WorldWideScience

Sample records for regional percent crop

  1. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    Science.gov (United States)

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Gregory W.

    2015-07-01

    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  2. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  3. Generation of multi annual land use and crop rotation data for regional agro-ecosystem modeling

    Science.gov (United States)

    Waldhoff, G.; Lussem, U.; Sulis, M.; Bareth, G.

    2017-12-01

    For agro-ecosystem modeling on a regional scale with systems like the Community Land Model (CLM), detailed crop type and crop rotation information on the parcel-level is of key importance. Only with this, accurate assessments of the fluxes associated with the succession of crops and their management are possible. However, sophisticated agro-ecosystem modeling for large regions is only feasible at grid resolutions, which are much coarser than the spatial resolution of modern land use maps (usually ca. 30 m). As a result, much of the original information content of the maps has to be dismissed during resampling. Here we present our mapping approach for the Rur catchment (located in the west of Germany), which was developed to address these demands and issues. We integrated remote sensing and geographic information system (GIS) methods to classify multi temporal images of (e.g.) Landsat, RapidEye and Sentinel-2 to generate annual crop maps for the years 2008-2017 at 15 m spatial resolution (accuracy always ca. 90 %). A key aspect of our method is the consideration of crop phenology for the data selection and the analysis. In a GIS, the annul crop maps were integrated to a crop sequence dataset from which the major crop rotations were derived (based on the 10-years). To retain the multi annual crop succession and crop area information at coarser grid resolutions, cell-based land use fractions, including other land use classes were calculated for each year and for various target cell sizes (1-32 arc seconds). The resulting datasets contain the contribution (in percent) of every land use class to each cell. Our results show that parcels with the major crop types can be differentiated with a high accuracy and on an annual basis. The analysis of the crop sequence data revealed a very large number of different crop rotations, but only relatively few crop rotations cover larger areas. This strong diversity emphasizes the importance of information on crop rotations to reduce

  4. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    Science.gov (United States)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  5. Estimating the impact of mineral aerosols on crop yields in food insecure regions using statistical crop models

    Science.gov (United States)

    Hoffman, A.; Forest, C. E.; Kemanian, A.

    2016-12-01

    A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with

  6. Spatial Sampling of Weather Data for Regional Crop Yield Simulations

    Science.gov (United States)

    Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian; hide

    2016-01-01

    Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management

  7. OPTIMAL STRATEGIES FOR REGIONAL CULTIVAR TESTING FOR VARIOUS CROPS

    OpenAIRE

    Kingwell, Ross S.

    1999-01-01

    Before a variety is released for adoption by farmers in a region it is subject to comparative field testing. An economic issue is how extensive and prolonged should be this field testing within the region; over how many locations, years and with what number of plot replications should testing occur? This paper addresses this issue for the main broadacre crops grown in Western Australia and shows through sensitivity analysis how robust are the findings for each crop type. Findings are contrast...

  8. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    Science.gov (United States)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and

  9. Spatial resolution of precipitation and radiation: the effect on regional crop yield forecasts

    NARCIS (Netherlands)

    Wit, de A.J.W.; Boogaard, H.L.; Diepen, van C.A.

    2005-01-01

    This paper explores the effect of uncertainty in precipitation and radiation on crop simulation results at local (50 × 50 km grids) and regional scale (NUTS1 regions) and on the crop yield forecasts for Germany and France. Two experiments were carried out where crop yields for winter-wheat and grain

  10. Ozone phytotoxicity evaluation and prediction of crops production in tropical regions

    Science.gov (United States)

    Mohammed, Nurul Izma; Ramli, Nor Azam; Yahya, Ahmad Shukri

    2013-04-01

    Increasing ozone concentration in the atmosphere can threaten food security due to its effects on crop production. Since the 1980s, ozone has been believed to be the most damaging air pollutant to crops. In Malaysia, there is no index to indicate the reduction of crops due to the exposure of ozone. Therefore, this study aimed to identify the accumulated exposure over a threshold of X ppb (AOTX) indexes in assessing crop reduction in Malaysia. In European countries, crop response to ozone exposure is mostly expressed as AOT40. This study was designed to evaluate and predict crop reduction in tropical regions and in particular, the Malaysian climate, by adopting the AOT40 index method and modifying it based on Malaysian air quality and crop data. Nine AOTX indexes (AOT0, AOT5, AOT10, AOT15, AOT20, AOT25, AOT30, AOT40, and AOT50) were analyzed, crop responses tested and reduction in crops predicted. The results showed that the AOT50 resulted in the highest reduction in crops and the highest R2 value between the AOT50 and the crops reduction from the linear regression analysis. Hence, this study suggests that the AOT50 index is the most suitable index to estimate the potential ozone impact on crops in tropical regions. The result showed that the critical level for AOT50 index if the estimated crop reduction is 5% was 1336 ppb h. Additionally, the results indicated that the AOT40 index in Malaysia gave a minimum percentage of 6% crop reduction; as contrasted with the European guideline of 5% (due to differences in the climate e.g., average amount of sunshine).

  11. Crop Yield Simulations Using Multiple Regional Climate Models in the Southwestern United States

    Science.gov (United States)

    Stack, D.; Kafatos, M.; Kim, S.; Kim, J.; Walko, R. L.

    2013-12-01

    Agricultural productivity (described by crop yield) is strongly dependent on climate conditions determined by meteorological parameters (e.g., temperature, rainfall, and solar radiation). California is the largest producer of agricultural products in the United States, but crops in associated arid and semi-arid regions live near their physiological limits (e.g., in hot summer conditions with little precipitation). Thus, accurate climate data are essential in assessing the impact of climate variability on agricultural productivity in the Southwestern United States and other arid regions. To address this issue, we produced simulated climate datasets and used them as input for the crop production model. For climate data, we employed two different regional climate models (WRF and OLAM) using a fine-resolution (8km) grid. Performances of the two different models are evaluated in a fine-resolution regional climate hindcast experiment for 10 years from 2001 to 2010 by comparing them to the North American Regional Reanalysis (NARR) dataset. Based on this comparison, multi-model ensembles with variable weighting are used to alleviate model bias and improve the accuracy of crop model productivity over large geographic regions (county and state). Finally, by using a specific crop-yield simulation model (APSIM) in conjunction with meteorological forcings from the multi-regional climate model ensemble, we demonstrate the degree to which maize yields are sensitive to the regional climate in the Southwestern United States.

  12. Impacts of crop growth dynamics on soil quality at the regional scale

    Science.gov (United States)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop

  13. The effect of cropping sequence on the crop yield and nutrient availability

    International Nuclear Information System (INIS)

    Sisworo, W.H.; Rasjid, H.

    1988-01-01

    A two seasons field experiment was conducted to study the carry over effect of previous crop on the succeeding crop yield and plan nutrient (N and P) availability. The experiment consisted of eight treatments were arranged in a randomized block design with six resplications. Cropping sequence was studied that was soybean followed by corn and a continuous corn system. The effect of added P to the previous crops on the succeeding crops yield was also observed. Labelled fertilizer were used in the experiment to measure dinitrogen fixation of two soybean varieties and the amount of available nutrient in the soil by using isotopic dilution technique. The result obtained showed that corn yield was significantly influenced by cropping sequence, but available nutrient was not. Corn grown after soybean produced about 22 percent more grain than those of the continuous corn system. The phosphorus applied to the first season crops increased significantly the succeeding corn yield. The highest amount of accumulation in soybean was 81 kg N/h, around 40 percent of the amount was obtained through fixation. (authors). 19 refs.; 8 tabs

  14. Evaluation of the performance of SiBcrop model in predicting carbon fluxes and crop yields in the croplands of the US mid continental region

    Science.gov (United States)

    Lokupitiya, E.; Denning, S.; Paustian, K.; Corbin, K.; Baker, I.; Schaefer, K.

    2008-12-01

    The accurate representation of phenology, physiology, and major crop variables is important in the land- atmosphere carbon models being used to predict carbon and other exchanges of the man-made cropland ecosystems. We evaluated the performance of SiBcrop model (which is the Simple Biosphere model (SiB) with a new scheme for crop phenology and physiology) in predicting carbon exchanges of the US mid continental region which has several major crops. The use of the new phenology scheme within SiB remarkably improved the prediction of LAI and carbon fluxes for corn, soybean, and wheat crops as compared with the observed data at several Ameriflux eddy covariance flux tower sites with those crops. SiBcrop better predicted the onset and end of the growing season, harvest, interannual variability associated with crop rotation, day time carbon draw down, and day to day variability in the carbon exchanges. The model has been coupled with RAMS, the regional Atmospheric Modeling System (developed at Colorado State University), and the coupled SiBcrop-RAMS has predicted better carbon and other fluxes compared to the original SiB-RAMS. SiBcrop also predicted daily variation in biomass in different plant pools (i.e. roots, leaves, stems, and products). In this study, we further evaluated the performance of SiBcrop by comparing the yield estimates based on the grain/seed biomass at harvest predicted by SiBcrop for relevant major crops, against the county-level crop yields reported by the US National Agricultural Statistics Service (NASS). Initially, the model runs were based on crop maps scaled at 40 km resolution; the maps were used to derive the fraction of corn, soybean, and wheat at each grid cell across the US Mid Continental Intensive (MCI) region under the North American Carbon Program (NACP). The yield biomass carbon values (at harvest) predicted for each grid cell by SiBcrop were extrapolated to derive the county-level yield biomass carbon values, which were then

  15. New approach for regional crop yield gap analysis in the Borujen ...

    African Journals Online (AJOL)

    enoh

    2012-03-20

    Mar 20, 2012 ... for model calibration and evaluation of WOFOST as a crop growth ... In general, simulated results matched well with the measured ... regional-scale yield prediction and assessment (Jagtap ... the benchmark value and most of the variation in yield ... The model simulates daily crop growth rate, based on.

  16. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Science.gov (United States)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  17. Nitrogen use efficiency and crop production: Patterns of regional variation in the United States, 1987-2012.

    Science.gov (United States)

    Swaney, Dennis P; Howarth, Robert W; Hong, Bongghi

    2018-04-17

    National-level summaries of crop production and nutrient use efficiency, important for international comparisons, only partially elucidate agricultural dynamics within a country. Agricultural production and associated environmental impacts in large countries vary significantly because of regional differences in crops, climate, resource use and production practices. Here, we review patterns of regional crop production, nitrogen use efficiency (NUE), and major inputs of nitrogen to US crops over 1987-2012, based on the Farm Resource Regions developed by the Economic Research Service (USDA-ERS). Across the US, NUE generally decreased over time over the period studied, mainly due to increased use in mineral N fertilizer above crop N requirements. The Heartland region dominates production of major crops and thus tends to drive national patterns, showing linear response of crop production to nitrogen inputs broadly consistent with an earlier analysis of global patterns of country-scale data by Lassaletta et al. (2014). Most other regions show similar responses, but the Eastern Uplands region shows a negative response to nitrogen inputs, and the Southern Seaboard shows no significant relationship. The regional differences appear as two branches in the response of aggregate production to N inputs on a cropland area basis, but not on a total area basis, suggesting that the type of scaling used is critical under changing cropland area. Nitrogen use efficiency (NUE) is positively associated with fertilizer as a percentage of N inputs in four regions, and all regions considered together. NUE is positively associated with crop N fixation in all regions except Northern Great Plains. It is negatively associated with manure (livestock excretion); in the US, manure is still treated largely as a waste to be managed rather than a nutrient resource. This significant regional variation in patterns of crop production and NUE vs N inputs, has implications for environmental quality and

  18. VIC–CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Directory of Open Access Journals (Sweden)

    K. Malek

    2017-08-01

    Full Text Available Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively. A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC–CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology, it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC–CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC–CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land–atmosphere interactions. The performance of VIC–CropSyst was evaluated on both regional (over the US Pacific Northwest and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois. The agreement between recorded and simulated evapotranspiration (ET, applied irrigation water, soil moisture, leaf area index (LAI, and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  19. Adapting crop rotations to climate change in regional impact modelling assessments.

    Science.gov (United States)

    Teixeira, Edmar I; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank

    2018-03-01

    The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used

  20. Risk management in crop production based on the regional index

    Directory of Open Access Journals (Sweden)

    Kokot Željko

    2017-01-01

    Full Text Available Regional index insurance is one of the newer instruments for reducing losses in crop production. The regional index indicates the average yield or average production value in a region, representing the basis for the premium calculation and insurance benefits. The main advantage of this insurance model is that it does not require the damage assessment, which is one of major problems in the relationship between the insured and insurer. In the case of corn, wheat and sunflower production as the most important crops in the region of Ada municipality, the authors describe the methodology of application of the analysed insurance system. Implementation of this contemporary form of insurance in Serbia would reduce the negative financial consequences in agricultural production. The abovementioned model of insurance can be seen as a significant alternative to conventional insurance, which can increase insured area and number of insured, and trust and confidence in insurance companies would also be restored.

  1. Ammonia volatilization from crop residues and frozen green manure crops

    Science.gov (United States)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  2. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    International Nuclear Information System (INIS)

    Porter, William C; Rosenstiel, Todd N; Barsanti, Kelley; Guenther, Alex; Lamarque, Jean-Francois

    2015-01-01

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O 3 ) and fine particulate matter (PM 2.5 ) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O 3 increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM 2.5 increases of up to 2 μg m −3 . We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value. (letter)

  3. Summer crops evapotranspiration for two climatically constrating regions of Uruguay

    International Nuclear Information System (INIS)

    Gimenez, L.; Garcia, M.

    2011-01-01

    During the growth and development of grain crops there are a series of limiting factors which prevent obtaining yields to full potential. In particular, in summer crops grown in rain fed conditions, water deficiency stands out as one of the main factors affecting yield productivity. In this study crop evapotranspiration (E Tc) was estimated as a way to assess water needs in summer crops and real evapotranspiration (E Tr) of rain fed crops that occurs under field conditions. The study consisted in estimating E Tc and E Tr of soybean G M IV and V I, corn, sorghum and sunflower in two contrasting climatic regions of Uruguay for a period of 24 years (1984/2007) using the model WinISAREG. Water needs varied. The Nina and Nino years stood out with higher and lower values of Etc respectively. Such water needs are linked to cycle duration. Daily Etc was higher in the North and total Etc was higher in the South. The Etr obtained was substantially lower than Etc and with higher variability in most agr o-climatic situations studied. Sunflower and sorghum were the crops that presented the least differences between Etc and E Tr, and soybean and corn showed the greatest differences at both locations

  4. Historical development of crop-related water footprints and inter-regional virtual water flows within China

    Science.gov (United States)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2015-04-01

    China is facing water-related challenges, including an uneven distribution of water resources, both temporally and spatially, and an increasing competition over the limited water resources among different sectors. This issue has been widely researched and was finally included into the National Plan 2011 (the 2011 No. 1 Document by the State Council of China). However, there is still lack of information on how population growth and rapid urbanization have affected the water resources in China over the last decades. The current study aims at investigating (i) the intra-annual variation of green and blue water footprints (WFs) of crop production in China over the period 1978-2009 at a spatial resolution of 5 by 5 arc-minute; (ii) the yearly virtual water (VW) balances of 31 provinces within China, related water savings for the country, as well as the VW flows among eight economic regions resulting from inter-regional crop trade over the same period; and (iii) the development of the WF related to crop consumption by Chinese consumers. Results show that, over the period 1978-2009, the total WF related to crop production within China increased by only 4%), but regional changes were significant. From the 1980s to the 2000s, the shift of the cropping centre from the South to the North resulted in an increase of about 16% in the blue WF and 19% in the green WF in the North and a reduction of the blue and green WF in the South by 11% and 3%, respectively. China as a whole was a net virtual water importer related to crop trade, thus saving domestic water resources. China's inter-regional crop trade generated a blue water 'loss' annually by transferring crops from provinces with relatively low crop water productivity to provinces with relatively high productivity. Over the decades, the original VW flow from the South coastal region to the Northeast was reversed. Rice was the all-time dominant crop in the inter-regional VW flows (accounting for 34% in 2009), followed by wheat

  5. Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States

    Science.gov (United States)

    Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.

    2013-12-01

    The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.

  6. Spatial Variability Mapping of Crop Residue Using Hyperion (EO-1 Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Abderrazak Bannari

    2015-06-01

    Full Text Available Soil management practices that maintain crop residue cover and reduce tillage improve soil structure, increase organic matter content in the soil, positively influence water infiltration, evaporation and soil temperature, and play an important role in fixing CO2 in the soil. Consequently, good residue management practices on agricultural land have many positive impacts on soil quality, crop production quality and decrease the rate of soil erosion. Several studies have been undertaken to develop and test methods to derive information on crop residue cover and soil tillage using empirical and semi-empirical methods in combination with remote sensing data. However, these methods are generally not sufficiently rigorous and accurate for characterizing the spatial variability of crop residue cover in agricultural fields. The goal of this research is to investigate the potential of hyperspectral Hyperion (Earth Observing-1, EO-1 data and constrained linear spectral mixture analysis (CLSMA for percent crop residue cover estimation and mapping. Hyperion data were acquired together with ground-reference measurements for validation purposes at the beginning of the agricultural season (prior to spring crop planting in Saskatchewan (Canada. At this time, only bare soil and crop residue were present with no crop cover development. In order to extract the crop residue fraction, the images were preprocessed, and then unmixed considering the entire spectral range (427 nm–2355 nm and the pure spectra (endmember. The results showed that the correlation between ground-reference measurements and extracted fractions from the Hyperion data using CLMSA showed that the model was overall a very good predictor for crop residue percent cover (index of agreement (D of 0.94, coefficient of determination (R2 of 0.73 and root mean square error (RMSE of 8.7% and soil percent cover (D of 0.91, R2 of 0.68 and RMSE of 10.3%. This performance of Hyperion is mainly due to the

  7. Opportunistic Market-Driven Regional Shifts of Cropping Practices Reduce Food Production Capacity of China

    Science.gov (United States)

    Yuan, Wenping; Liu, Shuguang; Liu, Wei; Zhao, Shuqing; Dong, Wenjie; Tao, Fulu; Chen, Min; Lin, Hui

    2018-04-01

    China is facing the challenge of feeding a growing population with the declining cropland and increasing shortage of water resources under the changing climate. This study identified that the opportunistic profit-driven shifts of planting areas and crop species composition have strongly reduced the food production capacity of China. First, the regional cultivation patterns of major crops in China have substantially shifted during the past five decades. Southeast and South China, the regions with abundant water resources and fewer natural disasters, have lost large planting areas of cropland in order to pursue industry and commerce. Meanwhile, Northeast and Northwest China, the regions with low water resources and frequent natural disasters, have witnessed increases in planting areas. These macroshifts have reduced the national food production by 1.02% per year. The lost grain production would have been enough to feed 13 million people. Second, the spatial shifts have been accompanied by major changes in crop species composition, with substantial increases in planting area and production of maize, due to its low water consumption and high economic returns. Consequently, the stockpile of maize in China has accounted for more than half of global stockpile, and the stock to use ratio of maize in China has exceeded the reliable level. Market-driven regional shifts of cropping practices have resulted in larger irrigation requirements and aggravated environmental stresses. Our results highlighted the need for Chinese food policies to consider the spatial shifts in cultivation, and the planting crop compositions limited by regional water resources and climate change.

  8. The Deterioration of Morocco’s Vegetable Crop Genetic Diversity: An Analysis of the Souss-Massa Region

    Directory of Open Access Journals (Sweden)

    Stuart Alan Walters

    2018-03-01

    Full Text Available Crop domestication and breeding efforts during the last half-century in developed countries has significantly reduced the genetic diversity in all major vegetable crops grown throughout the world. This includes developing countries such as Morocco, in which more than 90% of all farms are less than 10 ha in size, which are generally maintained by subsistence farmers who try to maximize crop and animal productivity on a limited land area. Near Agadir, in the remote Anti-Atlas mountain areas of the Souss-Massa region, many small landowner vegetable growers are known to still utilize crop populations (landraces. Thus, an assessment of the current status of vegetable landraces was made in this mountainous region of Southwestern Morocco during 2014. This assessment indicated that a significant loss of vegetable crop landraces has occurred in the last 30 years in this region of Morocco. Although many vegetable crops are still maintained as landrace populations by small subsistence farmers in remote areas in the Souss-Massa region, only 31% of these farmers cultivated landraces and saved seed in the villages assessed, with the average farmer age cultivating landraces being 52 years old. Moreover, the approximated loss of vegetable crop landraces over the last 30 years was an astounding 80 to 90%. Vegetable crops notably lost during this time period included carrot (Daucus carota, fava beans (Vicia faba, melon (Cucumis melo, pea (Pisum sativum, watermelon (Citrullus lanatus, and tomato (Solanum lycopersicon. The most significant loss was tomato as no landraces of this crop were found in this region. The vegetable crop landraces that are still widely grown included carrot, melon, onion (Allium cepa, turnip (Brassica rapa var. rapa, and watermelon, while limited amounts of eggplant (Solanum melongea, fava bean, pea, pepper (Capsicum annuum, and pumpkin (Cucurbita moshata and C. maxima were found. This recent genetic deterioration will have a profound

  9. Regional crop gross primary production and yield estimation using fused Landsat-MODIS data

    Science.gov (United States)

    He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.

    2017-12-01

    Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, pcrop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.

  10. Supply evaluation of a herbaceous and woody energy crop at three midwest regions

    International Nuclear Information System (INIS)

    English, B.C.; Dillivan, K.D.; Ojo, M.A.

    1994-01-01

    While substantial research has been conducted on the argronomic issues of biomass production and on the processes of converting biofuel crops into energy, little work has been completed analyzing the economic and physical impacts of biofuel production on an agriculturally based region. Acres currently devoted to traditional crops will be replaced by biomass crops if such a conversion proves to be economically attractive. These shifts could have impacts on local and regional levels of farm income, current farmland market values, commodity prices received, and the demand for and prices of farm level inputs. This paper examines the economic and physical ramifications of introducing biomass production to three Midwest regions centered in the following counties; Cass County, North Dakota, Olmsted County, Minnesota, and Orange County, Indiana. Using a regional linear programming model that maximizes net returns to producers subject to several constraints, a supply curve for biomass is developed for each of the three regions. The model predicts that at a plant gate price of $26, $40, and $52 per dry ton, biomass begins to enter into production in the Cass, Olmsted, and Orange Regions respectively. Prices of $28, $44, and $54 per dry ton of biomass are sufficient to supply a quantity necessary to operate a power plant requiring 5,000 dry tons per day in Cass, Olmsted, and Orange regions respectively. In the Olmsted and Orange regions, biomass production results in fertilizer being applied, however, in the Cass Region a slight increase in fertilizer use corresponds to biomass production

  11. Estimating Major Crop Water Productivity at Neyshabour Basin and Optimize Crop Area

    Directory of Open Access Journals (Sweden)

    Yavar Pourmohamad

    2017-06-01

    Full Text Available Introductionin current situation when world is facing massive population, producing enough food and adequate income for people is a big challenge specifically for governors. This challenge gets even harder in recent decades, due to global population growth which was projected to increase to 7.8 billion in 2025. Agriculture as the only industry that has ability to produce food is consuming 90 percent of fresh water globally. Despite of increasing for food demand, appropriate agricultural land and fresh water resources are restricted. To solve this problem, one is to increase water productivity which can be obtain by irrigation. Iran is not only exempted from this situation but also has more critical situation due to its dry climate and inappropriate precipitation distribution spatially and temporally, also uneven distribution of population which is concentrate in small area. The only reasonable solution by considering water resources limitation and also restricted crop area is changing crop pattern to reach maximum or at least same amount of income by using same or less amount of water. The purpose of this study is to assess financial water productivity and optimize farmer’s income by changing in each crop acreage at basin and sub-basin level with no extra groundwater withdrawals, also in order to repair the damages which has enforce to groundwater resources during last decades a scenario of using only 80percent of renewable water were applied and crop area were optimize to provide maximum or same income for farmers. Materials and methodsThe Neyshabour basin is located in northeast of Iran, the total geographical area of basin is 73,000 km2 consisting of 41,000 km2 plain and the rest of basin is mountains. This Basin is a part of Kalshoor catchment that is located in southern part of Binaloud heights and northeast of KavirMarkazi. In this study whole Neyshabour basin were divided into 199 sub-basins based on pervious study.Based on official

  12. Specialty Crop Profile: Blueberries for the Upper Piedmont and Mountain Regions

    OpenAIRE

    Bratsch, Tony

    2009-01-01

    Discusses blueberries as a small fruit crop for the upper Piedmont and mountain regions of Virginia. Provides information about best ways to plant the blueberries, mulching, irrigation, fertilization, pruning, harvesting and handling, marketing and more.

  13. Application of Regional Drought and Crop Yield Information System to enhance drought monitoring and forecasting in Lower Mekong region

    Science.gov (United States)

    Jayasinghe, S.; Dutta, R.; Basnayake, S. B.; Granger, S. L.; Andreadis, K. M.; Das, N.; Markert, K. N.; Cutter, P. G.; Towashiraporn, P.; Anderson, E.

    2017-12-01

    The Lower Mekong Region has been experiencing frequent and prolonged droughts resulting in severe damage to agricultural production leading to food insecurity and impacts on livelihoods of the farming communities. Climate variability further complicates the situation by making drought harder to forecast. The Regional Drought and Crop Yield Information System (RDCYIS), developed by SERVIR-Mekong, helps decision makers to take effective measures through monitoring, analyzing and forecasting of drought conditions and providing early warnings to farmers to make adjustments to cropping calendars. The RDCYIS is built on regionally calibrated Regional Hydrologic Extreme Assessment System (RHEAS) framework that integrates the Variable Infiltration Capacity (VIC) and Decision Support System for Agro-technology Transfer (DSSAT) models, allowing both nowcast and forecast of drought. The RHEAS allows ingestion of numerus freely available earth observation and ground observation data to generate and customize drought related indices, variables and crop yield information for better decision making. The Lower Mekong region has experienced severe drought in 2016 encompassing the region's worst drought in 90 years. This paper presents the simulation of the 2016 drought event using RDCYIS based on its hindcast and forecast capabilities. The regionally calibrated RDCYIS can help capture salient features of drought through a variety of drought indices, soil variables, energy balance variables and water balance variables. The RDCYIS is capable of assimilating soil moisture data from different satellite products and perform ensemble runs to further reduce the uncertainty of it outputs. The calibrated results have correlation coefficient around 0.73 and NSE between 0.4-0.5. Based on the acceptable results of the retrospective runs, the system has the potential to generate reliable drought monitoring and forecasting information to improve decision-makings at operational, technological and

  14. Genomic regions under selection in crop-wild hybrids of lettuce: implications for crop breeding and environmental risk assessment

    NARCIS (Netherlands)

    Hartman, Y.

    2012-01-01

    The results of this thesis show that the probability of introgression of a putative transgene to wild relatives indeed depends strongly on the insertion location of the transgene. The study of genomic selection patterns can identify crop genomic regions under negative selection in multiple

  15. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity

    Science.gov (United States)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; hide

    2016-01-01

    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  16. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq.

    Science.gov (United States)

    Qader, Sarchil Hama; Dash, Jadunandan; Atkinson, Peter M

    2018-02-01

    Crop production and yield estimation using remotely sensed data have been studied widely, but such information is generally scarce in arid and semi-arid regions. In these regions, inter-annual variation in climatic factors (such as rainfall) combined with anthropogenic factors (such as civil war) pose major risks to food security. Thus, an operational crop production estimation and forecasting system is required to help decision-makers to make early estimates of potential food availability. Data from NASA's MODIS with official crop statistics were combined to develop an empirical regression-based model to forecast winter wheat and barley production in Iraq. The study explores remotely sensed indices representing crop productivity over the crop growing season to find the optimal correlation with crop production. The potential of three different remotely sensed indices, and information related to the phenology of crops, for forecasting crop production at the governorate level was tested and their results were validated using the leave-one-year-out approach. Despite testing several methodological approaches, and extensive spatio-temporal analysis, this paper depicts the difficulty in estimating crop yield on an annual base using current satellite low-resolution data. However, more precise estimates of crop production were possible. The result of the current research implies that the date of the maximum vegetation index (VI) offered the most accurate forecast of crop production with an average R 2 =0.70 compared to the date of MODIS EVI (Avg R 2 =0.68) and a NPP (Avg R 2 =0.66). When winter wheat and barley production were forecasted using NDVI, EVI and NPP and compared to official statistics, the relative error ranged from -20 to 20%, -45 to 28% and -48 to 22%, respectively. The research indicated that remotely sensed indices could characterize and forecast crop production more accurately than simple cropping area, which was treated as a null model against which to

  17. Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Olesen, Jørgen Eivind; Wang, M.

    2016-01-01

    The Northeast Farming Region of China (NFR) is a very important crop growing area, comprising seven sub-regions: Xing’anling (XA), Sanjiang (SJ), Northwest Songliao (NSL), Central Songliao (CSL), Southwest Songliao (SSL), Changbaishan (CB) and Liaodong (LD), which has been severely affected...... to become more severe for crop production under climate change. Adaptation measures that have already been implemented in recent decades to cope with current climatic limitations include changes in timing of cultivation, variety choice, soil tillage practices, crop protection, irrigation and use of plastic...

  18. Combined Use of a Crop Model and FORMOSAT-2 Images for Permanent Grassland and Water Monitoring in Mediterranean Region

    Science.gov (United States)

    Hadria, Rachid; Courault, Dominique; Ruget, Francois; Olioso, Albert; Duchemin, Benoit; Desfonds, Veronique; Bertrand, Nadine; Hagolle, Olivier; Dedieu, Gerard

    2009-11-01

    The objective of this study is to provide tools to improve crop and water management in Mediterranean regions. The specific aim is twofold: 1) study the feasibility of using optical remote sensing data acquired at high spatio-temporal resolutions for crop agricultural practice monitoring and, 2) test the capacity of crop modelling to estimated water balance and crop production.We developed a methodology based on the combined use of FORMOSAT-2 images and STICS crop model to estimate evapotranspiration and drainage of irrigated grasslands in 'the Crau' region in the South Eastern France. Simple algorithms were developed to retrieve the dynamic of Leaf Area Index (LAI) for each plot of the studied region and the main agricultural practices such as mowing and irrigation dates. This information was then used to parameterize STICS, applied at region scale to estimate the spatial variability of water budget associated with the biomass productions. Satisfactory results were obtained when compared to ground measurements.s

  19. Variability in the Water Footprint of Arable Crop Production across European Regions

    Directory of Open Access Journals (Sweden)

    Anne Gobin

    2017-02-01

    Full Text Available Crop growth and yield are affected by water use during the season: the green water footprint (WF accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R2 = 0.64–0.80; d = 0.91–0.95. The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield ( c v ¯ = 45% and to a lesser extent to variability in crop water use ( c v ¯ = 21%. The WF variability between countries ( c v ¯ = 14% is lower than the variability between seasons ( c v ¯ = 22% and between crops ( c v ¯ = 46%. Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.

  20. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    Science.gov (United States)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  1. Effect of rainfall on cropping pattern in mid Himalayan region ...

    African Journals Online (AJOL)

    The analysis of effect of rainfall during the last 20 years is needed to evaluate cropping pattern in the rain-fed region. In this study, trends in annual, seasonal and monthly rainfall of district of Himachal Pradesh in India over the past 20 years were examined. The annual rainfall varies from 863.3 to 1470.0 mm. During the ...

  2. National and regional economic impacts of electricity production from energy crops in the Netherlands

    NARCIS (Netherlands)

    Vlasblom, J.; Broek, R. van den; Meeusen-van Onna, M.

    1998-01-01

    Besides the known environmental benefits, national and regional economic impacts may form additional arguments for stimulating government measures in favour of electricity production from energy crops in the Netherlands. Therefore, we compared the economic impacts (at both national and regional

  3. [Main interspecific competition and land productivity of fruit-crop intercropping in Loess Region of West Shauxi].

    Science.gov (United States)

    Yun, Lei; Bi, Hua-Xing; Tian, Xiao-Ling; Cui, Zhe-Wei; Zhou, Hui-Zi; Gao, Lu-Bo; Liu, Li-Xia

    2011-05-01

    Taking the four typical fruit-crop intercropping models, i.e., walnut-peanut, walnut-soybean, apple-peanut, and apple-soybean, in the Loess Region of western Shanxi Province as the objects, this paper analyzed the crop (peanut and soybean) photosynthetic active radiation (PAR), net photosynthetic rate (P(n)), yield, and soil moisture content. Comparing with crop monoculture, fruit-crop intercropping decreased the crop PAR and P(n). The smaller the distance from tree rows, the smaller the crop PAR and P(n). There was a significantly positive correlation between the P(n) and crop yield, suggesting that illumination was one of the key factors affecting crop yield. From the whole trend, the 0-100 cm soil moisture content had no significant differences between walnut-crop intercropping systems and corresponding monoculture cropping systems, but had significant differences between apple-crop intercropping systems and corresponding monoculture cropping systems, indicating that the competition for soil moisture was more intense in apple-crop intercropping systems than in walnut-crop intercropping systems. Comparing with monoculture, fruit-crop intercropping increased the land use efficiency and economic benefit averagely by 70% and 14%, respectively, and walnut-crop intercropping was much better than apple-crop intercropping. To increase the crop yield in fruit-crop intercropping systems, the following strategies should be taken: strengthening the management of irrigation and fertilization, increasing the distances or setting root barriers between crop and tree rows, regularly and properly pruning, and planting shade-tolerant crops in intercropping.

  4. Production of pulse in mono-cropped rice system in the coastal region of Eastern India

    International Nuclear Information System (INIS)

    Khan, A.R.; Nanda, P.; Chandra, Dinesh; Ghorai, A.K.; Behera, M.S.

    2001-04-01

    This experiment was undertaken with an objective to increase the yield of black-gram leguminous pulse crop through optimal doses of phosphatic fertilizer with supplemental irrigation in mono-cropped rice-fallow regions of India. Irrigation and phosphorus fertilizer application were introduced for enhancing productivity of black-gram to provide better returns to available water resources

  5. Factors affecting the income from major crops in rice-wheat ecological zone

    International Nuclear Information System (INIS)

    Ashfaq, M.; Naseer, M.Z.; Hassan, S.

    2008-01-01

    Agriculture is an important sector of our economy. About twenty-two percent of national income and 44.8 percent of total employment is generated by this sector. About 66 percent of country's population is living in rural areas and is directly or indirectly linked with agriculture for their livelihood. It also supplies raw materials to industry. The rice-wheat zone of Punjab covers 1.1 million hectare, 72% of wheat is grown in rotation with rice. The main purpose of this paper was to determine the effect of different factors on the productivity and ultimately on income from of major crops (wheat, rice and sugar-cane) in rice-wheat ecological zone. The results show that for wheat crop, land preparation, use of fertilizer and chemicals, for Sugarcane crop, area under cultivation, fertilizer and chemical costs and for rice crop, applications of chemicals, irrigation and land holding were the main determinants of productivity and crop income. (author)

  6. Cropping Systems Dynamics in the Lower Gangetic Plains of India using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    K. R. Manjunath

    2012-08-01

    Full Text Available Cropping system study is useful to understand the overall sustainability of agricultural system. Capturing the change dynamics of cropping systems, especially spatial and temporal aspects, is of utmost importance in overall planning and management of natural resources. This paper highlights the remote sensing based cropping systems change-dynamics assessment. Current study is aimed at use of multidate-multisensor data for deriving the seasonal cropping pattern maps and deriving the remote sensing based cropping system performance indicators during 1998–99 and 2004–05 in West- Bengal state of India. The temporal assessment of the changes of cropping systems components such as cropping pattern and indices for the study years 1998–99 and 2004–05 have been brought out. The results indicate that during the six years of time the kharif cropping pattern has almost remained the same, being a rice dominant system. A notable point is the decrease in the aus rice due to readjusting the cropping system practice to suit the two crop systems in many places was observed. Marginal variations in mustard and wheat areas during rabi season was observed. The boro (summer rice area has almost remained constant. The rice-fallow-fallow (R-F-F rotation reduced by about 4 percent while the rice-fallow-rice (R-F-R increased by about 7 percent percent. The Area Diversity Index reduced by about 38 percent in 2004 which may be attributed to decrease in kharif pulses and minor crops during kharif and summer. However, diversity during rabi season continued to remain high. The increase in Multiple Cropping Index was observed predominantly in the southern part of the state. Cultivated Land Utilization Index shows an increase by about 0.05.

  7. Annual crop type classification of the U.S. Great Plains for 2000 to 2011

    Science.gov (United States)

    Howard, Daniel M.; Wylie, Bruce K.

    2014-01-01

    The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.

  8. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    Science.gov (United States)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    Agriculture is the main productive sector and a major water-consuming sector in the seasonally-dry Guanacaste region of north-western Costa Rica. Agriculture in the region is intensifying at the same time that seasonal water scarcity is increasing. The climate of this region is characterized by a prolonged dry season from December to March, followed by a bimodal wet season from April to November. The wet season has historically experienced periodic oscillations in rainfall timing and amounts resulting from variations of several large-scale climatic features (El Niño Southern Oscillation, the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation). However, global circulation models now project more recurrent variations in total annual rainfall, changes in rainfall temporal distribution, and increased temperatures in this region. This may result in a lengthening of the dry season and an increase in water scarcity and water-related conflicts as water resources are already limited and disputed in this area. In fact, this region has just undergone a four-year drought over the 2012-2015 period, which has intensified water related conflicts and put agricultural production at risk. In turn, the recent drought has also increased awareness of the local communities regarding the regional threat of water scarcity and the need of a regional water planning. The overall goal of this research is to generate data to characterize water use by the agricultural sector in this region and asses its sustainability in the regional context. Towards this goal, eddy-covariance flux towers were deployed on two extensive farms growing regionally-representative crops (melon/rice rotation and sugarcane) to evaluate, monitor and quantify water use in large-scale farms. The two identically instrumented stations provide continuous measurements of evapotranspiration and CO2 fluxes, and are equipped with additional instrumentation to monitor

  9. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated

  10. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    Science.gov (United States)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  11. Emergy analysis of cropping-grazing system in Inner Mongolia Autonomous Region, China

    International Nuclear Information System (INIS)

    Zhang, L.X.; Yang, Z.F.; Chen, G.Q.

    2007-01-01

    An ecological energetic evaluation is presented in this paper as a complement to economic account for the cropping-grazing system in the Inner Mongolia Autonomous Region in China in the year 2000. Based on Odum's well-known concept of emergy in terms of embodied solar energy as a unified measure for environmental resources, human or animal labors and industrial products, a systems diagram is developed for the crop and livestock productions with arms and sub-arms for free renewable natural resource input, purchased economic investment, yields of and interactive fluxes between the cropping and grazing sub-industries. In addition to conventional systems indices of the emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR) and environmental sustainability index (ESI) introduced for congregated systems ecological assessment with essential implication for sustainability, new indicators of soil emergy cost (SEC), self-support intensity (SSI) and self-support orientation (SSO) are defined to characterize the desertification and internal recycling associated with the special agricultural system. Extensive emergy accounting is made for the cropping-grazing system as a whole as well as for the cropping and grazing subsystems. The overall cropping-grazing system is shown with outstanding production competence compared with agricultural systems in some other provinces and the national average in China, though confronted with severe desertification associated with soil loss. The production of crops has higher emergy density and yield rate per unit area as well as higher rate of soil loss than grazing system. The soil emergy cost defined as the soil loss emergy divided by the yield emergy is estimated to be of the same value for both of the subsystems, but the grazing activity is with less extraction intensity, leaving rangeland to rest and rehabilitate. Suggestions with regard to the local sustainability and national ecological security in

  12. [Soil quality assessment under different cropping system and straw management in farmland of arid oasis region].

    Science.gov (United States)

    Zhang, Peng Peng; Pu, Xiao Zhen; Zhang, Wang Feng

    2018-03-01

    To reveal the regulatory mechanism of agricultural management practices on soil quality, an experiment was carried out to study the different cropping system and straw management on soil organic carbon and fractions and soil enzyme activity in farmland of arid oasis region, which would provide a scientific basic for enhancing agricultural resources utilization and sustainable development. In crop planting planning area, we took the mainly crop (cotton, wheat, maize) as research objects and designed long-term continues cropping and crop rotation experiments. The results showed that the soil organic carbon (SOC), soil microbial biomass C, labile C, water-soluble organic C, and hot-water-soluble organic C content were increased by 3.6%-9.9%, 41.8%-98.9%, 3.3%-17.0%, 11.1%-32.4%, 4.6%-27.5% by crop rotation compared to continues cropping, and 12%-35.9%, 22.4%-49.7%, 30.7%-51.0%, 10.6%-31.9%, 41.0%-96.4% by straw incorporated compared to straw removed, respectively. The soil catalase, dehydrogenase, β-glucosidase, invertase glucose, cellulase glucose activity were increased by 6.4%-10.9%, 6.6%-18.8%, 5.9%-15.3%, 10.0%-27.4%, 28.1%-37.5% by crop rotation compared to continues cropping, and 31.4%-47.5%, 19.9%-46.6%, 13.8%-20.7%, 19.8%-55.6%, 54.1%-70.9% by straw incorporated compared to straw removed, respectively. There were significant positive linear correlations among SOC, labile SOC fractions and soil enzyme. Therefore, we concluded that labile SOC fractions and soil enzyme were effective index for evaluating the change of SOC and soil quality. Based on factor analysis, in arid region, developing agricultural production using cropland management measures, such as straw-incorporated and combined short-term continues cotton and crop rotation, could enhance SOC and labile SOC fractions contents and soil enzyme activity, which could improve soil quality and be conducive to agricultural sustainable development.

  13. Photosynthesis driven crop growth models for greenhouse cultivation; advances and bottlenecks.

    NARCIS (Netherlands)

    Challa, H.; Heuvelink, E.

    1996-01-01

    In recent years considerable progress has been made in modelling growth of green-house crops. Nevertheless, the share of research in this field compared to crop modelling in general is only a few percent. Yet, crop growth models have a great potential for greenhouse production systems, because they

  14. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

    NARCIS (Netherlands)

    Zhao, Gang; Hoffmann, Holger; Bussel, Van L.G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, Michaela; Kersebaum, Kurt Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel; Cammarano, Davide; Asseng, Senthold; Krauss, Gunther; Siebert, Stefan

    2015-01-01

    We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 processbased crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and

  15. Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland

    Directory of Open Access Journals (Sweden)

    P. PELTONEN-SAINIO

    2008-12-01

    Full Text Available Climate change offers new opportunities for Finnish field crop production, which is currently limited by the short growing season. A warmer climate will extend the thermal growing season and the physiologically effective part of it. Winters will also become milder, enabling introduction of winter-sown crops to a greater extent than is possible today. With this study we aim to characterise the likely regional differences in capacity to grow different seed producing crops. Prolongation of the Finnish growing season was estimated using a 0.5º latitude × 0.5º longitude gridded dataset from the Finnish Meteorological Institute. The dataset comprised an average estimate from 19 global climate models of the response of Finnish climate to low (B1 and high (A2 scenarios of greenhouse gas and aerosol emissions for 30-year periods centred on 2025, 2055 and 2085 (Intergovernmental Panel on Climate Change. Growing season temperature sums that suit crop growth and are agronomically feasible in Finland are anticipated to increase by some 140 °Cd by 2025, 300 °Cd by 2055 and 470 °Cd by 2085 in scenario A2, when averaged over regions, and earlier sowing is expected to take place, but not later harvests. Accordingly, the extent of cultivable areas for the commonly grown major and minor crops will increase considerably. Due to the higher base temperature requirement for maize (Zea mays L. growth than for temperate crops, we estimate that silage maize could become a Finnish field crop for the most favourable growing regions only at the end of this century. Winters are getting milder, but it will take almost the whole century until winters such as those that are typical for southern Sweden and Denmark are experienced on a wide scale in Finland. It is possible that introduction of winter-sown crops (cereals and rapeseed will represent major risks due to fluctuating winter conditions, and this could delay their adaptation for many decades. Such risks need to be

  16. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    Science.gov (United States)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2017-08-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  17. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    Science.gov (United States)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  18. Energy and Water Use Related to the Cultivation of Energy Crops: a Case Study in the Tuscany Region

    Directory of Open Access Journals (Sweden)

    Anna Dalla Marta

    2011-06-01

    Full Text Available The contribution of agrobiomasses, as a source of energy, to the reduction of greenhouse gas emissions was confirmed by several studies. Biomass from agriculture represents one of the larger and more diverse sources to exploit and in particular ethanol and diesel have the potential to be a sustainable replacement for fossil fuels, mainly for transport purposes. However, the cultivation of energy crops dedicated to the production of biofuels presents some potential problems, e.g., competitiveness with food crops, water needs, use of fertilizers, etc., and the economic, energy, and environmental convenience of such activity depends on accurate evaluations about the global efficiency of the production system. In this study, the processes related to the cultivation of energy crops were analyzed from an energy and water cost perspective. The crops studied, maize (Zea mais and sunflower (Helianthus annuus, were identified for their different water requirements and cultivation management, which in turns induces different energy costs. A 50-year climatic series of meteorological data from 19 weather stations scattered in the Tuscany region was used to feed the crop model CropSyst for the simulation of crop production, water requirement, and cultivation techniques. Obtained results were analyzed to define the real costs of energy crop cultivation, depending on energy and water balances. In the energy crop cultivation, the only positive energy balance was obtained with the more efficient system of irrigation whereas all the other cases provided negative balances. Concerning water, the results demonstrated that more than 1.000 liters of water are required for producing 1 liter of bioethanol. As a consequence, the cultivation of energy crops in the reserved areas of the region will almost double the actual water requirement of the agricultural sector in Tuscany.

  19. Climate change, climate variability and adaptation options in smallholder cropping systems of the Sudano - Sahel region in West Africa

    OpenAIRE

    Traore, Bouba

    2014-01-01

    Key words: crop production, maize, millet, sorghum, cotton, fertilizer, rainfall, temperature, APSIM, Mali, In the Sudano-Sahelian zone of West Africa (SSWA) agricultural production remains the main source of livelihood for rural communities, providing employment to more than 60 percent of the population and contributing to about 30% of gross domestic product. Smallholder agricultural production is dominated by rain-fed production of millet, sorghum and maize for food consumption and of c...

  20. Advances in regional crop yield estimation over the United States using satellite remote sensing data

    Science.gov (United States)

    Johnson, D. M.; Dorn, M. F.; Crawford, C.

    2015-12-01

    Since the dawn of earth observation imagery, particularly from systems like Landsat and the Advanced Very High Resolution Radiometer, there has been an overarching desire to regionally estimate crop production remotely. Research efforts integrating space-based imagery into yield models to achieve this need have indeed paralleled these systems through the years, yet development of a truly useful crop production monitoring system has been arguably mediocre in coming. As a result, relatively few organizations have yet to operationalize the concept, and this is most acute in regions of the globe where there are not even alternative sources of crop production data being collected. However, the National Agricultural Statistics Service (NASS) has continued to push for this type of data source as a means to complement its long-standing, traditional crop production survey efforts which are financially costly to the government and create undue respondent burden on farmers. Corn and soybeans, the two largest field crops in the United States, have been the focus of satellite-based production monitoring by NASS for the past decade. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been seen as the most pragmatic input source for modeling yields primarily based on its daily revisit capabilities and reasonable ground sample resolution. The research methods presented here will be broad but provides a summary of what is useful and adoptable with satellite imagery in terms of crop yield estimation. Corn and soybeans will be of particular focus but other major staple crops like wheat and rice will also be presented. NASS will demonstrate that while MODIS provides a slew of vegetation related products, the traditional normalized difference vegetation index (NDVI) is still ideal. Results using land surface temperature products, also generated from MODIS, will also be shown. Beyond the MODIS data itself, NASS research has also focused efforts on understanding a

  1. Average Amount and Stability of Available Agro-Climate Resources in the Main Maize Cropping Regions in China during 1981-2010

    Science.gov (United States)

    Zhao, Jin; Yang, Xiaoguang

    2018-02-01

    The available agro-climate resources that can be absorbed and converted into dry matter could directly affect crop growth and yield under climate change. Knowledge of the average amount and stability of available agro-climate resources for maize in the main cropping regions of China under climate change is essential for farmers and advisors to optimize cropping choices and develop adaptation strategies under limited resources. In this study, the three main maize cropping regions in China—the North China spring maize region (NCS), the Huanghuaihai summer maize region (HS), and the Southwest China mountain maize region (SCM)—were selected as study regions. Based on observed solar radiation, temperature, and precipitation data, we analyzed the spatial distributions and temporal trends in the available agro-climate resources for maize during 1981-2010. During this period, significantly prolonged climatological growing seasons for maize [3.3, 2.0, and 4.7 day (10 yr)-1 in NCS, HS, and SCM] were found in all three regions. However, the spatiotemporal patterns of the available agro-climate resources differed among the three regions. The available heating resources for maize increased significantly in the three regions, and the rates of increase were higher in NCS [95.5°C day (10 yr)-1] and SCM [93.5°C day (10 yr)-1] than that in HS [57.7°C day (10 yr)-1]. Meanwhile, decreasing trends in the available water resources were found in NCS [-5.3 mm (10 yr)-1] and SCM [-5.8 mm (10 yr)-1], whereas an increasing trend was observed in HS [3.0 mm (10 yr)-1]. Increasing trends in the available radiation resources were found in NCS [20.9 MJ m-2 (10 yr)-1] and SCM [25.2 MJ m-2 (10 yr)-1], whereas a decreasing trend was found in HS [11.6 MJ m-2 (10 yr)-1]. Compared with 1981-90, the stability of all three resource types decreased during 1991-2000 and 2001-10 in the three regions. More consideration should be placed on the extreme events caused by more intense climate fluctuations

  2. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a

  3. Origins of food crops connect countries worldwide

    Science.gov (United States)

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  4. Deforestation risk due to commodity crop expansion in sub-Saharan Africa

    Science.gov (United States)

    Ordway, Elsa M.; Asner, Gregory P.; Lambin, Eric F.

    2017-04-01

    Rapid integration of global agricultural markets and subsequent cropland displacement in recent decades increased large-scale tropical deforestation in South America and Southeast Asia. Growing land scarcity and more stringent land use regulations in these regions could incentivize the offshoring of export-oriented commodity crops to sub-Saharan Africa (SSA). We assess the effects of domestic- and export-oriented agricultural expansion on deforestation in SSA in recent decades. Analyses were conducted at the global, regional and local scales. We found that commodity crops are expanding in SSA, increasing pressure on tropical forests. Four Congo Basin countries, Sierra Leone, Liberia, and Côte d’Ivoire were most at risk in terms of exposure, vulnerability and pressures from agricultural expansion. These countries averaged the highest percent forest cover (58% ± 17.93) and lowest proportions of potentially available cropland outside forest areas (1% ± 0.89). Foreign investment in these countries was concentrated in oil palm production (81%), with a median investment area of 41 582 thousand ha. Cocoa, the fastest expanding export-oriented crop across SSA, accounted for 57% of global expansion in 2000-2013 at a rate of 132 thousand ha yr-1. However, cocoa only amounted to 0.89% of foreign land investment. Commodity crop expansion in SSA appears largely driven by small- and medium-scale farmers rather than industrial plantations. Land-use changes associated with large-scale investments remain to be observed in many countries. Although domestic demand for commodity crops was associated with most agricultural expansion, we provide evidence of a growing influence of distant markets on land-use change in SSA.

  5. Combined use of FORMOSAT-2 images with a crop model for biomass and water monitoring of permanent grassland in Mediterranean region

    Science.gov (United States)

    Courault, D.; Hadria, R.; Ruget, F.; Olioso, A.; Duchemin, B.; Hagolle, O.; Dedieu, G.

    2010-09-01

    The aim of this study is to propose methods to improve crop and water management in Mediterranean regions. At landscape scale, there is a spatial variability of agricultural practices, particularly for grasslands irrigated by flooding. These grasslands are harvested three times per year and produce high quality hay, but their productions decreased significantly during the last few years because of the water scarcity. It is therefore important to assess the real water requirement for crops in order to predict productions in the case of agricultural practice modifications. Until now, the spatial variability of agricultural practices was obtained through surveys from farmers, but this method was tedious to describe an entire region. Thus, the specific aim of the study is to develop and assess a new method based on a crop model for estimating water balance and crop yield constrained by products derived from optical remote sensing data with high spatio-temporal resolution. A methodology, based on the combined use of FORMOSAT-2 images and the STICS crop model, was developed to estimate production, evapotranspiration and drainage of irrigated grasslands in "the Crau" region in the South Eastern France. Numerous surveys and ground measurements were performed during an experiment conducted in 2006. Simple algorithms were developed to retrieve the dynamic of Leaf Area Index (LAI) for each plot and the main agricultural practices such as mowing and irrigation dates. These variables computed from remote sensing were then used to parameterize STICS, applied at region scale to estimate the spatial variability of water budget associated with the biomass productions. Results are displayed at the farm scale. Satisfactory results were obtained when compared to ground measurements. The method for the extrapolation to other regions or crops is discussed as regard to data available.

  6. Combined use of FORMOSAT-2 images with a crop model for biomass and water monitoring of permanent grassland in Mediterranean region

    Directory of Open Access Journals (Sweden)

    D. Courault

    2010-09-01

    Full Text Available The aim of this study is to propose methods to improve crop and water management in Mediterranean regions. At landscape scale, there is a spatial variability of agricultural practices, particularly for grasslands irrigated by flooding. These grasslands are harvested three times per year and produce high quality hay, but their productions decreased significantly during the last few years because of the water scarcity. It is therefore important to assess the real water requirement for crops in order to predict productions in the case of agricultural practice modifications. Until now, the spatial variability of agricultural practices was obtained through surveys from farmers, but this method was tedious to describe an entire region. Thus, the specific aim of the study is to develop and assess a new method based on a crop model for estimating water balance and crop yield constrained by products derived from optical remote sensing data with high spatio-temporal resolution.

    A methodology, based on the combined use of FORMOSAT-2 images and the STICS crop model, was developed to estimate production, evapotranspiration and drainage of irrigated grasslands in "the Crau" region in the South Eastern France. Numerous surveys and ground measurements were performed during an experiment conducted in 2006. Simple algorithms were developed to retrieve the dynamic of Leaf Area Index (LAI for each plot and the main agricultural practices such as mowing and irrigation dates. These variables computed from remote sensing were then used to parameterize STICS, applied at region scale to estimate the spatial variability of water budget associated with the biomass productions. Results are displayed at the farm scale. Satisfactory results were obtained when compared to ground measurements. The method for the extrapolation to other regions or crops is discussed as regard to data available.

