. However, it is precisely in these zones that the available UR quality characteristics are scarcer. This work aims to evaluate a wide set of parameters to establish a detailed approach to both the quality of UR in a midsized city in Central Mexico and the feasibility of using UR to recharge aquifers. UR from an institutional land use site was sampled during wet and dry seasons and assessed for suspended solids, organic matter, nutrients, microorganisms, metals, and persistent organic chemicals (i.e., polycyclic aromatic hydrocarbons, PAH). The results were analyzed using multivariate statistical methods to identify relationships among the variables, the sampling sites and the seasons. The soil erosion and the leaching of materials due to the water flow through vegetated areas were identified as the most influencing factor on the quality of the site runoff in both dry and wet seasons. Additionally, data were more heterogeneous during the dry season, and higher pollutant concentrations were found both during the dry season and in more pervious zones. We consider UR a promising water source for recharging aquifers in arid and semi-arid zones if a program is implemented that can integrate an adequate runoff treatment system, soil protection, and other non-structural measures.

  4. Seasonal Shifts in Diet and Gut Microbiota of the American Bison (Bison bison.

    Directory of Open Access Journals (Sweden)

    Gaddy T Bergmann

    Full Text Available North American bison (Bison bison are becoming increasingly important to both grassland management and commercial ranching. However, a lack of quantitative data on their diet constrains conservation efforts and the ability to predict bison effects on grasslands. In particular, we know little about the seasonality of the bison diet, the degree to which bison supplement their diet with eudicots, and how changes in diet influence gut microbial communities, all of which play important roles in ungulate performance. To address these knowledge gaps, we quantified seasonal patterns in bison diet and gut microbial community composition for a bison herd in Kansas using DNA sequencing-based analyses of both chloroplast and microbial DNA contained in fecal matter. Across the 11 sampling dates that spanned 166 days, we found that diet shifted continuously over the growing season, allowing bison to take advantage of the seasonal availability of high-protein plant species. Bison consumed more woody shrubs in spring and fall than in summer, when forb and grass intake predominated. In examining gut microbiota, the bacterial phylum Tenericutes shifted significantly in relative abundance over the growing season. This work suggests that North American bison can continuously adjust their diet with a high reliance on non-grasses throughout the year. In addition, we find evidence for seasonal patterns in gut community composition that are likely driven by the observed dietary changes.

  5. Exploring the physical controls of regional patterns of flow duration curves – Part 2: Role of seasonality, the regime curve, and associated process controls

    Directory of Open Access Journals (Sweden)

    M. Sivapalan

    2012-11-01

    Full Text Available The goal of this paper is to explore the process controls underpinning regional patterns of variations of streamflow regime behavior, i.e., the mean seasonal variation of streamflow within the year, across the continental United States. The ultimate motivation is to use the resulting process understanding to generate insights into the physical controls of another signature of streamflow variability, namely the flow duration curve (FDC. The construction of the FDC removes the time dependence of flows. Thus in order to better understand the physical controls in regions that exhibit strong seasonal dependence, the regime curve (RC, which is closely connected to the FDC, is studied in this paper and later linked back to the FDC. To achieve these aims a top-down modeling approach is adopted; we start with a simple two-stage bucket model, which is systematically enhanced through addition of new processes on the basis of model performance assessment in relation to observations, using rainfall-runoff data from 197 United States catchments belonging to the MOPEX dataset. Exploration of dominant processes and the determination of required model complexity are carried out through model-based sensitivity analyses, guided by a performance metric. Results indicated systematic regional trends in dominant processes: snowmelt was a key process control in cold mountainous catchments in the north and north-west, whereas snowmelt and vegetation cover dynamics were key controls in the north-east; seasonal vegetation cover dynamics (phenology and interception were important along the Appalachian mountain range in the east. A simple two-bucket model (with no other additions was found to be adequate in warm humid catchments along the west coast and in the south-east, with both regions exhibiting strong seasonality, whereas much more complex models are needed in the dry south and south-west. Agricultural catchments in the mid-west were found to be difficult to predict

  6. Composition and seasonal phenology of a nonindigenous root-feeding weevil (Coleoptera: Curculionidae) complex in northern hardwood forests in the Great Lakes Region

    Science.gov (United States)

    R. A. Pinski; W. J. Mattson; K. F. Raffa

    2005-01-01

    Phyllobius oblongus (L.), Polydrusus sericeus (Schaller), and Sciaphilus asperatus (Bonsdorff) comprise a complex of nonindigenous root-feeding weevils in northern hardwood forests of the Great Lakes region. Little is known about their detailed biology, seasonality, relative abundance, and distribution patterns....

  7. Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987-2016

    Science.gov (United States)

    Smith, Taylor; Bookhagen, Bodo; Rheinwalt, Aljoscha

    2017-10-01

    than trends in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compression of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which the regression is performed. (3) While trends averaged over 3 decades indicate generally earlier snowmelt seasons, data from the last 14 years (2002-2016) exhibit positive trends in many regions, such as parts of the Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal of a long-term trend or simply interannual variability. (4) Some regions with stable or growing glaciers - such as the Karakoram and Kunlun Shan - see slightly later snowmelt seasons and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt seasons, changes in HMA's cryosphere have been spatially and temporally heterogeneous.

  8. Response of needle dark respiration of Pinus koraiensis and Pinus sylvestriformis to elevated CO2 concentra-tions for four growing seasons’ exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous spe- cies—Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. koraiensis and P. sylvestriformis were exposed to 700, 500 μmol·mol-1 CO2 and ambient CO2 (approx. 350 μmol·mol-1) for four growing seasons. Needle dark respiration was meas- ured during the second, third and fourth growing seasons’ exposure to elevated CO2. The results showed that needle dark respiration rate increased for P. koraiensis and P. sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. koraiensis was stimu- lated and that of P. sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. koraiensis and P. sylvestriformis during the fourth growing season. There was consistent trend be- tween the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. sylvestriformis during the third growing season by changing measurement CO2 concentrations. How- ever, the short-term effect was different from the long-term effect for P. koraiensis. Response of dark respiration of P. koraiensis and P. sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.

  9. Application of Seasonal Trend Loess to GPS data in Cascadia

    Science.gov (United States)

    Bal, A.; Bartlow, N. M.

    2016-12-01

    Plate Boundary Observatory GPS stations provide crucial data for the study of slow slip events and volcanic hazards in the Cascadia region. However, these GPS stations also record seasonal changes in deformation caused by hydrologic, atmospheric, and other seasonal loading. Removing these signals is necessary for accurately modeling the tectonic sources of deformation. Traditionally, seasonal trends in data been accounted for by fitting and removing sine curves from the data. However, not all seasonal trends follow a sinusoidal shape. Seasonal Trend Loess, or STL, is a filtering procedure for a decomposing a time series into trend, seasonal, and remainder components (Cleveland et. al, Journal of Official Statistics, 1990). STL has a simple design that consists of a sequence of applications of the loess smoother which allows for fast computation of large amounts of trend and seasonal smoothing. STL allows for non-sinusoidal shapes in seasonal deformation signals, and allows for evolution of seasonal signals over time. We applied Seasonal Trend Loess to GPS data from the Cascadia region. We compared our results to a traditional sine wave fit for seasonal removal at selected stations, including stations with slow slip event and volcanic signals. We hope that the STL method may be able to more accurately differentiate seasonal and tectonic deformation signals.

  10. Does EO NDVI seasonal metrics capture variations in species composition and biomass due to grazing in semi-arid grassland savannas?

    DEFF Research Database (Denmark)

    Olsen, J. L.; Miehe, S.; Ceccato, Pietro

    2015-01-01

    Most regional scale studies of vegetation in the Sahel have been based on Earth observation (EO) imagery due to the limited number of sites providing continuous and long term in situ meteorological and vegetation measurements. From a long time series of coarse resolution normalized difference...... vegetation index (NDVI) data a greening of the Sahel since the 1980s has been identified. However, it is poorly understood how commonly applied remote sensing techniques reflect the influence of extensive grazing (and changes in grazing pressure) on natural rangeland vegetation. This paper analyses the time...... exclosures as compared to grazed areas, substantially exceeding the amount of biomass expected to be ingested by livestock for this area. The seasonal integrated NDVI (NDVI small integral; capturing only the signal inherent to the growing season recurrent vegetation), derived using absolute thresholds...

  11. High-Frequency Measurements of Methane Ebullition Over a Growing Season at a Temperate Peatland Site

    Science.gov (United States)

    Goodrich, Jordan P.; Varner, Ruth K.; Frolking, Steve; Duncan, Bryan N.; Crill, Patrick M.

    2011-01-01

    Bubbles can contribute a significant fraction of methane emissions fr om wetlands; however the range of reported fractions is very large an d accurate characterization of this pathway has proven difficult. Her e we show that continuous automated flux chambers combined with an in tegrated cavity output spectroscopy (ICOS) instrument allow us to qua ntify both CH4 ebullition rate and magnitude. For a temperate poor f en in 2009, ebullition rate varied on hourly to seasonal time scales. A diel pattern in ebullition was identified with peak release occurr ing between 20:00 and 06:00 local time, though steady fluxes (i.e., t hose with a linear increase in chamber headspace CH4 concentration) d id not exhibit diel variability. Seasonal mean ebullition rates peake d at 843.5 +/- 384.2 events m(exp -2)/d during the summer, with a me an magnitude of 0.19 mg CH4 released in each event.

  12. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Junbao Yu

    2014-01-01

    Full Text Available The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD using automatic sampling equipment. The results showed that SO42- and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3-–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3-–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3-–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  13. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    Science.gov (United States)

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  14. Plant nitrogen dynamics and nitrogen-use strategies under altered nitrogen seasonality and competition.

    Science.gov (United States)

    Yuan, Zhiyou; Liu, Weixing; Niu, Shuli; Wan, Shiqiang

    2007-10-01

    Numerous studies have examined the effects of climatic factors on the distribution of C(3) and C(4) grasses in various regions throughout the world, but the role of seasonal fluctuations in temperature, precipitation and soil N availability in regulating growth and competition of these two functional types is still not well understood. This report is about the effects of seasonality of soil N availability and competition on plant N dynamics and N-use strategies of one C(3) (Leymus chinensis) and one C(4) (Chloris virgata) grass species. Leymus chinensis and C. virgata, two grass species native to the temperate steppe in northern China, were planted in a monoculture and a mixture under three different N seasonal availabilities: an average model (AM) with N evenly distributed over the growing season; a one-peak model (OM) with more N in summer than in spring and autumn; and a two-peak model (TM) with more N in spring and autumn than in summer. The results showed that the altered N seasonality changed plant N concentration, with the highest value of L. chinensis under the OM treatment and C. virgata under the TM treatment, respectively. N seasonality also affected plant N content, N productivity and N-resorption efficiency and proficiency in both the C(3) and C(4) species. Interspecific competition influenced N-use and resorption efficiency in both the C(3) and C(4) species, with higher N-use and resorption efficiency in the mixture than in monoculture. The C(4) grass had higher N-use efficiency than the C(3) grass due to its higher N productivity, irrespective of the N treatment or competition. The observations suggest that N-use strategies in the C(3) and C(4) species used in the study were closely related to seasonal dynamics of N supply and competition. N seasonality might be involved in the growth and temporal niche separation between C(3) and C(4) species observed in the natural ecosystems.

  15. Seasonal Belowground Ecosystem and Eco-enzymatic Responses to Soil pH and Phosphorus Availability in Temperate Hardwood Forests

    Science.gov (United States)

    Smemo, K. A.; Deforest, J. L.; Petersen, S. L.; Burke, D.; Hewins, C.; Kluber, L. A.; Kyker, S. R.

    2013-12-01

    Atmospheric acid deposition can increase phosphorus (P) limitation in temperate hardwood forests by increasing N availability, and therefore P demand, and/or by decreasing pH and occluding inorganic P. However, only recently have studies demonstrated that P limitation can occur in temperate forests and very little is known about the temporal aspects of P dynamics in acidic forest soils and how seasonal shifts in nutrient availability and demand influence microbial investment in extracellular enzymes. The objectives of this study were to investigate how P availability and soil pH influence seasonal patterns of nutrient cycling and soil microbial activity in hardwood forests that experience chronic acid deposition. We experimentally manipulated soil pH, P, or both for three years and examined soil treatment responses in fall, winter, spring, early summer, and late summer. We found that site (glaciated versus unglaciated) and treatment had the most significant influence on nutrient pools and cycling. In general, nutrient pools were higher in glaciated soils than unglaciated for measured nutrients, including total C and N (2-3 times higher), extractable inorganic nitrogen, and readily available P. Treatment had no impact on total C and N pools in either region, but did affect other measured nutrients such as ammonium, which was greatest in the elevated pH treatment for both sites. As expected, readily available P pools were highest in the elevated P treatments (3 fold increase in both sites), but raising pH decreased available P pools in the glaciated site. Raising soil pH increased both net N mineralization rates and net P mineralization rates, regardless of site. Nitrification responses were complex, but we observed an overall significant nitrification increase under elevated pH, particularly in the growing season. Extracellular enzyme activity showed more seasonal patterns than site and treatment effects, exhibiting significant growing season activity reductions for

  16. Different Apparent Gas Exchange Coefficients for CO2 and CH4: Comparing a Brown-Water and a Clear-Water Lake in the Boreal Zone during the Whole Growing Season.

    Science.gov (United States)

    Rantakari, Miitta; Heiskanen, Jouni; Mammarella, Ivan; Tulonen, Tiina; Linnaluoma, Jessica; Kankaala, Paula; Ojala, Anne

    2015-10-06

    The air-water exchange of carbon dioxide (CO2) and methane (CH4) is a central process during attempts to establish carbon budgets for lakes and landscapes containing lakes. Lake-atmosphere diffusive gas exchange is dependent on the concentration gradient between air and surface water and also on the gas transfer velocity, often described with the gas transfer coefficient k. We used the floating-chamber method in connection with surface water gas concentration measurements to estimate the gas transfer velocity of CO2 (kCO2) and CH4 (kCH4) weekly throughout the entire growing season in two contrasting boreal lakes, a humic oligotrophic lake and a clear-water productive lake, in order to investigate the earlier observed differences between kCO2 and kCH4. We found that the seasonally averaged gas transfer velocity of CH4 was the same for both lakes. When the lakes were sources of CO2, the gas transfer velocity of CO2 was also similar between the two study lakes. The gas transfer velocity of CH4 was constantly higher than that of CO2 in both lakes, a result also found in other studies but for reasons not yet fully understood. We found no differences between the lakes, demonstrating that the difference between kCO2 and kCH4 is not dependent on season or the characteristics of the lake.

  17. Assessing levels and seasonal variations of current-use pesticides (CUPs) in the Tuscan atmosphere, Italy, using polyurethane foam disks (PUF) passive air samplers

    International Nuclear Information System (INIS)

    Estellano, Victor H.; Pozo, Karla; Efstathiou, Christos; Pozo, Katerine; Corsolini, Simonetta; Focardi, Silvano

    2015-01-01

    Polyurethane foam disks (PUF) passive air samplers (PAS) were deployed over 4 sampling periods of 3–5-months (≥ 1 year) at ten urban and rural locations throughout the Tuscany Region. The purpose was to assess the occurrence and seasonal variations of ten current-use pesticides (CUPs). PUF disk extracts were analyzed using GC–MS. The organophosphates insecticides; chlorpyrifos (3–580 pg m −3 ) and chlorpyrifos-methyl (below detection limit – to 570 pg m −3 ) presented the highest levels in air, and showed seasonal fluctuation coinciding with the growing seasons. The relative proportion urban/(urban + rural) ranged from 0.4 to 0.7 showing no differences between urban and rural concentrations. Air back trajectories analysis showed air masses passing over agricultural fields and potentially enhancing the drift of pesticides into the urban sites. This study represents the first information regarding CUPs in the atmosphere of Tuscany region using PAS-PUF disk. - Highlights: • Current use pesticides (CUPs) were detected in the atmosphere of Tuscany, Italy. • Chlorpyrifos showed the highest concentrations in air with seasonal patterns. • CUPs levels might be influenced by agricultural activities. • No differences were detected between Urban and Rural sites. • Air mass analysis indicated the monitoring sites are influenced by local sources. - Seasonality of CUPs was measured in Tuscany, Italy. Chlorpyrifos showed the highest values. Urban and rural sites showed no differences. Agricultural activities influence CUPs levels in air

  18. Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development.

    Directory of Open Access Journals (Sweden)

    Mark A Hayes

    Full Text Available Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus, a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn-the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as 'risk from turbines is highest in habitats between hoary bat summering and wintering grounds'. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.

  19. Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development.

    Science.gov (United States)

    Hayes, Mark A; Cryan, Paul M; Wunder, Michael B

    2015-01-01

    Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn-the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as 'risk from turbines is highest in habitats between hoary bat summering and wintering grounds'. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.

  20. Seasonally-dynamic presence-only species distribution models for a cryptic migratory bat impacted by wind energy development

    Science.gov (United States)

    Hayes, Mark A.; Cryan, Paul M.; Wunder, Michael B.

    2015-01-01

    Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn—the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as ‘risk from turbines is highest in habitats between hoary bat summering and wintering grounds’. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.

  1. Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons

    Directory of Open Access Journals (Sweden)

    R. Stumpf

    2013-01-01

    Full Text Available Ear rots caused by Fusarium spp. are among the main fungal diseases that contribute to poor quality and the contamination of maize grains with mycotoxins. This study aimed to determine the visual incidence of fungal-damaged kernels (FDKs, the incidence of two main Gibberella (a teleomorph of Fusarium complexes (G. fujikuroi and G. zeae associated with maize using a seed health blotter test, and the fumonisin levels, using high performance liquid chromatography, in samples of maize grains grown across 23 municipalities during the 2008/09 and 2009/10 growing seasons. Additionally, 104 strains that were representative of all of the analysed samples were identified to species using PCR assays. The mean FDK was seven per cent, and only six of the samples had levels greater than six per cent. Fusarium spp. of the G. fujikuroi complex were present in 96% of the samples, and G. zeae was present in 18% of the samples (5/27. The mean incidence of G. fujikuroi was 58%, and the incidence of G. zeae varied from 2 to 6%. FB1 was found in 58.6%, FB2 in 37.9%, and both toxins in 37.9% of the samples. The FB1 and FB2 levels were below the quantification limits for 41.3% of the samples, and the mean FB1 levels (0.66 µg/g were higher than the mean FB2 levels (0.42 µg/g. The PCR identification separated the 104 isolates into three of the G. fujikuroi complex: F. verticillioides (76%, F. subglutinans (4% and F. proliferatum (2%; and G. zeae (anamorph = F. graminearum (18%. Our results confirmed the dominance of F. verticillioides, similar to other regions of Brazil, but they differed due to the relatively higher incidence of F. graminearum. Total fumonisin levels were below the maximum limit determined by current Brazilian regulations.

  2. What Shapes the Phylogenetic Structure of Anuran Communities in a Seasonal Environment? The Influence of Determinism at Regional Scale to Stochasticity or Antagonistic Forces at Local Scale.

    Science.gov (United States)

    Martins, Clarissa de Araújo; Roque, Fabio de Oliveira; Santos, Bráulio A; Ferreira, Vanda Lúcia; Strüssmann, Christine; Tomas, Walfrido Moraes

    2015-01-01

    Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal.