  7. Improved regional-scale Brazilian cropping systems' mapping based on a semi-automatic object-based clustering approach

    Science.gov (United States)

    Bellón, Beatriz; Bégué, Agnès; Lo Seen, Danny; Lebourgeois, Valentine; Evangelista, Balbino Antônio; Simões, Margareth; Demonte Ferraz, Rodrigo Peçanha

    2018-06-01

    Cropping systems' maps at fine scale over large areas provide key information for further agricultural production and environmental impact assessments, and thus represent a valuable tool for effective land-use planning. There is, therefore, a growing interest in mapping cropping systems in an operational manner over large areas, and remote sensing approaches based on vegetation index time series analysis have proven to be an efficient tool. However, supervised pixel-based approaches are commonly adopted, requiring resource consuming field campaigns to gather training data. In this paper, we present a new object-based unsupervised classification approach tested on an annual MODIS 16-day composite Normalized Difference Vegetation Index time series and a Landsat 8 mosaic of the State of Tocantins, Brazil, for the 2014-2015 growing season. Two variants of the approach are compared: an hyperclustering approach, and a landscape-clustering approach involving a previous stratification of the study area into landscape units on which the clustering is then performed. The main cropping systems of Tocantins, characterized by the crop types and cropping patterns, were efficiently mapped with the landscape-clustering approach. Results show that stratification prior to clustering significantly improves the classification accuracies for underrepresented and sparsely distributed cropping systems. This study illustrates the potential of unsupervised classification for large area cropping systems' mapping and contributes to the development of generic tools for supporting large-scale agricultural monitoring across regions.

  8. Incorporating Medium-Range Weather Forecasts in Seasonal Crop Scenarios over the Greater Horn of Africa to Support National/Regional/Local Decision Makers

    Science.gov (United States)

    Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.

    2015-12-01

    The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast

  9. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    Science.gov (United States)

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. Copyright © 2014. Published by Elsevier Ltd.

  10. Improvement of Alternative Crop Phenology Detection Algorithms using MODIS NDVI Time Series Data in US Corn Belt Region

    Science.gov (United States)

    Lee, J.; Kang, S.; Seo, B.; Lee, K.

    2017-12-01

    Predicting crop phenology is important for understanding of crop development and growth processes and improving the accuracy of crop model. Remote sensing offers a feasible tool for monitoring spatio-temporal patterns of crop phenology in region and continental scales. Various methods have been developed to determine the timing of crop phenological stages using spectral vegetation indices (i.e. NDVI and EVI) derived from satellite data. In our study, it was compared four alternative detection methods to identify crop phenological stages (i.e. the emergence and harvesting date) using high quality NDVI time series data derived from MODIS. Also we investigated factors associated with crop development rate. Temperature and photoperiod are the two main factors which would influence the crop's growth pattern expressed in the VI data. Only the effect of temperature on crop development rate was considered. The temperature response function in the Wang-Engel (WE) model was used, which simulates crop development using nonlinear models with response functions that range from zero to one. It has attempted at the state level over 14 years (2003-2016) in Iowa and Illinois state of USA, where the estimated phenology date by using four methods for both corn and soybean. Weekly crop progress reports produced by the USDA NASS were used to validate phenology detection algorithms effected by temperature. All methods showed substantial uncertainty but the threshold method showed relatively better agreement with the State-level data for soybean phenology.

  11. Clustering applications in financial and economic analysis of the crop production in the Russian regions

    Directory of Open Access Journals (Sweden)

    Gromov Vladislav Vladimirovich

    2013-08-01

    Full Text Available We used the complex mathematical modeling, multivariate statistical-analysis, fuzzy sets to analyze the financial and economic state of the crop production in Russian regions. We developed a system of indicators, detecting the state agricultural sector in the region, based on the results of correlation, factor, cluster analysis and statistics of the Federal State Statistics Service. We performed clustering analyses to divide regions of Russia on selected factors into five groups. A qualitative and quantitative characteristics of each cluster was received.

  12. CLOUD-BASED AGRICULTURAL SOLUTION: A CASE STUDY OF NEAR REAL-TIME REGIONAL AGRICULTURAL CROP GROWTH INFORMATION IN SOUTH AFRICA

    Directory of Open Access Journals (Sweden)

    J. Hiestermann

    2017-11-01

    Full Text Available Recent advances in cloud-based technology has led to the rapid increase of geospatial web-based applications. The combination of GIS and cloud-based solutions is revolutionizing product development in the geospatial industry and is facilitating accessibility to a wider range of users, planners and decision makers. Accessible through an internet browser, web applications are an effective and convenient method to disseminate information in multiple formats, and they provide an interface offering interactive access to geospatial data, real-time integration and data processing, and application specific analysis tools. An example of such a web application is GeoTerraImage’s monthly crop monitoring tool called GeoFarmer. This tool uses climatic data and satellite imagery processed through a complex rule-based algorithms to determine monthly climatic averages and anomalies, and most importantly the field specific crop status (i.e. is the field fallow, or is the crop emerging, or if the field has been harvested. Monthly field verification has formed a part of calibrating the growth classification outputs to further improve the accuracy of its monthly agricultural reporting. The goal of this application is to provide timely data to decision makers to assist them in field-level and regional crop growth monitoring, crop production and management, financial risk assessment and insurance, and food security applications. This web application has the unique advantage of being highly transportable to other regions, since it has been designed so it can easily be adapted to other seasonal growth response patterns, and up-scaled to regional or national coverages for operational use.

  13. A Spatial Allocation Procedure to Downscale Regional Crop Production Estimates from an Integrated Assessment Model

    Science.gov (United States)

    Moulds, S.; Djordjevic, S.; Savic, D.

    2017-12-01

    The Global Change Assessment Model (GCAM), an integrated assessment model, provides insight into the interactions and feedbacks between physical and human systems. The land system component of GCAM, which simulates land use activities and the production of major crops, produces output at the subregional level which must be spatially downscaled in order to use with gridded impact assessment models. However, existing downscaling routines typically consider cropland as a homogeneous class and do not provide information about land use intensity or specific management practices such as irrigation and multiple cropping. This paper presents a spatial allocation procedure to downscale crop production data from GCAM to a spatial grid, producing a time series of maps which show the spatial distribution of specific crops (e.g. rice, wheat, maize) at four input levels (subsistence, low input rainfed, high input rainfed and high input irrigated). The model algorithm is constrained by available cropland at each time point and therefore implicitly balances extensification and intensification processes in order to meet global food demand. It utilises a stochastic approach such that an increase in production of a particular crop is more likely to occur in grid cells with a high biophysical suitability and neighbourhood influence, while a fall in production will occur more often in cells with lower suitability. User-supplied rules define the order in which specific crops are downscaled as well as allowable transitions. A regional case study demonstrates the ability of the model to reproduce historical trends in India by comparing the model output with district-level agricultural inventory data. Lastly, the model is used to predict the spatial distribution of crops globally under various GCAM scenarios.

  14. Phosphorus management in cropping systems of the Paris Basin: From farm to regional scale.

    Science.gov (United States)

    Le Noë, Julia; Garnier, Josette; Billen, Gilles

    2018-01-01

    The sustainability of phosphorus (P) fertilization in cropping systems is an important issue because P resources on earth are limited and excess P in soils can lead to ecological damage such as eutrophication. Worldwide, there is an increasing interest in organic farming (OF) due to its good environmental performance. However, organic cropping systems are suspected of generating negative P budgets, which questions their ability to provide sustainable P management. The design of agricultural systems at a broader scale also largely influences the shape of the P cycle and the possibility of its recycling to cropland. In this context, the aim of this study was to assess the relative influence of (i) OF versus conventional farming (CF) practices and (ii) the structure of agro-food systems at the regional scale, on P cycling and availability on cropland. For this purpose, we examined P budgets and soil P status of 14 organic and conventional cropping systems in commercial farms located in the Paris Basin. Available P was analyzed using two different methods: resin P and Olsen P. The results revealed no significant differences between CF and OF in available P stocks. Phosphorus budgets were always negative and significantly lower in CF systems, indicating that P was mined from soil reserves. In parallel, we estimated P budgets over cropland in all French regions for two distinct periods, 2004-2014 and 1970-1981, and showed that specialized intensive cropping systems in the Paris Basin led to a high, positive P budget in the latter period. However, this trend was reversed in the 2004-2014 period due to a sharp reduction of the mineral fertilizer application rate. The shift from very high P budgets to much lower and sometimes negative P budgets would not be a threat for agriculture due to the current high level of Olsen P in these regions, which was consistent with our measurements at the plot scale. Overall, these results suggest that OF would not lead to more P deficiency

  15. Crop yield response to climate change varies with cropping intensity.

    Science.gov (United States)

    Challinor, Andrew J; Parkes, Ben; Ramirez-Villegas, Julian

    2015-04-01

    Projections of the response of crop yield to climate change at different spatial scales are known to vary. However, understanding of the causes of systematic differences across scale is limited. Here, we hypothesize that heterogeneous cropping intensity is one source of scale dependency. Analysis of observed global data and regional crop modelling demonstrate that areas of high vs. low cropping intensity can have systematically different yields, in both observations and simulations. Analysis of global crop data suggests that heterogeneity in cropping intensity is a likely source of scale dependency for a number of crops across the globe. Further crop modelling and a meta-analysis of projected tropical maize yields are used to assess the implications for climate change assessments. The results show that scale dependency is a potential source of systematic bias. We conclude that spatially comprehensive assessments of climate impacts based on yield alone, without accounting for cropping intensity, are prone to systematic overestimation of climate impacts. The findings therefore suggest a need for greater attention to crop suitability and land use change when assessing the impacts of climate change. © 2015 John Wiley & Sons Ltd.

  16. Variability of effects of spatial climate data aggregation on regional yield simulation by crop models

    NARCIS (Netherlands)

    Hoffmann, H.; Zhao, G.; Bussel, van L.G.J.

    2015-01-01

    Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield

  17. Optimal Cropping Pattern Based on Multiple Economic, Regional, and Agricultural Sustainability Criteria in Sari, Iran: Application of a Consolidated Model of AHP and Linear Programming

    Directory of Open Access Journals (Sweden)

    E. Fallahi

    2016-10-01

    Full Text Available Introduction: Determining a suitable cropping pattern is an important task for planners and requires an exact and realistic decision-making process based on several goals and criteria corresponding to secure the interest of agricultural beneficiaries in long-term. Accordingly, this study reviews the current pattern operated by farmers in Sari, Iran, and intends to provide a cropping pattern that considers the multifold regional and agricultural sustainability criteria along with economic considerations. Materials and Methods: In order to achieve the study goals, a consolidated model of AHP and Linear Programming was applied. For this purpose, we constructed a three-level AHP, including a goal (determining the weight of each crop, seven criteria, and seven alternatives. Profitability, compatibility with regional and geographical conditions, water consumption, environmental effects of cropping, job creation opportunities, skill and proficiency required for producing a crop, and risk taken to cultivate a crop were considered as the criteria in the model. Seven alternative crops including rice, wheat, rapeseed, barley, soybean, clover, and vegetables were considered too. The next step is determining the weight of each criterion with regard to the goal and the weight of each alternative with regard to each criteria. By multiplying these weights, final weights for various crops were obtained from the model. Derived weights for each crop were then applied as objective function coefficients in the Linear Programming model and the model was solved subject to the constraints. Results and Discussion: Optimal cropping pattern determined based on the consolidated model of AHP and Linear Programming and the results compared to a scenario that only looks forward to maximizing the economic interests. Due to the low profitability of rapeseed and barley, these crops eliminated from the pattern in the profit-maximizing scenario. According to the results, the

  18. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  19. Old Dog New Tricks: Use of Point-based Crop Models in Grid-based Regional Assessment of Crop Management Technologies Impact on Future Food Security

    Science.gov (United States)

    Koo, J.; Wood, S.; Cenacchi, N.; Fisher, M.; Cox, C.

    2012-12-01

    HarvestChoice (harvestchoice.org) generates knowledge products to guide strategic investments to improve the productivity and profitability of smallholder farming systems in sub-Saharan Africa (SSA). A keynote component of the HarvestChoice analytical framework is a grid-based overlay of SSA - a cropping simulation platform powered by process-based, crop models. Calibrated around the best available representation of cropping production systems in SSA, the simulation platform engages the DSSAT Crop Systems Model with the CENTURY Soil Organic Matter model (DSSAT-CENTURY) and provides a virtual experimentation module with which to explore the impact of a range of technological, managerial and environmental metrics on future crop productivity and profitability, as well as input use. For each of 5 (or 30) arc-minute grid cells in SSA, a stack of model input underlies it: datasets that cover soil properties and fertility, historic and future climate scenarios and farmers' management practices; all compiled from analyses of existing global and regional databases and consultations with other CGIAR centers. Running a simulation model is not always straightforward, especially when certain cropping systems or management practices are not even practiced by resource-poor farmers yet (e.g., precision agriculture) or they were never included in the existing simulation framework (e.g., water harvesting). In such cases, we used DSSAT-CENTURY as a function to iteratively estimate relative responses of cropping systems to technology-driven changes in water and nutrient balances compared to zero-adoption by farmers, while adjusting model input parameters to best mimic farmers' implementation of technologies in the field. We then fed the results of the simulation into to the economic and food trade model framework, IMPACT, to assess the potential implications on future food security. The outputs of the overall simulation analyses are packaged as a web-accessible database and published

  20. Nitrous Oxide Emissions from Biofuel Crops and Atmospheric Aerosols: Associations with Air Quality and Regional Climate

    Science.gov (United States)

    Pillai, Priya Ramachandran

    Emissions of greenhouse gases (GHG) and primary release and secondary formation of aerosols alter the earth's radiative balance and therefore have important climatic implications. Savings in carbon dioxide (CO2) emissions accomplished by replacing fossil fuels with biofuels may increase the nitrous oxide (N2O) emissions. Among various atmospheric trace gases, N2O, irrespective of its low atmospheric concentration, is the fourth most important gas in causing the global greenhouse effect. Major processes, those affect the concentration of atmospheric N2O, are soil microbial activities leading to nitrification and denitrification. Therefore, anthropogenic activities such as industrial emissions, and agricultural practices including application of nitrogenous fertilizers, land use changes, biomass combustion all contribute to the atmospheric N2O concentration. The emission rates of N2O related to biofuel production depend on the nitrogen (N) fertilizer uptake efficiency of biofuel crops. However, crops with less N demand, such as switchgrass may have more favorable climate impacts when compared to crops with high N demands, such as corn. Despite its wide environmental tolerance, the regional adaptability of the potential biofuel crop switch grass varies considerably. Therefore, it is important to regionally quantify the GHG emissions and crop yield in response to N-fertilization. A major objective of this study is to quantify soil emissions of N2O from switchgrass and corn fields as a function of N-fertilization. The roles of soil moisture and soil temperature on N2O fluxes were analyzed. These N2O observations may be used to parameterize the biogeochemical models to better understand the impact of different N2O emission scenarios. This study allows for improvements in climate models that focus on understanding the environmental impacts of the climate change mitigation strategy of replacing fossil fuels with biofuels. As a second major objective, the top of the

  1. Chat (Catha edulis): a socio economic crop in Harar Region, Eastern Ethiopia.

    Science.gov (United States)

    Kandari, Laxman S; Yadav, Hiranmai R; Thakur, Ashok K; Kandari, Tripti

    2014-01-01

    Chat (Catha edulis) is an important perennial crop and its leaves are chewed for a stimulating effect. It is widely cultivated in the Ethiopian highlands of Oromia region and is figured as Ethiopia's second largest foreign exchange earner. Its cultivation accounts for about 70% of farmer's income in the study area. The common effect of its consumption leads to insomnia, a condition that the users sometimes try to overcome with sedatives or alcohol. The present study is an attempt to survey and assess the impact of crop on the community. It has been observed to implicate health problems, reduces savings and nutritional standards of the family members. The chat yields in the area ranges from 1500-1800 kg/ha through monoculture. During the study, the average monthly income of the family practicing chat cultivation was from Birr 8, 533.00 to 13, 166.00 kg/ha per year in Baate and Genede cultivating areas. When the average cost per/ha was rupees 60/kg. The present study shows that during the recent past, leaf consumption has increased significantly. Chat growers are not only producers but also traders and consumers. Its consumption has become a widespread habit from secondary schools. Highest number of consumers was found to be among drivers followed by students and shopkeepers. The consumption of the plant is not considered a taboo but on contrary a status symbol in the region. It has no legal or moral implications and is considered as a part of custom and habit of local people. High value cash crop like vegetables and orchard fruits needs to be used as a replacement for chat which could be a regular source of income to farmers. Alternative sources of income for farmers needs to be scientifically worked out and proposed keeping in view the proportion of agricultural land reserved under chat cultivation and to increase the production of food grains being produced.

  2. New climate-proof cropping systems in dry areas of the Mediterranean region

    DEFF Research Database (Denmark)

    Jacobsen, Sven-Erik

    2014-01-01

    severe consequences of climate changes, under influence of multiple abiotic stresses. These stresses are becoming even more pronounced under changing climate, resulting in drier conditions, increasing temperatures and greater variability, causing desertification. This topic has been addressed in the EU...... FP7 project entitled 'Sustainable water use securing food production in dry areas of the Mediterranean region (SWUP-MED)' working on climate-proof cropping systems in Morocco, Syria, Turkey and southern Europe, collaborating with UK, Denmark and Australia. The results are valid for other parts...

  3. Genetic diversity based on morphological traits in walnut (Juglans regia L.) landraces from Karakoram region-I

    International Nuclear Information System (INIS)

    Hussain, I.; Sultan, A.; Shinwari, Z. K.

    2016-01-01

    Walnut is one of the most important nutritive nut crops and widely grown in Gilgit-Baltistan region of Pakistan. In the present study 19 local landraces were analyzed for morphological traits to investigate genetic diversity and identify promising landraces for cultivar development. Multivariate analyses showed high variation for morphological traits and nut and kernel characteristics. Cluster analyses depicted diversity among the local land races which separated them into 2 major clusters groups, showing more association to morphological differences. PCA revealed that the 1st four principal components (PCs) possessed Eigen value >1.0, where PC1 and PC2 contributed total variance of 41.65 percent and 23.42 percent respectively with total variance (65.05 percent) showing maximum factor loadings by kernel ratio, shell percent, kernel yield and nut width by the first two PCs. Pearson correlation coefficient among walnut landraces revealed positively significant correlation between shell yield and nut weight(r=0.96), kernel yield and nut width(r=0.85), whereas negative correlation were observed (r = -0.89 and r = -0.76) between kernel ratio with shell yield and nut weight respectively. A wide range of diversity was observed among the local landraces from Karakoram regions and the landrace HKK and GNAG were reported as promising one with highest kernel ratio. These landraces are potential for future breeding of nut crops with distinct morphological traits. (author)

  4. Influence of evenness of poultry manure application on grain crops productivity

    Directory of Open Access Journals (Sweden)

    T. Yu. Anisimova

    2015-01-01

    Full Text Available Possibility of increase of efficiency of poultry manure application due to more evenness of fertilizer application into the soil was investigated. Machines with a wide range of regulation of an application rate, for example ROU-6 with interval from 4 to 80 t/ha are for this purpose necessary. Efficiency of poultry manure application for grain crops was increased due to using of machines of drum type with optimum doses fertilizing (12-16 t/ha. An assessment of efficiency was carried out. The drums rotation speed, shovel quantity and shape, their installation angle and a design of the directing board were determined. The developed modified working of a spreader of drum type allowed to reduce unevenness of width fertilizing by 12-14 percent, on length of unit pass - by 5 percent. It was established that if the dose increases more than 8 t/ha, the crop productivity growths not significant. At reduction of fertilizing unevenness from 97 to 72 percent yield losses decrease by 54.4 percent. At reduction of fertilizing unevenness more than 97 percent, efficiency worsens by 58 percent. Poultry manure spreading by the machine and tractor unit MTZ-82.1 + ROU-6M afforded an yield by 38 percent higher, in comparison with the machine and tractor unit T-150K + PRT-10. At decrease in unevenness from 82 to 43 percent of barley loss decreased by 29 percent. It was revealed that spreading by machine ROU-6M provided a yield increase by 8.6 percent more, than by machine PRT-10. Yield losses because of spreading unevenness made: by the PRT-10 operating - 30 percent; by the ROU-6M operating - 0.33 percent. The grain yield increase was higher thanks to more evenness of fertilizer application by ROU-6M with the new spreading working element.

  5. An optimal staggered harvesting strategy for herbaceous biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.G.; English, B.C. [Univ. of Tennessee, Knoxville, TN (United States)

    1993-12-31

    Biofuel research over the past two decades indicates lignocellulosic crops are a reliable source of feedstock for alternative energy. However, under the current technology of producing, harvesting and converting biomass crops, the cost of biofuel is not competitive with conventional biofuel. Cost of harvesting biomass feedstock is a single largest component of feedstock cost so there is a cost advantage in designing a biomass harvesting system. Traditional farmer-initiated harvesting operation causes over investment. This study develops a least-cost, time-distributed (staggered) harvesting system for example switch grass, that calls for an effective coordination between farmers, processing plant and a single third-party custom harvester. A linear programming model explicitly accounts for the trade-off between yield loss and benefit of reduced machinery overhead cost, associated with the staggered harvesting system. Total cost of producing and harvesting switch grass will decline by 17.94 percent from conventional non-staggered to proposed staggered harvesting strategy. Harvesting machinery cost alone experiences a significant reduction of 39.68 percent from moving from former to latter. The net return to farmers is estimated to increase by 160.40 percent. Per tonne and per hectare costs of feedstock production will decline by 17.94 percent and 24.78 percent, respectively. These results clearly lend support to the view that the traditional system of single period harvesting calls for over investment on agricultural machinery which escalates the feedstock cost. This social loss to the society in the form of escalated harvesting cost can be avoided if there is a proper coordination among farmers, processing plant and custom harvesters as to when and how biomass crop needs to be planted and harvested. Such an institutional arrangement benefits producers, processing plant and, in turn, end users of biofuels.

  6. An integrated, probabilistic model for improved seasonal forecasting of agricultural crop yield under environmental uncertainty

    Directory of Open Access Journals (Sweden)

    Nathaniel K. Newlands

    2014-06-01

    Full Text Available We present a novel forecasting method for generating agricultural crop yield forecasts at the seasonal and regional-scale, integrating agroclimate variables and remotely-sensed indices. The method devises a multivariate statistical model to compute bias and uncertainty in forecasted yield at the Census of Agricultural Region (CAR scale across the Canadian Prairies. The method uses robust variable-selection to select the best predictors within spatial subregions. Markov-Chain Monte Carlo (MCMC simulation and random forest-tree machine learning techniques are then integrated to generate sequential forecasts through the growing season. Cross-validation of the model was performed by hindcasting/backcasting it and comparing its forecasts against available historical data (1987-2011 for spring wheat (Triticum aestivum L.. The model was also validated for the 2012 growing season by comparing its forecast skill at the CAR, provincial and Canadian Prairie region scales against available statistical survey data. Mean percent departures between wheat yield forecasted were under-estimated by 1-4 % in mid-season and over-estimated by 1 % at the end of the growing season. This integrated methodology offers a consistent, generalizable approach for sequentially forecasting crop yield at the regional-scale. It provides a statistically robust, yet flexible way to concurrently adjust to data-rich and data-sparse situations, adaptively select different predictors of yield to changing levels of environmental uncertainty, and to update forecasts sequentially so as to incorporate new data as it becomes available. This integrated method also provides additional statistical support for assessing the accuracy and reliability of model-based crop yield forecasts in time and space.

  7. Economic comparison of food, non food crops, set-aside at a regional level with a linear programming model

    International Nuclear Information System (INIS)

    Sourie, J.C.; Hautcolas, J.C.; Blanchet, J.

    1992-01-01

    This paper is concerned with a regional linear programming model. Its purpose is a simulation of the European Economic Community supply of non-food crops at the farm gate according to different sets of European Common Agriculture Policy (CAP) measures. The methodology is first described with a special emphasis on the aggregation problem. The model allows the simultaneous calculation of the impact of non food crops on the farmer's income and on the agricultural budget. The model is then applied to an intensive agricultural region (400 000 ha of arable land). In this region, sugar beet and rape seem the less costly resources, both for the farmers and the CAP taxpayers. An improvement of the economic situation of the two previous agents can be obtained only if a tax exemption on ethanol and rape oil and a subsidy per hactare are allowed. This subsidy can be lower than the set aside premium. (author)

  8. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.

    Science.gov (United States)

    Wang, Y B; Wu, P T; Engel, B A; Sun, S K

    2014-11-01

    Water shortages are detrimental to China's grain production while food production consumes a great deal of water causing water crises and ecological impacts. Increasing crop water productivity (CWP) is critical, so China is devoting significant resources to develop water-saving agricultural systems based on crop planning and agricultural water conservation planning. A comprehensive CWP index is necessary for such planning. Existing indices such as water use efficiency (WUE) and irrigation efficiency (IE) have limitations and are not suitable for the comprehensive evaluation of CWP. The water footprint (WF) index, calculated using effective precipitation and local water use, has advantages for CWP evaluation. Due to regional differences in crop patterns making the CWP difficult to compare directly across different regions, a unified virtual crop pattern is needed to calculate the WF. This project calculated and compared the WF of each grain crop and the integrated WFs of grain products with actual and virtual crop patterns in different regions of China for 2010. The results showed that there were significant differences for the WF among different crops in the same area or among different areas for the same crop. Rice had the highest WF at 1.39 m(3)/kg, while corn had the lowest at 0.91 m(3)/kg among the main grain crops. The WF of grain products was 1.25 m(3)/kg in China. Crop patterns had an important impact on WF of grain products because significant differences in WF were found between actual and virtual crop patterns in each region. The CWP level can be determined based on the WF of a virtual crop pattern, thereby helping optimize spatial distribution of crops and develop agricultural water savings to increase CWP. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Computing the biomass potentials for maize and two alternative energy crops, triticale and cup plant (Silphium perfoliatum L.), with the crop model BioSTAR in the region of Hannover (Germany).

    Science.gov (United States)

    Bauböck, Roland; Karpenstein-Machan, Marianne; Kappas, Martin

    2014-01-01

    Lower Saxony (Germany) has the highest installed electric capacity from biogas in Germany. Most of this electricity is generated with maize. Reasons for this are the high yields and the economic incentive. In parts of Lower Saxony, an expansion of maize cultivation has led to ecological problems and a negative image of bioenergy as such. Winter triticale and cup plant have both shown their suitability as alternative energy crops for biogas production and could help to reduce maize cultivation. The model Biomass Simulation Tool for Agricultural Resources (BioSTAR) has been validated with observed yield data from the region of Hannover for the cultures maize and winter wheat. Predicted yields for the cultures show satisfactory error values of 9.36% (maize) and 11.5% (winter wheat). Correlations with observed data are significant ( P  alternative to maize in the region of Hanover and other places in Lower Saxony. The model BioSTAR simulated yields for maize and winter wheat in the region of Hannover at a good overall level of accuracy (combined error 10.4%). Due to input data aggregation, individual years show high errors though (up to 30%). Nevertheless, the BioSTAR crop model has proven to be a functioning tool for the prediction of agricultural biomass potentials under varying environmental and crop management frame conditions.

  10. Biomass supply from alternative cellulosic crops and crop residues: A spatially explicit bioeconomic modeling approach

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, César R.; Manowitz, David H.; Zhang, Xuesong

    2011-01-01

    This paper introduces a spatially-explicit bioeconomic model for the study of potential cellulosic biomass supply. For biomass crops to begin to replace current crops, farmers must earn more from them than from current crops. Using weather, topographic and soil data, the terrestrial ecosystem model, EPIC, dynamically simulates multiple cropping systems that vary by crop rotation, tillage, fertilization and residue removal rate. EPIC generates predicted crop yield and environmental outcomes over multiple watersheds. These EPIC results are used to parameterize a regional profit-maximization mathematical programming model that identifies profitable cropping system choices. The bioeconomic model is calibrated to 2007–09 crop production in a 9-county region of southwest Michigan. A simulation of biomass supply in response to rising biomass prices shows that cellulosic residues from corn stover and wheat straw begin to be supplied at minimum delivered biomass:corn grain price ratios of 0.15 and 0.18, respectively. At the mean corn price of $162.6/Mg ($4.13 per bushel) at commercial moisture content during 2007–2009, these ratios correspond to stover and straw prices of $24 and $29 per dry Mg. Perennial bioenergy crops begin to be supplied at price levels 2–3 times higher. Average biomass transport costs to the biorefinery plant range from $6 to $20/Mg compared to conventional crop production practices in the area, biomass supply from annual crop residues increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crop production reduced greenhouse gas emissions and improved water quality. -- Highlights: ► A new bioeconomic model predicts biomass supply and its environmental impacts. ► The model captures the opportunity cost of switching to new cellulosic crops. ► Biomass from crop residues is supplied at lower biomass price than cellulosic crops. ► Biomass from cellulosic crops has

  11. Regional hybrid broccoli trials provide a means to further breeding efforts of this increasingly important vegetable crop

    Science.gov (United States)

    A Coordinated Agricultural Project (CAP) entitled “Establishing an Eastern Broccoli Industry” is funded under the Specialty Crop Research Initiative (SCRI), and a primary component of the project is a system of regional hybrid broccoli trials conducted along the eastern seaboard. Hybrids currently ...

  12. Biodiversity in vegetable crops, a heritage to save: the case of Puglia region

    Directory of Open Access Journals (Sweden)

    Antonio Elia

    2013-03-01

    Full Text Available The biodiversity in vegetable crops is composed by the genetic diversity, as species diversity (interspecific diversity and as diversity of genes within a species (intraspecific diversity referring to the vegetable grown varieties, and by the diversity of agro-ecosystems (agrobiodiversity. Intraspecific diversity is very ample in vegetable crops and is not reflected, at least not to the same extent, in other groups of crops. The labour operated by farmers over centuries of selection has led to the creation of a plurality of local varieties, following domestication of cultivated forms, and wide agro-biodiversity, a precious heritage both from a genetic and a cultural-historical point of view. The Italian National Statistical Institute (ISTAT takes into account in its annual survey about forty vegetable crops. Intraspecific diversity in vegetables can also be analyzed by examining the information contained in the common catalogue of varieties of vegetable species. The 27 EU Countries as a whole had entered 19,576 varieties of vegetables in the common catalogue as of August 2011. The Netherlands, which represents 8% of total vegetable production in the EU, has registered 7826 varieties. Italy and Spain, which predominate in Europe for the production of vegetables, have registered only 8% (1513 and 9% (1672 of the total varieties, respectively. As a whole 54% of the European varieties entered in the catalogue are hybrids. Puglia, which contributes with about 22% to the Italian vegetable growing area, is among the leading regions for the productions of broccoli raab, celery, parsley, processing tomato, artichoke, endive and escarole, cabbage, fennel, lettuce, cucumber, cauliflower and broccoli, early potato, and asparagus (all with more than 20% of the national area. The region is particularly rich in local vegetable varieties, obtained by farmers themselves after repeated simple selection procedures generation after generation. The local varieties

  13. Regional economic impacts of biomass based energy service use: A comparison across crops and technologies for East Styria, Austria

    International Nuclear Information System (INIS)

    Trink, Thomas; Schmid, Christoph; Schinko, Thomas; Steininger, Karl W.; Loibnegger, Thomas; Kettner, Claudia; Pack, Alexandra; Toeglhofer, Christoph

    2010-01-01

    Biomass action plans in many European countries seek to expand biomass heat and fuel supply, mainly to be supplied by peripheral, agricultural regions. We develop a two-plus-ten-region energy-focused computable general equilibrium (CGE) model that acknowledges land competition in analysing the sub-state local-regional economic implications of such a strategy, embedded within a global context. Our model is based on a full cost analysis of selected biomass technologies covering a range of agricultural and forestry crops, as well as thermal insulation. The local-regional macroeconomic effects differ significantly across technologies and are governed by factors such as net labour intensity in crop production. The high land intensity of agricultural biomass products crowds out conventional agriculture, and thus lowers employment and drives up land prices and the consumer price index. The regional economic results show that net employment effects are positive for all forestry based biomass energy, and also show for which agriculture based biomass systems this is true, even when accounting for land competition. When regional consumer price development governs regional wages or when the agricultural sector is in strong enough competition to the international market, positive employment and welfare impacts vanish fully for agriculture based bio-energy.

  14. Flora in abandoned fields and adjacent crop fields on rendzina soils in the Zamość region

    Directory of Open Access Journals (Sweden)

    Marta Ziemińska-Smyk

    2015-10-01

    Full Text Available A floristic inventory of segetal flora was carried out in abandoned fields and adjacent crop fields on rendzina soils in the Zamość region in the year 2010. This study found a total of 130 weed species belonging to 30 botanical families. The following families were represented most frequently: Asteraceae, Fabaceae, Poaceae, Lamiaceae, Scrophulariaceae, and Brassicaceae. In the segetal flora, apophytes are dominant (55% of the total flora, with the highest number of meadow and xerothermic grassland species among them. Archeophytes (38% predominate in the group of anthropophytes. The species characterized by the highest constancy classes and reaching the highest cover indices posed the greatest threat to crops in the study area. The following weeds are most frequently found in fallow fields: Consolida regalis, Cichorium intybus, and Sinapis arvensis, while Papaver rhoeas is the greatest threat to cereal crops grown on rendzina soils.

  15. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    Science.gov (United States)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  16. 4F CROPS: Future crops for food, feed, fibre and fuel

    Energy Technology Data Exchange (ETDEWEB)

    E. Alexopoulou, E.; Christou, M.; Eleftheriadis, I. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)

    2008-07-01

    As different sectors - food, feed, fiber, and fuels - compete for land, the yielding potential of the future non-food crops has to be as efficient as possible in order to minimize the competition for land. The main objective of 4F CROPS project is to survey and analyze all the parameters that will play an important role in successful non-food cropping systems in the agriculture of EU27 alongside the existing food crop systems. The work will start with the prediction of the future land use in short term (2020) and long term (2030), taking under consideration restrict factors for agriculture and the market demand for non-food crops. The cropping possibilities based on regional potential levels, ecology and climate will be determined. This group of non-food crops will be then subjected to a comparative cost analysis with conventional crops for the same time framework. Socio-economic impacts, like farmers' income, rural development, public development, and public acceptance will analyze. Then environmental implications will be assessed compared to their respective conventional products (fossil energy, conversional materials). Several environmental impacts will be assessed like soil quality and soil erosion, air quality and climate change, water issues, biodiversity and landscape by using LCA and EIE methods. The regulatory framework of the non-food crops will be considered including existing policies, co-existence and safety measures when the crops used for both food and non-food crops. All the collected information will be used for the formation of scenarios for successful non-food cropping alongside food cropping systems answering whether a completive bioeconomy is a viable option for EU27.

  17. Carbon balance of the typical grain crop rotation in Moscow region assessed by eddy covariance method

    Science.gov (United States)

    Meshalkina, Joulia; Yaroslavtsev, Alexis; Vassenev, Ivan

    2017-04-01

    Croplands could have equal or even greater net ecosystem production than several natural ecosystems (Hollinger et al., 2004), so agriculture plays a substantial role in mitigation strategies for the reduction of carbon dioxide emissions. In Central Russia, where agricultural soils carbon loses are 9 time higher than natural (forest's) soils ones (Stolbovoi, 2002), the reduction of carbon dioxide emissions in agroecosystems must be the central focus of the scientific efforts. Although the balance of the CO2 mostly attributed to management practices, limited information exists regarding the crop rotation overall as potential of C sequestration. In this study, we present data on carbon balance of the typical grain crop rotation in Moscow region followed for 4 years by measuring CO2 fluxes by paired eddy covariance stations (EC). The study was conducted at the Precision Farming Experimental Fields of the Russian Timiryazev State Agricultural University, Moscow, Russia. The experimental site has a temperate and continental climate and situated in south taiga zone with Arable Sod-Podzoluvisols (Albeluvisols Umbric). Two fields of the four-course rotation were studied in 2013-2016. Crop rotation included winter wheat (Triticum sativum L.), barley (Hordeum vulgare L.), potato crop (Solanum tuberosum L.) and cereal-legume mixture (Vicia sativa L. and Avena sativa L.). Crops sowing occurred during the period from mid-April to mid-May depending on weather conditions. Winter wheat was sown in the very beginning of September and the next year it occurred from under the snow in the phase of tillering. White mustard (Sinapis alba) was sown for green manure after harvesting winter wheat in mid of July. Barley was harvested in mid of August, potato crop was harvested in September. Cereal-legume mixture on herbage was collected depending on the weather from early July to mid-August. Carbon uptake (NEE negative values) was registered only for the fields with winter wheat and white

  18. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  19. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry.

    Science.gov (United States)

    Liu, Shanshan; Wang, Feng; Xue, Kai; Sun, Bo; Zhang, Yuguang; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong; Yang, Yunfeng

    2015-03-01

    Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P Microbiology and John Wiley & Sons Ltd.

  20. Increasing crop production in Russia and Ukraine—regional and global impacts from intensification and recultivation

    Science.gov (United States)

    Deppermann, Andre; Balkovič, Juraj; Bundle, Sophie-Charlotte; Di Fulvio, Fulvio; Havlik, Petr; Leclère, David; Lesiv, Myroslava; Prishchepov, Alexander V.; Schepaschenko, Dmitry

    2018-02-01

    Russia and Ukraine are countries with relatively large untapped agricultural potentials, both in terms of abandoned agricultural land and substantial yield gaps. Here we present a comprehensive assessment of Russian and Ukrainian crop production potentials and we analyze possible impacts of their future utilization, on a regional as well as global scale. To this end, the total amount of available abandoned land and potential yields in Russia and Ukraine are estimated and explicitly implemented in an economic agricultural sector model. We find that cereal (barley, corn, and wheat) production in Russia and Ukraine could increase by up to 64% in 2030 to 267 million tons, compared to a baseline scenario. Oilseeds (rapeseed, soybean, and sunflower) production could increase by 84% to 50 million tons, respectively. In comparison to the baseline, common net exports of Ukraine and Russia could increase by up to 86.3 million tons of cereals and 18.9 million tons of oilseeds in 2030, representing 4% and 3.6% of the global production of these crops, respectively. Furthermore, we find that production potentials due to intensification are ten times larger than potentials due to recultivation of abandoned land. Consequently, we also find stronger impacts from intensification at the global scale. A utilization of crop production potentials in Russia and Ukraine could globally save up to 21 million hectares of cropland and reduce average global crop prices by more than 3%.

  1. Winter Pea: Promising New Crop for Washington's Dryland Wheat-Fallow Region

    Directory of Open Access Journals (Sweden)

    William F. Schillinger

    2017-05-01

    Full Text Available A 2-year tillage-based winter wheat (Triticum aestivum L.-summer fallow (WW-SF rotation has been practiced by the vast majority of farmers in the low-precipitation (<300 mm annual rainfed cropping region of east-central Washington and north-central Oregon for 140 years. Until recently, alternative crops (i.e., those other than WW so far tested have not been as economically viable or stable as WW-SF. A 6-year field study was conducted near Ritzville, WA (292 mm avg. annual precipitation to determine the yield and rotation benefits of winter pea (Pisum sativum L. (WP. Two 3-year rotations were evaluated: WP-spring wheat (SW-SF vs. WW-SW-SF. Winter pea yields averaged 2,443 vs. 4,878 kg/ha for WW. No fertilizer was applied to WP whereas 56 kg N and 11 kg S/ha were applied to WW. Winter pea used significantly less soil water than WW. Over the winter months, a lesser percentage of precipitation was stored in the soil following WP compared to WW because: (i very little WP residue remained on the soil surface after harvest compared to WW, and (ii the drier the soil, the more precipitation is stored in the soil over winter. However, soil water content in the spring was still greater following WP vs. WW. Soil residual N in the spring (7 months after the harvest of WP and WW was greater in WP plots despite not applying fertilizer to produce WP. Spring wheat grown after both WP and WW received the identical quantity of N, P, and S fertilizer each year. Average yield of SW was 2,298 and 2,011 kg/ha following WP and WW, respectively (P < 0.01. Adjusted gross economic returns for these two rotation systems were similar. Based partially on the results of this study, numerous farmers in the dry WW-SF region have shown keen interest in WP and acreage planted WP in east-central Washington has grown exponentially since 2013. This paper provides the first report of the potential for WP in the typical WW-SF region of the inland Pacific Northwest (PNW.

  2. Changing regional weather-crop yield relationships across Europe between 1901 and 2012

    DEFF Research Database (Denmark)

    Trnka, M; Olesen, Jørgen Eivind; Kersebaum, KC

    2016-01-01

    century would also aid in our understanding of the potential impact of future climate changes and in assessments of the potential for adaptation across Europe. In this study, we compiled information from several sources on winter wheat and spring barley yields and climatological data from 12 countries......, and that presently grown wheat and barley show a more pronounced response to adverse weather conditions compared to crops from the early 20th century. The results confirm that climate-yield relationships have changed significantly over the period studied, and that in some regions, different predictors have had...... by expanding the harvested area. This was followed, from the mid-20th century, by a massive increase in productivity that in many regions has stalled since 2000. However, it remains unclear what role climatic factors have played in these changes. Understanding the net impact of climatic trends over the past...

  3. Ecological Weed Management by Cover Cropping: Effect on Winter Weeds and Summer Weeds Establishment in Potato

    Directory of Open Access Journals (Sweden)

    M Ghaffari

    2012-07-01

    Full Text Available Now a day winter cover crops planting has been attended to reduce herbicide application. An experiment was carried out at the Research Farm of Agriculture Faculty, Bu- Ali Sina, University, in 2009. The experiment was a randomized complete block design with three replications. The trial included of five treatments consists of no cover crop, rye, winter oilseed rape, barley and triticale. The results showed that winter cereals were produced more biomass than winter oilseed rape. living mulch of rye, barley, oilseed rape and triticale reduced winter weeds biomass 89, 86, 82 and 70 percent respectively, in compare to control. Cover crop treatments showed significant different weeds control of potato at 3 time (15, 45 and 75 DAPG compare to control treatment. Residues mixed to soil of oilseed rape and rye had the most inhibition affects on summer weeds. These treatments, average weeds biomass decreased 61 and 57 percent respectively, in compare to control. Oilseed rape and rye in compare to control reduced weeds density in potato 36 and 35 percent, respectively. Significant negation correlations of weeds plant population, weeds dry matter with average tuber weight and potato yield. The treatments, oilseed rape and rye in compare to control increased tuber yield of potato 54 and 50 percent, respectively. These treatments, the average tuber weight increased 74 and 38 percent in compare with control, respectively.

  4. Weed occurrence in Finnish coastal regions: a survey of organically cropped spring cereals

    Directory of Open Access Journals (Sweden)

    P. RIESINGER

    2008-12-01

    Full Text Available Weed communities of organically cropped spring cereal stands in the southern and the northwestern coastal regions of Finland (= south and northwest, respectively were compared with respect to number of species, frequency of occurrence, density and dry weight. Regional specialization of agricultural production along with differences in climate and soil properties were expected to generate differences in weed communities between south and northwest. Total and average numbers of species were higher in the south than in the northwest (33 vs. 26 and 15.6 vs. 10.0, respectively. Some rare species (e.g. Papaver dubium were found in the south. Fumaria officinalis and Lamium spp. were found only in the south. The densities and dry weights of Lapsana communis, Myosotis arvensis, Polygonum aviculare, Tripleurospermum inodorum and Vicia spp. were higher in the south, while the densities and dry weights of Elymus repens, Persicaria spp. and Spergula arvensis were higher in the northwest. Total density of weeds did not differ between south and northwest (average = 565 vs. 570 shoots m-2, respectively. Total dry weight of weeds was higher in the northwest compared with the south (average = 1594 vs. 697 kg ha-1, respectively, mainly due to the high dry weight of E. repens. The only variable that was dependent on the duration of organic farming was weed density in the south. The abundance of nitrophilous in relation to non-nitrophilous weed species was higher while the abundance of perennial ruderal and grassland weed species was lower compared with previous weed surveys. This can be regarded as the result of increasing cropping intensity on organic farms in Finland. Different weed communities call for the application of specific target-oriented weed management in the respective coastal regions.;

  5. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    Science.gov (United States)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p impact on the crop growth trend.

  6. Effects of sole and mixed culture of wheat crop and phosphorus fertilization on the solubility of phosphorus in the soil

    International Nuclear Information System (INIS)

    Mahmood, H. R.; Ali, M. A.; Ahmad, N.

    2016-01-01

    Farmers face a challenging task to harvest yield potential of crops as well as improving fertilizer use-efficiency under their limited farm resources. Among the macronutrients, the relative efficiency of phosphorus fertilizer is very low in alkaline-calcareous soils under arid and semi-arid environments. Therefore, a field study was undertaken to quantify the interactive effects of wheat varieties and phosphorous fertilization on grain yield and solubility of phosphorous nutrient in the rhizosphere. The treatments consisted of (a) two wheat varieties (Sehr-2006, Shafaq-2006, mixed culture) and (b) three phosphorus levels (0, 45, 85 kg P/sub 2/O/sub 5/ per hectare) were arranged in randomized complete block design and replicated four times. The Results showed that biological grain yield and 1000-grain weight of wheat increased by 8.7 percent, 14.46 percent and 8.48 percent under mixed culture of varieties sehr-2006 and shafaq-2006, respectively over the solely grown varieties. The application of phosphorus at the rate 85 kg P/sub 2/O/sub 5/ ha/sup -1/ resulted in increased quantity of total biological yield, grain yield and 1000-grain weight compared to unfertilized crop. The uptake of nitrogen and phosphorus contents were substantially enhanced under mixed culture cropping pattern over sole wheat cultivars. The availability of phosphorus was increased by 19.70 percent under mixed cropping over sole culture. It is inferred from the study that mixed cropping produced synergetic effects on the availability of nutrients in the rhizosphere, and thereby resulted in the higher production of wheat crop. (author)

  7. Effects of SO/sub 2/ in atmosphere upon field crops in the Ostrava region

    Energy Technology Data Exchange (ETDEWEB)

    Nekovar, J

    1974-01-01

    The Ostrava branch of the Research Institute for Hydrometeorology studied three years in succession (1969, 1970 and 1971) effects of SO/sub 2/ present in the atmosphere in the Ostrava region upon the field crops. Eleven plots - all close to air pollution measuring stations - were chosen for biometric measurements and observation of plant growth. The stations sample daily air and measure the concentrations of sulfur dioxide and dust. Plants under observation were grown in special boxes. The seed, sowing time, germination conditions, composition of soil, etc.,. were strictly the same for all plots. The article deals with the results of the study, i.e. with the harmful effects of pollutants present in the air upon various field crops, i.e. barley, oats and beans. From biometric data, diagrams of growth during the vegetation period, measurements of SO/sub 3/ and fly ash concentrations, as well as yields given by plants, the author classifies the conditions in various localities. 11 references, 4 figures, 2 tables.

  8. Decomposing global crop yield variability

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  9. Embodied crop calories in animal products

    International Nuclear Information System (INIS)

    Pradhan, Prajal; Lüdeke, Matthias K B; Reusser, Dominik E; Kropp, Jürgen P

    2013-01-01

    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8–2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on

  10. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    Science.gov (United States)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  11. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  12. Canaryseed Crop

    Directory of Open Access Journals (Sweden)

    Maximiliano Cogliatti

    2012-03-01

    Full Text Available Canaryseed (Phalaris canariensis L. is a graminaceous crop species with production practices and cycle similar to those of other winter cereal crops such as spring wheat (Triticum aestivum L. and oat (Avena sativa L.. Currently its grains are used almost exclusively as feed for birds, alone or mixed with other grains like millet, sunflower seed, and flaxseed. Canaryseed is a genuine cereal with a unique composition that suggests its potential for food use. P. canariensis is cultivated in many areas of temperate climates. Currently, its production is concentrated in the southwestern provinces of Canada (Alberta, Saskatchewan and Manitoba and on a smaller scale in Argentina, Thailand and Australia. Globally it is considered to be a minor crop with regional relevance, with a production about of 250000 tonnes per year, which restricts private investment and public research on its genetic and technological improvement. For this reason, the type of crop management that is applied to this species largely depends on innovations made in other similar crops. This work provides an updated summary of the available information on the species: its requirements, distribution, genetic resources, cultivation practices, potential uses, marketing and other topics of interest to researchers and producers.

  13. Factors affecting groundnut yield in pothwar region of Punjab, Pakistan

    International Nuclear Information System (INIS)

    Qasim, M.; Tariq, S.A.; Nasir, M.; Saeed, R.; Mahmood, M.A.

    2016-01-01

    Groundnut being an important oilseed crop in the Pothwar region of Pakistan has the productivity level of 609 kg ha/sup -1/ , much lower from the potential yield of 3000 kg ha/sup -1/. Present study was designed to explore factors affecting productivity of groundnut along with its profitability analysis. The sample farms were classified into small, medium and large farms. Farm-level crop data were gathered during two cropping seasons i.e., rabi 2008-09 and kharif 2009. One hundred and forty groundnut producers were selected for collecting data using the well-structured questionnaire from two important districts recognised for area and production of groundnut. Results showed that large farmers allocated significantly higher area (34 percent) to groundnut cultivation compared to other categories of farmers. The gross margins were also significantly higher at large farms. Ploughing frequency, seed rate and labor man-days have positive relationship with groundnut productivity. Therefore, the provision of improved groundnut production technologies package and improved seed to groundnut growers may enhance the productivity and area under this crop. (author)

  14. The virtual water content of major grain crops and virtual water flows between regions in China.

    Science.gov (United States)

    Sun, Shi-Kun; Wu, Pu-Te; Wang, Yu-Bao; Zhao, Xi-Ning

    2013-04-01

    The disproportionate distribution of arable land and water resources has become a bottleneck for guaranteeing food security in China. Virtual water and virtual water trade theory have provided a potential solution to improve water resources management in agriculture and alleviate water crises in water-scarce regions. The present study evaluates the green and blue virtual water content of wheat, maize and rice at the regional scale in China. It then assesses the water-saving benefits of virtual water flows related to the transfer of the three crops between regions. The national average virtual water content of wheat, maize and rice were 1071 m(3) per ton (50.98% green water, 49.02% blue water ), 830 m(3) per ton (76.27% green water, 23.73% blue water) and 1294 m(3) per ton (61.90% green water, 38.10% blue water), respectively. With the regional transfer of wheat, maize and rice, virtual water flows reached 30.08 Gm(3) (59.91% green water, 40.09% blue water). Meanwhile, China saved 11.47 Gm(3) green water, while it consumed 7.84 Gm(3) more blue water than with a no-grain transfer scenario in 2009. In order to guarantee food security in China, the government should improve water productivity (reduce virtual water content of crops) during the grain production process. Meanwhile, under the preconditions of economic feasibility and land-water resources availability, China should guarantee the grain-sown area in southern regions for taking full advantage of green water resources and to alleviate the pressure on water resources. © 2012 Society of Chemical Industry.

  15. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG-TERM SATELLITE-BASED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Chen

    2018-04-01

    Full Text Available Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001, and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  16. Health Risk from Heavy Metals via Consumption of Food Crops in the Vicinity of District Shangla

    International Nuclear Information System (INIS)

    Ullah, I.; Khan, A.; Rahim, M.; Haris, M. R. H. M.

    2016-01-01

    Heavy metals such as cadmium, lead, nickel, chromium, cobalt, copper, zinc and iron were quantified in food crops and soil samples using atomic absorption spectrophotometry. Questionnaire survey was conducted to estimate average body weight and daily intake of food crops. Daily intake of metals (DIM) and health risk assessment were conducted for heavy metals via ingestion path way from food crops. Cobalt and cadmium daily intake were found to be higher than the suggested limits. Health risk indices (HRI) were found < 1 for all metals indicating no health risks except cadmium and cobalt. HRI of cobalt and cadmium were > 1 in 80 percent and 96 percent of the population, respectively. This study conveys a strong message to the ministry of health to protect the general population from the harmful effects of cadmium and cobalt. (author)

  17. Impact of Future Climate Change on Regional Crop Water Requirement—A Case Study of Hetao Irrigation District, China

    Directory of Open Access Journals (Sweden)

    Tianwa Zhou

    2017-06-01

    Full Text Available Water shortage is a limiting factor for agricultural production in China, and climate change will affect agricultural water use. Studying the effects of climate change on crop irrigation requirement (CIR would help to tackle climate change, from both food security and sustainable water resource use perspectives. This paper applied SDSM (Statistical DownScaling Model to simulate future meteorological parameters in the Hetao irrigation district (HID in the time periods 2041–2070 and 2071–2099, and used the Penman–Monteith equation to calculate reference crop evapotranspiration (ET0, which was further used to calculate crop evapotranspiration (ETc and crop water requirement (CWR. CWR and predicted future precipitation were used to calculate CIR. The results show that the climate in the HID will become warmer and wetter; ET0 would would increase by 4% to 7%; ETc and CWR have the same trend as ET0, but different crops have different increase rates. CIR would increase because of the coefficient of the increase of CWR and the decrease of effective precipitation. Based on the current growing area, the CIR would increase by 198 × 106 to 242 × 106 m3 by the year 2041–2070, and by 342 × 106 to 456 × 106 m3 by the years 2071–2099 respectively. Future climate change will bring greater challenges to regional agricultural water use.

  18. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... proper times. Root stock—A root or a piece of a root of one tree variety onto which a bud from another... will be increased by 46 percent as a result of the additional six months of coverage for that crop year...

  19. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives

    KAUST Repository

    Chakraborty, Subhra; Salekdeh, Ghasem Hosseini; Yang, Pingfang; Woo, Sun-Hee; Chin, Chiew Foan; Gehring, Christoph A; Haynes, Paul A.; Mirzaei, Mehdi; Komatsu, Setsuko

    2015-01-01

    In the rapidly growing economies of Asia and Oceania, food security has become a primary concern. With the rising population, growing more food at affordable prices is becoming even more important. In addition, the predicted climate change will lead to drastic changes in global surface temperature and changes in rainfall patterns that in turn would pose a serious threat to plant vegetation worldwide. As a result, understanding how plants will survive in a changing climate will be increasingly important. Such challenges require integrated approaches to increase agricultural production and cope with environmental threats. Proteomics can play a role in unravel the underlying mechanisms for food production to address the growing demand for food. In this review, the current status of food crop proteomics is discussed, especially in regards to the Asia and Oceania regions. Furthermore, the future perspective in relation to proteomic techniques for the important food crops is highlighted.

  20. Proteomics of Important Food Crops in the Asia Oceania Region: Current Status and Future Perspectives

    KAUST Repository

    Chakraborty, Subhra

    2015-06-02

    In the rapidly growing economies of Asia and Oceania, food security has become a primary concern. With the rising population, growing more food at affordable prices is becoming even more important. In addition, the predicted climate change will lead to drastic changes in global surface temperature and changes in rainfall patterns that in turn would pose a serious threat to plant vegetation worldwide. As a result, understanding how plants will survive in a changing climate will be increasingly important. Such challenges require integrated approaches to increase agricultural production and cope with environmental threats. Proteomics can play a role in unravel the underlying mechanisms for food production to address the growing demand for food. In this review, the current status of food crop proteomics is discussed, especially in regards to the Asia and Oceania regions. Furthermore, the future perspective in relation to proteomic techniques for the important food crops is highlighted.

  1. An evaluation of 10 percent and 20 percent benzocaine gels in patients with acute toothaches

    Science.gov (United States)

    Hersh, Elliot V.; Ciancio, Sebastian G.; Kuperstein, Arthur S.; Stoopler, Eric T.; Moore, Paul A.; Boynes, Sean G.; Levine, Steven C.; Casamassimo, Paul; Leyva, Rina; Mathew, Tanya; Shibly, Othman; Creighton, Paul; Jeffers, Gary E.; Corby, Patricia M.A.; Turetzky, Stanley N.; Papas, Athena; Wallen, Jillian; Idzik-Starr, Cynthia; Gordon, Sharon M.

    2013-01-01

    Background The authors evaluated the efficacy and tolerability of 10 percent and 20 percent benzocaine gels compared with those of a vehicle (placebo) gel for the temporary relief of toothache pain. They also assessed the compliance with the label dose administration directions on the part of participants with toothache pain. Methods Under double-masked conditions, 576 participants self-applied study gel to an open tooth cavity and surrounding oral tissues. Participants evaluated their pain intensity and pain relief for 120 minutes. The authors determined the amount of gel the participants applied. Results The responders’ rates (the primary efficacy parameter), defined as the percentage of participants who had an improvement in pain intensity as exhibited by a pain score reduction of at least one unit on the dental pain scale from baseline for two consecutive assessments any time between the five- and 20-minute points, were 87.3 percent, 80.7 percent and 70.4 percent, respectively, for 20 percent benzocaine gel, 10 percent benzocaine gel and vehicle gel. Both benzocaine gels were significantly (P ≤ .05) better than vehicle gel; the 20 percent benzocaine gel also was significantly (P ≤ .05) better than the 10 percent benzocaine gel. The mean amount of gel applied was 235.6 milligrams, with 88.2 percent of participants applying 400 mg or less. Conclusions Both 10 percent and 20 percent benzocaine gels were more efficacious than the vehicle gel, and the 20 percent benzocaine gel was more efficacious than the 10 percent benzocaine gel. All treatments were well tolerated by participants. Practical Implications Patients can use 10 percent and 20 percent benzocaine gels to temporarily treat toothache pain safely. PMID:23633700

  2. The use of phosphogypsum in crops cultivated at the Cerrado Region

    International Nuclear Information System (INIS)

    Jacomino, Vanusa M.F.; Oliveira, Kerley A.P.; Menezes, Maria Angela de B.C.; Taddei, Maria H.T.; Siqueira, Maria C.; Silva, Davi F. da; Mello, Jaime W.V.

    2008-01-01

    Phosphogypsum is a byproduct of the chemical reaction called the 'wet process', whereby sulfuric acid is reacted with phosphate rock to produce the phosphoric acid needed for fertilizer production. The Brazilian production of this material is around 4.5 millions of tons per year, which is stacked in piles at the same place where it is produced. Researches accomplished in several countries around the world have demonstrated the potential use of this product as an agricultural source of calcium and sulfur, and as a conditioner for soils that contain high levels of sodium. In Brazil, these studies are focused mainly in the application of phosphogypsum in the Cerrado region, the main agriculture front line of the country. Taking into account the presence of natural radionuclides in this material and the fact that the mobility and bioaccumulation of these elements can vary significantly with changes in climate, a research project has been conducted by a partnership of the Brazilian Commission of Nuclear Energy (CNEN) and the Agriculture Department of Federal University of Vicosa in order to investigate the radiological impact of the use phosphogypsum in crops cultivated at the Cerrado region. For this purpose a set green house experiments have been conducting in two types of soil (one with clay and the other with sandy loam in texture) to determine the transfer factor of natural radionuclides ( 238 U, 232 Th, 226 Ra e 228 Ra) from soil to two forage crops (soy beams and lettuce). The present paper presents the preliminary results of this study, including the organic matter content, granulometric distribution and P, K, Ca, Mg and Al concentration in soil samples, the mineralogical characterization and radioactivity concentration in both, phosphogypsum and soils samples. The measurement of 232 Th concentration has been carried out by neutron activation analysis, 238 U by delayed neutron counting technique, 226 Ra and 228 Ra by the method of radiochemical separation

  3. Genetic and cropping cycle effects on proximate composition and ...

    African Journals Online (AJOL)

    Variance components analysis revealed significant (P<0.05) genotype (G), cropping cycle (C) and G x C interaction effects on most of the traits. The percent protein content was not influenced by any of the variance components. ... Principal component analysis suggested carbohydrate, fat, moisture and level of antinutrient ...

  4. 40 CFR 264.276 - Food-chain crops.

    Science.gov (United States)

    2010-07-01

    ...) Describe the procedures used in conducting any tests, including the sample selection criteria, sample size... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in...

  5. Analysis of the Technical/Economic Performance of Four Cropping Systems Involving Jatropha curcas L. in the Kinshasa Region (Democratic Republic of the Congo

    Directory of Open Access Journals (Sweden)

    Minengu, JD.

    2015-01-01

    Full Text Available In order to assess the sustainability of cultivating Jatropha curcas L. in rural areas in the Kinshasa region, four cropping systems were compared: cultivation of J. curcas as a sole crop with and without fertilisers, a combination of J. curcas with subsistence crops (maize ­ Zea mays L., the common bean ­ Phaseolus vulgaris L. with and without fertilisers. The major attacks by pests (mainly Aphthona sp. suffered by J. curcas plants in the region make it vital to conduct at least two insecticide treatments per year. Dry seed yields of J. curcas obtained in the 4th year of cultivation amounted to 753 kg ha­1 when J. curcas was cultivated as a sole crop without fertilisers, 797 kg ha­1 for intercropping without fertilisers, 1158 kg ha­1 when J. curcas was cultivated as a sole crop with fertilisers and 1173 kg ha­1 for intercropping with fertilisers. Yields from the two annual crops were not improved by the application of mineral fertilisers on the J. curcas plants. They amounted to an average of 815 kg ha­1 for maize and 676 kg ha­1 for the beans. It is more profitable to cultivate J. curcas with maize and beans than to cultivate it as a sole crop. By combining crops in this way, a one­ hectare farm can earn 1102 USD ha­1 without fertilisers and 1049 USD ha­1 with fertilisers. Sustainable cultivation of J. curcas under the test conditions requires the development of efficient weed/pest control methods and improved soil fertility management, in order to minimise the use of mineral fertilisers as well as strong improvement of labour productivity for seed harvesting.

  6. Drought mitigation in perennial crops by fertilization and adjustments of regional yield models for future climate variability

    Science.gov (United States)

    Kantola, I. B.; Blanc-Betes, E.; Gomez-Casanovas, N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2017-12-01

    Increased variability and intensity of precipitation in the Midwest agricultural belt due to climate change is a major concern. The success of perennial bioenergy crops in replacing maize for bioethanol production is dependent on sustained yields that exceed maize, and the marketing of perennial crops often emphasizes the resilience of perennial agriculture to climate stressors. Land conversion from maize for bioethanol to Miscanthus x giganteus (miscanthus) increases yields and annual evapotranspiration rates (ET). However, establishment of miscanthus also increases biome water use efficiency (the ratio between net ecosystem productivity after harvest and ET), due to greater belowground biomass in miscanthus than in maize or soybean. In 2012, a widespread drought reduced the yield of 5-year-old miscanthus plots in central Illinois by 36% compared to the previous two years. Eddy covariance data indicated continued soil water deficit during the hydrologically-normal growing season in 2013 and miscanthus yield failed to rebound as expected, lagging behind pre-drought yields by an average of 53% over the next three years. In early 2014, nitrogen fertilizer was applied to half of mature (7-year-old) miscanthus plots in an effort to improve yields. In plots with annual post-emergence application of 60 kg ha-1 of urea, peak biomass was 29% greater than unfertilized miscanthus in 2014, and 113% greater in 2015, achieving statistically similar yields to the pre-drought average. Regional-scale models of perennial crop productivity use 30-year climate averages that are inadequate for predicting long-term effects of short-term extremes on perennial crops. Modeled predictions of perennial crop productivity incorporating repeated extreme weather events, observed crop response, and the use of management practices to mitigate water deficit demonstrate divergent effects on predicted yields.

  7. Impact of water-fertilizer interaction on yields of crops

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Junejo, M.R.; Ghaffar, A.

    2002-01-01

    Water-fertilizer interaction was studied on wheat and cotton during crop seasons of 1995 to 1998 in the Fordwah Eastern Sadiqia (south), Irrigation and Drainage Project. Irrigation levels applied included 0.75, 1.00 and 1.25 times the evapotranspiration (ET), while fertilizer doses were 75, 100 and 125 percent of recommendations of NPK for district Bahawalnagar. The experiment was conducted at four different locations of the project, where soil was medium textured, free from salinity/alkalinity and sufficiently drained, with water table in the range of 2-3m from the soil surface. Wheat variety Inqalab-91 and cotton variety CLM-109 were sown at their recommended time of sowing, seed rate and management practices. Irrigation was applied in consideration of open-pan evaporation and crop co-efficient for the respective crop, when sum total of the products of pan-evaporation and KC values reached 7.5 cm. Irrigation was applied to all the plots according to treatment allowance, i.e. , with 25 percent cut and addition to .75 and 1.25 Et levels, respectively. The results indicated that irrigation levels had non-significant effect on wheat and cotton yields. The results clearly negate the concept of heavy irrigation, generally exercised by our farming community. Light irrigation as a results of 0.75 Et indication were equally effective: rather, these were economical and efficient under the scarce water availability. Fertilizer had somewhat significant response. Irrigation and fertilizer did not exhibit much significant interaction. In case of wheat, the two inputs were independent, while cotton had significant inter-dependence of the two variables. The experiment gave the conclusion that both wheat and cotton crops should be applied lighter irrigation and NPK fertilizer must be applied in compliance to recommendations, for efficient and economical use of the available crop-production resources. (author)

  8. An automated multi-model based evapotranspiration estimation framework for understanding crop-climate interactions in India

    Science.gov (United States)

    Bhattarai, N.; Jain, M.; Mallick, K.

    2017-12-01

    A remote sensing based multi-model evapotranspiration (ET) estimation framework is developed using MODIS and NASA Merra-2 reanalysis data for data poor regions, and we apply this framework to the Indian subcontinent. The framework eliminates the need for in-situ calibration data and hence estimates ET completely from space and is replicable across all regions in the world. Currently, six surface energy balance models ranging from widely-used SEBAL, METRIC, and SEBS to moderately-used S-SEBI, SSEBop, and a relatively new model, STIC1.2 are being integrated and validated. Preliminary analysis suggests good predictability of the models for estimating near- real time ET under clear sky conditions from various crop types in India with coefficient of determination 0.32-0.55 and percent bias -15%-28%, when compared against Bowen Ratio based ET estimates. The results are particularly encouraging given that no direct ground input data were used in the analysis. The framework is currently being extended to estimate seasonal ET across the Indian subcontinent using a model-ensemble approach that uses all available MODIS 8-day datasets since 2000. These ET products are being used to monitor inter-seasonal and inter-annual dynamics of ET and crop water use across different crop and irrigation practices in India. Particularly, the potential impacts of changes in precipitation patterns and extreme heat (e.g., extreme degree days) on seasonal crop water consumption is being studied. Our ET products are able to locate the water stress hotspots that need to be targeted with water saving interventions to maintain agricultural production in the face of climate variability and change.

  9. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Science.gov (United States)

    Chu, Yingmin; Shen, Yanjun; Yuan, Zaijian

    2017-06-01

    The North China Plain (NCP) has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF) of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1) the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI) of cotton was the largest, and for vegetables, it was the smallest; (2) the total WF, WFblue, WFgreen and WFgrey for 13 years (2000-2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3) winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue) accounted for 74.2 % of the total WFblue in the HSP; (4) the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat-summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  10. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).

    Science.gov (United States)

    Zhuo, La; Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-05-01

    Previous studies into the relation between human consumption and indirect water resources use have unveiled the remote connections in virtual water (VW) trade networks, which show how communities externalize their water footprint (WF) to places far beyond their own region, but little has been done to understand variability in time. This study quantifies the effect of inter-annual variability of consumption, production, trade and climate on WF and VW trade, using China over the period 1978-2008 as a case study. Evapotranspiration, crop yields and green and blue WFs of crops are estimated at a 5 × 5 arc-minute resolution for 22 crops, for each year in the study period, thus accounting for climate variability. The results show that crop yield improvements during the study period helped to reduce the national average WF of crop consumption per capita by 23%, with a decreasing contribution to the total from cereals and increasing contribution from oil crops. The total consumptive WFs of national crop consumption and crop production, however, grew by 6% and 7%, respectively. By 2008, 28% of total water consumption in crop fields in China served the production of crops for export to other regions and, on average, 35% of the crop-related WF of a Chinese consumer was outside its own province. Historically, the net VW within China was from the water-rich South to the water-scarce North, but intensifying North-to-South crop trade reversed the net VW flow since 2000, which amounted 6% of North's WF of crop production in 2008. South China thus gradually became dependent on food supply from the water-scarce North. Besides, during the whole study period, China's domestic inter-regional VW flows went dominantly from areas with a relatively large to areas with a relatively small blue WF per unit of crop, which in 2008 resulted in a trade-related blue water loss of 7% of the national total blue WF of crop production. The case of China shows that domestic trade, as governed by

  11. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Science.gov (United States)

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2017-01-01

    Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10-30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  12. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Directory of Open Access Journals (Sweden)

    Sergii Skakun

    2017-05-01

    Full Text Available Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of 3–5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10–30 m. This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  13. A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil erosion as example.

    Science.gov (United States)

    Lorenz, Marco; Fürst, Christine; Thiel, Enrico

    2013-09-01

    Regarding increasing pressures by global societal and climate change, the assessment of the impact of land use and land management practices on land degradation and the related decrease in sustainable provision of ecosystem services gains increasing interest. Existing approaches to assess agricultural practices focus on the assessment of single crops or statistical data because spatially explicit information on practically applied crop rotations is mostly not available. This provokes considerable uncertainties in crop production models as regional specifics have to be neglected or cannot be considered in an appropriate way. In a case study in Saxony, we developed an approach to (i) derive representative regional crop rotations by combining different data sources and expert knowledge. This includes the integration of innovative crop sequences related to bio-energy production or organic farming and different soil tillage, soil management and soil protection techniques. Furthermore, (ii) we developed a regionalization approach for transferring crop rotations and related soil management strategies on the basis of statistical data and spatially explicit data taken from so called field blocks. These field blocks are the smallest spatial entity for which agricultural practices must be reported to apply for agricultural funding within the frame of the European Agricultural Fund for Rural Development (EAFRD) program. The information was finally integrated into the spatial decision support tool GISCAME to assess and visualize in spatially explicit manner the impact of alternative agricultural land use strategies on soil erosion risk and ecosystem services provision. Objective of this paper is to present the approach how to create spatially explicit information on agricultural management practices for a study area around Dresden, the capital of the German Federal State Saxony. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  15. Sensitivity analysis of an explanatory crop model at the regional scale using geospatial data

    Science.gov (United States)

    Explanatory, or process-based, crop models are computational tools that have been developed for a wide range of applications, such as optimizing crop production and simulating the effects of climate change. Crop models rely on a diverse set of input variables for predicting outcomes such as crop yie...

  16. A regional scale modeling framework combining biogeochemical model with life cycle and economic analysis for integrated assessment of cropping systems.

    Science.gov (United States)

    Tabatabaie, Seyed Mohammad Hossein; Bolte, John P; Murthy, Ganti S

    2018-06-01

    The goal of this study was to integrate a crop model, DNDC (DeNitrification-DeComposition), with life cycle assessment (LCA) and economic analysis models using a GIS-based integrated platform, ENVISION. The integrated model enables LCA practitioners to conduct integrated economic analysis and LCA on a regional scale while capturing the variability of soil emissions due to variation in regional factors during production of crops and biofuel feedstocks. In order to evaluate the integrated model, the corn-soybean cropping system in Eagle Creek Watershed, Indiana was studied and the integrated model was used to first model the soil emissions and then conduct the LCA as well as economic analysis. The results showed that the variation in soil emissions due to variation in weather is high causing some locations to be carbon sink in some years and source of CO 2 in other years. In order to test the model under different scenarios, two tillage scenarios were defined: 1) conventional tillage (CT) and 2) no tillage (NT) and analyzed with the model. The overall GHG emissions for the corn-soybean cropping system was simulated and results showed that the NT scenario resulted in lower soil GHG emissions compared to CT scenario. Moreover, global warming potential (GWP) of corn ethanol from well to pump varied between 57 and 92gCO 2 -eq./MJ while GWP under the NT system was lower than that of the CT system. The cost break-even point was calculated as $3612.5/ha in a two year corn-soybean cropping system and the results showed that under low and medium prices for corn and soybean most of the farms did not meet the break-even point. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of Cover Crop Residues on Some Physicochemical Properties of Soil and Emergence Rate of Potato

    Directory of Open Access Journals (Sweden)

    M. Ghaffari

    2012-07-01

    Full Text Available The aim of this study, was to evaluate the effect of winter cover crop residues on speed of seed  potato emergence and percentage of organic carbon, soil specific weight and soil temperature. An experiment was carried out at the Research Farm of Agriculture Faculty, Bu-AliSinaUniversity, in 2008-2009. The experiment was a randomized complete block design with three replications. Winter cover crops consisted of rye, barley and oilseed rape, each one with common plant density (rye and barley at 190 kg.ha-1 and oilseed rape at 9 kg.ha-1 and triple plant densities(rye and barley 570 kg.ha-1 and oilseed rape, 27 kg.ha-1 and control (without cover crop. The results showed that rye and barley with triple plant densities produced higher biomass (1503.5 and 1392.2 g/m2, respectively than other treatments.Soil physicochemical properties were affected significantly by using cover crops. Rye, barley, and oilseed rape with triple rate and rye with common rape of plant densities produced, the highest organic carbon. Green manure of rye and barley with triple and rye with common rate plant densities, reduced soil specific weights by 17.3, 18 and 18 percent as compared with the control treatment (without cover crop planting. Rye and barley with triple plant densities increased average soil temperature by 12 and 11 percent respectively in comparison with control treatment. These treatments increased speed of seed potato emergence by 20 and 12 percent respectively as compared with that of control treatment, respectively. Other treatments showed no significant difference as compared to control. Cover crop residues increased plants speed of seed potato emergence through improving soil conditions.

  18. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  19. Water Quality Effects of Miscanthus as a Bioenergy Crop

    Science.gov (United States)

    Ng, T.; Eheart, J. W.; Cai, X.

    2009-12-01

    There is increasing interest in perennial grasses as a renewable source of bioenergy and biofuels. Under the right conditions, environmental advantages of cultivating such crops, relative to conventional row crops, include reductions in greenhouse gas emissions and waterborne pollutants, increased biodiversity and improved soil properties. This study focuses on the riverine nitrate load of cultivating miscanthus in lieu of conventional crops. Miscanthus has been identified as a high-yielding, low-input perennial grass suitable as a feedstock for cellulosic ethanol production and power generation by biomass combustion. To achieve the objective of this study, the Soil and Water Assessment Tool (SWAT) is used to model runoff and stream water quality in the Salt Creek watershed in East-Central Illinois. The watershed is agricultural and its nitrogen export, like that of most other agricultural watersheds in the region, is a major contributor to hypoxia in the Gulf of Mexico. SWAT is a hydrologic model with a built-in crop growth component. However, as miscanthus is relatively new as a crop of interest, data for the SWAT crop growth parameters for it are lacking. This study reports an evaluation of those parameters and an application of them to estimate the potential reduction in nitrate load from miscanthus cultivation under various scenarios. The miscanthus growth parameters are divided into three subsets. The first subset contains those parameters describing optimal growth under zero stress conditions, while the second contains those used to estimate nitrogen stress. Those parameters that are remaining (namely, maximum root depth and phosphorus and temperature stress parameters) are included in the third subset. To calibrate for the parameters in the first subset, simulated data from another miscanthus growth model are used. That other model is highly mechanistic and has been validated (no calibration is necessary because of its degree of mechanisticity) using

  20. Effects of tillage and cropping systems on yield and nitrogen fixation of cowpea intercropped with maize in northen Guinea savanna zone of Ghana

    International Nuclear Information System (INIS)

    Kombiok, J.M.; Safo, E.Y; Quansah, C.

    2006-01-01

    Published information is scanty on the response of crops in mixed cropping systems to the various tillage systems practised by farmers in the northern savanna zone of Ghana. A field experiment assessed the yield and nitrogen (N) fixation of cowpea (Vigna unguiculata (L.) Walp) intercropped with maize (Zea mays L.) on four different tillage systems at Nyankpala in the Northern Region of Ghana. The experiment was laid in a split-plot design with four replications. The main factor was tillage systems comprising conventional (Con), bullock plough (BP), hand hoe (HH) and zero tillage (ZT). The sub-factor was cropping systems (CRPSYT) which consisted of sole maize, sole cowpea, maize/cowpea inter-row cropping system, and bare fallow in 2000. The last named was replaced by maize/cowpea intra-row cropping system in 2001. The results showed that Con and BP, which produced over 10 cm plough depth, significantly reduced soil bulk density that favoured significant (P I). The LERs ranged from 1.43 to 1.79 in 2000, and from 1.23 to 1.24 in 2001 for Con and ZT, respectively. These indicate 33 and 52 percent mean increases in productivity of cowpea and maize, respectively, over their pure stands across the 2 years. However, grain yields of both crops from the inter- and intra-row cropping systems were not different. (au)

  1. Lost crops of the Incas: Origins of domestication of the Andean pulse crop tarwi, Lupinus mutabilis.

    Science.gov (United States)

    Atchison, Guy W; Nevado, Bruno; Eastwood, Ruth J; Contreras-Ortiz, Natalia; Reynel, Carlos; Madriñán, Santiago; Filatov, Dmitry A; Hughes, Colin E

    2016-09-01

    The Andean highlands are a hotspot of domestication, yet our understanding of the origins of early Andean agriculture remains fragmentary. Key questions of where, when, how many times, and from what progenitors many Andean crops were domesticated remain unanswered. The Andean lupine crop tarwi (Lupinus mutabilis) is a regionally important pulse crop with exceptionally high seed protein and oil content and is the focus of modern breeding efforts, but its origins remain obscure. A large genome-wide DNA polymorphism data set was generated using nextRADseq to infer relationships among more than 200 accessions of Andean Lupinus species, including 24 accessions of L. mutabilis and close relatives. Phylogenetic and demographic analyses were used to identify the likely progenitor of tarwi and elucidate the area and timing of domestication in combination with archaeological evidence. We infer that tarwi was domesticated once in northern Peru, most likely in the Cajamarca region within, or adjacent to the extant distribution of L. piurensis, which is the most likely wild progenitor. Demographic analyses suggest that tarwi split from L. piurensis around 2600 BP and suffered a classical domestication bottleneck. The earliest unequivocal archaeological evidence of domesticated tarwi seeds is from the Mantaro Valley, central Peru ca. 1800 BP. A single origin of tarwi from L. piurensis in northern Peru provides a robust working hypothesis for the domestication of this regionally important crop and is one of the first clear-cut examples of a crop originating in the highlands of northern Peru. © 2016 Botanical Society of America.

  2. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  3. Integrating future scenario‐based crop expansion and crop conditions to map switchgrass biofuel potential in eastern Nebraska, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2018-01-01

    Switchgrass (Panicum virgatum) has been evaluated as one potential source for cellulosic biofuel feedstocks. Planting switchgrass in marginal croplands and waterway buffers can reduce soil erosion, improve water quality, and improve regional ecosystem services (i.e. it serves as a potential carbon sink). In previous studies, we mapped high risk marginal croplands and highly erodible cropland buffers that are potentially suitable for switchgrass development, which would improve ecosystem services and minimally impact food production. In this study, we advance our previous study results and integrate future crop expansion information to develop a switchgrass biofuel potential ensemble map for current and future croplands in eastern Nebraska. The switchgrass biomass productivity and carbon benefits (i.e. NEP: net ecosystem production) for the identified biofuel potential ensemble areas were quantified. The future scenario‐based (‘A1B’) land use and land cover map for 2050, the US Geological Survey crop type and Compound Topographic Index (CTI) maps, and long‐term (1981–2010) averaged annual precipitation data were used to identify future crop expansion regions that are suitable for switchgrass development. Results show that 2528 km2 of future crop expansion regions (~3.6% of the study area) are potentially suitable for switchgrass development. The total estimated biofuel potential ensemble area (including cropland buffers, marginal croplands, and future crop expansion regions) is 4232 km2 (~6% of the study area), potentially producing 3.52 million metric tons of switchgrass biomass per year. Converting biofuel ensemble regions to switchgrass leads to potential carbon sinks (the total NEP for biofuel potential areas is 0.45 million metric tons C) and is environmentally sustainable. Results from this study improve our understanding of environmental conditions and ecosystem services of current and future cropland systems in eastern Nebraska and provide

  4. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Directory of Open Access Journals (Sweden)

    Y. Chu

    2017-06-01

    Full Text Available The North China Plain (NCP has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1 the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI of cotton was the largest, and for vegetables, it was the smallest; (2 the total WF, WFblue, WFgreen and WFgrey for 13 years (2000–2012 of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3 winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue accounted for 74.2 % of the total WFblue in the HSP; (4 the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat–summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  5. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops.

    Science.gov (United States)

    Thorburn, Peter J; Biggs, Jody S; Palmer, Jeda; Meier, Elizabeth A; Verburg, Kirsten; Skocaj, Danielle M

    2017-01-01

    Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N) -1 , where yields were low (i.e., 5 Mg cane (kg N) -1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions support systems and enhanced efficiency

  6. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops

    Directory of Open Access Journals (Sweden)

    Peter J. Thorburn

    2017-09-01

    Full Text Available Sugarcane production relies on the application of large amounts of nitrogen (N fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE, yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1 the impacts of climate on factors determining NUE, (2 the range and drivers of NUE, and (3 regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N-1, where yields were low (i.e., <50 Mg ha-1 and N inputs were high, to >5 Mg cane (kg N-1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management, the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting

  7. Bioenergy Crop Production in the United States. Potential Quantities, Land Use Changes, and Economic Impacts on the Agricultural Sector

    International Nuclear Information System (INIS)

    Walsh, Marie E.; Torre Ugarte, D.G. de la; Shapouri, H.; Slinsky, S.P.

    2003-01-01

    The U.S. Departments of Agriculture and Energy jointly analyzed the economic potential for, and impacts of, large-scale bioenergy crop production in the United States. An agricultural sector model (POLYSYS) was modified to include three potential bioenergy crops (switchgrass, hybrid poplar, and willow). At farmgate prices of US $2.44/GJ, an estimated 17 million hectares of bioenergy crops, annually yielding 171 million dry Mg of biomass, could potentially be produced at a profit greater than existing agricultural uses for the land. The estimate assumes high productivity management practices are permitted on Conservation Reserve Program lands. Traditional crops prices are estimated to increase 9 to 14 percent above baseline prices and farm income increases annually by US $6.0 billion above baseline. At farmgate prices of US $1.83/GJ, an estimated 7.9 million hectares of bioenergy crops, annually yielding 55 million dry Mg of biomass, could potentially be produced at a profit greater than existing agricultural uses for the land. The estimate assumes management practices intended to achieve high environmental benefits on Conservation Reserve Program lands. Traditional crops prices are estimated to increase 4 to 9 percent above baseline prices and farm income increases annually by US $2.8 billion above baseline

  8. Climate Impacts of Cover Crops

    Science.gov (United States)

    Lombardozzi, D.; Wieder, W. R.; Bonan, G. B.; Morris, C. K.; Grandy, S.

    2016-12-01

    Cover crops are planted in agricultural rotation with the intention of protecting soil rather than harvest. Cover crops have numerous environmental benefits that include preventing soil erosion, increasing soil fertility, and providing weed and pest control- among others. In addition to localized environmental benefits, cover crops can have important regional or global biogeochemical impacts by increasing soil organic carbon, changing emissions of greenhouse trace gases like nitrous oxide and methane, and reducing hydrologic nitrogen losses. Cover crops may additionally affect climate by changing biogeophysical processes, like albedo and latent heat flux, though these potential changes have not yet been evaluated. Here we use the coupled Community Atmosphere Model (CAM5) - Community Land Model (CLM4.5) to test how planting cover crops in the United States may change biogeophysical fluxes and climate. We present seasonal changes in albedo, heat fluxes, evaporative partitioning, radiation, and the resulting changes in temperature. Preliminary analyses show that during seasons when cover crops are planted, latent heat flux increases and albedo decreases, changing the evaporative fraction and surface temperatures. Understanding both the biogeophysical changes caused by planting cover crops in this study and the biogeochemical changes found in other studies will give a clearer picture of the overall impacts of cover crops on climate and atmospheric chemistry, informing how this land use strategy will impact climate in the future.

  9. Potential Air Quality Impacts of Global Bioenergy Crop Cultivation

    Science.gov (United States)

    Porter, W. C.; Rosenstiel, T. N.; Barsanti, K. C.

    2012-12-01

    The use of bioenergy crops as a replacement for traditional coal-powered electricity generation will require large-scale land-use change, and the resulting changes in emissions of biogenic volatile organic compounds (BVOCs) may have negative impacts on local to regional air quality. BVOCs contribute to the formation of both ozone (O3) and fine particulate matter (PM2.5), with magnitudes of specific compound emissions governed largely by plant speciation and land coverage. For this reason, large-scale land-use change has the potential to markedly alter regional O3 and PM2.5 levels, especially if there are large differences between the emission profiles of the replacement bioenergy crops (many of which are high BVOC emitters) and the previous crops or land cover. In this work, replacement areas suitable for the cultivation of the bioenergy crops switchgrass (Panicum virgatum) and giant reed (Arundo donax) were selected based on existing global inventories of under-utilized cropland and local climatological conditions. These two crops are among the most popular current candidates for bioenergy production, and provide contrasting examples of energy densities and emissions profiles. While giant reed has been selected in an ongoing large-scale coal-to-biocharcoal conversion in the Northwestern United States due to its high crop yields and energy density, it is also among the highest biogenic emitters of isoprene. On the other hand, switchgrass produces less biomass per acre, but also emits essentially no isoprene and low total BVOCs. The effects of large-scale conversion to these crops on O3 and PM2.5 were simulated using version 1.1 of the Community Earth System Model (CESM) coupled with version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGAN). By comparing crop replacement scenarios involving A. donax and P. virgatum, the sensitivities of O3 and PM2.5 levels to worldwide increases in bioenergy production were examined, providing an initial

  10. Doses and application seasons of potassium on soybean crop in succession the cover crops

    Directory of Open Access Journals (Sweden)

    Amilton Ferreira Silva

    2014-02-01

    Full Text Available Potassium (K is the second nutrient that is required in larger amounts by soybean crop. With the use of high doses of that nutrient and increase of no-tillage areas in last years, some changes occurred in ways of this nutrient application, as well as the introduction of cover crops in the system for straw formation. Due those facts, the aim with this work was to study doses and times of potassium application for soybean sowed as succession for cover crops in no-tillage system, in a clayey Distrofic Red Latosol, in cerrado region. The experimental design was a randomized block with treatments arranged in 3x3x5 factorial scheme, with the following factors, cover crops: Pearl millet (Pennisetum glaucum and Proso millet (Panicum miliaceum and a control (fallow area, rates of K2O (0, 50 e 100 kg ha-1 and K2O application forms (100% in the cover crops; 100% at sowing of soybean; 100% in topdressing in soybean; 50% at sowing cover crops + 50% at soybean sowing; 50% at soybean sowing + 50% in topdressing in the soybean with four replicates. The Pennisetum glaucum as soybean predecessor crop yields higher dry matter content than the Panicum miliaceum in a short period of time. In clay soil with high content of potassium there was no response to the applied potassium levels. Full doses of potassium maintenance fertilization can be applied in the predecessor cover crop, at sowing or topdressing in soybean crop.

  11. Modelling crop land use change derived from influencing factors selected and ranked by farmers in North temperate agricultural regions.

    Science.gov (United States)

    Mehdi, Bano; Lehner, Bernhard; Ludwig, Ralf

    2018-08-01

    To develop meaningful land use scenarios, drivers that affect changes in the landscape are required. In this study, driving factors that influence farmers to change crops on their farm were determined. A questionnaire was administered to four independent groups of farmers who identified and ranked influencing factors pertaining to their choices of crops. The farmers were located in two mid-latitude agricultural watersheds (in Germany and Canada). The ranked influencing factors were used to develop a "farmer driven" scenario to 2040 in both watersheds. Results showed that the most important influencing factors for farmers to change crops were the "economic return of the crop" and "market factors". Yet, when the drivers of crop land use change were grouped into two categories of "financial" and "indirectly-related financial" factors, the "financial" factors made up approximately half of the influencing factors. For some responses, the "indirectly-related financial" factors (i.e. "access to farm equipment", the "farm experience", and "climate") ranked higher than or just as high as the financial factors. Overall, in the four farmer groups the differences between the rankings of the influencing factors were minor, indicating that drivers may be transferable between farms if the farmers are full-time and the farming regions have comparable growing seasons, access to markets, similar technology, and government programs for farm income. In addition to the "farmer driven" scenario, a "policy driven" scenario was derived for each watershed based only on available information on the financial incentives provided to farmers (i.e. agricultural subsidies, income support, crop insurance). The influencing factors ranked by the farmers provided in-depth information that was not captured by the "policy driven" scenario and contributed to improving predictions for crop land use development. This straight-forward method to rank qualitative data provided by farmers can easily be

  12. Maths for plants and plants for maths. Mathematics applied to agronomy and crop protection

    OpenAIRE

    Dumont, Yves

    2015-01-01

    Crop Protection, and more generally Food Security, is considered as one of the greatest World challenges in the forthcoming decades. Currently, they are more that 1 billion undernourished people. It has been estimated that up to 40 percent of the world's potential crop production is already lost annually because of the effects of weeds, pests and diseases. This is particularly true in Southern countries. Moreover, taking into account climate change, these losses may increase. That is why it i...

  13. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    M. Ruiz-Ramos

    2011-12-01

    Full Text Available Crops growing in the Iberian Peninsula may be subjected to damagingly high temperatures during the sensitive development periods of flowering and grain filling. Such episodes are considered important hazards and farmers may take insurance to offset their impact. Increases in value and frequency of maximum temperature have been observed in the Iberian Peninsula during the 20th century, and studies on climate change indicate the possibility of further increase by the end of the 21st century. Here, impacts of current and future high temperatures on cereal cropping systems of the Iberian Peninsula are evaluated, focusing on vulnerable development periods of winter and summer crops. Climate change scenarios obtained from an ensemble of ten Regional Climate Models (multimodel ensemble combined with crop simulation models were used for this purpose and related uncertainty was estimated. Results reveal that higher extremes of maximum temperature represent a threat to summer-grown but not to winter-grown crops in the Iberian Peninsula. The study highlights the different vulnerability of crops in the two growing seasons and the need to account for changes in extreme temperatures in developing adaptations in cereal cropping systems. Finally, this work contributes to clarifying the causes of high-uncertainty impact projections from previous studies.

  14. Percent Coverage

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Percent Coverage is a spreadsheet that keeps track of and compares the number of vessels that have departed with and without observers to the numbers of vessels...

  15. Crop Condition Assessment with Adjusted NDVI Using the Uncropped Arable Land Ratio

    Directory of Open Access Journals (Sweden)

    Miao Zhang

    2014-06-01

    Full Text Available Crop condition assessment in the early growing stage is essential for crop monitoring and crop yield prediction. A normalized difference vegetation index (NDVI-based method is employed to evaluate crop condition by inter-annual comparisons of both spatial variability (using NDVI images and seasonal dynamics (based on crop condition profiles. Since this type of method will generate false information if there are changes in crop rotation, cropping area or crop phenology, information on cropped/uncropped arable land is integrated to improve the accuracy of crop condition monitoring. The study proposes a new method to retrieve adjusted NDVI for cropped arable land during the growing season of winter crops by integrating 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS reflectance data at 250-m resolution with a cropped and uncropped arable land map derived from the multi-temporal China Environmental Satellite (Huan Jing Satellite charge-coupled device (HJ-1 CCD images at 30-m resolution. Using the land map’s data on cropped and uncropped arable land, a pixel-based uncropped arable land ratio (UALR at 250-m resolution was generated. Next, the UALR-adjusted NDVI was produced by assuming that the MODIS reflectance value for each pixel is a linear mixed signal composed of the proportional reflectance of cropped and uncropped arable land. When UALR-adjusted NDVI data are used for crop condition assessment, results are expected to be more accurate, because: (i pixels with only uncropped arable land are not included in the assessment; and (ii the adjusted NDVI corrects for interannual variation in cropping area. On the provincial level, crop growing profiles based on the two kinds of NDVI data illustrate the difference between the regular and the adjusted NDVI, with the difference depending on the total area of uncropped arable land in the region. The results suggested that the proposed method can be used to improve the assessment of

  16. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR).

    Science.gov (United States)

    Malmstrom, Carolyn M; Bigelow, Patrick; Trębicki, Piotr; Busch, Anna K; Friel, Colleen; Cole, Ellen; Abdel-Azim, Heba; Phillippo, Colin; Alexander, Helen M

    2017-09-15

    As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most

  17. The Crop Journal: A new scientific journal for the global crop science community

    Directory of Open Access Journals (Sweden)

    Jianmin Wan

    2013-10-01

    Full Text Available As global population increases and demands for food supplies become greater, we face great challenges in providing more products and in larger quantities from less arable land. Crop science has gained increasing importance in meeting these challenges and results of scientific research must be communicated worldwide on a regular basis. In many countries, however, crop scientists have to publish the results of their investigations in national journals with heterogeneous contents and in their native languages. As a consequence, valuable work often remains unknown to scientists elsewhere. As a big country with a large number of crop scientists, China has a wide range of climatic and ecological environments, diverse plant species and cropping systems, and different regional needs for food supplies, which justify the recent decision by the Crop Science Society of China and the Institute of Crop Science within the Chinese Academy of Agricultural Sciences, to launch a new communication channel, The Crop Journal. The goal of The Crop Journal is to meet an urgent need for a major Asia-based journal that covers the diverse fields of crop science. Our aim is to create a vital and thought-provoking journal that will highlight state-of-the-art original work and reviews by high-profile crop scientists and investigative groups throughout the world — a journal that will respond to the needs of specialists in strategic crop research. We will work with scientific and publishing colleagues worldwide, using The Plant Journal and Crop Science as models, to establish The Crop Journal as a broadly based high quality journal and a premier forum for issues in crop science. The Crop Journal will cover a wide range of topics, including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The journal also encourages the submission of review

  18. Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains

    International Nuclear Information System (INIS)

    Pei, Hongwei; Shen, Yanjun; Liu, Changming; Scanlon, Bridget R; Reedy, Robert C; Long, Di

    2015-01-01

    Agricultural intensification is often considered the primary approach to meet rising food demand. Here we compare impacts of intensive cultivation on crop yield in the North China Plain (NCP) with less intensive cultivation in the US High Plains (USHP) and associated effects on water resources using spatial datasets. Average crop yield during the past decade from intensive double cropping of wheat and corn in the NCP was only 15% higher than the yield from less intensive single cropping of corn in the USHP, although nitrogen fertilizer application and percent of cropland that was irrigated were both ∼2 times greater in the NCP than in the USHP. Irrigation and fertilization in both regions have depleted groundwater storage and resulted in widespread groundwater nitrate contamination. The limited response to intensive management in the NCP is attributed in part to the two month shorter growing season for corn to accommodate winter wheat than that for corn in the USHP. Previous field and modeling studies of crop yield in the NCP highlight over application of N and water resulting in low nitrogen and water use efficiencies and indicate that cultivars, plant densities, soil fertility and other factors had a much greater impact on crop yields over the past few decades. The NCP–USHP comparison along with previous field and modeling studies underscores the need to weigh the yield returns from intensive management relative to the negative impacts on water resources. Future crop management should consider the many factors that contribute to yield along with optimal fertilization and irrigation to further increase crop yields while reducing adverse impacts on water resources. (letter)

  19. Crop improvement projects in Peru

    International Nuclear Information System (INIS)

    Broeshart, H.

    1978-01-01

    Only two percent of the territory of Peru consists of arable land. Sixteen million people depend on the production of about three million hectares of land, which means that on the average only 1800 square metres is available per person. It is clear that Peru is one of the poorest countries of the world as far as available arable land is concerned and consequently it will have to drastically increase its agricultural production per unit area or import large quantities of agricultural products to feed its rapidly growing population. Agricultural research on the efficient use of fertilizers is being carried out by the regional experiment station (CRIA), by the National University of Agriculture, La Molina, Lima, dealing with programmes on maize, potatoes, cereals and forage crops, by national universities in the country and by specialized research institutes for tropical agriculture on sugar-cane, cotton, coffee and tea. Isotope and radiation techniques are a particularly effective means of determining the best cultural practices for the efficient use of fertilizers and water, and the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture has been involved in the organization of field and greenhouse programmes at experiment stations and universities in Peru since 1963

  20. Climate variability impacts on rice crop production in pakistan

    International Nuclear Information System (INIS)

    Shakoor, U.; Saboor, A.; Baig, I.

    2015-01-01

    The climate variability has affected the agriculture production all over the globe. This concern has motivated important changes in the field of research during the last decade. Climate changes are believed to have declining effects towards crop production in Pakistan. This study carries an empirical investigation of the effects of climate change on rice crop of Pakistan by employing Vector Auto Regression (VAR) model. Annual seasonal data of the climatic variables from 1980 to 2013 has been used. Results confirmed that rising mean maximum temperature would lead to reduction in rice production while increase in mean minimum temperature would be advantageous towards rice production. Variation in mean minimum temperature brought about seven percent increase in rice productivity as shown by Variance Decomposition. Mean precipitation and mean temperature would increase rice production but simulations scenarios for 2030 confirmed that much increase in rainfall and mean temperature in long run will negatively affect rice production in future. It is therefore important to follow adequate policy action to safeguard crop productions from disastrous effects. Development of varieties resistant to high temperatures as well as droughts will definitely enhance resilience of rice crop in Pakistan. (author)

  1. Automatic crop row detection from UAV images

    DEFF Research Database (Denmark)

    Midtiby, Henrik; Rasmussen, Jesper

    are considered weeds. We have used a Sugar beet field as a case for evaluating the proposed crop detection method. The suggested image processing consists of: 1) locating vegetation regions in the image by thresholding the excess green image derived from the orig- inal image, 2) calculate the Hough transform......Images from Unmanned Aerial Vehicles can provide information about the weed distribution in fields. A direct way is to quantify the amount of vegetation present in different areas of the field. The limitation of this approach is that it includes both crops and weeds in the reported num- bers. To get...... of the segmented image 3) determine the dominating crop row direction by analysing output from the Hough transform and 4) use the found crop row direction to locate crop rows....

  2. Adaptation to climate change in desertified lands of the marginal regions in Egypt through sustainable crop and livestock diversification systems

    Institute of Scientific and Technical Information of China (English)

    Hassan M. El Shaer

    2015-01-01

    Environmental degradation resulting from current climate changes, including prolonged drought, land degradation, desertification, and loss of biodiversity, is presenting enormous challenges to achieve food security and eradication of poverty in the marginal regions (about 90%of the total area) of Egypt. In addition to the natural constraints of high temperature, wind erosion, sand dune movement, and recurrent drought, such regions are subjected to improper land and water management. Moreover, there is a lack of knowledge, technologies, and experiences to match with the current severe climatic changes. There is a great need for establishing sustainable integrated ecosystem rehabilitation and management programs to overcome such problems in the marginal areas, particularly in the Sinai Peninsula due to its strategic and social importance. A series of research and development programs have been conducted in 2006 to im-prove the livelihoods of smallholders through enhancing the efficient management and utilization of local resources that can cope with the drastic changes of climate in the Sinai Peninsula. An integrated livestock/salt-tolerant fodder crop system was introduced, in 2010 by the project teamwork of Desert Research center, Egypt, to many smallholders in the South Sinai region, where studies were conducted at both the general research and individual farmer levels. The most important results were:(1) adoption of the most salt-tolerant genotypes of three forage crops:pearl millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor), and Sudan grass (Sorghum sudanense (Piper) Stapf.); two cereal crops (triticale and barley);and two oil crops:safflower (Carthamus tinctorius) and Brassica (Mustard). Alfalfa (Medicago sativa L. and Medicago arborium), cowpeas (Vigna sinensis L.), fodder beets (Beta vulgaris L.), clumping desert bunchgrass (Panicum turgedum), ryegrass (Lolium perenne) Ray grass, forage shrubs (Kochia indica, Atriplex num-mularia, Sesbania sesban L

  3. Perspectives on genetically modified crops and food detection

    Directory of Open Access Journals (Sweden)

    Chih-Hui Lin

    2016-01-01

    Full Text Available Genetically modified (GM crops are a major product of the global food industry. From 1996 to 2014, 357 GM crops were approved and the global value of the GM crop market reached 35% of the global commercial seed market in 2014. However, the rapid growth of the GM crop-based industry has also created controversies in many regions, including the European Union, Egypt, and Taiwan. The effective detection and regulation of GM crops/foods are necessary to reduce the impact of these controversies. In this review, the status of GM crops and the technology for their detection are discussed. As the primary gap in GM crop regulation exists in the application of detection technology to field regulation, efforts should be made to develop an integrated, standardized, and high-throughput GM crop detection system. We propose the development of an integrated GM crop detection system, to be used in combination with a standardized international database, a decision support system, high-throughput DNA analysis, and automated sample processing. By integrating these technologies, we hope that the proposed GM crop detection system will provide a method to facilitate comprehensive GM crop regulation.

  4. Perspectives on genetically modified crops and food detection.

    Science.gov (United States)

    Lin, Chih-Hui; Pan, Tzu-Ming

    2016-01-01

    Genetically modified (GM) crops are a major product of the global food industry. From 1996 to 2014, 357 GM crops were approved and the global value of the GM crop market reached 35% of the global commercial seed market in 2014. However, the rapid growth of the GM crop-based industry has also created controversies in many regions, including the European Union, Egypt, and Taiwan. The effective detection and regulation of GM crops/foods are necessary to reduce the impact of these controversies. In this review, the status of GM crops and the technology for their detection are discussed. As the primary gap in GM crop regulation exists in the application of detection technology to field regulation, efforts should be made to develop an integrated, standardized, and high-throughput GM crop detection system. We propose the development of an integrated GM crop detection system, to be used in combination with a standardized international database, a decision support system, high-throughput DNA analysis, and automated sample processing. By integrating these technologies, we hope that the proposed GM crop detection system will provide a method to facilitate comprehensive GM crop regulation. Copyright © 2015. Published by Elsevier B.V.

  5. Cloning crops in a CELSS via tissue culture: Prospects and problems

    Science.gov (United States)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  6. Investigating the Effect of Soil Texture and Fertility on Evapotranspiration and Crop Coefficient of Maize Forage

    Directory of Open Access Journals (Sweden)

    M. Ghorbanian Kerdabadi

    2017-02-01

    Full Text Available Introduction: Crop coefficient varies in different environmental conditions, such as deficit irrigation, salinity and intercropping. The effect of soil fertility and texture of crop coefficient and evapotranspiration of maize was investigated in this study. Low soil fertility and food shortages as a stressful environment for plants that makes it different evapotranspiration rates of evapotranspiration calculation is based on the FAO publication 56. Razzaghi et al. (2012 investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (CV. Titicaca was grown in field lysimeters with sand, sandy loam and sandy clay loam soil. Zhang et al (2014 were investigated the Effect of adding different amounts of nitrogen during three years (from 2010 to 2012 on water use efficiency and crop evapotranspiration two varieties of winter wheat. The results of their study showed. The results indicated the following: (1 in this dry land farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic. Materials and Methods: The study was a factorial experiment in a completely randomized design with three soil texture treatment, including silty clay loam, loam and sandy-loam soil and three fertility treatment, including without fertilizer, one and two percent fertilizer( It was conducted at the experimental farm in

  7. Genomics of crop wild relatives: expanding the gene pool for crop improvement.

    Science.gov (United States)

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert J

    2016-04-01

    Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Development and implementation of a GEOGLAM Crop Monitor web interface

    Science.gov (United States)

    Oliva, P.; Sanchez, A.; Humber, M. L.; Becker-Reshef, I.; Justice, C. J.; McGaughey, K.; Barker, B.

    2016-12-01

    Beginning in September 2013, the GEOGLAM Crop Monitor activity has provided earth observation (EO) data to a network of partners and collected crop assessments on a subnational basis through a web interface known as the Crop Assessment Tool. Based on the collection of monthly crop assessments, a monthly crop condition bulletin is published in the Agricultural Market Information System (AMIS) Market Monitor report. This workflow has been successfully applied to food security applications through the Early Warning Crop Monitor activity. However, a lack of timely and accurate information on crop conditions and prospects at the national scale is a critical issue in the majority of southern and eastern African countries and some South American countries. Such information is necessary for informed and prompt decision making in the face of emergencies, food insecurity and planning requirements for agricultural markets. This project addresses these needs through the development of relevant, user-friendly remote sensing monitor systems, collaborative internet technology, and collaboration with national and regional agricultural monitoring networks. By building on current projects and relationships established through the various GEOGLAM Crop Monitor activities, this project aims to ultimately provide EO-informed crop condition maps and charts designed for economics and policy oriented audiences, thereby providing quick and easy to understand products on crop conditions as the season progresses. Integrating these data and assessments vertically throughout the system provides a basis for regional sharing and collaboration in food security applications.

  9. Variability in the Water Footprint of Arable Crop Production across European Regions

    Czech Academy of Sciences Publication Activity Database

    Gobin, A.; Kersebaum, K. C.; Eitzinger, Josef; Trnka, Miroslav; Hlavinka, Petr; Takáč, J.; Kroes, J.; Ventrella, D.; Dalla Marta, A.; Deelstra, J.; Lalic, B.; Nejedlík, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Saylan, L.; Stricevic, R.; Vucetic, V.; Zoumides, C.

    2017-01-01

    Roč. 9, č. 2 (2017), č. článku 93. ISSN 2073-4441 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13030 Institutional support: RVO:86652079 Keywords : simulate yield response * climate - change * virtual water * impact * green * model * blue * agriculture * irrigation * reduction * water footprint * arable crops * cereals * Europe * crop water use * yield Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Water resources Impact factor: 1.832, year: 2016

  10. An Automated Approach to Map Winter Cropped Area of Smallholder Farms across Large Scales Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2017-06-01

    Full Text Available Fine-scale agricultural statistics are an important tool for understanding trends in food production and their associated drivers, yet these data are rarely collected in smallholder systems. These statistics are particularly important for smallholder systems given the large amount of fine-scale heterogeneity in production that occurs in these regions. To overcome the lack of ground data, satellite data are often used to map fine-scale agricultural statistics. However, doing so is challenging for smallholder systems because of (1 complex sub-pixel heterogeneity; (2 little to no available calibration data; and (3 high amounts of cloud cover as most smallholder systems occur in the tropics. We develop an automated method termed the MODIS Scaling Approach (MSA to map smallholder cropped area across large spatial and temporal scales using MODIS Enhanced Vegetation Index (EVI satellite data. We use this method to map winter cropped area, a key measure of cropping intensity, across the Indian subcontinent annually from 2000–2001 to 2015–2016. The MSA defines a pixel as cropped based on winter growing season phenology and scales the percent of cropped area within a single MODIS pixel based on observed EVI values at peak phenology. We validated the result with eleven high-resolution scenes (spatial scale of 5 × 5 m2 or finer that we classified into cropped versus non-cropped maps using training data collected by visual inspection of the high-resolution imagery. The MSA had moderate to high accuracies when validated using these eleven scenes across India (R2 ranging between 0.19 and 0.89 with an overall R2 of 0.71 across all sites. This method requires no calibration data, making it easy to implement across large spatial and temporal scales, with 100% spatial coverage due to the compositing of EVI to generate cloud-free data sets. The accuracies found in this study are similar to those of other studies that map crop production using automated methods

  11. Weed management strategies for castor bean crops

    Directory of Open Access Journals (Sweden)

    Augusto Guerreiro Fontoura Costa

    2014-04-01

    Full Text Available Castor bean crops are agriculturally relevant due to the quality and versatility of their oil, both for the chemical industry and for biodiesel production. Proper weed management is important for both the cultivation and the yield of castor bean crops; therefore, the intention of the present work is to review pertinent information regarding weed management, including the studies regarding weed interference periods, chemical controls for use in different crop production systems and herbicide selectivity, for castor bean crops. Weed science research for castor bean crops is scarce. One of the main weed management challenges for castor bean crops is the absence of herbicides registered with the Ministry of Agriculture, Livestock and Food Supply (MALFS. Research for viable herbicides for weed control in castor bean crops should be directed by research and/or rural extension institutions, associations and farmers cooperatives, as well as by manufactures, for the registration of these selective herbicides, which would be primarily used to control eudicotyledons in castor bean crops. New studies involving the integration of weed control methods in castor bean also may increase the efficiency of weed management, for both small farmers using traditional crop methods in the Brazilian Northeast region, as well as for areas with the potential for large scale production, using conservation tillage systems, such as the no-tillage crop production system.

  12. Spatial distribution of unspecified chronic kidney disease in El Salvador by crop area cultivated and ambient temperature.

    Science.gov (United States)

    VanDervort, Darcy R; López, Dina L; Orantes, Carlos M; Rodríguez, David S

    2014-04-01

    Chronic kidney disease of unknown etiology is occurring in various geographic areas worldwide. Cases lack typical risk factors associated with chronic kidney disease, such as diabetes and hypertension. It is epidemic in El Salvador, Central America, where it is diagnosed with increasing frequency in young, otherwise-healthy male farmworkers. Suspected causes include agrochemical use (especially in sugarcane fields), physical heat stress, and heavy metal exposure. To evaluate the geographic relationship between unspecified chronic kidney disease (unCKD) and nondiabetic chronic renal failure (ndESRD) hospital admissions in El Salvador with the proximity to cultivated crops and ambient temperatures. Data on unCKD and ndESRD were compared with environmental variables, crop area cultivated (indicator of agrochemical use) and high ambient temperatures. Using geographically weighted regression analysis, two model sets were created using reported municipal hospital admission rates are per thousand population for unCKD 2006-2010 and rates of ndESRD 2005-2010 [corrected]. These were assessed against local percent of land cultivated by crop (sugarcane, coffee, corn, cotton, sorghum, and beans) and mean maximum ambient temperature, with Moran's indices determining data clustering. Two-dimensional geographic models illustrated parameter spatial distribution. Bivariate geographically weighted regressions showed statistically significant correlations between percent area of sugarcane, corn, cotton, coffee, and bean cultivation, as well as mean maximum ambient temperature with both unCKD and ndESRD hospital admission rates. Percent area of sugarcane cultivation had greatest statistical weight (p ≤ 0.001; Rp2 = 0.77 for unCKD). The most statistically significant multivariate geographically weighted regression model for unCKD included percent area of sugarcane, cotton and corn cultivation (p ≤ 0.001; Rp2 = 0.80), while, for ndESRD, it included the percent area of sugarcane, corn

  13. Evaluation of oilseed crop rotations with agro-environmental indicators

    Directory of Open Access Journals (Sweden)

    Pouzet André

    2003-05-01

    Full Text Available The European Common Agricultural Policy is shifting an increasing part of the subsidies to eco-conditionality. Henceforth, it becomes essential to evaluate the environmental effect of agricultural practices, and more generally performances of cropping and farming systems, in order to design and to develop more sustainable systems. This assessment is being implemented for the main cropping systems of some French regions, using environmental indicators. Eleven exposure indicators were chosen in order to represent a wide range of specific sustainability objectives dealing with water, soil, air, non-renewable resources, biodiversity, and landscape. The results present the sustainability assessment for the crop rotations of Champagne Berrichonne region in the Centre of France.