  3. Seasonal climate prediction for North Eurasia

    International Nuclear Information System (INIS)

    Kryjov, Vladimir N

    2012-01-01

    An overview of the current status of the operational seasonal climate prediction for North Eurasia is presented. It is shown that the performance of existing climate models is rather poor in seasonal prediction for North Eurasia. Multi-model ensemble forecasts are more reliable than single-model ones; however, for North Eurasia they tend to be close to climatological ones. Application of downscaling methods may improve predictions for some locations (or regions). However, general improvement of the reliability of seasonal forecasts for North Eurasia requires improvement of the climate prediction models. (letter)

  4. Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Au-Yeung, Andie Y.M.; Chan, Johnny C.L. [City University of Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, Kowloon, Hong Kong (China)

    2012-08-15

    This study investigates the potential use of a regional climate model in forecasting seasonal tropical cyclone (TC) activity. A modified version of Regional Climate Model Version 3 (RegCM3) is used to examine the ability of the model to simulate TC genesis and landfalling TC tracks for the active TC season in the western North Pacific. In the model, a TC is identified as a vortex satisfying several conditions, including local maximum relative vorticity at 850 hPa with a value {>=}450 x 10{sup -6} s{sup -1}, and the temperature at 300 hPa being 1 C higher than the average temperature within 15 latitude radius from the TC center. Tracks are traced by following these found vortices. Six-month ensemble (8 members each) simulations are performed for each year from 1982 to 2001 so that the climatology of the model can be compared to the Joint Typhoon Warning Center (JTWC) observed best-track dataset. The 20-year ensemble experiments show that the RegCM3 can be used to simulate vortices with a wind structure and temperature profile similar to those of real TCs. The model also reproduces tracks very similar to those observed with features like genesis in the tropics, recurvature at higher latitudes and landfall/decay. The similarity of the 500-hPa geopotential height patterns between RegCM3 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis (ERA-40) shows that the model can simulate the subtropical high to a large extent. The simulated climatological monthly spatial distributions as well as the interannual variability of TC occurrence are also similar to the JTWC data. These results imply the possibility of producing seasonal forecasts of tropical cyclones using real-time global climate model predictions as boundary conditions for the RegCM3. (orig.)

  5. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture

    Science.gov (United States)

    Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David

    2017-07-01

    Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.

  6. Global Seasonality of Rotavirus Disease

    Science.gov (United States)

    Patel, Manish M.; Pitzer, Virginia; Alonso, Wladimir J.; Vera, David; Lopman, Ben; Tate, Jacqueline; Viboud, Cecile; Parashar, Umesh D.

    2012-01-01

    Background A substantial number of surveillance studies have documented rotavirus prevalence among children admitted for dehydrating diarrhea. We sought to establish global seasonal patterns of rotavirus disease before widespread vaccine introduction. Methods We reviewed studies of rotavirus detection in children with diarrhea published since 1995. We assessed potential relationships between seasonal prevalence and locality by plotting the average monthly proportion of diarrhea cases positive for rotavirus according to geography, country development, and latitude. We used linear regression to identify variables that were potentially associated with the seasonal intensity of rotavirus. Results Among a total of 99 studies representing all six geographical regions of the world, patterns of year-round disease were more evident in low- and low-middle income countries compared with upper-middle and high income countries where disease was more likely to be seasonal. The level of country development was a stronger predictor of strength of seasonality (P=0.001) than geographical location or climate. However, the observation of distinctly different seasonal patterns of rotavirus disease in some countries with similar geographical location, climate and level of development indicate that a single unifying explanation for variation in seasonality of rotavirus disease is unlikely. Conclusion While no unifying explanation emerged for varying rotavirus seasonality globally, the country income level was somewhat more predictive of the likelihood of having seasonal disease than other factors. Future evaluation of the effect of rotavirus vaccination on seasonal patterns of disease in different settings may help understand factors that drive the global seasonality of rotavirus disease. PMID:23190782

  7. Forecasting infectious disease emergence subject to seasonal forcing.

    Science.gov (United States)

    Miller, Paige B; O'Dea, Eamon B; Rohani, Pejman; Drake, John M

    2017-09-06

    Despite high vaccination coverage, many childhood infections pose a growing threat to human populations. Accurate disease forecasting would be of tremendous value to public health. Forecasting disease emergence using early warning signals (EWS) is possible in non-seasonal models of infectious diseases. Here, we assessed whether EWS also anticipate disease emergence in seasonal models. We simulated the dynamics of an immunizing infectious pathogen approaching the tipping point to disease endemicity. To explore the effect of seasonality on the reliability of early warning statistics, we varied the amplitude of fluctuations around the average transmission. We proposed and analyzed two new early warning signals based on the wavelet spectrum. We measured the reliability of the early warning signals depending on the strength of their trend preceding the tipping point and then calculated the Area Under the Curve (AUC) statistic. Early warning signals were reliable when disease transmission was subject to seasonal forcing. Wavelet-based early warning signals were as reliable as other conventional early warning signals. We found that removing seasonal trends, prior to analysis, did not improve early warning statistics uniformly. Early warning signals anticipate the onset of critical transitions for infectious diseases which are subject to seasonal forcing. Wavelet-based early warning statistics can also be used to forecast infectious disease.

  8. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    Science.gov (United States)

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.

  9. Successional dynamics in the seasonally forced diamond food web.

    Science.gov (United States)

    Klausmeier, Christopher A; Litchman, Elena

    2012-07-01

    Plankton seasonal succession is a classic example of nonequilibrium community dynamics. Despite the fact that it has been well studied empirically, it lacks a general quantitative theory. Here we investigate a food web model that includes a resource, two phytoplankton, and a shared grazer-the diamond food web-in a seasonal environment. The model produces a number of successional trajectories that have been widely discussed in the context of the verbal Plankton Ecology Group model of succession, such as a spring bloom of a good competitor followed by a grazer-induced clear-water phase, setting the stage for the late-season dominance of a grazer-resistant species. It also predicts a novel, counterintuitive trajectory where the grazer-resistant species has both early- and late-season blooms. The model often generates regular annual cycles but sometimes produces multiyear cycles or chaos, even with identical forcing each year. Parameterizing the model, we show how the successional trajectory depends on nutrient supply and the length of the growing season, two key parameters that vary among water bodies. This model extends nonequilibrium theory to food webs and is a first step toward a quantitative theory of plankton seasonal succession.

  10. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees.

    Science.gov (United States)

    Stockfors, Jan; Linder, Sune

    1998-03-01

    To determine effects of stem nitrogen concentration ([N]) on the seasonal course of respiration, rates of stem respiration of ten control and ten irrigated-fertilized (IL), 30-year-old Norway spruce trees (Picea abies (L.) Karst.), growing in northern Sweden, were measured on seven occasions from June 1993 to April 1994. To explore sources of seasonal variation and mechanisms of fertilization effects on respiration, we separated total respiration into growth and maintenance respiration for both xylem and phloem bark. Stem respiration increased in response to the IL treatment and was positively correlated with growth rate, volume of living cells and stem nitrogen content. However, no significant effect of IL treatment or [N] in the living cells was found for respiration per unit volume of live cells. Total stem respiration during the growing season (June to September) was estimated to be 16.7 and 29.7 mol CO(2) m(-2) for control and IL-treated trees, respectively. Respiration during the growing season accounted for approximately 64% of total annual respiration. Depending on the method, estimated growth respiration varied between 40 and 60% of total respiration during the growing season. Between 75 and 80% of the live cell volume in the stems was in the phloem, and phloem maintenance accounted for about 70% of maintenance respiration. Because most of the living cells were found in the phloem, and the living xylem cells were concentrated in the outer growth rings, we concluded that the best base for expressing rates of stem growth and maintenance respiration in young Norway spruce trees is stem surface area.

  11. Timing of floods in southeastern China: Seasonal properties and potential causes

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Luo, Ming

    2017-09-01

    Flood hazards and flood risks in southeastern China have been causing increasing concerns due to dense population and highly-developed economy. This study attempted to address changes of seasonality, timing of peak floods and variability of occurrence date of peak floods using circular statistical methods and the modified Mann-Kendall trend detection method. The causes of peak flood changes were also investigated. Results indicated that: (1) floods were subject to more seasonality and temporal clustering when compared to precipitation extremes. However, seasonality of floods and extreme precipitation was subject to spatial heterogeneity in northern Guangdong. Similar changing patterns of peak floods and extreme precipitation were found in coastal regions; (2) significant increasing/decreasing seasonality, but no confirmed spatial patterns, were observed for peak floods and extreme precipitation. Peak floods in northern Guangdong province had decreasing variability, but had larger variability in coastal regions; (3) tropical cyclones had remarkable impacts on extreme precipitation changes in coastal regions of southeastern China, and peak floods as well. The landfalling of tropical cyclones was decreasing and concentrated during June-September; this is the major reason for earlier but enhanced seasonality of peak floods in coastal regions. This study sheds new light on flood behavior in coastal regions in a changing environment.

  12. Rainforest-initiated wet season onset over the southern Amazon.

    Science.gov (United States)

    Wright, Jonathon S; Fu, Rong; Worden, John R; Chakraborty, Sudip; Clinton, Nicholas E; Risi, Camille; Sun, Ying; Yin, Lei

    2017-08-08

    Although it is well established that transpiration contributes much of the water for rainfall over Amazonia, it remains unclear whether transpiration helps to drive or merely responds to the seasonal cycle of rainfall. Here, we use multiple independent satellite datasets to show that rainforest transpiration enables an increase of shallow convection that moistens and destabilizes the atmosphere during the initial stages of the dry-to-wet season transition. This shallow convection moisture pump (SCMP) preconditions the atmosphere at the regional scale for a rapid increase in rain-bearing deep convection, which in turn drives moisture convergence and wet season onset 2-3 mo before the arrival of the Intertropical Convergence Zone (ITCZ). Aerosols produced by late dry season biomass burning may alter the efficiency of the SCMP. Our results highlight the mechanisms by which interactions among land surface processes, atmospheric convection, and biomass burning may alter the timing of wet season onset and provide a mechanistic framework for understanding how deforestation extends the dry season and enhances regional vulnerability to drought.

  13. Direct contamination - seasonality

    International Nuclear Information System (INIS)

    Aarkrog, A.

    1994-01-01

    Direct contamination is the primary pathway to terrestrial vegetation in the first period after an activity release to the atmosphere. All radionuclides are able to be transferred via this pathway. Deposition, interception and retention are the three processes involved in direct contamination of crops. Wet deposition is more important than dry deposition in temperature regions. Resuspension and rainsplash both belong to secondary direct deposition and became evident for e.g. radiocaesium after the Chernobyl accident. Seasonality is the varying response to radioactive contamination of crops according to the time of the year when the contamination occurs. Shortlived radionuclides (as 131 I) and those that mainly enter the foodchain by direct contamination (e.g. 137 Cs) are especially important in this connection. In particular, the contamination of cereal crops is influenced by seasonality. As a result of seasonality the impact of the Chernobyl accident on the radioactive contamination of human diet was for the same deposition density higher in southern than in northern Europe. (orig.)

  14. Flowering phenology in the arid winter rainfall region of southern Africa

    Directory of Open Access Journals (Sweden)

    M. Struck

    1994-10-01

    Full Text Available The impact of physical factors on the flowering phenology of a succulent karroid community in the winter rainfall region of the northwestern Cape, South Africa, based upon a three year study on permanent plots, is examined, (in the permanent plots, flowering of the shrubby species extended over a period of 4 to 4'/i> months each year, while blooming ot the therophytes peaked m the first half of the flowering season. Species composition and numbers of individuals in the therophytes and geophytes offering flowers varied greatly according to the pattern and amount of seasonal precipitation. Despite these variations a consistent flowering sequence between the years was observed. Possible relations between the flowering phenology and the climatic variables are discussed in detail. The present data suggest that the onset of flowering is determined indirectly by the first drop in temperature in autumn, indicating the beginning of the rainy season and presumably the start of the growing period, and/or by the increase of temperatures in the beginning of spring. The pattern and amount of rainfall within a given season mainly influenced the duration of anthesis and the number of flowers produced.

  15. HARVEST LABOR QUALITY AND PRODUCTIVITY:CASE STUDY OF CHERRY GROWING IN CHILE

    Directory of Open Access Journals (Sweden)

    ROBERTO JARA-ROJAS

    2015-06-01

    Full Text Available In Chile, the cherry tree has been one of the fastest growing and most profitable crops in the last ten years. However, increasing production costs, the scarcity of hired labor, and unfavorable exchange rates have reduced the productivity and competitiveness of the Chilean fruit sector. The aim of this article is to evaluate the harvest labor quality in cherry growing in Chile through the use of productivity indicators. A harvest labor evaluation system (HLES was designed and four indicators were measured: Average Weight of Harvested Box, Average Daily Production per Worker, Percent of Export Fruit, and Percent of Fruit Discarded. Significant differences werefound between the 2010/11 season (with the HLES implementation and the previous seasons without HLES. The average worker yield, average weight of a filled box, and fruit quality improved, while the amount of discarded fruit decreased. Hired labor management in agriculture is crucial for improving the productivity of the fresh fruit export producers. The use of HLES and the adoption of new technologies could help to solve the competitiveness problem in the Chilean fruit sector.

  16. Seasonal trends of biogenic terpene emissions.

    Science.gov (United States)

    Helmig, Detlev; Daly, Ryan Woodfin; Milford, Jana; Guenther, Alex

    2013-09-01

    Biogenic volatile organic compound (BVOC) emissions from six coniferous tree species, i.e. Pinus ponderosa (Ponderosa Pine), Picea pungens (Blue Spruce), Pseudotsuga menziesii (Rocky Mountain Douglas Fir) and Pinus longaeva (Bristlecone Pine), as well as from two deciduous species, Quercus gambelii (Gamble Oak) and Betula occidentalis (Western River Birch) were studied over a full annual growing cycle. Monoterpene (MT) and sesquiterpene (SQT) emissions rates were quantified in a total of 1236 individual branch enclosure samples. MT dominated coniferous emissions, producing greater than 95% of BVOC emissions. MT and SQT demonstrated short-term emission dependence with temperature. Two oxygenated MT, 1,8-cineol and piperitone, were both light and temperature dependent. Basal emission rates (BER, normalized to 1000μmolm(-2)s(-1) and 30°C) were generally higher in spring and summer than in winter; MT seasonal BER from the coniferous trees maximized between 1.5 and 6.0μgg(-1)h(-1), while seasonal lows were near 0.1μgg(-1)h(-1). The fractional contribution of individual MT to total emissions was found to fluctuate with season. SQT BER measured from the coniferous trees ranged from emissions modeling, was not found to exhibit discernible growth season trends. A seasonal correction factor proposed by others in previous work to account for a sinusoidal shaped emission pattern was applied to the data. Varying levels of agreement were found between the data and model results for the different plant species seasonal data sets using this correction. Consequently, the analyses on this extensive data set suggest that it is not feasible to apply a universal seasonal correction factor across different vegetation species. A modeling exercise comparing two case scenarios, (1) without and (2) with consideration of the seasonal changes in emission factors illustrated large deviations when emission factors are applied for other seasons than those in which they were experimentally

  17. Responses of Seasonal Precipitation Intensity to Global Warming

    Science.gov (United States)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia

    2016-04-01

    Under global warming, the water vapor increases with rising temperature at the rate of 7%/K. Most previous studies focus on the spatial differences of precipitation and suggest that wet regions become wetter and dry regions become drier. Our recent studies show a temporal disparity of global precipitation, which the wet season becomes wetter and dry season becomes drier; therefore, the annual range increases. However, such changes in the annual range are not homogeneous globally, and in fact, the drier trend over the ocean is much larger than that over the land, where the dry season does not become drier. Such precipitation change over land is likely because of decreased omega at 500hPa (more upward motion) in the reanalysis datasets from 1980 to 2013. The trends of vertical velocity and moist static energy profile over the increased precipitation regions become more unstable. The instability is most likely attributed to the change in specific humility below 400hPa. Further, we will use Coupled Model Intercomparison Project Phase 5 (CMIP5) archives to investigate whether the precipitation responses in dry season are different between the ocean and land under global warming.

  18. An ecological engineering approach for keeping water from reaching interred wastes in arid or semiarid regions

    International Nuclear Information System (INIS)

    Anderson, J.E.

    1997-01-01

    This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands of perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions

  19. Fiber Length of Calabrian Pine as Related to Position in Cross Section and Growing Region

    Directory of Open Access Journals (Sweden)

    Ibrahim BEKTAS

    2017-03-01

    Full Text Available This paper provides a better understanding of the variation of growing regions and differences in distance from pith to bark on wood fiber lengths. For this aim, Calabrian pines collected from five different growth regions, namely Kahramanmaras, Burdur, Muğla, İzmir and Balıkesir, were used to determine fiber lengths. In experiment, specimens prepared from logs cross section which is taken from three different distances from pith to bark (r/6, 3r/6 and 5r/6 were evaluated. As a result of analysis, distance from pith in the same area have shown a significant effect on fiber dimensions. In the evaluation among the habitat, it was obtained that r/6 and 3r/6 have a significant effect (p<0.001, p<0.05 respectively on fiber dimensions, however; 5r/6 has a nonsignificant. The results showed that, the quite suitable habitat in terms of fiber lenghts is Balıkesir which has high sand (64.4%, moderate clay (24.2% and lime-poor (3.1% soils. These results will make a positive contribution undoubtedly for the plantations will be established in the future of this species.

  20. Forecasting typhoid fever incidence in the Cordillera administrative region in the Philippines using seasonal ARIMA models

    Science.gov (United States)

    Cawiding, Olive R.; Natividad, Gina May R.; Bato, Crisostomo V.; Addawe, Rizavel C.

    2017-11-01

    The prevalence of typhoid fever in developing countries such as the Philippines calls for a need for accurate forecasting of the disease. This will be of great assistance in strategic disease prevention. This paper presents a development of useful models that predict the behavior of typhoid fever incidence based on the monthly incidence in the provinces of the Cordillera Administrative Region from 2010 to 2015 using univariate time series analysis. The data used was obtained from the Cordillera Office of the Department of Health (DOH-CAR). Seasonal autoregressive moving average (SARIMA) models were used to incorporate the seasonality of the data. A comparison of the results of the obtained models revealed that the SARIMA (1,1,7)(0,0,1)12 with a fixed coefficient at the seventh lag produces the smallest root mean square error (RMSE), mean absolute error (MAE), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The model suggested that for the year 2016, the number of cases would increase from the months of July to September and have a drop in December. This was then validated using the data collected from January 2016 to December 2016.

  1. A dipole-like SST trend in the Somalia region during the monsoon season

    Science.gov (United States)

    Santos, F.; Gómez-Gesteira, M.; deCastro, M.; Días, J. M.

    2015-02-01

    SST trends measured in the Somalia region during the southwest monsoon season over the period 1982-2013 have shown the existence of a warming-cooling dipole. The positive spot, with a warming trend on the order of 0.37°C dec-1, is centered around 5.1°N-50.3°E and the negative one, with a trend on the order of -0.43°C dec-1, around 11.1°N-52.2°E. The migration of the Great Whirl (GW) over the last three decades at a speed of -0.3°C dec-1 in longitude and -0.6°C dec-1 in latitude was considered as the possible origin of the SST dipole. The displacement of the GW produces changes in the geostrophic currents which, in turn, generate changes in the amount of advected water from and to coast.