  14. Modeling the spatial distribution of crop cultivated areas at a large regional scale combining system dynamics and a modified Dyna-CLUE: A case from Iran

    Energy Technology Data Exchange (ETDEWEB)

    Mesgari, I.; Saeed Jabalameli, M.

    2017-07-01

    Agricultural land use pattern is affected by many factors at different scales and effects that are separated by time and space. This will lead to simulation models that optimize or project the cropping pattern changes and incorporate complexities in terms of details and dynamics. Combining System Dynamics (SD) and a modified Conversion of Land Use and its Effects (CLUE) modelling framework, this paper suggests a new dynamic approach for assessing the demand of different crops at country-level and for predicting the spatial distribution of cultivated areas at provincial scale. As example, a case study is presented for Iran, where we have simulated a scenario of future cropping pattern changes during 2015–2040.The results indicated a change in the spatial distribution of cultivated areas during the next years. An increase in the proportion of rice is expected in northern Iran, whereas the proportion of wheat is increasing in the mountainous western areas. Wheat and barley crops are expected to become dominant within the cropping system throughout the country regions.

  15. Air-quality and Climatic Consequences of Bioenergy Crop Cultivation

    Science.gov (United States)

    Porter, William Christian

    Bioenergy is expected to play an increasingly significant role in the global energy budget. In addition to the use of liquid energy forms such as ethanol and biodiesel, electricity generation using processed energy crops as a partial or full coal alternative is expected to increase, requiring large-scale conversions of land for the cultivation of bioenergy feedstocks such as cane, grasses, or short rotation coppice. With land-use change identified as a major contributor to changes in the emission of biogenic volatile organic compounds (BVOCs), many of which are known contributors to the pollutants ozone (O 3) and fine particulate matter (PM2.5), careful review of crop emission profiles and local atmospheric chemistry will be necessary to mitigate any unintended air-quality consequences. In this work, the atmospheric consequences of bioenergy crop replacement are examined using both the high-resolution regional chemical transport model WRF/Chem (Weather Research and Forecasting with Chemistry) and the global climate model CESM (Community Earth System Model). Regional sensitivities to several representative crop types are analyzed, and the impacts of each crop on air quality and climate are compared. Overall, the high emitting crops (eucalyptus and giant reed) were found to produce climate and human health costs totaling up to 40% of the value of CO 2 emissions prevented, while the related costs of the lowest-emitting crop (switchgrass) were negligible.

  16. Transpiration and crop yields

    NARCIS (Netherlands)

    Wit, de C.T.

    1958-01-01

    Theoretical and practical aspects of the transpiration of crops in the field are discussed and he concludes that the relationship between transpiration and total dry matter production is much less affected by growing conditions than has been supposed. In semi-arid and arid regions, this relationship

  17. Cropping Systems and Climate Change in Humid Subtropical Environments

    Directory of Open Access Journals (Sweden)

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  18. Impact of climate variability on various Rabi crops over Northwest India

    Science.gov (United States)

    Nageswararao, M. M.; Dhekale, B. S.; Mohanty, U. C.

    2018-01-01

    The Indian agriculture with its two prominent cropping seasons [summer ( Kharif) and winter ( Rabi)] is the mainstay of the rural economy. Northwest India (NWI) is an important region for the cultivation of Rabi crops grown during the period from October to April. In the present study, state wise impact analysis is carried out to ascertain the influence of climate indices Nino3.4 region Sea Surface Temperature (SST), Southern Oscillation Index (SOI), Arctic Oscillation (AO), North Atlantic Oscillation (NAO) and local precipitation, soil moisture, minimum ( T min), maximum ( T max) and mean ( T mean) temperatures on different Rabi crops (wheat, gram, rapeseed-mustard, oilseeds, and total Rabi food grains) over NWI during the years 1966-2011. To study the impact of climate variability on different Rabi crops, firstly, the influence of technology on the productivity of these crops has been removed by using linear function, as linear trend has noticed in all the time series. Correlation analysis provides an indication of the influence of local precipitation, soil moisture, T min, T max and T mean and some of its potential predictors (Nino3.4 region SST, SOI, AO, and NAO) on the productivity of different Rabi crops. Overall impact analysis indicates that the productivity of different Rabi crops in most of the places of NWI is most likely influenced by variability in local temperatures. Moreover, Nino3.4 region SST (SOI) positively (negatively) affects the productivity of gram, rapeseed-mustard, and total Rabi oilseeds in most of the states. The results of this study are useful in determining the strategies for increasing sustainable production through better agronomic practices.

  19. Survey of Viruses Affecting Legume Crops in the Amhara and Oromia Regions of Ethiopia

    Directory of Open Access Journals (Sweden)

    B. Bekele

    2005-12-01

    Full Text Available Field surveys were undertaken to identify the viral diseases affecting lentil, faba bean, chickpea, pea, fenugreek and grass pea in two regions of Ethiopia. The surveys were conducted in the regions of Amhara (Gonder and Gojam administrative zones and Oromia (Bale administrative zone during the 2003/2004 and 2004/2005 growing seasons, respectively. The survey covered 138 randomly selected fields (48 faba bean, 10 pea, 38 grass pea, 34 chickpea, 8 lentil in the Amhara region, and 51 legume fields (29 faba bean, 12 pea, 3 lentil, 5 fenugreek, 2 chickpea in the Oromia region. Virus disease incidence was determined by laboratory testing of 100–200 randomly-collected samples from each field against the antisera of 12 legume viruses. Of the 189 fields surveyed, 121 and 7 had, at the time of the survey, a virus disease incidence of 1% or less and more than 6%, respectively, based on visual inspection in the field; later laboratory testing showed that the number of fields in these two categories was in fact 99 and 56, respectively. Serological tests indicated that the most important viruses in the Amhara region were Faba bean necrotic yellows virus (FBNYV, Bean yellow mosaic virus (BYMV, Pea seed-borne mosaic virus (PSbMV and the luteoviruses [e.g. Beet western yellows virus (BWYV, Bean leaf roll virus (BLRV, Soybean dwarf virus (SbDV]. By contrast, only FBNYV and the luteoviruses were detected in the Oromia region. Other viruses, such as Broad bean mottle virus (BBMV and Alfalfa mosaic virus (AMV, were rarely detected in the Amhara region. This is the first report in Ethiopia of natural infection of faba bean, pea and fenugreek with SbDV, of fenugreek with BWYV, and of grass pea with BYMV, PSbMV and BWYV, and it is also the first recorded instance of BBMV infecting legume crops in Ethiopia.

  20. Addressing crop interactions within cropping systems in LCA

    DEFF Research Database (Denmark)

    Goglio, Pietro; Brankatschk, Gerhard; Knudsen, Marie Trydeman

    2018-01-01

    objectives of this discussion article are as follows: (i) to discuss the characteristics of cropping systems which might affect the LCA methodology, (ii) to discuss the advantages and the disadvantages of the current available methods for the life-cycle assessment of cropping systems, and (iii) to offer...... management and emissions, and (3) functional unit issues. The LCA approaches presented are as follows: cropping system, allocation approaches, crop-by-crop approach, and combined approaches. The various approaches are described together with their advantages and disadvantages, applicability...... considers cropping system issues if they are related to multiproduct and nutrient cycling, while the crop-by-crop approach is highly affected by assumptions and considers cropping system issues only if they are related to the analyzed crop. Conclusions Each LCA approach presents advantages and disadvantages...

  1. Water Savings of Crop Redistribution in the United States

    Directory of Open Access Journals (Sweden)

    Kyle Frankel Davis

    2017-01-01

    Full Text Available Demographic growth, changes in diet, and reliance on first-generation biofuels are increasing the human demand for agricultural products, thereby enhancing the human pressure on global freshwater resources. Recent research on the food-water nexus has highlighted how some major agricultural regions of the world lack the water resources required to sustain current growth trends in crop production. To meet the increasing need for agricultural commodities with limited water resources, the water use efficiency of the agricultural sector must be improved. In this regard, recent work indicates that the often overlooked strategy of changing the crop distribution within presently cultivated areas offers promise. Here we investigate the extent to which water in the United States could be saved while improving yields simply by replacing the existing crops with more suitable ones. We propose crop replacement criteria that achieve this goal while preserving crop diversity, economic value, nitrogen fixation, and food protein production. We find that in the United States, these criteria would greatly improve calorie (+46% and protein (+34% production and economic value (+208%, with 5% water savings with respect to the present crop distribution. Interestingly, greater water savings could be achieved in water-stressed agricultural regions of the US such as California (56% water savings, and other western states.

  2. Declining groundwater level caused by irrigation to row crops in the Lower Mississippi River Basin, Current Situation and Trends

    Science.gov (United States)

    Feng, G.; Gao, F.; Ouyang, Y.

    2017-12-01

    The Mississippi River is North America's largest river and the second largest watershed in the world. It flows over 3,700 km through America's heartland to the Gulf of Mexico. Over 3 million hectares in the Lower Mississippi River Basin represent irrigated cropland and 90 percent of those lands currently rely on the groundwater supply. The primary crops grown in this region are soybean, corn, cotton, and rice. Increased water withdrawals for irrigating those crops and stagnant recharging jeopardize the long-term availability of the aquifer and place irrigation agriculture in the region on an unsustainable path. The objectives of this study were to: 1) analyze the current groundwater level in the Lower Mississippi River Basin based on the water table depth observed by Yazoo Mississippi Delta Joint Water Management District from 2000 and 2016; 2) determine trends of change in groundwater level under conventional and groundwater saving irrigation management practices (ET or soil moisture based full irrigation scheduling using all groundwater or different percentages of ground and surface water). The coupled SWAT and MODFLOW model was applied to investigate the trends. Observed results showed that the groundwater level has declined from 33 to 26 m at an annual decrease rate of 0.4 m in the past 17 years. Simulated results revealed that the groundwater storage was decreased by 26 cm/month due to irrigation in crop season. It is promising that the groundwater storage was increased by 23 cm/month, sometimes even 60 cm/month in crop off-growing season because of recharge from rainfall. Our results suggest that alternative ET or soil moisture based groundwater saving irrigation scheduling with conjunctive use of surface water is a sustainable practice for irrigated agriculture in in the Lower Mississippi River Basin.

  3. Household cereal crop harvest and children's nutritional status in rural Burkina Faso.

    Science.gov (United States)

    Belesova, Kristine; Gasparrini, Antonio; Sié, Ali; Sauerborn, Rainer; Wilkinson, Paul

    2017-06-20

    Reduction of child undernutrition is one of the Sustainable Development Goals for 2030. Achievement of this goal may be made more difficult in some settings by climate change through adverse impact on agricultural productivity. However, there is only limited quantitative evidence on the link between household crop harvests and child nutrition. We examined this link in a largely subsistence farming population in rural Burkina Faso. Data on the middle-upper arm circumference (MUAC) of 975 children ≤5 years of age, household crop yields, and other parameters were obtained from the Nouna Health and Demographic Surveillance System. Multilevel modelling was used to assess the relationship between MUAC and the household crop harvest in the year 2009 estimated in terms of kilocalories per adult equivalent per day (kcal/ae/d). Fourteen percent of children had a MUAC change.

  4. Assessment the Economic Damage of Inter-Basin Water Transfer on Cropping Pattern and Farmers’ Income Situation in the Origin Basin (Case Study: Water Transfer of Alamoutrood to Qazvin Plain

    Directory of Open Access Journals (Sweden)

    A. Parhizkari

    2016-03-01

    three-step procedure which in it a non-linear (Quadratic cost function is calibrated to observed values of inputs applied in agricultural production. In the basic formulation, the first step is a linear program providing marginal values that are used in the second step to estimate the parameters for a non-linear cost function and a production function. In the third step, the calibrated production and cost functions are used in a non-linear optimisation program. The solution to this non-linear program calibrates to observed values of production inputs and output. The required data in this study are related to the cropping year of 2013-2014 of Qazvin province. Results and Discussion: The obtained results in this study showed that inter-basin water transfer of Alamoutrood to Qazvin plain resulted in using 10 to 40 percent the supply of irrigation water leads to reduction of cropping pattern from 1/71 to 5/52 percent in Eastern Alamut Rodbar and from 2/17 to 6/32 percent in Western Alamut Rodbar. The above restriction after inter-basin water transfer of Alamoutrood to Qazvin plain leads to reduction of farmers gross profit from 2/58 to 8/21 percent in Eastern Alamut Rodbar and from 3/18 to 9/82 percent in Western Alamut Rodbar. In addition, the results of this study showed that inter-basin water transfer of Alamoutrood to Qazvin plain affects the economic value of each cubic meter of irrigation water in the origin basin (Alamout region and leads to increase it from 3/23 to 31/1 percent in Eastern Alamut Rodbar and from 4/09 to 14/0 percent in Western Alamut Rodbar. Moreover, the results of this study showed that farmers irrigation water demand function in Alamout region changes after inter-basin water transfer of Alamoutrood to Qazvin plain and farmers are compelled to buy every cubic meter of irrigation water at higher price compared to the current situation (before inter-basin transfer of water. Increasing of the rural people emigration, urbanization development

  5. Compatibility of switchgrass as an energy crop in farming systems of the southeastern USA

    Energy Technology Data Exchange (ETDEWEB)

    Bransby, D.I.; Rodriguez-Kabana, R.; Sladden, S.E. [Auburn Univ., AL (United States)

    1993-12-31

    The objective of this paper is to examine the compatibility of switchgrass as an energy crop in farming systems in the southeastern USA, relative to other regions. In particular, the issues addressed are (1) competition between switchgrass as an energy crop and existing farm enterprises, based primarily on economic returns, (2) complementarity between switchgrass and existing farm enterprises, and (3) environmental benefits. Because projected economic returns for switchgrass as an energy crop are highest in the Southeast, and returns from forestry and beef pastures (the major existing enterprises) are low, there is a very strong economic incentive in this region. In contrast, based on current information, economic viability of switchgrass as an energy crop in other regions appears doubtful. In addition, switchgrass in the southeastern USA would complement forage-livestock production, row crop production and wildlife and would provide several additional environmental benefits. It is concluded that the southeastern USA offers the greatest opportunity for developing switchgrass as an economically viable energy crop.

  6. Using Imaging Spectrometry to Approach Crop Classification from a Water Management Perspective

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.

    2017-12-01

    We use hyperspectral remote sensing imagery to classify crops in the Central Valley of California at a level that would be of use to water managers. In California irrigated agriculture uses 80 percent of the state's water supply with differences in water application rate varying by as large as a factor of three, dependent on crop type. Therefore, accurate water resource accounting is dependent upon accurate crop mapping. While on-the-ground crop accounting at the county level requires significant labor and time inputs, remote sensing has the potential to map crops over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometry with its wide spectral range has the ability to detect small spectral differences at the field-level scale that may be indiscernible to multispectral sensors such as Landsat. In this study, crops in the Central Valley were classified into nine categories defined and used by the California Department of Water Resources as having similar water usages. We used the random forest classifier on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery from June 2013, 2014 and 2015 to analyze accuracy of multi-temporal images and to investigate the extent to which cropping patterns have changed over the course of the 2013-2015 drought. Initial results show accuracies of over 90% for all three years, indicating that hyperspectral imagery has the potential to identify crops by water use group at a single time step with a single sensor, allowing cropping patterns to be monitored in anticipation of water needs.

  7. Characterization of protein and carbohydrate mid-IR spectral features in crop residues

    Science.gov (United States)

    Xin, Hangshu; Zhang, Yonggen; Wang, Mingjun; Li, Zhongyu; Wang, Zhibo; Yu, Peiqiang

    2014-08-01

    To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.

  8. Team-up Crop Diversification and Weed Management: PRODIVA

    DEFF Research Database (Denmark)

    Gerowitt, B.; Melander, B.; Krawczyk, R.

    2015-01-01

    The research-network PRODIVA focuses on a better utilization of crop diversification for weed management in North European arable cropping systems. The goal is to maintain diverse arable weed vegetation that is manageable in the long-term and could fulfil other necessary systemfunctions including...... support of beneficial organisms. The partners in PRODIVA will synthesize knowledge from terminated and running research projects and set-up selected new experiments on cover crops and variety resp. crop mixtures. Moreover, we will interact with partners from farming practice and extension services...... in organic agriculture. Regional fields will be surveyed for weeds to safeguard the relevance of the experimental research. Current cropping practices and their influence on weed pressure and weed diversity will be identified. The project will involve relevant stakeholders from the participating countries...

  9. Percent Wetland Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  10. Using the GENESYS model quantifying the effect of cropping systems on gene escape from GM rape varieties to evaluate and design cropping systems

    Directory of Open Access Journals (Sweden)

    Colbach Nathalie

    2004-01-01

    Full Text Available Gene flow in rapeseed is a process taking place both in space and over the years and cannot be studied exclusively by field trials. Consequently, the GENESYS model was developed to quantify the effects of cropping systems on transgene escape from rapeseed crops to rapeseed volunteers in neighbour plots and in the subsequent crops. In the present work, this model was used to evaluate the risk of rape harvest contamination by extraneous genes in various farming systems in case of co-existing GM, conventional and organic crops. When 50 % of the rape varieties in the region were transgenic, the rate of GM seeds in non-GM crop harvests on farms with large fields was lower than the 0.9 % purity threshold proposed by the EC for rape crop production (food and feed harvests, but on farms with smaller fields, the threshold was exceeded. Harvest impurity increased in organic farms, mainly because of their small field size. The model was then used to evaluate the consequences of changes in farming practices and to identify those changes reducing harvest contamination. The effects of these changes depended on the field pattern and farming system. The most efficient practices in limiting harvest impurity comprised improved set-aside management by sowing a cover crop in spring on all set-aside fields in the region, permanently banning rape crops and set-aside around seed production fields and (for non-GM farmers clustering farm fields to reduce gene inflow from neighbour fields.

  11. Modelling nutrient management in tropical cropping systems

    OpenAIRE

    Delve, R. (ed.); Probert, M. (ed.)

    2004-01-01

    Metadata only record In tropical regions, organic materials are often more important than fertilizers in maintaining soil fertility, yet fertilizer recommendations and most crop models are unable to take account of the level and quality of organic inputs that farmers use. Computer simulation models, such as the Agricultural Production Systems Simulator (APSIM) developed by CSIRO and the Queensland Department of Primary Industries, have proven their value in many cropping environments. Thes...

  12. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  13. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    Science.gov (United States)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2018-06-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  14. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    Science.gov (United States)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2017-07-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  15. FUZZY LOGIC BASED HYBRID RECOMMENDER OF MAXIMUM YIELD CROP USING SOIL, WEATHER AND COST

    Directory of Open Access Journals (Sweden)

    U Aadithya

    2016-07-01

    Full Text Available Our system is designed to predict best suitable crops for the region of farmer. It also suggests farming strategies for the crops such as mixed cropping, spacing, irrigation, seed treatment, etc. along with fertilizer and pesticide suggestions. This is done based on the historic soil parameters of the region and by predicting cost of crops and weather. The system is based on fuzzy logic which gets input from an Artificial Neural Network (ANN based weather prediction module. An Agricultural Named Entity Recognition (NER module is developed using Conditional Random Field (CRF to extract crop conditions data. Further, cost prediction is done based on Linear Regression equation to aid in ranking the crops recommended. Using this approach we achieved an F-Score of 54% with a precision of 77% thus accounting for the correctness of crop production.

  16. Inspiration: One Percent and Rising

    Science.gov (United States)

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop…

  17. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    Science.gov (United States)

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  18. Some ecological and socio-economic considerations for biomass energy crop production

    International Nuclear Information System (INIS)

    Paine, L.K.; Undersander, D.J.; Temple, S.A.; Klemme, R.M.; Peterson, T.L.; Bartelt, G.A.; Sample, D.W.; Rineer, K.C.

    1996-01-01

    The purpose of this paper is to suggest a regional approach to ensure that energy crop production will proceed in an ecologically and economically sustainable way. At this juncture, we have the opportunity to build into the system some ecological and socio-economic values which have not traditionally been considered. If crop species are chosen and sited properly, incorporation of energy crops into our agricultural system could provide extensive wildlife habitat and address soil and water quality concerns, in addition to generating renewable power. We recommend that three types of agricultural land be targeted for perennial biomass energy crops: (1) highly erodible land; (2) wetlands presently converted to agricultural uses; and (3) marginal agricultural land in selected regions. Fitting appropriate species to these lands, biomass crops can be successfully grown on lands not ecologically suited for conventional farming practices, thus providing an environmental benefit in addition to producing an economic return to the land owner. (author)

  19. Selection on crop-derived traits and QTL in sunflower (Helianthus annuus) crop-wild hybrids under water stress.

    Science.gov (United States)

    Owart, Birkin R; Corbi, Jonathan; Burke, John M; Dechaine, Jennifer M

    2014-01-01

    Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.

  20. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  1. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  2. Modifying agricultural crops for improved nutrition.

    Science.gov (United States)

    McGloughlin, Martina Newell

    2010-11-30

    The first generation of biotechnology products commercialized were crops focusing largely on input agronomic traits whose value was often opaque to consumers. The coming generations of crop plants can be grouped into four broad areas each presenting what, on the surface, may appear as unique challenges and opportunities. The present and future focus is on continuing improvement of agronomic traits such as yield and abiotic stress resistance in addition to the biotic stress tolerance of the present generation; crop plants as biomass feedstocks for biofuels and "bio-synthetics"; value-added output traits such as improved nutrition and food functionality; and plants as production factories for therapeutics and industrial products. From a consumer perspective, the focus on value-added traits, especially improved nutrition, is undoubtedly one of the areas of greatest interest. From a basic nutrition perspective, there is a clear dichotomy in demonstrated need between different regions and socioeconomic groups, the starkest being inappropriate consumption in the developed world and under-nourishment in Less Developed Countries (LDCs). Dramatic increases in the occurrence of obesity and related ailments in affluent regions are in sharp contrast to chronic malnutrition in many LDCs. Both problems require a modified food supply, and the tools of biotechnology have a part to play. Developing plants with improved traits involves overcoming a variety of technical, regulatory and indeed perception hurdles inherent in perceived and real challenges of complex traits modifications. Continuing improvements in molecular and genomic technologies are contributing to the acceleration of product development to produce plants with the appropriate quality traits for the different regions and needs. Crops with improved traits in the pipeline, the evolving technologies and the opportunities and challenges that lie ahead are covered. Copyright © 2010. Published by Elsevier B.V.

  3. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems

    Directory of Open Access Journals (Sweden)

    Moritz eReckling

    2016-05-01

    Full Text Available Europe’s agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2 % of the arable land and more than 70 % of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 % and 33 % and N fertilizer use by 24 % and 38 % in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22 % in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.

  4. The green, blue and grey water footprint of crops and derived crop products

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  5. Increased food production and reduced water use through optimized crop distribution

    Science.gov (United States)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo

    2017-12-01

    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

  6. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  7. Winter Crop Mapping for Improving Crop Production Estimates in Argentina Using Moderation Resolution Satellite Imagery

    Science.gov (United States)

    Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.

    2017-12-01

    Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.

  8. Estimating crop yields and crop evapotranspiration distributions from remote sensing and geospatial agricultural data

    Science.gov (United States)

    Smith, T.; McLaughlin, D.

    2017-12-01

    Growing more crops to provide a secure food supply to an increasing global population will further stress land and water resources that have already been significantly altered by agriculture. The connection between production and resource use depends on crop yields and unit evapotranspiration (UET) rates that vary greatly, over both time and space. For regional and global analyses of food security it is appropriate to treat yield and UET as uncertain variables conditioned on climatic and soil properties. This study describes how probability distributions of these variables can be estimated by combining remotely sensed land use and evapotranspiration data with in situ agronomic and soils data, all available at different resolutions and coverages. The results reveal the influence of water and temperature stress on crop yield at large spatial scales. They also provide a basis for stochastic modeling and optimization procedures that explicitly account for uncertainty in the environmental factors that affect food production.

  9. COMPLEX OF PATHOGENES ON VEGETABLE CROPS IN CONDITION OF CENTRAL REGION OF RUSSIA

    Directory of Open Access Journals (Sweden)

    L. T. Timina

    2015-01-01

    Full Text Available As a result of monitoring of causative agents of diseases of vegetable crops and studying of its species specification, the genus and species of fungi and bacteria, were found. Previously unknown in the Central region of Russia pathogens of carrot were identified: Sclerotinia nevales, Gleocladium roseum, Verticillium spp, Trichotecium roseum, Streptomyces scabies, F. nivale, F. chlamidosporum, F. equiseti, F. proliferatum, Chaetomium spp., Erysiphe umbelliferum, Erwinia carotovora. Main causative agents of diseases  of carrot during storage were also described: Alternaria infectoria, A. alternatа, A. arborescens, A. radicina, A. cheiranthi, A. corotiincultae, A. cinerariae, Embellisia spp., Nimbia spp., Cladosporium spp. It was found new pathogen for onion (Aspergillus niger, garlic (Fusarium semitectum, F. subglutinans, F. proliferatum, F.avenacium, red beet (Typhula ishikariensis, and radish (Drechslera Bondartseva.

  10. Remote sensing based crop type mapping and evapotranspiration estimates at the farm level in arid regions of the globe

    Science.gov (United States)

    Ozdogan, M.; Serrat-Capdevila, A.; Anderson, M. C.

    2017-12-01

    Despite increasing scarcity of freshwater resources, there is dearth of spatially explicit information on irrigation water consumption through evapotranspiration, particularly in semi-arid and arid geographies. Remote sensing, either alone or in combination with ground surveys, is increasingly being used for irrigation water management by quantifying evaporative losses at the farm level. Increased availability of observations, sophisticated algorithms, and access to cloud-based computing is also helping this effort. This presentation will focus on crop-specific evapotranspiration estimates at the farm level derived from remote sensing in a number of water-scarce regions of the world. The work is part of a larger effort to quantify irrigation water use and improve use efficiencies associated with several World Bank projects. Examples will be drawn from India, where groundwater based irrigation withdrawals are monitored with the help of crop type mapping and evapotranspiration estimates from remote sensing. Another example will be provided from a northern irrigation district in Mexico, where remote sensing is used for detailed water accounting at the farm level. These locations exemplify the success stories in irrigation water management with the help of remote sensing with the hope that spatially disaggregated information on evapotranspiration can be used as inputs for various water management decisions as well as for better water allocation strategies in many other water scarce regions.

  11. Determination of actual crop evapotranspiration (ETc) and dual crop coefficients (Kc) for cotton, wheat and maize in Fergana Valley: integration of the FAO-56 approach and BUDGET

    Science.gov (United States)

    Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina

    2014-05-01

    Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.

  12. Climate Change Impacts on Crop Production in Nigeria

    Science.gov (United States)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  13. African Crop Science Journal: Editorial Policies

    African Journals Online (AJOL)

    The African Crop Science Journal was established with the primary objective of ... and all those concerned with agricultural development issues in the region. .... as possible, the editors avoid appointing reviewers from the country of origin of ...

  14. Optimization of the cropping pattern in Egypt

    Directory of Open Access Journals (Sweden)

    Sara Osama

    2017-12-01

    Full Text Available Continuous increase of population in Egypt, limited fresh water, poor maintenance and low efficiency of irrigation systems lead to a real burden on the Egyptian natural water resources. Accordingly, for Egypt, land and water resources management is considered an absolutely strategic priority. In this study, a linear optimization model is developed to maximize the net annual return from the three old regions of Egypt. Data for 28 crops in five years from 2008 to 2012 are being analyzed. The spatial variations of crops, irrigation water needs, crop yields and food requirements are incorporated in the model. The results show that there is a significant reduction in the allocated areas for onion, garlic, barley, flax, fenugreek, chickpeas, lentil and lupine since they are considered as non-strategic crops. On the other side, the allocated areas for strategic crops such as wheat, maize, clover, rice, sugar products and cotton remained almost the same to satisfy their actual food requirements. However, crops with high net returns such as tomatoes have increased substantially. The trend for the gross net benefit is decreasing and is expected to reach a lower value in year 2017. Different approaches and scenarios are analyzed. The developed model proposes a change in the cropping pattern in the old lands of Egypt to increase the gross net return without adding further any other expenses. Keywords: Cropping pattern, Linear programming, Net return, Optimization

  15. Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California

    Science.gov (United States)

    Fulton, A.; Snyder, R.; Hillyer, C.; English, M.; Sanden, B.; Munk, D.

    2012-04-01

    Enhancing Adoption of Irrigation Scheduling to Sustain the Viability of Fruit and Nut Crops in California Allan Fulton, Richard Snyder, Charles Hillyer, Marshall English, Blake Sanden, and Dan Munk Adoption of scientific methods to decide when to irrigate and how much water to apply to a crop has increased over the last three decades in California. In 1988, less than 4.3 percent of US farmers employed some type of science-based technique to assist in making irrigation scheduling decisions (USDA, 1995). An ongoing survey in California, representing an industry irrigating nearly 0.4 million planted almond hectares, indicates adoption rates ranging from 38 to 55 percent of either crop evapotranspiration (ETc), soil moisture monitoring, plant water status, or some combination of these irrigation scheduling techniques to assist with making irrigation management decisions (California Almond Board, 2011). High capital investment to establish fruit and nut crops, sensitivity to over and under-irrigation on crop performance and longevity, and increasing costs and competition for water have all contributed to increased adoption of scientific irrigation scheduling methods. These trends in adoption are encouraging and more opportunities exist to develop improved irrigation scheduling tools, especially computer decision-making models. In 2009 and 2010, an "On-line Irrigation Scheduling Advisory Service" (OISO, 2012), also referred to as Online Irrigation Management (IMO), was used and evaluated in commercial walnut, almond, and French prune orchards in the northern Sacramento Valley of California. This specific model has many features described as the "Next Generation of Irrigation Schedulers" (Hillyer, 2010). While conventional irrigation management involves simply irrigating as needed to avoid crop stress, this IMO is designed to control crop stress, which requires: (i) precise control of crop water availability (rather than controlling applied water); (ii) quantifying crop

  16. Agroclimatic zoning for urucum crops in the state of Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Lucas Eduardo de Oliveira Aparecido

    2017-12-01

    Full Text Available ABSTRACT Hardier crops are needed in the arid regions of the Brazilian state of Minas Gerais, and annatto (Bixa orellana L. is a good candidate. Producers, however, do not know if their areas are suitable for its cultivation and so are not investing in its implementation. Agroclimatic zoning would provide guidance to the producers. Identifying potential areas for the production of this crop would thus contribute to the agroclimatic zoning of B. orellana in Minas Gerais. We collected data for air temperature and precipitation from 852 meteorological stations in the state to classify regions as suitable, marginally suitable, or unsuitable for the crop. Suitable regions had an air temperature between 22 and 27 °C and precipitation between 800 and 1600 mm.y-1. Marginally suitable regions had an air temperature between 22 and 27 °C and precipitation less than 800 mm.y-1. Unsuitable regions had air temperature less than 22 °C or greater than 27 °C. A geographic information system was used for the spatial interpolation of air temperature and precipitation for all meteorological stations using kriging. The agroclimatic zoning of annatto crops for Minas Gerais was obtained by interpolating the two maps, air temperature and precipitation. Minas Gerais has great potential for urucum production, and agroclimatic zoning enabled the classification of regions by climatic suitability. The northern, western, northwestern, and part of the eastern regions of Minas Gerais have favourable climates suitable for the cultivation of B. orellana.

  17. Development of estimation method for crop yield using MODIS satellite imagery data and process-based model for corn and soybean in US Corn-Belt region

    Science.gov (United States)

    Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.

    2012-12-01

    . For the case of 280 DOY, Crop yield estimation showed better accuracy for soybean at county level. Though the case of 200 DOY resulted in less accuracy (i.e. 20% mean bias), it provides a useful tool for early forecasting of crop yield. We improved the spatial accuracy of estimated crop yield at county level by developing county-specific crop conversion coefficient. Our results indicate that the aboveground crop biomass can be estimated successfully with the simple LUE and respiration models combined with MODIS data and then, county-specific conversion coefficient can be different with each other across different counties. Hence, applying region-specific conversion coefficient is necessary to estimate crop yield with better accuracy.

  18. Effect of pre-sowing soil tillage for wheat on the crop structure and the yield components in Dobrudzha region

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2017-06-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute on slightly leached chernozem soil. In order to clarify the effect of some types of pre-sowing soil tillage for wheat on the crop structure and certain yield components, the following variants of a stationary field experiment were analyzed: double disking at depth 10-12 cm (check variant; ploughing at 14-16 cm + disking; no-tillage (direct sowing – pre-sowing treatment of the area with total herbicides. Wheat was sown after previous crop grain maize and was fertilized with N P K . Wheat cultivar Enola was planted at norm 550 germinating 140 120 80 2 seeds/m . The number of emerging wheat plants was read using square sampling frames sized 50 cm x 50 cm. Using the same sampling frames, the tillering in autumn prior to the wintering of the crops was followed, and in spring – prior to booting stage. The number of productive tillers was also read using these sampling frames. To determine the length of spike, the number of grains in it, and their weight, 30 spikes from 8 replications of each variant were analyzed. The emerging of the wheat plants, under the conditions of slightly leached chernozem soil in Dobrudzha region, was more uniform after sowing following disking, and after direct sowing. The minimal pre-sowing tillage and no-tillage for wheat ensured better autumn development of the crop and the plants. In these variants, higher number of overwintering plants and productive tillers per unit area were registered. Spike length was the highest after ploughing as pre-sowing tillage. Significant variations in the number of grains per spike of the investigated variants were not found. Grain weight per spike was the lowest under direct sowing.

  19. Profitability Analysis of Selected Farms in the Batinah Region of Oman

    Directory of Open Access Journals (Sweden)

    Slim Zekri

    2007-01-01

    Full Text Available The agricultural sector of Oman represents less than 2% of the total GDP and uses 88% of the fresh water. Several decision makers are questioning whether the agricultural activity in the Sultanate of Oman can be sustained and if so what type of crops should be encouraged. More than 53% of the agricultural cropped area is situated in the Batinah coastal area where farming is exclusively based on groundwater pumping. A sample of 49 market-oriented farms from the Batinah region was surveyed during 2006. Four types of farms were considered. Results showed that the most profitable farms are mixing fodder crops and vegetables with a net margin of 1,412 RO/ha/year. The less profitable farms are based on tree crops and vegetables with a net margin of 847 RO/ha/year. For vegetables the most profitable crop is tomato with an average net margin of 2,580 RO/ha/year with a standard deviation of 2,043 RO/ha/year and the least profitable crop is cabbage with 113 RO/ha/ year with a standard deviation of 182 RO/ha/year. The net margin of crops grown under drip irrigation is higher than that for crops under furrow irrigation, with a difference of 548 RO/ha/year. Farms equipped with such modern irrigation systems tend to irrigate almost the same area in winter as in summer, while farms under furrow irrigation crop less than one percent of their cropped area during summer compared to winter. Consequently and contrary to expectations, modern irrigation systems tend to increase, rather than reduce, groundwater pumping given the financial incentives for farmers to grow summer vegetables instead of only winter vegetables. Even so, the net water use efficiency is greater for vegetable production under drip irrigation than it is for fodder production. The figures show that, on average, farming in the Batinah is financially profitable for the types of farm considered in this study. However, profitability varies widely between different farms and crops. The reasons for

  20. Effects of temporal changes in climate variables on crop production ...

    African Journals Online (AJOL)

    Climate variability and change have been implicated to have significant impacts on global and regional food production particularly the common stable food crops performance in tropical sub-humid climatic zone. However, the extent and nature of these impacts still remain uncertain. In this study, records of crop yields and ...

  1. Influence of cover crop treatments on the performance of a vineyard in a humid region

    Energy Technology Data Exchange (ETDEWEB)

    Trigo-Córdoba, E.; Bouzas-Cid, Y.; Orriols-Fernández, I.; Díaz-Losada, E.; Mirás-Avalos, J.M.

    2015-07-01

    Vineyards are usually managed by tilling the inter-rows to avoid competition from other plants for soil water and nutrients. However, in humid and sub-humid climates, such as that of NW Spain, cover crops may be an advantage for controlling vine vegetative growth and improving berry composition, while reducing management costs. The current study was conducted over three consecutive growing seasons (2012-2014) to assess the effects of establishing three permanent cover crop treatments on water relations, vine physiology, yield and berry composition of a vineyard of the red cultivar ‘Mencía’ (Vitis vinifera L.) located in Leiro, Ourense. Treatments consisted of four different soil management systems: ST, soil tillage; NV, native vegetation; ER, English ryegrass (Lolium perenne L.); and SC, subterranean clover (Trifolium subterraneum L.). Midday stem water potential was more negative in the native vegetation treatment, causing significant reductions in leaf stomatal conductance on certain dates. Total vine leaf area and pruning weight was reduced in the cover crop treatments in the last year of the experiment. Yield was unaffected by the presence of a cover crop. No significant differences among treatments were observed for berry composition; however, wines were positively affected by the SC treatment (higher tannin content and colour intensity and lower malic acid concentration when compared with ST). Wines from the cover crop treatments were preferred by taste panelists. These results indicate that in humid climates cover crop treatments can be useful for reducing vine vegetative growth without compromising yield and berry quality. (Author)

  2. Methods to estimate irrigated reference crop evapotranspiration - a review.

    Science.gov (United States)

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  3. Alternative crops

    International Nuclear Information System (INIS)

    Andreasen, L.M.; Boon, A.D.

    1992-01-01

    Surplus cereal production in the EEC and decreasing product prices, mainly for cereals, has prompted considerable interest for new earnings in arable farming. The objective was to examine whether suggested new crops (fibre, oil, medicinal and alternative grains crops) could be considered as real alternatives. Whether a specific crop can compete economically with cereals and whether there is a market demand for the crop is analyzed. The described possibilities will result in ca. 50,000 hectares of new crops. It is expected that they would not immediately provide increased earnings, but in the long run expected price developments are more positive than for cereals. The area for new crops will not solve the current surplus cereal problem as the area used for new crops is only 3% of that used for cereals. Preconditions for many new crops is further research activities and development work as well as the establishment of processing units and organizational initiatives. Presumably, it is stated, there will then be a basis for a profitable production of new crops for some farmers. (AB) (47 refs.)

  4. Estimating the Impact and Spillover Effect of Climate Change on Crop Yield in Northern Ghana.

    Science.gov (United States)

    Botchway, E.

    2016-12-01

    In tropical regions of the world human-induced climate change is likely to impact negatively on crop yields. To investigate the impact of climate change and its spillover effect on mean and variance of crop yields in northern Ghana, the Just and Pope stochastic production function and the Spatial Durbin model were adopted. Surprisingly, the results suggest that both precipitation and average temperature have positive effects on mean crop yield during the wet season. Wet season average temperature has a significant spillover effect in the region, whereas precipitation during the wet season has only one significant spillover effect on maize yield. Wet season precipitation does not have a strong significant effect on crop yield despite the rainfed nature of agriculture in the region. Thus, even if there are losers and winners as a result of future climate change at the regional level, future crop yield would largely depend on future technological development in agriculture, which may improve yields over time despite the changing climate. We argue, therefore, that technical improvement in farm management such as improved seeds and fertilizers, conservation tillage and better pest control, may have a more significant role in increasing observed crop productivity levels over time. So investigating the relative importance of non-climatic factors on crop yield may shed more light on where appropriate interventions can help in improving crop yields. Climate change, also, needs to be urgently assessed at the level of the household, so that poor and vulnerable people dependent on agriculture can be appropriately targeted in research and development activities whose object is poverty alleviation.

  5. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  6. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types

    International Nuclear Information System (INIS)

    Bhujbal, B.M.; Mistry, K.B.; Chapke, V.G.; Mutatkar, V.K.

    1977-01-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers. (author)

  7. Impact of the spatial resolution of climatic data and soil physical properties on regional corn yield predictions using the STICS crop model

    Science.gov (United States)

    Jégo, Guillaume; Pattey, Elizabeth; Mesbah, S. Morteza; Liu, Jiangui; Duchesne, Isabelle

    2015-09-01

    The assimilation of Earth observation (EO) data into crop models has proven to be an efficient way to improve yield prediction at a regional scale by estimating key unknown crop management practices. However, the efficiency of prediction depends on the uncertainty associated with the data provided to crop models, particularly climatic data and soil physical properties. In this study, the performance of the STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) crop model for predicting corn yield after assimilation of leaf area index derived from EO data was evaluated under different scenarios. The scenarios were designed to examine the impact of using fine-resolution soil physical properties, as well as the impact of using climatic data from either one or four weather stations across the region of interest. The results indicate that when only one weather station was used, the average annual yield by producer was predicted well (absolute error <5%), but the spatial variability lacked accuracy (root mean square error = 1.3 t ha-1). The model root mean square error for yield prediction was highly correlated with the distance between the weather stations and the fields, for distances smaller than 10 km, and reached 0.5 t ha-1 for a 5-km distance when fine-resolution soil properties were used. When four weather stations were used, no significant improvement in model performance was observed. This was because of a marginal decrease (30%) in the average distance between fields and weather stations (from 10 to 7 km). However, the yield predictions were improved by approximately 15% with fine-resolution soil properties regardless of the number of weather stations used. The impact of the uncertainty associated with the EO-derived soil textures and the impact of alterations in rainfall distribution were also evaluated. A variation of about 10% in any of the soil physical textures resulted in a change in dry yield of 0.4 t ha-1. Changes in rainfall distribution

  8. Effects of Weather Variability on Crop Abandonment

    Directory of Open Access Journals (Sweden)

    Kelvin Mulungu

    2015-03-01

    Full Text Available In Zambia, every year some parts of the maize fields are abandoned post-planting. Reasons for this are not clearly known. In this paper, we examine the influence of soil and climatic factors on crop abandonment using a six-year (2007–2012 panel data by modeling the planted-to-harvested ratio (a good indicator of crop abandonment using a fractional and linear approach. Therefore, for the first time, our study appropriately (as supported by the model specification tests that favour fractional probit over linear models the fractional nature of crop abandonment. Regression results, which are not very different between the two specifications, indicate that, more than anything, high rainfall immediately after planting and inadequate fertilizer are the leading determinants of crop abandonment. In the agro-ecological region where dry planting takes place, low temperature during planting months negatively affects the harvested area. The results have implications on the sustainability of farming systems in the face of a changing climate.

  9. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  10. Selenium status in soil, water and essential crops of Iran

    Directory of Open Access Journals (Sweden)

    Nazemi Lyly

    2012-11-01

    Full Text Available Abstracts As a contributing factor to health, the trace element selenium (Se is an essential nutrient of special interest for humans and all animals. It is estimated that 0.5 to 1 billion people worldwide suffer from Se deficiency. In spite of the important role of Se, its concentrations in soil, water and essential crops have not been studied in Iran. Therefore, the main aim of the current study was to determine the Se content of soil, water, and essential crops (rice in North, wheat in Center, date, and pistachio in South of different regions of Iran. Sampling was performed in the North, South, and Central regions of Iran. In each selected area in the three regions, 17 samples of surface soil were collected; samples of water and essential crops were also collected at the same sampling points. Upon preliminary preparation of all samples, the Se concentrations were measured by ICP-OES Model Varian Vista-MPX. The amount of soil-Se was found to be in the range between 0.04 and 0.45 ppm in the studied areas; the Se content of soil in the central region of Iran was the highest compared to other regions (p

  11. A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa

    Directory of Open Access Journals (Sweden)

    Elodie Vintrou

    2014-02-01

    Full Text Available Crop phenology is essential for evaluating crop production in the food insecure regions of West Africa. The aim of the paper is to study whether satellite observation of plant phenology are consistent with ground knowledge of crop cycles as expressed in agro-simulations. We used phenological variables from a MODIS Land Cover Dynamics (MCD12Q2 product and examined whether they reproduced the spatio-temporal variability of crop phenological stages in Southern Mali. Furthermore, a validated cereal crop growth model for this region, SARRA-H (System for Regional Analysis of Agro-Climatic Risks, provided precise agronomic information. Remotely-sensed green-up, maturity, senescence and dormancy MODIS dates were extracted for areas previously identified as crops and were compared with simulated leaf area indices (LAI temporal profiles generated using the SARRA-H crop model, which considered the main cropping practices. We studied both spatial (eight sites throughout South Mali during 2007 and temporal (two sites from 2002 to 2008 differences between simulated crop cycles and determined how the differences were indicated in satellite-derived phenometrics. The spatial comparison of the phenological indicator observations and simulations showed mainly that (i the satellite-derived start-of-season (SOS was detected approximately 30 days before the model-derived SOS; and (ii the satellite-derived end-of-season (EOS was typically detected 40 days after the model-derived EOS. Studying the inter-annual difference, we verified that the mean bias was globally consistent for different climatic conditions. Therefore, the land cover dynamics derived from the MODIS time series can reproduce the spatial and temporal variability of different start-of-season and end-of-season crop species. In particular, we recommend simultaneously using start-of-season phenometrics with crop models for yield forecasting to complement commonly used climate data and provide a better

  12. Tropical crops as a basic source of food

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, J.E.G.

    1979-01-01

    A study is made of the potential that exists for food production in the Latin American tropics, and ways in which this could improve and diversify nutritional patterns in other ecological regions. Crops which could become more important include roots and tubers, varieties of beans, fruits, nuts and vegetables. Tropical crops such as sugar cane and cassava could also be used as renewable sources of energy, to replace conventional non-renewable fuels.

  13. The green, blue and grey water footprint of crops and derived crop products

    Directory of Open Access Journals (Sweden)

    M. M. Mekonnen

    2011-05-01

    Full Text Available This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network.

    Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton−1, vegetables (300 m3 ton−1, roots and tubers (400 m3 ton−1, fruits (1000 m3 ton−1, cereals (1600 m3 ton−1, oil crops (2400 m3 ton−1 to pulses (4000 m3 ton−1. The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m

  14. Application of seasonal rainfall forecasts and satellite rainfall observations to crop yield forecasting for Africa

    Science.gov (United States)

    Greatrex, H. L.; Grimes, D. I. F.; Wheeler, T. R.

    2009-04-01

    Rain-fed agriculture is of utmost importance in sub-Saharan Africa; the FAO estimates that over 90% of food consumed in the region is grown in rain-fed farming systems. As the climate in sub-Saharan Africa has a high interannual variability, this dependence on rainfall can leave communities extremely vulnerable to food shortages, especially when coupled with a lack of crop management options. The ability to make a regional forecast of crop yield on a timescale of months would be of enormous benefit; it would enable both governmental and non-governmental organisations to be alerted in advance to crop failure and could facilitate national and regional economic planning. Such a system would also enable individual communities to make more informed crop management decisions, increasing their resilience to climate variability and change. It should be noted that the majority of crops in the region are rainfall limited, therefore the ability to create a seasonal crop forecast depends on the ability to forecast rainfall at a monthly or seasonal timescale and to temporally downscale this to a daily time-series of rainfall. The aim of this project is to develop a regional-scale seasonal forecast for sub-Saharan crops, utilising the General Large Area Model for annual crops (GLAM). GLAM would initially be driven using both dynamical and statistical seasonal rainfall forecasts to provide an initial estimate of crop yield. The system would then be continuously updated throughout the season by replacing the seasonal rainfall forecast with daily weather observations. TAMSAT satellite rainfall estimates are used rather than rain-gauge data due to the scarcity of ground based observations. An important feature of the system is the use of the geo-statistical method of sequential simulation to create an ensemble of daily weather inputs from both the statistical seasonal rainfall forecasts and the satellite rainfall estimates. This allows a range of possible yield outputs to be

  15. Crop modeling applications in agricultural water management

    Science.gov (United States)

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  16. Beyond Marbles: Percent Change and Social Justice

    Science.gov (United States)

    Denny, Flannery

    2013-01-01

    In the author's eighth year of teaching, she hit a wall teaching percent change. Percent change is one of the few calculations taught in math classes that shows up regularly in the media, and one that she often does in her head to make sense of the world around her. Despite this, she had been teaching percent change using textbook problems about…

  17. Impacts of Near-Term Climate Change on Irrigation Demands and Crop Yields in the Columbia River Basin

    Science.gov (United States)

    Rajagopalan, K.; Chinnayakanahalli, K. J.; Stockle, C. O.; Nelson, R. L.; Kruger, C. E.; Brady, M. P.; Malek, K.; Dinesh, S. T.; Barber, M. E.; Hamlet, A. F.; Yorgey, G. G.; Adam, J. C.

    2018-03-01

    Adaptation to a changing climate is critical to address future global food and water security challenges. While these challenges are global, successful adaptation strategies are often generated at regional scales; therefore, regional-scale studies are critical to inform adaptation decision making. While climate change affects both water supply and demand, water demand is relatively understudied, especially at regional scales. The goal of this work is to address this gap, and characterize the direct impacts of near-term (for the 2030s) climate change and elevated CO2 levels on regional-scale crop yields and irrigation demands for the Columbia River basin (CRB). This question is addressed through a coupled crop-hydrology model that accounts for site-specific and crop-specific characteristics that control regional-scale response to climate change. The overall near-term outlook for agricultural production in the CRB is largely positive, with yield increases for most crops and small overall increases in irrigation demand. However, there are crop-specific and location-specific negative impacts as well, and the aggregate regional response of irrigation demands to climate change is highly sensitive to the spatial crop mix. Low-value pasture/hay varieties of crops—typically not considered in climate change assessments—play a significant role in determining the regional response of irrigation demands to climate change, and thus cannot be overlooked. While, the overall near-term outlook for agriculture in the region is largely positive, there may be potential for a negative outlook further into the future, and it is important to consider this in long-term planning.

  18. Regionalizing land use impacts on farmland birds.

    Science.gov (United States)

    Glemnitz, Michael; Zander, Peter; Stachow, Ulrich

    2015-06-01

    The environmental impacts of land use vary regionally. Differences in geomorphology, climate, landscape structure, and biotope inventories are regarded as the main causes of this variation. We present a methodological approach for identifying regional responses in land use type to large-scale changes and the implications for the provision of habitat for farmland birds. The methodological innovations of this approach are (i) the coupling of impact assessments with economic models, (ii) the linking of cropping techniques at the plot scale with the regional distribution of land use, and (iii) the integration of statistical or monitoring data on recent states. This approach allows for the regional differentiation of farmers' responses to changing external conditions and for matching the ecological impacts of land use changes with regional environmental sensitivities. An exemplary scenario analysis was applied for a case study of an area in Germany, assessing the impacts of increased irrigation and the promotion of energy cropping on farmland birds, evaluated as a core indicator for farmland biodiversity. The potential effects on farmland birds were analyzed based on the intrinsic habitat values of the crops and cropping techniques. The results revealed that the strongest decrease in habitat availability for farmland birds occurred in regions with medium-to-low agricultural yields. As a result of the limited cropping alternatives, the increase in maize production was highest in marginal regions for both examined scenarios. Maize production replaced many crops with good-to-medium habitat suitability for birds. The declines in habitat quality were strongest in regions that are not in focus for conservation efforts for farmland birds.

  19. A model for growth of beta-phase particles in zirconium-2.5 wt percent niobium

    International Nuclear Information System (INIS)

    Chow, C.K.; Liner, Y.; Rigby, G.L.

    1984-08-01

    The kinetics of the α → β phase change in Zr-2.5 percent Nb pressure-tube material at constant temperature have been studied. The volume-fraction change of the β phase due to diffusion in an infinite α-phase matrix was considered, and a mathematical model with a numerical solution was developed to predict the transient spherical growth of the β-phase region. This model has been applied to Zr-2.5 wt percent Nb, and the calculated results compared to experiment

  20. Errors and uncertainties introduced by a regional climate model in climate impact assessments: example of crop yield simulations in West Africa

    International Nuclear Information System (INIS)

    Ramarohetra, Johanna; Pohl, Benjamin; Sultan, Benjamin

    2015-01-01

    The challenge of estimating the potential impacts of climate change has led to an increasing use of dynamical downscaling to produce fine spatial-scale climate projections for impact assessments. In this work, we analyze if and to what extent the bias in the simulated crop yield can be reduced by using the Weather Research and Forecasting (WRF) regional climate model to downscale ERA-Interim (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis) rainfall and radiation data. Then, we evaluate the uncertainties resulting from both the choice of the physical parameterizations of the WRF model and its internal variability. Impact assessments were performed at two sites in Sub-Saharan Africa and by using two crop models to simulate Niger pearl millet and Benin maize yields. We find that the use of the WRF model to downscale ERA-Interim climate data generally reduces the bias in the simulated crop yield, yet this reduction in bias strongly depends on the choices in the model setup. Among the physical parameterizations considered, we show that the choice of the land surface model (LSM) is of primary importance. When there is no coupling with a LSM, or when the LSM is too simplistic, the simulated precipitation and then the simulated yield are null, or respectively very low; therefore, coupling with a LSM is necessary. The convective scheme is the second most influential scheme for yield simulation, followed by the shortwave radiation scheme. The uncertainties related to the internal variability of the WRF model are also significant and reach up to 30% of the simulated yields. These results suggest that regional models need to be used more carefully in order to improve the reliability of impact assessments. (letter)

  1. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  2. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    Science.gov (United States)

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate

  3. Cesium transfer to agricultural crops for three years after Chernobyl

    International Nuclear Information System (INIS)

    Eriksson, A.; Rosen, K.

    1989-01-01

    In 1986 about 50 farms in the fallout region were selected for sampling at fixed sites of the soil surface layer and of the grassland and grain crops to come. The aim was to cover the different soil types and the farming practices of the region during studies on the transfer levels and on the change with time in transfer of cesium to the crops. It was found that the transfer level, as expected, was much higher for the grassland than for the grain crops. However, within both groups of considerable variation in the transfer level for the same year as measured by the transfer factors has occurred. For the former crops it can be concluded that the transfer factor during year 1 depends on the interception capacity of the plant cover and on the dilution by growth i.e on soil fertility and on fertilization level. In the following years the cesium TF-value for the grass cover was reduced by a factor from 2 to about 10. The reduction rate differed above all between the organic soils and the mineral soils and should largely depend on the type of the grass cover, on the different cesium fixing capacities of the two soil groups and on the potassium fertilization level. On ploughed land the transfer by root uptake to grain crops was about one magnitude lower than the transfer to the hey crops. (orig.)