  2. Seasonal Variability in European Radon Measurements

    Science.gov (United States)

    Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.

    2009-04-01

    In temperate climates, domestic radon concentration levels are generally seasonally dependent, the level in the home reflecting the convolution of two time-dependent functions. These are the source soil-gas radon concentration itself, and the principal force driving radon into the building from the soil, namely the pressure-difference between interior and exterior environment. While the meteorological influence can be regarded as relatively uniform on a European scale, its variability being defined largely by the influence of North-Atlantic weather systems, soil-gas radon is generally more variable as it is essentially geologically dependent. Seasonal variability of domestic radon concentration can therefore be expected to exhibit geographical variability, as is indeed the case. To compensate for the variability of domestic radon levels when assessing the long term radon health risks, the results of individual short-term measurements are generally converted to equivalent mean annual levels by application of a Seasonal Correction Factor (SCF). This is a multiplying factor, typically derived from measurements of a large number of homes, applied to the measured short-term radon concentration to provide a meaningful annual mean concentration for dose-estimation purposes. Following concern as to the universal applicability of a single SCF set, detailed studies in both the UK and France have reported location-specific SCF sets for different regions of each country. Further results indicate that SCFs applicable to the UK differ significantly from those applicable elsewhere in Europe and North America in both amplitude and phase, supporting the thesis that seasonal variability in indoor radon concentration cannot realistically be compensated for by a single national or international SCF scheme. Published data characterising the seasonal variability of European national domestic radon concentrations, has been collated and analysed, with the objective of identifying

  3. Dynamics of soil available phosphorus and its impact factors under simulated climate change in typical farmland of Taihu Lake region, China.

    Science.gov (United States)

    Yu, Kaihao; Chen, Xiaomin; Pan, Genxing; Zhang, Xuhui; Chen, Can

    2016-02-01

    Global climate change affects the availability of soil nutrients, thereby influencing crop productivity. This research was conducted to investigate the effects of elevated CO2, elevated temperature, and the interaction of the elevated CO2 and temperature on the soil available phosphorus (P) of a paddy-wheat rotation in the Taihu Lake region, China. Winter wheat (Triticum aestivum L.) was cultivated during the study period from 2011 to 2014 at two CO2 levels (350 μL•L(-1) ambient and 500 μL•L(-1) elevated by 150 μL•L(-1)) and two temperatures (ambient and 2 °C above the ambient). Soil available P content increased at the first season and decreased at the last season during the three wheat growing seasons. Soil available P content showed seasonal variation, whereas dynamic changes were not significant within each growing season. Soil available P content had no obvious trends under different treatments. But for the elevated temperature, CO2, and their combination treatments, soil available P content decreased in a long time period. During the period of wheat ripening stage, significant positive correlations were found between soil available P content and saturated hydraulic conductivity (Ks) and organic matter, but significant negative correlations with soil clay content and pH value; the correlation coefficients were 0.9400 (p climate change scenario.

  4. Ozone induced leaf loss and decreased leaf production of European Holly (Ilex aquifolium L.) over multiple seasons

    International Nuclear Information System (INIS)

    Ranford, Jonathan; Reiling, Kevin

    2007-01-01

    European Holly (Ilex aquifolium L.) was used to study the impact of one short (28 day) ozone fumigation episode on leaf production, leaf loss and stomatal conductance (g s ), in order to explore potential longer term effects over 3 growing seasons. Young I. aquifolium plants received an episode of either charcoal-filtered air or charcoal-filtered air with 70 nl l -1 O 3 added for 7 h d -1 over a 28 day period from June 15th 1996, then placed into ambient environment, Stoke-on-Trent, U.K. Data were collected per leaf cohort over the next three growing seasons. Ozone exposure significantly increased leaf loss and stomatal conductance and reduced leaf production over all subsequent seasons. Impact of the initial ozone stress was still detected in leaves that had no direct experimental ozone exposure. This study has shown the potential of ozone to introduce long-term phenological perturbations into ecosystems by influencing productivity over a number of seasons. - Ozone significantly alters Ilex aquifolium leaf production and loss over multiple seasons

  5. Seasonal effects in the ionosphere-thermosphere response to the precipitation and field-aligned current variations in the cusp region

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    Full Text Available The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earth's upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer Hemisphere obtained

  6. Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam

    Directory of Open Access Journals (Sweden)

    Pham Quang Thai

    2015-12-01

    Conclusions: Our results identify a role for AH in driving the epidemiology of ILI in a tropical setting. However, in contrast to temperate regions, high rather than low AH is associated with increased ILI activity. Fluctuation in AH may be the climate factor that underlies and unifies the seasonality of ILI in both temperate and tropical regions. Alternatively, the mechanism of action of AH on disease transmission may be different in cold-dry versus hot-humid settings.

  7. Interannual and seasonal changes in the south seasonal polar cap of Mars: Observations from MY 28-31 using MARCI

    Science.gov (United States)

    Calvin, W. M.; Cantor, B. A.; James, P. B.

    2017-08-01

    The Mars Color Imager (MARCI) camera on the Mars Reconnaissance Orbiter provides daily synoptic coverage that allows monitoring of seasonal cap retreat and interannual changes that occur between Mars Years (MY) and over the southern summer. We present the first analysis of this data for the southern seasonal cap evolution observed in MY 28, 29, 30 and 31 (2/2007 to 07/2013). Observation over multiple Mars years allows us to compare changes between years as well as longer-term evolution of the high albedo deposits at the poles. Seasonal cap retreat is similar in all years and to retreats observed in other years by both optical and thermal instruments. The cryptic terrain has a fairly consistent boundary in each year, but numerous small-scale variations occur in each MY observed. Additionally, numerous small dark deposits are identified outside the classically identified cyptic region, including Inca City and other locations not previously noted. The large water ice outlier is observed to retain seasonal frost the longest (outside the polar dome) and is also highly variable in each MY. The development of the cryptic/anti-cryptic hemispheres is inferred to occur due to albedo variations that develop after dust venting starts and may be caused by recondensation of CO2 ice on the brightest and coldest regions controlled by topographic winds. Ground ice may play a role in which regions develop cryptic terrain, as there is no elevation control on either cryptic terrain or the late season brightest deposits.

  8. Secondary Inorganic Aerosols over an Urban Location in North-Western Himalayan Region: Seasonal Variation in Composition and Formation Process(es)

    Science.gov (United States)

    Kaushal, D.; Tandon, A.

    2017-12-01

    Oxidative photo-chemical transformation of precursor gases, mainly of anthropogenic origin, produces secondary aerosols. Secondary inorganic aerosols constitute a significant fraction of total aerosol load over urban locations especially high altitude in wet-temperate climatic set-up. Towns situated in North-Western Himalayan region (NWHR) with sizable population and attractive tourist destinations have been facing ever increasing problem of gaseous and particulate air pollution from exponential increase in vehicular traffic and other anthropogenic emissions. The present study has been planned to investigate the seasonal variations in atmospheric processes responsible for the formation of Secondary Inorganic Aerosols (SIA) and to estimate contribution of SIA to PM­10 load over an Urban location, Dharamshala, in Dhauladhar region of NWHR. Twenty four hourly PM10 aerosol samples were collected, on quartz micro fibre filters in Dharamshala (1350 amsl) on weekly basis for complete one year time-period (February 2015 - January 2016). These samples were analyzed for Water Soluble Inorganic Ions (WSII) using Ion-Chromatographic System. On annual basis, SO42- ions contributed maximum (52%) followed by NO3- (13%) and NH4+ (12%) to WSII. Based upon Principal Component Analysis (PCA), dominant sources contributing to PM10 associated WSII were identified as: Fossil-Fuel and Bio-mass burning, Vehicular (mainly diesel) emissions and gaseous emissions from the microbial degradation of dead bio-mass. Throughout the year, significantly high proportion of SO42- and considerable thermodynamic stability of (NH4)2SO2 at ambient temperatures, made it the major contributor to SIA over NH4NO3 and NH4Cl. On seasonal basis, maximum contribution of SIA to PM10 was observed in monsoon followed by the winter season. Low ambient temperature in winter season favoured formation of NH4NO3 with significant contribution to SIA. It could be concluded that observed variability in the composition and

  9. Reconstructing the δ(18) O of atmospheric water vapour via the CAM epiphyte Tillandsia usneoides: seasonal controls on δ(18) O in the field and large-scale reconstruction of δ(18) Oa.

    Science.gov (United States)

    Helliker, Brent R

    2014-03-01

    Using both oxygen isotope ratios of leaf water (δ(18) OL ) and cellulose (δ(18) OC ) of Tillandsia usneoides in situ, this paper examined how short- and long-term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ(18) Oa ). During sample-intensive field campaigns, predictions of δ(18) OL matched observations well using a non-steady-state model, but the model required data-rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ(18) OL-M ) matched observed δ(18) OL and observed δ(18) Oa when leaf water turnover was less than 3.5 d. Using the δ(18) OL-M model and weekly samples of δ(18) OL across two growing seasons in Florida, USA, reconstructed δ(18) Oa was -12.6 ± 0.3‰. This is compared with δ(18) Oa of -12.4 ± 0.2‰ resolved from the growing-season-weighted δ(18) OC . Both of these values were similar to δ(18) Oa in equilibrium with precipitation, -12.9‰. δ(18) Oa was also reconstructed through a large-scale transect with δ(18) OL and the growing-season-integrated δ(18) OC across the southeastern United States. There was considerable large-scale variation, but there was regional, weather-induced coherence in δ(18) Oa when using δ(18) OL . The reconstruction of δ(18) Oa with δ(18) OC generally supported the assumption of δ(18) Oa being in equilibrium with precipitation δ(18) O (δ(18) Oppt ), but the pool of δ(18) Oppt with which δ(18) Oa was in equilibrium - growing season versus annual δ(18) Oppt - changed with latitude. © 2013 John Wiley & Sons Ltd.

  10. Satellite view of seasonal greenness trends and controls in South Asia

    Science.gov (United States)

    Sarmah, Sangeeta; Jia, Gensuo; Zhang, Anzhi

    2018-03-01

    South Asia (SA) has been considered one of the most remarkable regions for changing vegetation greenness, accompanying its major expansion of agricultural activities, especially irrigated farming. The influence of the monsoon climate on the seasonal trends and anomalies of vegetation greenness is poorly understood in this area. Herein, we used the satellite-based Normalized Difference Vegetation Index (NDVI) to investigate various spatiotemporal patterns in vegetation activity during summer and winter monsoon (SM and WM) seasons and among irrigated croplands (IC), rainfed croplands (RC), and natural vegetation (NV) areas during 1982–2013. Seasonal NDVI variations with climatic factors (precipitation and temperature) and land use and cover changes (LUCC) have also been investigated. This study demonstrates that the seasonal dynamics of vegetation could improve the detailed understanding of vegetation productivity over the region. We found distinct greenness trends between two monsoon seasons and among the major land use/cover classes. Winter monsoons contributed greater variability to the overall vegetation dynamics of SA. Major greening occurred due to the increased productivity over irrigated croplands during the winter monsoon season; meanwhile, browning trends were prominent over NV areas during the same season. Maximum temperatures had been increasing tremendously during the WM season; however, the precipitation trend was not significant over SA. Both the climate variability and LUCC revealed coupled effects on the long term NDVI trends in NV areas, especially in the hilly regions, whereas anthropogenic activities (agricultural advancements) played a pivotal role in the rest of the area. Until now, advanced cultivation techniques have proven to be beneficial for the region in terms of the productivity of croplands. However, the crop productivity is at risk under climate change.

  11. Application of nuclear technologies for growing of fruits which are of regional importance

    International Nuclear Information System (INIS)

    Sultanova, Z.K.; Kharlamova, N.A.; Aidarkhanova, G.S.; Kudabayev, A.B.; Andropenkov, S.A.; Maltseva, R.M.

    2002-01-01

    Application of recent achievements of nuclear techniques in different applied branches develops in such main directions as radiation-biological technologies under stimulation of plants, sterilization, increasing of storage terms, disinfestation of foodstuff, forage, raw material of animal and vegetable origin, dressing, instruments, which cannot be exposed to thermal and chemical processing. It is of practical interest the irradiation of fruits and berries cuttings, which are of regional importance and been growing in nurseries. This method is already widely introduced into practice as one of efficient methods. Aim of research was the optimal irradiation dose selection for stimulation of currant cuttings gemmas before bedding out. The sorts of black and goldish currants were used in the experiment. Irradiation was conducted in 60 Co gamma-ray source. As the study materials the black currant cuttings of the 'Katyusha' sort and goldish currants of the sort 'Uzbekistanskaya' were used. For each variant 20 cuttings were prepared.Cuttings were bedded out. Drop irrigation was employed. In the sequel agricultural monitoring was carried out. The results of rooting and development of irradiated samples will be presented in report

  12. Observation of carbonaceous aerosols and carbon monoxide in Mid-Atlantic region: Seasonal and inter-annual variations

    Science.gov (United States)

    Chen, L. A.; Doddridge, B. G.; Doddridge, B. G.; Dickerson, R. R.; Dickerson, R. R.

    2001-05-01

    As part of Maryland Aerosol Research and Characterization (MARCH-Atlantic) study, a long-term monitoring of ambient elemental and organic carbon (EC and OC) aerosols has been made at Fort Meade, MD (39.16° N 76.51° W; elevation 46 m MSL), a suburban site within the Baltimore-Washington (B-W) corridor, since July 1999. 24-hr average EC and OC are measured every day during the season-representative months (July 1999, October 1999, January 2000, April 2000 and July 2000). Carbon monoxide (CO) was also measured nearly continuously over the period. Strong correlation between EC and CO (r = 0.7 ~ 0.9) in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope, however, varies in different seasons and is found to increase nonlinearly with the ambient temperature. EC source strength may peak in summer. OC shows strong correlation with EC (r ~ 0.95) only in winter, suggesting that OC is also of the same primary sources during wintertime. The Interagency Monitoring of Protected Visual Environments (IMPROVE) network has been measuring EC and OC around the United States since 1988. The FME data during July 1999 are also compared with simultaneous measurements at nearby IMPROVE sites, showing B-W corridor could be a major contributor to the carbonaceous aerosols in the Mid-Atlantic region. A decreasing trend of EC level is found in three IMPROVE sites in this region. This actually agrees with the decreasing trend of CO observed previously at Big Meadow, Shenandoah National Park if CO and EC are both influenced by traffic emissions.

  13. Managing soil moisture on waste burial sites in arid regions

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.; Nowak, R.S.; Markham, O.D.

    1993-01-01

    In semiarid regions, where potential evapotranspiration greatly exceeds precipitation, it is theoretically possible to preclude water form reaching interred wastes by (i) providing a sufficient cap of soil to store precipitation that falls while plants are dormant and (ii) establishing sufficient plant cover to deplete soil moisture during the growing season, thereby emptying the water storage reservoir of the soil. Here the authors discuss the theory and rationale for such an approach and then present the results of a field study to test its efficacy at the Idaho National Engineering Laboratory (INEL). They examined the capacity of four species of perennial plants to deplete soil moisture on simulated waste trenches and determined the effective water storage capacity of the soil. Those data enabled them to estimate the minimum depth of fill soil required to prevent deep drainage. Any of the species studied can use all of the plant-available soil water, even during a very wet growing season. The water storage capacity of the soil studied is 17% by volume, so a trench cap of 1.6 m of soil should be adequate to store precipitation received at the INEL while plants are dormant. They recommend a fill soil depth of 2 m to provide a margin of safety in case water accumulates in local areas as a result of heavy snow accumulation, subsidence, or runoff. Fill soil requirements and choice of plant species will vary, but the concepts and general approach are applicable to other shallow land burial sites in arid or semiarid regions. 23 refs., 5 figs

  14. Temperature, Sowing and Harvest Dates, and Yield of Maize in the Southwestern US

    Science.gov (United States)

    Kafatos, M.; Stack, D.; Myoung, B.; Kim, S. H.; Kim, J.

    2014-12-01

    Since sowing date of maize is sensitive to climate variability and changes, it is of a practical importance to examine how sowing dates affect maize yields in various temperature regimes in the southwestern US. A 21-year (1991-2011) simulation of maize yield using Agricultural Production Systems sIMulator (APSIM) with observed meteorological forcing, shows that earlier sowing dates are favorable for higher yields primarily by increasing the length of growing season in cold mountaineous regions. In these regions, warmer conditions in the sowing period tend to advance the sowing date and then enhance yield. Over low-elevation warm regions, yields are less correlated with sowing dates and the length of growing season, perhaps because growing season temperatures are high enough for fast growth. Instead, in the warm regions, maize yields are sensitive to temperature variations during the late growing season due to adverse effects of extreme high temperature events on maize development.

  15. Decoupling Seasonal Changes in Water Content and Dry Matter to Predict Live Conifer Foliar Moisture Content.

    OpenAIRE

    Jolly, W. M.; Hadlow, A. M.; Huguet, K.

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples fromPinus contorta for two growing seasons and quantified their LFMC, relative water content (RWC) and dry matter chemistry. LFMC quantifies the amou...

  16. Selección de Píxel Semilla mediante Wavelets para Crecimiento por Regiones Difuso (Selection of Seed Pixel Through Wavelets for Fuzzy Region Growing

    Directory of Open Access Journals (Sweden)

    Damián Valdés Santiago

    2015-08-01

    Full Text Available RESUMEN El análisis de masas y tumores en mamografía es un problema difícil porque los signos del cáncer pueden ser mínimos o estar superpuestos en el tejido. Las técnicas de procesamiento de imágenes pueden mejorar el diagnóstico reduciendo los costos. La detección de masas es un reto debido al bajo contraste y la pobre definición de los bordes. Una solución al problema es representar una masa mediante conjuntos difusos. En este trabajo se estudia la propuesta de Guliato et al. que plantean dos métodos de segmentación difusos. El primero determina el borde de una masa por crecimiento por regiones clásico, luego de un preprocesamiento difuso de la región de interés. El segundo es un método de crecimiento por regiones difuso. Estos métodos necesitan un píxel semilla y un umbral. En este trabajo se propone una selección automática del píxel semilla mediante la selección de píxeles muy correlacionados según la transformada wavelet de la imagen. Como medida de evaluación en la segmentación, se emplea la medida de ambigüedad definida por los autores citados. Con la selección de semilla propuesta se obtienen mejores resultados en la segmentación, respecto al uso de una semilla aleatoria. ABSTRACT The analysis of masses and tumors in mammography is difficult because developing signs of cancer may be minimal or masked by superimposed tissues. Image analysis techniques have the potential to improve the diagnostic accuracy of mammography, and reduce health-care costs. Detection of breast masses is a challenging problem due to low contrast and poor definition of their boundaries. An alternative to address this problem is to represent tumor or mass regions by fuzzy sets. In this paper, two methods of fuzzy segmentation proposed by Guliato et al. are studied. The first method determines the boundary of a mass by classic region growing after a fuzzy preprocessing step. The second method is a fuzzy region-growing method. This

  17. Seasonal variability of microbial biomass phosphorus in urban soils.

    Science.gov (United States)

    Halecki, W; Gąsiorek, M

    2015-01-01

    Urban soils have been formed through human activities. Seasonal evaluation with time-control procedure are essential for plant, and activity of microorganisms. Therefore, these processes are crucial in the urban area due to geochemical changes in the past years. The purpose of this study was to investigate the changes of content of microbial biomass phosphorus (P) in the top layer of soils throughout the season. In this research, the concentration of microbial biomass P ranged from 0.01 to 6.29 mg·kg(-1). We used single-factor repeated-measure analysis of variance to test the effect of season on microbial biomass P content of selected urban soils. We found no statistically significant differences between the concentration of microbial biomass P in the investigated urban and sub-urban soils during the growing season. This analysis explicitly recognised that environmental urban conditions are steady. Specifically, we have studied how vegetation seasonality and ability of microbial biomass P are useful for detecting quality deviations, which affect the equilibrium of urban soil. In conclusion, seasonal variability of the stringency of assurance across the different compounds of soil reveals, as expected, the stable condition of the urban soils. Seasonal responses in microbial biomass P under urban soil use should establish a framework as a reference to the activity of the microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Multi-Year Estimates of Regional Alaskan Net CO2 Exchange: Constraining a Remote-Sensing Based Model with Aircraft Observations

    Science.gov (United States)

    Lindaas, J.; Commane, R.; Luus, K. A.; Chang, R. Y. W.; Miller, C. E.; Dinardo, S. J.; Henderson, J.; Mountain, M. E.; Karion, A.; Sweeney, C.; Miller, J. B.; Lin, J. C.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.