  4. Preference for Well-Balanced Saliency in Details Cropped from Photographs

    Science.gov (United States)

    Abeln, Jonas; Fresz, Leonie; Amirshahi, Seyed Ali; McManus, I. Chris; Koch, Michael; Kreysa, Helene; Redies, Christoph

    2016-01-01

    Photographic cropping is the act of selecting part of a photograph to enhance its aesthetic appearance or visual impact. It is common practice with both professional (expert) and amateur (non-expert) photographers. In a psychometric study, McManus et al. (2011b) showed that participants cropped photographs confidently and reliably. Experts tended to select details from a wider range of positions than non-experts, but other croppers did not generally prefer details that were selected by experts. It remained unclear, however, on what grounds participants selected particular details from a photograph while avoiding other details. One of the factors contributing to cropping decision may be visual saliency. Indeed, various saliency-based computer algorithms are available for the automatic cropping of photographs. However, careful experimental studies on the relation between saliency and cropping are lacking to date. In the present study, we re-analyzed the data from the studies by McManus et al. (2011a,b), focusing on statistical image properties. We calculated saliency-based measures for details selected and details avoided during cropping. As expected, we found that selected details contain regions of higher saliency than avoided details on average. Moreover, the saliency center-of-mass was closer to the geometrical center in selected details than in avoided details. Results were confirmed in an eye tracking study with the same dataset of images. Interestingly, the observed regularities in cropping behavior were less pronounced for experts than for non-experts. In summary, our results suggest that, during cropping, participants tend to select salient regions and place them in an image composition that is well-balanced with respect to the distribution of saliency. Our study contributes to the knowledge of perceptual bottom-up features that are germane to aesthetic decisions in photography and their variability in non-experts and experts. PMID:26793086

  5. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  6. The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI)

    Science.gov (United States)

    Elliott, Joshua; Muller, Christoff

    2015-01-01

    Climate change is a significant risk for agricultural production. Even under optimistic scenarios for climate mitigation action, present-day agricultural areas are likely to face significant increases in temperatures in the coming decades, in addition to changes in precipitation, cloud cover, and the frequency and duration of extreme heat, drought, and flood events (IPCC, 2013). These factors will affect the agricultural system at the global scale by impacting cultivation regimes, prices, trade, and food security (Nelson et al., 2014a). Global-scale evaluation of crop productivity is a major challenge for climate impact and adaptation assessment. Rigorous global assessments that are able to inform planning and policy will benefit from consistent use of models, input data, and assumptions across regions and time that use mutually agreed protocols designed by the modeling community. To ensure this consistency, large-scale assessments are typically performed on uniform spatial grids, with spatial resolution of typically 10 to 50 km, over specified time-periods. Many distinct crop models and model types have been applied on the global scale to assess productivity and climate impacts, often with very different results (Rosenzweig et al., 2014). These models are based to a large extent on field-scale crop process or ecosystems models and they typically require resolved data on weather, environmental, and farm management conditions that are lacking in many regions (Bondeau et al., 2007; Drewniak et al., 2013; Elliott et al., 2014b; Gueneau et al., 2012; Jones et al., 2003; Liu et al., 2007; M¨uller and Robertson, 2014; Van den Hoof et al., 2011;Waha et al., 2012; Xiong et al., 2014). Due to data limitations, the requirements of consistency, and the computational and practical limitations of running models on a large scale, a variety of simplifying assumptions must generally be made regarding prevailing management strategies on the grid scale in both the baseline and

  7. Percent Wetland Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  8. Cover plants with potential use for crop-livestock integrated systems in the Cerrado region

    Directory of Open Access Journals (Sweden)

    Arminda Moreira de Carvalho

    2011-10-01

    Full Text Available The objective of this work was to evaluate the effects of lignin, hemicellulose, and cellulose concentrations in the decomposition process of cover plant residues with potential use in no-tillage with corn, for crop-livestock integrated system, in the Cerrado region. The experiment was carried out at Embrapa Cerrados, in Planaltina, DF, Brazil in a split plot experimental design. The plots were represented by the plant species and the subplots by harvesting times, with three replicates. The cover plants Urochloa ruziziensis, Canavalia brasiliensis, Cajanus cajan, Pennisetum glaucum, Mucuna aterrima, Raphanus sativus, Sorghum bicolor were evaluated together with spontaneous plants in the fallow. Cover plants with lower lignin concentrations and, consequently, higher residue decomposition such as C. brasiliensis and U. ruziziensis promoted higher corn yield. High concentrations of lignin inhibit plant residue decomposition and this is favorable for the soil cover. Lower concentrations of lignin result in accelerated plant decomposition, more efficient nutrient cycling, and higher corn yield.

  9. Building crop models within different crop modelling frameworks

    NARCIS (Netherlands)

    Adam, M.Y.O.; Corbeels, M.; Leffelaar, P.A.; Keulen, van H.; Wery, J.; Ewert, F.

    2012-01-01

    Modular frameworks for crop modelling have evolved through simultaneous progress in crop science and software development but differences among these frameworks exist which are not well understood, resulting in potential misuse for crop modelling. In this paper we review differences and similarities

  10. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand

    Directory of Open Access Journals (Sweden)

    Shabbir H. Gheewala

    2014-06-01

    Full Text Available The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water and blue water (or irrigation water. Rice (paddy farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H2Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.

  11. Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary.

    Science.gov (United States)

    Li, Sen; Juhász-Horváth, Linda; Pintér, László; Rounsevell, Mark D A; Harrison, Paula A

    2018-05-01

    Impacts of socio-economic, political and climatic change on agricultural land systems are inherently uncertain. The role of regional and local-level actors is critical in developing effective policy responses that accommodate such uncertainty in a flexible and informed way across governance levels. This study identified potential regional challenges in arable land use systems, which may arise from climate and socio-economic change for two counties in western Hungary: Veszprém and Tolna. An empirically-grounded, agent-based model was developed from an extensive farmer household survey about local land use practices. The model was used to project future patterns of arable land use under four localised, stakeholder-driven scenarios of plausible future socio-economic and climate change. The results show strong differences in farmers' behaviour and current agricultural land use patterns between the two regions, highlighting the need to implement focused policy at the regional level. For instance, policy that encourages local food security may need to support improvements in the capacity of farmers to adapt to physical constraints in Veszprém and farmer access to social capital and environmental awareness in Tolna. It is further suggested that the two regions will experience different challenges to adaptation under possible future conditions (up to 2100). For example, Veszprém was projected to have increased fallow land under a scenario with high inequality, ineffective institutions and higher-end climate change, implying risks of land abandonment. By contrast, Tolna was projected to have a considerable decline in major cereals under a scenario assuming a de-globalising future with moderate climate change, inferring challenges to local food self-sufficiency. The study provides insight into how socio-economic and physical factors influence the selection of crop rotation plans by farmers in western Hungary and how farmer behaviour may affect future risks to agricultural

  12. Impact of GM crops on biodiversity.

    Science.gov (United States)

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  13. Cover Crops in Hillside Agriculture

    International Development Research Centre (IDRC) Digital Library (Canada)

    Our study focuses on the wet tropical hillsides of northern Honduras (Figure 1). ..... The eastern extreme of the region (Jutiapa) is a dry spot, with less rainfall (2 000 mm a-1) as a result ...... Paper presented at the International Workshop on Green Manure–Cover Crops for Smallholders in ..... Lamaster, J.P.; Jones, I.R. 1923.

  14. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations.

    Science.gov (United States)

    Uwimana, Brigitte; Smulders, Marinus J M; Hooftman, Danny A P; Hartman, Yorike; van Tienderen, Peter H; Jansen, Johannes; McHale, Leah K; Michelmore, Richard W; Visser, Richard G F; van de Wiel, Clemens C M

    2012-03-26

    After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F(1) hybrid was backcrossed to L. serriola to generate BC(1) and BC(2) populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC(1)S(1) and BC(2)S(1)). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC(1)S(1) and BC(2)S(1) hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC(1) and BC(2) hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. As it was shown that the crop contributed QTLs with either a positive

  15. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    Directory of Open Access Journals (Sweden)

    Uwimana Brigitte

    2012-03-01

    Full Text Available Abstract Background After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (transgenes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F1 hybrid was backcrossed to L. serriola to generate BC1 and BC2 populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC1S1 and BC2S1. Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency. Results Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC1S1 and BC2S1 hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC1 and BC2 hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. Conclusion As it was shown that the crop

  16. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    Science.gov (United States)

    2012-01-01

    Background After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F1 hybrid was backcrossed to L. serriola to generate BC1 and BC2 populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC1S1 and BC2S1). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Results Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC1S1 and BC2S1 hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC1 and BC2 hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. Conclusion As it was shown that the crop contributed QTLs with either a

  17. Africa region population projections : 1990-91

    OpenAIRE

    Stephens, Patience W.; Bos, Eduard; Vu, My T.; Bulatao, Rodolfo A.

    1991-01-01

    As recently as the mid-1970s, the Africa region had a smaller population than the Asia, the Latin American and the Caribbean, or the Europe, Middle East, and North Africa regions. Explosive population growth of more than 3 percent per year, projected to decline only gradually, will make Africa the second largest region by 2005. Its share of the world's population will increase from less than 10 percent now to 20 percent in the middle of the next century and to 25 percent when stationarity is ...

  18. International Global Crop Condition Assessments in the framework of GEOGLAM

    Science.gov (United States)

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.; Whitcraft, A. K.; Claverie, M.

    2013-12-01

    The Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative in response to the growing calls for improved agricultural information. The goal of GEOGLAM is to strengthen the international community's capacity to produce and disseminate relevant, timely and accurate forecasts of agricultural production at national, regional and global scales through the use of Earth observations. This initiative is designed to build on existing agricultural monitoring initiatives at national, regional and global levels and to enhance and strengthen them through international networking, operationally focused research, and data/method sharing. GEOGLAM was adopted by the G20 as part of the action plan on food price volatility and agriculture and is being implemented through building on the extensive GEO Agricultural Community of Practice (CoP) that was initiated in 2007 and includes key national and international agencies, organizations, and universities involved in agricultural monitoring. One of the early GEOGLAM activities is to provide harmonized global crop outlooks that offer timely qualitative consensus information on crop status and prospects. This activity is being developed in response to a request from the G-20 Agricultural Market Information System (AMIS) and is implemented within the global monitoring systems component of GEOGLAM. The goal is to develop a transparent, international, multi-source, consensus assessment of crop growing conditions, status, and agro-climatic conditions, likely to impact global production. These assessments are focused on the four primary crop types (corn, wheat, soy and rice) within the main agricultural producing regions of the world. The GEOGLAM approach is to bring together international experts from global, regional and national monitoring systems that can share and discuss information from a variety of independent complementary sources in

  19. Predicting weed problems in maize cropping by species distribution modelling

    Directory of Open Access Journals (Sweden)

    Bürger, Jana

    2014-02-01

    Full Text Available Increasing maize cultivation and changed cropping practices promote the selection of typical maize weeds that may also profit strongly from climate change. Predicting potential weed problems is of high interest for plant production. Within the project KLIFF, experiments were combined with species distribution modelling for this task in the region of Lower Saxony, Germany. For our study, we modelled ecological and damage niches of nine weed species that are significant and wide spread in maize cropping in a number of European countries. Species distribution models describe the ecological niche of a species, these are the environmental conditions under which a species can maintain a vital population. It is also possible to estimate a damage niche, i.e. the conditions under which a species causes damage in agricultural crops. For this, we combined occurrence data of European national data bases with high resolution climate, soil and land use data. Models were also projected to simulated climate conditions for the time horizon 2070 - 2100 in order to estimate climate change effects. Modelling results indicate favourable conditions for typical maize weed occurrence virtually all over the study region, but only a few species are important in maize cropping. This is in good accordance with the findings of an earlier maize weed monitoring. Reaction to changing climate conditions is species-specific, for some species neutral (E. crus-galli, other species may gain (Polygonum persicaria or loose (Viola arvensis large areas of suitable habitats. All species with damage potential under present conditions will remain important in maize cropping, some more species will gain regional importance (Calystegia sepium, Setara viridis.

  20. Genome editing for crop improvement: Challenges and opportunities.

    Science.gov (United States)

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    Genome or gene editing includes several new techniques to help scientists precisely modify genome sequences. The techniques also enables us to alter the regulation of gene expression patterns in a pre-determined region and facilitates novel insights into the functional genomics of an organism. Emergence of genome editing has brought considerable excitement especially among agricultural scientists because of its simplicity, precision and power as it offers new opportunities to develop improved crop varieties with clear-cut addition of valuable traits or removal of undesirable traits. Research is underway to improve crop varieties with higher yields, strengthen stress tolerance, disease and pest resistance, decrease input costs, and increase nutritional value. Genome editing encompasses a wide variety of tools using either a site-specific recombinase (SSR) or a site-specific nuclease (SSN) system. Both systems require recognition of a known sequence. The SSN system generates single or double strand DNA breaks and activates endogenous DNA repair pathways. SSR technology, such as Cre/loxP and Flp/FRT mediated systems, are able to knockdown or knock-in genes in the genome of eukaryotes, depending on the orientation of the specific sites (loxP, FLP, etc.) flanking the target site. There are 4 main classes of SSN developed to cleave genomic sequences, mega-nucleases (homing endonuclease), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the CRISPR/Cas nuclease system (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein). The recombinase mediated genome engineering depends on recombinase (sub-) family and target-site and induces high frequencies of homologous recombination. Improving crops with gene editing provides a range of options: by altering only a few nucleotides from billions found in the genomes of living cells, altering the full allele or by inserting a new gene in a targeted region of

  1. Identification of a novel percent mammographic density locus at 12q24.

    Science.gov (United States)

    Stevens, Kristen N; Lindstrom, Sara; Scott, Christopher G; Thompson, Deborah; Sellers, Thomas A; Wang, Xianshu; Wang, Alice; Atkinson, Elizabeth; Rider, David N; Eckel-Passow, Jeanette E; Varghese, Jajini S; Audley, Tina; Brown, Judith; Leyland, Jean; Luben, Robert N; Warren, Ruth M L; Loos, Ruth J F; Wareham, Nicholas J; Li, Jingmei; Hall, Per; Liu, Jianjun; Eriksson, Louise; Czene, Kamila; Olson, Janet E; Pankratz, V Shane; Fredericksen, Zachary; Diasio, Robert B; Lee, Adam M; Heit, John A; DeAndrade, Mariza; Goode, Ellen L; Vierkant, Robert A; Cunningham, Julie M; Armasu, Sebastian M; Weinshilboum, Richard; Fridley, Brooke L; Batzler, Anthony; Ingle, James N; Boyd, Norman F; Paterson, Andrew D; Rommens, Johanna; Martin, Lisa J; Hopper, John L; Southey, Melissa C; Stone, Jennifer; Apicella, Carmel; Kraft, Peter; Hankinson, Susan E; Hazra, Aditi; Hunter, David J; Easton, Douglas F; Couch, Fergus J; Tamimi, Rulla M; Vachon, Celine M

    2012-07-15

    Percent mammographic density adjusted for age and body mass index (BMI) is one of the strongest risk factors for breast cancer and has a heritable component that remains largely unidentified. We performed a three-stage genome-wide association study (GWAS) of percent mammographic density to identify novel genetic loci associated with this trait. In stage 1, we combined three GWASs of percent density comprised of 1241 women from studies at the Mayo Clinic and identified the top 48 loci (99 single nucleotide polymorphisms). We attempted replication of these loci in 7018 women from seven additional studies (stage 2). The meta-analysis of stage 1 and 2 data identified a novel locus, rs1265507 on 12q24, associated with percent density, adjusting for age and BMI (P = 4.43 × 10(-8)). We refined the 12q24 locus with 459 additional variants (stage 3) in a combined analysis of all three stages (n = 10 377) and confirmed that rs1265507 has the strongest association in the 12q24 region (P = 1.03 × 10(-8)). Rs1265507 is located between the genes TBX5 and TBX3, which are members of the phylogenetically conserved T-box gene family and encode transcription factors involved in developmental regulation. Understanding the mechanism underlying this association will provide insight into the genetics of breast tissue composition.

  2. Pollinator communities in strawberry crops - variation at multiple spatial scales.

    Science.gov (United States)

    Ahrenfeldt, E J; Klatt, B K; Arildsen, J; Trandem, N; Andersson, G K S; Tscharntke, T; Smith, H G; Sigsgaard, L

    2015-08-01

    Predicting potential pollination services of wild bees in crops requires knowledge of their spatial distribution within fields. Field margins can serve as nesting and foraging habitats for wild bees and can be a source of pollinators. Regional differences in pollinator community composition may affect this spill-over of bees. We studied how regional and local differences affect the spatial distribution of wild bee species richness, activity-density and body size in crop fields. We sampled bees both from the field centre and at two different types of semi-natural field margins, grass strips and hedges, in 12 strawberry fields. The fields were distributed over four regions in Northern Europe, representing an almost 1100 km long north-south gradient. Even over this gradient, daytime temperatures during sampling did not differ significantly between regions and did therefore probably not impact bee activity. Bee species richness was higher in field margins compared with field centres independent of field size. However, there was no difference between centre and margin in body-size or activity-density. In contrast, bee activity-density increased towards the southern regions, whereas the mean body size increased towards the north. In conclusion, our study revealed a general pattern across European regions of bee diversity, but not activity-density, declining towards the field interior which suggests that the benefits of functional diversity of pollinators may be difficult to achieve through spill-over effects from margins to crop. We also identified dissimilar regional patterns in bee diversity and activity-density, which should be taken into account in conservation management.

  3. Radiological impact associated to the use of phosphogypsum in crops cultivated at the Cerrado region

    International Nuclear Information System (INIS)

    Oliveira, Kerley A.P.; Menezes, Maria A.B.C.; Taddei, Maria H.T.; Mello, Jaime W.V.; Jacomino, Vanusa M.F.

    2007-01-01

    Phosphogypsum (PG) is a by-product of the 'wet process', whereby sulfuric acid is reacted with phosphate rock to produce phosphoric acid. The Brazilian production of this material is around 12 million of tons per year which is stacked in piles at the same place where it is produced. Researches accomplished in several countries worldwide have demonstrated the potential use of PG in agriculture not only as a source for calcium and sulfur, but also as a conditioner for soils that contain high levels of aluminum. In Brazil, these studies are mainly focused on the application of phosphogypsum to the Cerrado region, the main agriculture region of the country. Taking into account the presence of natural radionuclides in this material and the fact that the mobility and bioaccumulation of these elements can vary significantly with changes in climate, a research project has been conducted in a partnership with the Brazilian Nuclear Energy Commission (CNEN) and the Soil Department of Vicosa Federal University in order to investigate the radiological impact of using phosphogypsum in crops cultivated in Cerrado soils. For this purpose a set of greenhouse experiments have been conducted in two types of soil (one clayey and other sandy loam textured) to determine the transfer factor of natural radionuclides ( 238 U, 232 Th, 226 Ra, 228 Ra and 210 Pb) from soil to crops (lettuce, corn and soybean) and drainage waters. This paper aims to report preliminary results of the study, including the chemical, physical and mineralogical characterization of the soil samples, and radioactivity concentration in both the applied PG and soil samples. The measurement of 232 Th concentration has been carried out by neutron activation analysis, 238 U by delayed neutron counting technique, 226 Ra, 228 Ra and 210 Pb by the method of radiochemical separation. The mean activity concentrations of 226 Ra (240 Bq.kg -1 ) and 228 Ra (224 Bq.kg -1 ) in PG were below the maximum level recommended by CNEN

  4. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  5. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Directory of Open Access Journals (Sweden)

    Sangchul Lee

    Full Text Available The adoption rate of winter cover crops (WCCs as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE reduced NO3-N loads by ~49.3% compared to the baseline (no WCC. The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean, with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  6. Climate effects on crop yields in the Northeast Farming Region of China during 1961–2010

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Olesen, Jørgen Eivind; Wang, M.

    2016-01-01

    on the yield of maize (Zea mays L.), rice (Oryza sativa L.), soybean (Glycine max L. Merr.) and spring wheat (Triticum aestivum L.) in different crop growth phases. The crop growing season was divided into three growth phases based on the average crop phenological dates from records covering 1981 and 2010...... cycles), average daily solar radiation, accumulated precipitation, aridity index (which is used to assess drought stress) and heat degree-days index (HDD) (which is used to indicate heat stress) were calculated for each growth phase and year. Over the 1961–2010 period, the minimum temperature increased...... water management....

  7. Policies for Reintegrating Crop and Livestock Systems: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Rachael D. Garrett

    2017-03-01

    Full Text Available The reintegration of crop and livestock systems within the same land area has the potential to improve soil quality and reduce water and air pollution, while maintaining high yields and reducing risk. In this study, we characterize the degree to which federal policies in three major global food production regions that span a range of socioeconomic contexts, Brazil, New Zealand, and the United States, incentivize or disincentivize the use of integrated crop and livestock practices (ICLS. Our analysis indicates that Brazil and New Zealand have the most favorable policy environment for ICLS, while the United States provides the least favorable environment. The balance of policy incentives and disincentives across our three cases studies mirrors current patterns of ICLS usage. Brazil and New Zealand have both undergone a trend toward mixed crop livestock systems in recent years, while the United States has transitioned rapidly toward continuous crop and livestock production. If transitions to ICLS are desired, particularly in the United States, it will be necessary to change agricultural, trade, environmental, biofuels, and food safety policies that currently buffer farmers from risk, provide too few incentives for pollution reduction, and restrict the presence of animals in crop areas. It will also be necessary to invest more in research and development in all countries to identify the most profitable ICLS technologies in each region.

  8. Greenhouse Gases Emission and Global Warming Potential as Affected by Chemical Inputs for Main Cultivated Crops in Kerman Province: - Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Nasibe Pourghasemian

    2017-12-01

    Full Text Available Introduction The latest report of the IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and will be the main cause of global climatic changes, as well as Iran. The three greenhouse gases associated with agriculture are CO2, CH4, and N2O. Chemical inputs consumption in agriculture has increased annually, while more intensive use of energy led to some important human health and environmental problems such as greenhouse gas emissions and global warming. Therefore, it is necessary to reduce the application of chemical inputs in agricultural systems. Agriculture contributes significantly to atmospheric GHG emissions, with 14% of the global net CO2 emissions coming from this sector. Chemical inputs have a major role in this hazards. There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the GHGs emission and Global warming Potential GWP caused by chemical inputs (various chemical fertilizers and pesticides for cultivating potato, onion and watermelon in some regions of Kerman province at 2011-2012 growth season. Material and Methods The study was conducted in Kerman province of Iran. Data of planting area, application rates of the chemical inputs and other different parameter were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman(Bardsir, Bam, Jiroft, Kerman, Ravar, Rafsanjan and Sirjan. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman were also utilized during the study. Farm random sampling was done within whole population and the sample size was determined by proper equations. The amounts of GHG emissions from chemical inputs in the studied crops were calculated by using CO2, N2O and CH4 emissions coefficient of chemical inputs. Then the amount of

  9. Biogas production from energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.

    2006-07-01

    The feasibility of utilising energy crops and crop residues in methane production through anaerobic digestion in boreal conditions was evaluated in this thesis. Potential boreal energy crops and crop residues were screened for their suitability for methane production, and the effects of harvest time and storage on the methane potential of crops was evaluated. Codigestion of energy crops and crop residues with cow manure, as well as digestion of energy crops alone in batch leach bed reactors with and without a second stage upflow anaerobic sludge blanket reactor (UASB) or methanogenic filter (MF) were evaluated. The methane potentials of crops, as determined in laboratory methane potential assays, varied from 0.17 to 0.49 m3 CH{sub 4} kg-1 VS{sub added} (volatile solids added) and from 25 to 260 m3 CH4 t-1 ww (tons of wet weight). Jerusalem artichoke, timothy-clover and reed canary grass gave the highest methane potentials of 2 900-5 400 m3 CH{sub 4} ha-1, corresponding to a gross energy potential of 28-53 MWh ha-1 and 40 000-60 000 km ha-1 in passenger car transport. The methane potentials per ww increased with most crops as the crops matured. Ensiling without additives resulted in minor losses (0-13%) in the methane potential of sugar beet tops but more substantial losses (17-39%) in the methane potential of grass, while ensiling with additives was shown to have potential in improving the methane potentials of these substrates by up to 19-22%. In semi-continuously fed laboratory continuously stirred tank reactors (CSTRs) co-digestion of manure and crops was shown feasible with feedstock VS containing up to 40% of crops. The highest specific methane yields of 0.268, 0.229 and 0.213 m3 CH{sub 4} kg-1 VS{sub added} in co-digestion of cow manure with grass, sugar beet tops and straw, respectively, were obtained with 30% of crop in the feedstock, corresponding to 85-105% of the methane potential in the substrates as determined by batch assays. Including 30% of crop in

  10. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    Science.gov (United States)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  11. Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Isaque Daniel Rocha Eberhardt

    2016-03-01

    Full Text Available The potential of optical remote sensing data to identify, map and monitor croplands is well recognized. However, clouds strongly limit the usefulness of optical imagery for these applications. This paper aims at assessing cloud cover conditions over four states in the tropical and sub-tropical Center-South region of Brazil to guide the development of an appropriate agricultural monitoring system based on Landsat-like imagery. Cloudiness was assessed during overlapping four months periods to match the typical length of crop cycles in the study area. The percentage of clear sky occurrence was computed from the 1 km resolution MODIS Cloud Mask product (MOD35 considering 14 years of data between July 2000 and June 2014. Results showed high seasonality of cloud occurrence within the crop year with strong variations across the study area. The maximum seasonality was observed for the two states in the northern part of the study area (i.e., the ones closer to the Equator line, which also presented the lowest averaged values (15% of clear sky occurrence during the main (summer cropping period (November to February. In these locations, optical data faces severe constraints for mapping summer crops. On the other hand, relatively favorable conditions were found in the southern part of the study region. In the South, clear sky values of around 45% were found and no significant clear sky seasonality was observed. Results underpin the challenges to implement an operational crop monitoring system based solely on optical remote sensing imagery in tropical and sub-tropical regions, in particular if short-cycle crops have to be monitored during the cloudy summer months. To cope with cloudiness issues, we recommend the use of new systems with higher repetition rates such as Sentinel-2. For local studies, Unmanned Aircraft Vehicles (UAVs might be used to augment the observing capability. Multi-sensor approaches combining optical and microwave data can be another

  12. RICE CROP MAPPING USING SENTINEL-1A PHENOLOGICAL METRICS

    Directory of Open Access Journals (Sweden)

    C. F. Chen

    2016-06-01

    Full Text Available Rice is the most important food crop in Vietnam, providing food more than 90 million people and is considered as an essential source of income for majority of rural populations. Monitoring rice-growing areas is thus important to developing successful strategies for food security in the country. This paper aims to develop an approach for crop acreage estimation from multi-temporal Sentinel-1A data. We processed the data for two main cropping seasons (e.g., winter–spring, summer–autumn in the Mekong River Delta (MRD, Vietnam through three main steps: (1 data pre-processing, (3 rice classification based on crop phenological metrics, and (4 accuracy assessment of the mapping results. The classification results compared with the ground reference data indicated the overall accuracy of 86.2% and Kappa coefficient of 0.72. These results were reaffirmed by close correlation between the government’s rice area statistics for such crops (R2 > 0.95. The values of relative error in area obtained for the winter–spring and summer–autumn were -3.6% and 6.7%, respectively. This study demonstrates the potential application of multi-temporal Sentinel-1A data for rice crop mapping using information of crop phenology in the study region.

  13. Feasibility of Triticale (Tritico secale wittmack. X Cropping in Agricultural Lands of Gorgan County by Spatial Analysis Tools

    Directory of Open Access Journals (Sweden)

    maral Niazmoradi

    2017-12-01

    agricultural lands of Gorgan county by spatial analysis of GIS and evaluation of environmental variables. Material and Methods One of the most important areas for crop production in Golestan province located in north of Iran, is the Gorgan region. This area is located between latitude 54° 12.9' N and 54° 44.9' N and longitude 36° 30.6' E and 36° 58.8' E.Almost every farm in Gorgan region are rainfed. In order to spatial feasibility of triticale cropping in Gorgan county, agroecological requirements of triticale was identified and classified from scientific resources. Some environmental factors including, climatic variables such as precipitation and temperature in scale of annual, monthly and seasonal, topographic variables such as elevation, slope aspects and slops percent, and some soil characteristics as texture, EC, pH, fertility, K, P and organic matter were evaluated using geostatistics and classic methods and then thematic layers were produced in ArcGIS media. In multi-criteria assessment process, one of the most important steps is to determine each criteria weight. Generally, AHP is suitable to determine the weights of assessment factors. In this respect, the first step is to construct an AHP model consisting objectives, criteria, sub-criteria, and alternatives. Then these digital layers were classified based on ecological requirements table of triticale and they were overlaid and interpolated in GIS media and final layer were classified to four classes of high suitable, suitable, less suitable and non-suitable. The suitability analysis was based on matching between land qualities/characteristics and crop requirements. It was accomplished by weighted overlay technique (WOT in GIS. Results and Discussion The results showed that 28.8 thousand ha (44.92% of agricultural lands were located in the high suitable class (S1. This zone was observed occasionally in north and northwest parts of studied region. This zone had the high fertility, high organic matter percent (2

  14. Rice in cropping systems - Modelling transitions between flooded and non-flooded soil environments

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Suriadi, A.; Dobermann, A.; Bouman, B.A.M.; Timsina, J.

    2012-01-01

    Water shortages in many rice-growing regions, combined with growing global imperatives to increase food production, are driving research into increased water use efficiency and modified agricultural practices in rice-based cropping systems. Well-tested cropping systems models that capture

  15. Incorporating field wind data to improve crop evapotranspiration parameterization in heterogeneous regions

    Science.gov (United States)

    Accurate parameterization of reference evapotranspiration (ET0) is necessary for optimizing irrigation scheduling and avoiding costs associated with over-irrigation (water expense, loss of water productivity, energy costs, pollution) or with under-irrigation (crop stress and suboptimal yields or qua...

  16. Rice crop risk map in Babahoyo canton (Ecuador)

    Science.gov (United States)

    Valverde Arias, Omar; Tarquis, Ana; Garrido, Alberto

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, making agricultural and livestock production riskier. In order to reduce hazards and economic loses that could jeopardize farmer's incomes and even its business continuity, it is very important to implement agriculture risk management plans by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has a significant growth in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. Crop production risk is related with yield variation of crops and livestock, due to weather, pests, diseases, and other factors that affect both the quantity and quality of commodities produced. This is the risk which farmers invest more time managing, and it is completely under their control. The aim of this study is generate a crop risk map of rice that can provide risk manager important information about the status of crop facing production risks. Then, based on this information, it will be possible to make best decisions to deal with production risk. The rice crop risk map was generated qualifying a 1:25000 scale soil and climatic map of Babahoyo canton, which is located in coast region of Ecuador, where rice is one of the main crops. The methodology to obtain crop risk map starts by establishing rice crop requirements and indentifying the risks associated with this crop. A second step is to evaluate soil and climatic conditions of the study area related to optimal crop requirements. Based on it, we can

  17. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  18. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  19. Survey the Effects of Partial Root Zone Deficit Irrigation and Deficit Irrigation on Quantitative, Qualitative and Water Use Efficiency of Pomegranate

    Directory of Open Access Journals (Sweden)

    mohammad saeed tadaion

    2017-12-01

    Full Text Available Introduction: One of the latest efficient methods on increment of water use efficiency that confirmed by many scientists all over the world is deficit and alternative partial root zone deficit irrigation. In this experiment the effect of deficit and alternative partial root zone deficit irrigation on fruit yield, quality and water use efficiency of pomegranate (Punicagranatum (L. cv. Zarde-anar were investigatedin Arsenjan semi-arid region. Materials and Methods: The experiment was carried out in a constant plots and randomized complete block design (RCBD with four replicationsin five years.Treatmentswere 1- full flood irrigation (100 percent crop water requirement (T1 2- flood irrigation with 100 percent crop water requirement as alternate partial root-zone irrigation(every irrigation conducted on one side of tree (T2 3- flood irrigation with 50 percent crop water requirement as regular deficit irrigation (T3 4- full two-side drip irrigation(with regard to crop water requirement (eight drippers with twolit/hour flow by two different individual networks (T4 5- alternate partial root-zone drip irrigation with 100 percent crop water requirement (T5 6- regular deficit drip irrigation with 50 percent crop water requirement (T6 in every irrigation period. Each experimental treatment includes four trees and 96 similar twelve years old trees overall. Cultivation practice was conducted similarly on all of the trees. Results and Discussion: Results showed that the highest yield and water use efficiency based on statistical analysis belong to both PRD treatments i.e. alternate partial root-zone drip irrigation with 100 percent crop water requirement and alternate partial root-zone flood irrigation with 100 percent crop water requirement, respectively, that both of them decreased water requirement for irrigation up to 35 and 50 percent in comparison tocontrol. Application of partial root drying irrigation on both traditional flood irrigation and drip

  20. Domesticated proboscidea parviflora: a potential oilseed crop for arid lands

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.; Bretting, P.K.; Nabhan, G.P.; Weber, C.

    1981-01-01

    Wild and domesticated Proboscidea parviflora were evaluated as oilseed crops for arid lands through chemical and biological analyses. Domesticated plants grown in the Sonoran desert bore seed containing 35-40 per cent oil and 23-27 per cent protein. Yield per hectare was estimated at 1000 kg of oil and 675 kg of protein, quantities which compare favourably with other crops. An ephemeral life cycle and certain characteristics of the fruit and seed allow this plant to grow in xeric habitats unsuitable for many other plants. Several Proboscidea species hybridize with P. parviflora and could be used in future crop breeding. Rapid germination and higher oil and protein content of seed make the domesticated P. parviflora superior to the wild form as a crop. Domesticated P. parviflora thus shows promise as an oilseed crop for the Sonoran Desert and possibly for other arid regions. (Refs. 22).

  1. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    Science.gov (United States)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  2. Effects of land cover change on moisture availability and potential crop yield in the world’s breadbaskets

    International Nuclear Information System (INIS)

    Bagley, Justin E; Desai, Ankur R; Dirmeyer, Paul A; Foley, Jonathan A

    2012-01-01

    The majority of the world’s food production capability is inextricably tied to global precipitation patterns. Changes in moisture availability—whether from changes in climate from anthropogenic greenhouse gas emissions or those induced by land cover change (LCC)—can have profound impacts on food production. In this study, we examined the patterns of evaporative sources that contribute to moisture availability over five major global food producing regions (breadbaskets), and the potential for land cover change to influence these moisture sources by altering surface evapotranspiration. For a range of LCC scenarios we estimated the impact of altered surface fluxes on crop moisture availability and potential yield using a simplified linear hydrologic model and a state-of-the-art ecosystem and crop model. All the breadbasket regions were found to be susceptible to reductions in moisture owing to perturbations in evaporative source (ES) from LCC, with reductions in moisture availability ranging from 7 to 17% leading to potential crop yield reductions of 1–17%, which are magnitudes comparable to the changes anticipated with greenhouse warming. The sensitivity of these reductions in potential crop yield to varying magnitudes of LCC was not consistent among regions. Two variables explained most of these differences: the first was the magnitude of the potential moisture availability change, with regions exhibiting greater reductions in moisture availability also tending to exhibit greater changes in potential yield; the second was the soil moisture within crop root zones. Regions with mean growing season soil moisture fractions of saturation >0.5 typically had reduced impacts on potential crop yield. Our results indicate the existence of LCC thresholds that have the capability to create moisture shortages adversely affecting crop yields in major food producing regions, which could lead to future food supply disruptions in the absence of increased irrigation or other

  3. Comparison of energy and yield parameters in maize crop

    International Nuclear Information System (INIS)

    Memon, S.Q.; Mirjat, M.S.; Amjad, N.

    2013-01-01

    The aim of this study was to determine direct and indirect input energy in maize production and to investigate the efficiency of energy consumption in maize crop. Result showed that emergence percent, plant height, number of grains per cob and grain yield were the highest in deep tillage as compared to conventional and zero tillage. Total energy input and output were the highest in deep tillage with NPK at the rate 150-75-75kg/ha. The net energy gain was found the highest in deep tillage followed by conventional tillage and the lowest net energy gain in zero tillage. (author)

  4. Sulphate sulphur concentration in vegetable crops, soil and ground water in the region affected by the sulphur dioxide emission from Plock oil refinery (central Poland)

    International Nuclear Information System (INIS)

    Mikula, W.

    1995-01-01

    Research was carried out in 1984-1990 in the region affected by the sulphur dioxide emission from one of the greatest oil refineries in Europe (Plock, central Poland). The sulphate sulphur concentration in the vegetable crops (red beet, carrot, parsley, bean, cabbage and dill), the soil and in ground water was defined in selected allotment gardens of Plock city and in a household garden located in the rural area about 25 km from the town. The highest amount of sulphur was found in the vegetable crops cultivated in the garden situated in the closest vicinity of the refinery. Sulphate sulphur contents harmful for plants (above 0.50 per cent d.m.) were noted in cabbage and carrot leaves in almost all the gardens (except one). The soil in all examined gardens was characterised by high sulphate sulphur concentration, which considerably exceeds the maximum amount admissible for light soil in Poland, i.e. 0.004 per cent d.m. The sulphate sulphur concentration in ground water in all the gardens exceeded the highest permissible content in drinking water in Poland. The sulphate sulphur content in the soil and ground water was not significantly dependent on the garden's distance from the refinery. Generally, the above normal sulphate sulphur concentrations occurred quite universally in the examined region and they concerned all the considered environmental components (vegetable crops, soil, ground water) and all the gardens. 22 refs., 6 tabs

  5. Multiscale analysis of deforestation risk due to commodity crop expansion in sub-Saharan Africa and the role of non-industrial producers

    Science.gov (United States)

    Ordway, E.; Asner, G. P.; Naylor, R. L.; Nkongho, R.; Lambin, E.

    2017-12-01

    Rapid integration of global agricultural markets and subsequent cropland displacement in recent decades increased large-scale tropical deforestation in South America and Southeast Asia. Growing land scarcity and more stringent land use regulations in these regions could incentivize the offshoring of export-oriented commodity crop production to sub-Saharan Africa (SSA). We assess the effects of domestic- and export-oriented agricultural expansion on deforestation in SSA in recent decades at the global, regional and local scales. Using Cameroon as a case-study, we explore the influence of emerging oil palm expansion on deforestation in greater depth. We found that commodity crops are expanding in SSA, increasing pressure on tropical forests. Four Congo Basin countries, Sierra Leone, Liberia, and Cote d'Ivoire were most at risk in terms of exposure, vulnerability and pressures from agricultural expansion. These countries averaged the highest percent forest cover (58% ±17.9) and lowest proportions of potentially available cropland outside forest areas (1% ±0.9). Foreign investment in these countries was concentrated in oil palm production (81%), with a median investment area of 41,582 thousand ha. Based on remote sensing and field survey results, however, medium- and large-scale non-industrial producers are driving a substantial fraction of the oil palm expansion leading to deforestation in Cameroon. Additionally, unlike Southeast Asia, oil palm expansion in sub-Saharan Africa is associated primarily with domestic market demands. In contrast, cocoa, the fastest expanding export-oriented crop across SSA, accounted for 57% of global expansion in 2000-2013 at a rate of 132 thousand ha yr-1, yet only amounted to 0.9% of foreign land investment. Commodity crop expansion in SSA appears largely driven by small- and medium-scale farmers rather than industrial plantations. Findings highlight that, although most agricultural expansion was associated with domestic demand, there

  6. Changes in crop yields and their variability at different levels of global warming

    Science.gov (United States)

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  7. EXPERT MODEL OF LAND SUITABILITY ASSESSMENT FOR CROPS

    Directory of Open Access Journals (Sweden)

    Boris Đurđević

    2010-12-01

    Full Text Available A total of 17404 soil samples (2003rd-2009th year were analysed in the eastern Croatia. The largest number of soil samples belongs to the Osijek-Baranya county, which together with both Eastern sugar beet Factories (Osijek and Županja, conduct the soil fertility control (~4200 samples/yr.. Computer model suitability assessment for crops, supported by GIS, proved to be fast, efficient enough reliable in terms of the number of analyzed soil samples. It allows the visualization of the agricultural area and prediction of its production properties for the purposes of analysis, planning and rationalization of agricultural production. With more precise data about the soil (soil, climate and reliable Digital Soil Map of Croatia, the model could be an acceptable, not only to evaluate the suitability for growing different crops but also their need for fertilizer, necessary machinery, repairs (liming, and other measures of organic matter input. The abovementioned aims to eliminate or reduce effects of limiting factors in primary agricultural production. Assessment of the relative benefits of soil presented by computer model for the crops production and geostatistical method kriging in the Osijek-Baranya county showed: 1 Average soil suitability being 60.06 percent. 2 Kriging predicted that 51751 ha (17.16% are of limited resources (N1 for growing crops whereas a 86142 ha (28.57% of land is limited suitably (S3, b 132789 ha (44.04% are moderately suitable (S2 and c 30772 ha (10.28% are of excellent fertility (S1. A large number of eastern Croatian land data showed that the computer-geostatistical model for determination of soil benefits for growing crops was automated, fast and simple to use and suitable for the implementation of GIS and automatically downloading the necessary benefit indicators from the input base (land, analytical and climate as well as data from the digital soil maps able to: a visualize the suitability for soil tillage, b predict the

  8. A Simulation Software for the Analysis of Cropping Systems in Livestock Farms

    Directory of Open Access Journals (Sweden)

    Tommaso Maggiore

    2011-02-01

    Full Text Available Simulation models can support quantitative and integrated analyses of agricultural systems. In this paper we describe VA.TE., a computer program developed to support the preparation and evaluation of nitrogen fertilising plans for livestock farms in the Lombardy region (northern Italy. The program integrates the cropping systems simulation model CropSyst with several regional agricultural databases, and provides the users with a simple framework for applying the model and interpreting results. VA.TE. makes good use of available data, integrating into a single relational database existing information about soils, climate, farms, animal breeds, crops and crop managements, and providing estimates of missing input variables. A simulation engine manages the entire simulation process: choice of farms to be simulated, model parameterisation, creation of model inputs, simulation of scenarios and analysis of model outputs. The program permits to apply at farm scale a model originally designed for the lower scale of homogeneous land parcel. It manages alternative simulation scenarios for each farm, helping to identify solutions to combine low nitrate losses and satisfactory crop yields. Example simulation results for three farms located on different soils and having varying levels of nitrogen surplus show that the integrated system (model + database can manage various simulations automatically, and that strategies to improve N management can be refined by analysing the simulated amounts and temporal patterns of nitrogen leaching.We conclude by discussing the issues regarding the integration of existing regional databases with simulation models.

  9. A Simulation Software for the Analysis of Cropping Systems in Livestock Farms

    Directory of Open Access Journals (Sweden)

    Luca Bechini

    2008-09-01

    Full Text Available Simulation models can support quantitative and integrated analyses of agricultural systems. In this paper we describe VA.TE., a computer program developed to support the preparation and evaluation of nitrogen fertilising plans for livestock farms in the Lombardy region (northern Italy. The program integrates the cropping systems simulation model CropSyst with several regional agricultural databases, and provides the users with a simple framework for applying the model and interpreting results. VA.TE. makes good use of available data, integrating into a single relational database existing information about soils, climate, farms, animal breeds, crops and crop managements, and providing estimates of missing input variables. A simulation engine manages the entire simulation process: choice of farms to be simulated, model parameterisation, creation of model inputs, simulation of scenarios and analysis of model outputs. The program permits to apply at farm scale a model originally designed for the lower scale of homogeneous land parcel. It manages alternative simulation scenarios for each farm, helping to identify solutions to combine low nitrate losses and satisfactory crop yields. Example simulation results for three farms located on different soils and having varying levels of nitrogen surplus show that the integrated system (model + database can manage various simulations automatically, and that strategies to improve N management can be refined by analysing the simulated amounts and temporal patterns of nitrogen leaching.We conclude by discussing the issues regarding the integration of existing regional databases with simulation models.

  10. Yield trends and yield gap analysis of major crops in the world

    OpenAIRE

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are quantified, yield gaps evaluated by crop experts, current yield progress by breeding estimated, and different yield projections compared. Results show decreasing yield growth for wheat and rice, but ...

  11. Evaluation of Aqua crop Model to Predict Crop Water Productivity

    International Nuclear Information System (INIS)

    Mohd Noor Hidayat Adenan; Faiz Ahmad; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Khairuddin Abdul Rahim

    2015-01-01

    Water and nutrient are critical inputs for crop production, especially in meeting challenges from increasing fertilizer cost and irregular water availability associated with climate change. The Land and Water Division of Food and Agriculture Organization of the United Nations (FAO) has developed Aqua Crop, an integrated application software to simulate the interactions between plant, water and soil. Field management and irrigation management are the factors that need to be considered since it affects the interactions. Four critical components are needed in the Aqua Crop model, viz. climate, crop, field management and soil conditions. In our case study, climate data from rice field in Utan Aji, Kangar, Perlis was applied to run a simulation by using AquaCrop model. The rice crop was also assessed against deficit irrigation schedules and we found that use of water at optimum level increased rice yield. Results derived from the use of the model corresponded conventional assessment. This model can be adopted to help farmers in Malaysia in planning crop and field management to increase the crop productivity, especially in areas where the water is limited. (author)

  12. A Conceptual Model for Solving Percent Problems.

    Science.gov (United States)

    Bennett, Albert B., Jr.; Nelson, L. Ted

    1994-01-01

    Presents an alternative method to teaching percent problems which uses a 10x10 grid to help students visualize percents. Offers a means of representing information and suggests different approaches for finding solutions. Includes reproducible student worksheet. (MKR)

  13. The Algebra of the Cumulative Percent Operation.

    Science.gov (United States)

    Berry, Andrew J.

    2002-01-01

    Discusses how to help students avoid some pervasive reasoning errors in solving cumulative percent problems. Discusses the meaning of ."%+b%." the additive inverse of ."%." and other useful applications. Emphasizes the operational aspect of the cumulative percent concept. (KHR)

  14. Habitat eradication and cropland intensification may reduce parasitoid diversity and natural pest control services in annual crop fields

    Directory of Open Access Journals (Sweden)

    Deborah K. Letourneau

    2015-10-01

    Full Text Available Abstract California’s central coast differs from many agricultural areas in the U.S., which feature large tracts of monoculture production fields and relatively simple landscapes. Known as the nations salad bowl, and producing up to 90% of U.S. production of lettuces, broccoli and Brussels sprouts, this region is a mosaic of fresh vegetable fields, coastal meadow, chaparral shrubs, riparian and woodland habitat. We tested for relationships between the percent cover of crops, riparian and other natural landscape vegetation and the species richness of parasitic wasps and flies foraging in crops, such as broccoli, kale and cauliflower, and interpreted our results with respect to the decrease in natural habitat and increase in cropland cover prompted by a local microbial contamination event in 2006. Our key results are that: (1 as cropland cover in the landscape increased, fewer species of parasitoids were captured in the crop field, (2 parasitoid richness overall was positively associated with the amount of riparian and other natural vegetation in the surrounding 500m, (3 different groups of parasitoids were associated with unique types of natural vegetation, and (4 parasitism rates of sentinel cabbage aphid and cabbage looper pests were correlated with landscape vegetation features according to which parasitoids caused the mortality. Although individual species of parasitoids may thrive in landscapes that are predominantly short season crops, the robust associations found in this study across specialist and generalist parasitoids and different taxa (tachinid flies, ichneumon wasps, braconid wasps shows that recent food safety practices targeting removal of natural vegetation around vegetable fields in an attempt to eliminate wildlife may harm natural enemy communities and reduce ecosystem services. We argue that enhancing biological diversity is a key goal for transforming agroecosystems for future productivity, sustainability and public health.

  15. Evaluation of the Aqua‎Crop Model to Simulate Maize Yiled Response under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Aida Mehrazar

    2017-01-01

    and crop yield under different levels of NaCl solution osmotic potential were also investigated by SAS ver 9.1 software. Data's mean comparisons were performed by Duncan's multiple range test. To assess the accuracy of AquaCrop Model for Simulation of the Maize Performance under Salt Stress used from Indicators RMSE, MAE, CRM, NSE, d and Er. Results Discussion: The results of RMSE and MAE indices showed that AquaCrop model can simulate maize yield under the salinity stress. Accuracy decreased and crop yield prediction underestimated with increasing salinity from treatment 0 to 18.13 ds/m in the first and second harvest. The highest yield related to salinity treatment of 0 dS/m and the lowest yield related to salinity treatment 18.13 dS/m. yeild simulation error increased by increasing salinity, the highest and lowest error of yield simulation in model respectively related to salinity treatments 18.13 and 0 dS/m. The highest and lowest error was in the first harvest respectively 0.56 and 13.1 percent and in the second harvest respectively 0.42 and 21.79 percent, that in the comparison with the results of studies conducted by Steduto and colleagues on maize is not much different. The results comparison in the first and second harvest showed that soil salinity was increased by increasing irrigation number in second harvest, so the error in second harvest is greater than first harvest and the maximum error is related to treatment 18.13 ds/m in the second harvest 21.79 percent.The coefficient of determination R2 for the first and second harvest is respectively 0.850 and 0.834, that indicates a high correlation between yeild values of measured and predicted by the AquaCrop model. CRM index was negative and near zero in both harvest under Salinity different scenarios. According to CRM value, AquaCrop model was overestimated and the model was simulated maize yield under the salinity stress a little more than measured yield. The d statistic index value is close to unity

  16. Yield trends and yield gap analysis of major crops in the world

    NARCIS (Netherlands)

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are

  17. Cranes and Crops: Investigating Farmer Tolerances toward Crop Damage by Threatened Blue Cranes ( Anthropoides paradiseus) in the Western Cape, South Africa

    Science.gov (United States)

    van Velden, Julia L.; Smith, Tanya; Ryan, Peter G.

    2016-12-01

    The Western Cape population of Blue Cranes ( Anthropoides paradiseus) in South Africa is of great importance as the largest population throughout its range. However, Blue Cranes are strongly associated with agricultural lands in the Western Cape, and therefore may come into conflict with farmers who perceive them as damaging to crops. We investigated the viability of this population by exploring farmer attitudes toward crane damage in two regions of the Western Cape, the Swartland and Overberg, using semi-structured interviews. Perceptions of cranes differed widely between regions: farmers in the Swartland perceived crane flocks to be particularly damaging to the feed crop sweet lupin (65 % of farmers reported some level of damage by cranes), and 40 % of these farmers perceived cranes as more problematic than other common bird pests. Farmers in the Overberg did not perceive cranes as highly damaging, although there was concern about cranes eating feed at sheep troughs. Farmers who had experienced large flocks on their farms and farmers who ranked cranes as more problematic than other bird pests more often perceived cranes to be damaging to their livelihoods. Biographical variables and crop profiles could not be related to the perception of damage, indicating the complexity of this human-wildlife conflict. Farmers' need for management alternatives was related to the perceived severity of damage. These results highlight the need for location-specific management solutions to crop damage by cranes, and contribute to the management of this vulnerable species.

  18. 75 FR 15603 - Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions

    Science.gov (United States)

    2010-03-30

    ... to: (1) Theft; or (2) Inability to market the avocados for any reason other than actual physical... Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions AGENCY: Federal Crop Insurance... Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions to convert the Florida...

  19. Cereal Crops Are not Created Equal: Wheat Consumption Associated with Obesity Prevalence Globally and Regionally

    Directory of Open Access Journals (Sweden)

    Wenpeng You

    2016-05-01

    Full Text Available Background: Cereals have been extensively advocated as the beneficial food group in terms of body weight management, but each staple cereal crop may contribute in different ways. Studies of the association between wheat availability and risk of obesity are controversial. This study aimed to test the global and regional association between wheat availability as reported by FAO and obesity prevalence at a population level. FAO does not distinguish between whole grain wheat and refined wheat. Methods: Population-specific data from 170 countries on prevalence of obesity, availabilities of mixed cereals, wheat, rice, maize, meat, sugar, fat, soy and calories and GDP are obtained from the UN agencies. All variables were measured as per capita per day (or per year. Each country is treated as an individual subject. SPSS v. 22 is used to analyse these data for all the 170 countries and official country groupings (regions using non parametric and parametric correlations, including partial correlation analysis. Results: Pearson’s correlation coefficient analysis showed that obesity prevalence is positively associated with wheat availability (r = 0.500, p < 0.001, but is inversely associated with availabilities of total cereals (r = -0.132, p = 0.087, rice (r = -0.405, p < 0.001 and maize (r = -0.227, p = 0.004. These associations remain in partial correlation model when we keep availabilities of meat, fat, sugar, soy, caloric intake and GDP statistically constant. Overall, positive associations between wheat availability and obesity prevalence remain in different regions. Maize and mixed cereal availabilities do not show independent associations with the obesity prevalence. Conclusions: Our study suggests that wheat availability is an independent predictor of the obesity prevalence both worldwide and with special regard to the regions of Africa, Americas and Asia. Future studies should distinguish between possible influence of whole grain and ultra

  20. Do green manures as winter cover crops impact the weediness and crop yield in an organic crop rotation?

    OpenAIRE

    Madsen, Helena; Talgre, Liina; Eremeev, Viacheslav; Alaru, Maarika; Kauer, Karin; Luik, Anne

    2016-01-01

    The effects of different winter cover crops and their combination with composted cattle manure on weeds and crop yields were investigated within a five-field crop rotation (barley undersown with red clover, red clover, winter wheat, pea, potato) in three organic cropping systems. The control system (Org 0) followed the rotation. In organic systems Org I and Org II the winter cover crops were used as follows: ryegrass (Lolium perenne L. in 2011/2012) and a mixture of winter oilseed-rape (Brass...

  1. A blended approach to analyze staple and high-value crops using remote sensing with radiative transfer and crop models.

    Science.gov (United States)

    Davitt, A. W. D.; Winter, J.; McDonald, K. C.; Escobar, V. M.; Steiner, N.

    2017-12-01

    The monitoring of staple and high-value crops is important for maintaining food security. The recent launch of numerous remote sensing satellites has created the ability to monitor vast amounts of crop lands, continuously and in a timely manner. This monitoring provides users with a wealth of information on various crop types over different regions of the world. However, a challenge still remains on how to best quantify and interpret the crop and surface characteristics that are measured by visible, near-infrared, and active and passive microwave radar. Currently, two NASA funded projects are examining the ability to monitor different types of crops in California with different remote sensing platforms. The goal of both projects is to develop a cost-effective monitoring tool for use by vineyard and crop managers. The first project is designed to examine the capability to monitor vineyard water management and soil moisture in Sonoma County using Soil Moisture Active Passive (SMAP), Sentinel-1A and -2, and Landsat-8. The combined mission products create thorough and robust measurements of surface and vineyard characteristics that can potentially improve the ability to monitor vineyard health. Incorporating the Michigan Microwave Canopy Scattering (MIMICS), a radiative transfer model, enables us to better understand surface and vineyard features that influence radar measurements from Sentinel-1A. The second project is a blended approach to analyze corn, rice, and wheat growth using Sentinel-1A products with Decision Support System for Agrotechnology Transfer (DSSAT) and MIMICS models. This project aims to characterize the crop structures that influence Sentinel-1A radar measurements. Preliminary results have revealed the corn, rice, and wheat structures that influence radar measurements during a growing season. The potential of this monitoring tool can be used for maintaining food security. This includes supporting sustainable irrigation practices, identifying crop

  2. Sustainable commercialization of new crops for the agricultural bioeconomy

    Directory of Open Access Journals (Sweden)

    N.R. Jordan

    2016-01-01

    Full Text Available Abstract Diversification of agroecological systems to enhance agrobiodiversity is likely to be critical to advancing environmental, economic, and social sustainability of agriculture. Temperate-zone agroecological systems that are currently organized for production of summer-annual crops can be diversified by integration of fallow-season and perennial crops. Integration of such crops can improve sustainability of these agroecological systems, with minimal interference with current agricultural production. Importantly, these crops can provide feedstocks for a wide range of new bio-products that are forming a new agricultural bioeconomy, potentially providing greatly increased economic incentives for diversification. However, while there are many fallow-season and perennial crops that might be used in such a “bioeconomic” strategy for diversification, most are not yet well adapted and highly-marketable. Efforts are underway to enhance adaptation and marketability of many such crops. Critically, these efforts require a strategic approach that addresses the inherent complexity of these projects. We outline a suitable approach, which we term “sustainable commercialization”: a coordinated innovation process that integrates a new crop into the agriculture of a region, while intentionally addressing economic, environmental and social sustainability challenges via multi-stakeholder governance. This approach centers on a concerted effort to coordinate and govern innovation in three critical areas: germplasm development, multifunctional agroecosystem design and management, and development of end uses, supply chains, and markets. To exemplify the approach, we describe an ongoing effort to commercialize a new fallow-season crop, field pennycress (Thlaspi arvense L..

  3. DETERMINANTS OF CHOICE OF CROP VARIETY AS CLIMATE CHANGE ADAPTATION OPTION IN ARID REGIONS OF ZIMBABWE

    Directory of Open Access Journals (Sweden)

    James Zivanomoyo

    2013-03-01

    Full Text Available Impacts of climate change in developing countries remain poorly understood because few studies have successfully analyses the overall impact of climate on developing country economies. Agricultural growth is widely viewed as an effective and most important way to reduce poverty in developing countries which are hardly hit by the adverse effects of climate change (Datt and Ravallion, 1996. Despite this knowledge the main challenge is how to increase agricultural productivity to improve household welfare and increase food security in these changing and challenging climatic conditions. This study used the multinomial logit model to analyse the determinants of farmers' choice of crop variety in the face of climate change. The estimation of the multinomial logit was done by using the sorghum variety options as dependent variable and where farmers grow other crop different from sorghum as the reference state. Results show that the key determinants of choosing crop variety are; the price of existing crop variety, level of education of farmers, the size of the farms, government policies and incentives and credit availability.

  4. Application of Artificial Neural Networks in Canola Crop Yield Prediction

    Directory of Open Access Journals (Sweden)

    S. J. Sajadi

    2014-02-01

    Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.

  5. Crop biomass and evapotranspiration estimation using SPOT and Formosat-2 Data

    Science.gov (United States)

    Veloso, Amanda; Demarez, Valérie; Ceschia, Eric; Claverie, Martin

    2013-04-01

    The use of crop models allows simulating plant development, growth and yield under different environmental and management conditions. When combined with high spatial and temporal resolution remote sensing data, these models provide new perspectives for crop monitoring at regional scale. We propose here an approach to estimate time courses of dry aboveground biomass, yield and evapotranspiration (ETR) for summer (maize, sunflower) and winter crops (wheat) by assimilating Green Area Index (GAI) data, obtained from satellite observations, into a simple crop model. Only high spatial resolution and gap-free satellite time series can provide enough information for efficient crop monitoring applications. The potential of remote sensing data is often limited by cloud cover and/or gaps in observation. Data from different sensor systems need then to be combined. For this work, we employed a unique set of Formosat-2 and SPOT images (164 images) and in-situ measurements, acquired from 2006 to 2010 in southwest France. Among the several land surface biophysical variables accessible from satellite observations, the GAI is the one that has a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Many methods have been developed to relate GAI to optical remote sensing signal. Here, seasonal dynamics of remotely sensed GAI were estimated by applying a method based on the inversion of a radiative transfer model using artificial neural networks. The modelling approach is based on the Simple Algorithm for Yield and Evapotranspiration estimate (SAFYE) model, which couples the FAO-56 model with an agro-meteorological model, based on Monteith's light-use efficiency theory. The SAFYE model is a daily time step crop model that simulates time series of GAI, dry aboveground biomass, grain yield and ETR. Crop and soil model parameters were determined using both in-situ measurements and values found in the literature. Phenological parameters were calibrated by the

  6. Cover crop biomass production and water use in the central great plains under varying water availability

    Science.gov (United States)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  7. Hot spots of crop production changes at 1.5°C and 2°C

    Science.gov (United States)

    Schleussner, C. F.; Deryng, D.; Mueller, C.; Elliott, J. W.; Saeed, F.; Folberth, C.; Liu, W.; Wang, X.; Pugh, T.

    2017-12-01

    Studying changes in global and regional crop production is central for assessing the benefits of limiting global average temperature below 1.5ºC versus 2ºC. Projections of future climatic impacts on crop production are commonly focussed on focussing on mean changes. However, substantial risks are posed by extreme weather events such as heat waves and droughts that are of great relevance for imminent policy relevant questions such as price shocks or food security. Preliminary research on the benefits of keeping global average temperature increase below 1.5ºC versus 2ºC above pre-industrial levels has indicated that changes in extreme weather event occurrences will be more pronounced than changes in the mean climate. Here we will present results of crop yield projections for a set of global gridded crop models (GGCMs) for four major staple crops at 1.5°C and 2°C warming above pre-industrial levels using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project. We will assess changes in crop production on the global and regional level, and identify hot spots of change. The unique multi-ensemble setup allows to identify changes in extreme yield losses with multi-year to multi-decadal return periods, and thus elucidate the consequences for global and regional food security.

  8. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land.

    Science.gov (United States)

    West, Paul C; Gibbs, Holly K; Monfreda, Chad; Wagner, John; Barford, Carol C; Carpenter, Stephen R; Foley, Jonathan A

    2010-11-16

    Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced carbon stocks in natural vegetation and soils. Here, we present a spatially explicit global analysis of tradeoffs between carbon stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much carbon (∼120 tons·ha(-1) vs. ∼63 tons·ha(-1)) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha(-1)·y(-1) vs. 3.84 tons·ha(-1)·y(-1)). Therefore, newly cleared land in the tropics releases nearly 3 tons of carbon for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between carbon stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions.

  9. 76 FR 71276 - Common Crop Insurance Regulations; Pecan Revenue Crop Insurance Provisions

    Science.gov (United States)

    2011-11-17

    ...-0008] RIN 0563-AC35 Common Crop Insurance Regulations; Pecan Revenue Crop Insurance Provisions AGENCY... Corporation (FCIC) proposes to amend the Common Crop Insurance Regulations, Pecan Revenue Crop Insurance... Regulations (7 CFR part 457) by revising Sec. 457.167 Pecan Revenue Crop Insurance Provisions, to be effective...

  10. Measuring the economic impact of climate change on major South African field crops: a Ricardian approach

    Science.gov (United States)

    Gbetibouo, G. A.; Hassan, R. M.

    2005-07-01

    This study employed a Ricardian model to measure the impact of climate change on South Africa's field crops and analysed potential future impacts of further changes in the climate. A regression of farm net revenue on climate, soil and other socio-economic variables was conducted to capture farmer-adapted responses to climate variations. The analysis was based on agricultural data for seven field crops (maize, wheat, sorghum, sugarcane, groundnut, sunflower and soybean), climate and edaphic data across 300 districts in South Africa. Results indicate that production of field crops was sensitive to marginal changes in temperature as compared to changes in precipitation. Temperature rise positively affects net revenue whereas the effect of reduction in rainfall is negative. The study also highlights the importance of season and location in dealing with climate change showing that the spatial distribution of climate change impact and consequently needed adaptations will not be uniform across the different agro-ecological regions of South Africa. Results of simulations of climate change scenarios indicate many impacts that would induce (or require) very distinct shifts in farming practices and patterns in different regions. Those include major shifts in crop calendars and growing seasons, switching between crops to the possibility of complete disappearance of some field crops from some region.

  11. Matching Crew Diet and Crop Food Production in BIO-Plex

    Science.gov (United States)

    Jones, Harry; Kwauk, Xianmin; Mead, Susan C. (Technical Monitor)

    2000-01-01

    This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato. The BIO-Plex Biomass Production System food production and the external food supply must be matched to the crew diet requirement for calories and nutritional balance. The crop production and external supply specifications can each be varied as long as their sum matches the required diet specification. We have wide flexibility in choosing the crops and resupply. We can easily grow one-half the crew calories in one BIO-Plex Biomass Production Chamber (BPC) if we grow only the most productive crops (wheat, potato, and sweet potato) and it we achieve nominal crop productivity. If we assume higher productivity we can grow a wider variety of crops. If we grow one-half of the crew calories, externally supplied foods can easily provide the other half of the calories and balance the diet. We can not grow 95 percent of the crew calories in two BPCs at nominal productivity while growing a balanced diet. We produce maximum calories by growing wheat, potato, and peanut.

  12. AgMIP Training in Multiple Crop Models and Tools

    Science.gov (United States)

    Boote, Kenneth J.; Porter, Cheryl H.; Hargreaves, John; Hoogenboom, Gerrit; Thornburn, Peter; Mutter, Carolyn

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has the goal of using multiple crop models to evaluate climate impacts on agricultural production and food security in developed and developing countries. There are several major limitations that must be overcome to achieve this goal, including the need to train AgMIP regional research team (RRT) crop modelers to use models other than the ones they are currently familiar with, plus the need to harmonize and interconvert the disparate input file formats used for the various models. Two activities were followed to address these shortcomings among AgMIP RRTs to enable them to use multiple models to evaluate climate impacts on crop production and food security. We designed and conducted courses in which participants trained on two different sets of crop models, with emphasis on the model of least experience. In a second activity, the AgMIP IT group created templates for inputting data on soils, management, weather, and crops into AgMIP harmonized databases, and developed translation tools for converting the harmonized data into files that are ready for multiple crop model simulations. The strategies for creating and conducting the multi-model course and developing entry and translation tools are reviewed in this chapter.

  13. Opportunities and challenges for harvest weed seed control in global cropping systems.

    Science.gov (United States)

    Walsh, Michael J; Broster, John C; Schwartz-Lazaro, Lauren M; Norsworthy, Jason K; Davis, Adam S; Tidemann, Breanne D; Beckie, Hugh J; Lyon, Drew J; Soni, Neeta; Neve, Paul; Bagavathiannan, Muthukumar V

    2017-11-28

    The opportunity to target weed seeds during grain harvest was established many decades ago following the introduction of mechanical harvesting and the recognition of high weed-seed retention levels at crop maturity; however, this opportunity remained largely neglected until more recently. The introduction and adoption of harvest weed seed control (HWSC) systems in Australia has been in response to widespread occurrence of herbicide-resistant weed populations. With diminishing herbicide resources and the need to maintain highly productive reduced tillage and stubble-retention practices, growers began to develop systems that targeted weed seeds during crop harvest. Research and development efforts over the past two decades have established the efficacy of HWSC systems in Australian cropping systems, where widespread adoption is now occurring. With similarly dramatic herbicide resistance issues now present across many of the world's cropping regions, it is timely for HWSC systems to be considered for inclusion in weed-management programs in these areas. This review describes HWSC systems and establishing the potential for this approach to weed control in several cropping regions. As observed in Australia, the inclusion of HWSC systems can reduce weed populations substantially reducing the potential for weed adaptation and resistance evolution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Induced plant resistance as a pest management tactic on piercing sucking insects of sesame crop

    Directory of Open Access Journals (Sweden)

    M. F. Mahmoud

    2013-09-01

    Full Text Available Sesame, Sesamum indicum L. is the most oil seed crop of the world and also a major oil seed crop of Egypt. One of the major constraints in its production the damage caused by insect pests, particularly sucking insects which suck the cell sap from leaves, flowers and capsules. Impact of three levels of potassin-F, salicylic acid and combination between them on reduction infestation of Stink bug Nezara viridula L., Mirid bug Creontiades sp., Green peach aphid Myzus persicae (Sulzer, Leafhopper Empoasca lybica de Berg and Whitefly Bemisia tabaci (Gennadius of sesame crop cultivar Shandawil 3 was carried out during 2010-2011 crop season at Experimental farm, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt. Also, the impacts of potassin-F and salicylic acid on yield production of sesame were studied. Results indicated that percent of reduction of infestation by N. viridula, M. persicae, Creontiades sp., E. lybicae, B. tabaci and phyllody disease were significantly higher at Level 2 (Potassin-F= 2.5 cm/l, Salicylic acid= 0.001 M and Potassin + Salicylic= 2.5 cm/l + 0.001 M and consequently higher seed yield per plant were obtained.

  15. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    Science.gov (United States)

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  16. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  17. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    Science.gov (United States)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  18. Impact of Continuous Cropping on the Diurnal Range of Dew Point Temperature during the Foliar Expansion Period of Annual Crops on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Bharat M. Shrestha

    2016-01-01

    Full Text Available It is important to increase our knowledge of the role of land use in changing the regional climate. This study asked, “Has the increase in continuous cropping over the past 50 years on the Canadian Prairies influenced the daily mean and range of morning dew point temperatures (Td during the foliar expansion period (from mid-June to mid-July of annual field crops?” We found that there has been a general increase in the decadal average of mean daily Td and in the range of morning Td from the 1960s to the 2000s. The increase in the observed range of Td between the daily minimum value, which typically occurs near sunrise, and the late morning peak was found to be related to the increase in annual crop acreage and consequent decrease in summerfallow area. The relationship was more significant in the subhumid climatic zone than in the semiarid climatic zone, and it was influenced by whether the region was experiencing either wet, normal, or dry conditions.

  19. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.

    Science.gov (United States)

    Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine

    2017-05-01

    Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.

  20. Determination of percent calcium carbonate in calcium chromate

    International Nuclear Information System (INIS)

    Middleton, H.W.

    1979-01-01

    The precision, accuracy and reliability of the macro-combustion method is superior to the Knorr alkalimetric method, and it is faster. It also significantly reduces the calcium chromate waste accrual problem. The macro-combustion method has been adopted as the official method for determination of percent calcium carbonate in thermal battery grade anhydrous calcium chromate and percent calcium carbonate in quicklime used in the production of calcium chromate. The apparatus and procedure can be used to measure the percent carbonate in inorganic materials other than calcium chromate. With simple modifications in the basic apparatus and procedure, the percent carbon and hydrogen can be measured in many organic material, including polymers and polymeric formulations. 5 figures, 5 tables

  1. A crop model-based approach for sunflower yields

    Directory of Open Access Journals (Sweden)

    João Guilherme Dal Belo Leite

    2014-10-01

    Full Text Available Pushed by the Brazilian biodiesel policy, sunflower (Helianthus annuus L. production is becoming increasingly regarded as an option to boost farmers' income, particularly under semi-arid conditions. Biodiesel related opportunities increase the demand for decision-making information at different levels, which could be met by simulation models. This study aimed to evaluate the performance of the crop model OILCROP-SUN to simulate sunflower development and growth under Brazilian conditions and to explore sunflower water- and nitrogen-limited, water-limited and potential yield and yield variability over an array of sowing dates in the northern region of the state of Minas Gerais, Brazil. For model calibration, an experiment was conducted in which two sunflower genotypes (H358 and E122 were cultivated in a clayey soil. Growth components (leaf area index, above ground biomass, grain yield and development stages (crop phenology were measured. A database composed of 27 sunflower experiments from five Brazilian regions was used for model evaluation. The spatial yield distribution of sunflower was mapped using ordinary kriging in ArcGIS. The model simulated sunflower grain productivity satisfactorily (Root Mean Square Error ≈ 13 %. Simulated yields were relatively high (1,750 to 4,250 kg ha-1 and the sowing window was fairly wide (Oct to Feb for northwestern locations, where sunflower could be cultivated as a second crop (double cropping at the end of the rainy season. The hybrid H358 had higher yields for all simulated sowing dates, growth conditions and selected locations.

  2. Reductions in India's crop yield due to ozone

    Science.gov (United States)

    Ghude, Sachin D.; Jena, Chinmay; Chate, D. M.; Beig, G.; Pfister, G. G.; Kumar, Rajesh; Ramanathan, V.

    2014-08-01

    This bottom-up modeling study, supported by emission inventories and crop production, simulates ozone on local to regional scales. It quantifies, for the first time, potential impact of ozone on district-wise cotton, soybeans, rice, and wheat crops in India for the first decade of the 21st century. Wheat is the most impacted crop with losses of 3.5 ± 0.8 million tons (Mt), followed by rice at 2.1 ± 0.8 Mt, with the losses concentrated in central and north India. On the national scale, this loss is about 9.2% of the cereals required every year (61.2 Mt) under the provision of the recently implemented National Food Security Bill (in 2013) by the Government of India. The nationally aggregated yield loss is sufficient to feed about 94 million people living below poverty line in India.

  3. Potential Impacts of Climate Change on World Food Supply: Datasets from a Major Crop Modeling Study

    Data.gov (United States)

    National Aeronautics and Space Administration — Datasets from a Major Crop Modeling Study contain projected country and regional changes in grain crop yields due to global climate change. Equilibrium and transient...

  4. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types. [/sup 32/P-labelled fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Bhujbal, B M; Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.; Chapke, V G; Mutatkar, V K [Fertilizer Corp. of India Ltd., Bombay

    1977-09-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO/sub 3/ (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers.

  5. Predicting optimum crop designs using crop models and seasonal climate forecasts.

    Science.gov (United States)

    Rodriguez, D; de Voil, P; Hudson, D; Brown, J N; Hayman, P; Marrou, H; Meinke, H

    2018-02-02

    Expected increases in food demand and the need to limit the incorporation of new lands into agriculture to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, those optimum crop designs should be known, while the main problem is to predict relevant attributes of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test our capacity to inform that "hindsight", by linking a tested crop model (APSIM) with a skillful seasonal climate forecasting system, to answer "What is the value of the skill in seasonal climate forecasting, to inform crop designs?" Results showed that the GCM POAMA-2 was reliable and skillful, and that when linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop designs, increase farmers profits and reduce risks.

  6. Biological soil attributes in oilseed crops irrigated with oilfield produced water in the semi-arid region

    Directory of Open Access Journals (Sweden)

    Ana Clarice Melo Azevedo de Meneses

    Full Text Available ABSTRACT Wastewater from oil is the main residue of the oil industry. Studies have shown that wastewater, or produced water, can be treated and used as an alternative source for the irrigation of oilseed crops. The aim of this work was to evaluate the effect of treated produced water on the biological properties of soil cultivated with the castor bean cv. BRS Energy and the sunflower cv. BRS 321 respectively, for two and three successive cycles of grain production. The first cycle in the sunflower and castor bean corresponds to the dry season and the second cycle to the rainy season. The third crop cycle in the sunflower relates to the dry season. The research was carried out from August 2012 to October 2013, in the town of Aracati, in the State of Ceará (Brazil, where both crops were submitted to irrigation with filtered produced water (FPW, produced water treated by reverse osmosis (OPW, or groundwater water from the Açu aquifer (ACW, and to no irrigation (RFD. The treatments, with three replications, were evaluated during the periods of pre-cultivation and plant reproduction for soil respiration (Rs, total organic carbon (TOC and the population density of bacteria (Bact and filamentous fungi (Fung in the soil. In the sunflower crop, these soil attributes are sensitive to the irrigation water used. Irrigation of the castor bean affects soil respiration. Under the conditions of this study, irrigation with FPW may be a short-term alternative in the castor bean and sunflower crops.

  7. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    in each plot in 2011. At the harvest time tuber yield and also percent and severity of infection was determined. All data was analyzed statistically and Duncan test was used for comparison of means. Results and Discussion: Analysis of variance results showed that, potato tuber yield was affected by the crop rotation, the rate of returning residues, and also interaction between rotation × returning residues statistically (P≤0.01.When 1000 tuber was considered, analysis of variance results showed, crop rotation had a very significant effect (P≤0.01 on number and percent of infected tubers to wireworm and its holes. The most infected tubers ie.42.34 and holed i.e. 61.4 and totally 4.24% of tubers were belonged to the rotation 2, where in the rapeseed crop was preceding plant. The least one was achieved in rotation 1, with the rates of 27, 37 and 2.8% where in potato crop was not planted previously. The most infection to wireworm was found in 100% residue returning to the soil with 3.8% and the least one in no residue returning to the soil, i.e. 3.4 %. Results showed with increasing residue returning to the soil, the damage of wireworms is increased too. Conclusion: Generally applying crop rotation using different crops and residue returning to the soil is resulted in higher potato tuber yield. This increasing rate for tuber yield was 116% and 57 % when the preceding crops were wheat and rapeseed respectively compared to the mean of rotations 3 and 4. For the aim of sustainable production of potato and reducing of wireworm damage it is necessary we focus on other crop rotation and the importance of C:N ratio and the rate of residue returning to the soil. So we need to conduct new experiments with these purposes.

  8. Assessment of climate change impact on yield of major crops in the Banas River Basin, India.

    Science.gov (United States)

    Dubey, Swatantra Kumar; Sharma, Devesh

    2018-09-01

    Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Improving the Monitoring of Crop Productivity Using Spaceborne Solar-Induced Fluorescence

    Science.gov (United States)

    Guan, Kaiyu; Berry, Joseph A.; Zhang, Yongguang; Joiner, Joanna; Guanter, Luis; Badgley, Grayson; Lobell, David B.

    2015-01-01

    Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.

  10. Prospects of potential fodder-crops in hilly regions, especially northern areas of pakistan, their production and conservation

    International Nuclear Information System (INIS)

    Hussain, A.; Khan, S.

    2005-01-01

    The comparison of green-fodder and dry-matter yields in various winter cereal fodder crops showed that oat is a high fodder-yielding and more nutritive crop than barley, cereal rye wheat and triticale. Average of the three locations in northern areas of Pakistan (i.e. Gilgit, Chilas and Skardu) indicated that green-fodder yield obtained from oats was 54% higher than barley and 50% than cereal rye. It was also determined that oats and barley have greater re-growth potential than triticale. In oats, it was assessed that whole dose of N=75 kg/ha applied at the time of sowing and the split doses of N at the time of sowing and at vegetative stage of the crop increased green-fodder yield by 250% and 287% respectively than control. Improved varieties of oats viz. PD2L V65 and S-81 produced the highest total green-fodder yields of 87.34 and 86.10 t/ha under two cut system. Also re-growth potential of these varieties was the highest than the other cultivars. In winter legume fodder crops, berseem produced two times more green and dry matter yields as compared to shaftal at Gilgit and Chilas. Berseem harvested 6 cm above ground level and 45 days interval showed good results. Protein percentage decreased as cutting intervals increased in berseem crop. The improved lucerne variety Sundor was superior to local variety both in green-fodder and dry-matter yields. The yield of lucerne decreased with the increase in altitude which might be due to low temperattlre, variation in soil fertility and short growing seasons. Green forage and pasture crop species are dried enough to permit their safe storage, without spoilage or serious loss of nutrients. About 70-90% of water present in standing crop at mowing is reduced to 18-20% by sun and wind without adversely affecting nutritive value. (author)

  11. Protein crop production at the northern margin of farming: to boost or not to boost

    Directory of Open Access Journals (Sweden)

    Pirjo Peltonen-Sainio

    2012-12-01

    Full Text Available Global changes in food demand resulting from population growth and more meat-intensive diets require an increase in global protein crop production, not least as climate change and increasing scarcity of fresh water could restrict future production. In contrast to many other regions, in Finland climate change could open new opportunities through enabling more diverse cropping systems. It is justified to re-enquire whether the extent and intensity of protein crop production are optimized, resources are used efficiently and sustainably, cropping systems are built to be resilient and whether ecological services that protein crops provide are utilized appropriately. This paper aims to analyze in a descriptive manner the biological grounds for sustainable intensification of protein crop production in Finland. Production security is considered by evaluating the effects of and likelihood for constraints typical for northern conditions, examining historical and recent crop failures and estimating ecosystem services that more extensive introduction of protein crops potentially provide for northern cropping systems now and in a changing climate. There is an evident potential to expand protein crop production sustainably to a couple of times its current area. In general, variability in protein yields tends to be higher for protein crops than spring cereals. Nevertheless, protein yield variability was not necessarily systematically higher for Finland, when compared with other European regions, as it was for cereals. Protein crops provide significant ecological services that further support their expanded production. By this means protein self-sufficiency remains unrealistic, but increased production of protein crops can be achieved. The expansion of rapeseed and legumes areas also seems to be economically feasible. From the economic viewpoint, an increase in domestic protein supply requires that farmers have economic incentives to a cultivate protein

  12. Characterisation of Seasonal Rainfall for Cropping Schedules ...

    African Journals Online (AJOL)

    El Nino-South Oscillation (ENSO) phenomenon occurs in the Equatorial Eastern Pacific Ocean and has been noted to account significantly for rainfall variability in many parts of the world, particularly tropical regions. This variability is very important in rainfed crop production and needs to be well understood. Thirty years of ...

  13. Effect of crop rotation on soil nutrient balance and weediness in soddy podzolic organic farming fields

    Science.gov (United States)

    Zarina, Livija; Zarina, Liga

    2017-04-01

    The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.

  14. Groundwater Sustainability Through Optimal Crop Choice in the Indian Punjab

    Science.gov (United States)

    Desai, R.; Siegfried, T. U.; B Krishnamurthy, C.; Sobolowski, S.

    2010-12-01

    Over the past decades, during a time of declining public investments in irrigation projects in India, the growth of agricultural production has increasingly become reliant on unsustainable allocation of groundwater. As a result, aquifers are depleted and their role in buffering climate variability is lost. North-western India is a region of special concern, given the central role it plays for ensuring food security at the national scale. From the 1960s onwards, the Green Revolution propelled this region to unprecedented levels of agricultural productivity but the falling groundwater tables puts the longterm viability of the groundwater irrigated agriculture at risk there. Given future climate/food supply uncertainty and ongoing population pressure, it is vital that the connections between climate variability, unsustainable irrigation practices and impacts on regional scale agricultural production be quantified and better understood. Towards this end, we present a coupled climate-groundwater-agricultural model of 12 districts in the Punjab. Utilizing a set of 30 years time series data on seasonal precipitation, crop water requirements as well as area-averaged groundwater levels, district-level statistical groundwater models were developed using least square splines. The models were trained on a 25 year training set with a 10-fold cross-validation scheme. Prior knowledge regarding the physical principles between net groundwater recharge and levels of drawdown were incorporated by constraining the splines' shapes. Performance was assessed on a 5 year hold-out dataset. The model was subsequently coupled to climate scenarios. 10 year precipitation simulations were created using a Non-Homogeneous Hidden Markov model (NHMM). The NHMMs were trained with 30 year daily gridded precipitation data using a seasonal predictor and 100 precipitation realizations generated to account for forcing uncertainty. An optimization problem was formulated as stochastic program (SP) with

  15. Envisioning a metropolitan foodshed: potential environmental consequences of increasing food-crop production around Chicago

    Science.gov (United States)

    Bowen, E. E.; Martin, P. A.; Schuble, T. J.

    2009-12-01

    Nationwide, cities are increasingly developing policies aimed at greater sustainability, particularly focusing on reducing environmental impact. Such policies commonly emphasize more efficiently using energy to decrease the greenhouse gas (GHG) footprint of the city. However, most plans ignore the food system as a factor in regional energy use and GHG emissions. Yet, the food system in the United States accounts for ~20% of per capita greenhouse gas emissions. Local, sustainable food production is cited as one strategy for mitigating GHG emissions of large metropolitan areas. “Sustainable” for regional agriculture is often identified as small-scale, diversified food crop production using best practices management. Localized food production (termed “foodshed”) using sustainable agriculture could mitigate climate change in multiple ways: (1) energy and therefore CO2-intensive portions of the conventional food system might be replaced by local, lower-input food production resulting in carbon offsets; (2) increased regional carbon storage might result from well-managed food crop production vs. commodity crop production; and (3) averted N2O emissions might result from closing nutrient cycles on agricultural lands following changes in management practices. The broader implications for environmental impact of widespread conversion to sustainable food crop agriculture, however, remain largely unknown. We examine the Chicago metropolitan region to quantify the impact of increased local food production on regional energy efficiency and GHG emissions. Geospatial analysis is used to quantify the resource potential for establishing a Chicago metropolitan foodshed. A regional foodshed is defined by minimizing cost through transportation mode (road, rail, or water) and maximizing the production potential of different soil types. Simple biogeochemical modeling is used to predict changes in N2O emissions and nutrient flows following changes in land management practices

  16. Measurement of the fluorescence of crop residues: A tool for controlling soil erosion

    Science.gov (United States)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.; Hunter, W. J.

    1994-01-01

    Management of crop residues, the portion of a crop left in the field after harvest, is an important conservation practice for minimizing soil erosion and for improving water quality. Quantification of crop residue cover is required to evaluate the effectiveness of conservation tillage practices. Methods are needed to quantify residue cover that are rapid, accurate, and objective. The fluorescence of crop residue was found to be a broadband phenomenon with emission maxima at 420 to 495 nm for excitations of 350 to 420 nm. Soils had low intensity broadband emissions over the 400 to 690 nm region for excitations of 300 to 600 nm. The range of relative fluorescence intensities for the crop residues was much greater than the fluorescence observed of the soils. As the crop residues decompose their blue fluorescence values approach the fluorescence of the soil. Fluorescence techniques are concluded to be less ambiguous and better suited for discriminating crop residues and soils than reflectance methods. If properly implemented, fluorescence techniques can be used to quantify, not only crop residue cover, but also photosynthetic efficiency in the field.

  17. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    Science.gov (United States)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate

  18. Cultivating C4 crops in a changing climate: sugarcane in Ghana

    International Nuclear Information System (INIS)

    Black, Emily; Vidale, Pier Luigi; Osborne, Tom; Van den Hoof, Catherine; Verhoef, Anne; Cuadra, Santiago Vianna

    2012-01-01

    Over the next few decades, it is expected that increasing fossil fuel prices will lead to a proliferation of energy crop cultivation initiatives. The environmental sustainability of these activities is thus a pressing issue—particularly when they take place in vulnerable regions, such as West Africa. In more general terms, the effect of increased CO 2 concentrations and higher temperatures on biomass production and evapotranspiration affects the evolution of the global hydrological and carbon cycles. Investigating these processes for a C4 crop, such as sugarcane, thus provides an opportunity both to extend our understanding of the impact of climate change, and to assess our capacity to model the underpinning processes. This paper applies a process-based crop model to sugarcane in Ghana (where cultivation is planned), and the São Paulo region of Brazil (which has a well-established sugarcane industry). We show that, in the Daka River region of Ghana, provided there is sufficient irrigation, it is possible to generate approximately 75% of the yield achieved in the São Paulo region. In the final part of the study, the production of sugarcane under an idealized temperature increase climate change scenario is explored. It is shown that doubling CO 2 mitigates the degree of water stress associated with a 4 °C increase in temperature. (letter)

  19. Impact of the Gulf of California SST on simulating precipitation and crop productivity in the Southwestern United States

    Science.gov (United States)

    Kim, S.; Kim, J.; Prasad, A. K.; Stack, D. H.; El-Askary, H. M.; Kafatos, M.

    2012-12-01

    Like other ecosystems, agricultural productivity is substantially affected by climate factors. Therefore, accurate climatic data (i.e. precipitation, temperature, and radiation) is crucial to simulating crop yields. In order to understand and anticipate climate change and its impacts on agricultural productivity in the Southwestern United States, the WRF regional climate model (RCM) and the Agricultural Production Systems sIMulator (APSIM) were employed for simulating crop production. 19 years of WRF RCM output show that there is a strong dry bias during the warm season, especially in Arizona. Consequently, the APSIM crop model indicates very low crop yields in this region. We suspect that the coarse resolution of reanalysis data could not resolve the relatively warm Sea Surface Temperature (SST) in the Gulf of California (GC), causing the SST to be up to 10 degrees lower than the climatology. In the Southwestern United States, a significant amount of precipitation is associated with North American Monsoon (NAM). During the monsoon season, the low-level moisture is advected to the Southwestern United States via the GC, which is known to be the dominant moisture source. Thus, high-resolution SST data in the GC is required for RCM simulations to accurately represent a reasonable amount of precipitation in the region, allowing reliable evaluation of the impacts on regional ecosystems.and evaluate impacts on regional ecosystems. To evaluate the influence of SST on agriculture in the Southwestern U.S., two sets of numerical simulations were constructed: a control, using unresolved SST of GC, and daily updated SST data from the MODIS satellite sensor. The meteorological drivers from each of the 6 year RCM runs were provided as input to the APSIM model to determine the crop yield. Analyses of the simulated crop production, and the interannual variation of the meteorological drivers, demonstrate the influence of SST on crop yields in the Southwestern United States.

  20. The Effect of Crop Insurance on Technical Efficiency of Wheat Farmers in Kermanshah Province: A Corrected Ordinary Least Square Approach

    Science.gov (United States)

    Agahi, Hossein; Zarafshani, Kiumars; Behjat, Amir-Mohsen

    The purpose of this study was to describe the effect of crop insurance on agricultural production among dry wheat farmers in Kermanshah province. The population of this study consisted of dry wheat farmers. Data used in this study was collected using stratified multi-stage cluster sampling method and face to face interview with 251 farmers in three different climate regions: tropical, temperate and cold during 2003-2004 crop years. The procedures used for determining farmers' technical efficiency was Corrected Ordinary Least Square (COLS). Findings revealed that crop insurance has positive effect on temperate and tropical regions. However, the production difference between insured and uninsured farmers in cold region was non-significant. It is therefore concluded that technical efficiency of agricultural production in Kermanshah province is a function of crop insurance as well as other variables such as crop management practices, personal characteristics and fair distribution of agricultural inputs.

  1. Bioenergy crop models: Descriptions, data requirements and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Kang, Shujiang [ORNL; Zhang, Xuesong [Pacific Northwest National Laboratory (PNNL); Miguez, Fernando [Iowa State University; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Post, Wilfred M [ORNL; Dietze, Michael [University of Illinois, Urbana-Champaign; Lynd, L. [Dartmouth College; Wullschleger, Stan D [ORNL

    2012-01-01

    Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

  2. Actively learning human gaze shifting paths for semantics-aware photo cropping.

    Science.gov (United States)

    Zhang, Luming; Gao, Yue; Ji, Rongrong; Xia, Yingjie; Dai, Qionghai; Li, Xuelong

    2014-05-01

    Photo cropping is a widely used tool in printing industry, photography, and cinematography. Conventional cropping models suffer from the following three challenges. First, the deemphasized role of semantic contents that are many times more important than low-level features in photo aesthetics. Second, the absence of a sequential ordering in the existing models. In contrast, humans look at semantically important regions sequentially when viewing a photo. Third, the difficulty of leveraging inputs from multiple users. Experience from multiple users is particularly critical in cropping as photo assessment is quite a subjective task. To address these challenges, this paper proposes semantics-aware photo cropping, which crops a photo by simulating the process of humans sequentially perceiving semantically important regions of a photo. We first project the local features (graphlets in this paper) onto the semantic space, which is constructed based on the category information of the training photos. An efficient learning algorithm is then derived to sequentially select semantically representative graphlets of a photo, and the selecting process can be interpreted by a path, which simulates humans actively perceiving semantics in a photo. Furthermore, we learn a prior distribution of such active graphlet paths from training photos that are marked as aesthetically pleasing by multiple users. The learned priors enforce the corresponding active graphlet path of a test photo to be maximally similar to those from the training photos. Experimental results show that: 1) the active graphlet path accurately predicts human gaze shifting, and thus is more indicative for photo aesthetics than conventional saliency maps and 2) the cropped photos produced by our approach outperform its competitors in both qualitative and quantitative comparisons.

  3. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Science.gov (United States)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  4. Climate change and farmers’ cropping patterns in Cemoro watershed area, Central Java, Indonesia

    Science.gov (United States)

    Sugihardjo; Sutrisno, J.; Setyono, P.; Suntoro

    2018-03-01

    Cropping pattern applied by farmers is usually based on the availability of water. Farmers cultivate rice when water is available. If it is unavailable, farmers will choose to plant crops that need less water. Climate change greatly affects to farmers in determining the cropping pattern as it alters the rainfall pattern and distribution in the region. This condition requires farmers to adjust the cropping pattern so that they can do the farming successfully. This study aims to examine the application of cropping patterns applied by the farmers in the Cemoro Watershed, Central Java, Indonesia. Descriptive analysis approach is employed in this research. The results showed that farmers’ cropping pattern is not based on the availability of water. However, it adopts a habit that has been practiced since long time ago or just adopt others farmer's habit. The cropping pattern applied by irrigated paddy farmers in Cemoro watershed area consists of two types: rice-rice-rice and rice-rice-secondary crops. Among those two types, most farmers apply the rice-rice-rice pattern. Meanwhile, there are three cropping patterns applied in the rain-land, namely rice-rice-rice, rice-rice-secondary crop, and rice-rice-fallow. The majority of farmers apply the second pattern (rice-rice-secondary crops). It was also found that farmers’ cropping pattern was not in accordance with the recommendation of the local government.

  5. Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements.

    NARCIS (Netherlands)

    Trindade, H.; Coutinho, J.; Beusichem, van M.L.; Scholefield, D.; Moreira, N.

    1997-01-01

    Nitrate leaching from a double-cropping forage system was measured over a 2-year period (June 1994–May 1996) in the Northwest region of Portugal using ceramic cup samplers. The crops were grown for silage making and include maize (from May to September) and a winter crop (rest of the year)

  6. Screening boreal energy crops and crop residues for methane biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.; Rintala, J.A. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Viinikainen, T.A. [Department of Chemistry, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2008-06-15

    The purpose of the study was to screen potential boreal energy crops and crop residues for their suitability in methane production and to investigate the effect of harvest time on the methane production potential of different crops. The specific methane yields of crops, determined in 100-200 d methane potential assays, varied from 0.17 to 0.49 m{sup 3} CH{sub 4} kg{sup -1} VS{sub added} (volatile solids added) and from 25 to 260 m{sup 3} CH{sub 4} t{sub ww}{sup -1} (tonnes of wet weight). Jerusalem artichoke, timothy-clover grass and reed canary grass gave the highest potential methane yields of 2900-5400 m{sup 3} CH{sub 4} ha{sup -1}, corresponding to a gross energy yield of 28-53 MWh ha{sup -1} and ca. 40,000-60,000 km ha{sup -1} in passenger car transport. The effect of harvest time on specific methane yields per VS of crops varied a lot, whereas the specific methane yields per t{sub ww} increased with most crops as the crops matured. (author)

  7. SPI-Based Analyses of Drought Changes over the Past 60 Years in China’s Major Crop-Growing Areas

    Directory of Open Access Journals (Sweden)

    Lang Xia

    2018-01-01

    Full Text Available This study analyzes the changes in drought patterns in China’s major crop-growing areas over the past 60 years. The analysis was done using both weather station data and Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI rainfall data to calculate the Standardized Precipitation Index (SPI. The results showed that the occurrences of extreme drought were the most serious in recent years in the Southwest China and Sichuan crop-growing areas. The Yangtze River (MLRY and South China crop-growing areas experienced extreme droughts during 1960–1980, whereas the Northeast China and Huang–Huai–Hai crop-growing areas experienced extreme droughts around 2003. The analysis showed that the SPIs calculated by TRMM data at time scales of one, three, and six months were reliable for monitoring drought in the study regions, but for 12 months, the SPIs calculated by gauge and TRMM data showed less consistency. The analysis of the spatial distribution of droughts over the past 15 years using TMI rainfall data revealed that more than 60% of the area experienced extreme drought in 2011 over the MLRY region and in 1998 over the Huang–Huai–Hai region. The frequency of different intensity droughts presented significant spatial heterogeneity in each crop-growing region.

  8. Crop yield network and its response to changes in climate system

    Science.gov (United States)

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  9. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China.

    Science.gov (United States)

    Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang

    2013-01-01

    Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems.

  10. Continuous cropping with 13 - 15 inches of precipitation

    Science.gov (United States)

    Producers in the Great Plains have use fallow to adjust for inconsistent and often, inadequate rainfall. The prevalent rotation in this region is winter wheat-fallow. Fallow, however, is damaging to soil health. No-till practices have enabled producers to include more crops in the rotation. This...

  11. Replacing fallow by cover crops: economic sustainability

    Science.gov (United States)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    costs varied from 28 to 73 € ha-1 but, results suggest that barley and vetch as cover crops increases maize yields, being a strategy that stochastically dominates the fallow. In this case, even without selling residue and without fertilizer reduction, vetch treatment increased the benefits with respect to the fallow in almost two out of three years and barley treatment did so in one year out of two. When biomass was sold as forage, benefits increase in 80% of the years for the vetch and in 70% of years for the barley with respect to the fallow. However, rapeseed was not a good cover crop for the Mediterranean region because poorly adaptation to the weather conditions. Then, cover crops can lead to increase of economical benefits improving environmental conditions at the same time. Acknowledgements: Financial support by Spain CICYT (ref. AGL2005-00163 and AGL 2011-24732), Comunidad de Madrid (project AGRISOST, S2009/AGR-1630), Belgium FSR 2012 (ref. SPER/DST/340-1120525) and Marie Curie actions.

  12. Vitality structure of the populations of some weed species in crop sowings

    Directory of Open Access Journals (Sweden)

    E. M. Tikhonova

    2010-11-01

    Full Text Available Features of development of populations of weed species (Cirsium arvense (L. Scop., Sonchus arvensis L., Melandium album (Mill. Garke, Setaria glauca (L. Beauv., Fallopia convolvulus (L. А. Lоve in most typical crops in the forest-steppe zone of the Sumy region. It was studied the crop sowings (winter wheat, rye, barley, buckwheat, pea which was not subjected to the herbicide treatment.

  13. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    Science.gov (United States)

    Yang, Y.; Anderson, M. C.; Gao, F.; Wardlow, B.; Hain, C.; Otkin, J.; Sun, L.; Dulaney, W.

    2017-12-01

    In agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability and vegetation health and thus has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) describes temporal anomalies in a normalized evapotranspiration metric (fRET) as derived from satellite remote sensing and has demonstrated capacity to explain regional yield variability in water limited crop growing regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded. In this study we generated maps of ET, fRET, and ESI at high spatiotemporal resolution (30-m pixels, daily timesteps) using a multi-sensor data fusion method, integrating information from satellite platforms with good temporal coverage and other platforms that provide field-scale spatial detail. The study was conducted over the period 2010-2014, covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of corn yield are investigated at both the field and county level to assess the value of ESI as a yield forecasting tool. To examine the role of phenology in ESI-yield correlations, annual input fRET timeseries were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). Results demonstrate that mapping of fRET and ESI at 30-m has the advantage of being able to resolve different crop types with varying phenology. The study also suggests that incorporating phenological information significantly improves yield-correlations by accounting for effects of phenology such as variable planting date and emergence date. The yield-ESI relationship in this study well captures the inter-annual variability of yields

  14. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2017-10-01

    Full Text Available Introduction Winter wheat is an important, well-adapted grain crop under dryland condition of the northwest of Iran. Soil water is the most limiting resource for crop growth in dryland areas. Therefore, farmers need to use crop residues and minimum tillage to control the soil erosion and effectively store and to use the limited precipitation received for crop production. Crop rotation and tillage system could affect crop yield due to their effects on water conservation and soil chemical and physical properties. Galantini et al., (2000 studied the effect of crop rotation on wheat productivity in the Pampean semi-arid region of Argentina and found that a wheat–vetch (Vicia sativa L. rotation resulted in higher yield and protein content, and greater yield components than the other rotations.Payne et al. (2000 stated that where precipitation amount is marginal (400 mm, dry field pea offers a potential alternative to summer fallowing. The purpose of this study was to identify the optimal tillage system for increasing crop productivity in a vetch–wheat rotation in dryland farming of the northwest of Iran. Materials and Methods The field experiment was carried out from 2010 to 2014 at the Dryland Agricultural Research Station (latitude37° 12´N; longitude 46◦20´E; 1730 m a.s.l., 25 km east of Maragheh, East Azerbaijan Province, Iran. The long-term (10 years average precipitation, temperature and relative humidity of the station are 336.5 mm, 9.4 ◦C and 47.5%, respectively. The soil (Fine Mixed, Mesic, Vertic Calcixerepts, USDA system; Calcisols, FAO system at the study site had a clay loam texture in the 0–15 cm surface layer and a clay texture in the 15–80 cm depth. This study was conducted in vetch (Vicia pannonica- wheat (Triticum aestivum L. rotation. The experiment was arranged in a randomized complete block design with four replications. The tillage treatments consisted of (1 conventional tillage: moldboard plowing followed by one

  15. 26 CFR 301.6226(b)-1 - 5-percent group.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false 5-percent group. 301.6226(b)-1 Section 301.6226... ADMINISTRATION PROCEDURE AND ADMINISTRATION Assessment In General § 301.6226(b)-1 5-percent group. (a) In general. All members of a 5-percent group shall join in filing any petition for judicial review. The...

  16. 77 FR 22467 - Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions

    Science.gov (United States)

    2012-04-16

    ...-0006] RIN 0563-AC32 Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop... Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Fresh Market Tomato (Dollar... Common Crop Insurance Regulations (7 CFR part 457), Fresh Market Tomato (Dollar Plan) Crop Provisions...

  17. Impact of Corn Residue Removal on Crop and Soil Productivity

    Science.gov (United States)

    Johnson, J. M.; Wilhelm, W. W.; Hatfield, J. L.; Voorhees, W. B.; Linden, D.

    2003-12-01

    Over-reliance on imported fuels, increasing atmospheric levels of greenhouses and sustaining food production for a growing population are three of the most important problems facing society in the mid-term. The US Department of Energy and private enterprise are developing technology necessary to use high cellulose feedstock, such as crop residues, for ethanol production. Based on production levels, corn (Zea mays L.) residue has potential as a biofuel feedstock. Crop residues are a renewable and domestic fuel source, which can reduce the rate of fossil fuel use (both imported and domestic) and provide an additional farm commodity. Crop residues protect the soil from wind and water erosion, provide inputs to form soil organic matter (a critical component determining soil quality) and play a role in nutrient cycling. Crop residues impact radiation balance and energy fluxes and reduce evaporation. Therefore, the benefits of using crop residues as fuel, which removes crop residues from the field, must be balanced against negative environmental impacts (e.g. soil erosion), maintaining soil organic matter levels, and preserving or enhancing productivity. All ramifications of new management practices and crop uses must be explored and evaluated fully before an industry is established. There are limited numbers of long-term studies with soil and crop responses to residue removal that range from negative to negligible. The range of crop and soil responses to crop residue removal was attributed to interactions with climate, management and soil type. Within limits, corn residue can be harvested for ethanol production to provide a renewable, domestic source of energy feedstock that reduces greenhouse gases. Removal rates must vary based on regional yield, climatic conditions and cultural practices. Agronomists are challenged to develop a protocol (tool) for recommending maximum permissible removal rates that ensure sustained soil productivity.

  18. Directional reflectance factor distributions of a cotton row crop

    Science.gov (United States)

    Kimes, D. S.; Newcomb, W. W.; Schutt, J. B.; Pinter, P. J., Jr.; Jackson, R. D.

    1984-01-01

    The directional reflectance factor distribution spanning the entire exitance hemisphere was measured for a cotton row crop (Gossypium barbadense L.) with 39 percent ground cover. Spectral directional radiances were taken in NOAA satellite 7 AVHRR bands 1 and 2 using a three-band radiometer with restricted 12 deg full angle field of view at half peak power points. Polar co-ordinate system plots of directional reflectance factor distributions and three-dimensional computer graphic plots of scattered flux were used to study the dynamics of the directional reflectance factor distribution as a function of spectral band, geometric structure of the scene, solar zenith and azimuth angles, and optical properties of the leaves and soil. The factor distribution of the incomplete row crops was highly polymodal relative to that for complete vegetation canopies. Besides the enhanced reflectance for the antisolar point, a reflectance minimum was observed towards the forwardscatter direction in the principle plane of the sun. Knowledge of the mechanics of the observed dynamics of the data may be used to provide rigorous validation for two- or three-dimensional radiative transfer models, and is important in interpreting aircraft and satellite data where the solar angle varies widely.

  19. Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.)

    NARCIS (Netherlands)

    Araya, A.; Stroosnijder, L.; Girmay, G.; Keesstra, S.D.

    2011-01-01

    In the semi-arid region of Tigray, Northen Ethiopia a two season experiment was conducted to measure evapotranspiration, estimate yield response to water stress and derive the crop coefficient of teff using the single crop coefficient approach with simple, locally made lysimeters and field plots.

  20. Integrating soil conservation practices and glyphosate-resistant crops: impacts on soil.

    Science.gov (United States)

    Locke, Martin A; Zablotowicz, Robert M; Reddy, Krishna N

    2008-04-01

    Conservation practices often associated with glyphosate-resistant crops, e.g. limited tillage and crop cover, improve soil conditions, but only limited research has evaluated their effects on soil in combination with glyphosate-resistant crops. It is assumed that conservation practices have similar benefits to soil whether or not glyphosate-resistant crops are used. This paper reviews the impact on soil of conservation practices and glyphosate-resistant crops, and presents data from a Mississippi field trial comparing glyphosate-resistant and non-glyphosate-resistant maize (Zea mays L.) and cotton (Gossypium hirsutum L.) under limited tillage management. Results from the reduced-tillage study indicate differences in soil biological and chemical properties owing to glyphosate-resistant crops. Under continuous glyphosate-resistant maize, soils maintained greater soil organic carbon and nitrogen as compared with continuous non-glyphosate-resistant maize, but no differences were measured in continuous cotton or in cotton rotated with maize. Soil microbial community structure based on total fatty acid methyl ester analysis indicated a significant effect of glyphosate-resistant crop following 5 years of continuous glyphosate-resistant crop as compared with the non-glyphosate-resistant crop system. Results from this study, as well as the literature review, indicate differences attributable to the interaction of conservation practices and glyphosate-resistant crop, but many are transient and benign for the soil ecosystem. Glyphosate use may result in minor effects on soil biological/chemical properties. However, enhanced organic carbon and plant residues in surface soils under conservation practices may buffer potential effects of glyphosate. Long-term field research established under various cropping systems and ecological regions is needed for critical assessment of glyphosate-resistant crop and conservation practice interactions. Copyright (c) 2008 by John Wiley & Sons

  1. Determination of region-specific data of yield and quality of alternatives to silage maize in fodder crops – field trails with forage gras and clover grass mixtures, Sorghum as well as whole plant silage of grain

    Directory of Open Access Journals (Sweden)

    Wosnitza, Andrea

    2014-02-01

    Full Text Available This project should generate current regional results over a period of three years about the parameter yield and quality of alternative fodder crops to maize; this includes grass and clover grass mixtures, silage maize, varieties of Sorghum/millets and whole plant silages of wheat, rye and triticale. The tested silage maize showed the highest and most reliable average dry matter yield with 23 tons per hectare, with a very low variance. The Sorghum and millet varieties had dry matter yields of 3 to 5 tons per hectare below the silage maize yield but with individual values fluctuating in a broad range within years and locations. With values far below 28% the dry matter contents were not suitable for ensiling. The grass and clover grass mixtures are good, stable and established alternatives to maize for silage. They achieved high yields comparable with these of Sorghum but stable and with a highly suitable dry matter content for ensiling. The yield of the whole plant silages was up to 22% lower compared with maize. So none of the alternative crops can compete with the high level yield of silage maize in its favoured region, therefore would be a combination of two crops recommended. But some individual locally adapted mixtures or varieties of the alternative crops reached nearly 80% of the maize yield. Silage maize showed the highest level of the net energy content for lactation (NEL, followed by the values of the fodder crops and the whole plant silages. The Sorghum varieties showed the lowest NEL value of all tested cultures. The highest crude protein showed the fodder crops contents. Silage maize, Sorghum and the whole plant silages had values lying nearly around the 50% mark of the fodder crops.

  2. Meteorological risks and impacts on crop production systems in Belgium

    Science.gov (United States)

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during

  3. Characterization of the uranium--2 weight percent molybdenum alloy

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1976-01-01

    The uranium-2 wt percent molybdenum alloy was prepared, processed, and age hardened to meet a minimum 930-MPa yield strength (0.2 percent) with a minimum of 10 percent elongation. These mechanical properties were obtained with a carbon level up to 300 ppM in the alloy. The tensile-test ductility is lowered by the humidity of the laboratory atmosphere

  4. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    Science.gov (United States)

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893

  5. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  6. Evaluating gridded crop model simulations of evapotranspiration and irrigation using survey and remotely sensed data

    Science.gov (United States)

    Lopez Bobeda, J. R.

    2017-12-01

    The increasing use of groundwater for irrigation of crops has exacerbated groundwater sustainability issues faced by water limited regions. Gridded, process-based crop models have the potential to help farmers and policymakers asses the effects water shortages on yield and devise new strategies for sustainable water use. Gridded crop models are typically calibrated and evaluated using county-level survey data of yield, planting dates, and maturity dates. However, little is known about the ability of these models to reproduce observed crop evapotranspiration and water use at regional scales. The aim of this work is to evaluate a gridded version of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model over the continental United States. We evaluated crop seasonal evapotranspiration over 5 arc-minute grids, and irrigation water use at the county level. Evapotranspiration was assessed only for rainfed agriculture to test the model evapotranspiration equations separate from the irrigation algorithm. Model evapotranspiration was evaluated against the Atmospheric Land Exchange Inverse (ALEXI) modeling product. Using a combination of the USDA crop land data layer (CDL) and the USGS Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture Dataset for the United States (MIrAD-US), we selected only grids with more than 60% of their area planted with the simulated crops (corn, cotton, and soybean), and less than 20% of their area irrigated. Irrigation water use was compared against the USGS county level irrigated agriculture water use survey data. Simulated gridded data were aggregated to county level using USDA CDL and USGS MIrAD-US. Only counties where 70% or more of the irrigated land was corn, cotton, or soybean were selected for the evaluation. Our results suggest that gridded crop models can reasonably reproduce crop evapotranspiration at the country scale (RRMSE = 10%).

  7. Natural radioactivity in Swedish agricultural soils and crops

    International Nuclear Information System (INIS)

    Eriksson, Ake; Rosen, K.