    2014-12-01

    The Alaskan region has historically been a sink of atmospheric CO2, but permafrost currently stores large amounts of carbon that are vulnerable to release to the atmosphere as northern high-latitudes continue to warm faster than the global average. We use aircraft CO2 data with a remote-sensing based model driven by MODIS satellite products and validated by CO2 flux tower data to calculate average daily CO2 fluxes for the region of Alaska during the growing seasons of 2012 and 2013. Atmospheric trace gases were measured during CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) aboard the NASA Sherpa C-23 aircraft. For profiles along the flight track, we couple the Weather Research and Forecasting (WRF) model with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, and convolve these footprints of surface influence with our remote-sensing based model, the Polar Vegetation Photosynthesis Respiration Model (PolarVPRM). We are able to calculate average regional fluxes for each month by minimizing the difference between the data and model column integrals. Our results provide a snapshot of the current state of regional Alaskan growing season net ecosystem exchange (NEE). We are able to begin characterizing the interannual variation in Alaskan NEE and to inform future refinements in process-based modeling that will produce better estimates of past, present, and future pan-Arctic NEE. Understanding if/when/how the Alaskan region transitions from a sink to a source of CO2 is crucial to predicting the trajectory of future climate change.

  19. GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale

    Science.gov (United States)

    Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter

    2017-04-01

    Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal

  20. Landscape seasons and air mass dynamics in Latvia

    International Nuclear Information System (INIS)

    Krauklis, A.; Draveniece, A.

    2004-01-01

    Latvia is located in the middle of an area where the boreal and nemoral zones and the regions of oceanic and continental climate meet, and it was studied as a model territory of the most typical variation of boreo-nemoral ecotone. The subject of this study was seasonal dynamics of the state of landscapes and diachronous links between seasons. It was found that landscapes undergo 12 seasonal states or seasons during the annual cycle of insulation and air mass occurrence. Each season may be distinguished by a definite amount of solar radiation, distinctive state of heat and water balance, phenological state of vegetation, and a distinctive occurrence of different air mass types and their particular 'association'. During each season these variables show a particular combination of numerical values and a distinctive landscape pattern

  1. Variation in agricultural CO2 fluxes during the growing season, collected from more than ten eddy covariance towers in the Mississippi Delta Region

    Science.gov (United States)

    Runkle, B.; Suvocarev, K.; Reba, M. L.; Novick, K. A.; White, P.; Anapalli, S.; Locke, M. A.; Rigby, J.; Bhattacharjee, J.

    2016-12-01

    Agriculture is unique as an anthropogenic activity that plays both a large role in carbon and water cycling and whose management activities provide a key opportunity for responses to climate change. It is therefore especially crucial to bring field observations into the modeling community, test remote sensing products, encourage policy debate, and enable carbon offsets markets that generate revenue and fund climate-smart activities. The accurate measurement of agricultural CO2 exchange - both primary productivity and ecosystem respiration - in concert with evapotranspiration provides crucial information on agro-ecosystem functioning and improves our predictive capacity for estimating the impacts of climate change. In this study we report field measurements from more than 10 eddy covariance towers in the Lower Mississippi River Basin taken during the summer months of 2016. Many towers, some recently deployed, are being aggregated into a regional network known as Delta-Flux, which will ultimately include 15-20 towers by 2017. Set in and around the Mississippi Delta Region within Louisiana, Arkansas, and Mississippi, the network will collect flux, micrometeorological, and crop yield data in order to construct estimates of regional CO2 exchange. These time-series data are gap-filled using statistical and process-based models to generate estimates of summer CO2 flux. The tower network is comprised of sites representing widespread agriculture production, including rice, cotton, corn, soybean, and sugarcane; intensively managed pine forest; and bottomland hardwood forest. Unique experimental production practices are represented in the network and include restricted water use, bioenergy, and by-product utilization. Several towers compose multi-field sites testing innovative irrigation or management practices. Current mapping of agricultural carbon exchange - based on land cover layers and fixed crop emission factors - suggests an unconstrained carbon flux estimate in this

  2. Ecophysiological response to seasonal variations in water availability in the arborescent, endemic plant Vellozia gigantea.

    Science.gov (United States)

    Morales, Melanie; Garcia, Queila S; Munné-Bosch, Sergi

    2015-03-01

    The physiological response of plants growing in their natural habitat is strongly determined by seasonal variations in environmental conditions and the interaction of abiotic and biotic stresses. Here, leaf water and nutrient contents, changes in cellular redox state and endogenous levels of stress-related phytohormones (abscisic acid (ABA), salicylic acid and jasmonates) were examined during the rainy and dry season in Vellozia gigantea, an endemic species growing at high elevations in the rupestrian fields of the Espinhaço Range in Brazil. Enhanced stomatal closure and increased ABA levels during the dry season were associated with an efficient control of leaf water content. Moreover, reductions in 12-oxo-phytodienoic acid (OPDA) levels during the dry season were observed, while levels of other jasmonates, such as jasmonic acid and jasmonoyl-isoleucine, were not affected. Changes in ABA and OPDA levels correlated with endogenous concentrations of iron and silicon, hydrogen peroxide, and vitamin E, thus indicating complex interactions between water and nutrient contents, changes in cellular redox state and endogenous hormone concentrations. Results also suggested crosstalk between activation of mechanisms for drought stress tolerance (as mediated by ABA) and biotic stress resistance (mediated by jasmonates), in which vitamin E levels may serve as a control point. It is concluded that, aside from a tight ABA-associated regulation of stomatal closure during the dry season, crosstalk between activation of abiotic and biotic defences, and nutrient accumulation in leaves may be important modulators of plant stress responses in plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation and sensitivity to meteorology and emissions inventory

    Science.gov (United States)

    Kim, Hyun Cheol; Kim, Eunhye; Bae, Changhan; Cho, Jeong Hoon; Kim, Byeong-Uk; Kim, Soontae

    2017-09-01

    The impact of regional emissions (e.g., domestic and international) on surface particulate matter (PM) concentrations in the Seoul metropolitan area (SMA), South Korea, and its sensitivities to meteorology and emissions inventories are quantitatively estimated for 2014 using regional air quality modeling systems. Located on the downwind side of strong sources of anthropogenic emissions, South Korea bears the full impact of the regional transport of pollutants and their precursors. However, the impact of foreign emissions sources has not yet been fully documented. We utilized two regional air quality simulation systems: (1) a Weather Research and Forecasting and Community Multi-Scale Air Quality (CMAQ) system and (2) a United Kingdom Met Office Unified Model and CMAQ system. The following combinations of emissions inventories are used: the Intercontinental Chemical Transport Experiment-Phase B, the Inter-comparison Study for Asia 2010, and the National Institute of Environment Research Clean Air Policy Support System. Partial contributions of domestic and foreign emissions are estimated using a brute force approach, adjusting South Korean emissions to 50 %. Results show that foreign emissions contributed ˜ 60 % of SMA surface PM concentration in 2014. Estimated contributions display clear seasonal variation, with foreign emissions having a higher impact during the cold season (fall to spring), reaching ˜ 70 % in March, and making lower contributions in the summer, ˜ 45 % in September. We also found that simulated surface PM concentration is sensitive to meteorology, but estimated contributions are mostly consistent. Regional contributions are also found to be sensitive to the choice of emissions inventories.

  4. Seasonal drivers of the epidemiology of arthropod-borne viruses in Australia.

    Directory of Open Access Journals (Sweden)

    Jemma L Geoghegan

    2014-11-01

    Full Text Available Arthropod-borne viruses are a major cause of emerging disease with significant public health and economic impacts. However, the factors that determine their activity and seasonality are not well understood. In Australia, a network of sentinel cattle herds is used to monitor the distribution of several such viruses and to define virus-free regions. Herein, we utilize these serological data to describe the seasonality, and its drivers, of three economically important animal arboviruses: bluetongue virus, Akabane virus and bovine ephemeral fever virus. Through epidemiological time-series analyses of sero-surveillance data of 180 sentinel herds between 2004-2012, we compared seasonal parameters across latitudes, ranging from the tropical north (-10°S to the more temperate south (-40°S. This analysis revealed marked differences in seasonality between distinct geographic regions and climates: seasonality was most pronounced in southern regions and gradually decreased as latitude decreased toward the Equator. Further, we show that both the timing of epidemics and the average number of seroconversions have a strong geographical component, which likely reflect patterns of vector abundance through co-varying climatic factors, especially temperature and rainfall. Notably, despite their differences in biology, including insect vector species, all three viruses exhibited very similar seasonality. By revealing the factors that shape spatial and temporal distributions, our study provides a more complete understanding of arbovirus seasonality that will enable better risk predictions.

  5. Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987–2016

    Directory of Open Access Journals (Sweden)

    T. Smith

    2017-10-01

    trends, but with generally smaller magnitudes than trends in snowmelt end. (2 Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest compression of the snowmelt season (negative trends. These trends are apparent regardless of the time period over which the regression is performed. (3 While trends averaged over 3 decades indicate generally earlier snowmelt seasons, data from the last 14 years (2002–2016 exhibit positive trends in many regions, such as parts of the Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal of a long-term trend or simply interannual variability. (4 Some regions with stable or growing glaciers – such as the Karakoram and Kunlun Shan – see slightly later snowmelt seasons and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional temperature have in general led to earlier and shortened melt seasons, changes in HMA's cryosphere have been spatially and temporally heterogeneous.

  6. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    Science.gov (United States)

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer's accuracy of 93% and a user's accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  7. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    Science.gov (United States)

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer’s accuracy of 93% and a user’s accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  8. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  9. Establishing native warm season grasses on Eastern Kentucky strip mines

    International Nuclear Information System (INIS)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-01-01

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat

  10. Cambial activity in dry and rainy season on branches from woody species growing in Brazilian Cerrado

    Science.gov (United States)

    Carmen R. Marcati; Silvia R. Machado; Diego Sotto Podadera; Natalia O. Totti de Lara; Fabio Bosio; Alex C. Wiedenhoeft

    2016-01-01

    Seasonal cambial activity was investigated in one- to three-year-old branch modules (branch constructional units) of ten woody species from cerrado sensu stricto, a savanna-like ecosystem, of southernBrazil. Relationships between cambial activity and environmental factors (precipitation, temperature,day length) and leaf production were tested using...

  11. Season-ahead streamflow forecast informed tax strategies for semi-arid water rights markets

    Science.gov (United States)

    Delorit, J. D.; Block, P. J.

    2016-12-01

    In many semi-arid regions multisectoral demands stress available water supplies. The Elqui River valley of north central Chile, which draws on limited capacity reservoirs supplied largely by annually variable snowmelt, is one of these cases. This variability forces water managers to develop demand-based allocation strategies which have typically resulted in water right volume reductions, applied equally per right. Compounding this issue is often deferred or delayed infrastructure investments, which has been linked Chile's Coasian approach to water markets, under which rights holders do not pay direct procurement costs, non-use fees, nor taxes. Here we build upon our previous research using forecasts of likely water rights reductions, informed by season-ahead prediction models of October-January (austral growing season) streamflow, to construct annual, forecast-sensitive, per right tax. We believe this tax, to be borne by right holders, will improve the beneficial use of water resources by stimulating water rights trading and improving system efficiency by generating funds for infrastructure investment, thereby reducing free-ridership and conflict between rights holders. Research outputs will include sectoral per right tax assessments, tax revenue generation, Elqui River valley economic output, and water rights trading activity.

  12. Regional and Seasonal Differences in Species Composition and Trophic Groups for Tidepool Fishes of a Western Pacific Island – Taiwan

    Directory of Open Access Journals (Sweden)

    Colin K. C. Wen

    2018-03-01

    Full Text Available Spatial and temporal variations in the species composition of assemblages are common in many marine organisms, including fishes. Variations in the fish species composition of subtidal coral reefs have been well documented, however much less is known about such differences for intertidal fish assemblages. This is surprising, given that intertidal fishes are more vulnerable to terrestrial human disturbances. It is critical to evaluate the ecology and biology of intertidal fishes before they are severely impacted by coastal development, especially in developing countries such as those in the tropical western Pacific region where coastal development is rapidly increasing. In this study, we investigated the species composition, abundance, biomass and species number (richness for intertidal fish assemblages in subtropical (northern and tropical (southern Taiwan across four seasons by collecting fishes from tidepools using clove oil. We also examined the gut contents of collected fishes to identify their trophic functional groups in order to investigate regional and seasonal variations for different trophic groups. We found significant differences in the species composition of tidepool fish assemblages between subtropical and tropical Taiwan. Bathygobius fuscus, Abudefduf vaigiensis and Istiblennius dussumieri were dominant species in subtropical Taiwan, whereas Bathygobius coalitus, Abudefduf septemfasciatus and Istiblennius lineatus were dominant in tropical Taiwan. Other species such as Bathygobius cocosensis, Abudefduf sordidus and Istiblennius edentulus were common in both regions. For trophic groups, omnivores and detritivores had or showed trends towards higher species numbers and abundances in the subtropical region, whereas herbivores, planktivores and general carnivores had or showed trends towards higher species numbers and biomass in the tropical region. Overall, many intertidal fish species and trophic groups showed differences in

  13. Seasonal changes of fructans in dimorphic roots of Ichthyothere terminalis (Spreng.) Blake (Asteraceae) growing in Cerrado.

    Science.gov (United States)

    de Almeida, Lorrayne Veloso; Ferri, Pedro Henrique; Seraphin, José Carlos; de Moraes, Moemy Gomes

    2017-11-15

    Cerrado is a floristically rich savanna in Brazil, whose vegetation consists of a physiognomic mosaic, influenced by rainfall seasonality. In the dry season rainfall is substantially lower and reduces soil water supply, mainly for herbs and subshrubs. Climatic seasonal variations may well define phenological shifts and induce fluctuations of plant reserve pools. Some Cerrado native species have thickened underground organs that bear buds and store reserves, as adaptive features to enable plant survival following environmental stresses. Asteraceae species accumulate fructans in storage organs, which are not only reserve, but also protecting compounds against the effects of cold and drought. Ichthyothere terminalis is one Asteraceae species abundant in cerrado rupestre, with underground organs consisting of thickened orthogravitropic and diagravitropic roots. The objectives of this study were to analyze how abiotic environmental factors and plant phenology influence fructan dynamics in field grown plants, and verify if fructan metabolism differs in both root types for one year. I. terminalis accumulates inulin-type fructans in 10-40% of the dry mass in both root types. Fructan dynamics have similar patterns described for other Asteraceae species, exhibiting a proportional increase of polysaccharides with the senescence of the aerial organs. Multivariate analyzes showed that, as rainfall decreased, environmental factors had a stronger influence on metabolite levels than phenological shifts in both root types. Only slight differences were found in fructan dynamics between orthogravitropic and diagravitropic roots, suggesting they may have similar fructan metabolism regulation. However, these small differences may reflect distinct microclimatic conditions in both root types and also represent the influence of sink strength. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of growing plants on denitrification at high soil nitrate concentrations

    International Nuclear Information System (INIS)

    Haider, K.; Mosier, A.; Heinemeyer, O.

    1987-01-01

    The availability of plant rhizosphere C deposits and its influence on microbial denitrification is not clearly defined. Conflicting reports as to the influence of plants and root exudation on denitrification continue to appear in the literature. The results of the authors earlier phytotron study indicated that denitrification was not stimulated in soils planted with corn or wheat compared to unplanted soils. Lower nitrate concentrations in the planted soils, however, may have led to misinterpretation of this data. A second study was conducted, to evaluate the effect of actively growing plants on denitrification where the NO 3 7 content of planted soils was maintained similar to unplanted soils. Simultaneously the C fixed by corn (Zea mays) and the fate of fertilizer N applied to the soil during the growing season were quantified. The corn was grown in a phytotron under a continuous supply of 14 CO 2 in 15 N fertilized soils to which 15 N-NO 3 - was added periodically during the growing season. The results of these studies showed that denitrification was not stimulated in soils planted with corn during active plant growth phase even when soil NO 3 - was relatively high. Denitrification was, however, greater in corn planted than unplanted soil when the recoverable root biomass began to decrease. Less N was immobilized and net 15 N immobilization was lower in planted soils than in unplanted soils. As denitrification was lower in planted soils during the time of active plant growth, the study suggests that root exudates did not stimulate either process

  15. Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing

    Science.gov (United States)

    Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2010-03-01

    We propose an automated lung tumor segmentation method for whole body PET images based on a novel downhill region growing (DRG) technique, which regards homogeneous tumor hotspots as 3D monotonically decreasing functions. The method has three major steps: thoracic slice extraction with K-means clustering of the slice features; hotspot segmentation with DRG; and decision tree analysis based hotspot classification. To overcome the common problem of leakage into adjacent hotspots in automated lung tumor segmentation, DRG employs the tumors' SUV monotonicity features. DRG also uses gradient magnitude of tumors' SUV to improve tumor boundary definition. We used 14 PET volumes from patients with primary NSCLC for validation. The thoracic region extraction step achieved good and consistent results for all patients despite marked differences in size and shape of the lungs and the presence of large tumors. The DRG technique was able to avoid the problem of leakage into adjacent hotspots and produced a volumetric overlap fraction of 0.61 +/- 0.13 which outperformed four other methods where the overlap fraction varied from 0.40 +/- 0.24 to 0.59 +/- 0.14. Of the 18 tumors in 14 NSCLC studies, 15 lesions were classified correctly, 2 were false negative and 15 were false positive.