    2000-01-01

    In this work we report on investigations in Sweden of the natural radioactivity of 40 K, 226 Ra and 232 Th in the agricultural soils and of 226 Ra in the crops. In addition information is given on factors important for the plant availability of these nuclides to the crop plants. Also, from a number of works, background data on the transfer from soils to plants in different environments are presented. These works show that there is a large variation depending on local conditions and crop type in the accumulation of natural radioactive elements by the plants. Thus, concentration ratios (plant/soil) calculated for fresh crop weight and dry soil weight showed for 238 U in forage crops and in grain a range 0.001-0.005, for 226 Ra a range 0.001-0.03 and for 210 Pb a range 0.0004-0.2. The higher value was limit for vegetative plant parts and the lower value limit for generative parts, seeds and grain. In Swedish early studies, evidence was found that in field crops on the same soils the radium/calcium-ratio in grain was reduced according to the following order winter wheat>spring wheat> barley>oats. Variation among the crops on different soils showed ranges from 1-0.1 to 1-0.4. The radium/calcium-ratio in straw was 4 to 7 times higher than in grain. Also field experiments showed that proper liming on acid soils could reduce the radium/calcium ratio by 40 per cent. Our study shows that the average contents of the nuclides 226 Ra and 232 Th in Bq per kg dry weight is of the same size of order, 40, 50 and 80 Bq per kg in the southern, in the western and in the middle regions of Sweden, respectively. The difference between regions is not occasional. It depends on the type of the mother material and on the different clay contents of the soils, as is indicated also by the potassium content. Considering also the daughters of the nuclide series it is found that the total nuclide activity will reach a sum of 300-600 kBq per square meter of the plough layer. The total activity may

  8. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review

    Directory of Open Access Journals (Sweden)

    Maurício Roberto Cherubin

    Full Text Available ABSTRACT: The use of crop residues as a bioenergy feedstock is considered a potential strategy to mitigate greenhouse gas (GHG emissions. However, indiscriminate harvesting of crop residues can induce deleterious effects on soil functioning, plant growth and other ecosystem services. Here, we have summarized the information available in the literature to identify and discuss the main trade-offs and synergisms involved in crop residue management for bioenergy production. The data consistently showed that crop residue harvest and the consequent lower input of organic matter into the soil led to C storage depletions over time, reducing cycling, supply and availability of soil nutrients, directly affecting the soil biota. Although the biota regulates key functions in the soil, crop residue can also cause proliferation of some important agricultural pests. In addition, crop residues act as physical barriers that protect the soil against raindrop impact and temperature variations. Therefore, intensive crop residue harvest can cause soil structure degradation, leading to soil compaction and increased risks of erosion. With regard to GHG emissions, there is no consensus about the potential impact of management of crop residue harvest. In general, residue harvest decreases CO2 and N2O emissions from the decomposition process, but it has no significant effect on CH4 emissions. Plant growth responses to soil and microclimate changes due to crop residue harvest are site and crop specific. Adoption of the best management practices can mitigate the adverse impacts of crop residue harvest. Longterm experiments within strategic production regions are essential to understand and monitor the impact of integrated agricultural systems and propose customized solutions for sustainable crop residue management in each region or landscape. Furthermore, private and public investments/cooperations are necessary for a better understanding of the potential environmental

  9. Impact of perennial energy crops income variability on the crop selection of risk averse farmers

    International Nuclear Information System (INIS)

    Alexander, Peter; Moran, Dominic

    2013-01-01

    The UK Government policy is for the area of perennial energy crops in the UK to expand significantly. Farmers need to choose these crops in preference to conventional rotations for this to be achievable. This paper looks at the potential level and variability of perennial energy crop incomes and the relation to incomes from conventional arable crops. Assuming energy crop prices are correlated to oil prices the results suggests that incomes from them are not well correlated to conventional arable crop incomes. A farm scale mathematical programming model is then used to attempt to understand the affect on risk averse farmers crop selection. The inclusion of risk reduces the energy crop price required for the selection of these crops. However yields towards the highest of those predicted in the UK are still required to make them an optimal choice, suggesting only a small area of energy crops within the UK would be expected to be chosen to be grown. This must be regarded as a tentative conclusion, primarily due to high sensitivity found to crop yields, resulting in the proposal for further work to apply the model using spatially disaggregated data. - Highlights: ► Energy crop and conventional crop incomes suggested as uncorrelated. ► Diversification effect of energy crops investigated for a risk averse farmer. ► Energy crops indicated as optimal selection only on highest yielding UK sites. ► Large establishment grant rates to substantially alter crop selections.

  10. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management

    OpenAIRE

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the ma...

  11. Characterization of the southwest United States for the production of biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; Folger, A.G.

    1987-03-01

    The southwest United States, an area of diverse climate, topography, terrain, soils, and vegetation, is characterized to determine the feasibility of growing terrestrial energy crops there. The emphasis in the study is on delineating general zones of relative resource and environmental suitability, which are then evaluated to estimate the potential of the region for energy crop production. 100 refs., 25 figs., 24 tabs.

  12. Cover Crop-Based, Organic Rotational No-Till Corn and Soybean Production Systems in the Mid-Atlantic United States

    Directory of Open Access Journals (Sweden)

    John M. Wallace

    2017-04-01

    Full Text Available Cover crop-based, organic rotational no-till (CCORNT corn and soybean production is becoming a viable strategy for reducing tillage in organic annual grain systems in the mid-Atlantic, United States. This strategy relies on mechanical termination of cover crops with a roller-crimper and no-till planting corn and soybean into cover crop mulches. Here, we report on recent research that focuses on integrated approaches for crop, nutrient and pest management in CCORNT systems that consider system and regional constraints for adoption in the mid-Atlantic. Our research suggests that no-till planting soybean into roller-crimped cereal rye can produce consistent yields. However, constraints to fertility management have produced less consistent no-till corn yields. Our research shows that grass-legume mixtures can improve N-release synchrony with corn demand and also improve weed suppression. Integration of high-residue inter-row cultivation improves weed control consistency and may reduce reliance on optimizing cover crop biomass accumulation for weed suppression. System-specific strategies are needed to address volunteer cover crops in later rotational phases, which result from incomplete cover crop termination with the roller crimper. The paucity of adequate machinery for optimizing establishment of cash crops into thick residue mulch remains a major constraint on CCORNT adoption. Similarly, breeding efforts are needed to improve cover crop germplasm and develop regionally-adapted varieties.

  13. Climate Change and Climate Variability in the Latin American Region

    Science.gov (United States)

    Magrin, G. O.; Gay Garcia, C.; Cruz Choque, D.; Gimenez-Sal, J. C.; Moreno, A. R.; Nagy, G. J.; Nobre, C.; Villamizar, A.

    2007-05-01

    Over the past three decades LA was subjected to several climate-related impacts due to increased El Niño occurrences. Two extremely intense episodes of El Niño and other increased climate extremes happened during this period contributing greatly to augment the vulnerability of human systems to natural disasters. In addition to weather and climate, the main drivers of the increased vulnerability are demographic pressure, unregulated urban growth, poverty and rural migration, low investment in infrastructure and services, and problems in inter-sector coordination. As well, increases in temperature and increases/decreases in precipitation observed during the last part of 20th century have yet led to intensification of glaciers melting, increases in floods/droughts and forest fires frequency, increases in morbidity and mortality, increases in plant diseases incidence; lost of biodiversity, reduction in dairy cattle production, and problems with hydropower generation, highly affecting LA human system. For the end of the 21st century, the projected mean warming for LA ranges from 1 to 7.5ºC and the frequency of weather and climate extremes could increase. Additionally, deforestation is projected to continue leading to a reduction of 25 percent in Amazonia forest in 2020 and 40 percent in 2050. Soybeans planted area in South America could increase by 55 percent by 2020 enhancing aridity/desertification in many of the already water- stressed regions. By 2050 LA population is likely to be 50 percent larger than in 2000, and migration from the country sides to the cities will continue. In the near future, these predicted changes are very likely to severely affect a number of ecosystems and sectors distribution; b) Disappearing most tropical glaciers; c) Reducing water availability and hydropower generation; d) Increasing desertification and aridity; e) Severely affecting people, resources and economic activities in coastal areas; f) Increasing crop's pests and diseases

  14. The relationships between percent body fat and other ...

    African Journals Online (AJOL)

    The relationships between percent body fat and other anthropometric nutritional predictors among male and female children in Nigeria. ... A weak significant positive correlation was observed between the percent body fat and height – armspan ratio ... There was evidence of overweight and obesity in both children. The mid ...

  15. Brassica cover crops for nitrogen retention in the Mid-Atlantic coastal plain.

    Science.gov (United States)

    Dean, Jill E; Weil, Ray R

    2009-01-01

    Brassica cover crops are new to the mid-Atlantic region, and limited information is available on their N uptake capabilities for effective N conservation. Forage radish (Raphanus sativus L. cv. Daikon), oilseed radish (Raphanus sativus L. cv. Adagio), and rape (Brassica napus L. cv. Dwarf Essex) were compared with rye (Secale cereale L. cv. Wheeler), a popular cover crop in the region, with regard to N uptake ability and potential to decrease N leaching at two sites in Maryland. Plants were harvested in fall and spring for dry matter and N analysis. Soil samples from 0 cm to 105 to 180 cm depth were obtained in fall and spring for NH(4)-N and NO(3)-N analyses. Ceramic cup tension lysimeters were installed at depths of 75 to 120 cm to monitor NO(3)-N in soil pore water. Averaged across 3 site-years, forage radish and rape shoots had greater dry matter production and captured more N in fall than rye shoots. Compared with a weedy fallow control, rape and rye caused similar decreases in soil NO(3)-N in fall and spring throughout the sampled profile. Cover crops had no effect on soil NH(4)-N. During the spring on coarse textured soil, pore water NO(3)-N concentrations in freeze-killed Brassica (radish) plots were greater than in control and overwintering Brassica (rape) and rye plots. On fine textured soil, all cover crops provided a similar decrease in pore water NO(3)-N concentration compared with control. On coarse textured soils, freeze-killed Brassica cover crops should be followed by an early-planted spring main crop.

  16. Changing regional weather−crop yield relationships across Europe between 1901 and 2012

    Czech Academy of Sciences Publication Activity Database

    Trnka, Miroslav; Olesen, J. E.; Kersebaum, K. C.; Rötter, R. P.; Brázdil, Rudolf; Eitzinger, Josef; Jansen, S.; Skjelväg, A. O.; Peltonen-Sainio, P.; Hlavinka, Petr; Balek, J.; Eckersten, H.; Gobin, A.; Vučeti, V.; Dalla Marta, A.; Orlandini, S.; Alexandrov, V.; Semerádová, Daniela; Štěpánek, Petr; Svobodová, Eva; Rajdl, Kamil

    2016-01-01

    Roč. 70, 2-3 (2016), s. 195-214 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13030; GA MZe QJ1310123; GA ČR GA13-19831S Institutional support: RVO:67179843 Keywords : Climatic trend * Weather–crop yield relationship * Wheat * Barley * Yield trend * Drought * Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.578, year: 2016

  17. Kalanchoe crop development under different levels of irrigation

    Directory of Open Access Journals (Sweden)

    Fátima Cibele Soares

    Full Text Available ABSTRACT Despite its importance in the floriculture sector, irrigation management of kalanchoe is characterized by empiricism, being necessary further studies on the use of water by this crop. Thus, the objective of this study is to analyze the several effects of irrigation levels on the growth of kalanchoe crop conducted in greenhouse in the municipality of Alegrete, state of Rio Grande do Sul. The experiment was conducted in a 7 x 15 m protected environment. The experimental design was completely randomized, with four treatments (irrigation levels corresponding to 40, 60, 80 and 100% of the pot water retention capacity - PC and four repetitions, totaling sixteen plots. The crop cycle was 224 days after transplanting and the applied average depths were: 451.82; 367.38; 282.94; 198.51 mm for treatments: 100; 80; 60 and 40% of PC, respectively. Canopy area and number of leaves per plant were evaluated over the crop cycle. In the end of the cycle, the canopy diameter, number of inflorescences per plant and the number of flowers per plant were evaluated. No significant differences were found only to the canopy area, by the F test. Irrigation water depths between 40 and 70% of the pot capacity were more appropriate for the crop growth in the study region. The cultivar presented the best development at irrigation levels below the maximum vessel water retention capacity, that is, it is resistant to drought.

  18. Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited

    International Nuclear Information System (INIS)

    Swinton, Scott M.; Babcock, Bruce A.; James, Laura K.; Bandaru, Varaprasad

    2011-01-01

    By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. - Highlights: → Biofuel crops on cropland can displace food crops, reducing food supply and triggering indirect land use. → Growing biofuel crops on non-crop marginal land avoids these problems. → But US farmers expanded cropland by only 2% when crop profitability jumped 64% during 2006-09. → So medium-term availability of marginal lands for biofuel crops is limited and costly.

  19. The impacts of climate change on crops in China: A Ricardian analysis

    Science.gov (United States)

    Chen, Yongfu; Wu, Zhigang; Okamoto, Katsuo; Han, Xinru; Ma, Guoying; Chien, Hsiaoping; Zhao, Jing

    2013-05-01

    This paper assesses the impact of climate change on China's agricultural production at a cross-provincial level using the Ricardian approach, incorporating a multilevel model with farm-level group data. The farm-level group data includes 13,379 farm households, across 316 villages, distributed in 31 provinces. The empirical results show that, firstly, the marginal effects and elasticities of net crop revenue per hectare with respect to climate factors indicated that the annual impact of temperature on net crop revenue per hectare was positive, and the effect of increased precipitation was negative when looking at the national totals; secondly, the total impact of simulated climate change scenarios on net crop revenues per hectare at a Chinese national total level, was an increase of between 79 USD per hectare and 207 USD per hectare for the 2050s, and an increase from 140 USD per hectare to 355 USD per hectare for the 2080s. As a result, climate change may create a potential advantage for the development of Chinese agriculture, rather than a risk, especially for agriculture in the provinces of the Northeast, Northwest and North regions. However, the increased precipitation can lead to a loss of net crop revenue per hectare, especially for the provinces of the Southwest, Northwest, North and Northeast regions.

  20. Long Term Evaluation of Yield Stability Trend for Cereal Crops in Iran

    Directory of Open Access Journals (Sweden)

    mehdi nassiri mahalati

    2016-05-01

    Full Text Available During the last few decades cereals yield have increased drastically at the national level however, information about yield stability and its resistance to annual environmental variability are scare. In this study long term stability of grin yield of wheat, barley, rice, corn and overall cereals in Iran were evaluated during a 40-year period (1971-2011. Stability analysis was conducted using two different methods. In the first method the residuals of regression between crop yield and time (years were calculated as stability index. For this different segmented regression models including linear, bi-linear and tri-linear were fitted to yield trend data and the best model for each crop was selected based on statistical measures. Absolute residuals (the difference between actual and predicted yields for each year as well as relative residuals (absolute residuals as percent of predicted yield were estimated. In the second method yield stability was estimated from the slope of the regression line between average annual yield of all cereals (environmental index and the yield of each crop in the same year. Results indicted that in wheat and barley absolute and relative residuals were increased during the study period leading to reduction of stability despite considerable yield increment. However, for rice and corn residuals followed a decreasing trend and therefore yield stability of these crops was increased during the last 40 years. The same result was obtained with the environmental index but in this method reduction of yield stability in barley was lower than wheat. Based on the results, yield and yield stability of cereals crops in Iran increased during the last 40 years. However, the percentage increase in stability is lower than that of yield. Application of nitrogen fertilizers was led to reduction in stability. Yield stability of wheat, barley, rice, corn and overall cereals was improved with increasing their cultivated area.

  1. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    Science.gov (United States)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  2. Assessing the ecological and economic sustainability of energy crops

    International Nuclear Information System (INIS)

    Hanegraaf, M.C.; Biewinga, E.E.; Bijl, G. van der

    1998-01-01

    The production and use of biomass for energy has both positive and negative impacts on the environment. The environmental impacts of energy crops should be clarified before political choices concerning energy are made. An important aid to policy-making would be a systematic methodology to assess the environmental sustainability of energy crops. So far, most studies on the environmental aspects of energy crops deal mainly with the energy production of the crops and the possible consequences for CO 2 mitigation. The Dutch Centre for Agriculture and Environment (CLM) has developed a systematic methodology to assess the ecological and socio-economic sustainability of biomass crops. The method is best described as a multicriteria analysis of process chains and is very much related to Life Cycle Assessment (LCA). Characteristics of our methodology are the use of: definition of functional units; analysis of the entire lifecycle; definition of yield levels and corresponding agricultural practices; analysis of both ecological and economic criteria; definition of reference systems; definition of procedures for normalisation and weighting. CLM has applied the method to assess the sustainability of ten potentially interesting energy crops in four European regions. The results are used to outline the perspectives for large scale production of biomass crops with regard to the medium and long term land availability in Europe. For the crops considered, net energy budget ranges from 85 GJ net avoided energy per ha for rape seed for fuel to 248 GJ net avoided fossil energy per ha for silage maize for electricity from gasification. The methodology of the tool and its results were discussed at the concerted action ''Environmental aspects of biomass production and routes for European energy supply'' (AIR3-94-2455), organised by CLM in 1996. Major conclusions of the research: multicriteria analyhsis of process lifecycles is at present the best available option to assess the ecological

  3. Impact of sole cropping and multiple cropping on soil humified carbon fractions

    International Nuclear Information System (INIS)

    Radhakrishnan, R.; Lee, I.J.

    2014-01-01

    The present study was planned to improve our understanding how crop rotation can enhance humified C fractions. A long term experiment was conducted on Vanmeter farm of the Ohio State University South Centers at Piketon Ohio, USA from 2002 to 2007. Crop rotation treatments included were continuous corn (CC), corn-soybean (CS) and corn-soybean-wheat-cowpea (CSW) rotations. Randomized complete block design with 6 replications was used under natural field conditions. The findings of this long-term study revealed that multiple cropping had significantly improved humified carbon fractions compared to mono-cropping system. Although total humified carbon (THOC), sugar free humified carbon (HOC) concentration were non-significant however, humin (NH) contents, humic (HA), fulvic acids (FA), humic and fulvic acid associated glucose (HA-NH and FA-NH) were significantly affected by various crop rotations within five years. The soil under CC had 22-52% significantly greater NH concentration than CSW and CS rotations respectively. Similarly all crop rotations had shown 5-16 increase in HA and 5-17% decreased in FA over time. Likewise soil under CC had 16 and 54% greater HA-NH concentration as compared to CSW and CS rotations. The FA-NH concentration increased significantly by 27- 51% in soil under all treatments over time. The soil under CSW had greater HA/FA (1.6) fallowed by CC (1.4) and CS (1.1). Soils under CSW had significantly greater HA/HOC (12-18%) as compare to CC and CS respectively. Conversely, the value of FA/HOC decreased (1-23%) in soil under all crop rotation treatments within five years. Degree of humification (DH) had shown a significant increase (7-12%) in soil under all treatments as compared to 2002. Irrespective of crop rotation THOC, HOC, NH, humin, HA, HR and FA/HOC concentration decreased significantly with increase in soil depth. While fulvic acid concentration HA/HOC in all crop rotation increased with increase in soil depth. The effect of crop rotation

  4. Spatiotemporal Dynamics of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Commercial Watermelon Crops.

    Science.gov (United States)

    Lima, Carlos H O; Sarmento, Renato A; Galdino, Tarcísio V S; Pereira, Poliana S; Silva, Joedna; Souza, Danival J; Dos Santos, Gil R; Costa, Thiago L; Picanço, Marcelo C

    2018-04-16

    Spatiotemporal dynamics studies of crop pests enable the determination of the colonization pattern and dispersion of these insects in the landscape. Geostatistics is an efficient tool for these studies: to determine the spatial distribution pattern of the pest in the crops and to make maps that represent this situation. Analysis of these maps across the development of plants can be used as a tool in precision agriculture programs. Watermelon, Citrullus lanatus (Thunb.) Matsum. and Nakai (Cucurbitales: Cucurbitaceae), is the second most consumed fruit in the world, and the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important pests of this crop. Thus, the objective of this work was to determine the spatiotemporal distribution of B. tabaci in commercial watermelon crops using geostatistics. For 2 yr, we monitored adult whitefly densities in eight watermelon crops in a tropical climate region. The location of the samples and other crops in the landscape was georeferenced. Experimental data were submitted to geostatistical analysis. The colonization of B. tabaci had two patterns. In the first, the colonization started at the outermost parts of the crop. In the second, the insects occupied the whole area of the crop since the beginning of cultivation. The maximum distance between sites of watermelon crops in which spatial dependence of B. tabaci densities was observed was 19.69 m. The adult B. tabaci densities in the eight watermelon fields were positively correlated with rainfall and relative humidity, whereas wind speed negatively affected whiteflies population.

  5. DNA barcoding simplifies environmental risk assessment of genetically modified crops in biodiverse regions.

    Directory of Open Access Journals (Sweden)

    Chinyere V Nzeduru

    Full Text Available Transgenes encoding for insecticidal crystal (Cry proteins from the soil-dwelling bacterium Bacillus Thuringiensis have been widely introduced into Genetically Modified (GM crops to confer protection against insect pests. Concern that these transgenes may also harm beneficial or otherwise valued insects (so-called Non Target Organisms, NTOs represents a major element of the Environmental Risk Assessments (ERAs used by all countries prior to commercial release. Compiling a comprehensive list of potentially susceptible NTOs is therefore a necessary part of an ERA for any Cry toxin-containing GM crop. In partly-characterised and biodiverse countries, NTO identification is slowed by the need for taxonomic expertise and time to enable morphological identifications. This limitation represents a potentially serious barrier to timely adoption of GM technology in some developing countries. We consider Bt Cry1A cowpea (Vigna unguiculata in Nigeria as an exemplar to demonstrate how COI barcoding can provide a simple and cost-effective means of addressing this problem. Over a period of eight weeks, we collected 163 insects from cowpea flowers across the agroecological and geographic range of the crop in Nigeria. These individuals included 32 Operational Taxonomic Units (OTUs spanning four Orders and that could mostly be assigned to genus or species level. They included 12 Lepidopterans and two Coleopterans (both potentially sensitive to different groups of Cry proteins. Thus, barcode-assisted diagnoses were highly harmonised across groups (typically to genus or species level and so were insensitive to expertise or knowledge gaps. Decisively, the entire study was completed within four months at a cost of less than 10,000 US$. The broader implications of the findings for food security and the capacity for safe adoption of GM technology are briefly explored.

  6. Regional Economic Development Strategy Based Agro-Industries in Key Region Kandangan South of Kalimantan

    Directory of Open Access Journals (Sweden)

    Dewi Siska

    2016-06-01

    Full Text Available Agroindustry has become the main pillar in South Kalimantan development, it can be found in RPJPD 2005-2025. Kandangan mainstay region as one of three leading regions in South Kalimantan which potentially improved to push economy growth through agriculture based industry activity (agroindustry. The concept of agroindustry a side is expected to drive economic growth as well as to realize the equitable distribution of income. This research aims to: (1 identify to economic development of the region in Kandangan mainstay regions, (2 identify the main commodity, (3 identify means of supporting agroindustry, and (4 formulating development strategies based agroindustry region. Entropy analysis shows the development of the economy sufficiently developed in Kandangan mainstay region dominated by the agricultural sector, namely food crops subsector. LQ an SSA analysis shows corn and rice crops become competitive commodities. There are only few of supporting infrastructure agroindustry activities. Strategy formulation in the research is the improvement of infrastructure or infrastructure that can facilitate inter regional connectivity in the region mainstay Kandangan and the government as the leading actor agroindustry development.

  7. Socio-economic impacts of energy crops for heat generation in Northern Greece

    International Nuclear Information System (INIS)

    Panoutsou, Calliope

    2007-01-01

    Bioenergy is considered to be an attractive option mainly due to driving forces of an environmental nature (e.g. climate change and sustainability issues). This is particularly the case for energy crops, which show higher productivity per land unit than their conventional counterparts. In addition, by comparison, such crops are more homogeneous in terms of their physical and chemical characteristics than residual resources that are often described as the biomass resource of the future. However, despite the long-term research and the considerable efforts to promote them, implementation is still rather slow across Europe. In this paper, two perennial energy crops, cardoon and giant reed, are evaluated in Rodopi, northern Greece, as alternative land use, through comparative financial appraisal with the main conventional crops. Based on the output of this analysis, the breakeven for the two energy crops is defined and an economic and socio-economic evaluation of a biomass district heating system is conducted. Results prove that energy crops can be attractive alternatives if they are properly integrated into existing agricultural activities and complement the current cropping options. As such, they provide raw material for local heat applications, thus resulting in increased income for the region and an increase in the number of jobs. (author)

  8. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  9. Coupled Effects of Climatic and Socio-economic Factors on Winter Cropping in India

    Science.gov (United States)

    Jain, M.; Mondal, P.; Galford, G. L.; DeFries, R. S.

    2015-12-01

    India is predicted to be one of the most vulnerable regions in terms of agricultural sensitivity to future climate changes. Approximately 69% of India's population is rural, and over 55% of the working population relies on agriculture for sustenance and livelihoods. Indian smallholder farmers who own less than 2 ha of farmland represent 78% of the total Indian farmers and produce 41% of the country's food crops. These smallholder farmers are among some of the most vulnerable communities to climatic and economic changes due to limited access to technology, infrastructure, markets, and institutional or financial support in the case of adverse climatic events. Baseline information on agricultural sensitivity to climate variability will provide useful information for regional-level, and eventually state- and national-level, strategies and policies that promote adaption to climate variability. We use a decade of remote sensing analysis of cropping patterns and climatic factors along with census data for irrigation and demographic factors to understand winter cropping trajectories across agro-ecological zones in India. Findings from multiple agro-ecological zones indicate that there are three primary trajectories in winter cropping in India - increasing, fluctuating, and decreasing. In the Central Indian Highlands, for example, the most dominant trend is that of fluctuating cropped area, ranging between ~37,300 km2 in 2010 and ~21,100 km2 in 2013, which is associated with village-level access to irrigation and local labor dynamics. Clay soil type and increasing irrigation coverage were associated with intensification. Yet, suitable soil type and access to irrigation do not reduce vulnerability to high daytime temperatures that is negatively associated with winter crop cover. With pronounced winter warming projected in the coming decades, effective adaptation by smallholder farmers would require additional strategies, such as access to fine-scale temperature forecasts

  10. Weather based risks and insurances for crop production in Belgium

    Science.gov (United States)

    Gobin, Anne

    2014-05-01

    Extreme weather events such as late frosts, droughts, heat waves and rain storms can have devastating effects on cropping systems. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The impact of extreme weather events particularly during the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event. The risk of soil moisture deficit increases towards harvesting, such that drought stress occurs in spring and summer. Conversely, waterlogging occurs mostly during early spring and autumn. Risks of temperature stress appear during winter and spring for chilling and during summer for heat. Since crop development is driven by thermal time and photoperiod, the regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. The risk profiles were subsequently confronted with yields, yield losses and insurance claims for different crops. Physically based crop models such as REGCROP assist in understanding the links between different factors causing crop damage as demonstrated for cropping systems in Belgium. Extreme weather events have already precipitated contraction of insurance coverage in some markets (e.g. hail insurance), and the process can be expected to continue if the losses or damages from such events increase in the future. Climate

  11. Strengthening Agricultural Decisions in Countries at Risk of Food Insecurity: The GEOGLAM Crop Monitor for Early Warning

    Science.gov (United States)

    Becker-Reshef, I.; Barker, B.; McGaughey, K.; Humber, M. L.; Sanchez, A.; Justice, C. O.; Rembold, F.; Verdin, J. P.

    2016-12-01

    Timely, reliable information on crop conditions, and prospects at the subnational scale, is critical for making informed policy and agricultural decisions for ensuring food security, particularly for the most vulnerable countries. However, such information is often incomplete or lacking. As such, the Crop Monitor for Early Warning (CM for EW) was developed with the goal to reduce uncertainty and strengthen decision support by providing actionable information on a monthly basis to national, regional and global food security agencies through timely consensus assessments of crop conditions. This information is especially critical in recent years, given the extreme weather conditions impacting food supplies including the most recent El Nino event. This initiative brings together the main international food security monitoring agencies and organizations to develop monthly crop assessments based on satellite observations, meteorological information, field observations and ground reports, which reflect an international consensus. This activity grew out of the successful Crop Monitor for the G20 Agricultural Market Information System (AMIS), which provides operational monthly crop assessments of the main producing countries of the world. The CM for EW was launched in February 2016 and has already become a trusted source of information internationally and regionally. Its assessments have been featured in a large number of news articles, reports, and press releases, including a joint statement by the USAID's FEWS NET, UN World Food Program, European Commission Joint Research Center, and the UN Food and Agriculture Organziation, on the devastating impacts of the southern African drought due to El Nino. One of the main priorities for this activity going forward is to expand its partnership with regional and national monitoring agencies, and strengthen capacity for national crop condition assessments.

  12. The imprint of crop choice on global nutrient needs

    International Nuclear Information System (INIS)

    Jobbágy, Esteban G; Sala, Osvaldo E

    2014-01-01

    Solutions to meet growing food requirements in a world of limited suitable land and degrading environment focus mainly on increasing crop yields, particularly in poorly performing regions, and reducing animal product consumption. Increasing yields could alleviate land requirements, but imposing higher soil nutrient withdrawals and in most cases larger fertilizer inputs. Lowering animal product consumption favors a more efficient use of land as well as soil and fertilizer nutrients; yet actual saving may largely depend on which crops and how much fertilizer are used to feed livestock versus people. We show, with a global analysis, how the choice of cultivated plant species used to feed people and livestock influences global food production as well as soil nutrient withdrawals and fertilizer additions. The 3 to 15-fold differences in soil nutrient withdrawals per unit of energy or protein produced that we report across major crops explain how composition shifts over the last 20 years have reduced N, maintained P and increased K harvest withdrawals from soils while contributing to increasing dietary energy, protein and, particularly, vegetable fat outputs. Being highly variable across crops, global fertilization rates do not relate to actual soil nutrient withdrawals, but to monetary values of harvested products. Future changes in crop composition could contribute to achieve more sustainable food systems, optimizing land and fertilizer use. (letter)

  13. A Meta Analysis on Farm-Level Costs and Benefits of GM Crops

    Directory of Open Access Journals (Sweden)

    Nataliya Stupak

    2011-05-01

    Full Text Available This paper reviews the evidence on the socio-economic impacts of GM crops and analyzes whether there are patterns across space and time. To this end, we investigate the effect of GM crops on farm-level costs and benefits using global data from more than one decade of field trials and surveys. More specifically, we analyze the effects of GM-crops on crop yields, seed costs, pesticide costs, and management and labor costs and finally gross margins. Based on collected data from studies on Bt cotton and Bt maize, statistical analyses are conducted to estimate the effect of GM crop adoption on these parameters. Our results show that, compared to conventional crops, GM crops can lead to yield increases and can lead to reductions in the costs of pesticide application, whereas seed costs are usually substantially higher. Thus, the results presented here do support the contention that the adoption of GM crops leads on average to a higher economic performance, which is also underlined by the high adoption rates for GM crops in a number of countries. However, the kind and magnitude of benefits from GM crops are very heterogeneous between countries and regions, particularly due to differences in pest pressure and pest management practices. Countries with poor pest management practices benefited most from a reduction in yield losses, whereas other countries benefited from cost reductions. However, our study also reveals limitations for meta-analyses on farm-level costs and benefits of GM crops. In particular, published data are skewed towards some countries and the employed individual studies rely on different assumptions, purposes and methodologies (e.g., surveys and field trials. Furthermore, a summary of several (often short-term individual studies may not necessarily capture long-term effects of GM crop adoption.

  14. 75 FR 15777 - Common Crop Insurance Regulations, Basic Provisions; and Various Crop Insurance Provisions

    Science.gov (United States)

    2010-03-30

    ... (protection for production losses only) within one Basic Provisions and the applicable Crop Provisions to..., Macadamia Nut Crop Insurance Provisions, Onion Crop Insurance Provisions, Dry Pea Crop Insurance Provisions... (protection for production losses only) and revenue protection (protection against loss of revenue caused by...

  15. Assessing climate change effects on European crop yields using the Crop Growth

    NARCIS (Netherlands)

    Supit, I.; Diepen, van C.A.; Wit, de A.J.W.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F.

    2012-01-01

    Climate change impacts on potential and rainfed crop yields on the European continent were studied using output of three General Circulation Models and the Crop Growth Monitoring System in combination with a weather generator. Climate change impacts differ per crop type and per CO2 emission

  16. Potential for lychee crop in Mata Norte Pernambucana - Brazil | Potencial para cultivo de lichia na Mata Norte Pernambucana - Brasil

    Directory of Open Access Journals (Sweden)

    Nina Iris Verslype

    2016-06-01

    Full Text Available Lychee crops occurs mainly in South and Southeast regions of Brazil. In this study, the digital terrain modeling (DTM of the micro-region Mata Norte Pernambucana, was designed to identify the districts that have potential for lychee crop, through the parameters of average altitude, precipitation and temperature. The districts analyzed were Aliança, Buenos Aires, Camutanga, Carpina, Condado, Ferreiros, Goiâna, Itambé, Itaquitinga, Lagoa do Carro, Lagoa do Itaenga, Macaparana, Nazaré da Mata, Paudalho, Timbaúba, Tracunhaém and Vicência. The analysis of climate, wind power and altitude in Mata Norte Pernambucana, has revealed that some districts of the micro-region have potential for lychee crops, which is a product with great financial return, and may contribute to increase economy and quality of life in the micro-region.

  17. Biomass production on marginal lands - catalogue of bioenergy crops

    Science.gov (United States)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  18. The effect of catch crop species on selenium availability for succeeding crops

    DEFF Research Database (Denmark)

    Stavridou, Eleftheria; Young, Scott D.; Thorup-Kristensen, Kristian

    2012-01-01

    2007–10 investigated the ability of catch crops (Italian ryegrass, fodder radish and hairy vetch) under different fertiliser regimes to reduce soil Se content in the autumn and to increase its availability in spring to the succeeding crop. Results and Conclusions The catch crops (Italian ryegrass...... and fodder radish) increased water-extractable Se content in the 0.25–0.75msoil layer in only one of the experiments. Selenium uptake by the catch crops varied between 65 and 3263 mg ha−1, depending on species, year and fertilisation treatment; this corresponded to 0.1–3.0% of the water-extractable soil Se......Background and Aims Selenium (Se) is an essential nutrient for humans and animals. In order to ensure an optimal concentration of Se in crops, Se fertilisers are applied. Catch crops may be an alternative way to increase Se concentrations in vegetables. Methods Three experiments in Denmark between...

  19. The environmental benefits of cellulosic energy crops at a landscape scale

    International Nuclear Information System (INIS)

    Graham, R.L.; Liu, W.; English, B.C.

    1995-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops--particularly the cellulosic energy crops current under development. For this discussion, the term energy crop refers to a crop grown primarily to create feedstock for either making biofuels such as ethanol or burning in a heat or electricity generation facility. Cellulosic energy crops are designed to be used in cellulose-based ethanol conversion processes (as opposed to starch or sugar-based ethanol conversion processes). As more cellulose can be produced per hectare of land than can sugar or starch, the cellulose-based ethanol conversion process is a more efficient sue of land for ethanol production. Assessing the environmental impacts of biomass energy from energy crops is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing cellulosic energy crops especially at the landscape or regional scale. However, to set the stage for this discussion, the authors begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  20. Complementary crops and landscape features sustain wild bee communities.

    Science.gov (United States)

    Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew

    2018-06-01

    Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.

  1. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food.

    Science.gov (United States)

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-09-18

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China's major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans.

  2. Enhancing productivity of salt affected soils through crops and cropping system

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The reclamation of salt affected soils needs the addition of soil amendment and enough water to leach down the soluble salts. The operations may also include other simple agronomic techniques to reclaim soils and to know the crops and varieties that may be grown and other management practices which may be followed on such soils (Khan, 2001). The choice of crops to be grown during reclamation of salt affected soils is very important to obtain acceptable yields. This also decides cropping systems as well as favorable diversification for early reclamation, desirable yield and to meet the other requirements of farm families. In any salt affected soils, the following three measures are adopted for reclamation and sustaining the higher productivity of reclaimed soils. 1. Suitable choice of crops, forestry and tree species; 2. Suitable choice of cropping and agroforestry system; 3. Other measures to sustain the productivity of reclaimed soils. (author)

  3. Energy use in cropping systems: A regional long-term exploratory analysis of energy allocation and efficiency in the Inland Pampa (Argentina)

    International Nuclear Information System (INIS)

    Ferraro, Diego Omar

    2012-01-01

    As agricultural system comprises natural processes that are ruled by thermodynamics, the energy utilization is well suited for assessing the sustainability in the management of natural resources. The goals of this paper are 1) to assess the energy use efficiency of the main crops during the 1992–2005 period in Inland Pampa (Argentina); 2) to evaluate the database structure in terms of energy allocation; 3) to assess the changes in technical efficiency using frontier analysis and 4) to identify the best explanatory variables for energy efficiency variability. Results showed an upward trend in productivity per unit area in the crops analyzed (excluding sunflower). Summer soybean and sunflower showed higher energy efficiency values by the end of time series. The main shift in the energy use pattern was the reduction of the energy allocated to tillage. The overall performance of the wheat and soybean crops in the study area appears to be closer to the energy usage pattern shown by the top 5% energy use efficiency crop fields. The exploratory analysis using classification and regression trees (CART) revealed that the energy allocation to tillage; and the crop specie were the attributes that mainly explained the energy efficiency changes. -- Highlights: ► Energy use efficiency (EUE) of main Pampean crops (Argentina) in the 1992–2005 period was analyzed. ► An upward trend in productivity per unit area was observed with the exception of sunflower crop. ► Summer soybean and sunflower showed higher energetic efficiencies by the end of the time series analyzed. ► Average wheat and soybean EUE were closer to the energy usage pattern of the top 5% EUE crop fields. ► Tillage energy and crop specie were the attributes that most strongly explain the EUE changes.

  4. Assessment of agronomic efficacy of phosphatic fertilizers for cotton crop in vertisol using 32P radiotracer technique

    International Nuclear Information System (INIS)

    Srivastava, M.; D'Souza, S.F.

    2007-01-01

    A short-term greenhouse pot culture study was carried out to study the agronomy efficacy of P sources for cotton crop in a vertisol. The sources of P were single super phosphate (SSP), diammonium phosphate (DAP) and nitrophosphate tagged with 32 P and applied at three rates (30, 60 and 90 kg P 2 O 5 ha -1 ). The results indicated that the dry matter yield (DMY) of cotton shoot, P uptake, percent P derived from fertilizer (%Pdff) and Avalue of the soil increased significantly with increasing fertilizer rate, whereas the percent fertilizer P utilization (%FUP) was found to be higher at lower fertilizer rates. Among the fertilizer sources SSP was found to be superior in enhancing DMY of cotton, P uptake and %FUP as compared to other fertilizers. %Pdff was found to be at par in SSP and DAP treatments and was significantly higher in comparison to NP and reverse was true in case of A-value of the soil. Results on equivalent ratio showed that SSP and DAP are equally efficient, whereas, 1 kg P as SSP was equivalent to 7.47 kg P as NP. In general, efficacy of phosphatic fertilizers for cotton crop in vertisol was found to be in order of SSP>DAP>NP. (author)

  5. The Effects of Crop Intensification on the Diversity of Native Pollinator Communities.

    Science.gov (United States)

    Mogren, Christina L; Rand, Tatyana A; Fausti, Scott W; Lundgren, Jonathan G

    2016-08-01

    Increases in agricultural conversion are leading to declines in native grasslands and natural resources critical for beneficial insects. However, little is known regarding how these changes affect pollinator diversity. Land use types were categorized within 300 m and 3 km radii of pollinator sampling locations in Brookings County, SD. Pollinator abundance and species richness were regressed on the proportion of the landscape dedicated to row crops, grass and pasture, forage crops, small grains, and aquatic habitats using variance components modeling. Row crops had a negative effect on bee abundance at 300 m, after fixed effects modeling accounted for outliers skewing this relationship. At 3 km, corn positively affected bee abundance and richness, while soybean acreage decreased species richness. The landscape matrix of outlying sites consisted of large monocultured areas with few alternative habitat types available, leading to inflated populations of Melissodes and Halictidae. Syrphids had a positive parabolic relationship between diversity and row crops, indicating potential for competitive exclusion from intermediate landscapes. Unlike other studies, landscape diversity within 300 m was not found to significantly benefit pollinator diversity. Within especially agriculturally developed areas of the region, high abundances of pollinators suggest selection for a few dominant species. There was no effect of forage crops or aquatic habitats on pollinator diversity, indicating that less highly managed areas still represent degraded habitat within the landscape. Incorporating pollinator-friendly crops at the farm level throughout the region is likely to enhance pollinator diversity by lessening the negative effects of large monocultures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    Science.gov (United States)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  7. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation

    DEFF Research Database (Denmark)

    Iannetta, Pietro P M; Young, Mark; Bachinger, Johann

    2016-01-01

    studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume......–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions...... the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6–0.8, not because of any feature of the legume, but because the cropping...

  8. Crop damage by primates: quantifying the key parameters of crop-raiding events.

    Directory of Open Access Journals (Sweden)

    Graham E Wallace

    Full Text Available Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species.

  9. Crop Damage by Primates: Quantifying the Key Parameters of Crop-Raiding Events

    Science.gov (United States)

    Wallace, Graham E.; Hill, Catherine M.

    2012-01-01

    Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species. PMID:23056378

  10. Influence of future cropland expansion on regional and global tropospheric ozone

    Science.gov (United States)

    Squire, Oliver; Archibald, Alex; Telford, Paul; Pyle, John

    2013-04-01

    With the global population set to rise over the next 100 years, the fraction of land used for crop cultivation is likely to increase, the trend being most pronounced in developing regions such as Brazil and South East Asia. In these regions currently there stands natural rainforest, a high emitter of isoprene. As many staple crops, such as soy bean, are low emitters of isoprene, increasing the crop fraction in these regions will decrease isoprene emissions. Ozone over ~35 ppb has been shown to be damaging to plants, and as ground level ozone is sensitive to isoprene concentrations, altering isoprene emissions could increase ground level ozone, potentially resulting in crop damage. This mechanism was investigated by comparing two configurations of an atmospheric chemistry-climate model (UM-UKCA) under a 2100 climate following an IPCC scenario of moderate climate change. The first run had a present day crop distribution but isoprene emissions concurrent with 2100 temperatures and climatic conditions. The second run had isoprene emissions representative of both a 2100 climate and a 2100 crop distribution in accordance with the IMAGE model. By comparing these runs it was established that ozone increased by up to 8 ppb (~30%) due to crop land expansion. Over the Amazon (the most affected region) it was found that crops were exposed to a daily maximum 8-hour (DM8H) ozone above the 35 ppb threshold for up to 65 days more per year than in the base case. These conclusions suggest that increasing the crop fraction in current areas of natural rainforest could increase regional ground level ozone, having a significant effect on crop yield and air quality. The sensitivity of such conclusions to isoprene chemistry was examined by varying the isoprene chemistry scheme within the model. The CheT isoprene scheme used here (50 reactions) was compared with the AQUM (23 reactions) and CESM Superfast (2 reactions) isoprene schemes, all of which are currently used in Earth-system models

  11. Impact of agriculture crop residue burning on atmospheric aerosol loading – a study over Punjab State, India

    Directory of Open Access Journals (Sweden)

    Darshan Singh

    2010-02-01

    Full Text Available The present study deals with the impact of agriculture crop residue burning on aerosol properties during October 2006 and 2007 over Punjab State, India using ground based measurements and multi-satellite data. Spectral aerosol optical depth (AOD and Ångström exponent (α values exhibited larger day to day variation during crop residue burning period. The monthly mean Ångström exponent "α" and turbidity parameter "β" values during October 2007 were 1.31±0.31 and 0.36±0.21, respectively. The higher values of "α" and "β" suggest turbid atmospheric conditions with increase in fine mode aerosols over the region during crop residue burning period. AURA-OMI derived Aerosol Index (AI and Nitrogen dioxide (NO2 showed higher values over the study region during October 2007 compared to October 2006 suggesting enhanced atmospheric pollution associated with agriculture crop residue burning.

  12. Crop responses to climatic variation

    DEFF Research Database (Denmark)

    Porter, John R.; Semenov, Mikhail A.

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop...... production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important...... for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal...

  13. ECONOMIC BACKGROUND CROP ROTATION AS A WAY TO PREVENT THE DEGRADATION OF AGRICULTURAL LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Shevchenko O.

    2017-05-01

    recommended rotation of soil saturation with large crops of grasses and crops of solid cover, which makes it possible to avoid or minimize the growing row crops. Introduce a rotation of soil combined with contour reclamation of the territory, which includes, band allocation of agricultural crops, construction of various water-regulating structures meadow to the degree of degradation of soil and the steepness of the slope. This limits the fields are projected across the slope or parallel horizontally, and to combat deflation - across the direction of prevailing winds. The study crop rotation over time as a way of preventing the degradation of agricultural landscapes allowed to establish scientifically grounded crop rotation not only performs reclamation feature - provides protection from degradation of the soil and creates a favorable ecological environment in agricultural landscapes, but also can have significant economic efficiency. By comparison the actual amount of sales of crop considering the cost of its production in the administrative districts of Kyiv region (2703,4 million UAH with a forecast value of crop production while maintaining a crop pattern in the rotation with a corresponding set of crops (3075,8 million UAH proved that the economic effect of the introduction of scientifically grounded crop rotations in the region will be about 372,4 million USD, and additional income from 1 hectare of crop area – 322,8 USD. It is proved that, in addition to rotation for a successful fight against land degradation on lands occupied in agriculture also need to implement complex soil conservation measures to protect soil from degradation. To determine the economically justified soil conservation measures were examined the economic impact and effectiveness of each in current market conditions.

  14. 7 CFR 762.129 - Percent of guarantee and maximum loss.

    Science.gov (United States)

    2010-01-01

    ... loss. (a) General. The percent of guarantee will not exceed 90 percent based on the credit risk to the lender and the Agency both before and after the transaction. The Agency will determine the percentage of... PLP lenders will not be less than 80 percent. (d) Maximum loss. The maximum amount the Agency will pay...

  15. Greenhouse gases emission from soils under major crops in Northwest India

    Energy Technology Data Exchange (ETDEWEB)

    Jain, N., E-mail: nivetajain@gmail.com [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Arora, P.; Tomer, R.; Mishra, Shashi Vind; Bhatia, A.; Pathak, H. [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Chakraborty, D. [Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India); Kumar, Vinod; Dubey, D.S.; Harit, R.C.; Singh, J.P. [Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110 012 (India)

    2016-01-15

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N{sub 2}O), methane (CH{sub 4}), and carbon dioxide (CO{sub 2}) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N{sub 2}O emissions were significantly different (P > 0.05) among the crop types. Emission of N{sub 2}O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r{sup 2} = 0.74, P < 0.05). The cumulative flux of CH{sub 4} from the rice crop was 28.64 ± 4.40 kg ha{sup −1}, while the mean seasonal integrated flux of CO{sub 2} from soils ranged from 3058 ± 236 to 3616 ± 157 kg CO{sub 2} ha{sup −1} under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO{sub 2} eq. ha{sup −1} (pigeon pea) and 3968 kg CO{sub 2} eq. ha{sup −1} (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha{sup −1}) and largest in wheat (1042 kg C ha{sup −1}). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. - Highlights: • Nitrous oxide, methane and carbon dioxide emission were quantified from soils under cereals, millets, oilseeds, and pulses in northwest India. • The emission of nitrous oxide ranged from 0.57–1.3 kg ha{sup −1}, methane from 27.78–29.50 kg ha{sup −1} and carbon dioxide from 2377–3910 kg ha{sup −1}. • Emission of nitrous oxide as percent of applied N was highest in pulses (0

  16. Greenhouse gases emission from soils under major crops in Northwest India

    International Nuclear Information System (INIS)

    Jain, N.; Arora, P.; Tomer, R.; Mishra, Shashi Vind; Bhatia, A.; Pathak, H.; Chakraborty, D.; Kumar, Vinod; Dubey, D.S.; Harit, R.C.; Singh, J.P.

    2016-01-01

    Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N 2 O emissions were significantly different (P > 0.05) among the crop types. Emission of N 2 O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r 2 = 0.74, P < 0.05). The cumulative flux of CH 4 from the rice crop was 28.64 ± 4.40 kg ha −1 , while the mean seasonal integrated flux of CO 2 from soils ranged from 3058 ± 236 to 3616 ± 157 kg CO 2 ha −1 under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO 2 eq. ha −1 (pigeon pea) and 3968 kg CO 2 eq. ha −1 (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha −1 ) and largest in wheat (1042 kg C ha −1 ). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture. - Highlights: • Nitrous oxide, methane and carbon dioxide emission were quantified from soils under cereals, millets, oilseeds, and pulses in northwest India. • The emission of nitrous oxide ranged from 0.57–1.3 kg ha −1 , methane from 27.78–29.50 kg ha −1 and carbon dioxide from 2377–3910 kg ha −1 . • Emission of nitrous oxide as percent of applied N was highest in pulses (0.67%) followed by oilseeds (0.55%). • Global warming potential (GWP) of soils under different

  17. Simulated multipolarized MAPSAR images to distinguish agricultural crops

    Directory of Open Access Journals (Sweden)

    Wagner Fernando Silva

    2012-06-01

    Full Text Available Many researchers have shown the potential of Synthetic Aperture Radar (SAR images for agricultural applications, particularly for monitoring regions with limitations in terms of acquiring cloud free optical images. Recently, Brazil and Germany began a feasibility study on the construction of an orbital L-band SAR sensor referred to as MAPSAR (Multi-Application Purpose SAR. This sensor provides L-band images in three spatial resolutions and polarimetric, interferometric and stereoscopic capabilities. Thus, studies are needed to evaluate the potential of future MAPSAR images. The objective of this study was to evaluate multipolarized MAPSAR images simulated by the airborne SAR-R99B sensor to distinguish coffee, cotton and pasture fields in Brazil. Discrimination among crops was evaluated through graphical and cluster analysis of mean backscatter values, considering single, dual and triple polarizations. Planting row direction of coffee influenced the backscatter and was divided into two classes: parallel and perpendicular to the sensor look direction. Single polarizations had poor ability to discriminate the crops. The overall accuracies were less than 59 %, but the understanding of the microwave interaction with the crops could be explored. Combinations of two polarizations could differentiate various fields of crops, highlighting the combination VV-HV that reached 78 % overall accuracy. The use of three polarizations resulted in 85.4 % overall accuracy, indicating that the classes pasture and parallel coffee were fully discriminated from the other classes. These results confirmed the potential of multipolarized MAPSAR images to distinguish the studied crops and showed considerable improvement in the accuracy of the results when the number of polarizations was increased.

  18. Assessments of Future Maize Yield Potential Changes in the Korean Peninsula Using Multiple Crop Models

    Science.gov (United States)

    Kim, S. H.; Lim, C. H.; Kim, J.; Lee, W. K.; Kafatos, M.

    2016-12-01

    The Korean Peninsula has unique agricultural environment due to the differences of political and socio-economical system between Republic of Korea (SK, hereafter) and Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering lack of food supplies caused by natural disasters, land degradation and political failure. The neighboring developed country SK has better agricultural system but very low food self-sufficiency rate. Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore, evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we utilized multiple process-based crop models, having ability of regional scale assessment, to evaluate maize Yp and assess the model uncertainties -EPIC, GEPIC, DSSAT, and APSIM model that has capability of regional scale expansion (apsimRegions). First we evaluated each crop model for 3 years from 2012 to 2014 using reanalysis data (RDAPS; Regional Data Assimilation and Prediction System produced by Korea Meteorological Agency) and observed yield data. Each model performances were compared over the different regions in the Korean Peninsula having different local climate characteristics. To quantify of the major influence of at each climate variables, we also conducted sensitivity test using 20 years of climatology in historical period from 1981 to 2000. Lastly, the multi-crop model ensemble analysis was performed for future period from 2031 to 2050. The required weather variables projected for mid-century were employed from COordinated Regional climate Downscaling EXperiment (CORDEX) East Asia. The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas

  19. Mapping Cropland and Crop-type Distribution Using Time Series MODIS Data

    Science.gov (United States)

    Lu, D.; Chen, Y.; Moran, E. F.; Batistella, M.; Luo, L.; Pokhrel, Y.; Deb, K.

    2016-12-01

    Mapping regional and global cropland distribution has attracted great attention in the past decade, but the separation of crop types is challenging due to the spectral confusion and cloud cover problems during the growing season in Brazil. The objective of this study is to develop a new approach to identify crop types (including soybean, cotton, maize) and planting patterns (soybean-maize, soybean-cotton, and single crop) in Mato Grosso, Goias and Tocantins States, Brazil. The time series moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) (MOD13Q1) in 2015/2016 were used in this research and field survey data were collected in May 2016. The major steps include: (1) reconstruct time series NDVI data contaminated by noise and clouds using the temporal interpolation algorithm; (2) identify the best periods and develop temporal indices and phenology parameters to distinguish cropland from other land cover types based on time series NDVI data; (3) develop a crop temporal difference index (CTDI) to extract crop types and patterns using time series NDVI data. This research shows that (1) the cropland occupied approximately 16.85% of total land in these three states; (2) soybean-maize and soybean-cotton were two major crop patterns which occupied 54.80% and 19.30% of total cropland area. This research indicates that the proposed approach is promising for accurately and rapidly mapping cropland and crop-type distribution in these three states of Brazil.

  20. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  1. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    Science.gov (United States)

    Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Lockhart, T.; Farrara, B.; Melton, F. S.

    2016-12-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  2. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    Science.gov (United States)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  3. Large Scale Crop Mapping in Ukraine Using Google Earth Engine

    Science.gov (United States)

    Shelestov, A.; Lavreniuk, M. S.; Kussul, N.

    2016-12-01

    There are no globally available high resolution satellite-derived crop specific maps at present. Only coarse-resolution imagery (> 250 m spatial resolution) has been utilized to derive global cropland extent. In 2016 we are going to carry out a country level demonstration of Sentinel-2 use for crop classification in Ukraine within the ESA Sen2-Agri project. But optical imagery can be contaminated by cloud cover that makes it difficult to acquire imagery in an optimal time range to discriminate certain crops. Due to the Copernicus program since 2015, a lot of Sentinel-1 SAR data at high spatial resolution is available for free for Ukraine. It allows us to use the time series of SAR data for crop classification. Our experiment for one administrative region in 2015 showed much higher crop classification accuracy with SAR data than with optical only time series [1, 2]. Therefore, in 2016 within the Google Earth Engine Research Award we use SAR data together with optical ones for large area crop mapping (entire territory of Ukraine) using cloud computing capabilities available at Google Earth Engine (GEE). This study compares different classification methods for crop mapping for the whole territory of Ukraine using data and algorithms from GEE. Classification performance assessed using overall classification accuracy, Kappa coefficients, and user's and producer's accuracies. Also, crop areas from derived classification maps compared to the official statistics [3]. S. Skakun et al., "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE Journal of Selected Topics in Applied Earth Observ. and Rem. Sens., 2015, DOI: 10.1109/JSTARS.2015.2454297. N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "The use of satellite SAR imagery to crop classification in Ukraine within JECAM project," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.1497-1500, 13

  4. Recycling crop residues for use in recirculating hydroponic crop production

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  5. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    Science.gov (United States)

    In global agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability an...