  16. A further contribution to the seasonal variation of weighted mean temperature

    Science.gov (United States)

    Ding, Maohua; Hu, Wusheng

    2017-12-01

    The weighted mean temperature Tm is a variable parameter in the Global Navigation Satellite System (GNSS) meteorology and the Askne-Nordius zenith wet delay (ZWD) model. Some parameters about the Tm seasonal variation (e.g. the annual mean value, the annual range, the annual and semi-annual amplitudes, and the long-term trend) were discussed before. In this study, some additional results about the Tm seasonal variation on a global scale were found by using the Tm time series at 309 global radiosonde sites. Periodic signals of the annual and semi-annual variations were detected in these Tm time series by using the Lomb-Scargle periodogram. The annual variation is the main component of the periodic Tm in non-tropical regions, while the annual variation or the semiannual variation can be the main component of the periodic Tm in tropics. The mean annual Tm almost keeps constant with the increasing latitude in tropics, while it decreases with the increasing latitude in non-tropical regions. From a global perspective, Tm has an increasing trend of 0.22 K/decade on average, which may be caused by the global warming effects. The annual phase is almost found in about January for the non-tropical regions of the Southern Hemisphere and in about July for the non-tropical regions of the Northern Hemisphere, but it has no clear symmetry in tropics. Unlike the annual phase, the geographical distributions of semi-annual phase do not follow obvious rules. In non-tropical regions, the maximum and minimum Tm of the seasonal model are usually found in respective summer and winter days while the maximum and minimum Tm are distributed over a whole year but not in any fixed seasons for tropical regions. The seasonal model errors increase with the increasing value of annual amplitude. A primary reason for the irregular seasonal variation in tropics is that Tm has rather small variations in this region.

  17. Interannual and Seasonal Patterns of Carbon Dioxide, Water, and Energy Fluxes From Ecotonal and Thermokarst-Impacted Ecosystems on Carbon-Rich Permafrost Soils in Northeastern Siberia

    Science.gov (United States)

    Euskirchen, Eugénie S.; Edgar, Colin W.; Syndonia Bret-Harte, M.; Kade, Anja; Zimov, Nikita; Zimov, Sergey

    2017-10-01

    Eastern Siberia Russia is currently experiencing a distinct and unprecedented rate of warming. This change is particularly important given the large amounts of carbon stored in the yedoma permafrost soils that become vulnerable to thaw and release under warming. Data from this region pertaining to year-round carbon, water, and energy fluxes are scarce, particularly in sensitive ecotonal ecosystems near latitudinal treeline, as well as those already impacted by permafrost thaw. Here we investigated the interannual and seasonal carbon dioxide, water, and energy dynamics at an ecotonal forested site and a disturbed thermokarst-impacted site. The ecotonal site was approximately neutral in terms of CO2 uptake/release, while the disturbed site was either a source or neutral. Our data suggest that high rates of plant productivity during the growing season at the disturbed site may, in part, counterbalance higher rates of respiration during the cold season compared to the ecotonal site. We also found that the ecotonal site was sensitive to the timing of the freezeup of the soil active layer in fall, releasing more CO2 when freezeup occurred later. Both sites showed a negative water balance, although the ecotonal site appeared more sensitive to dry conditions. Water use efficiency at the ecotonal site was lower during warmer summers. Overall, these Siberian measurements indicate ecosystem sensitivity to warmer conditions during the fall and to drier conditions during the growing season and provide a better understanding of ecosystem response to climate in a part of the circumpolar Arctic where current knowledge is weakest.

  18. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  19. Field-based experimental water footprint study of sunflower growth in a semi-arid region of China.

    Science.gov (United States)

    Qin, Lijie; Jin, Yinghua; Duan, Peili; He, Hongshi

    2016-07-01

    Field-scale changes in the water footprint during crop growth play an important role in formulating sustainable water utilisation strategies. This study aimed to explore field-scale variation in the water footprint of growing sunflowers in the western Jilin Province, China, during a 3-year field experiment. The goals of this study were to (1) determine the components of the 'blue' and 'green' water footprints for sunflowers sown with water, and (2) analyse variations in water footprints and soil water balance under different combinations of temperature and precipitation. Specific actions could be adopted to maintain sustainable agricultural water utilisation in the semi-arid region based on this study. The green, blue, and grey water footprints accounted for 93.7-94.7%, 0.4-0.5%, and 4.9-5.8%, respectively, of the water footprint of growing sunflowers. The green water footprint for effective precipitation during the growing season accounted for 58.8% in a normal drought year but 48.2% in an extreme drought year. When the effective precipitation during the growing season could not meet the green water use, a moisture deficit arose. This increase in the moisture deficit can have a significant impact on soil water balance. Green water was the primary water source for sunflower growth in the study area, where a scarcity of irrigation water during sunflower growth damaged the soil water balance, particularly in years with continuous drought. The combination of temperature and precipitation effected the growing environment, leading to differences in yield and water footprint. The field experiments in this area may benefit from further water footprint studies at the global, national and regional scale. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of

  20. Epidemiological and virological situation update of the 2010/2011 influenza season in the WHO European Region (Week 40/2010 to Week 03/2011)

    NARCIS (Netherlands)

    Mott, J.A.; Pereyaslov, D.; Jorgensen, P.; Brown, C.S.; Martirosyan, L.; Meerhoff, T.

    2011-01-01

    This overview of influenza data from the WHO European Region from weeks 40/2010 through week 3/2011 has been submitted for consideration during the WHO Northern Hemisphere Vaccine Strain Selection Meeting, to be held on 14-17 February, 2011, in Geneva. The 2010/2011 influenza season arrived 8-10

  1. Season-specific climate signal and reconstruction from a new tree-ring network in the southwestern U.S

    Science.gov (United States)

    Griffin, D.; Woodhouse, C. A.; Meko, D. M.; Stahle, D. W.; Faulstich, H.; Leavitt, S. W.; Touchan, R.; Castro, C. L.; Carrillo, C.

    2011-12-01

    Our research group has updated existing tree-ring collections from over 50 sampling sites in the southwestern U.S. The new and archived specimens, carefully dated with dendrochronology, have been analyzed for width variations of "earlywood" and "latewood." These are the two components of annual rings in conifers that form in spring and summer, respectively. The network of primary tree-ring data has been used to develop a suite of well-replicated chronologies that extend through the 2008 growing season and are sensitive to the season-specific climate variability of the Southwest. Correlation function analysis indicates that the earlywood chronologies are closely related to cool season (October-April) precipitation variability and the chronologies derived from latewood are generally sensitive to precipitation and temperature conditions during the warm season (June-August). These proxy data originate from biological organisms and are not without bias; however, they do constitute a new means for evaluating the recent paleoclimatic history of the North American summer monsoon. The monsoon is a major component of the region's climate, impacting social and environmental systems and delivering up to 60% of the annual precipitation in the southwestern U.S. We have developed latewood-based retrodictions of monsoon precipitation that explain over half of the variance in the instrumental record, pass standard verification tests, and point to periods of persistent drought and wetness during the last 300-500 years. These reconstructions are being used to evaluate the monsoon's long-term spatiotemporal variability and its relationship to cool season climate and the major modes of ocean-atmosphere variability.

  2. Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events

    Directory of Open Access Journals (Sweden)

    Laura M. Soissons

    2018-02-01

    Full Text Available Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i seasonal fluctuations, (ii short-term stress events such as, e.g., local nutrient enrichment, and (iii small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon

  3. Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events

    Science.gov (United States)

    Soissons, Laura M.; Haanstra, Eeke P.; van Katwijk, Marieke M.; Asmus, Ragnhild; Auby, Isabelle; Barillé, Laurent; Brun, Fernando G.; Cardoso, Patricia G.; Desroy, Nicolas; Fournier, Jerome; Ganthy, Florian; Garmendia, Joxe-Mikel; Godet, Laurent; Grilo, Tiago F.; Kadel, Petra; Ondiviela, Barbara; Peralta, Gloria; Puente, Araceli; Recio, Maria; Rigouin, Loic; Valle, Mireia; Herman, Peter M. J.; Bouma, Tjeerd J.

    2018-01-01

    Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth

  4. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing

    Directory of Open Access Journals (Sweden)

    Liao Chun-Chih

    2011-08-01

    Full Text Available Abstract Background In recent years, magnetic resonance imaging (MRI has become important in brain tumor diagnosis. Using this modality, physicians can locate specific pathologies by analyzing differences in tissue character presented in different types of MR images. This paper uses an algorithm integrating fuzzy-c-mean (FCM and region growing techniques for automated tumor image segmentation from patients with menigioma. Only non-contrasted T1 and T2 -weighted MR images are included in the analysis. The study's aims are to correctly locate tumors in the images, and to detect those situated in the midline position of the brain. Methods The study used non-contrasted T1- and T2-weighted MR images from 29 patients with menigioma. After FCM clustering, 32 groups of images from each patient group were put through the region-growing procedure for pixels aggregation. Later, using knowledge-based information, the system selected tumor-containing images from these groups and merged them into one tumor image. An alternative semi-supervised method was added at this stage for comparison with the automatic method. Finally, the tumor image was optimized by a morphology operator. Results from automatic segmentation were compared to the "ground truth" (GT on a pixel level. Overall data were then evaluated using a quantified system. Results The quantified parameters, including the "percent match" (PM and "correlation ratio" (CR, suggested a high match between GT and the present study's system, as well as a fair level of correspondence. The results were compatible with those from other related studies. The system successfully detected all of the tumors situated at the midline of brain. Six cases failed in the automatic group. One also failed in the semi-supervised alternative. The remaining five cases presented noticeable edema inside the brain. In the 23 successful cases, the PM and CR values in the two groups were highly related. Conclusions Results indicated

  5. Impacts of climate change on drought: changes to drier conditions at the beginning of the crop growing season in southern Brazil

    Directory of Open Access Journals (Sweden)

    Vânia Rosa Pereira

    2017-12-01

    Full Text Available ABSTRACT The intensification of drought incidence is one of the most important threats of the 21st century with significant effects on food security. Accordingly, there is a need to improve the understanding of the regional impacts of climate change on this hazard. This study assessed long-term trends in probability-based drought indices (Standardized Precipitation Index and Standardized Evapotranspiration Index in the State of São Paulo, Brazil. Owing to the multi-scalar nature of both indices, the analyses were performed at 1 to 12-month time scales. The indices were calculated by means of a relativist approach that allowed us to compare drought conditions from different periods. The years 1961-1990 were used as the referential period. To the authors’ best knowledge, this is the first time that such relativist approach is used in historical trend analysis. The results suggest that the evapotranspiration rates have intensified the regional drought conditions. The time scale used to calculate the indices significantly affected the outcomes of drought trend assessments. The reason behind this feature is that the significant changes in the monthly regional patterns are limited to a specific period of the year. More specifically, virtually all significant changes have been observed during the first trimester of the rainy season (October, November and December. Considering that this period corresponds to critical plant growth stages (flowering/regrowth/sprouting of several major crops (e.g. Sugarcane and Citrus, we may conclude that these significant changes have increased the risk of crop yield reductions due to agricultural drought.

  6. Influenza seasonality goes south in the Yucatan Peninsula: The case for a different influenza vaccine calendar in this Mexican region.

    Science.gov (United States)

    Ayora-Talavera, Guadalupe; Flores, Gerardo Montalvo-Zurbia; Gómez-Carballo, Jesus; González-Losa, Refugio; Conde-Ferraez, Laura; Puerto-Solís, Marylin; López-Martínez, Irma; Díaz-Quiñonez, Alberto; Barrera-Badillo, Gisela; Acuna-Soto, Rodolfo; Livinski, Alicia A; Alonso, Wladimir J

    2017-08-24

    While vaccination may be relatively straightforward for regions with a well-defined winter season, the situation is quite different for tropical regions. Influenza activity in tropical regions might be out of phase with the dynamics predicted for their hemispheric group thereby impacting the effectiveness of the immunization campaign. To investigate how the climatic diversity of Mexico hinders its existing influenza immunization strategy and to suggest that the hemispheric vaccine recommendations be tailored to the regional level in order to optimize vaccine effectiveness. We studied the seasonality of influenza throughoutMexico by modeling virological and mortality data.De-trended time series of each Mexican state were analyzed by Fourier decomposition to describe the amplitude and timing of annual influenza epidemic cycles and to compare with each the timing of the WHO's Northern and Southern Hemispheric vaccination schedule. The timings of the primary (major) peaks of both virological and mortality data for most Mexican states are well aligned with the Northern Hemisphere winter (December-February) and vaccine schedule. However, influenza peaks in September in the three states of the Yucatan Peninsula. Influenza-related mortality also peaks in September in Quintana Roo and Yucatan whereas it peaks in May in Campeche. As the current timing of vaccination in Mexico is between October and November, more than half of the annual influenza cases have already occurred in the Yucatan Peninsula states by the time the Northern Hemispheric vaccine is delivered and administered. The current Northern Hemispheric influenza calendar adopted for Mexico is not optimal for the Yucatan Peninsula states thereby likely reducing the effectiveness of the immunization of the population. We recommend that Mexico tailor its immunization strategy to better reflect its climatologic and epidemiological diversity and adopt the WHO Southern Hemisphere influenza vaccine and schedule for the

  7. Viral etiology, seasonality and severity of hospitalized patients with severe acute respiratory infections in the Eastern Mediterranean Region, 2007-2014.

    Science.gov (United States)

    Horton, Katherine C; Dueger, Erica L; Kandeel, Amr; Abdallat, Mohamed; El-Kholy, Amani; Al-Awaidy, Salah; Kohlani, Abdul Hakim; Amer, Hanaa; El-Khal, Abel Latif; Said, Mayar; House, Brent; Pimentel, Guillermo; Talaat, Maha

    2017-01-01

    Little is known about the role of viral respiratory pathogens in the etiology, seasonality or severity of severe acute respiratory infections (SARI) in the Eastern Mediterranean Region. Sentinel surveillance for SARI was conducted from December 2007 through February 2014 at 20 hospitals in Egypt, Jordan, Oman, Qatar and Yemen. Nasopharyngeal and oropharyngeal swabs were collected from hospitalized patients meeting SARI case definitions and were analyzed for infection with influenza, respiratory syncytial virus (RSV), adenovirus (AdV), human metapneumovirus (hMPV) and human parainfluenza virus types 1-3 (hPIV1-3). We analyzed surveillance data to calculate positivity rates for viral respiratory pathogens, describe the seasonality of those pathogens and determine which pathogens were responsible for more severe outcomes requiring ventilation and/or intensive care and/or resulting in death. At least one viral respiratory pathogen was detected in 8,753/28,508 (30.7%) samples tested for at least one pathogen and 3,497/9,315 (37.5%) of samples tested for all pathogens-influenza in 3,345/28,438 (11.8%), RSV in 3,942/24,503 (16.1%), AdV in 923/9,402 (9.8%), hMPV in 617/9,384 (6.6%), hPIV1 in 159/9,402 (1.7%), hPIV2 in 85/9,402 (0.9%) and hPIV3 in 365/9,402 (3.9%). Multiple pathogens were identified in 501/9,316 (5.4%) participants tested for all pathogens. Monthly variation, indicating seasonal differences in levels of infection, was observed for all pathogens. Participants with hMPV infections and participants less than five years of age were significantly less likely than participants not infected with hMPV and those older than five years of age, respectively, to experience a severe outcome, while participants with a pre-existing chronic disease were at increased risk of a severe outcome, compared to those with no reported pre-existing chronic disease. Viral respiratory pathogens are common among SARI patients in the Eastern Mediterranean Region. Ongoing surveillance is

  8. Seasonal Succession of Fungi Associated with Ips typographus Beetles and Their Phoretic Mites in an Outbreak Region of Finland.

    Science.gov (United States)

    Linnakoski, Riikka; Mahilainen, Saila; Harrington, Alison; Vanhanen, Henri; Eriksson, Miikka; Mehtätalo, Lauri; Pappinen, Ari; Wingfield, Michael J

    2016-01-01

    The ophiostomatoid fungi (Microascales and Ophiostomatales, Ascomycota) are common associates of Ips typographus, and include tree pathogens and species responsible for blue-stain of timber. Fungal assemblages associated with I. typographus have varied considerably between studies but few investigations have attempted to explain this variation. For this reason, we assessed the overall cultivable fungal diversity associated with I. typographus in a storm-felled spruce forest in south-eastern Finland. Fungi were isolated from the individually collected beetles as well as their phoretic mites in spring, summer and autumn, including different life stages of the beetle (hibernation, dispersal flight and first generation). The internal transcribed spacer (ITS) gene region was used to identify the fungi. A total of 32 operational taxonomic units (OTUs) were found and these resided in four fungal phyla/subphyla (24 Ascomycota, 2 Basidiomycota, 5 Mucoromycotina, 1 Mortierellomycotina) in association with adult bark beetles. Ophiostomatoid species were the most commonly detected fungal associates. A generalized linear model analysis showed a clear association between fungal communities and season, indicating seasonal succession among I. typographus-associated fungi. The season of sampling appears to be an important factor that has resulted in inconsistencies between results in previous studies. Many of these fungi were also found on phoretic mites and their presence or absence could have influenced variation in patterns of association.

  9. The F-region trough: seasonal morphology and relation to interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Voiculescu

    2006-03-01

    Full Text Available We present here the results of a statistical study of the ionospheric trough observed in 2003 by means of satellite tomography. We focus on the seasonal morphology of the trough occurrence and investigate the trough latitude, width and the horizontal gradients at the edges, at different magnetic local times, as well as their relations to geomagnetic activity and the interplanetary magnetic field. A seasonal effect is noticed in the diurnal variation of the trough latitude, indicating that summer clearly differs from the other seasons. In winter the troughs seem to follow the solar terminator. The width of the trough has a diurnal variation and it depends on the season, as well. The broadest troughs are observed in winter and the narrowest ones in summer. A discontinuity in the diurnal variation of the trough latitude is observed before noon. It is suggested that this is an indication of a difference between the generation mechanisms of morningside and eveningside troughs. The density gradients at the edges have a complex dependence on the latitude of the trough and on geomagnetic activity. The photoionization and the auroral precipitation are competing in the formation of the trough walls at different magnetic local times. An important finding is that the interplanetary magnetic field plays a role in the occurrence of the trough at different levels of geomagnetic activity. This is probably associated with the topology of the polar cap convection pattern, which depends on the directions of the IMF components By and Bz.

  10. The F-region trough: seasonal morphology and relation to interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Voiculescu

    2006-03-01

    Full Text Available We present here the results of a statistical study of the ionospheric trough observed in 2003 by means of satellite tomography. We focus on the seasonal morphology of the trough occurrence and investigate the trough latitude, width and the horizontal gradients at the edges, at different magnetic local times, as well as their relations to geomagnetic activity and the interplanetary magnetic field. A seasonal effect is noticed in the diurnal variation of the trough latitude, indicating that summer clearly differs from the other seasons. In winter the troughs seem to follow the solar terminator. The width of the trough has a diurnal variation and it depends on the season, as well. The broadest troughs are observed in winter and the narrowest ones in summer. A discontinuity in the diurnal variation of the trough latitude is observed before noon. It is suggested that this is an indication of a difference between the generation mechanisms of morningside and eveningside troughs. The density gradients at the edges have a complex dependence on the latitude of the trough and on geomagnetic activity. The photoionization and the auroral precipitation are competing in the formation of the trough walls at different magnetic local times. An important finding is that the interplanetary magnetic field plays a role in the occurrence of the trough at different levels of geomagnetic activity. This is probably associated with the topology of the polar cap convection pattern, which depends on the directions of the IMF components By and Bz.

  11. Physiological Age Status of Female Adults and Off-Season Survival of Rice Leaffolder Cnaphalocrocis medinalis in India

    Directory of Open Access Journals (Sweden)

    Padmavathi Chintalapati

    2015-09-01

    Full Text Available Rice leaffolder, Cnaphalocrocis medinalis, is one of the major foliage feeders found in the rice growing regions in India. When the crop was at maturity, numerous adults of rice leaffolder were found in the rice fields though the larval population gradually decreased, and no eggs were found on rice leaves. The population characteristics of C. medinalis were assessed based on the physiological age status of adults at different crop growth stages. Based on egg development within ovarioles, ovariole appearance, number and colour of fat bodies, and characteristics of bursa copulatrix, physiological age status of the adults was described, which served as a basis for the determination of age composition. C. medinalis adults were found during the first week of August on rice plants, of which 44% were in Age 0 with immature ovaries, indicating immigrants. However, 28% adults each were at Ages 1–2 with developing ovaries, indicating local breeding population. The carryover and off-season survival of C. medinalis were also studied to determine the contribution of the alternative hosts in the population growth that helped in devising efficient management strategies. Rice was the most preferred host followed by Triticum aestivum, Echinochloa crusgulli and Brachiaria plantaginea. Various routes of the carryover of C. medinalis from season to season were discussed.

  12. Season and severity of prescribed burn in ponderosa pine forests: implications for understory native and exotic plants.

    Science.gov (United States)

    Becky K. Kerns; Walter G. Thies; Christine G. Niwa

    2006-01-01

    We investigated herbaceous richness and cover in relation to fire season and severity, and other variables, five growing seasons following prescribed fires. Data were collected from six stands consisting of three randomly applied treatments: no burn, spring burn, and fall burn. Fall burns had significantly more exotic/native annual/biennial (an/bi) species and greater...

  13. Mapping growing stock volume and forest live biomass: a case study of the Polissya region of Ukraine

    Science.gov (United States)

    Bilous, Andrii; Myroniuk, Viktor; Holiaka, Dmytrii; Bilous, Svitlana; See, Linda; Schepaschenko, Dmitry

    2017-10-01

    Forest inventory and biomass mapping are important tasks that require inputs from multiple data sources. In this paper we implement two methods for the Ukrainian region of Polissya: random forest (RF) for tree species prediction and k-nearest neighbors (k-NN) for growing stock volume and biomass mapping. We examined the suitability of the five-band RapidEye satellite image to predict the distribution of six tree species. The accuracy of RF is quite high: ~99% for forest/non-forest mask and 89% for tree species prediction. Our results demonstrate that inclusion of elevation as a predictor variable in the RF model improved the performance of tree species classification. We evaluated different distance metrics for the k-NN method, including Euclidean or Mahalanobis distance, most similar neighbor (MSN), gradient nearest neighbor, and independent component analysis. The MSN with the four nearest neighbors (k = 4) is the most precise (according to the root-mean-square deviation) for predicting forest attributes across the study area. The k-NN method allowed us to estimate growing stock volume with an accuracy of 3 m3 ha-1 and for live biomass of about 2 t ha-1 over the study area.

  14. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    Science.gov (United States)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  15. Seasonal changes in metal accumulation and distribution in the organs of Phragmites australis (common reed from Lake Skadar, Montenegro

    Directory of Open Access Journals (Sweden)

    Kastratović Vlatko

    2013-01-01

    Full Text Available Due to its ability to accumulate metals, availability throughout the year and its large biomass, Phragmites australis (common reed is suitable for biomonitoring studies for the evaluation of load level of water ecosystem with trace metals. The heavy metals concentration in P.australis tissue can be several ten to several thousand times higher than those in the surrounding water. In this study we examined the content of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, Sr and V in sediment, water and different organs of Phragmites australis collected from Lake Skadar, Montenegro, during different seasons of the year 2011. The highest concentrations of Sr were found in the leaves, while the other studied metals showed their highest concentrations in the roots. Thus, P. australis is considered a root bioaccumulation species. For most metals the concentration in roots and stems increases over time until the end of the growing season, and then decreases, while the concentration in leaves increases even after the growing season of the plant. If P. australis is used for phytoremediation purposes, then it should be harvested after the growing season because then the concentration of metals in the aboveground parts is maximal.

  16. Leaf dynamics of Festulolium and Dactylis glomerata L. at the end of the growing season

    Directory of Open Access Journals (Sweden)

    Jiří Skládanka

    2008-01-01

    Full Text Available The paper is focused on the assessment of leaf extension rate (LER, leaf appearance rate (LAR and leaf senescence rate (LSR in the Festulolium (Festuca arundinacea Schreb. × Lolium multiflorum Lam. and in the Dactylis glomerata L. at the end of the growing season from the end of September to the beginning of December. In summer, the swards were used for a single cut (beginning of June or for a double cut (beginning of June and end of July. Measurements were made in three periods from 14 Sept. to 11 Oct., from 11 Oct. to 29 Oct., and from 29 Oct. to 6 Dec. In the first period, LER was higher in Dactylis glomerata L. (3.770 mm tiller−1 d−1 than in Festulolium (2.376 mm tiller−1 d−1. In the second and third period, LER was higher in Festulolium (0.859 resp. 0.271 mm tiller−1 d−1 than in Dactylis glomerata L. (0.694, resp. 0.199 mm tiller−1 d−1. LAR values measured in Festulolium in the studied pe­riods were 0.277 leaf tiller−1 d−1, 0.079 leaf tiller−1 d−1 and 0.038 leaf tiller−1 d−1 and LAR values of Dactylis glomerata L. were 0.225 leaf tiller−1 d−1, 0.054 leaf tiller−1 d−1 and 0.027 leaf tiller−1 d−1. In the course of the whole pe­riod of study, LSR showed the highest values in Dactylis glomerata L. (7.869 mm til­ler−1 d−1, 5.947 mm til­ler−1 d−1 and 4.757 mm tiller−1 d−1 while the LSR values of Festulolium were lower (2.904 mm tiller−1 d−1, 2.375 mm tiller−1 d−1 and 1.205 mm tiller−1 d−1. The influence of both the species and the period of measurement on the LER, LAR and LSR values was statistically highly significant (P < 0.01 to very highly significant (P < 0.001. The interaction between the species and the period of measurement was very highly significant (P < 0.001 in the LER characteristic. The influence of the intensity of sward use in summer on the LSR values was very highly significant (P < 0.001, too.

  17. Seasonal and regional differentiation of bio-optical properties within the north polar Atlantic

    Science.gov (United States)

    Stramska, Malgorzata; Stramski, Dariusz; Kaczmarek, SłAwomir; Allison, David B.; Schwarz, Jill

    2006-08-01

    Using field data from the north polar Atlantic, we examined seasonal variability of the spectral absorption, a(λ), and backscattering, bb(λ), coefficients of surface waters in relation to phytoplankton pigments. For a given chlorophyll a concentration, the concentrations of accessory pigments were lower in spring than in summer. This effect contributed to lower chlorophyll-specific absorption of phytoplankton and total particulate matter in spring. The spring values of the green-to-blue band ratio of a(λ) were higher than the summer ratios. The blue-to-green ratios of bb(λ) were also higher in spring. The higher bb values and lower blue-to-green bb ratios in summer were likely associated with higher concentrations of detrital particles in summer compared to spring. Because the product of these band ratios of a and bb is a proxy for the blue-to-green ratio of remote-sensing reflectance, the performance of ocean color band-ratio algorithms for estimating pigments is significantly affected by seasonal shifts in the relationships between absorption, backscattering, and chlorophyll a. Our results suggest that the algorithm for the spring season would predict chlorophyll a that is higher by as much as a factor of 4-6 compared to that predicted from the summer algorithm. This indicates a need for a seasonal approach in the north polar Atlantic. However, we also found that a fairly good estimate of the particulate beam attenuation coefficient at 660 nm (a proxy for total particulate matter or particulate organic carbon concentration) can be obtained by applying a single blue-to-green band-ratio algorithm regardless of the season.

  18. The Relationship between an Invasive Shrub and Soil Moisture: Seasonal Interactions and Spatially Covarying Relations

    Directory of Open Access Journals (Sweden)

    Yuhong He

    2014-09-01

    Full Text Available Recent studies indicate that positive relationships between invasive plants and soil can contribute to further plant invasions. However, it remains unclear whether these relations remain unchanged throughout the growing season. In this study, spatial sequences of field observations along a transect were used to reveal seasonal interactions and spatially covarying relations between one common invasive shrub (Tartarian Honeysuckle, Lonicera tatarica and soil moisture in a tall grassland habitat. Statistical analysis over the transect shows that the contrast between soil moisture in shrub and herbaceous patches vary with season and precipitation. Overall, a negatively covarying relationship between shrub and soil moisture (i.e., drier surface soils at shrub microsites exists during the very early growing period (e.g., May, while in summer a positively covarying phenomenon (i.e., wetter soils under shrubs is usually evident, but could be weakened or vanish during long precipitation-free periods. If there is sufficient rainfall, surface soil moisture and leaf area index (LAI often spatially covary with significant spatial oscillations at an invariant scale (which is governed by the shrub spatial pattern and is about 8 m, but their phase relation in space varies with season, consistent with the seasonal variability of the co-varying phenomena between shrub invasion and soil water content. The findings are important for establishing a more complete picture of how shrub invasion affects soil moisture.

  19. Using Accretionary Hard Parts to Study Changes in Seasonality over Geologic Time

    Science.gov (United States)

    Ivany, L. C.; Judd, E. J.

    2017-12-01

    Seasonality has been an enigma for deep-time research. Proxies for mean annual temperature (MAT) are the mainstay of paleoclimate studies, and while these are tremendously informative, seasonal extremes are the variables that matter most for many paleoclimatic, paleoceanographic, and physiologic processes. Seasonality has been difficult to constrain in the rock record, however, because of the need for subannual resolution - very few such archives exist. One of the most promising comes in the form of the mineralized hard parts of organisms that grow by accretion, e.g., mollusks, corals, fish otoliths. Such materials carry a chemical signature of temperature at the time of precipitation, allowing for assessment of the seasonal temperature extremes experienced by the organism. Interpretation of these records in the context of climate, however, are complicated by the overprint of biology - organisms don't necessarily grow all year long, resulting in a truncation of the seasonal cycle regardless of sampling resolution. Furthermore, unrecognized differences in depositional environment or taxon ecology among samples can make comparisons over time even more tenuous. Even with internally consistent datasets, assessment of pattern is rarely based on more than visual inspection. An iterative computational procedure predicated on the assumption of sinusoidal variation in temperature and growth rate can circumvent these concerns. Deviations in the shape of oxygen isotope profiles from the predicted sinusoid allow recovery of the mean and amplitude of temperature variation as well as the timing and duration of growth within years. Estimates of such parameters from multiple specimens allow for meaningful comparisons over time, both for seasonality and the growth response of organisms. We apply this approach to datasets of seasonal variation through the Paleogene of the US Gulf Coastal Plain and the Eocene of Antarctica derived largely from marine bivalve mollusks. In the

  20. Seasonal shift in climatic limiting factors on tree transpiration: evidence from sap flow observations at alpine treelines in southeast Tibet

    Directory of Open Access Journals (Sweden)

    Liu Xinsheng

    2016-07-01

    Full Text Available Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii and juniper (Juniperus saltuaria treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0 oC. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change.

  1. Temporal stability of growth and yield among Hevea genotypes introduced to a non-traditional rubber growing region of peninsular India

    Directory of Open Access Journals (Sweden)

    K.K. Vinod

    2013-12-01

    Full Text Available Extensive cultivation of Hevea brasiliensis in India now focus on non-traditional regions for rubber cultivation. As a prelude for selection of genotypes for commercial cultivation, many introduced genotypes are being tested in genotype adaptation experiments in these regions. Present study, reports for the first time, growth and yield adaptation of 28 genotypes in a non-traditional rubber growing region of peninsular India viz., the coastal Karnataka region. Agroclimate of this region was found favoring growth and establishment of all the genotypes evaluated. However, not all the genotypes grew and yielded well. Only four genotypes, RRII 203, KRS 25, PB 260 and PB 235 showed good growth and yield. On grouping, the genotypes fell into categories of moderate high yielders, moderate low yielders and low yielders. The most popular variety of the traditional region, RRII 105 did not perform well in this region. Biological stability in growth and yield of RRII 203 and PB 260 was identified as stable and these genotypes were the best adapted. KRS 25 and PB 235 had unstable yielding pattern. The best identified genotypes can be considered for extensive culture as single clone plantations or as major constituent of clone blends as well as parents in future breeding programmes. Other moderate stable yielders may be used for clone blending in smaller proportions and may be subjected to yield improvement.

  2. Temporal stability of growth and yield among Hevea genotypes introduced to a non-traditional rubber growing region of peninsular India

    Directory of Open Access Journals (Sweden)

    K.K. Vinod

    2010-09-01

    Full Text Available Extensive cultivation of Hevea brasiliensis in India now focus onnon-traditional regions for rubber cultivation. As a prelude for selection of genotypes for commercial cultivation, many introduced genotypes are being tested in genotype adaptation experiments in these regions. Present study,reports for the first time, growth and yield adaptation of 28 genotypes in a non-traditional rubber growing region of peninsular India viz., the coastal Karnataka region. Agroclimate of this region was found favoring growth andestablishment of all the genotypes evaluated. However, not all the genotypes grew and yielded well. Only four genotypes, RRII 203, KRS 25, PB 260 and PB 235 showed good growth and yield. On grouping, the genotypes fell into categories of moderate high yielders, moderate low yielders and low yielders. The most popular variety of the traditional region, RRII 105 did not perform well in this region. Biological stability in growth and yield of RRII 203 and PB 260 was identified as stable and these genotypes were the best adapted. KRS 25 and PB 235 had unstable yielding pattern. The best identifiedgenotypes can be considered for extensive culture as single clone plantations or as major constituent of clone blends as well as parents in future breeding programmes. Other moderate stable yielders may be used for clone blending in smaller proportions and may be subjected to yield improvement.

  3. Determination of Seasonal Vitamin and Mineral Contents of Sea Bream (Sparus aurata L., 1758) Cultured in Net Cages in Central Black Sea Region.

    Science.gov (United States)

    Öztürk, Dilara Kaya; Baki, Birol; Karayücel, İsmihan; Öztürk, Recep; Gören, Gülşen Uzun; Karayücel, Sedat

    2018-05-12

    This study aimed to determine the seasonal vitamin and mineral contents of sea bream (Sparus aurata) cultured in net cages in Central Black Sea region. The average seasonal A, D 3 , and E vitamins values in fish meat were between 0.27 ± 0.02-0.60 ± 0.00, 0.98 ± 0.01-1.70 ± 0.00, and 3.10 ± 0.14-6.00 ± 0.21 mg/kg, respectively (p meat were between 276.90 ± 0.99-1788.50 ± 51.27 (p  0.05), 4244.50 ± 8.84-4761.50 ± 1.06 (p  0.05), respectively. As a result, it can be concluded that sea bream cultured in the Central Black Sea region is a rich source of nutrients in terms of vitamins and mineral matters, and fish size, feed quality, and the environmental factors are influential on the contents of vitamin and mineral substances in the fish tissue.

  4. The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    Directory of Open Access Journals (Sweden)

    M. K. van der Molen

    2007-11-01

    Full Text Available Carbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were high compared with other tundra sites, with NEE=−92 g C m−2 yr−1, which is composed of an Reco=+141 g C m−2 yr−1 and GPP=−232 g C m−2 yr−1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (−14°C, reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg<200 W m−2, whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m−2 yr−1, so that the greenhouse gas balance was −64 g C-CO2e m−2 yr−1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition.

  5. Leaf blade and petiole nutritional evolution and variability throughout the crop season for Vitis vinifera L. cv. Graciano

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, N.; García-Escudero, N.; Romero, I.; Benito, A.; Martín, I.

    2015-07-01

    An adequate nutritional state of a crop can be kept by means of a well-designed fertilization plan based on the assessment of the nutrient availability throughout the growing season. The objective of this study was to determine the reliability of leaf blade and petiole diagnosis and the period of validity of their references at both flowering and veraison by means of systematic monitoring throughout the complete growing season. The study was carried out in two plots planted with Vitis vinifera L. cv. Graciano within the AOC Rioja (Spain). Blades and petioles were collected throughout a growing season (2006) and total N, P, K, Ca, Mg, Fe, Mn, Zn, Cu and B concentrations were analyzed in both tissues. Results suggest, in general, that petioles have higher variability and lower analysis reproducibility than blades. Therefore, blade could be a more appropriate tissue to evaluate N, P, K, Ca, and Mg at both flowering and veraison in this variety. Micronutrients in blade and petiole showed different variability behaviour in each of the vineyards studied, therefore, based on our results, it was difficult to determine which one could be the best tissue for the nutritional diagnosis of the ‘Graciano’ variety. Seasonal changes of nutrient concentration in both tissues also confirmed the need for reference values for each tissue and each phenological stage. (Author)

  6. Relationships between carbon fluxes and environmental factors in a drip-irrigated, film-mulched cotton field in arid region

    OpenAIRE

    Li, Xiaoyu; Liu, Lijuan; Yang, Huijin; Li, Yan

    2018-01-01

    Environmental factors and human activities play important roles in carbon fixation and emissions generated from croplands. Eddy covariance measurements in a drip-irrigated, film-mulched cotton field were used to analyze the relationships between carbon fluxes and environmental factors in Wulanwusu, northern Xinjiang, an arid region of Northwest China. Our results showed that the cumulative net carbon flux (NEE) was -304.8 g C m-2 (a strong sink) over the whole cotton growing season in 2012, w...

  7. Na and K Levels in forage species from the communal grazing lands during the dry season at some locations in the Northern Region of Ghana

    International Nuclear Information System (INIS)

    Gomda, Y.M.; Osae, E.K.; Akaho, E.H.K.; Fianu, F.K.; Karbo, N.

    1999-04-01

    Forage species were taken, during the dry season, from five districts in the Northern Region of Ghana and analysed for Na and K using the Neutron Activation Analysis (NAA) technique. The Na level varied in plants species as well as location. The level ranged between 0.049 g/kg DM and 1.14 g/kg DM. This was found to be inadequate for the animals and require supplementation during the dry season. Potassium level in the forage species was between 7.8 to 91.3g/kg DM and appeared to be adequate for the grazing animals. (author)

  8. [Characteristics of soil moisture variation in different land use types in the hilly region of the Loess Plateau, China].

    Science.gov (United States)

    Tang, Min; Zhao, Xi Ning; Gao, Xiao Dong; Zhang, Chao; Wu, Pu Te

    2018-03-01

    Soil water availability is a key factor restricting the ecological construction and sustainable land use in the loess hilly region. It is of great theoretical and practical significance to understand the soil moisture status of different land use types for the vegetation restoration and the effective utilization of land resources in this area. In this study, EC-5 soil moisture sensors were used to continuously monitor the soil moisture content in the 0-160 cm soil profile in the slope cropland, terraced fields, jujube orchard, and grassland during the growing season (from May to October) in the Yuanzegou catchment on the Loess Plateau, to investigate soil moisture dynamics in these four typical land use types. The results showed that there were differences in seasonal variation, water storage characteristics, and vertical distribution of soil moisture under different land use types in both the normal precipitation (2014) and dry (2015) years. The terraced fields showed good water retention capacity in the dry year, with the average soil moisture content of 0-60 cm soil layer in the growing season being 2.6%, 4.2%, and 1.8% higher than that of the slope cropland, jujube orchard, and grassland (all Pmoisture content of 0-60 cm soil layer in jujube orchard in the growing season was 2.9%, 3.8%, and 4.5% lower than that of slope cropland, terraced fields, and grassland, respectively (all Pmoisture in the surface layer (0-20 cm) and soil moisture in the middle layer (20-100 cm) under different land use types was large, and the trend for the similarity degree of soil moisture variation followed terraced fields > grassland > slope cropland > jujube orchard. The slope cropland in this area could be transformed into terraced fields to improve the utilization of precipitation and promote the construction of ecological agriculture. Aiming at resolving the severe water shortage in the rain-fed jujube orchard for the sustainable development of jujube orchard in the loess hilly

  9. Seasonal and inter-annual variability of aerosol optical properties during 2005-2010 over Red Mountain Pass and Impact on the Snow Cover of the San Juan Mountains

    Science.gov (United States)

    Singh, R. P.; Gautam, R.; Painter, T. H.

    2011-12-01

    Growing body of evidence suggests the significant role of aerosol solar absorption in accelerated seasonal snowmelt in the cryosphere and elevated mountain regions via snow contamination and radiative warming processes. Characterization of aerosol optical properties over seasonal snow cover and snowpacks is therefore important towards the better understanding of aerosol radiative effects and associated impact on snow albedo. In this study, we present seasonal variations in column-integrated aerosol optical properties retrieved from AERONET sunphotometer measurements (2005-2010) at Red Mountain Pass (37.90° N, 107.72° W, 3368 msl) in the San Juan Mountains, in the vicinity of the North American Great Basin and Colorado Plateau deserts. The aerosol optical depth (AOD) measured at 500nm is generally low (pollutant transport. In addition, the possibility of the observed increased coarse-mode influence associated with mineral dust influx cannot be ruled out, due to westerly-airmass driven transport from arid/desert regions as suggested by backward trajectory simulations. A meteorological coupling is also found in the summer season between AOD and column water vapor retrieved from AERONET with co-occurring enhanced water vapor and AOD. Based on column measurements, it is difficult to ascertain the aerosol composition, however, the summer-time enhanced aerosol loading as presented here is consistent with the increased dust deposition in the San Juan mountain snow cover as reported in recent studies. In summary, this study is expected to better understand the seasonal and inter-annual aerosol column variations and is an attempt to provide an insight into the effects of aerosol solar absorption on accelerated seasonal snowmelt in the San Juan mountains.

  10. Skilful seasonal forecasts of streamflow over Europe?

    Science.gov (United States)

    Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian

    2018-04-01

    This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate

  11. Does the reproductive season account for more records of birds in a marked seasonal climate landscape in the state of São Paulo, Brazil?

    Directory of Open Access Journals (Sweden)

    Vagner Cavarzere

    2013-01-01

    Full Text Available Investigators have reported that birds from temperate regions are more detectable during their breeding seasons, which should be used to adequately survey avifaunas. In the state of São Paulo, southeastern Brazil, the rainiest months of the year are usually associated with a peak in the reproduction of birds. To test the hypothesis that birds are equally detectable throughout the year, I conducted transect counts of birds in a predominantly open Cerrado landscape in São Paulo during 2005 and 2006. There was no significant difference in the number of species or individuals between breeding (rainy and nonbreeding (dry seasons; 24% of the species with > 50 contacts was likely to be recorded more often in a particular season. Unlike temperate regions, where vocal behavior plays an important role in detections of birds during and after reproductive seasons, my results suggest that Cerrado birds may be evenly detected throughout the year.

  12. Agricultural crops and soil treatment impacts on the daily and seasonal dynamics of CO2 fluxes in the field agroecosystems at the Central region of Russia

    Science.gov (United States)

    Mazirov, Ilya; Vasenev, Ivan; Meshalkina, Joulia; Yaroslavtsev, Alexis; Berezovskiy, Egor; Djancharov, Turmusbek

    2015-04-01

    The problem of greenhouse gases' concentrations increasing becomes more and more important due to global changes issues. The main component of greenhouse gases is carbon dioxide. The researches focused on its fluxes in natural and anthropogenic modified landscapes can help in this problem solution. Our research has been done with support of the RF Government grants # 11.G34.31.0079 and # 14.120.14.4266 and of FP7 Grant # 603542 LUC4C in the representative for Central Region of Russia field agroecosystems at the Precision Farming Experimental Field of Russian Timiryazev State Agrarian University with cultivated sod podzoluvisols, barley and oats - vetch grass mix (Moscow station of the RusFluxNet). The daily and seasonal dynamics of the carbon dioxide have been studied at the ecosystem level by the Eddy covariance method (2 stations) and at the soil level by the exposition chamber method (40 chambers) with mobile infra red gas analyzer (Li-Cor 820). The primary Eddy covariance monitoring data on CO2 fluxes and water vapor have been processed by EddyPro software developed by LI-COR Biosciences. According to the two-year monitoring data the daily CO2 sink during the vegetation season is usually approximately two times higher than its emission at night. Seasonal CO2 fluxes comparative stabilization has been fixed in case the plants height around 10-12 cm and it usually persist until the wax ripeness phase. There is strong dependence between the soil CO2 emission and the air temperature with the correlation coefficient 0.86 in average (due to strong input of the soil thin top functional subhorizon), but it drops essentially at the end of the season - till 0.38. The soil moisture impact on CO2 fluxes dynamics was less, with negative correlation at the end of the season. High daily dynamics of CO2 fluxes determines the protocol requirements for seasonal soil monitoring investigation with less limitation at the end of the season. The accumulated monitoring data will be

  13. Effects of Nitrogen Rate and Regrowth Interval on Perennial Ryegrass Fatty Acid Content during the Growing Season

    NARCIS (Netherlands)

    Witkowska, I.M.; Wever, C.J.G.; Gort, G.; Elgersma, A.

    2008-01-01

    The content of fatty acids (FA) in herbage is important for forage quality and animal-source foods, but there is a lack of knowledge on effects of agronomic practices, and on environmental factors related to seasonal variation in FA concentrations and FA composition. This research investigated the

  14. Evaluation of Optimized WRF Precipitation Forecast over a Complex Topography Region during Flood Season

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-11-01

    Full Text Available In recent years, the Weather Research and Forecast (WRF model has been utilized to generate quantitative precipitation forecasts with higher spatial and temporal resolutions. However, factors including horizontal resolution, domain size, and the physical parameterization scheme have a strong impact on the dynamic downscaling ability of the WRF model. In this study, the influence of these factors has been analyzed in precipitation forecasting for the Xijiang Basin, southern China—a region with complex topography. The results indicate that higher horizontal resolutions always result in higher Critical Success Indexes (CSI, but higher biases as well. Meanwhile, the precipitation forecast skills are also influenced by the combination of microphysics parameterization scheme and cumulus convective parameterization scheme. On the basis of these results, an optimized configuration of the WRF model is built in which the horizontal resolution is 10 km, the microphysics parameterization is the Lin scheme, and the cumulus convective parameterization is the Betts–Miller–Janjic scheme. This configuration is then evaluated by simulating the daily weather during the 2013–2014 flood season. The high Critical Success Index scores and low biases at various thresholds and lead times confirm the high accuracy of the optimized WRF model configuration for Xijiang Basin. However, the performance of the WRF model varies from different sub-basins due to the complexity of the mesoscale convective system (MCS over this region.

  15. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States

    Science.gov (United States)

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G.

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %-248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  16. Assessing the spatial impact of climate on wheat productivity and the potential value of climate forecasts at a regional level

    Science.gov (United States)

    Wang, Enli; Xu, J.; Jiang, Q.; Austin, J.

    2009-03-01

    Quantification of the spatial impact of climate on crop productivity and the potential value of seasonal climate forecasts can effectively assist the strategic planning of crop layout and help to understand to what extent climate risk can be managed through responsive management strategies at a regional level. A simulation study was carried out to assess the climate impact on the performance of a dryland wheat-fallow system and the potential value of seasonal climate forecasts in nitrogen management in the Murray-Darling Basin (MDB) of Australia. Daily climate data (1889-2002) from 57 stations were used with the agricultural systems simulator (APSIM) to simulate wheat productivity and nitrogen requirement as affected by climate. On a good soil, simulated grain yield ranged from 7 t/ha in the east border regions. Optimal nitrogen rates ranged from 200 kgN/ha/yr. Simulated gross margin was in the range of -20/ha to 700/ha, increasing eastwards. Wheat yield was closely related to rainfall in the growing season and the stored soil moisture at sowing time. The impact of stored soil moisture increased from southwest to northeast. Simulated annual deep drainage ranged from zero in western inland to >200 mm in the east. Nitrogen management, optimised based on ‘perfect’ knowledge of daily weather in the coming season, could add value of 26˜79/ha compared to management optimised based on historical climate, with the maximum occurring in central to western part of MDB. It would also reduce the nitrogen application by 5˜25 kgN/ha in the main cropping areas. Comparison of simulation results with the current land use mapping in MDB revealed that the western boundary of the current cropping zone approximated the isolines of 160 mm of growing season rainfall, 2.5t/ha of wheat grain yield, and 150/ha of gross margin in QLD and NSW. In VIC and SA, the 160-mm isohyets corresponded relatively lower simulated yield due to less stored soil water. Impacts of other factors like soil

  17. Seasonal dynamics of mobile carbon supply in Quercus aquifolioides at the upper elevational limit.

    Directory of Open Access Journals (Sweden)

    Wan-Ze Zhu

    Full Text Available Many studies have tried to explain the physiological mechanisms of the alpine treeline phenomenon, but the debate on the alpine treeline formation remains controversial due to opposite results from different studies. The present study explored the carbon-physiology of an alpine shrub species (Quercus aquifolioides grown at its upper elevational limit compared to lower elevations, to test whether the elevational limit of alpine shrubs (<3 m in height are determined by carbon limitation or growth limitation. We studied the seasonal variations in non-structural carbohydrate (NSC and its pool size in Q. aquifolioides grown at 3000 m, 3500 m, and at its elevational limit of 3950 m above sea level (a.s.l. on Zheduo Mt., SW China. The tissue NSC concentrations along the elevational gradient varied significantly with season, reflecting the season-dependent carbon balance. The NSC levels in tissues were lowest at the beginning of the growing season, indicating that plants used the winter reserve storage for re-growth in the early spring. During the growing season, plants grown at the elevational limit did not show lower NSC concentrations compared to plants at lower elevations, but during the winter season, storage tissues, especially roots, had significantly lower NSC concentrations in plants at the elevational limit compared to lower elevations. The present results suggest the significance of winter reserve in storage tissues, which may determine the winter survival and early-spring re-growth of Q. aquifolioides shrubs at high elevation, leading to the formation of the uppermost distribution limit. This result is consistent with a recent hypothesis for the alpine treeline formation.

  18. Wind energy input into the upper ocean over a lengthening open water season

    Science.gov (United States)

    Mahoney, A. R.; Rolph, R.; Walsh, J. E.

    2017-12-01

    Wind energy input into the ocean has important consequences for upper ocean mixing, heat and gas exchange, and air-sea momentum transfer. In the Arctic, the open water season is increasing and extending further into the fall storm season, allowing for more wind energy input into the water column. The rate at which the delayed freeze-up timing extends into fall storm season is an important metric to evaluate because the expanding overlap between the open water period and storm season could contribute a significant amount of wind energy into the water column in a relatively short period of time. We have shown that time-integrated wind speeds over open water in the Chukchi Sea and southern Beaufort region have increased since 1979 through 2014. An integrated wind energy input value is calculated for each year in this domain over the open water season, as well as for periods over partial concentrations of ice cover. Spatial variation of this integrated wind energy is shown along the Alaskan coastline, which can have implications for different rates of coastal erosion. Spatial correlation between average wind speed over open water and open water season length from 1979-2014 show positive values in the southern Beaufort, but negative values in the northern Chukchi. This suggests possible differences in the role of the ocean on open water season length depending on region. We speculate that the warm Pacific water outflow plays a more dominant role in extending the open water season length in the northern Chukchi when compared to the southern Beaufort, and might help explain why we can show there is a relatively longer open water season length there. The negative and positive correlations in wind speeds over open water and open water season length might also be explained by oceanic changes tending to operate on longer timescales than the atmosphere. Seasonal timescales of wind events such as regional differences in overlap of the extended open water season due to regional

  19. High mobility, low access thwarts interventions among seasonal workers in the Greater Mekong Sub-region: lessons from the malaria containment project.

    Science.gov (United States)

    Canavati, Sara E; Quintero, Cesia E; Lawford, Harriet L S; Yok, Sovann; Lek, Dysoley; Richards, Jack S; Whittaker, Maxine Anne

    2016-08-26

    During the process of malaria elimination in the Greater Mekong Sub-region, mobile and migrant populations (MMPs) have been identified as the most at-risk demographic. An important sub-group of MMPs are seasonal workers, and this paper presents an evaluation of the reach and effectiveness of interventions tailored towards this group and was carried out as part of the Containment Project from 2009-11. A mixed-methods study was conducted in Pailin Province in Western Cambodia. Three-hundred-and-four seasonal workers were surveyed using a structured questionnaire. Qualitative data were gathered through a total of eight focus group discussions and 14 in-depth interviews. Data triangulation of the qualitative and quantitative data was used during analysis. High mobility and low access of the target population to the interventions, as well as lack of social and anthropological research that led to implementation oversights, resulted in under-exposure of seasonal workers to interventions. Consequently, their reach and impact were severely limited. Some services, particularly Mobile Malaria Workers, had the ability to significantly impact key factors, such as risky behaviours among those they did reach. Others, like Listening and Viewing Clubs and mass media campaigns, showed little impact. There is potential in two of the interventions assessed, but high mobility and inadequate exposure of seasonal workers to these interventions must be considered in the development and planning of future interventions to avoid investing in low-impact activities and ensure that all interventions perform according to their maximum potential. This will be critical in order for Cambodia to achieve its aim of malaria elimination. The lessons learned from this study can be extrapolated to other areas of health care in Cambodia and other countries in order to reduce the gap between healthcare provided to MMPs, especially seasonal workers, and to the general population.

  20. NEW SEASON NEW HOPES: OFF-SEASON OPTIMISM

    Directory of Open Access Journals (Sweden)

    Oguz Ersan

    2017-12-01

    Full Text Available While literature on the relation between on-field sports performance and stock returns is ample, there is very limited evidence on off-season stage. Constituting around 3 months, off-seasons do not only occupy a significant part of the year but also represent totally different characteristics than on-seasons. They lack the periodic, unambiguous news events in on-seasons (match results, instead they are associated with highly uncertain transfer news and rumors. We show that this distinction has several impacts on the stock market performances of soccer clubs. Most notably, off-seasons generate substantially higher (excess returns. After controlling for other variables, the estimated effect of off-season periods is as high as 38.75%, annually. In line with several seminal studies, we link this fact to increased optimism and betting behavior through uncertain periods; and periods prior to the start of a new calendar (in our case, new season. For all of the examined 7 clubs (3 from Italy and 4 from Turkey, mean excess returns over the market are positive (negative in off-seasons (on-seasons. On-seasons are associated with increased trading activity due to more frequent news. Stocks of Italian clubs are evidently more volatile through off-seasons while volatility results for the stocks of Turkish clubs are not consistent.

  1. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  2. Short-term community dynamics in seasonal and hyperseasonal cerrados

    Directory of Open Access Journals (Sweden)

    MV. Cianciaruso

    Full Text Available In South America, the largest seasonal savanna region is the Brazilian cerrado. Our aim was to study temporal changes in some community descriptors, such as floristic composition, richness, species density, plant density, and cylindrical volume, in a seasonal cerrado, comparing it to a nearby hyperseasonal cerrado. In four different seasons, we placed randomly ten 1 m² quadrats in each vegetation form and sampled all the vascular plants. Seasonal changes in floristic composition, species density, and plant density were less pronounced in the seasonal than in the hyperseasonal cerrado. Floristic similarity between the vegetation forms was lower when the hyperseasonal cerrado was waterlogged. Richness and species density were higher in the seasonal cerrado, which reached its biomass peak at mid rainy season. The hyperseasonal cerrado, in turn, reached its biomass peak at early rainy season and, despite the waterlogging, maintained it until late rainy season. In the hyperseasonal cerrado, waterlogging acts as an environmental filter restricting the number of cerrado species able to withstand it. The seasonal cerrado community was more stable than the hyperseasonal one. Our results corroborated the idea that changes in the environmental filters will affect floristic composition and community structure in savannas.

  3. Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments.

    Science.gov (United States)

    Jumpponen, A; Jones, K L

    2010-04-01

    *The fungal richness, diversity and community composition in the Quercus macrocarpa phyllosphere were compared across a growing season in trees located in six stands within and outside a small urban center using 454-sequencing and DNA tagging. The approaches did not differentiate between endophytic and epiphytic fungal communities. *Fungi accumulated in the phyllosphere rapidly and communities were temporally dynamic, with more than a third of the analyzed operational taxonomic units (OTUs) and half of the BLAST-inferred genera showing distinct seasonal patterns. The seasonal patterns could be explained by fungal life cycles or environmental tolerances. *The communities were hyperdiverse and differed between the urban and nonurban stands, albeit not consistently across the growing season. Foliar macronutrients (nitrogen (N), potassium (K) and sulfur (S)), micronutrients (boron (B), manganese (Mn) and selenium (Se)) and trace elements (cadmium (Cd), lead (Pb) and zinc (Zn)) were enriched in the urban trees, probably as a result of anthropogenic activities. Because of correlations with the experimental layout, these chemical elements should not be considered as community drivers without further empirical studies. *We suggest that a combination of mechanisms leads to differences between urban and nonurban communities. Among those are stand isolation and size, nutrient and pollutant accumulation plus stand management, including fertilization and litter removal.

  4. Estimation of selected seasonal streamflow statistics representative of 1930-2002 in West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Atkins, John T.

    2010-01-01

    Regional equations and procedures were developed for estimating seasonal 1-day 10-year, 7-day 10-year, and 30-day 5-year hydrologically based low-flow frequency values for unregulated streams in West Virginia. Regional equations and procedures also were developed for estimating the seasonal U.S. Environmental Protection Agency harmonic-mean flows and the 50-percent flow-duration values. The seasons were defined as winter (January 1-March 31), spring (April 1-June 30), summer (July 1-September 30), and fall (October 1-December 31). Regional equations were developed using ordinary least squares regression using statistics from 117 U.S. Geological Survey continuous streamgage stations as dependent variables and basin characteristics as independent variables. Equations for three regions in West Virginia-North, South-Central, and Eastern Panhandle Regions-were determined. Drainage area, average annual precipitation, and longitude of the basin centroid are significant independent variables in one or more of the equations. The average standard error of estimates for the equations ranged from 12.6 to 299 percent. Procedures developed to estimate the selected seasonal streamflow statistics in this study are applicable only to rural, unregulated streams within the boundaries of West Virginia that have independent variables within the limits of the stations used to develop the regional equations: drainage area from 16.3 to 1,516 square miles in the North Region, from 2.78 to 1,619 square miles in the South-Central Region, and from 8.83 to 3,041 square miles in the Eastern Panhandle Region; average annual precipitation from 42.3 to 61.4 inches in the South-Central Region and from 39.8 to 52.9 inches in the Eastern Panhandle Region; and longitude of the basin centroid from 79.618 to 82.023 decimal degrees in the North Region. All estimates of seasonal streamflow statistics are representative of the period from the 1930 to the 2002 climatic year.

  5. Influenza Seasonal Summary, 2014-2015 Season

    Science.gov (United States)

    2015-08-14

    Influenza Seasonal Summarv 2014-2015 Season EpiData Center Department Communicable Disease Division NMCPHC-EDC-TR-394-2015 REPORT DOCUMENTATION... Influenza Seasonal Summary, 2014-2015 Season Sb. GRANT NUMBER $c. PROGRAM ELEMENT NUMBER 6. AUTHORjS) Sd. PROJECT NUMBER Ashleigh K McCabe, Kristen R...SUPPLEMENTARY NOTES 1<l. ABSTRACT This report summartzes influenza activity among Department of Navy (DON) and Depar1ment of Defense (DOD

  6. Hydrography of the Wadge bank - premonsoon and monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RamaRaju, V.S.; Rao, T.V.N.; RameshBabu, V.; Anto, A.F.

    The hydrography of the Wadge Bank during premonsoon and monsoon seasons is presented. The thermocline slopes downward towards the central region. Upwelling is prominent in the entire region during monsoon and is observed only in the western...

  7. Exposure to vibrations in wine growing

    Directory of Open Access Journals (Sweden)

    Domenico Pessina

    2013-09-01

    Full Text Available Apart the winter period, the activity in specialized agricultural cultivations (i.e. wine- and fruit-growing is distributed for a long period of the year. Some tasks, such as pesticide distribution, are repeated several times during the growing season. On the other hand, mechanization is one of the pillars on which is based the modern agriculture management. As a consequence, in wine growing the tractor driver has to be considered a worker potentially subjected to high level of vibrations, due to the poor machinery conditions often encountered, and sometimes to the rough soil surface of the vineyard combined with the high travelling speed adopted in carrying out many operations. About vibrations, the Italian Decree 81/08 basically refers to the European Directive 2002/44/CE, that provides some very strict limits of exposure, both for whole body and hand-arm districts. In Oltrepo pavese, a large hilly area located the south part of the Pavia province (Lombardy - Italy wine growing is the main agricultural activity; for this reason, a detailed survey on the vibration levels recorded at the tractor driver’s seat was carried out, in order to ascertain the real risk to which the operators are exposed. The activity in wine growing has been classified into 6 groups of similar tasks, as follows: 1. canopy management: pruning, trimming, binding, stripping, etc.; 2. soil management: harrowing, hoeing, subsoiling etc.; 3. inter-row management: chopping of pruning , pinching, grass mowing, etc.; 4. crop protection: pesticides and fungicides distribution, sulfidation, foliar fertilization, etc.; 5. grape harvesting: manual or mechanical; 6. transport: from the vineyard to the cellar. For each group of tasks, the vibration levels on 3 the traditional axes (x, y and z were recorded, and then an exposure time was calculated for each of them, in order to ascertain the risk level in comparison to what provided by the dedicated standard. Finally, a detailed

  8. Mercury methylation, export and bioaccumulation in rice agriculture - model results from comparative and experimental studies in 3 regions of the California Delta, USA

    Science.gov (United States)

    Windham-Myers, L.; Fleck, J.; Eagles-Smith, C.; Ackerman, J.

    2013-12-01

    Seasonally flooded wetland ecosystems are often poised for mercury (Hg) methylation, thus becoming sources of methylmercury (MeHg) to in situ and downstream biota. The seasonal flooding associated with cultivation of rice (Oryza sativa) also generates MeHg, which may be stored in sediment or plants, bioaccumulated into fauna, degraded or exported, depending on hydrologic and seasonal conditions. While many U.S. waters are regulated for total Hg concentrations based on fish targets, California's Sacramento-San Joaquin Delta (Delta) will soon implement the first MeHg total maximum daily load (TMDL) control program. Since 2007, a conceptual model (DRERIP-MCM) and several ecosystem-level studies have been advanced to better understand the mechanisms behind Hg methylation, export and bioaccumulation within Delta wetlands, including rice agriculture. Three Delta rice-growing regions (Yolo Bypass, Cosumnes River, Central Delta) of varied soil characteristics, mining influences and hydrology, were monitored over full crop years to evaluate annual MeHg dynamics. In addition to fish tissue Hg accumulation, a broad suite of biogeochemical and hydrologic indices were assessed and compared between wetland types, seasons, and regions. In general, Delta rice fields were found to export MeHg during the post-harvest winter season, and promote MeHg uptake in fish and rice grain during the summer growing season. As described in a companion presentation (Eagles-Smith et al., this session), the experimental Cosumnes River study suggests that rice-derived dissolved organic carbon (DOC) fuels MeHg production and uptake into aquatic foodwebs. Explicit DRERIP-MCM linkages for the role of rice-DOC in MeHg production, export and bioaccumulation were verified across two summers (2011, 2012): rice biomass and root productivity influenced porewater DOC availability and microbial processes, which drove sediment MeHg production and flux to surface water, promoting MeHg bioaccumulation in fish

  9. Radioactivity in wild-growing mushrooms of the Calabria region, south of Italy

    Science.gov (United States)

    Caridi, F.; Belmusto, G.

    2017-01-01

    Wild-growing mushrooms are a complementary foodstuff, widely consumed as a delicacy, in Italy. They are considered excellent bioindicators of environmental pollution and the accumulation of radionuclides can pose a radiological hazard. 137Cs and 40K activity concentrations were measured through HPGe gamma-spectrometry in different mushroom species (Agaricus arvensis, Leccinum quercinum, Boletus aereus, Lactarius deliciosus, Boletus edulis, Macrolepiota konradii, Cantharellus lutescens) collected from four different sampling sites in the Calabria region, south of Italy. Experimental values were found to be in the range from (0.3 ± 0.1) Bq/kg f.m. (fresh mass) to (73.1 ± 4.6) Bq/kg f.m. for 137Cs and from (46.9 ± 10.7) Bq/kg f.m. to (161.3 ± 12.9) Bq/kg f.m. for 40K, respectively. All values were much lower than the specific activity limit set by the international legislation at 600 Bq/kg f.m. for 137Cs and at 1,258 Bq/kg f.m. for 40K, respectively. Experimental activity concentrations allowed us to determine the effective dose due to the ingestion of mushrooms by adult members of the population. It was found in the range from 0.25 to 1.35 μSv/y, much lower than the recommended level for the public (1 mSv/y). Data obtained in this article provide useful information on the environmental risk and can be further used for a radiological mapping of the studied area.

  10. Measuring the potential utility of seasonal climate predictions

    Science.gov (United States)

    Tippett, Michael K.; Kleeman, Richard; Tang, Youmin

    2004-11-01

    Variation of sea surface temperature (SST) on seasonal-to-interannual time-scales leads to changes in seasonal weather statistics and seasonal climate anomalies. Relative entropy, an information theory measure of utility, is used to quantify the impact of SST variations on seasonal precipitation compared to natural variability. An ensemble of general circulation model (GCM) simulations is used to estimate this quantity in three regions where tropical SST has a large impact on precipitation: South Florida, the Nordeste of Brazil and Kenya. We find the yearly variation of relative entropy is strongly correlated with shifts in ensemble mean precipitation and weakly correlated with ensemble variance. Relative entropy is also found to be related to measures of the ability of the GCM to reproduce observations.

  11. Seasonal varability of the Canary Current

    Science.gov (United States)

    Vélez-Belchí, P.; Hernandez-Guerra, A.; Pérez-Hernández, M. D.

    2016-02-01

    The Atlantic meridional overturning circulation (AMOC) is recognized as an important component of the climate system, contributing to the relatively mild climate of northwest Europe. Due to its importance, the strength of the AMOC is continually monitored along 26ºN with several moorings, east of the Bahamas, in the Middle Atlantic Ridge and south of the Canary islands, known as the RAPID array. The measurements of the RAPID array show a 6 Sv seasonal cycle for the AMOC, and recent studies have pointed out the dynamics of the eastern Atlantic as the main driver for this seasonal cycle, specifically, rossby waves excited south of the Canary Islands.Due to the important role of the eastern Atlantic, in this study we describe the seasonal cycle of the Canary Current (CC) and the Canary Upwelling Current (CUC), using hydrographic data from two cruises carried out in a box around the Canary Islands, the region where the eastern component of the RAPID array is placed. CTD, VMADCP and LADCP data were combined with inverse modeling in order to determine absolute geostrophic transports in the Canary Islands region in fall and spring. During spring, the overall transport of Canary Current and the CUC was southward. In the Lanzarote Passage (LP), between the Canary Islands and Africa, the CUC transported 0.6±0.20 Sv southward, while the Canary Current transported 1.0±0.40 Sv in the oceanic waters of the Canary Islands Archipelago. During fall, the CUC transported 2.8±0.4Sv northward, while the CC transported 2.9±0.60 Sv southward in the oceanic waters of the Canary Islands Archipelago. The seasonal cycle observed has and amplitude of 3.4Sv for the CUC and 1.9Sv for the CC. Data from a mooring in the LP and the hydrographic data was used to calibrate geostrophic transport estimated using altimetry data. The amplitude of the seasonal cycle of the geostrophic transport obtained using the calibrated altimetry data (Figure 1) was quite similar to the seasonal cycle of the

  12. Seasonal cycle of the Canary Current.

    Science.gov (United States)

    Vélez-Belchí, P.; Hernandez-Guerra, A.; Pérez-Hernández, M. D.

    2015-12-01

    The Atlantic meridional overturning circulation (AMOC) is recognized as an important component of the climate system, contributing to the relatively mild climate of northwest Europe. Due to its importance, the strength of the AMOC is continually monitored along 26ºN with several moorings east of the Bahamas, in the Middle Atlantic Ridge and south of the Canary islands, known as the RAPID array. The measurements of the RAPID array show a 6 Sv seasonal cycle for the AMOC, and recent studies have pointed out the dynamics of the eastern Atlantic as the main driver for this seasonal cycle, specifically, rossby waves excited south of the Canary Islands. Due to the important role of the eastern Atlantic, in this study we describe the seasonal cycle of the Canary Current (CC) and the Canary Upwelling Current (CUC) using hydrographic data from two cruises carried out in a box around the Canary Islands, the region where the eastern component of the RAPID array is placed. CTD, VMADCP and LADCP data were combined with inverse modeling in order to determine absolute geostrophic transports in the Canary Islands region in fall and spring. During spring, the overall transport of Canary Current and the CUC was southward. In the Lanzarote Passage (LP), between the Canary Islands and Africa, the CUC transported 0.6±0.20 Sv southward, while the Canary Current transported 1.0±0.40 Sv in the oceanic waters of the Canary Islands Archipelago. During fall, the CUC transported 2.8±0.4Sv northward, while the CC transported 2.9±0.60 Sv southward in the oceanic waters of the Canary Islands Archipelago. The seasonal cycle observed has an amplitude of 3.4Sv for the CUC and 1.9Sv for the CC. Data from a mooring in the LP and the hydrographic data was used to calibrate geostrophic transport estimated using altimetry data. The amplitude of the seasonal cycle of the geostrophic transport obtained using the calibrated altimetry data (Figure 1) was quite similar to the seasonal cycle of the

  13. Seasonal Cycles of Oceanic Transports in the Eastern Subpolar North Atlantic

    Science.gov (United States)

    Gary, Stefan F.; Cunningham, Stuart A.; Johnson, Clare; Houpert, Loïc.; Holliday, N. Penny; Behrens, Erik; Biastoch, Arne; Böning, Claus W.

    2018-02-01

    The variability of the Atlantic Meridional Overturning Circulation (AMOC) may play a role in sea surface temperature predictions on seasonal to decadal time scales. Therefore, AMOC seasonal cycles are a potential baseline for interpreting predictions. Here we present estimates for the seasonal cycle of transports of volume, temperature, and freshwater associated with the upper limb of the AMOC in the eastern subpolar North Atlantic on the Extended Ellett Line hydrographic section between Scotland and Iceland. Due to weather, ship-based observations are primarily in summer. Recent glider observations during other seasons present an opportunity to investigate the seasonal variability in the upper layer of the AMOC. First, we document a new method to quality control and merge ship, float, and glider hydrographic observations. This method accounts for the different spatial sampling rates of the three platforms. The merged observations are used to compute seasonal cycles of volume, temperature, and freshwater transports in the Rockall Trough. These estimates are similar to the seasonal cycles in two eddy-resolving ocean models. Volume transport appears to be the primary factor modulating other Rockall Trough transports. Finally, we show that the weakest transports occur in summer, consistent with seasonal changes in the regional-scale wind stress curl. Although the seasonal cycle is weak compared to other variability in this region, the amplitude of the seasonal cycle in the Rockall Trough, roughly 0.5-1 Sv about a mean of 3.4 Sv, may account for up to 7-14% of the heat flux between Scotland and Greenland.

  14. Seasonal changes in the assembly mechanisms structuring tropical fish communities.

    Science.gov (United States)

    Fitzgerald, Daniel B; Winemiller, Kirk O; Sabaj Pérez, Mark H; Sousa, Leandro M

    2017-01-01

    Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems. © 2016 by the Ecological Society of America.

  15. The Southern African Regional Science Initiative (SAFARI 2000): Overview of the Dry Season Field Campaign

    Science.gov (United States)

    Swap, R. J.; Annegarn, H. J.; Suttles, J. T.; Haywood, J.; Helmlinger, M. C.; Hely, C.; Hobbs, P. V.; Holben, B. N.; Ji, J.; King, M. D.

    2002-01-01

    The Southern African Regional Science Initiative (SAFARI 2000) is an international project investigating the earth atmosphere -human system in southern Africa. The programme was conducted over a two year period from March 1999 to March 2001. The dry season field campaign (August-September 2000) was the most intensive activity involved over 200 scientist from eighteen countries. The main objectives were to characterize and quantify biogenic, pyrogenic and anthropogenic aerosol and trace gas emissions and their transport and transformations in the atmosphere and to validate NASA's Earth Observing System's Satellite Terra within a scientific context. Five aircraft-- two South African Weather Service Aeorcommanders, the University of Washington's CV-880, the U.K. Meteorological Office's C-130, and NASA's ER-2 --with different altitude capabilities, participated in the campaign. Additional airborne sampling of southern African air masses, that had moved downwind of the subcontinent, was conducted by the CSIRO over Australia. Multiple Observations were made in various geographical sections under different synoptic conditions. Airborne missions were designed to optimize the value of synchronous over-flights of the Terra Satellite platform, above regional ground validation and science targets. Numerous smaller scale ground validation activities took place throughout the subcontinent during the campaign period.

  16. The European Market for Seasonal Gas Storage

    International Nuclear Information System (INIS)

    Mahan, A.

    2006-02-01

    European demand for gas will grow in the years to come. Simultaneously, gas production in Europe will decrease and imported gas will be needed to replace indigenous production. Gas demand is not constant during the year. There are variations in demand on different timescales ranging from seasonal to hourly. Variations in demand are characterised by two main parameters: working volume and deliverability. Working volume - the amount of gas that can be supplied above the baseload production volume during a long (cold) period- is primarily needed to cope with the summer-winter pattern of gas consumption. Most of the summer-winter pattern comes from the temperature sensitive gas consumption by households and service industries. Gas usage by industry and the power sector are more evenly spread throughout the year and need less working volume. Deliverability - the amount of gas per hour that can be generated on a (very) cold day above the baseload capacity - is the ability to produce large volumes during short periods, e.g. for extremely cold days, or during peak periods during a day. In this paper we argue that a large amount of additional working volume will be required over the coming years. First, flexible European production will be replaced by long-distance import gas, and second, the gas market is expected to grow further. Todays market appears focus mainly on cavems for storage volume. Cavems have little working volume but are ideal for trading purposes. Consequently, Europe may be facing a deficit in working volume, i.e. the ability to cope with seasonal changes in demand. This paper aims to widen the discussion of this matter and give rise to this concern by setting out a broad analysis, exploring the market drivers for seasonal storage and identifying the public interest issues for this market. Chapter 2 gives an overview of demand for and supply characteristics of gas flexibility. Chapter 3 describes the role of gas storage facilities in the gas market

  17. Temporal variation (seasonal and interannual) of vegetation indices of maize and soybeans across multiple years in central Iowa

    Science.gov (United States)

    Prueger, J. H.; Hatfield, J. L.

    2015-09-01

    Remotely sensed reflectance parameters from corn and soybean surfaces can be correlated to crop production. Surface reflectance of a typical Upper Midwest corn /soybean region in central Iowa across multiple years reveal subtle dynamics in vegetative surface response to a continually varying climate. From 2006 through 2014 remotely sensed data have been acquired over production fields of corn and soybeans in central IA, U.S.A. with the fields alternating between corn and soybeans. The data have been acquired using ground-based radiometers with 16 wavebands covering the visible, near infrared, shortwave infrared wavebands and combined into a series of vegetative indices. These data were collected on clear days with the goal of collecting data at a minimum of once per week from prior to planting until after fall tillage operations. Within each field, five sites were established and sampled during the year to reduce spatial variation and allow for an assessment of changes in the vegetative indices throughout the growing season. Ancillary data collected for each crop included the phenological stage at each sampling date along with biomass sampled at the onset of the reproductive stage and at physiological maturity. Evaluation of the vegetative indices for the different years revealed that patterns were related to weather effects on corn and soybean growth. Remote sensing provides a method to evaluate changes within and among growing seasons to assess crop growth and development as affected by differences in weather variability.

  18. SEASONAL PREDICTION OF PRECIPITATION OVER NIGERIA

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    nificant difference between the means of predicted and observed seasonal rainfall amount for all ... and the Gulf of Guinea in the north, east, west ... from the northern part to the southern part of ... and Savanna regions of Nigeria than the other.

  19. Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial

    Science.gov (United States)

    Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie

    2017-04-01

    Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning

  20. Influence of Asian outflow on Rishiri Island, northernmost Japan: Application of radon as a tracer for characterizing fetch regions and evaluating a global 3D model

    Science.gov (United States)

    Zhu, Chunmao; Yoshikawa-Inoue, Hisayuki; Matsueda, Hidekadzu; Sawa, Yosuke; Niwa, Yosuke; Wada, Akira; Tanimoto, Hiroshi

    2012-04-01

    Atmospheric 222Rn was monitored from December 2008 to November 2010 on Rishiri Island (45°07‧N, 141°12‧E), northernmost Japan. Seasonal 222Rn variation was characterized by high concentrations from November to February and low concentrations from May to July, caused by the alternation of continental and maritime fetch regions. 222Rn tracer and back trajectory cluster analyses indicated that the predominant continental fetch region was southeastern Siberia and northeastern China. 222Rn emitted from China and South Korea, whose economies are growing rapidly, did not significantly affect the Rishiri site. The major maritime fetch region was the Sea of Okhotsk and the Bering Sea. A global three-dimensional model (NICAM-TM) accurately simulated 222Rn concentrations on Rishiri Island and in the seasonal fetch regions. The time series of 222Rn data will make it possible to evaluate the sources and sinks of atmospheric greenhouse gases being monitored at Rishiri Island, which complements other sites in the Asia-Pacific rim region, and to validate model simulations used to examine trans-boundary air pollution.