  6. Sorghum - An alternative energy crop for marginal lands and reclamation sites

    Science.gov (United States)

    Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin

    2017-04-01

    differences between maize and sorghum were the least pronounced due to the poorer performance of maize under these site conditions. Furthermore, the comparatively lower land-lease rates in these regions allowed for positive equity capital formation also in sorghum crops.

  7. A dense camera network for cropland (CropInsight) - developing high spatiotemporal resolution crop Leaf Area Index (LAI) maps through network images and novel satellite data

    Science.gov (United States)

    Kimm, H.; Guan, K.; Luo, Y.; Peng, J.; Mascaro, J.; Peng, B.

    2017-12-01

    Monitoring crop growth conditions is of primary interest to crop yield forecasting, food production assessment, and risk management of individual farmers and agribusiness. Despite its importance, there are limited access to field level crop growth/condition information in the public domain. This scarcity of ground truth data also hampers the use of satellite remote sensing for crop monitoring due to the lack of validation. Here, we introduce a new camera network (CropInsight) to monitor crop phenology, growth, and conditions that are designed for the US Corn Belt landscape. Specifically, this network currently includes 40 sites (20 corn and 20 soybean fields) across southern half of the Champaign County, IL ( 800 km2). Its wide distribution and automatic operation enable the network to capture spatiotemporal variations of crop growth condition continuously at the regional scale. At each site, low-maintenance, and high-resolution RGB digital cameras are set up having a downward view from 4.5 m height to take continuous images. In this study, we will use these images and novel satellite data to construct daily LAI map of the Champaign County at 30 m spatial resolution. First, we will estimate LAI from the camera images and evaluate it using the LAI data collected from LAI-2200 (LI-COR, Lincoln, NE). Second, we will develop relationships between the camera-based LAI estimation and vegetation indices derived from a newly developed MODIS-Landsat fusion product (daily, 30 m resolution, RGB + NIR + SWIR bands) and the Planet Lab's high-resolution satellite data (daily, 5 meter, RGB). Finally, we will scale up the above relationships to generate high spatiotemporal resolution crop LAI map for the whole Champaign County. The proposed work has potentials to expand to other agro-ecosystems and to the broader US Corn Belt.

  8. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model

    Science.gov (United States)

    Senay, G.B.; Verdin, J.

    2003-01-01

    In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.

  9. Response of double cropping suitability to climate change in the United States

    International Nuclear Information System (INIS)

    Seifert, Christopher A; Lobell, David B

    2015-01-01

    In adapting US agriculture to the climate of the 21st century, a key unknown is whether cropping frequency may increase, helping to offset projected negative yield impacts in major production regions. Combining daily weather data and crop phenology models, we find that cultivated area in the US suited to dryland winter wheat–soybeans, the most common double crop (DC) system, increased by up to 28% from 1988 to 2012. Changes in the observed distribution of DC area over the same period agree well with this suitability increase, evidence consistent with climate change playing a role in recent DC expansion in phenologically constrained states. We then apply the model to projections of future climate under the RCP45 and RCP85 scenarios and estimate an additional 126–239% increase, respectively, in DC area. Sensitivity tests reveal that in most instances, increases in mean temperature are more important than delays in fall freeze in driving increased DC suitability. The results suggest that climate change will relieve phenological constraints on wheat–soy DC systems over much of the United States, though it should be recognized that impacts on corn and soybean yields in this region are expected to be negative and larger in magnitude than the 0.4–0.75% per decade benefits we estimate here for double cropping. (letter)

  10. Historical effects of CO2 and climate trends on global crop water demand

    Science.gov (United States)

    Urban, Daniel W.; Sheffield, Justin; Lobell, David B.

    2017-12-01

    A critical question for agricultural production and food security is how water demand for staple crops will respond to climate and carbon dioxide (CO2) changes1, especially in light of the expected increases in extreme heat exposure2. To quantify the trade-offs between the effects of climate and CO2 on water demand, we use a `sink-strength' model of demand3,4 which relies on the vapour-pressure deficit (VPD), incident radiation and the efficiencies of canopy-radiation use and canopy transpiration; the latter two are both dependent on CO2. This model is applied to a global data set of gridded monthly weather data over the cropping regions of maize, soybean, wheat and rice during the years 1948-2013. We find that this approach agrees well with Penman-Monteith potential evapotranspiration (PM) for the C3 crops of soybean, wheat and rice, where the competing CO2 effects largely cancel each other out, but that water demand in maize is significantly overstated by a demand measure that does not include CO2, such as the PM. We find the largest changes in wheat, for which water demand has increased since 1981 over 86% of the global cropping area and by 2.3-3.6 percentage points per decade in different regions.

  11. Grand challenges for crop science

    Science.gov (United States)

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  12. Cropping pattern adjustment in China's grain production and its impact on land and water use

    DEFF Research Database (Denmark)

    Li, Tian-xiang; Zhu, Jing; Balezentis, Tomas

    2016-01-01

    This paper aims at decomposing China's grain output changes into three terms, namely area sown effect, pure yield effect, and cropping pattern adjustment effect. Furthermore, the paper analyses the impact of shifts in cropping pattern on water and land use in China's grain production. An index...... adjustments). However, these effects vary across regions: Southeast China experienced land-saving and water-using changes, while other regions underwent land- and water-saving changes. In general, China's grain output growth has increased the total amount of land and water needed, implying more severe...... played an important role in promoting China's grain production, with a contribution of over 15 per cent during 2003-2012. Moreover, such changes enabled to save about 6.8 million hectares of sown areas and 31.06 billion m3 of water in grain production (if compared to the case without cropping pattern...

  13. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China.

    Science.gov (United States)

    Zhang, Di; Wang, Xingxiang; Zhou, Zhigao

    2017-12-06

    Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr -1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH₄⁺-N, total nitrogen (TN) or total phosphorus (TP) as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater) quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present.

  14. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2017-12-01

    Full Text Available Industrialized small-scale pig farming has been rapidly developed in developing regions such as China and Southeast Asia, but the environmental problems accompanying pig farming have not been fully recognized. This study investigated 168 small-scale pig farms and 29 example pig farms in Yujiang County of China to examine current and potential impacts of pig wastes on soil, water and crop qualities in the hilly red soil region, China. The results indicated that the small-scale pig farms produced considerable annual yields of wastes, with medians of 216, 333 and 773 ton yr−1 per pig farm for manure, urine and washing wastewater, respectively, which has had significant impact on surface water quality. Taking NH4+-N, total nitrogen (TN or total phosphorus (TP as a criterion to judge water quality, the proportions of Class III and below Class III waters in the local surface waters were 66.2%, 78.7% and 72.5%. The well water (shallow groundwater quality near these pig farms met the water quality standards by a wide margin. The annual output of pollutants from pig farms was the most important factor correlated with the nutrients and heavy metals in soils, and the relationship can be described by a linear equation. The impact on croplands was marked by the excessive accumulation of available phosphorus and heavy metals such as Cu and Zn. For crop safety, the over-limit ratio of Zn in vegetable samples reached 60%, other heavy metals in vegetable and rice samples tested met the food safety standard at present.

  15. Land-Water-Food Nexus and indications of crop adjustment for water shortage solution.

    Science.gov (United States)

    Ren, Dandan; Yang, Yonghui; Yang, Yanmin; Richards, Keith; Zhou, Xinyao

    2018-06-01

    While agriculture places the greatest demand on water resources, increasing agricultural production is worsening a global water shortage. Reducing the cultivation of water-consuming crops may be the most effective way to reduce agricultural water use. However, when also taking food demand into consideration, sustaining the balance between regional water and food securities is a growing challenge. This paper addresses this task for regions where water is unsustainable for food production (Beijing-Tianjin-Hebei Region for example) by: (i) assessing the different effects of wheat and maize on water use; (ii) analyzing virtual water and virtual land flows associated with food imports and exports between Beijing-Tianjin-Hebei and elsewhere in China; (iii) identifying sub-regions where grain is produced using scarce water resources but exported to other regions; and (iv) analyzing the potentiality for mitigating water shortage via Land-Water-Food Nexus. In the Beijing-Tianjin-Hebei Region, the study reveals that 29.76 bn m 3 of virtual water (10.81 bn m 3 of blue virtual water) are used by wheat and maize production and 8.77 bn m 3 of virtual water used in nearly 2 million ha of cropland to overproduce 12 million ton of maize for external food consumption. As an importing-based sub-region with high population density, Beijing & Tianjin imported mostly grain (wheat and maize) from Shandong Province. Then, Hebei Province, as an exporting-based sub-region with severe water shortage, overproduced too much grain for other regions, which aggravated the water crisis. To achieve an integrated and sustainable development of the Beijing-Tianjin-Hebei Region, Hebei Province should stop undertaking the breadbasket role for Beijing & Tianjin and pay more attention to groundwater depletion. The analysis of the Land-Water-Food Nexus indicates how shifts in cultivated crops can potentially solve the overuse of water resources without adverse effects on food supply

  16. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  17. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  18. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  19. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  20. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  1. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  2. The Response and Repairing of Three Kinds of Crops on Xi’an’s Sewage Irrigation Area Soil

    Science.gov (United States)

    Xin, H.; Zhimei, Z.; Lei, H.; Huan, L.; Tian, Z.

    2017-10-01

    This paper focuses on the XiChaZhai village’s vegetable soil which is located in the northern suburbs of Xi’an and on its vegetables, thus analyzes the quality of sewage irrigation region soil and its influence on vegetables through the measurement of Cu, Zn, Pb, Cd’s content in samples. The results show that the research area soil contains apparently excessive heavy metals, and there exists significant differences of different elements’ integrated intensity in soil, the content declines in sequence from Cd, Zn, Pb to Cu. The four heavy metals’ contents in sewage irrigation region soil vary greatly from that in non-sewage irrigation region soil(Prepairing effects on Xi’an sewage irrigation region soil are Raphanus sativus, Ottelia acuminate and Brassica chinensis, in that order. Different crop tissues differ in the accumulation of heavy metal, the order according as roots, stem and leaves, fruits. Therefore, based on differences of various crops on heavy metals’ absorption and translocation, appropriate crops should be scientifically planted in heavy metal contaminated area soil.

  3. Changes in the potential multiple cropping system in response to climate change in China from 1960-2010.

    Science.gov (United States)

    Liu, Luo; Xu, Xinliang; Zhuang, Dafang; Chen, Xi; Li, Shuang

    2013-01-01

    The multiple cropping practice is essential to agriculture because it has been shown to significantly increase the grain yield and promote agricultural economic development. In this study, potential multiple cropping systems in China are calculated based on meteorological observation data by using the Agricultural Ecology Zone (AEZ) model. Following this, the changes in the potential cropping systems in response to climate change between the 1960s and the 2010s were subsequently analyzed. The results indicate that the changes of potential multiple cropping systems show tremendous heterogeneity in respect to the spatial pattern in China. A key finding is that the magnitude of change of the potential cropping systems showed a pattern of increase both from northern China to southern China and from western China to eastern China. Furthermore, the area found to be suitable only for single cropping decreased, while the area suitable for triple cropping increased significantly from the 1960s to the 2000s. During the studied period, the potential multiple cropping index (PMCI) gap between rain-fed and irrigated scenarios increased from 18% to 24%, which indicated noticeable growth of water supply limitations under the rain-fed scenario. The most significant finding of this research was that from the 1960s to the 2000s climate change had led to a significant increase of PMCI by 13% under irrigated scenario and 7% under rain-fed scenario across the whole of China. Furthermore, the growth of the annual mean temperature is identified as the main reason underlying the increase of PMCI. It has also been noticed that across China the changes of potential multiple cropping systems under climate change were different from region to region.

  4. Comparison of species-rich cover crop mixtures in Hungarian vineyards

    Science.gov (United States)

    Donkó, Adam; Miglécz, Tamas; Valkó, Orsolya; Török, Peter; Deák, Balazs; Kelemen, Andras; Zanathy, Gabor; Drexler, Dora

    2014-05-01

    In case of vine growing, agricultural practices of the past decades - as mechanical cultivation on steep vineyard slopes - can endanger the soil of vineyards. Moreover, climate change scenarios predict heavier rainstorms, which can also promote the degradation of the soil. These are some of the reasons why sustainable floor management plays an increasingly important role in viticulture recently. The use of cover crops in the inter-row has a special importance, especially on steep slopes and in case of organic farming to provide conditions for environmental friendly soil management. Species-rich cover crop seed mixtures may help to prevent erosion and create easier cultivation circumstances. Furthermore they have a positive effect on soil structure, soil fertility and ecosystem functions. However, it is important to find suitable seed mixtures for specific production sites, consisting ideally of native species from local provenance, adapted to the local climate/vine region/vineyard. Requirements for suitable cover crop species are as follows: they should save the soil from erosion and also from compaction caused by the movement of workers and machines, they should not compete significantly with the grapevines, or influence produce quality. We started to develop and apply several species-rich cover crop seed mixtures in spring 2012. During the experiments, three cover crop seed mixtures (Biocont-Ecovin mixture, mixture of legumes, mixture of grasses and herbs) were compared in vineyards of the Tokaj and Szekszárd vine regions of Hungary. Each mixture was sown in three consecutive inter-rows at each experimental site (all together 10 sites). Besides botanical measurements, yield, must quality, and pruning weight was studied in every treatment. The botanical survey showed that the following species of the mixtures established successfully and prospered during the years 2012 and 2013: Coronilla varia, Lotus corniculatus, Medicago lupulina, Onobrychis viciifolia

  5. Utilization of ionizing radiations and radioisotopes in plant breeding and crop improvement in Arab countries

    International Nuclear Information System (INIS)

    Abo-Hegazi, A.M.T.

    1983-01-01

    A review for research work in the field of utilizing ionizing radiations and radioisotopes in plant breeding and crop improvement conducted in Arab countries has been summerized and discussed in the light of some economic features of the crop or the plant on national or regional (arab) level. Among the 241 articles in the above mentioned fields reviewed, around 230 articles were conducted in Egypt, 6 in Iraq, 2 in Algeria and 2 in Sudan. Some of the articles dealing with more than one crop and/or more than one type of radiation or radioisotope

  6. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel

    OpenAIRE

    Leakey, Andrew D.B.

    2009-01-01

    Crops with the C4 photosynthetic pathway are vital to global food supply, particularly in the tropical regions where human well-being and agricultural productivity are most closely linked. While rising atmospheric [CO2] is the driving force behind the greater temperatures and water stress, which threaten to reduce future crop yields, it also has the potential to directly benefit crop physiology. The nature of C4 plant responses to elevated [CO2] has been controversial. Recent evidence from fr...

  7. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Assessment of satellite and model derived long term solar radiation for spatial crop models: A case study using DSSAT in Andhra Pradesh

    Directory of Open Access Journals (Sweden)

    Anima Biswal

    2014-09-01

    Full Text Available Crop Simulation models are mathematical representations of the soil plant-atmosphere system that calculate crop growth and yield, as well as the soil and plant water and nutrient balances, as a function of environmental conditions and crop management practices on daily time scale. Crop simulation models require meteorological data as inputs, but data availability and quality are often problematic particularly in spatialising the model for a regional studies. Among these weather variables, daily total solar radiation and air temperature (Tmax and Tmin have the greatest influence on crop phenology and yield potential. The scarcity of good quality solar radiation data can be a major limitation to the use of crop models. Satellite-sensed weather data have been proposed as an alternative when weather station data are not available. These satellite and modeled based products are global and, in general, contiguous in time and also been shown to be accurate enough to provide reliable solar and meteorological resource data over large regions where surface measurements are sparse or nonexistent. In the present study, an attempt was made to evaluate the satellite and model derived daily solar radiation for simulating groundnut crop growth in the rainfed distrcits of Andhra Pradesh. From our preliminary investigation, we propose that satellite derived daily solar radiation data could be used along with ground observed temperature and rainfall data for regional crop simulation studies where the information on ground observed solar radiation is missing or not available.

  9. Genetically modified crops: the fastest adopted crop technology in the history of modern agriculture

    Directory of Open Access Journals (Sweden)

    Khush Gurdev S

    2012-09-01

    Full Text Available Abstract The major scientific advances of the last century featured the identification of the structure of DNA, the development of molecular biology and the technology to exploit these advances. These breakthroughs gave us new tools for crop improvement, including molecular marker-aided selection (MAS and genetic modification (GM. MAS improves the efficiency of breeding programs, and GM allows us to accomplish breeding objectives not possible through conventional breeding approaches. MAS is not controversial and is now routinely used in crop improvement programs. However, the international debate about the application of genetic manipulation to crop improvement has slowed the adoption of GM crops in developing as well as in European countries. Since GM crops were first introduced to global agriculture in 1996, Clive James has published annual reports on the global status of commercialized GM crops as well as special reports on individual GM crops for The International Service for the Acquisition of Agri-biotech Applications (ISAAA. His 34th report, Global Status of Commercialized Biotech/ GM crops: 2011 [1] is essential reading for those who are concerned about world food security.

  10. Effects of No-Till on Yields as Influenced by Crop and Environmental Factors

    Energy Technology Data Exchange (ETDEWEB)

    Toliver, Dustin K.; Larson, James A.; Roberts, Roland K.; English, B.C.; De La Torre Ugarte, D. G.; West, Tristram O.

    2012-02-07

    Th is research evaluated diff erences in yields and associated downside risk from using no-till and tillage practices. Yields from 442 paired tillage experiments across the United States were evaluated with respect to six crops and environmental factors including geographic location, annual precipitation, soil texture, and time since conversion from tillage to no-till. Results indicated that mean yields for sorghum [Sorghum bicolor (L.) Moench] and wheat (Triticum aestivum L.) with no-till were greater than with tillage. In addition, no-till tended to produce similar or greater mean yields than tillage for crops grown on loamy soils in the Southern Seaboard and Mississippi Portal regions. A warmer and more humid climate and warmer soils in these regions relative to the Heartland, Basin and Range, and Fruitful Rim regions appear to favor no-till on loamy soils. With the exception of corn (Zea mays L.) and cotton (Gossypium hirsutum L.) in the Southern Seaboard region, no-till performed poorly on sandy soils. Crops grown in the Southern Seaboard were less likely to have lower no-till yields than tillage yields on loamy soils and thus had lower downside yield risk than other farm resource regions. Consistent with mean yield results, soybean [Glycine max (L.) Merr.] and wheat grown on sandy soils in the Southern Seaboard region using no-till had larger downside yield risks than when produced with no-till on loamy soils. Th e key fi ndings of this study support the hypothesis that soil and climate factors impact no-till yields relative to tillage yields and may be an important factor infl uencing risk and expected return and the adoption of the practice by farmers.

  11. Assessments of Maize Yield Potential in the Korean Peninsula Using Multiple Crop Models

    Science.gov (United States)

    Kim, S. H.; Myoung, B.; Lim, C. H.; Lee, S. G.; Lee, W. K.; Kafatos, M.

    2015-12-01

    The Korean Peninsular has unique agricultural environments due to the differences in the political and socio-economical systems between the Republic of Korea (SK, hereafter) and the Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering from the lack of food supplies caused by natural disasters, land degradation and failed political system. The neighboring developed country SK has a better agricultural system but very low food self-sufficiency rate (around 1% of maize). Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we have utilized multiple process-based crop models capable of regional-scale assessments to evaluate maize Yp over the Korean Peninsula - the GIS version of EPIC model (GEPIC) and APSIM model that can be expanded to regional scales (APSIM regions). First we evaluated model performance and skill for 20 years from 1991 to 2010 using reanalysis data (Local Data Assimilation and Prediction System (LDAPS); 1.5km resolution) and observed data. Each model's performances were compared over different regions within the Korean Peninsula of different regional climate characteristics. To quantify the major influence of individual climate variables, we also conducted a sensitivity test using 20 years of climatology. Lastly, a multi-model ensemble analysis was performed to reduce crop model uncertainties. The results will provide valuable information for estimating the climate change or variability impacts on Yp over the Korean Peninsula.

  12. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    Science.gov (United States)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  13. Cooking with traditional crops improves nutrition and boosts ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Millets in India and pulses in Ethiopia were dietary staples before crops like corn, ... For some communities it's cultural — millets tend to be eaten only on special ... The goal is to scale up these successes in other regions of India and South Asia. ... We are also trying to overcome the perception of pulse as 'poor man's food',” ...

  14. Direct nitrous oxide emissions in Mediterranean climate cropping systems

    NARCIS (Netherlands)

    Cayuela, Maria L.; Aguilera, Eduardo; Sanz-Cobena, Alberto; Adams, Dean C.; Abalos Rodriguez, Diego; Barton, Louise; Ryals, Rebecca; Silver, Whendee L.; Alfaro, Marta A.; Pappa, Valentini A.; Bouwman, Lex; Lassaletta, Luis

    2017-01-01

    Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for

  15. Land-Water-Food Nexus and Indications of Crop Adjustment for Water Shortage Solution

    Science.gov (United States)

    Yang, Y.; Ren, D.; Zhou, X.

    2017-12-01

    Agriculture places the greatest demand on water resources, and increasing agricultural production is worsening a global water shortage. Reducing the cultivation of water-consuming crops may be the most effective way to reduce agricultural water use. However, when also taking food demand into consideration, sustaining the balance between regional water and food securities is a growing challenge. This paper addresses this task for regions where water is unsustainable for food production (Beijing-Tianjin-Hebei Region for example), by (i) assessing the different effects of wheat and maize on water use; (ii) analyzing virtual water and virtual land flows associated with food imports and exports between Beijing-Tianjin-Hebei and elsewhere in China; (iii) identifying sub-regions where grain are produced using scarce water resources but exported to other regions. (iv) analyzing the potentiality for mitigating water shortage via Land-Water-Food Nexus. In the Beijing-Tianjin-Hebei Region, the study reveals that 29.76 bn m3 of virtual water (10.81 bn m3 of blue virtual water) are used by wheat and maize production and nearly 2 million ha of cropland using 8.77 bn m3 of virtual water overproduced 12 million ton of maize for external food consumption. As an importing-based sub-region with high population density, Beijing and Tianjin (BT) imported mostly grain (wheat and maize) from Shandong (SD). Whereas, Hebei (HB), as an exporting-based sub-region with sever water shortage, overproduced too much grain for other regions (like Central area), which aggravated water crisis. To achieve Beijing-Tianjin-Hebei's integrated and sustainable development, HB should not undertake the breadbasket role for BT but pay more attention to groundwater depletion. The analysis of the Land-Water-Food Nexus indicates how shifts in the cultivated crops can potentially solve the overuse of water resources without adverse effect on food supply, and provides meaningful information to support policy

  16. Genetically modified (GM) crops: milestones and new advances in crop improvement.

    Science.gov (United States)

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2016-09-01

    New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.

  17. Responses of apple fruit size to tree water status and crop load.

    Science.gov (United States)

    Naor, A; Naschitz, S; Peres, M; Gal, Y

    2008-08-01

    The combined effects of irrigation rate and crop load on apple yield and fruit size were examined in two commercial apple orchards (cv. Golden Delicious) in a semi-arid zone. The irrigation rates applied were 1, 3 and 7 mm day(-1), and the two fruit thinning treatments involved adjusting crop load to 100 and 300 fruits per tree at Ortal and 50 and 150 fruits per tree at Matityahu. Unthinned trees served as the control. The fruit from each tree was picked separately, and fruit size distribution was determined with a commercial grading machine. Midday stem water potentials varied from -0.9 to -2.8 MPa, crop load varied from 80,000 to 1,900,000 fruit ha(-1) and crop yield varied from 10 to 144 Mg ha(-1). Midday stem water potential decreased with increasing crop load in all irrigation treatments at Matityahu, but only in the 1 mm day(-1) treatment at Ortal. The extent of the lowering of midday stem water potential by crop load decreased with increasing soil water availability. At both orchards, a similar response of total crop yield to crop load on a per hectare basis was observed. Mean fruit mass and relative yield of fruit > 70 mm in diameter increased with midday stem water potential, with the low crop loads having similar but steeper slopes than the high crop load. The responses of mean fruit mass and relative yield of fruit > 70 mm in diameter to midday stem water potential were similar at both orchards, perhaps indicating that thresholds for irrigation scheduling are transferable to other orchards within a region. Factors that may limit the transferability of these thresholds are discussed.

  18. A new nitrogen index for assessment of nitrogen management practices of Andean Mountain cropping systems of Ecuador

    Science.gov (United States)

    Corn (Zea mays L.) is the most important crop for food security in several regions of Ecuador. Small farmers are using nitrogen (N) fertilizer without technical advice based on soil, crop and climatological data. The scientific literature lacks studies where tools are validated that can be used to q...

  19. Investigate the Capabilities of Remotely Sensed Crop Indicators for Agricultural Drought Monitoring in Kansas

    Science.gov (United States)

    Zhang, J.; Becker-Reshef, I.; Justice, C. O.

    2013-12-01

    Although agricultural production has been rising in the past years, drought remains the primary cause of crop failure, leading to food price instability and threatening food security. The recent 'Global Food Crisis' in 2008, 2011 and 2012 has put drought and its impact on crop production at the forefront, highlighting the need for effective agricultural drought monitoring. Satellite observations have proven a practical, cost-effective and dynamic tool for drought monitoring. However, most satellite based methods are not specially developed for agriculture and their performances for agricultural drought monitoring still need further development. Wheat is the most widely grown crop in the world, and the recent droughts highlight the importance of drought monitoring in major wheat producing areas. As the largest wheat producing state in the US, Kansas plays an important role in both global and domestic wheat markets. Thus, the objective of this study is to investigate the capabilities of remotely sensed crop indicators for effective agricultural drought monitoring in Kansas wheat-grown regions using MODIS data and crop yield statistics. First, crop indicators such as NDVI, anomaly and cumulative metrics were calculated. Second, the varying impacts of agricultural drought at different stages were explored by examining the relationship between the derived indicators and yields. Also, the starting date of effective agricultural drought early detection and the key agricultural drought alert period were identified. Finally, the thresholds of these indicators for agricultural drought early warning were derived and the implications of these indicators for agricultural drought monitoring were discussed. The preliminary results indicate that drought shows significant impacts from the mid-growing-season (after Mid-April); NDVI anomaly shows effective drought early detection from Late-April, and Late-April to Early-June can be used as the key alert period for agricultural

  20. Producing Organic Cotton: A Toolkit - Crop Guide, Projekt guide, Extension tools

    OpenAIRE

    Eyhorn, Frank

    2005-01-01

    The CD compiles the following extension tools on organic cotton: Organic Cotton Crop Guide, Organic Cotton Training Manual, Soil Fertility Training Manual, Organic Cotton Project Guide, Record keeping tools, Video "Organic agriculture in the Nimar region", Photos for illustration.

  1. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria

    Science.gov (United States)

    Obiora, Smart C.; Chukwu, Anthony; Davies, Theophilus C.

    2016-04-01

    This study determined the heavy metals concentration in arable soils and associated food crops around the Pb-Zn mines in Enyigba, Nigeria, and metal transfer factors were calculated. Air-dried samples of the soils and food crops were analyzed for 8 known nutritional and toxic heavy metals by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) method. Eighty seven percent of all the 20 sampled soils contain Pb in excess of the maximum allowable concentration (MAC) set by Canadian Environmental Quality Guideline (CCME) and European Union (EU) Standard, while Zn in thirty-one percent of the samples exceeded the CCME for MAC of 200 mg/kg. All the food crops, with the exception of yam tuber, contain Pb which exceeded the 0.43 mg/kg and 0.3 mg/kg MAC standards of EU and WHO/FAO respectively, with the leafy vegetables accumulating more Pb than the tubers. The metal transfer factors in the tubers and the leafy vegetables were in the order: Mo > Cu > Zn > Mn > As > Cd > Cr > Ni > Pb and Cd > Cu > Zn > Mn > Mo > As > Ni > Pb > Cr, respectively. Risk assessment studies revealed no health risk in surrounding populations for most of the heavy metals. However, Pb had a high health risk index (HRI) of 1.1 and 1.3, in adults and children, respectively for cassava tuber; Pb had HRI > 1 in lemon grass while Mn also had HRI > 1 in all the leafy vegetables for both adult and children. This high level of HRI for Pb and Mn is an indication that consumers of the food crops contaminated by these metals are at risk of health problems such as Alzheimers' disease and Manganism, associated with excessive intake of these metals. Further systematic monitoring of heavy metal fluxes in cultivable soils around the area of these mines is recommended.

  2. Trend Analysis of Droughts during Crop Growing Seasons of Nigeria

    Directory of Open Access Journals (Sweden)

    Mohammed Sanusi Shiru

    2018-03-01

    Full Text Available This study assesses the impacts of recent climate changes on drought-affected areas and the occurrence of droughts during different cropping seasons of Nigeria using the standardized precipitation evapotranspiration index (SPEI. The crop growing seasons are considered because the droughts for those periods are more destructive to national agricultural production. The Mann–Kendall test and binary logistic regression were used to quantify the trends in drought-affected areas and the occurrence of crop droughts with different areal extents, respectively. Gauge-based gridded rainfall and temperature data for the period 1961–2010 with spatial resolutions of 0.5° were used. Results showed an increase in the areal extent of droughts during some of the cropping seasons. The occurrences of droughts, particularly moderate droughts with smaller areal extents, were found to increase for all of the seasons. The SPEI values calculated decreased mostly in the regions where rainfall was decreasing. That is, the recent changes in climate were responsible for the increase in the occurrences of droughts with smaller areal extents. These trends in climate indicate that the occurrence of larger areal extent droughts may happen more frequently in Nigeria in the future.

  3. Evaluation of climate adaptation options for Sudano-Sahelian cropping systems

    NARCIS (Netherlands)

    Traore, B.; Wijk, van M.T.; Descheemaeker, K.K.E.; Corbeels, M.; Rufino, M.C.; Giller, K.E.

    2014-01-01

    In the Sudano-Sahelian region, smallholder agricultural production is dominated by rain-fed production of millet, sorghum and maize for food consumption and of cotton for the market. A major constraint for crop production is the amount of rainfall and its intra and inter-annual variability. We

  4. Climate Variability and Yields of Major Staple Food Crops in Northern Ghana

    Science.gov (United States)

    Amikuzuno, J.

    2012-12-01

    Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.

  5. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    -substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare......Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  6. Agave as a model CAM crop system for a warming and drying world.

    Science.gov (United States)

    Stewart, J Ryan

    2015-01-01

    As climate change leads to drier and warmer conditions in semi-arid regions, growing resource-intensive C3 and C4 crops will become more challenging. Such crops will be subjected to increased frequency and intensity of drought and heat stress. However, agaves, even more than pineapple (Ananas comosus) and prickly pear (Opuntia ficus-indica and related species), typify highly productive plants that will respond favorably to global warming, both in natural and cultivated settings. With nearly 200 species spread throughout the U.S., Mexico, and Central America, agaves have evolved traits, including crassulacean acid metabolism (CAM), that allow them to survive extreme heat and drought. Agaves have been used as sources of food, beverage, and fiber by societies for hundreds of years. The varied uses of Agave, combined with its unique adaptations to environmental stress, warrant its consideration as a model CAM crop. Besides the damaging cycles of surplus and shortage that have long beset the tequila industry, the relatively long maturation cycle of Agave, its monocarpic flowering habit, and unique morphology comprise the biggest barriers to its widespread use as a crop suitable for mechanized production. Despite these challenges, agaves exhibit potential as crops since they can be grown on marginal lands, but with more resource input than is widely assumed. If these constraints can be reconciled, Agave shows considerable promise as an alternative source for food, alternative sweeteners, and even bioenergy. And despite the many unknowns regarding agaves, they provide a means to resolve disparities in resource availability and needs between natural and human systems in semi-arid regions.

  7. Agave as a model CAM crop system for a warming and drying world

    Directory of Open Access Journals (Sweden)

    J. Ryan eStewart

    2015-09-01

    Full Text Available As climate change leads to drier and warmer conditions in semi-arid regions, growing resource-intensive C3 and C4 crops will become more challenging. Such crops will be subjected to increased frequency and intensity of drought and heat stress. However, agaves, even more than pineapple (Ananas comosus and prickly pear (Opuntia ficus-indica and related species, typify highly productive plants that will respond favorably to global warming, both in natural and cultivated settings. With nearly 200 species spread throughout the U.S., Mexico, and Central America, agaves have evolved traits, including crassulacean acid metabolism (CAM, that allow them to survive extreme heat and drought. Agaves have been used as sources of food, beverage, and fiber by societies for hundreds of years. The varied uses of Agave, combined with its unique adaptations to environmental stress, warrant its consideration as a model CAM crop. Besides the damaging cycles of surplus and shortage that have long beset the tequila industry, the relatively long maturation cycle of Agave, its monocarpic flowering habit, and unique morphology comprise the biggest barriers to its widespread use as a crop suitable for mechanized production. Despite these challenges, agaves exhibit potential as crops since they can be grown on marginal lands, but with more resource input than is widely assumed. If these constraints can be reconciled, Agave shows considerable promise as an alternative source for food, alternative sweeteners, and even bioenergy. And despite the many unknowns regarding agaves, they provide a means to resolve disparities between natural and human systems in semi-arid regions.

  8. Assessment of material and technical resources of crop production technologies

    Directory of Open Access Journals (Sweden)

    V. M. Beylis

    2017-01-01

    Full Text Available The author explains the general principles of influence of the material and technical resources (MTR on performance and efficiency of the main technological operations in crop production. Various technologies from the point of view of MTR expenses were estimated. The general tendencies in development of crop production technologies were revealed. The distribution of costs of materials and equipment to perform a variety of agricultural activities was determined. Cost indicators should be a guide in the search of innovative technological processes and working elements of agricultural machins. The greatest values of expenses of work, fuel, metal, and also, money where found. The concepts allowing to provide costs production reduction were formulated. To achieve the maximum productivity with the minimum expenses, the perspective calculations shoul be based on «progressive» agrotechnologies. When determining progressive agrotechnology it is necessary on reasonable grounds to approach indicators of crop productivity in various agrozones and regions of the country. For an assessment of efficiency of MTR by crop production and ensuring decrease in resource intensity of agricultural products by search and use of essentially new technologies for energy saving when performing agricultural operations, an integrated percentage indicator of comparison of progressive technologies with the applied ones was developed. MTR at application of new progressive crop production technologies by integrated percentage index were estimated. This indicator can be used for definition of efficiency of MTR. Application of the offered technique will promote an effective assessment of MTR, decrease in resource intensity by search and developments of essentially new technologies of performance of operations in crop production.

  9. Extraction and Analysis of Traditional Chinese Medicine Crops Based on Multitemporal High Resolution Data-Taking Qiaocheng District of Bozhou as AN Example

    Science.gov (United States)

    Yu, H.; He, J.; Zhou, H.; Guan, F.; Li, L.; Ren, B.; Wang, Z.

    2018-04-01

    Remote sensing technology has become an important method to rapidly acquireing of planting layout and composition of regional crops.It is very important to accurately master the planting area of Chinese medicine crops in the Characteristic planting area because it relations to accurately master the cultivation of Chinese medicine crops, formulate related policies and adjustment of crop planting structure.The author puts forward a method of using remote sencing technology for momitoring Chinese medicine which has good applicability and generalization. This paper took Qiaocheng District of Bozhou as an example to Verify the feasibility of the method, providing a reference for solving the problem of interpretation and extraction of Chinese medicinal materials in the region.

  10. Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing

    Directory of Open Access Journals (Sweden)

    Betty Mulianga

    2015-10-01

    Full Text Available Over the recent past, there has been a growing concern on the need for mapping cropping practices in order to improve decision-making in the agricultural sector. We developed an original method for mapping cropping practices: crop type and harvest mode, in a sugarcane landscape of western Kenya using remote sensing data. At local scale, a temporal series of 15-m resolution Landsat 8 images was obtained for Kibos sugar management zone over 20 dates (April 2013 to March 2014 to characterize cropping practices. To map the crop type and harvest mode we used ground survey and factory data over 1280 fields, digitized field boundaries, and spectral indices (the Normalized Difference Vegetation Index (NDVI and the Normalized Difference Water Index (NDWI were computed for all Landsat images. The results showed NDVI classified crop type at 83.3% accuracy, while NDWI classified harvest mode at 90% accuracy. The crop map will inform better planning decisions for the sugar industry operations, while the harvest mode map will be used to plan for sensitizations forums on best management and environmental practices.

  11. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,PhD,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by the Editorial Board of 85 international experts from various fields of crop sciences.

  12. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    moderate levels (67 kg N ha-1). Increasing fertilizer application beyond the point of diminishing returns for grain (67 kg N ha-1) to double the regionally-recommended amount (202 kg N ha-1) resulted in only marginal increases (25%) in crop residue carbohydrate yield, while increasing lignin yields 41%. In the case of at least this ecosystem, high fertilization rates did not result in large carbohydrate yield increases in the crop residue, and instead produced a lower quality feedstock for cellulosic ethanol production.

  13. Woody biomass from short rotation energy crops. Chapter 2

    Science.gov (United States)

    R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  14. Spatiotemporal Variations of Reference Crop Evapotranspiration in Northern Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2014-01-01

    Full Text Available To set up a reasonable crop irrigation system in the context of global climate change in Northern Xinjiang, China, reference crop evapotranspiration (ET0 was analyzed by means of spatiotemporal variations. The ET0 values from 1962 to 2010 were calculated by Penman-Monteith formula, based on meteorological data of 22 meteorological observation stations in the study area. The spatiotemporal variations of ET0 were analyzed by Mann-Kendall test, Morlet wavelet analysis, and ArcGIS spatial analysis. The results showed that regional average ET0 had a decreasing trend and there was an abrupt change around 1983. The trend of regional average ET0 had a primary period about 28 years, in which there were five alternating stages (high-low-high-low-high. From the standpoint of spatial scale, ET0 gradually increased from the northeast and southwest toward the middle; the southeast and west had slightly greater variation, with significant regional differences. From April to October, the ET0 distribution significantly influenced the distribution characteristic of annual ET0. Among them sunshine hours and wind speed were two of principal climate factors affecting ET0.

  15. Does Asset Allocation Policy Explain 40, 90, 100 Percent of Performance?

    OpenAIRE

    Roger G. Ibbotson; Paul D. Kaplan

    2001-01-01

    Does asset allocation policy explain 40 percent, 90 percent, or 100 percent of performance? According to some well-known studies, more than 90 percent of the variability of a typical plan sponsor's performance over time is attributable to asset allocation. However, few people want to explain variability over time. Instead, an analyst might want to know how important it is in explaining the differences in return from one fund to another, or what percentage of the level of a typical fund's retu...

  16. Availability of crop cellulosics for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.D.

    1982-10-01

    Past estimates of cellulosic resources available from Canadian agriculture totalled over 23 million tonnes of cereal grain straw and corn stover residues surplus to soil and animal requirements. A new much reduced estimate, based on four detailed regional studies that also include previously unassessed resources such as chaff, oilseed hulls, and food processing wastes, is suggested. Eleven million tonnes are currently available from all residue sources for energy conversion by different processes. Only five million tonnes are identified as potentially usable in ethanol production plants were they to be constructed. Additional resource opportunities may become available in future from currently underutilized land, especially saline soils, novel processing techniques of conventional grains and forages, innovative cropping systems that may increase the yield of agricultural biomass, and new food/feed/fuel (i.e. multi-purpose) crops such as kochia, milkweed, and Jerusalem artichoke. 27 refs., 1 fig., 1 tab.

  17. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    Science.gov (United States)

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2018-03-01

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  18. The potential distribution of bioenergy crops in Europe under present and future climate

    International Nuclear Information System (INIS)

    Tuck, Gill; Glendining, Margaret J.; Smith, Pete; Wattenbach, Martin; House, Jo I.

    2006-01-01

    We have derived maps of the potential distribution of 26 promising bioenergy crops in Europe, based on simple rules for suitable climatic conditions and elevation. Crops suitable for temperate and Mediterranean climates were selected from four groups: oilseeds (e.g. oilseed rape, sunflower), starch crops (e.g. potatoes), cereals (e.g. barley) and solid biofuel crops (e.g. sorghum, Miscanthus). The impact of climate change under different scenarios and GCMs on the potential future distribution of these crops was determined, based on predicted future climatic conditions. Climate scenarios based on four IPCC SRES emission scenarios, A1FI, A2, B1 and B2, implemented by four global climate models, HadCM3, CSIRO2, PCM and CGCM2, were used. The potential distribution of temperate oilseeds, cereals, starch crops and solid biofuels is predicted to increase in northern Europe by the 2080s, due to increasing temperatures, and decrease in southern Europe (e.g. Spain, Portugal, southern France, Italy, and Greece) due to increased drought. Mediterranean oil and solid biofuel crops, currently restricted to southern Europe, are predicted to extend further north due to higher summer temperatures. Effects become more pronounced with time and are greatest under the A1FI scenario and for models predicting the greatest climate forcing. Different climate models produce different regional patterns. All models predict that bioenergy crop production in Spain is especially vulnerable to climate change, with many temperate crops predicted to decline dramatically by the 2080s. The choice of bioenergy crops in southern Europe will be severely reduced in future unless measures are taken to adapt to climate change. (author)

  19. Simulating the effects of climate and agricultural management practices on global crop yield

    Science.gov (United States)

    Deryng, D.; Sacks, W. J.; Barford, C. C.; Ramankutty, N.

    2011-06-01

    Climate change is expected to significantly impact global food production, and it is important to understand the potential geographic distribution of yield losses and the means to alleviate them. This study presents a new global crop model, PEGASUS 1.0 (Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat. PEGASUS combines carbon dynamics for crops with a surface energy and soil water balance model. It also benefits from the recent development of a suite of global data sets and analyses that serve as model inputs or as calibration data. These include data on crop planting and harvesting dates, crop-specific irrigated areas, a global analysis of yield gaps, and harvested area and yield of major crops. Model results for present-day climate and farm management compare reasonably well with global data. Simulated planting and harvesting dates are within the range of crop calendar observations in more than 75% of the total crop-harvested areas. Correlation of simulated and observed crop yields indicates a weighted coefficient of determination, with the weighting based on crop-harvested area, of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes in temperature and precipitation as predicted by global climate models for the 2050s lead to a global yield reduction if planting and harvesting dates remain unchanged. However, adapting planting dates and cultivar choices increases yield in temperate regions and avoids 7-18% of global losses.

  20. Farmers typology and crops sustainability in Alto Urubamba, La Convencion – Cusco

    Directory of Open Access Journals (Sweden)

    Isaías Merma

    2012-06-01

    Full Text Available The research was conducted in the geographical region of Alto Urubamba, province of La Convencion, Cusco - Peru. The objective was to identify types of farmers and evaluate crops sustainability on farms of high forest. Surveys were applied to a sample of 106 farmers in both biophysical and socio-economic terms in order to identify typology; this information was analyzed through descriptive statistics. Multivariate analysis using preselected variables was performed to identify types of farmers. In addition, sustainability of eight tropical crops was evaluated; for this purpose, three farms for each crop were selected from 24 evaluated farms. Practical indicators of soil quality and crop health with a valuation from 0 to 10 were used; farmers participated during this evaluation. The results show that there are three types of farmers according to their efficiency in resources management and their economic logic. The crops of tea (6.65 and mango (6.50 obtained the highest values of sustainability, followed by coffee (6.25, cocoa (6.25, citrus (5.50, banana (5.45 and coca (5.10. Papaya (4.60 shows a value less than five; therefore, is considered as unsustainable according to local conditions.

  1. Optimal crop selection and water allocation under limited water supply in irrigation

    Science.gov (United States)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  2. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in Science Direct.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,Ph D,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by

  3. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access) in Science Direct.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,PhD,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by

  4. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Science.gov (United States)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  5. Extrusion of the uranium-0.75 weight percent titanium alloy

    International Nuclear Information System (INIS)

    Jackson, R.J.; Lundberg, M.R.; Boland, J.F.

    1975-01-01

    Procedures are described for extruding the U--0.75 wt percent Ti alloy in the high alpha region (600 to 640 0 C) , and in the upper gamma region (900 to 1000 0 C). The casting of sound extrusion billets has importance in the production of sound extrusions, and procedures are given for casting sound billets up to 1,100 kilograms . Also important in producing sound extrusions is the use of glass lubricants. Reduction ratios of greater than 50 to 1 were achieved on reasonably sized billets. Extrusion constants of 48,000 pounds per square inch (psi) [296 megapascals (MPa)] for alpha phase (630 0 C) and 8,000 psi (56 MPa) for gamma phase (950 0 C) were achieved. Gamma-phase extrusion has preference over alpha-phase extrusion in that larger billets can be used and temperature control is not as critical. However alpha-phase extrusion offers better surface finish, less die wear, and fewer oxidation problems. Billets up to 14 inches in diameter have been successfully gamma-extruded and plans exist for extruding billets up to 20 inches (508 millimetres) in diameter. (U.S.)

  6. Agro-climatic zoning of Jatropha curcas as a subside for crop planning and implementation in Brazil.

    Science.gov (United States)

    Yamada, Eliane S M; Sentelhas, Paulo C

    2014-11-01

    As jatropha (Jatropha curcas L.) is a recent crop in Brazil, the studies for defining its suitability for different regions are not yet available, even considering the promises about this plant as of high potential for marginal zones where poor soils and dry climate occur. Based on that, the present study had as objective to characterize the climatic conditions of jatropha's center of origin in Central America for establishing its climatic requirements and to develop the agro-climatic zoning for this crop for some Brazilian regions where, according to the literature, it would be suitable. For classifying the climatic conditions of the jatropha's center of origin, climate data from 123 weather stations located in Mexico (93) and in Guatemala (30) were used. These data were input for Thornthwaite and Mather's climatological water balance for determining the annual water deficiency (WD) and water surplus (WS) of each location, considering a soil water-holding capacity (SWHC) of 100 mm. Mean annual temperature (T m), WD, and WS data were organized in histograms for defining the limits of suitability for jatropha cultivation. The results showed that the suitable range of T m for jatropha cultivation is between 23 and 27 °C. T m between 15 and 22.9 °C and between 27.1 and 28 °C were classified as marginal by thermal deficiency and excess, respectively. T m below 15 °C and above 28 °C were considered as unsuitable for jatropha cultivation, respectively, by risk of frosts and physiological disturbs. For WD, suitability for rain-fed jatropha cultivation was considered when its value is below 360 mm, while between 361 and 720 mm is considered as marginal and over 720 mm unsuitable. The same order of suitability was also defined for WS, with the following limits: suitable for WS up to 1,200 mm; marginal for WS between 1,201 and 2,400 mm, and unsuitable for WS above 2,400 mm. For the crop zoning, the criteria previously defined were applied to 1,814 climate stations in

  7. Finger millet: An alternative crop for the Southern High Plains

    Science.gov (United States)

    In the Southern High Plains, dairies are expanding to take advantage of favorable climatic conditions. Currently, corn (Zea mays L.) and forage sorghum [Sorghum bicolor (L.) Moench] are the two major crops grown in the region to meet silage demands for the expanding dairy industry, but they have rel...

  8. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    Science.gov (United States)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2017-12-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  9. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    Directory of Open Access Journals (Sweden)

    Ignasi Bartomeus

    2014-03-01

    Full Text Available Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production.Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes.Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness.Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild

  10. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    Science.gov (United States)

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  11. Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops

    Science.gov (United States)

    2012-01-01

    Claims have been made recently that glyphosate-resistant (GR) crops sometimes have mineral deficiencies and increased plant disease. This review evaluates the literature that is germane to these claims. Our conclusions are: (1) although there is conflicting literature on the effects of glyphosate on mineral nutrition on GR crops, most of the literature indicates that mineral nutrition in GR crops is not affected by either the GR trait or by application of glyphosate; (2) most of the available data support the view that neither the GR transgenes nor glyphosate use in GR crops increases crop disease; and (3) yield data on GR crops do not support the hypotheses that there are substantive mineral nutrition or disease problems that are specific to GR crops. PMID:23013354

  12. Projective analysis of staple food crop productivity in adaptation to future climate change in China.

    Science.gov (United States)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  13. Projective analysis of staple food crop productivity in adaptation to future climate change in China

    Science.gov (United States)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  14. Evaluation of energy plantation crops in a high-throughput indirectly heated biomass gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, M.A.; Litt, R.D. [Battelle, Columbus, OH (United States)

    1993-12-31

    Experiments were run in Battelle`s 10 ton per day Process Research Unit (PRU) gasifier using two high-growth, energy plantation crops -- hybrid poplar -- and an herbaceous biomass crop -- switch grass. The results show that both feedstocks provide gas production rates, product gas compositions, and heating value similar to other biomass feedstocks tested in the Battelle gasification process. The ash compositions of the switch grass and hybrid poplar feedstocks were high in potassium relative to previously tested biomass feedstocks. High growth biomass species tend to concentrate minerals such as potassium in the ash. The higher potassium content in the ash can then cause agglomeration problems in the gasification system. A method for controlling this agglomeration through the addition of small amounts (approximately 2 percent of the wood feed rate) of an additive could adequately control the agglomeration tendency of the ash. During the testing program in the PRU, approximately 50 tons of hybrid poplar and 15 tons of switch grass were gasified to produce a medium Btu product gas.

  15. Willow trees from heavy metals phytoextraction as energy crops

    International Nuclear Information System (INIS)

    Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Habart, Jan; Svoboda, Karel; Punčochář, Miroslav

    2012-01-01

    Phytoextraction ability of some fast growing plant species leads to the idea of connecting biomass production with soil remediation of contaminated industrial zones and regions. This biomass will contain significant amount of heavy metals and its energetic utilization has to be considered carefully to minimize negative environmental impacts. This study was focused on potential disposal methods of willow trees contaminated by heavy metals (Cd, Cu, Pb, Zn) with the emphasis on energetic utilization of biomass. Composting seems to be suitable pre-treatment method resulting in decrease of heavy metals leachability and biomass weight reduction. The possibility of willow trees application for energetic purposes was investigated and consequently incineration tests of willow trees samples in fluidized bed reactor were realized. Distribution of selected heavy metals in different ash fractions and treatment methods of produced ashes were studied as well. -- Highlights: ► Composting is an appropriate pre-treatment method for phytoextraction crops. ► Fluidized bed combustion is suitable disposal method of phytoextraction crops. ► Ashes from phytoextraction crops combustion cannot be used as fertilizers.

  16. Response of cactus pear genotypes to different crop densities

    Directory of Open Access Journals (Sweden)

    Lucas Aroaldo Dantas Cavalcante

    2014-09-01

    Full Text Available Considering the importance of cactus pear as an alimentary alternative for the herd of cattle of the Brazilian semiarid region and the effect of crop spacing among plants, this study aimed to evaluate the morphometry, yield and chemical-bromatological composition of cactus pear genotypes, under different cropping densities. The experimental design was completely randomized blocks, in a 3x4 factorial scheme. Treatments consisted of a combination of three cactus pear genotypes (Gigante, Redonda and Miúda and four cropping densities (10,000 plants ha-1; 20,000 plants ha-1; 40,000 plants ha-1; and 80,000 plants ha-1, with three replications. The cactus pear genotypes reacted differently, regarding morphometry, yield and chemical-bromatological composition, and, regardless of the species, the denser planting increased yield (tons ha-1. The Miúda palm presented the highest dry matter yield and consequently the greater accumulation of total digestible nutrients, raw protein and water per hectare, as well as the highest in vitro dry matter digestibility.

  17. The Lower Chesapeake Bay LTAR: A coastal urban-agricultural region

    Science.gov (United States)

    Mccarty, G.; Alfieri, J. G.; Cavigelli, M.; Cosh, M. H.; Hapeman, C. J.; Kustas, W. P.; Maul, J.; Mirsky, S.; Pooler, M.; Sadeghi, A. M.; Schomberg, H.; Timlin, D. J.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay, located in the mid-Atlantic region of the U.S., is the largest estuary in North America. The watershed area includes six states from New York to Virginia and is nearly 167,000 km2 in size with more than 150 rivers and streams entering the 300-km Bay main stem. Forested and agricultural lands make up 58 and 22 percent of the land use, respectively. Nearly 9 percent is urban and suburban use, and the watershed is home to over 17 million people. However, the population is expected to reach 19 million by 2025, raising the potential for conflict between the agricultural and urban communities over land and water use and in protecting natural resources, especially in the lower portion of the Chesapeake Bay watershed. The Lower Chesapeake Bay study area, part of the USDA-ARS Long-Term Agroecosystem Research (LTAR) network, will provide much-needed data to support decisions at this critical agriculture-urban interface. Current long-term projects seek to assess the economic, production, and environmental performance of conventional and organic cropping systems and to evaluate the resilience of these systems to climate change. Large-scale studies are being conducted to examine the effects of land-use and landscape characteristics on ecosystem services and on energy, water, nutrient, carbon, and pest dynamics within watersheds. New in-situ measurement and remote sensor technologies are being considered with the expectancy that the data streams will be available on-line and for use in modeling. Results and outcomes of these research efforts will greatly benefit the national LTAR network and will be applicable to other US coastal urban-agricultural regions.

  18. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment. Keywords: Atmosphere, Greenhouse gases, Conservation tillage, Sustainable crop yield

  19. Policy Instruments for an Increased Supply of Energy Crops; Styrmedel foer ett utoekat utbud av biobraensle

    Energy Technology Data Exchange (ETDEWEB)

    Stenkvist, Maria; Widmark, Annika; Wiklund, Sven-Erik; Liljeblad, Anna

    2009-05-15

    crops within the power and heat sector 1. Financing of practical research and development of the logistics chain including harvesting, bundling, compression, preparation, feeding in (to the power plant), storage and transportation of energy crops 2. Investment support to farmers cultivating energy crops with high investment costs 3. Introduction of a national program for development of regional projects supporting cooperation between actors on the energy crop bio fuel market. 1. Financing of Practical Research and Development of the Logistics Chain To reduce the production costs in order to increase the profitability, support for practical research and development of the logistics chain, which includes harvesting, bundling, compression, preparation, feeding in (to the power plant), storage and transportation of energy crops, is suggested. For the success of practical research, it is important that the research is performed in close cooperation between farmers, entrepreneurs within the logistics chain dealing with harvesting, storage and transport of energy crops and energy companies. One way to achieve such cooperation is that the energy companies take the initiative for common research efforts, since neither the farmers nor the contractors on the market for energy crops normally take part in research projects. Neither do they normally have experience of applying for research funds. Common research efforts are also important to find cost-effective solutions for the entire logistics chain. This means that the financing for the research could be a combination of public support and support from the heat and power sector. 2. Investment Support to Farmers Cultivating Energy Crops with High Investment Costs In order to initially increase the interest in energy crops, contribute to establish a market for production of energy crops and manage high initial investment costs, problem that farmers face at the transition from traditional production of grain to energy crops, a

  20. Multiple pathways of commodity crop expansion in tropical forest landscapes

    Science.gov (United States)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement