WorldWideScience

Sample records for regional experiment fire-ii

  1. Using Space Technologies for a timely detection of forest fires: the experience of end-users in 3 Italian Regions

    Science.gov (United States)

    Filizzola, Carolina; Belloni, Antonella; Benigno, Giuseppe; Biancardi, Alberto; Corrado, Rosita; Coviello, Irina; De Costanzo, Giovanni; Genzano, Nicola; Lacava, Teodosio; Lisi, Mariano; Marchese, Francesco; Mazzeo, Giuseppe; Merzagora, Cinzio; Paciello, Rossana; Pergola, Nicola; Sannazzaro, Filomena; Serio, Salvatore; Tramutoli, Valerio

    2013-04-01

    Every year, hundreds of thousands of hectares of European forests are destroyed by fires. Due to the particular topography, landscape and demographic distribution in Europe (very different from typical scenarios of China, USA, Canada and Australia), rapidity in fire sighting is still the determining factor in limiting damages to people and goods. Moreover, the possibility of early fire detection means also potentially to reduce the size of the event to be faced, the necessary fire fighting resources and, therefore, even the reaction times. In such a context, integration of satellite technologies (mainly high temporal resolution data) and traditional surveillance systems within the fire fighting procedures seems to positively impact on the effectiveness of active fire fighting as demonstrated by recent experiences over Italian territory jointly performed by University of Basilicata, IMAA-CNR and Local Authorities. Real time implementation was performed since 2007, during fire seasons, over several Italian regions with different fire regimes and features, in order to assess the actual potential of different satellite-based fire detection products to support regional and local authorities in efficiently fighting fires and better mitigating their negative effects. Real-time campaigns were carried out in strict collaboration with end-users within the framework of specific projects (i.e. the AVVISA, AVVISTA and AVVISA-Basilicata projects) funded by Civil Protection offices of Regione Lombardia, Provincia Regionale di Palermo and Regione Basilicata in charge of fire risk management and mitigation. A tailored training program was dedicated to the personnel of Regional Civil Protection offices in order to ensure the full understanding and the better integration of satellite based products and tools within the existing fire fighting protocols. In this work, outcomes of these practices are shown and discussed, especially highlighting the impact that a real time satellite

  2. Overview of the 2013 FireFlux II grass fire field experiment

    Science.gov (United States)

    C.B. Clements; B. Davis; D. Seto; J. Contezac; A. Kochanski; J.-B. Fillipi; N. Lareau; B. Barboni; B. Butler; S. Krueger; R. Ottmar; R. Vihnanek; W.E. Heilman; J. Flynn; M.A. Jenkins; J. Mandel; C. Teske; D. Jimenez; J. O' Brien; B. Lefer

    2014-01-01

    In order to better understand the dynamics of fire-atmosphere interactions and the role of micrometeorology on fire behaviour the FireFlux campaign was conducted in 2006 on a coastal tall-grass prairie in southeast Texas, USA. The FireFlux campaign dataset has become the international standard for evaluating coupled fire-atmosphere model systems. While FireFlux is one...

  3. Early Pottery Making in Northern Coastal Peru. Part II: Field Firing Experiments

    International Nuclear Information System (INIS)

    Shimada, I.; Goldstein, D.; Sosa, J.; Wagner, U.

    2003-01-01

    We present data from three seasons of experimental field work designed to recreate ancient Andean coastal ceramic firing techniques. Based on the recent discovery of two different archaeological ceramic production sites in the La Leche river valley of northern coastal Peru, the opportunity arose to apply Moessbauer spectroscopy and other analytical methods to reconstruct ancient firing procedures. Two sets of firings took place in 1993 and 1997 in Batan Grande using a partially restored Formative kiln from about 800 BC, local hardwood and cow dung as fuel. A third experiment followed in 2000 after the discovery of a Middle Sican ceramics workshop in use between ca. AD 950 and 1050 at Huaca Sialupe, where an exact replica of an ancient kiln was built from local clay, and fired with local wood and cow dung. Additionally, inverted urns found at Huaca Sialupe were tested for their potential use as furnaces for metal working. Moessbauer spectroscopy was used to compare the physical and chemical state of specimens produced in the field experiments with ancient ceramics and with specimens produced in controlled laboratory experiments.

  4. FIREX (Fire Influence on Regional and Global Environments Experiment): Measurements of Nitrogen Containing Volatile Organic Compounds

    Science.gov (United States)

    Warneke, C.; Schwarz, J. P.; Yokelson, R. J.; Roberts, J. M.; Koss, A.; Coggon, M.; Yuan, B.; Sekimoto, K.

    2017-12-01

    A combination of a warmer, drier climate with fire-control practices over the last century have produced a situation in which we can expect more frequent fires and fires of larger magnitude in the Western U.S. and Canada. There are urgent needs to better understand the impacts of wildfire and biomass burning (BB) on the atmosphere and climate system, and for policy-relevant science to aid in the process of managing fires. The FIREX (Fire Influence on Regional and Global Environment Experiment) research effort is a multi-year, multi-agency measurement campaign focused on the impact of BB on climate and air quality from western North American wild fires, where research takes place on scales ranging from the flame-front to the global atmosphere. FIREX includes methods development and small- and large-scale laboratory and field experiments. FIREX will include: emission factor measurements from typical North American fuels in the fire science laboratory in Missoula, Montana; mobile laboratory deployments; ground site measurements at sites influenced by BB from several western states. The main FIREX effort will be a large field study with multiple aircraft and mobile labs in the fire season of 2019. One of the main advances of FIREX is the availability of various new measurement techniques that allows for smoke evaluation in unprecedented detail. The first major effort of FIREX was the fire science laboratory measurements in October 2016, where a large number of previously understudied Nitrogen containing volatile organic compounds (NVOCs) were measured using H3O+CIMS and I-CIMS instruments. The contribution of NVOCs to the total reactive Nitrogen budget and the relationship to the Nitrogen content of the fuel are investigated.

  5. Early Pottery Making in Northern Coastal Peru. Part II: Field Firing Experiments

    Science.gov (United States)

    Shimada, I.; Goldstein, D.; Sosa, J.; Wagner, U.

    2003-09-01

    We present data from three seasons of experimental field work designed to recreate ancient Andean coastal ceramic firing techniques. Based on the recent discovery of two different archaeological ceramic production sites in the La Leche river valley of northern coastal Peru, the opportunity arose to apply Mössbauer spectroscopy and other analytical methods to reconstruct ancient firing procedures. Two sets of firings took place in 1993 and 1997 in Batán Grande using a partially restored Formative kiln from about 800 BC, local hardwood and cow dung as fuel. A third experiment followed in 2000 after the discovery of a Middle Sicán ceramics workshop in use between ca. AD 950 and 1050 at Huaca Sialupe, where an exact replica of an ancient kiln was built from local clay, and fired with local wood and cow dung. Additionally, inverted urns found at Huaca Sialupe were tested for their potential use as furnaces for metal working. Mössbauer spectroscopy was used to compare the physical and chemical state of specimens produced in the field experiments with ancient ceramics and with specimens produced in controlled laboratory experiments.

  6. Prescribed burning experiences in Italy: an integrated approach to prevent forest fires

    Directory of Open Access Journals (Sweden)

    Ascoli D

    2012-02-01

    Full Text Available Prescribed burning is used in many geographical areas for multiple and integrated objectives (wildfire prevention, habitat conservation, grazing management. In Europe the collaboration between researchers and fire professionals has brought to implement this technique over increasing areas (~104 ha year-1, effectively and efficiently. In Italy prescribed burning has not been much studied and it is rarely applied. A new interest is recently rising. Some Regions particularly threatened by wildfires have updated their legislation and set up procedures to authorize prescribed fire experiments and interventions. From 2004 to 2011 several scientific, operative and training experiences have been carried out at a regional level (Basilicata, Campania, Friuli Venezia Giulia, Piemonte, Sardegna, Toscana. The present paper aims to: (i document and compare these regional programs; (ii discuss their frameworks and limitations; (iii provide information about objectives, prescriptions, methods and results. The study has involved Universities, Forest Corps, Civil Protection, Municipalities, Parks and professionals from Italy and other Countries. Interventions have regarded integrated objectives (fire hazard reduction; habitat conservation; forest and grazing management, and involved several vegetation types (broadleaved and conifer forests; Mediterranean and Continental shrublands; grasslands. Studies on fire behaviour and ecology have helped to set prescriptions for specific objectives and environments. Results have been transferred to professionals through training sessions. Several common elements are outlined: integrated objectives, multidisciplinary character, training and research products. Ecological questions, certification to the use of fire, communication to local communities and the proposal of new studies, are some of the issues outlined in the discussion. The present study is the first review at national level and we hope it will help to deepen the

  7. Evaluation of water transport behavior in sodium fire experiment-II

    Energy Technology Data Exchange (ETDEWEB)

    Nakagiri, Toshio [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-02-01

    Evaluation of water transport behavior in Sodium Fire-II (Run-D4) was performed. Results of other experiments performed in Oarai-Engineering Center were considered in the evaluation, and the results of the evaluation were compared with the calculated results of ASSCOPS code. The main conclusions are described below. (1) It was estimated that aerosol hydrates were not formed in the test cell in the experiment, because of high gas temperatures (200degC - 300degC), but water vapor absorption by the formation of aerosol hydrates and water vapor condensation were occurred in humility measure line, because of low gas temperature (20degC - 40degC). Therefore, it was considered appropriate that measured water vapor concentration in the humidity measure line was different from the real concentration in the test cell. (2) Water vapor concentration in the test cell was assumed to be about 35,000 ppm during sodium leak, and reached to about 70,000 ppm because of water release from heated concrete (over 100degC) walls after 190 min from sodium leak started. The assumed value of about 35,000 ppm during sodium leak almost agree with assumed value from the quantity of aerosol in the humidity measure line, but no support for the value of about 70,000 ppm after 190 min could be found. Therefore, water release rate from heated concrete walls can change with their temperature history. (author)

  8. Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II

    Science.gov (United States)

    Brian R. Sturtevant; Robert M. Scheller; Brian R. Miranda; Douglas Shinneman; Alexandra Syphard

    2009-01-01

    Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and...

  9. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    Science.gov (United States)

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    Science.gov (United States)

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  11. Modeling prescribed burning experiments and assessing the fire impacts on local to regional air quality

    Science.gov (United States)

    Zhou, L.; Baker, K. R.; Napelenok, S. L.; Elleman, R. A.; Urbanski, S. P.

    2016-12-01

    Biomass burning, including wildfires and prescribed burns, strongly impact the global carbon cycle and are of increasing concern due to the potential impacts on ambient air quality. This modelling study focuses on the evolution of carbonaceous compounds during a prescribed burning experiment and assesses the impacts of burning on local to regional air quality. The Community Multiscale Air Quality (CMAQ) model is used to conduct 4 and 2 km grid resolution simulations of prescribed burning experiments in southeast Washington state and western Idaho state in summer 2013. The ground and airborne measurements from the field experiment are used to evaluate the model performance in capturing surface and aloft impacts from the burning events. Phase partitioning of organic compounds in the plume are studied as it is a crucial step towards understanding the fate of carbonaceous compounds. The sensitivities of ambient concentrations and deposition to emissions are conducted for organic carbon, elemental carbon and ozone to estimate the impacts of fire on air quality.

  12. MIL SPEC 28 Square Foot Fire Burnback and Extinguishment Testing of FireAde, FlameOut II and Hawk ALLFIRE

    National Research Council Canada - National Science Library

    Barrett, Kimberly D; Kalberer, Jennifer L

    2008-01-01

    ... for hydrocarbon fuel fires. This report documents the evaluation performed on the fire extinguishing agents FireAde 2000 AFFF LP, FlameOut II and Hawk ALLFORE in accordance with the parameters set forth in Military Specification ( MIL SPEC...

  13. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  14. Significance analysis of the regional differences on icing time of water onto fire protective clothing

    Science.gov (United States)

    Zhao, L. Z.; Jing, L. S.; Zhang, X. Z.; Xia, J. J.; Chen, Y.; Chen, T.; Hu, C.; Bao, Z. M.; Fu, X. C.; Wang, R. J.; Wang, Y.; Wang, Y. J.

    2017-09-01

    The object of this work was to determine the icing temperature in icing experiment. Firstly, a questionnaire investigation was carried out on 38 fire detachments in different regions. These Statistical percentage results were divided into northern east group and northern west group. Secondly, a significance analysis between these two results was made using Mann-Whitney U test. Then the icing temperature was determined in different regions. Thirdly, the icing experiment was made in the environment of -20°C in Daxing’an Mountain. The anti-icing effect of new fire protective clothing was verified in this icing.

  15. Fire mosaics and reptile conservation in a fire-prone region.

    Science.gov (United States)

    Nimmo, D G; Kelly, L T; Spence-Bailey, L M; Watson, S J; Taylor, R S; Clarke, M F; Bennett, A F

    2013-04-01

    Fire influences the distribution of fauna in terrestrial biomes throughout the world. Use of fire to achieve a mosaic of vegetation in different stages of succession after burning (i.e., patch-mosaic burning) is a dominant conservation practice in many regions. Despite this, knowledge of how the spatial attributes of vegetation mosaics created by fire affect fauna is extremely scarce, and it is unclear what kind of mosaic land managers should aim to achieve. We selected 28 landscapes (each 12.6 km(2) ) that varied in the spatial extent and diversity of vegetation succession after fire in a 104,000 km(2) area in the semiarid region of southeastern Australia. We surveyed for reptiles at 280 sites nested within the 28 landscapes. The landscape-level occurrence of 9 of the 22 species modeled was associated with the spatial extent of vegetation age classes created by fire. Biogeographic context and the extent of a vegetation type influenced 7 and 4 species, respectively. No species were associated with the diversity of vegetation ages within a landscape. Negative relations between reptile occurrence and both extent of recently burned vegetation (≤10 years postfire, n = 6) and long unburned vegetation (>35 years postfire, n = 4) suggested that a coarse-grained mosaic of areas (e.g. >1000 ha) of midsuccessional vegetation (11-35 years postfire) may support the fire-sensitive reptile species we modeled. This age class coincides with a peak in spinifex cover, a keystone structure for reptiles in semiarid and arid Australia. Maintaining over the long term a coarse-grained mosaic of large areas of midsuccessional vegetation in mallee ecosystems will need to be balanced against the short-term negative effects of large fires on many reptile species and a documented preference by species from other taxonomic groups, particularly birds, for older vegetation. © 2012 Society for Conservation Biology.

  16. Experience gained from fires in nuclear power plants: Lessons learned

    International Nuclear Information System (INIS)

    2004-11-01

    In 1993, the IAEA launched a programme to assist Member States in improving fire safety in nuclear power plants (NPPs). The review of fire safety assessment in many plants has shown that fire is one of the most important risk contributors for NPPs. Moreover, operational experience has confirmed that many events have a similar root cause, initiation and development mechanism. Therefore, many States have improved the analysis of their operational experience and its feedback. States that operate NPPs play an important role in the effort to improve fire safety by circulating their experience internationally - this exchange of information can effectively prevent potential events. When operating experience is well organized and made accessible, it can feed an improved fire hazard assessment on a probabilistic basis. The practice of exchanging operational experience seems to be bearing fruit: serious events initiated by fire are on the decline at plants in operating States. However, to maximize this effort, means for communicating operational experience need to be continuously improved and the pool of recipients of operational experience data enlarged. The present publication is the third in a series started in 1998 on fire events, the first two were: Root Cause Analysis for Fire Events (IAEA-TECDOC-1112) and Use of Operational Experience in Fire Safety Assessment of Nuclear Power Plants (IAEA-TECDOC-1134). This TECDOC summarizes the experience gained and lessons learned from fire events at operating plants, supplemented by specific Member State experiences. In addition, it provides a possible structure of an international fire and explosion event database aimed at the analysis of experience from fire events and the evaluation of fire hazard. The intended readership of this is operators of plants and regulators. The present report includes a detailed analysis of the most recent events compiled with the IAEA databases and other bibliographic sources. It represents a

  17. Biomass co-firing opportunities and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, R. [Ontario Power Generation Inc., Niagara Falls, ON (Canada). Nanticoke Generating Station

    2006-07-01

    Biomass co-firing and opportunities in the electricity sector were described in this presentation. Biomass co-firing in a conventional coal plant was first illustrated. Opportunities that were presented included the Dutch experience and Ontario Power Generation's (OPG) plant and production mix. The biomass co-firing program at OPG's Nantucket generating station was presented in three phases. The fuel characteristics of co-firing were identified. Several images and charts of the program were provided. Results and current status of tests were presented along with conclusions of the biomass co-firing program. It was concluded that biomass firing is feasible and following the Dutch example. Biomass firing could considerably expand renewable electricity generation in Ontario. In addition, sufficient biomass exists in Ontario and the United States to support large scale biomass co-firing. Several considerations were offered such as electricity market price for biomass co-firing and intensity targets and credit for early adoption and banking. tabs., figs.

  18. An assessment of fire occurrence regime and performance of Canadian fire weather index in south central Siberian boreal region

    OpenAIRE

    Chu, T.; Guo, X.

    2014-01-01

    Wildfire is the dominant natural disturbance in Eurasian boreal region, which acts as a major driver of the global carbon cycle. An effectiveness of wildfire management requires suitable tools for fire prevention and fire risk assessment. This study aims to investigate fire occurrence patterns in relation to fire weather conditions in the remote south central Siberia region. The Canadian Fire Weather Index derived from large-scale meteorol...

  19. Evolved H II regions

    International Nuclear Information System (INIS)

    Churchwell, E.

    1975-01-01

    A probable evolutionary sequence of H II regions based on six distinct types of observed objects is suggested. Two examples which may deviate from this idealized sequence, are discussed. Even though a size-mean density relation of H II regions can be used as a rough indication of whether a nebula is very young or evolved, it is argued that such a relation is not likely to be useful for the quantitative assignment of ages to H II regions. Evolved H II regions appear to fit into one of four structural types: rings, core-halos, smooth structures, and irregular or filamentary structures. Examples of each type are given with their derived physical parameters. The energy balance in these nebulae is considered. The mass of ionized gas in evolved H II regions is in general too large to trace the nebula back to single compact H II regions. Finally, the morphological type of the Galaxy is considered from its H II region content. 2 tables, 2 figs., 29 refs

  20. Making fire and fire surrogate science available: a summary of regional workshops with clients

    Science.gov (United States)

    Andrew Youngblood; Heidi Bigler-Cole; Christopher J. Fettig; Carl Fiedler; Eric E. Knapp; John F. Lehmkuhl; Kenneth W. Outcalt; Carl N. Skinner; Scott L. Stephens; Thomas A. Waldrop

    2007-01-01

    Operational-scale experiments that evaluate the consequences of fire and mechanical "surrogates" for natural disturbance events are essential to better understand strategies for reducing the incidence and severity of wildfire. The national Fire and Fire Surrogate (FFS) study was initiated in 1999 to establish an integrated network of long-term studies...

  1. Regional Haze Evolved from Peat Fires - an Overview

    Science.gov (United States)

    Hu, Yuqi; Rein, Guillermo

    2016-04-01

    This work provides an overview of haze episodes, their cause, emissions and health effects found in the scientific literature. Peatlands, the terrestrial ecosystems resulting from the accumulation of partially decayed vegetation, become susceptible to smouldering fires because of natural droughts or anthropogenic-induced drainages. Once ignited, smouldering peat fires persistently consume large amounts of soil carbon in a flameless form. It is estimated that the average annual carbon gas emissions (mainly CO2 and CO) from peat fires are equivalent to 15% of manmade emissions, representing influential perturbation of global carbon circle. In addition to carbon emissions, smouldering peat fires emit substantial quantities of heterogeneous smoke, which is responsible for haze phenomena, has not yet been fully studied. Peat-fire-derived smoke is characterized by high concentration of particulate matter (PM), ranging from nano-scale ultrafine fraction (PM1, particle diameter condition, and then low buoyant smoke plume could accumulate and migrate long distances, leading to regional haze. Apart from air quality deterioration, haze leads to severe reduction in visibility, which strongly affects local transportation, construction, tourism and agriculture-based industries. For example, an unprecedented peatland mega-fire burst on the Indonesian islands Kalimantan and Sumatra during the 1997 El-Niño event, resulting in transboundary smoke-haze disaster. Severe haze events continue to appear in Southeast Asia every few years due to periodical peat fires in this region. In addition, smouldering peat fires have been frequently reported in tropical, temperate and boreal regions (Botswana in 2000, North America in 2004, Scotland in 2006 and Central Russia in 2010 et al.), peat-fire-induced haze has become a regional seasonal phenomenon. Exposure to smoky haze results in deleterious physiologic responses, predominantly to the respiratory and cardiovascular systems. In 1997, an

  2. Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A

    Science.gov (United States)

    Olson, Jennifer R.; Baum, Bryan A.; Cahoon, Donald R.; Crawford, James H.

    1999-03-01

    Advanced very high resolution radiometer 1.1 km resolution satellite radiance data were used to locate active fires throughout much of the tropical region during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics (PEM-Tropics A) aircraft campaign, held in September and October 1996. The spatial and temporal distributions of the fires in Australia, southern Africa, and South America are presented here. The number of fires over northern Australia, central Africa, and South America appeared to decrease toward the end of the mission period. Fire over eastern Australia was widespread, and temporal patterns showed a somewhat consistent amount of burning with periodic episodes of enhanced fire counts observed. At least one episode of enhanced fire counts corresponded to the passage of a frontal system which brought conditions conducive to fire to the region, with strong westerlies originating over the hot, dry interior continent. Regions that were affected by lower than normal rainfall during the previous wet season (e.g., northern Australia and southwestern Africa) showed relatively few fires during this period. This is consistent with a drought-induced decrease in vegetation and therefore a decreased availability of fuel for burning. Alternatively, a heavier than normal previous wet season along the southeastern coast of South Africa may have contributed to high fuel loading and an associated relatively heavy amount of burning compared to data from previous years.

  3. Fire regimes and vegetation responses in two Mediterranean-climate regions

    Science.gov (United States)

    Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gomez, M.

    2004-01-01

    Wildfires resulting from thunderstorms are common in some Mediterranean-climate regions, such as southern California, and have played an important role in the ecology and evolution of the flora. Mediterranean-climate regions are major centers for human population and thus anthropogenic impacts on fire regimes may have important consequences on these plant formations. However, changes in fire regimes may have different impacts on Mediterranean type-ecosystems depending on the capability of plants to respond to such perturbations. Therefore, we compare here fire regimes and vegetation responses of two Mediterranean-climate regions which differ in wildfire regimes and history of human occupation, the central zone of Chile (matorral) and the southern area of California in United States (chaparral). In Chile almost all fires result from anthropogenic activities, whereas lightning fires resulting from thunderstorms are frequent in California. In both regions fires are more frequent in summer, due to high accumulation of dry plant biomass for ignition. Humans have markedly increased fires frequency both in the matorral and chaparral, but extent of burned areas has remained unaltered, probably due to better fire suppression actions and a decline in the built-up of dry plant fuel associated to increased landscape fragmentation with less flammable agricultural and urban developments. As expected, post-fire plant regeneration responses differs between the matorral and chaparral due to differences in the importance of wildfires as a natural evolutionary force in the system. Plants from the chaparral show a broader range of post-fire regeneration responses than the matorral, from basal resprouting, to lignotuber resprouting, and to fire-stimulated germination and flowering with fire-specific clues such as heat shock, chemicals from smoke or charred wood. Plants from the matorral have some resprouting capabilities after fire, but these probably evolved from other environmental

  4. Development of Large-Scale Spacecraft Fire Safety Experiments

    DEFF Research Database (Denmark)

    Ruff, Gary A.; Urban, David L.; Fernandez-Pello, A. Carlos

    2013-01-01

    exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low...... of the spacecraft fire safety risk. The activity of this project is supported by an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The large-scale space flight experiment will be conducted in an Orbital Sciences...

  5. Integrating models to predict regional haze from wildland fire.

    Science.gov (United States)

    D. McKenzie; S.M. O' Neill; N. Larkin; R.A. Norheim

    2006-01-01

    Visibility impairment from regional haze is a significant problem throughout the continental United States. A substantial portion of regional haze is produced by smoke from prescribed and wildland fires. Here we describe the integration of four simulation models, an array of GIS raster layers, and a set of algorithms for fire-danger calculations into a modeling...

  6. Regional scales of fire danger rating in the forest: improved technique

    Directory of Open Access Journals (Sweden)

    A. V. Volokitina

    2017-04-01

    Full Text Available Wildland fires distribute unevenly in time and over area under the influence of weather and other factors. It is unfeasible to air patrol the whole forest area daily during a fire season as well as to keep all fire suppression forces constantly alert. Daily work and preparedness of forest fire protection services is regulated by the level of fire danger according to weather conditions (Nesterov’s index. PV-1 index, fire hazard class (Melekhov’s scale, regional scales (earlier called local scales. Unfortunately, there is still no unified comparable technique of making regional scales. As a result, it is difficult to maneuver forest fire protection resources, since the techniques currently used are not approved and not tested for their performance. They give fire danger rating incomparable even for neighboring regions. The paper analyzes the state-of-the-art in Russia and abroad. It is stated the irony is that with factors of fire danger measured quantitatively, the fire danger itself as a function has no quantitative expression. Thus, selection of an absolute criteria is of high importance for improvement of daily fire danger rating. On the example of the Chunsky forest ranger station (Krasnoyarsk Krai, an improved technique is suggested of making comparable local scales of forest fire danger rating based on an absolute criterion of fire danger rating – a probable density of active fires per million ha. A method and an algorithm are described of automatized local scales of fire danger that should facilitate effective creation of similar scales for any forest ranger station or aviation regional office using a database on forest fires and weather conditions. The information system of distant monitoring by Federal Forestry Agency of Russia is analyzed for its application in making local scales. To supplement the existing weather station net it is suggested that automatic compact weather stations or, if the latter is not possible, simple

  7. Estimation of fire frequency from PWR operating experience

    International Nuclear Information System (INIS)

    Bertrand, R.; Bonneval, F.; Barrachin, G.; Bonino, F.

    1998-01-01

    In the framework of a fire probabilistic safety assessment (Fire PSA), the French Institute for Nuclear Safety and Protection (IPSN) has developed a method for estimating the frequency of fire in a nuclear power plant room. This method is based on the analysis of French Pressurized Water Reactors operating experience. The method adopted consists is carrying out an in-depth analysis of fire-related incidents. A database has been created including 202 fire events reported in 900 MWe and 1300 MWe reactors from the start of their commercial operation up to the first of March 1994, which represents a cumulated service life of 508 reactor-years. For each reported fire, several data were recorded among which: The operating state of the reactor in the stage preceding the fire, the building in which the fire broke out, the piece of equipment or the human intervention which caused the fire. Operating experience shows that most fires are initiated by electrical problems (short-circuits, arcing, faulty contacts, etc.) and that human intervention also plays an important role (grinding, cutting, welding, cleaning, etc.). A list of equipment and of human interventions which proved to be possible fire sources was therefore drawn up. the items of this list were distributed in 19 reference groups defined by taking into account the nature of the potential ignition source (transformers, electrical cabinets, pumps, fans, etc.). The fire frequency assigned to each reference group was figured out using the operating experience information of the database. The fire frequency in a room is considered to be made out of two contributions: one due to equipment which is proportional to the number of pieces of equipment from each reference group contained in the room, and a second one which is due to human interventions and assumed to be uniform throughout the reactor. Formulas to assess the fire frequencies in a room, the reactor being in a shutdown state or at power, are then proposed

  8. The Cooney Ridge Fire Experiment: An early operation to relate pre-, active, and post-fire field and remotely sensed measurements

    Science.gov (United States)

    Andrew T. Hudak; Patrick H. Freeborn; Sarah A. Lewis; Sharon M. Hood; Helen Y. Smith; Colin C. Hardy; Robert J. Kremens; Bret W. Butler; Casey Teske; Robert G. Tissell; Lloyd P. Queen; Bryce L. Nordgren; Benjamin C. Bright; Penelope Morgan; Philip J. Riggan; Lee Macholz; Leigh B. Lentile; James P. Riddering; Edward E. Mathews

    2018-01-01

    The Cooney Ridge Fire Experiment conducted by fire scientists in 2003 was a burnout operation supported by a fire suppression crew on the active Cooney Ridge wildfire incident. The fire experiment included measurements of pre-fire fuels, active fire behavior, and immediate post-fire effects. Heat flux measurements collected at multiple scales with multiple ground and...

  9. Human amplification of drought-driven fire in tropical regions

    Science.gov (United States)

    Tosca, Michael

    2015-04-01

    The change in globally-measured radiative forcing from the pre-industrial to the present due to interactions between aerosol particles and cloud cover has the largest uncertainty of all anthropogenic factors. Uncertainties are largest in the tropics, where total cloud amount and incoming solar radiation are highest, and where 50% of all aerosol emissions originate from anthropogenic fire. It is well understood that interactions between smoke particles and cloud droplets modify cloud cover , which in turn affects climate, however, few studies have observed the temporal nature of aerosol-cloud interactions without the use of a model. Here we apply a novel approach to measure the effect of fire aerosols on convective clouds in tropical regions (Brazil, Africa and Indonesia) through a combination of remote sensing and meteorological data. We attribute a reduction in cloud fraction during periods of high aerosol optical depths to a smoke-driven inhibition of convection. We find that higher smoke burdens limit vertical updrafts, increase surface pressure, and increase low- level divergence-meteorological indicators of convective suppression. These results are corroborated by climate model simulations that show a smoke-driven increase in regionally averaged shortwave tropospheric heating and boundary layer stratification, and a decrease in vertical velocity and precipitation during the fire season (December-February). We then quantify the human response to decreased cloud cover using a combination of socioeconomic and climate data Our results suggest that, in tropical regions, anthropogenic fire initiates a positive feedback loop where increased aerosol emissions limit convection, dry the surface and enable increased fire activity via human ignition. This result has far-reaching implications for fire management and climate policy in emerging countries along the equator that utilize fire.

  10. Fire protection system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor

  11. Fire protection system operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  12. Performance assessment of fire-sat monitoring system based on satellite time series for fire danger estimation : the experience of the pre-operative application in the Basilicata Region (Italy)

    Science.gov (United States)

    Lanorte, Antonio; Desantis, Fortunato; Aromando, Angelo; Lasaponara, Rosa

    2013-04-01

    This paper presents the results we obtained in the context of the FIRE-SAT project during the 2012 operative application of the satellite based tools for fire monitoring. FIRE_SAT project has been funded by the Civil Protection of the Basilicata Region in order to set up a low cost methodology for fire danger monitoring and fire effect estimation based on satellite Earth Observation techniques. To this aim, NASA Moderate Resolution Imaging Spectroradiometer (MODIS), ASTER, Landsat TM data were used. Novel data processing techniques have been developed by researchers of the ARGON Laboratory of the CNR-IMAA for the operative monitoring of fire. In this paper we only focus on the danger estimation model which has been fruitfully used since 2008 to 2012 as an reliable operative tool to support and optimize fire fighting strategies from the alert to the management of resources including fire attacks. The daily updating of fire danger is carried out using satellite MODIS images selected for their spectral capability and availability free of charge from NASA web site. This makes these data sets very suitable for an effective systematic (daily) and sustainable low-cost monitoring of large areas. The preoperative use of the integrated model, pointed out that the system properly monitor spatial and temporal variations of fire susceptibility and provide useful information of both fire severity and post fire regeneration capability.

  13. Multifractal analysis of forest fires in complex regions

    Science.gov (United States)

    Vega Orozco, C. D.; Kanevski, M.; Golay, J.; Tonini, M.; Conedera, M.

    2012-04-01

    Forest fires can be studied as point processes where the ignition points represent the set of locations of the observed events in a defined study region. Their spatial and temporal patterns can be characterized by their fractal properties; which quantify the global aspect of the geometry of the support data. However, a monofractal dimension can not completely describe the pattern structure and related scaling properties. Enhancements in fractal theory had developed the multifractal concept which describes the measures from which interlinked fractal sets can be retrieved and characterized by their fractal dimension and singularity strength [1, 2]. The spatial variability of forest fires is conditioned by an intermixture of human, topographic, meteorological and vegetation factors. This heterogeneity makes fire patterns complex scale-invariant processes difficult to be depicted by a single scale. Therefore, this study proposes an exploratory data analysis through a multifractal formalism to characterize and quantify the multiscaling behaviour of the spatial distribution pattern of this phenomenon in a complex region like the Swiss Alps. The studied dataset is represented by 2,401 georeferenced forest fire ignition points in canton Ticino, Switzerland, in a 40-years period from 1969 to 2008. Three multifractal analyses are performed: one assesses the multiscaling behaviour of fire occurrence probability of the support data (raw data) and four random patterns simulated within three different support domains; second analysis studies the multifractal behavior of patterns from anthropogenic and natural ignited fires (arson-, accident- and lightning-caused fires); and third analysis aims at detecting scale-dependency of the size of burned area. To calculate the generalized dimensions, Dq, a generalization of the box counting methods is carried out based on the generalization of Rényi information of the qth order moment of the probability distribution. For q > 0, Dq

  14. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    -based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...... to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground...

  15. Fire hazard analysis for fusion energy experiments

    International Nuclear Information System (INIS)

    Alvares, N.J.; Hasegawa, H.K.

    1979-01-01

    The 2XIIB mirror fusion facility at Lawrence Livermore Laboratory (LLL) was used to evaluate the fire safety of state-of-the-art fusion energy experiments. The primary objective of this evaluation was to ensure the parallel development of fire safety and fusion energy technology. Through fault-tree analysis, we obtained a detailed engineering description of the 2XIIB fire protection system. This information helped us establish an optimum level of fire protection for experimental fusion energy facilities as well as evaluate the level of protection provided by various systems. Concurrently, we analyzed the fire hazard inherent to the facility using techniques that relate the probability of ignition to the flame spread and heat-release potential of construction materials, electrical and thermal insulations, and dielectric fluids. A comparison of the results of both analyses revealed that the existing fire protection system should be modified to accommodate the range of fire hazards inherent to the 2XIIB facility

  16. Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia

    Science.gov (United States)

    Loboda, Tatiana V.; Giglio, Louis; Boschetti, Luigi; Justice, Christopher O.

    2012-06-01

    Central Asian dry lands are grass- and desert shrub-dominated ecosystems stretching across Northern Eurasia. This region supports a population of more than 100 million which continues to grow at an average rate of 1.5% annually. Dry steppes are the primary grain and cattle growing zone within Central Asia. Degradation of this ecosystem through burning and overgrazing directly impacts economic growth and food supply in the region. Fire is a recurrent disturbance agent in dry lands contributing to soil erosion and air pollution. Here we provide an overview of inter-annual and seasonal fire dynamics in Central Asia obtained from remotely sensed data. We evaluate the accuracy of the Moderate Resolution Imaging Spectroradiometer (MODIS) global fire products within Central Asian dry lands and use these products to characterize fire occurrence between 2001 and 2009. The results show that on average ˜15 million ha of land burns annually across Central Asia with the majority of the area burned in August and September in grasslands. Fire is used as a common crop residue management practice across the region. Nearly 89% of all burning occurs in Kazakhstan, where 5% and 3% of croplands and grasslands, respectively, are burned annually.

  17. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia

    International Nuclear Information System (INIS)

    Marlier, Miriam E; DeFries, Ruth S; Kim, Patrick S; Koplitz, Shannon N; Jacob, Daniel J; Mickley, Loretta J; Myers, Samuel S

    2015-01-01

    Fires associated with agricultural and plantation development in Indonesia impact ecosystem services and release emissions into the atmosphere that degrade regional air quality and contribute to greenhouse gas concentrations. In this study, we estimate the relative contributions of the oil palm, timber (for wood pulp and paper), and logging industries in Sumatra and Kalimantan to land cover change, fire activity, and regional population exposure to smoke concentrations. Concessions for these three industries cover 21% and 49% of the land area in Sumatra and Kalimantan respectively, with the highest overall area in lowlands on mineral soils instead of more carbon-rich peatlands. In 2012, most remaining forest area was located in logging concessions for both islands, and for all combined concessions, there was higher remaining lowland and peatland forest area in Kalimantan (45% and 46%, respectively) versus Sumatra (20% and 27%, respectively). Emissions from all combined concessions comprised 41% of total fire emissions (within and outside of concession boundaries) in Sumatra and 27% in Kalimantan for the 2006 burning season, which had high fire activity relative to decadal emissions. Most fire emissions were observed in concessions located on peatlands and non-forested lowlands, the latter of which could include concessions that are currently under production, cleared in preparation for production, or abandoned lands. For the 2006 burning season, timber concessions from Sumatra (47% of area and 88% of emissions) and oil palm concessions from Kalimantan (33% of area and 67% of emissions) contributed the most to concession-related fire emissions from each island. Although fire emissions from concessions were higher in Kalimantan, emissions from Sumatra contributed 63% of concession-related smoke concentrations for the population-weighted region because fire sources were located closer to population centers. In order to protect regional public health, our results

  18. Coal-Fired Power Plants, Region 9, 2011, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Approximate locations of active coal-fired power plants located in US EPA's Region 9. Emission counts from the 2005 National Emissions Inventory (NEI) are included...

  19. Dust in H II regions

    International Nuclear Information System (INIS)

    Isobe, S.

    1977-01-01

    Several pieces of evidence indicate that H II regions may contain dust: 1) the continuum light scattered by dust grains (O'Dell and Hubbard, 1965), 2) thermal radiation from dust grains at infrared wavelengths (Ney and Allen, 1969), 3) the abnormal helium abundance in some H II regions (Peimbert and Costero, 1969), etc. Although observations of the scattered continuum suggest that the H II region cores may be dust-free, dust grains and gas must be well mixed in view of the infrared observations. This difficulty may be solved by introducing globules with sizes approximately 0.001 pc. These globules and the molecular clouds adjacent to H II regions are the main sources supplying dust to H II regions. (Auth.)

  20. Quantification of regional radiative impacts and climate effects of tropical fire aerosols

    Science.gov (United States)

    Tosca, M. G.; Zender, C. S.; Randerson, J. T.

    2011-12-01

    Regionally expansive smoke clouds originating from deforestation fires in Indonesia can modify local precipitation patterns via direct aerosol scattering and absorption of solar radiation (Tosca et al., 2010). Here we quantify the regional climate impacts of fire aerosols for three tropical burning regions that together account for about 70% of global annual fire emissions. We use the Community Atmosphere Model, version 5 (CAM5) coupled to a slab ocean model (SOM) embedded within the Community Earth System Model (CESM). In addition to direct aerosol radiative effects, CAM5 also quantifies indirect, semi-direct and cloud microphysical aerosol effects. Climate impacts are determined using regionally adjusted emissions data that produce realistic aerosol optical depths in CAM5. We first analyzed a single 12-year transient simulation (1996-2007) forced with unadjusted emissions estimates from the Global Fire Emissions Database, version 3 (GFEDv3) and compared the resulting aerosol optical depths (AODs) for 4 different burning regions (equatorial Asia, southern Africa, South America and boreal North America) to observed MISR and MODIS AODs for the same period. Based on this analysis we adjusted emissions for each burning region between 150 and 300% and forced a second simulation with the regionally adjusted emissions. Improved AODs from this simulation are compared to AERONET observations available at 15 stations throughout the tropics. We present here two transient simulations--one with the adjusted fire emissions and one without fires--to quantify the cumulative fire aerosol climate impact for three major tropical burning regions (equatorial Asia, southern Africa and South America). Specifically, we quantify smoke effects on radiation, precipitation, and temperature. References Tosca, M.G., J.T. Randerson, C.S. Zender, M.G. Flanner and P.J. Rasch (2010), Do biomass burning aerosols intensify drought in equatorial Asia during El Nino?, Atmos. Chem. Phys., 10, 3515

  1. Effects of forest fires in southern and central of Zabaykal region

    Directory of Open Access Journals (Sweden)

    L. V. Buryak

    2016-12-01

    Full Text Available The fire frequency situation in Zabaykal region from 1964 to 2015 is evaluated and discussed in the paper. The main reasons of decadal increase of fire numbers and the area burned are revealed. The main reasons of high fire frequency and the increase of fire activity in the last decades are shown. The characteristics of the weather conditions in the years of high fire frequency are presented. Fire activity was found to increase not only because of the droughts in the last decades but also due to forest disturbances in Zabaykalsky Krai by illegal logging. Based on the data from 170 sample sites laid out with the use of satellite images, forest inventory data and results of ground sample transects, the impact of the wildfires of different type, form and severity on tree mortality in the light-coniferous forests was estimated, as well as the amount of tree regeneration in the forest areas disturbed by fires, logged sites (both burned and unburned, and sites burned repeatedly was evaluated. Wildfires in the Zabaykal region were found to be strong ecological factor influencing on the probability of existence of many forest ecosystems. In case of further climate warming and repeated fires, the part of the forests may transform to the non forest areas. The steppification of the burned sites in the southern forest-steppe regions and in the low parts of the southern slopes at the border with steppe landscapes as well as desertification in the central parts of the region and swamping of burned sites located in the wet soils are observed. Wind and water soil erosion happens at the large burned sites.

  2. Contamination smoke: a simulation of heavy metal containing aerosols from fires in plutonium glove boxes: part II

    International Nuclear Information System (INIS)

    Buijs, K.; Chavane de Dalmassy, B.; Baumgaertner, E.

    1992-01-01

    The study of the dispersion of plutonium bearing aerosols during glove box fires on a laboratory scale has been, in part I of this work, focussed on fires of polymethylmethacrylate (PMMA - the major glove box construction material) whose surfaces were contaminated with cerium-europium oxide powder as a substitute for plutonium-uranium oxide. The present part II completes the study with comparative fire experiments involving contaminated samples of various glove box materials burning in or exposed to the flames of the standardized 0.6 MW fire source previously developed. Beyond spreading of the Ce-Eu-oxide powder as mentioned above, the other important surface contamination process is used, i.e. deposition and subsequent drying of droplets from acid cerium-europium solutions. It is shown that, among the tested materials, and with the exception of synthetic glove rubber, burning PMMA spreads the most radioactive contamination. On the other hand, this potential risk is much lower for fires involving materials contaminated from solution deposition than from powder or pellets. Attempts to measure the airborne contaminant particle sizes did not yield conclusive results. They suggest, however, that contamination from solutions leads to smaller heavy-metal containing aerosol particles than contamination with powder

  3. Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland

    NARCIS (Netherlands)

    Zumbrunnen, T.; Pezzatti, B.; Menendez, P.; Bugmann, H.; Brgi, M.; Conedera, M.

    2011-01-01

    Understanding the factors driving past fire regimes is crucial in the context of global change as a basis for predicting future changes. In this study, we aimed to identify the impact of climate and human activities on fire occurrence in the most fire-prone regions of Switzerland. We considered

  4. Rx-CADRE (Prescribed Fire Combustion-Atmospheric Dynamics Research Experiments) collaborative research in the core fire sciences

    Science.gov (United States)

    D. Jimenez; B. Butler; K. Hiers; R. Ottmar; M. Dickinson; R. Kremens; J. O' Brien; A. Hudak; C. Clements

    2009-01-01

    The Rx-CADRE project was the combination of local and national fire expertise in the field of core fire research. The project brought together approximately 30 fire scientists from six geographic regions and seven diff erent agencies. The project objectives were to demonstrate the capacity for collaborative research by bringing together individuals and teams with a...

  5. The Phoenix series large scale LNG pool fire experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  6. Characteristics of smoke emissions from biomass fires of the Amazon region--Base-A experiment

    International Nuclear Information System (INIS)

    Ward, D.E.; Setzer, A.W.; Kaufman, Y.J.; Rasmussen, R.A.

    1991-01-01

    An airborne sampling system was used to collect grab samples of smokes for analysis of both in-plume smoke characteristics and ambient air in Brazil. In addition to the emission measurements, the chemical composition of the forest biomass burned by one fire in the Amazon region of Brazil was compared to the fuel composition for biomass burned in North America. The limited data set suggests that combustion efficiencies for tropical biomass combustion are higher than those of temperature forest fuels, as are emission factors for carbon dioxide

  7. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  8. Implementation and spatialisation of the Canadian Fire Weather Index in the Veneto Region

    Directory of Open Access Journals (Sweden)

    Monai M

    2008-06-01

    Full Text Available Fire danger rating systems are essential tools for fire management activities, allowing optimal allocation of resources both before and during the fire danger periods. Veneto Region's Forest Service is testing the Canadian Forest Fire Weather Index (FWI System to assess fire intensity, accounting for the effect of wind and the moisture content of inflammable material. The following steps were taken to apply the FWI system: (a selection of the smallest number (ideally 10 - 15 of weather stations to obtain input data. Principal Components Analysis was carried out on 62 time-series of 30 years (1960-1990, including mean monthly temperature (minimum and maximum and rainfall. The results highlighted two principal directions of climatic variability that were interpolated by the co-kriging method, allowing to delineate 11 relatively homogeneous areas in the Veneto Region. One station representative of each area was chosen to provide daily data for computing the daily fire danger index by the Regional Rating Service; (b automation of the FWI system. A SAS v.9.1® application runs the calculations and generates a regional map of daily fire danger for the Forest Service personnel. Graphics and tabular data are also available via intranet.

  9. Experience in the field of sodium fire and prevention in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzawa, Y [Power Reactor and Nuclear Fuel Development Corp., Akasaka, Minato-ku, Tokyo (Japan)

    1979-03-01

    The existing facilities of sodium technology development and liquid sodium cooled fast breeder reactors are equipped with fire-extinguishing powder capable of putting out fire by smothering in case of accidental sodium fire induced by the leakage of high temperature sodium from the circulating system. The purpose of this experiment is to obtain quantitatively the relationship between such a fire-extinguishing powder needed and sodium temperature and its depth. The fourteen different experiments were performed using Na{sub 2}CO{sub 3} type and NaCl type powder both of which are authorized as fire-extinguishing agent under the present governmental regulation, and the sodium (25 cm deep in the test container) being heated up to 300 deg. C and 600 deg. C, and burned. The present experiment has shown the prospective that the amount of fire extinguishing powder of 45 kg/m{sup 2} at maximum is sufficient to control the accidental sodium fire under the foreseeable circumstances. (author)

  10. Experience in the field of sodium fire and prevention in Japan

    International Nuclear Information System (INIS)

    Tsuzawa, Y.

    1979-01-01

    The existing facilities of sodium technology development and liquid sodium cooled fast breeder reactors are equipped with fire-extinguishing powder capable of putting out fire by smothering in case of accidental sodium fire induced by the leakage of high temperature sodium from the circulating system. The purpose of this experiment is to obtain quantitatively the relationship between such a fire-extinguishing powder needed and sodium temperature and its depth. The fourteen different experiments were performed using Na 2 CO 3 type and NaCl type powder both of which are authorized as fire-extinguishing agent under the present governmental regulation, and the sodium (25 cm deep in the test container) being heated up to 300 deg. C and 600 deg. C, and burned. The present experiment has shown the prospective that the amount of fire extinguishing powder of 45 kg/m 2 at maximum is sufficient to control the accidental sodium fire under the foreseeable circumstances. (author)

  11. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    Science.gov (United States)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.

    2015-05-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and

  12. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    International Nuclear Information System (INIS)

    Marlier, Miriam E; DeFries, Ruth S; Kim, Patrick S; Koplitz, Shannon N; Jacob, Daniel J; Gaveau, David L A; Mickley, Loretta J; Margono, Belinda A; Myers, Samuel S

    2015-01-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010–2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations

  13. Brief communication Decreasing fires in a Mediterranean region (1970–2010, NE Spain

    Directory of Open Access Journals (Sweden)

    M. Turco

    2013-03-01

    Full Text Available We analyse the recent evolution of fires in Catalonia (north-eastern Iberian Peninsula, a typical Mediterranean region. We examine a homogeneous series of forest fires in the period 1970–2010. During this period, more than 9000 fire events greater than 0.5 ha were recorded, and the total burned area was more than 400 kha. Our analysis shows that both the burned area and number of fire series display a decreasing trend. Superposed onto this general decrease, strong oscillations on shorter time scales are evident. After the large fires of 1986 and 1994, the increased effort in fire prevention and suppression could explain part of the decreasing trend. Although it is often stated that fires have increased in Mediterranean regions, the higher efficiency in fire detection could have led to spurious trends and misleading conclusions.

  14. Climate drivers of regionally synchronous fires in the inland northwest (1651-1900)

    Science.gov (United States)

    Emily K. Heyerdahl; Donald McKenzie; Lori D. Daniels; Amy E. Hessl; Jeremy S. Littell; Nathan J. Mantua

    2008-01-01

    We inferred climate drivers of regionally synchronous surface fires from 1651 to 1900 at 15 sites with existing annually accurate fire-scar chronologies from forests dominated by ponderosa pine or Douglas-fir in the inland Northwest (interior Oregon,Washington and southern British Columbia).Years with widespread fires (35 years with fire at 7 to 11 sites) had warm...

  15. A Model-Based Approach to Infer Shifts in Regional Fire Regimes Over Time Using Sediment Charcoal Records

    Science.gov (United States)

    Itter, M.; Finley, A. O.; Hooten, M.; Higuera, P. E.; Marlon, J. R.; McLachlan, J. S.; Kelly, R.

    2016-12-01

    Sediment charcoal records are used in paleoecological analyses to identify individual local fire events and to estimate fire frequency and regional biomass burned at centennial to millenial time scales. Methods to identify local fire events based on sediment charcoal records have been well developed over the past 30 years, however, an integrated statistical framework for fire identification is still lacking. We build upon existing paleoecological methods to develop a hierarchical Bayesian point process model for local fire identification and estimation of fire return intervals. The model is unique in that it combines sediment charcoal records from multiple lakes across a region in a spatially-explicit fashion leading to estimation of a joint, regional fire return interval in addition to lake-specific local fire frequencies. Further, the model estimates a joint regional charcoal deposition rate free from the effects of local fires that can be used as a measure of regional biomass burned over time. Finally, the hierarchical Bayesian approach allows for tractable error propagation such that estimates of fire return intervals reflect the full range of uncertainty in sediment charcoal records. Specific sources of uncertainty addressed include sediment age models, the separation of local versus regional charcoal sources, and generation of a composite charcoal record The model is applied to sediment charcoal records from a dense network of lakes in the Yukon Flats region of Alaska. The multivariate joint modeling approach results in improved estimates of regional charcoal deposition with reduced uncertainty in the identification of individual fire events and local fire return intervals compared to individual lake approaches. Modeled individual-lake fire return intervals range from 100 to 500 years with a regional interval of roughly 200 years. Regional charcoal deposition to the network of lakes is correlated up to 50 kilometers. Finally, the joint regional charcoal

  16. The Belle II Experiment

    CERN Document Server

    Kahn, J

    2017-01-01

    Set to begin data taking at the end of 2018, the Belle II experiment is the next-generation B-factory experiment hosted at KEK in Tsukuba, Japan. The experiment represents the cumulative effort from the collaboration of experimental and detector physics, computing, and software development. Taking everything learned from the previous Belle experiment, which ran from 1998 to 2010, Belle II aims to probe deeper than ever before into the field of heavy quark physics. By achieving an integrated luminosity of 50 ab−1 and accumulating 50 times more data than the previous experiment across its lifetime, along with a rewritten analysis framework, the Belle II experiment will push the high precision frontier of high energy physics. This paper will give an overview of the key components and development activities that make the Belle II experiment possible.

  17. Large scale fire experiments in the HDR containment as a basis for fire code development

    International Nuclear Information System (INIS)

    Hosser, D.; Dobbernack, R.

    1993-01-01

    Between 1984 and 1991 7 different series of large scale fire experiments and related numerical and theoretical investigations have been performed in the containment of a high pressure reactor in Germany (known as HDR plant). The experimental part included: gas burner tests for checking the containment behaviour; naturally ventilated fires with wood cribs; naturally and forced ventilated oil pool fires; naturally and forced ventilated cable fires. Many results of the oil pool and cable fires can directly be applied to predict the impact of real fires at different locations in a containment on mechanical or structural components as well as on plant personnel. But the main advantage of the measurements and observations was to serve as a basis for fire code development and validation. Different types of fire codes have been used to predict in advance or evaluate afterwards the test results: zone models for single room and multiple room configurations; system codes for multiple room configurations; field models for complex single room configurations. Finally, there exist codes of varying degree of specialization which have proven their power and sufficient exactness to predict fire effects as a basis for optimum fire protection design. (author)

  18. Forest fire occurrence and silvicultural-economic prerequisites for protection improvement in forest regions of Krasnoyarsk Krai

    Directory of Open Access Journals (Sweden)

    V. V. Furyaev

    2017-10-01

    Full Text Available The territory of the Krasnoyarsk Krai is substantially diverse in terms of climatic, silvicultural and economic conditions owing to its sufficient spread from the North to the South. These differences were to some extent taken into account when the forest fund of the Krasnoyarsk Krai was divided into seven forest regions: forest tundra of Central Siberia, highland taiga of Central Siberia, plain taiga of West Siberia, Angara region, subtaiga forest steppe of Central Siberia, Altai-Sayanskiy highland, Altai-Sayanskiy highland forest steppe. The regions show different levels of fire occurrence and different fire effects that require different levels of protection from forest fires. Optimization of the protection is based on activities that combine prevention and timely detection of fires depending on development of forest regions and intensity of forest management. The main focus of the paper is on possibility or inadvisability of prescribed fires, fire-use fires (fires that started naturally but were then managed for their beneficial effects and the system of activities increasing fire resistance of the most valuable forests. It is justified that taking into account the effects of forest fires, selective protection of forests is expedient in forest-tundra Middle Siberia and highland taiga of Middle Siberia regions. The whole area of plain taiga of West Siberia region should be subject to protection but with various levels of intensity in different parts of it. The forest fund of Angara, subtaiga forest steppe of Middle Siberia, Altai-Sayanskiy highland, Altai-Sayanskiy highland forest steppe regions should be protected on the whole area. Application of prescribed fires is relevant in the subzone of South taiga, in the forest steppe zone as well as in the submontane and lowland taiga belts. Fire-use fires are admissible on limited areas in the subzones of Middle and North taiga.

  19. Historical Susceptibility of Forest Fires in the Carajas Region, Brazil

    Science.gov (United States)

    Conceicao, M. C.; Rodrigues, R. A.; Cordeiro, R. C.; Barbosa, M. R.; Santos, D. D.; Turcq, B. J.; Seoane, J. S.; Sifeddine, A.

    2008-12-01

    The Carajas Region in the Para state, nowadays keeps a vast area of forests protected by Units of Conservation and Indigenous Land. Despite the efforts and investments done by private companies and government agencies to prevent forest fires, they are still registered, being one of the major factors of degradation of forests, flora and fauna. Thus there is a need to improve the understanding of these burning processes at present, and its evolution in different time scales, which allows comparison between patterns of fire occurrences related to climate and human reasons. This study aims to assess the evolution of the climate of Carajas region along the Quaternary, with emphasis on natural occurrence of fires related to historical events palaeoclimatic. For this a sediment core of a lake with 450 cm of depth was collected. Chronology is being determined by the radiocarbon method. Ours specific objectives are quantify and qualify the source of sedimentary material, determine concentrations of biogenic elements and minerals, through granulometric and mineralogical analyses and of quality and quantity of organic matter through the establishment of elementary (the C/N) and isotopic ratios (ä13C and ä15N). The dimensions of processes linked to the biomass burning will be determined by quantifying of charcoal fragments resulting from fires through microscopic analysis. This seeks to reconstruct the environmental scene and paleoclimatics conditions related to events of biomass burning, demonstrating the susceptibility of this historic region to the occurrence of fires according to the different climate stages identified.

  20. The double-slit experiment and the time-reversed fire alarm

    International Nuclear Information System (INIS)

    Halabi, T.

    2010-01-01

    When both slits of the double-slit experiment are open, closing one paradoxically increases the detection rate at some points on the detection screen. Feynman famously warned that temptation to understand such a puzzling feature only draws into blind alleys. Nevertheless, we gain insight into this feature by drawing an analogy between the double-slit experiment and a time-reversed fire alarm. Much as closing the slit increases probability of a future detection, ruling out fire drill scenarios, having heard the fire alarm, increases probability of a past fire (using Bayesian inference). Classically, Bayesian inference is associated with computing probabilities of past events. We therefore identify this feature of the double-slit experiment with a time-reversed thermodynamic arrow. We believe that much of the enigma of quantum mechanics is simply due to some variation of time's arrow. In further support of this, we employ a plausible formulation of the thermodynamic arrow to derive an uncertainty in classical mechanics that is reminiscent of quantum uncertainty.

  1. Experiment research of slag renovation in the corner-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Zhijun; Wu, Wenfei [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Energy and Environment

    2013-07-01

    Aiming at serious slag on the water wall around the burner of corner-fired boiler with low-ash-fusion-point coal, cold experimental model has been established. In this experiment, particle image velocimetry (PIV) has been employed to accurately measure aerodynamic field of burner region, and the experimental research of furnace slag renovation has been conducted through changing the burner jet arrangement. The experiment results show that it has significantly effect on aerodynamic field in the furnace by changing burner jet deflection angle. A reasonable actual tangential circle diameter can be formed through adjusting the burner jet deflection angle, to prevent primary air attacking the wall, and further more, to effectively prevent serious slag on the water wall around the burner.

  2. Role of dust in H II regions

    International Nuclear Information System (INIS)

    Sarazin, C.L.

    1975-01-01

    The purpose of this dissertation is to determine quantitatively the effects of U.V. absorbing dust on H II regions, and compare these effects with observations. Many observations indicate that dust grains are present within H II regions. An analytic theory is presented which describes all three of the effects of dust in H II regions. Although this model is relatively crude, it is useful in determining the approximate size of the modifications due to dust. In order to explore this problem more carefully, detailed numerical models of H II regions with dust were constructed. The ionization and thermal structure of these model H II regions is discussed. The observational consequences of the presence of dust are explored; the optical line intensities, radio continuum and line fluxes, and infrared emission of model H II regions with dust are given. These numerical models are compared with observations of diffuse nebulae. The optical line ratios are compared to several nearby bright H II regions, and it is found that the dust models may explain several anomalies in their spectrum

  3. A Decade of Experience: Which Network Structures Maximize Fire Service Capacity for Homeland Security Incidents in Metropolitan Regions?

    Science.gov (United States)

    2011-12-01

    Pennsylvania Emergency Management Agency QHSR Quadrennial Homeland Security Review Report RCP Regional Catastrophic Preparedness SAA State...service has evolved from a single-purpose service focused on controlling fires to a multidimensional response element responsible for pre- hospital ... hospital preparedness program Preparedness Training for all personnel; training and network activities during prior year assist in preparedness

  4. Fine Water Mist Fire Extinguisher for Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This three phase SBIR project from ADA Technologies Inc. (ADA) builds upon the experience of ADA in development of fine water mist (FWM) fire suppression technology....

  5. Experiments with the Skylab fire detectors in zero gravity

    Science.gov (United States)

    Linford, R. M. F.

    1972-01-01

    The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.

  6. Converting Existing Copper Wire Firing System to a Fiber Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments

    Science.gov (United States)

    2017-12-19

    Pulsed Power Experiments by Robert Borys Jr Weapons and Materials Research Directorate, ARL Colby Adams Bowhead Total Enterprise Solutions...ARL-TN-0863 ● DEC 2017 US Army Research Laboratory Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled...Firing System for Electromagnetic Pulsed Power Experiments by Robert Borys Jr and Colby Adams Approved for public release

  7. The Impact of Increasing Fire Frequency on Forest Transformations in the Zabaikal Region, Southern Siberia

    Science.gov (United States)

    Conard, S. G.; Kukavskaya, E. A.; Buryak, L. V.; Shvetsov, E.; Kalenskaya, O. P.; Zhila, S.

    2017-12-01

    The Zabaikal region of southern Siberia is characterized by some of the highest fire activity in Russia. There has been a significant increase of fire frequency and burned area in the region over the last two decades due to a combination of high anthropogenic pressure, decreased funding to the forestry sector, and increased fire danger, which was associated with higher frequency and intensity of extreme weather events. Central and southern parts of the Zabaikal region where population density is higher and road network is relatively more developed are the most disturbed by fires. Larch stands cover the largest proportion of fire-disturbed lands in the region, while the less common pine and birch stands are characterized by higher fire frequency. About 13% (3.9 M ha) of the total forest area in the Zabaikal region was burned more than once in the 20 years from 1996 to 2015, with many sites burned multiple times. Repeat disturbances led to inadequate tree regeneration on all but the moistest sites. Pine stands on dry soils, which are common in the forest-steppe zone, were the most vulnerable. After repeat burns and over large burned sites we observed transformation of the forests to steppe ecosystems. The most likely causes of insufficient forest regeneration are soil overheating, dominance of tall grasses, and lack of nearby seed sources. Extensive tree plantations have potential to mitigate negative fire impacts; however, due to high fire hazard in the recent decade about half of the plantation area has been burned. Changes in the SWVI index were used to assess postfire reforestation based on a combination of satellite and field data. In the southwestern part of the Zabaikal region, we estimated that reforestation had been hampered over 11% of the forest land area. Regional climate models project increasing temperatures and decreasing precipitation across Siberia by the end of the 21st century, with changes in the Zabaikal region projected to be more than twice the

  8. Enginnering development of coal-fired high performance power systems phase II and III

    International Nuclear Information System (INIS)

    1998-01-01

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) >47%; NOx, SOx, and particulates 65% of heat input; all solid wastes benign; cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R ampersand D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update

  9. Benchmark enclosure fire suppression experiments - phase 1 test report.

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Victor G.; Nichols, Robert Thomas; Blanchat, Thomas K.

    2007-06-01

    A series of fire benchmark water suppression tests were performed that may provide guidance for dispersal systems for the protection of high value assets. The test results provide boundary and temporal data necessary for water spray suppression model development and validation. A review of fire suppression in presented for both gaseous suppression and water mist fire suppression. The experimental setup and procedure for gathering water suppression performance data are shown. Characteristics of the nozzles used in the testing are presented. Results of the experiments are discussed.

  10. The Forest Fire Problem of Degrading Tain II Forest Reserve in Ghana

    African Journals Online (AJOL)

    Agribotix GCS 068

    2010-01-11

    Jan 11, 2010 ... informal practice was done before the 1982/83 dry season when the country ..... Tain II Forest Reserve forms part of the Dry Semi-Deciduous Fire ...... 2003/08; Forest Resources Development Service Working Paper FFM/2. .... Environment, Resources and Development Thailand. web.idrc.ca/uploads/user-.

  11. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    Science.gov (United States)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the

  12. Overview of the Fire Lab at Missoula Experiments (FLAME)

    Science.gov (United States)

    S. M. Kreidenweis; J. L. Collett; H. Moosmuller; W. P. Arnott; WeiMin Hao; W. C. Malm

    2010-01-01

    The Fire Lab at Missoula Experiments (FLAME) used a series of open biomass burns, conducted in 2006 and 2007 at the Forest Service Fire Science Laboratory in Missoula, MT, to characterize the physical, chemical and optical properties of biomass combustion emissions. Fuels were selected primarily based on their projected importance for emissions from prescribed and wild...

  13. Regional variation in fire weather controls the reported occurrence of Scottish wildfires

    Directory of Open Access Journals (Sweden)

    G. Matt Davies

    2016-11-01

    Full Text Available Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.

  14. Regional variation in fire weather controls the reported occurrence of Scottish wildfires.

    Science.gov (United States)

    Davies, G Matt; Legg, Colin J

    2016-01-01

    Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.

  15. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.

    Science.gov (United States)

    Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale

    2016-05-01

    Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service

  16. Vegetation fire proneness in Europe

    Science.gov (United States)

    Pereira, Mário; Aranha, José; Amraoui, Malik

    2015-04-01

    Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by

  17. Validation analysis of pool fire experiment (Run-F7) using SPHINCS code

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Tajima, Yuji

    1998-04-01

    SPHINCS (Sodium Fire Phenomenology IN multi-Cell System) code has been developed for the safety analysis of sodium fire accident in a Fast Breeder Reactor. The main features of the SPHINCS code with respect to the sodium pool fire phenomena are multi-dimensional modeling of the thermal behavior in sodium pool and steel liner, modeling of the extension of sodium pool area based on the sodium mass conservation, and equilibrium model for the chemical reaction of pool fire on the flame sheet at the surface of sodium pool during. Therefore, the SPHINCS code is capable of temperature evaluation of the steel liner in detail during the small and/or medium scale sodium leakage accidents. In this study, Run-F7 experiment in which the sodium leakage rate is 11.8 kg/hour has been analyzed. In the experiment the diameter of the sodium pool is approximately 60 cm and the maximum steel liner temperature was 616 degree C. The analytical results tell us the agreement between the SPHINCS analysis and the experiment is excellent with respect to the time history and spatial distribution of the liner temperature, sodium pool extension behavior, as well as atmosphere gas temperature. It is concluded that the pool fire modeling of the SPHINCS code has been validated for this experiment. The SPHINCS code is currently applicable to the sodium pool fire phenomena and the temperature evaluation of the steel liner. The experiment series are continued to check some parameters, i.e., sodium leakage rate and the height of sodium leakage. Thus, the author will analyze the subsequent experiments to check the influence of the parameters and applies SPHINCS to the sodium fire consequence analysis of fast reactor. (author)

  18. Hydrocarbon characterization experiments in fully turbulent fires : results and data analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Suo-Anttila, Jill Marie; Blanchat, Thomas K.

    2011-03-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. This report describes a set of fuel regression rates experiments to provide data for the development and validation of models. The experiments were performed with fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool was investigated and the total heat flux to the pool surface was measured. The importance of convection within the liquid fuel was assessed by restricting large scale liquid motion in some tests. These data sets provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.

  19. Use of operational experience in fire safety assessment of nuclear power plants

    International Nuclear Information System (INIS)

    2000-01-01

    collection of data related to fire safety occurrences in NPPs, the so called operational experience and the use of such operational experience in NPPs. This report provides good practice information on data needs, data reporting requirements and some advice on database features. In addition, this publication provides information on the applications of fire related operational experience, highlighting their benefits. This publication has been developed to complement other IAEA publications related to fire safety analysis within the framework of the IAEA programme of fire safety

  20. Containment Performance Evaluation of a Sodium Fire Event Due to Air Ingress into the Cover Gas Region of the Reactor Vessel in the PGSFR

    International Nuclear Information System (INIS)

    Ahn, Sang June; Chang, Won-Pyo; Kang, Seok Hun; Choi, Chi-Woong; Yoo, Jin; Lee, Kwi Lim; Jeong, Jae-Ho; Lee, Seung Won; Jeong, Taekyeong; Ha, Kwi-Seok

    2015-01-01

    Comparing with the light water reactor, sodium as a reactor coolant violently reacts with oxygen in the containment atmosphere. Due to this chemical reaction, heat generated from the combustion heat increases the temperature and pressure in the containment atmosphere. The structural integrity of the containment building which is a final radiological defense barrier is threaten. A sodium fire event in the containment due to air ingress into the cover gas region in the reactor vessel is classified as one of the design basis events in the PGSFR. This event comes from a leak or crack on the reactor upper closure header surface. It accompanys an event of the radiological fission products release to the inside the containment. In this paper, evaluation for the sodium fire and radiological influence due to air ingress into the cover gas region of the reactor vessel is described. To evaluate this event, the CONTAIN-LMR, MACCS-II and OR-IGEN-II codes are used. For the sodium pool fire event in the containment, the performance evaluation and radiological influence are carried out. In the thermal hydraulic aspects, the 1 cell containment yields the most conservative result. In this event, the maximum temperature and pressure in the containment are calculated 0.185 MPa, 280.0 .deg. C, respectively. The radiological dose at the EAB and LPZ are below the acceptance criteria specified in the 10CFR100

  1. Containment Performance Evaluation of a Sodium Fire Event Due to Air Ingress into the Cover Gas Region of the Reactor Vessel in the PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Chang, Won-Pyo; Kang, Seok Hun; Choi, Chi-Woong; Yoo, Jin; Lee, Kwi Lim; Jeong, Jae-Ho; Lee, Seung Won; Jeong, Taekyeong; Ha, Kwi-Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Comparing with the light water reactor, sodium as a reactor coolant violently reacts with oxygen in the containment atmosphere. Due to this chemical reaction, heat generated from the combustion heat increases the temperature and pressure in the containment atmosphere. The structural integrity of the containment building which is a final radiological defense barrier is threaten. A sodium fire event in the containment due to air ingress into the cover gas region in the reactor vessel is classified as one of the design basis events in the PGSFR. This event comes from a leak or crack on the reactor upper closure header surface. It accompanys an event of the radiological fission products release to the inside the containment. In this paper, evaluation for the sodium fire and radiological influence due to air ingress into the cover gas region of the reactor vessel is described. To evaluate this event, the CONTAIN-LMR, MACCS-II and OR-IGEN-II codes are used. For the sodium pool fire event in the containment, the performance evaluation and radiological influence are carried out. In the thermal hydraulic aspects, the 1 cell containment yields the most conservative result. In this event, the maximum temperature and pressure in the containment are calculated 0.185 MPa, 280.0 .deg. C, respectively. The radiological dose at the EAB and LPZ are below the acceptance criteria specified in the 10CFR100.

  2. The Design of a Fire Source in Scale-Model Experiments with Smoke Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Brohus, Henrik; la Cour-Harbo, H.

    2004-01-01

    The paper describes the design of a fire and a smoke source for scale-model experiments with smoke ventilation. It is only possible to work with scale-model experiments where the Reynolds number is reduced compared to full scale, and it is demonstrated that special attention to the fire source...... (heat and smoke source) may improve the possibility of obtaining Reynolds number independent solutions with a fully developed flow. The paper shows scale-model experiments for the Ofenegg tunnel case. Design of a fire source for experiments with smoke ventilation in a large room and smoke movement...

  3. The H II regions of IC 1613

    International Nuclear Information System (INIS)

    Hodge, P.; Lee, M.G.; Gurwell, M.

    1990-01-01

    Narrow-band CCD H-alpha imaging of the Local Group irregular galaxy IC 1613 has revealed a total of 77 H II regions, five of which are complexes of several smaller emission regions. Positions, H-alpha luminosities, and sizes of these objects are tabulated. The H-alpha luminosity function has the same shape as that for more luminous galaxies, following a power law with an exponent of -1.6. The faintest H II regions are at the low-luminosity end of the generally observed luminosity function for H II regions in galaxies, with fluxes of only 10 to the 35th erg/sec. The size distribution has an exponential shape, as for other galaxies, with a size scale of 56 pc. The morphologies of different H II regions are discussed and compared to those in other galaxies. Published radio continuum maps compare well with the H-alpha emission distribution. The distribution of H I is also similar in the central areas to the H II with, however, a tendency for the H II regions to lie to one side of H I peaks. 31 refs

  4. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    Science.gov (United States)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  5. Analysis of sodium pool fire in SFEF for assessing the limiting pool fire

    International Nuclear Information System (INIS)

    Mangarjuna Rao, P.; Ramesh, S.S.; Nashine, B.K.; Kasinathan, N.; Chellapandi, P.

    2011-01-01

    Accidental sodium leaks and resultant sodium fires in Liquid Metal Fast Breeder Reactor (LMFBR) systems can create a threat to the safe operation of the plant. To avoid this defence-in depth approach is implemented from the design stage of reactor itself. Rapid detection of sodium leak and fast dumping of the sodium into the storage tank of a defective circuit, leak collection trays, adequate lining of load bearing structural concrete and extinguishment of the sodium fire are the important defensive measures in the design, construction and operation of a LMFBR for protection against sodium leaks and their resultant fires. Evaluation of sodium leak events and their consequences by conducting large scale engineering experiments is very essential for effective implementation of the above protection measures for sodium fire safety. For this purpose a Sodium Fire Experimental Facility (SFEF) is constructed at SED, IGCAR. SFEF is having an experimental hall of size 9 m x 6 m x 10 m with 540 m 3 volume and its design pressure is 50 kPa. It is a concrete structure and provided with SS 304 liner, which is fixed to the inside surfaces of walls, ceiling and floor. A leak tight door of size (1.8 m x 2.0 m) is provided to the experimental hall and the facility is provided with a sodium equipment hall and a control room. Experimental evaluation of sodium pool fire consequences is an important activity in the LMFBR sodium fire safety related studies. An experimental program has been planned for different types of sodium fire studies in SFEF. A prior to that numerical analysis have been carried out for enclosed sodium pool fires using SOFIRE-II sodium pool fire code for SFEF experimental hall configuration to evaluate the limiting pool fire. This paper brings out results of the analysis carried out for this purpose. Limiting pool fire of SFEF depends on the exposed surface area of the pool, amount of sodium in the pool, oxygen concentration and initial sodium temperature. Limiting

  6. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This report contains papers which were presented at the advanced coal-fired power sytems review meeting. This is volume II. Topics include: hot gas filter issues, hazardous air pollutants, sorbent development, and separation technologies. Individual papers were processed separately for the United States Department of Energy databases.

  7. Combustion of Solids in Microgravity: Results from the BASS-II Experiment

    Science.gov (United States)

    Ferkul, Paul V.; Bhattacharjee, Subrata; Fernandez-Pello, Carlos; Miller, Fletcher; Olson, Sandra L.; Takahashi, Fumiaki; T’ien, James S.

    2014-01-01

    The Burning and Suppression of Solids-II (BASS-II) experiment was performed on the International Space Station. Microgravity combustion tests burned thin and thick flat samples, acrylic slabs, spheres, and cylinders. The samples were mounted inside a small wind tunnel which could impose air flow speeds up to 53 cms. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed, fuel thickness, fuel preheating, and oxygen concentration on flame appearance, growth, spread rate, and extinction were examined in both the opposed and concurrent flow configuration. The flames are quite sensitive to air flow speed in the range 0 to 5 cms. They can be sustained at very low flow speeds of less than 1 cms, when they become dim blue and stable. In this state they are not particularly dangerous from a fire safety perspective, but they can flare up quickly with a sudden increase in air flow speed. Including earlier BASS-I results, well over one hundred tests have been conducted of the various samples in the different geometries, flow speeds, and oxygen concentrations. There are several important implications related to fundamental combustion research as well as spacecraft fire safety. This work was supported by the NASA Space Life and Physical Sciences Research and Applications Division (SLPSRA).

  8. Metrology for fire experiments in outdoor conditions

    CERN Document Server

    Silvani, Xavier

    2013-01-01

    Natural fires can be considered as scale-dependant, non-linear processes of mass, momentum and heat transport, resulting from a turbulent reactive and radiative fluid medium flowing over a complex medium, the vegetal fuel. In natural outdoor conditions, the experimental study of natural fires at real scale needs the development of an original metrology, one able to capture the large range of time and length scales involved in its dynamic nature and also able to resist the thermal, mechanical and chemical aggression of flames on devices. Robust, accurate and poorly intrusive tools must be carefully set-up and used for gaining very fluctuating data over long periods. These signals also need the development of original post-processing tools that take into account the non-steady nature of their stochastic components. Metrology for Fire Experiments in Outdoor Conditions closely analyzes these features, and also describes measurements techniques, the thermal insulation of fragile electronic systems, data acquisitio...

  9. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    International Nuclear Information System (INIS)

    Vadrevu, Krishna Prasad; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2015-01-01

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2–5.3 km altitude in the forest fire plumes compared to 2.2–3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources. (letter)

  10. Tunnel fire testing and modeling the Morgex North tunnel experiment

    CERN Document Server

    Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia

    2017-01-01

    This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...

  11. Climate change and fire management in the mid-Atlantic region

    Science.gov (United States)

    Kenneth L. Clark; Nicholas Skowronski; Heidi Renninger; Robert. Scheller

    2014-01-01

    In this review, we summarize the potential impacts of climate change on wildfire activity in the mid-Atlantic region, and then consider how the beneficial uses of prescribed fire could conflict with mitigation needs for climate change, focusing on patters of carbon (C) sequestration by forests in the region. We use a synthesis of field studies, eddy flux tower...

  12. Forest fires in Himalayan region during 2016 - Aerosol load and smoke plume heights detection by multi sensor observations

    Science.gov (United States)

    Kumar, S.; Dumka, U. C.

    2017-12-01

    The forest fires are common events over the Central Himalayan region during the pre-monsoon season (March - June) of every year. Forest fire plays a crucial role in governing the vegetation structure, ecosystem, climate change as well as in atmospheric chemistry. In regional and global scales, the combustion of forest and grassland vegetation releases large volumes of smoke, aerosols, and other chemically active species that significantly influence Earth's radiative budget and atmospheric chemistry, impacting air quality and risks to human health. During the year 2016, massive forest fires have been recorded over the Central Himalayan region of Uttarakhand which continues for several weeks. To study this event we used the multi-satellite observations of aerosols and pollutants during pre-fire, fire and post-fire period over the central Himalayan region. The data used in this study are active fire count and aerosol optical depth (AOD) from MODerate-resolution Imaging Spectroradiometer (MODIS), aerosol index and gases pollutants from Ozone Monitoring Instrument (OMI), along with vertical profiles of aerosols and smoke plume height information from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The result shows that the mean fire counts were maximum in April. The daily average AOD value shows an increasing trend during the fire events. The mean value of AOD before the massive fire (25 April), during the fire (30 April) and post fire (5 May) periods are 0.3, 1.2 and 0.6 respectively. We find an increasing trend of total columnar NO2 over the Uttarakhand region during the massive fire event. Space-born Lidar (CALIPSO) retrievals show the extent of smoke plume heights beyond the planetary boundary layer up to 6 km during the peak burning day (April 30). The HYSPLIT air mass forward trajectory shows the long-range transportation of smoke plumes. The results of the present study provide valuable information for addressing smoke plume and

  13. Assessment of fire hazards in buildings housing fusion energy experiments

    International Nuclear Information System (INIS)

    Alvares, N.; Lipska, A.

    1978-01-01

    A number of materials in and within the proximity of buildings housing fusion energy experiments (FEE) were analyzed for their potential fire hazard. The materials used in this study were mostly: electrical and thermal insulations. The fire hazard of these materials was assessed in terms of their ease of ignition, heat release rate, generation of smoke, and the effect of thermal environment on the combustion behavior. Several fire protection measures for buildings housing the (FEE) projects are analyzed and as a result of this study are found to be adequate for the near term

  14. Multiplatform inversion of the 2013 Rim Fire smoke emissions using regional-scale modeling: important nocturnal fire activity, air quality, and climate impacts

    Science.gov (United States)

    Saide, P. E.; Peterson, D. A.; da Silva, A. M., Jr.; Ziemba, L. D.; Anderson, B.; Diskin, G. S.; Sachse, G. W.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Jimenez, J. L.; Campuzano Jost, P.; Dibb, J. E.; Yokelson, R. J.; Toon, B.; Carmichael, G. R.

    2014-12-01

    Large wildfire events are increasingly recognized for their adverse effects on air quality and visibility, thus providing motivation for improving smoke emission estimates. The Rim Fire, one of the largest events in California's history, produced a large smoke plume that was sampled by the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) DC-8 aircraft with a full suite of in-situ and remote sensing measurements on 26-27 August 2013. We developed an inversion methodology which uses the WRF-Chem modeling system to constrain hourly fire emissions, using as initial estimates the NASA Quick Fire Emissions Dataset (QFED). This method differs from the commonly performed top-down estimates that constrain daily (or longer time scale) emissions. The inversion method is able to simultaneously improve the model fit to various SEAC4RS airborne measurements (e.g., organic aerosol, carbon monoxide (CO), aerosol extinction), ground based measurements (e.g., AERONET aerosol optical depth (AOD), CO), and satellite data (MODIS AOD) by modifying fire emissions and utilizing the information content of all these measurements. Preliminary results show that constrained emissions for a 6 day period following the largest fire growth are a factor 2-4 higher than the initial top-down estimates. Moreover, there is a tendency to increase nocturnal emissions by factors sometimes larger than 20, indicating that vigorous fire activity continued during the night. This deviation from a typical diurnal cycle is confirmed using geostationary satellite data. The constrained emissions also have a larger day-to-day variability than the initial emissions and correlate better to daily area burned estimates as observed by airborne infrared measurements (NIROPS). Experiments with the assimilation system show that performing the inversion using only satellite AOD data produces much smaller correction factors than when using all available data

  15. The relation between Puelche wind and the occurrence of forest fires in Bio Bio region, Chile

    International Nuclear Information System (INIS)

    Inzunza, Juan Carlos

    2009-01-01

    This paper presents a study of the relation between Puelche wind and forest fires in the Bio Bio Region, Chile. To establish a relationship between Puelche wind and forest fire generation, different data analysis methods and statistics test were applied. The relation between the total number of fires in the season and the days with Puelche wind were not statistically significant. When analyzing daily averages of fires produced with and without Puelche wind for each season, the highest daily fire occurrence values were found when there is Puelche wind, indicating that this event produces a strong effect on the daily occurrence of fires since these increased by 90% in comparison to the days without Puelche wind. The results of the difference between the number of fires with and without Puelche wind with respect to the average number of total fires indicate that the days with Puelche wind surpass both the total and the average values for days without Puelche wind, confirming the strong effect that a Puelche wind day has on forest fires. The greatest number of fires produced with Puelche wind occurs in the Province of Concepcion. This Province is the most affected by Puelche wind conditions despite having the smallest surface area for the region studied. Still, it is the most populous province of the region and has the greatest surface area with forests and plantations with respect to its size. Consequently, Puelche wind is a factor that increases the occurrence of forest fires and favors their propagation.

  16. Fire analysis. Relevant aspects from Spanish nuclear power plants experience

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Pedro; Villar, Tomas [Empresarios Agrupados A.I.E., Madrid (Spain). Nuclear Safety Dept.

    2015-12-15

    Empresarios Agrupados A.I.E. leads the development and updating of fire analysis for the Spanish NPP's. Some of them decided to voluntarily adopt standard NFPA-805 as an alternative to the current fire protection rules. Fire Probabilistic Risk Assessment (PRA) methodologies have been continuously evolving during recent years. This paper will briefly present experience gained in relationship with some relevant aspects of fire risk analysis. Associated circuits need to be evaluated to determine if cable faults can prevent or cause the maloperation of redundant safety related systems. If a circuit is not properly protected by an isolation device, fire damage to a cable could propagate to other safe shutdown cables. In order to check that the coordination is adequate, existing electrical protections coordination studies have been analyzed and, for some plants, additional analyses have been performed for DC and AC for instrumentation an control (I and C) systems. Spurious actuations are also a basic part of the analysis of the consequence of a fire, which should consider any possible actuation that can prevent or affect the performance of a system or safety function. In this context, it was furthermore necessary to take into account the possibility of a combination of several spurious actuations that can result in a specific consequence, according to Appendix G of NEI 00-01 Rev. 2. These are the so-called Multiple Spurious Operations (MSOs). One key element in fire analysis is the availability of validated fire models used to estimate the spread of fire and the failure time of cable raceways. NFPA 805 states that fire models shall only be applied within the limitations of the given model. The applicability of the validation results is determined using normalized parameters traditionally used in fire modeling applications. Normalized parameters assessed in NUREG-1934 may be used to compare NPP fire scenarios with validation experiments. If some of the parameters do

  17. Wildland fire, risk, and recovery: results of a national survey with regional and racial perspectives

    Science.gov (United States)

    J. Michael Bowker; Siew Hoon Lim; H. Ken Cordell; Gary T. Green; Sandra Rideout-Hanzak; Cassandra Y. Johnson

    2008-01-01

    We used a national household survey to examine knowledge, attitudes, and preferences pertaining to wildland fire. First, we present nationwide results and trends. Then, we examine opinions across region and race. Despite some regional variation, respondents are fairly consistent in their beliefs about assuming personal responsibility for living in fire-prone areas and...

  18. Joint simulation of regional areas burned in Canadian forest fires: A Markov Chain Monte Carlo approach

    Science.gov (United States)

    Steen Magnussen

    2009-01-01

    Areas burned annually in 29 Canadian forest fire regions show a patchy and irregular correlation structure that significantly influences the distribution of annual totals for Canada and for groups of regions. A binary Monte Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of regional areas burned in forest fires. For each year the MCMC...

  19. Wildland fire science and management in the U.S.: Spanning the boundaries through the regional knowledge exchange network (Abstract)

    Science.gov (United States)

    Susie Kocher; Eric Toman; Sarah Trainor; Vita Wright

    2012-01-01

    In 2009, the federal Joint Fire Science Program (JFSP) initiated a national network of regional fire science consortia to accelerate awareness, understanding and use of wildland fire science. This presentation synthesizes findings from initial needs assessments conducted by consortia in eight regions of the United States. The assessments evaluated how fire science is...

  20. Review of the sodium fire experiments including sodium-concrete-reactions and summary of the results

    International Nuclear Information System (INIS)

    Cherdron, W.

    1996-01-01

    In the technical and design concept of containment systems of sodium cooled breeder reactors it has to be considered, that leakages in sodium pipes lead to sodium fires. The temperature and pressure rise caused by sodium fires makes it indispensable to analyse these accidents to be able to assess the safety of the whole system. Generally sodium leakages may lead to three different types of fires with different consequences. The main influences are the geometry of the leakage, shape, size, location, and the sodium conditions, such as temperature, flow rate and velocity. It must be also considered the reaction of sodium with surfaces like concrete. The paper gives an overview over all the sodium fire experiments performed in the FAUNA-facility (220 m 3 ) of the Forschungszentrum Karlsruhe in the years 1979 to 1993. The experimental program started with the investigation of pool fires on burning areas between 2 and 12 m 2 with up to 500 kg of Sodium. The experiments had been continued with 3 combined fires and 40 experiments on spray fires. 7 experiments on sodium-concrete reactions completed the program. (author)

  1. A Fire Safety Certification System for Board and Care Operators and Staff. SBIR Phase II: Final Report.

    Science.gov (United States)

    Walker, Bonnie L.

    This report describes Phase II of a project which developed a system for delivering fire safety training to board and care providers who serve adults with developmental disabilities. Phase II focused on developing and pilot testing a "train the trainers" workshop for instructors and field testing the provider's workshop. Evaluation of…

  2. Seasonal Variations of Atmospheric CO2 over Fire Affected Regions Based on GOSAT Observations

    Science.gov (United States)

    Shi, Y.; Matsunaga, T.

    2016-12-01

    Abstract: The carbon dioxide (CO2) emissions released from biomass burning significantly affect the temporal variations of atmospheric CO2 concentrations. Based on a long-term (July 2009-June 2015) retrieved datasets by the Greenhouse Gases Observing Satellite (GOSAT), the seasonal cycle and interannual variations of column-averaged volume mixing ratios of atmospheric carbon dioxide (XCO2) in four fire affected continental regions were investigated. The results showed Northern Africa had the largest seasonal variations after removing its regional long-term trend of XCO2 with peak-to-peak amplitude of 6.2 ppm within the year, higher than central South America (2.4 ppm), Southern Africa (3.8 ppm) and Australia (1.7 ppm). The detrended regional XCO2 was found to be positively correlated with the fire CO2 emissions during fire activity period and negatively correlated with vegetation photosynthesis activity with different seasonal variabilities. Northern Africa recorded the largest change of seasonal variations of detrended XCO2 with a total of 12.8 ppm during fire seasons, higher than central South America, Southern Africa and Australia with 5.4 ppm, 6.7 ppm and 2.2 ppm, respectively. During fire episode, the positive detrended XCO2 was noticed during June-November in central South America, December-June in Northern Africa, May-November in Southern Africa. The Pearson correlation coefficients between the variations of detrended XCO2 and fire CO2 emissions from GFED4 (Global Fire Emissions Database v4) achieved best correlations in Southern Africa (R=0.77, p<0.05). Meanwhile, Southern Africa also experienced a significant negative relationship between the variations of detrended XCO2 and vegetation activity (R=-0.84, p<0.05). This study revealed that fire CO2 emissions and vegetation activity contributed greatly to the seasonal variations of GOSAT XCO2 dataset.

  3. Fluid dynamics structures in a fire environment observed in laboratory-scale experiments

    Science.gov (United States)

    J. Lozano; W. Tachajapong; D.R. Weise; S. Mahalingam; M. Princevac

    2010-01-01

    Particle Image Velocimetry (PIV) measurements were performed in laboratory-scale experimental fires spreading across horizontal fuel beds composed of aspen (Populus tremuloides Michx) excelsior. The continuous flame, intermittent flame, and thermal plume regions of a fire were investigated. Utilizing a PIV system, instantaneous velocity fields for...

  4. Effects of fire on regional evapotranspiration in the central Canadian boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Peckham, Scott D.; Gower, Stith T.; Ewers, Brent

    2009-04-08

    Changes in fire regimes are driving the carbon balance of much of the North American boreal forest, but few studies have examined fire-driven changes in evapotranspiration (ET) at a regional scale. This study used a version of the Biome-BGC process model with dynamic and competing vegetation types, and explicit spatial representation of a large (106 km2) region, to simulate the effects of wildfire on ET and its components from 1948 to 2005 by comparing the fire dynamics of the 1948-1967 period with those of 1968-2005. Simulated ET averaged, over the entire temporal and spatial modeling domain, 323 mm yr-1; simulation results indicated that changes in fire in recent decades decreased regional ET by 1.4% over the entire simulation, and by 3.9% in the last ten years (1996-2005). Conifers dominated the transpiration (EC) flux (120 mm yr-1) but decreased by 18% relative to deciduous broadleaf trees in the last part of the 20th century, when increased fire resulted in increased soil evaporation, lower canopy evaporation, lower EC and a younger and more deciduous forest. Well- and poorly-drained areas had similar rates of evaporation from the canopy and soil, but EC was twice as high in the well-drained areas. Mosses comprised a significant part of the evaporative flux to the atmosphere (22 mm yr-1). Modeled annual ET was correlated with net primary production, but not with temperature or precipitation; ET and its components were consistent with previous field and modeling studies. Wildfire is thus driving significant changes in hydrological processes, changes that may control the future carbon balance of the boreal forest.

  5. Modelling fire frequency and area burned across phytoclimatic regions in Spain using reanalysis data and the Canadian Fire Weather Index System

    Science.gov (United States)

    Bedia, J.; Herrera, S.; Gutiérrez, J. M.

    2013-09-01

    We develop fire occurrence and burned area models in peninsular Spain, an area of high variability in climate and fuel types, for the period 1990-2008. We based the analysis on a phytoclimatic classification aiming to the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climatic and fuel conditions. We used generalized linear models (GLM) and multivariate adaptive regression splines (MARS) as modelling algorithms and temperature, relative humidity, precipitation and wind speed, taken from the ERA-Interim reanalysis, as well as the components of the Canadian Forest Fire Weather Index (FWI) System as predictors. We also computed the standardized precipitation-evapotranspiration index (SPEI) as an additional predictor for the models of burned area. We found two contrasting fire regimes in terms of area burned and number of fires: one characterized by a bimodal annual pattern, characterizing the Nemoral and Oro-boreal phytoclimatic types, and another one exhibiting an unimodal annual cycle, with the fire season concentrated in the summer months in the Mediterranean and Arid regions. The fire occurrence models attained good skill in most of the phytoclimatic zones considered, yielding in some zones notably high correlation coefficients between the observed and modelled inter-annual fire frequencies. Total area burned also exhibited a high dependence on the meteorological drivers, although their ability to reproduce the observed annual burned area time series was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, and also SPEI in some of the burned area models, highlighting the adequacy of the FWI system for fire modelling applications and leaving the door opened to the development a more complex modelling framework based on these predictors. Furthermore, we demonstrate the potential usefulness

  6. Pipe Overpack Container Fire Testing: Phase I & II

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Victor G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ammerman, Douglas J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lopez, Carlos [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    The Pipe Overpack Container (POC) was developed at Rocky Flats to transport plutonium residues with higher levels of plutonium than standard transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In 1996 Sandia National Laboratories (SNL) conducted a series of tests to determine the degree of protection POCs provided during storage accident events. One of these tests exposed four of the POCs to a 30-minute engulfing pool fire, resulting in one of the 7A drum overpacks generating sufficient internal pressure to pop off its lid and expose the top of the pipe container (PC) to the fire environment. The initial contents of the POCs were inert materials, which would not generate large internal pressure within the PC if heated. However, POCs are now being used to store combustible TRU waste at Department of Energy (DOE) sites. At the request of DOE’s Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA), starting in 2015 SNL conducted a new series of fire tests to examine whether PCs with combustibles would reach a temperature that would result in (1) decomposition of inner contents and (2) subsequent generation of sufficient gas to cause the PC to over-pressurize and release its inner content. Tests conducted during 2015 and 2016, and described herein, were done in two phases. The goal of the first phase was to see if the PC would reach high enough temperatures to decompose typical combustible materials inside the PC. The goal of the second test phase was to determine under what heating loads (i.e., incident heat fluxes) the 7A drum lid pops off from the POC drum. This report will describe the various tests conducted in phase I and II, present preliminary results from these tests, and discuss implications for the POCs.

  7. A two-step combination of top-down and bottom-up fire emission estimates at regional and global scales: strengths and main uncertainties

    Science.gov (United States)

    Sofiev, Mikhail; Soares, Joana; Kouznetsov, Rostislav; Vira, Julius; Prank, Marje

    2016-04-01

    Top-down emission estimation via inverse dispersion modelling is used for various problems, where bottom-up approaches are difficult or highly uncertain. One of such areas is the estimation of emission from wild-land fires. In combination with dispersion modelling, satellite and/or in-situ observations can, in principle, be used to efficiently constrain the emission values. This is the main strength of the approach: the a-priori values of the emission factors (based on laboratory studies) are refined for real-life situations using the inverse-modelling technique. However, the approach also has major uncertainties, which are illustrated here with a few examples of the Integrated System for wild-land Fires (IS4FIRES). IS4FIRES generates the smoke emission and injection profile from MODIS and SEVIRI active-fire radiative energy observations. The emission calculation includes two steps: (i) initial top-down calibration of emission factors via inverse dispersion problem solution that is made once using training dataset from the past, (ii) application of the obtained emission coefficients to individual-fire radiative energy observations, thus leading to bottom-up emission compilation. For such a procedure, the major classes of uncertainties include: (i) imperfect information on fires, (ii) simplifications in the fire description, (iii) inaccuracies in the smoke observations and modelling, (iv) inaccuracies of the inverse problem solution. Using examples of the fire seasons 2010 in Russia, 2012 in Eurasia, 2007 in Australia, etc, it is pointed out that the top-down system calibration performed for a limited number of comparatively moderate cases (often the best-observed ones) may lead to errors in application to extreme events. For instance, the total emission of 2010 Russian fires is likely to be over-estimated by up to 50% if the calibration is based on the season 2006 and fire description is simplified. Longer calibration period and more sophisticated parameterization

  8. Soils of Mountainous Forests and Their Transformation under the Impact of Fires in Baikal Region

    Science.gov (United States)

    Krasnoshchekov, Yu. N.

    2018-04-01

    Data on postpyrogenic dynamics of soils under mountainous taiga cedar ( Pinus sibirica) and pine ( Pinus sylvestris) forests and subtaiga-forest-steppe pine ( Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter-humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.

  9. Assessment of Post-Fire Vegetation Recovery Using Fire Severity and Geographical Data in the Mediterranean Region (Spain

    Directory of Open Access Journals (Sweden)

    Alba Viana-Soto

    2017-12-01

    Full Text Available Wildfires cause disturbances in ecosystems and generate environmental, economic, and social costs. Studies focused on vegetation regeneration in burned areas acquire interest because of the need to understand the species dynamics and to apply an adequate restoration policy. In this work we intend to study the variables that condition short-term regeneration (5 years of three species of the genus Pinus in the Mediterranean region of the Iberian Peninsula. Regeneration modelling has been performed through multiple regressions, using Ordinary Least Squares (OLS and Geographic Weight Regression (GWR. The variables used were fire severity, measured through the Composite Burn Index (CBI, and a set of environmental variables (topography, post-fire climate, vegetation type, and state after fire. The regeneration dynamics were measured through the Normalized Difference Vegetation Index (NDVI obtained from Landsat images. The relationship between fire severity and regeneration dynamics showed consistent results. Short-term regeneration was slowed down when severity was higher. The models generated by GWR showed better results in comparison with OLS (adjusted R2 = 0.77 for Pinus nigra and Pinus pinaster; adjusted R2 = 0.80 for Pinus halepensis. Further studies should focus on obtaining more precise variables and considering new factors which help to better explain post-fire vegetation recovery.

  10. Gas dynamics of H II regions. II. Two-dimensional axisymmetric calculations

    International Nuclear Information System (INIS)

    Bodenheimer, P.; Tenorio-Tagle, G.; Yorke, H.W.

    1979-01-01

    The evolution of H II regions is calculated with a two-dimensional hydrodynamic numerical procedure under the assumption that the exciting star is born within a cool molecular cloud whose density is about 10 3 particles cm -3 . As the ionization of the cloud's edge is completed, a large pressure gradient is set up and ionized cloud material expands into the ionized low-density (1 particle cm -3 ) intercloud medium, with velocities larger than 30 km s -1 .The calculations are made under the simplifying assumptions that (i) within the H II region, ionization equilibrium holds at all times, (ii) the ionization front is a discontinuity, thus its detailed structure is not calculated, (iii) the temperature of each region (H II region, neutral cloud, and intercloud medium) is constant in time, (iv) all ionizing photons come radially from the exciting star. Four cases are calculated and compared with observations: (1) the edge of the cloud is overrun by a supersonic ionization front, (2) the initial Stroemgren sphere surrounding the star lies deep inside the cloud, thus the cloud's edge is ionized by a subsonic ionization front, (3) the ionization front breaks through two opposite faces of the same cloud simultaneously, (4) the flow encounters an isolated globule of density 10 3 particles cm -3 shortly after emerging from the molecular cloud.The phenomena here considered show how evolving H II regions are an important input of kinetic energy to the interstellar medium

  11. A stand-replacing fire history in upper montane forests of the southern Rocky Mountains

    Science.gov (United States)

    Margolis, E.Q.; Swetnam, T.W.; Allen, Craig D.

    2007-01-01

    Dendroecological techniques were applied to reconstruct stand-replacing fire history in upper montane forests in northern New Mexico and southern Colorado. Fourteen stand-replacing fires were dated to 8 unique fire years (1842–1901) using four lines of evidence at each of 12 sites within the upper Rio Grande Basin. The four lines of evidence were (i) quaking aspen (Populus tremuloides Michx.) inner-ring dates, (ii) fire-killed conifer bark-ring dates, (iii) tree-ring width changes or other morphological indicators of injury, and (iv) fire scars. The annual precision of dating allowed the identification of synchronous stand-replacing fire years among the sites, and co-occurrence with regional surface fire events previously reconstructed from a network of fire scar collections in lower elevation pine forests across the southwestern United States. Nearly all of the synchronous stand-replacing and surface fire years coincided with severe droughts, because climate variability created regional conditions where stand-replacing fires and surface fires burned across ecosystems. Reconstructed stand-replacing fires that predate substantial Anglo-American settlement in this region provide direct evidence that stand-replacing fires were a feature of high-elevation forests before extensive and intensive land-use practices (e.g., logging, railroad, and mining) began in the late 19th century.

  12. Contribution of regional-scale fire events to ozone and PM2.5 ...

    Science.gov (United States)

    Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions (SMOKE) model, Weather and Research Forecasting (WRF) meteorological model, and Community Multiscale Air Quality (CMAQ) photochemical grid model. The modeling system was applied to track the contribution from a wildfire (Wallow) and prescribed fire (Flint Hills) using both source sensitivity and source apportionment approaches. The model estimated fire contribution to primary and secondary pollutants are comparable using source sensitivity (brute-force zero out) and source apportionment (Integrated Source Apportionment Method) approaches. Model estimated O3 enhancement relative to CO is similar to values reported in literature indicating the modeling system captures the range of O3 inhibition possible near fires and O3 production both near the fire and downwind. O3 and peroxyacetyl nitrate (PAN) are formed in the fire plume and transported downwind along with highly reactive VOC species such as formaldehyde and acetaldehyde that are both emitted by the fire and rapidly produced in the fire plume by VOC oxidation reactions. PAN and aldehydes contribute to continued downwind O3 production. The transport and thermal decomposition of PAN to nitrogen oxides (NOX) enables O3 production in areas

  13. An enhanced fire hazard assessment model and validation experiments for vertical cable trays

    International Nuclear Information System (INIS)

    Li, Lu; Huang, Xianjia; Bi, Kun; Liu, Xiaoshuang

    2016-01-01

    Highlights: • An enhanced model was developed for vertical cable fire hazard assessment in NPP. • The validated experiments on vertical cable tray fires were conducted. • The capability of the model for cable tray with different cable spacing were tested. - Abstract: The model, referred to as FLASH-CAT (Flame Spread over Horizontal Cable Trays), was developed to estimate the heat release rate for vertical cable tray fire. The focus of this work is to investigate the application of an enhanced model to the single vertical cable tray fires with different cable spacing. The experiments on vertical cable tray fires with three typical cable spacing were conducted. The histories of mass loss rate and flame length were recorded during the cable fire. From the experimental results, it is found that the space between cable lines intensifies the cable combustion and accelerates the flame spread. The predictions by the enhanced model show good agreements with the experimental data. At the same time, it is shown that the enhanced model is capable of predicting the different behaviors of cable fires with different cable spacing by adjusting the flame spread speed only.

  14. An enhanced fire hazard assessment model and validation experiments for vertical cable trays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Sate Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027 (China); Huang, Xianjia, E-mail: huangxianjia@gziit.ac.cn [Joint Laboratory of Fire Safety in Nuclear Power Plants, Institute of Industry Technology Guangzhou & Chinese Academy of Sciences, Guangzhou 511458 (China); Bi, Kun; Liu, Xiaoshuang [China Nuclear Power Design Co., Ltd., Shenzhen 518045 (China)

    2016-05-15

    Highlights: • An enhanced model was developed for vertical cable fire hazard assessment in NPP. • The validated experiments on vertical cable tray fires were conducted. • The capability of the model for cable tray with different cable spacing were tested. - Abstract: The model, referred to as FLASH-CAT (Flame Spread over Horizontal Cable Trays), was developed to estimate the heat release rate for vertical cable tray fire. The focus of this work is to investigate the application of an enhanced model to the single vertical cable tray fires with different cable spacing. The experiments on vertical cable tray fires with three typical cable spacing were conducted. The histories of mass loss rate and flame length were recorded during the cable fire. From the experimental results, it is found that the space between cable lines intensifies the cable combustion and accelerates the flame spread. The predictions by the enhanced model show good agreements with the experimental data. At the same time, it is shown that the enhanced model is capable of predicting the different behaviors of cable fires with different cable spacing by adjusting the flame spread speed only.

  15. Extinction of H II regions

    International Nuclear Information System (INIS)

    Israel, F.P.; Kennicutt, R.C.

    1980-01-01

    Visual extinction of H II regions in nine nearby galaxies as derived from the ratio of the radio continuum emission to H-alpha emission is systematically larger than visual extinction deduced from the Balmer lines alone, if one assumes a value Av/E(B-V) 3. An optically-limited sample of about 30 extragalactic H II regions has a mean extinction of 1.7 m in the visual while about 1.2 m is not seen in the reddening of the Balmer lines. Both reddening and extinction decreases with increasing galactic radius, at least for M33 and M101

  16. Comparison of post-fire seedling establishment between scrub communities in mediterranean and non-mediterranean climate ecosystems

    Science.gov (United States)

    Carrington, M.E.; Keeley, J.E.

    1999-01-01

    I Both fire regimes and the conditions under which fires occur vary widely. Abiotic conditions (such as climate) in combination with fire season, frequency and intensity could influence vegetation responses to fire. A variety of adaptations facilitate post-fire recruitment in mediterranean climate ecosystems, but responses of other communities are less well known. We evaluated the importance of climate by comparing sites with mediterranean and subtropical climates. 2 We used paired burned and mature sites in chamise chaparral, mixed chaparral and coastal sage scrub (California), and rosemary scrub, sand pine scrub and sand-hill (Florida), to test whether (i) patterns of pre-fire and post-fire seedling recruitment are more similar between communities within a region than between regions, and (ii) post-fire stimulation of seedling establishment is greater in regions with marked fire-induced contrasts in abiotic site characteristics. 3 Post-fire seedling densities were more similar among sites within climatic regions than between regions. Both seedling densities and proportions of species represented by seedlings after fires were generally higher in California. 4 The only site characteristic showing a pre-fire-post-fire contrast was percentage open canopy, and the effect was greater in California than in Florida. Soil properties were unaffected by fire. 5 Mediterranean climate ecosystems in other regions have nutrient-poor soils similar to our subtropical Florida sites, but show post-fire seedling recruitment patterns more similar to the nutrient-rich sites in California. Climate therefore appears to play a more major role than soil characteristics.

  17. Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to spatiotemporal allocation of fire emissions.

    Science.gov (United States)

    Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T

    2014-09-15

    Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Risk-Based Fire Safety Experiment Definition for Manned Spacecraft

    Science.gov (United States)

    Apostolakis, G. E.; Ho, V. S.; Marcus, E.; Perry, A. T.; Thompson, S. L.

    1989-01-01

    Risk methodology is used to define experiments to be conducted in space which will help to construct and test the models required for accident sequence identification. The development of accident scenarios is based on the realization that whether damage occurs depends on the time competition of two processes: the ignition and creation of an adverse environment, and the detection and suppression activities. If the fire grows and causes damage faster than it is detected and suppressed, then an accident occurred. The proposed integrated experiments will provide information on individual models that apply to each of the above processes, as well as previously unidentified interactions and processes, if any. Initially, models that are used in terrestrial fire risk assessments are considered. These include heat and smoke release models, detection and suppression models, as well as damage models. In cases where the absence of gravity substantially invalidates a model, alternate models will be developed. Models that depend on buoyancy effects, such as the multizone compartment fire models, are included in these cases. The experiments will be performed in a variety of geometries simulating habitable areas, racks, and other spaces. These simulations will necessitate theoretical studies of scaling effects. Sensitivity studies will also be carried out including the effects of varying oxygen concentrations, pressures, fuel orientation and geometry, and air flow rates. The experimental apparatus described herein includes three major modules: the combustion, the fluids, and the command and power modules.

  19. A Green Bank Telescope Survey of Large Galactic H II Regions

    Science.gov (United States)

    Anderson, L. D.; Armentrout, W. P.; Luisi, Matteo; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.

    2018-02-01

    As part of our ongoing H II Region Discovery Survey (HRDS), we report the Green Bank Telescope detection of 148 new angularly large Galactic H II regions in radio recombination line (RRL) emission. Our targets are located at a declination of δ > -45^\\circ , which corresponds to 266^\\circ > {\\ell }> -20^\\circ at b=0^\\circ . All sources were selected from the Wide-field Infrared Survey Explorer Catalog of Galactic H II Regions, and have infrared angular diameters ≥slant 260\\prime\\prime . The Galactic distribution of these “large” H II regions is similar to that of the previously known sample of Galactic H II regions. The large H II region RRL line width and peak line intensity distributions are skewed toward lower values, compared with that of previous HRDS surveys. We discover seven sources with extremely narrow RRLs 100 {pc}, making them some of the physically largest known H II regions in the Galaxy. This survey completes the HRDS H II region census in the Northern sky, where we have discovered 887 H II regions and more than doubled the size of the previously known census of Galactic H II regions.

  20. Removal of Mn(II) from the acid mine wastewaters using coal fired bottom ash

    Science.gov (United States)

    Mahidin, M.; Sulaiman, T. N.; Muslim, A.; Gani, A.

    2017-06-01

    Acid mine wastewater (AMW), the wastewater from mining activities which has low pH about 3-5 and contains hazardous heavy metals such as Cu, Fe, Mn, Zn, Pb, etc. Those heavy metals pollution is of prime concern from the environmental view point. Among the heavy metals, Mn occupies the third position in the AMW from one the iron ore mining company in Aceh, Indonesia. In this study, the possibility use of bottom ash from coal fired boiler of steam power plants for the removal of Mn(II) in AMW has been investigated. Experimental has been conducted as follows. Activation of bottom ash was done both by physical and chemical treatments through heating at 270 °C and washing with NaOH activator 0.5 and 1 M. Adsorption test contains two parts observation; preliminary and primary experiments. Preliminary study is addressed to select the best condition of three independent variables i.e.: pH of AMW (3 & 7), bottom ash particle size (40, 60 & 100 mesh) and initial Mn(II) concentrations (100 & 600 mg/l). AMW used was synthetics wastewater. It was found that the best value for NaOH is 1 M, pH is 7, particle size is 100 meshes and initial Mn(II) concentration is 600 mg/l from the adsorption efficiency point of view. The maximum adsorption capacity (q e) is 63.7 mg/g with the efficiency of 85%.

  1. Maximum Smoke Temperature in Non-Smoke Model Evacuation Region for Semi-Transverse Tunnel Fire

    OpenAIRE

    B. Lou; Y. Qiu; X. Long

    2017-01-01

    Smoke temperature distribution in non-smoke evacuation under different mechanical smoke exhaust rates of semi-transverse tunnel fire were studied by FDS numerical simulation in this paper. The effect of fire heat release rate (10MW 20MW and 30MW) and exhaust rate (from 0 to 160m3/s) on the maximum smoke temperature in non-smoke evacuation region was discussed. Results show that the maximum smoke temperature in non-smoke evacuation region decreased with smoke exhaust rate. Plug-holing was obse...

  2. Fire impact on carbon storage in light conifer forests of the Lower Angara region, Siberia

    International Nuclear Information System (INIS)

    Ivanova, G A; Kukavskaya, E A; Conard, S G; McRae, D J

    2011-01-01

    This study focused on structural analysis of ground carbon storage following fires in light conifer stands of the Lower Angara region (Siberia, Russia). Experimental fires of varying frontal intensity were conducted at Scots pine and mixed larch forests of southern taiga. Considerable amounts of surface and ground forest fuels (21–38 tC ha −1 ) enhanced low- to high-intensity fires. Post-fire carbon storage decreased by 16–49% depending on fire intensity and rate of spread, with depth of burn being 0.9–6.6 cm. Carbon emissions varied from 4.48 to 15.89 t ha −1 depending on fire intensity and forest type. Depth of burn and carbon emissions for four major site types were correlated with a weather-based fire hazard index.

  3. Physics Analysis of the FIRE Experiment

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Meade, D.; Breslau, J.; Fu, G.; Gorelenkov, N.; Manickam, J.; Park, W.; Strauss, H.

    2002-01-01

    An integrated model of a complete discharge in the FIRE experiment has been developed based on the TSC simulation code. The complete simulation model includes a choice of several models for core transport, combined with an edge pedestal model and the Porcelli sawtooth model. Burn control is provided by feedback on the auxiliary heating power. We find that with the GLF23 and MMM95 transport models, Q >10 operation should be possible for H-mode pedestal temperatures in the range of 4-5 keV

  4. Regional livestock grazing, human demography and fire incidence in the Portuguese landscape

    Directory of Open Access Journals (Sweden)

    Filipa Torres-Manso

    2014-04-01

    Full Text Available Aim of study:Wildfire incidence in Portugal is high in comparison with other Mediterranean Europe countries. Wildfire problems have been worsened by complex interactions between land use, livestock grazing and human population during the 20th century. In this study we try to understand these interactions and relationships.Area of study: Portugal country. Material and Methods: For the mainland Portuguese territory we present a statistical temporal analysis (1930-2001 based on the densities of livestock grazing and human inhabitants at the smallest administrative unit level, the parish. We compare these data with fire incidence descriptors (average area burned and average fire density between 1990 and 2007. Research highlights: We have identified clusters of parishes sharing common trends in the evolution of livestock and human inhabitant densities. A cause-effect relationship was not detected between livestock grazing density and fire incidence. However, the results point out clusters of parishes where conflicts between forest, fire and livestock grazing are important in the North, Centre and South regions of Portugal.Key Words: Livestock grazing; inhabitants; forest; fire; vegetation.

  5. The Southern H ii Region Discovery Survey (SHRDS): Pilot Survey

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.; Dickey, John M. [School of Physical Sciences, Private Bag 37, University of Tasmania, Hobart, TAS, 7001 (Australia); Jordan, C. [International Centre for Radio Astronomy Research, Curtin University, Perth, WA, 6845 (Australia); Anderson, L. D.; Armentrout, W. P. [Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26506 (United States); Balser, Dana S.; Wenger, Trey V. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22904 (United States); Bania, T. M. [Institute for Astrophysical Research, Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Dawson, J. R. [Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University, NSW, 2109 (Australia); Mc Clure-Griffiths, N. M. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra ACT 2611 (Australia)

    2017-07-01

    The Southern H ii Region Discovery Survey is a survey of the third and fourth quadrants of the Galactic plane that will detect radio recombination line (RRL) and continuum emission at cm-wavelengths from several hundred H ii region candidates using the Australia Telescope Compact Array. The targets for this survey come from the WISE Catalog of Galactic H ii Regions and were identified based on mid-infrared and radio continuum emission. In this pilot project, two different configurations of the Compact Array Broad Band receiver and spectrometer system were used for short test observations. The pilot surveys detected RRL emission from 36 of 53 H ii region candidates, as well as seven known H ii regions that were included for calibration. These 36 recombination line detections confirm that the candidates are true H ii regions and allow us to estimate their distances.

  6. The Southern H ii Region Discovery Survey (SHRDS): Pilot Survey

    International Nuclear Information System (INIS)

    Brown, C.; Dickey, John M.; Jordan, C.; Anderson, L. D.; Armentrout, W. P.; Balser, Dana S.; Wenger, Trey V.; Bania, T. M.; Dawson, J. R.; Mc Clure-Griffiths, N. M.

    2017-01-01

    The Southern H ii Region Discovery Survey is a survey of the third and fourth quadrants of the Galactic plane that will detect radio recombination line (RRL) and continuum emission at cm-wavelengths from several hundred H ii region candidates using the Australia Telescope Compact Array. The targets for this survey come from the WISE Catalog of Galactic H ii Regions and were identified based on mid-infrared and radio continuum emission. In this pilot project, two different configurations of the Compact Array Broad Band receiver and spectrometer system were used for short test observations. The pilot surveys detected RRL emission from 36 of 53 H ii region candidates, as well as seven known H ii regions that were included for calibration. These 36 recombination line detections confirm that the candidates are true H ii regions and allow us to estimate their distances.

  7. Improved selection criteria for H II regions, based on IRAS sources

    Science.gov (United States)

    Yan, Qing-Zeng; Xu, Ye; Walsh, A. J.; Macquart, J. P.; MacLeod, G. C.; Zhang, Bo; Hancock, P. J.; Chen, Xi; Tang, Zheng-Hong

    2018-05-01

    We present new criteria for selecting H II regions from the Infrared Astronomical Satellite (IRAS) Point Source Catalogue (PSC), based on an H II region catalogue derived manually from the all-sky Wide-field Infrared Survey Explorer (WISE). The criteria are used to augment the number of H II region candidates in the Milky Way. The criteria are defined by the linear decision boundary of two samples: IRAS point sources associated with known H II regions, which serve as the H II region sample, and IRAS point sources at high Galactic latitudes, which serve as the non-H II region sample. A machine learning classifier, specifically a support vector machine, is used to determine the decision boundary. We investigate all combinations of four IRAS bands and suggest that the optimal criterion is log(F_{60}/F_{12})≥ ( -0.19 × log(F_{100}/F_{25})+ 1.52), with detections at 60 and 100 {μ}m. This selects 3041 H II region candidates from the IRAS PSC. We find that IRAS H II region candidates show evidence of evolution on the two-colour diagram. Merging the WISE H II catalogue with IRAS H II region candidates, we estimate a lower limit of approximately 10 200 for the number of H II regions in the Milky Way.

  8. Field test corrosion experiments in Denmark with biomass fuels Part II Co-firing of straw and coal

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH

    2002-01-01

    undertaken where coal has been co-fired with 10% straw and 20% straw (% energy basis) for up to approx. 3000 hours. Two types of exposure were undertaken to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, and b) the exposure of a range of materials built into the existing...... and potassium sulphate. These components give rise to varying degrees of accelerated corrosion. This paper concerns co-firing of straw with coal to reduce the corrosion rate from straw to an acceptable level. A field investigation at Midtkraft Studstrup suspension-fired power plant in Denmark has been...... for 100% straw-firing. The corrosion products and course of corrosion for the various steel types were investigated using light optical and scanning electron microscopy. Catastrophic corrosion due to potassium chloride was not observed. Instead a more modest corrosion rate due to potassium sulphate rich...

  9. The Joint Fire Science Program Fire Exchange Network: Facilitating Knowledge Exchange About Wildland Fire Science Across the U.S.

    Science.gov (United States)

    York, A.; Blocksome, C.; Cheng, T.; Creighton, J.; Edwards, G.; Frederick, S.; Giardina, C. P.; Goebel, P. C.; Gucker, C.; Kobziar, L.; Lane, E.; Leis, S.; Long, A.; Maier, C.; Marschall, J.; McGowan-Stinski, J.; Mohr, H.; MontBlanc, E.; Pellant, M.; Pickett, E.; Seesholtz, D.; Skowronski, N.; Stambaugh, M. C.; Stephens, S.; Thode, A.; Trainor, S. F.; Waldrop, T.; Wolfson, B.; Wright, V.; Zedler, P.

    2014-12-01

    The Joint Fire Science Program's (JFSP) Fire Exchange Network is actively working to accelerate the awareness, understanding, and adoption of wildland fire science information by federal, tribal, state, local, and private stakeholders within ecologically similar regions. Our network of 15 regional exchanges provides timely, accurate, and regionally relevant science-based information to assist with fire management challenges. Regional activities, through which we engage fire and resource managers, scientists, and private landowners, include online newsletters and announcements, social media, regionally focused web-based clearinghouses of relevant science, field trips and demonstration sites, workshops and conferences, webinars and online training, and syntheses and fact sheets. Exchanges also help investigators design research that is relevant to regional management needs and assist with technology transfer to management audiences. This poster provides an introduction to and map of the regional exchanges.

  10. Soil erosion after forest fires in the Valencia region

    Science.gov (United States)

    González-Pelayo, Óscar; Keizer, Jan Jacob; Cerdà, Artemi

    2014-05-01

    Soil erosion after forest fire is triggered by the lack of vegetation cover and the degradation of the physical, biological and chemical properties (Martí et al., 2012; Fernández et al., 2012; Guénon, 2013). Valencia region belongs to the west Mediterranean basin ("Csa", Köppen climate classification), with drought summer periods that enhance forest fire risk. The characteristics of the climate, lithology and land use history makes this region more vulnerable to soil erosion. In this area, fire recurrence is being increased since late 50s (Pausas, 2004) and post-fire erosion studies became more popular from 80's until nowadays (Cerdá and Mataix-Solera, 2009). Research in Valencia region has contributed significantly to a better understanding of the effect of spatial and temporal scale on runoff and sediment yield measurements. The main achievements concerns: a) direct measurement of erosion rates under a wide range of methodologies (natural vs simulated rainfall, open vs closed plots); from micro- to meso-plot and catchment scale in single (Rubio et al., 1994; Cerdà et al., 1995; Cerdà 1998a; 1998b; Llovet et al., 1998; Cerdà, 2001; Calvo-Cases et al., 2003; Andreu et al., 2001; Mayor et al., 2007; Cerdà and Doerr, 2008) and multiples fires (Campo et al., 2006; González-Pelayo et al., 2010a). Changes in soil properties (Sanroque et al., 1985; Rubio et al., 1997; Boix-Fayós, 1997; Gimeno-Garcia et al., 2000; Guerrero et al., 2001; Mataix-Solera et al., 2004; González-Pelayo et al., 2006; Arcenegui et al., 2008; Campo et al., 2008; Bodí et al., 2012), in post-fire vegetation patterns (Gimeno-García et al., 2007) and, studies on mitigation strategies (Bautista et al., 1996; Abad et al., 2000). b) Progress to understanding post-fire erosion mechanism and sediment movement (Boix-Fayós et al., 2005) by definition of thresholds for sediment losses; fire severity, slope angle, bedrock, rain characteristics, vegetation pattern and ecosystem resilience (Mayor

  11. Application of an Image Tracking Algorithm in Fire Ant Motion Experiment

    Directory of Open Access Journals (Sweden)

    Lichuan Gui

    2009-04-01

    Full Text Available An image tracking algorithm, which was originally used with the particle image velocimetry (PIV to determine velocities of buoyant solid particles in water, is modified and applied in the presented work to detect motion of fire ant on a planar surface. A group of fire ant workers are put to the bottom of a tub and excited with vibration of selected frequency and intensity. The moving fire ants are captured with an image system that successively acquires image frames of high digital resolution. The background noise in the imaging recordings is extracted by averaging hundreds of frames and removed from each frame. The individual fire ant images are identified with a recursive digital filter, and then they are tracked between frames according to the size, brightness, shape, and orientation angle of the ant image. The speed of an individual ant is determined with the displacement of its images and the time interval between frames. The trail of the individual fire ant is determined with the image tracking results, and a statistical analysis is conducted for all the fire ants in the group. The purpose of the experiment is to investigate the response of fire ants to the substrate vibration. Test results indicate that the fire ants move faster after being excited, but the number of active ones are not increased even after a strong excitation.

  12. Abrupt increases in Amazonian tree mortality due to drought–fire interactions

    OpenAIRE

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.

    2014-01-01

    Climate change alone is unlikely to drive severe tropical forest degradation in the next few decades, but an alternative process associated with severe weather and forest fires is already operating in southeastern Amazonia. Recent droughts caused greatly elevated fire-induced tree mortality in a fire experiment and widespread regional forest fires that burned 5–12% of southeastern Amazon forests. These results suggest that feedbacks between fires and extreme climatic conditions could increase...

  13. Belle-II Experiment Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bell, Greg [ESnet; Carlson, Tim [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Cowley, David [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Dart, Eli [ESnet; Erwin, Brock [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Godang, Romulus [Univ. of South Alabama, Mobile, AL (United States); Hara, Takanori [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Johnson, Jerry [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Johnson, Ron [Univ. of Washington, Seattle, WA (United States); Johnston, Bill [ESnet; Dam, Kerstin Kleese-van [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Kaneko, Toshiaki [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Kubota, Yoshihiro [NII; Kuhr, Thomas [Karlsruhe Inst. of Technology (KIT) (Germany); McCoy, John [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Miyake, Hideki [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Monga, Inder [ESnet; Nakamura, Motonori [NII; Piilonen, Leo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Pordes, Ruth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ray, Douglas [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Russell, Richard [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Schram, Malachi [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Schroeder, Jim [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Sevior, Martin [Univ. of Melbourne (Australia); Singh, Surya [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Suzuki, Soh [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Sasaki, Takashi [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Williams, Jim [Indiana Univ., Bloomington, IN (United States)

    2013-05-28

    The Belle experiment, part of a broad-based search for new physics, is a collaboration of ~400 physicists from 55 institutions across four continents. The Belle detector is located at the KEKB accelerator in Tsukuba, Japan. The Belle detector was operated at the asymmetric electron-positron collider KEKB from 1999-2010. The detector accumulated more than 1 ab-1 of integrated luminosity, corresponding to more than 2 PB of data near 10 GeV center-of-mass energy. Recently, KEK has initiated a $400 million accelerator upgrade to be called SuperKEKB, designed to produce instantaneous and integrated luminosity two orders of magnitude greater than KEKB. The new international collaboration at SuperKEKB is called Belle II. The first data from Belle II/SuperKEKB is expected in 2015. In October 2012, senior members of the Belle-II collaboration gathered at PNNL to discuss the computing and neworking requirements of the Belle-II experiment with ESnet staff and other computing and networking experts. The day-and-a-half-long workshop characterized the instruments and facilities used in the experiment, the process of science for Belle-II, and the computing and networking equipment and configuration requirements to realize the full scientific potential of the collaboration's work.

  14. Development of a methodology for monthly forecasting of surface fires of Colombia's vegetation cover, an application to north Andean region

    International Nuclear Information System (INIS)

    Gonzalez Hernandez, Yolanda; Rangel CH, Jesus Orlando

    2004-01-01

    In the present article a methodology is presented for the forecasting of the monthly risk of surface fires of the vegetation cover in Colombia, based on the analysis of meteorological components and variables of climatic and anthropic variability involved in fire risks of the north Andean region. The methodology enables one to regionalize the country, with fire prediction purposes in mind, into ten sub-regions, in each one of which seven height levels are defined to make up separate regions of study. For each of these, a database is built to feed both the logistic regression models and the Poisson models, which identify the variables independent from, and/or associated with the presence or absence of fires

  15. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2013-12-01

    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  16. 77 FR 64396 - Order of Succession for HUD Region II

    Science.gov (United States)

    2012-10-19

    ... Region II AGENCY: Office of Field Policy and Management, HUD. ACTION: Notice of Order of Succession... Field Offices (Region II). This Order of Succession supersedes all previous Orders of Succession for Region II. DATES: Effective Date: October 9, 2012. FOR FURTHER INFORMATION CONTACT: Lawrence D. Reynolds...

  17. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and

  18. Using wildfires as a natural experiment to evaluate the effect of fire on southern California vernal pool plant communities

    Directory of Open Access Journals (Sweden)

    Charles H. Black

    2016-07-01

    Full Text Available Fires in Mediterranean-type ecosystems (MTEs have been studied widely with emphasis on shrub and grassland vegetation types. Although vernal pools comprise a very small fraction of MTEs, they are important to regional biodiversity due to high local endemism. Fire frequency has been increasing in MTEs and while altered fire regimes have been shown to threaten native shrub communities, their effect on vernal pools is uncertain. Due to the number of at-risk species in this habitat, experiments with potentially harmful effects are problematic. Therefore, we initiated this study to take advantage of two anthropogenic but unplanned fire events. The analysis uses data collected from 2001 to 2009 on a site burned in 2000 and 2003. We analyzed the data in an exploratory framework and applied unadjusted and adjusted models using different parameterizations of the exposure variables. The results did not provide evidence that fire reduced the abundance of native vernal pool species in southern California. There is provisional evidence of a positive but temporary effect of fire on native vernal pool species. Our analysis demonstrates an exploratory analytical approach for use with problematic data sets that can arise when conservation objectives constrain opportunities for experimental studies.

  19. ON RADIATION PRESSURE IN STATIC, DUSTY H II REGIONS

    International Nuclear Information System (INIS)

    Draine, B. T.

    2011-01-01

    Radiation pressure acting on gas and dust causes H II regions to have central densities that are lower than the density near the ionized boundary. H II regions in static equilibrium comprise a family of similarity solutions with three parameters: β, γ, and the product Q 0 n rms ; β characterizes the stellar spectrum, γ characterizes the dust/gas ratio, Q 0 is the stellar ionizing output (photons/s), and n rms is the rms density within the ionized region. Adopting standard values for β and γ, varying Q 0 n rms generates a one-parameter family of density profiles, ranging from nearly uniform density (small Q 0 n rms ) to shell-like (large Q 0 n rms ). When Q 0 n rms ∼> 10 52 cm -3 s -1 , dusty H II regions have conspicuous central cavities, even if no stellar wind is present. For given β, γ, and Q 0 n rms , a fourth quantity, which can be Q 0 , determines the overall size and density of the H II region. Examples of density and emissivity profiles are given. We show how quantities of interest-such as the peak-to-central emission measure ratio, the rms-to-mean density ratio, the edge-to-rms density ratio, and the fraction of the ionizing photons absorbed by the gas-depend on β, γ, and Q 0 n rms . For dusty H II regions, compression of the gas and dust into an ionized shell results in a substantial increase in the fraction of the stellar photons that actually ionize H (relative to a uniform-density H II region with the same dust/gas ratio and density n = n rms ). We discuss the extent to which radial drift of dust grains in H II regions can alter the dust-to-gas ratio. The applicability of these solutions to real H II regions is discussed.

  20. Fire History of Appalachian Forests of the Lower St-Lawrence Region (Southern Quebec

    Directory of Open Access Journals (Sweden)

    Serge Payette

    2017-04-01

    Full Text Available Sugar maple (Acer saccharum forests are among the main forest types of eastern North America. Sugar maple stands growing on Appalachian soils of the Lower St-Lawrence region are located at the northeastern limit of the northern hardwood forest zone. Given the biogeographical position of these forests at the edge of the boreal biome, we aimed to reconstruct the fire history and document the occurrence of temperate and boreal trees in sugar maple sites during the Holocene based on soil macrocharcoal analysis. Despite having experienced a different number of fire events, the fire history of the maple sites was broadly similar, with two main periods of fire activity, i.e., early- to mid-Holocene and late-Holocene. A long fire-free interval of at least 3500 years separated the two periods from the mid-Holocene to 2000 years ago. The maple sites differ with respect to fire frequency and synchronicity of the last millennia. According to the botanical composition of charcoal, forest vegetation remained relatively homogenous during the Holocene, except recently. Conifer and broadleaf species coexisted in mixed forests during the Holocene, in phase with fire events promoting the regeneration of boreal and temperate tree assemblages including balsam fir (Abies balsamea and sugar maple.

  1. Enhancing fire science exchange: The Joint Fire Science Program's National Network of Knowledge Exchange Consortia

    Science.gov (United States)

    Vita Wright; Crystal Kolden; Todd Kipfer; Kristine Lee; Adrian Leighton; Jim Riddering; Leana Schelvan

    2011-01-01

    The Northern Rocky Mountain region is one of the most fire-prone regions in the United States. With a history of large fires that have shaped national policy, including the fires of 1910 and 2000 in Idaho and Montana and the Yellowstone fires of 1988, this region is projected to have many large severe fires in the future. Communication about fire science needs and...

  2. Erosion taken place in mountainous regions by effect of the forest fires; Erosion producida en las regiones montanosas por efecto de los incendios forestales

    Energy Technology Data Exchange (ETDEWEB)

    Carignano, Claudio A; Cioccale, Marcela A

    1992-07-01

    This paper presents the first part of an investigation about the effect of the fire in the forest in a basin, which is a hydric reserve and supplies with potable water to a big region of Sierras Chicas, in the province of Cordoba, Argentina. The combination of the unprotected soil, by the lack of vegetation due to the fire, the climate conditions, the gradient and the lithology produce an increase over the processes of erosion. Different thematic maps were necessary join all the information, to determine the relation between the fires affected areas and the erosion processes, besides the regional climate conditions were considered as a fundamental factor.

  3. Fire and Gas Detection in the LHC Experiments The Sniffer Project

    CERN Document Server

    Nunes, R W

    2001-01-01

    The LHC experiments, due to their complexity and size, present many safety challenges. Cryogenic gases are used in large quantities as well as certain flammable mixtures. The electrical power involved calls for analysis of the fire risks. Access is restricted to the minimum and environmental conditions are extremely harsh, due to strong magnetic fields and ionising radiation. This paper will describe the Combined Fire/Gas/Oxygen deficiency Detection systems proposed for inside the ATLAS and CMS Experiments and possibly for the two others, if they deem it necessary. The requirements of the experiments and the development and implementation of such a system will be discussed. In parallel, commercial procedures to implement these systems by industry shall be described, taking into consideration that a previous development has already been undertaken by CERN for the LEP experiments. The stage is set for inter-divisional collaboration in a project of utmost importance for the safety of people and protection of the...

  4. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere–fire numerical model

    OpenAIRE

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-01-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In t...

  5. Modeling fire occurrence as a function of landscape

    Science.gov (United States)

    Loboda, T. V.; Carroll, M.; DiMiceli, C.

    2011-12-01

    Wildland fire is a prominent component of ecosystem functioning worldwide. Nearly all ecosystems experience the impact of naturally occurring or anthropogenically driven fire. Here, we present a spatially explicit and regionally parameterized Fire Occurrence Model (FOM) aimed at developing fire occurrence estimates at landscape and regional scales. The model provides spatially explicit scenarios of fire occurrence based on the available records from fire management agencies, satellite observations, and auxiliary geospatial data sets. Fire occurrence is modeled as a function of the risk of ignition, potential fire behavior, and fire weather using internal regression tree-driven algorithms and empirically established, regionally derived relationships between fire occurrence, fire behavior, and fire weather. The FOM presents a flexible modeling structure with a set of internal globally available default geospatial independent and dependent variables. However, the flexible modeling environment adapts to ingest a variable number, resolution, and content of inputs provided by the user to supplement or replace the default parameters to improve the model's predictive capability. A Southern California FOM instance (SC FOM) was developed using satellite assessments of fire activity from a suite of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, Monitoring Trends in Burn Severity fire perimeters, and auxiliary geospatial information including land use and ownership, utilities, transportation routes, and the Remote Automated Weather Station data records. The model was parameterized based on satellite data acquired between 2001 and 2009 and fire management fire perimeters available prior to 2009. SC FOM predictive capabilities were assessed using observed fire occurrence available from the MODIS active fire product during 2010. The results show that SC FOM provides a realistic estimate of fire occurrence at the landscape level: the fraction of

  6. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill.

    Science.gov (United States)

    Budde, Katharina B; González-Martínez, Santiago C; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G; Verdú, Miguel; Pausas, Juli G; Heuertz, Myriam

    2017-04-01

    The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits

  7. Spatial distribution of H II regions in NGC 4321

    International Nuclear Information System (INIS)

    Anderson, S.; Hodge, P.; Kennicutt, R.C. Jr.

    1983-01-01

    A catalog of 286 H II regions in the giant Sc Virgo Cluster spiral galaxy NGC 4321 is used to analyze some aspects of this galaxy's spiral structure. The H II region distribution is rectified to face-on by least-squares fitting to a logarithmic spiral, and the radial distribution, the across-arm distribution, and the along-arm distribution of H II regions are determined. Comparison of the circular distribution with a simple shock wave model of the density wave theory does not clearly support the model. Arm 1 shows no obvious structure, and arm 2, although it has a clear peak, does not show the expected asymmetrical distribution. Agreement is reasonably good, however, with the somewhat more elaborate density wave model of Bash. Tests for clumping of the H II regions were negative

  8. Experiment CATETO II

    International Nuclear Information System (INIS)

    Hendriks, J.A.; Freudenreich, W.E.

    1994-03-01

    In the irradiation experiment CATETO II different reduced activation (RA) steels will be irradiated up to 2.5 dpa at a temperature of 300 C. The results of the calculation of the nuclear constants, the reactivity effect, and the activity of the steel samples are presented. (orig.)

  9. Feedback from practical experience with large sodium fire accidents

    International Nuclear Information System (INIS)

    Luster, V.P.; Freudenstein, K.F.

    1996-01-01

    The paper reviews the important feedback from the practical experience from two large sodium fires; the first at ALMERIA in Spain and the second in the Na laboratories at Bensberg, Germany. One of the most important sodium fire accidents was the ALMERIA spray fire accident. The origin of this accident was the repair of a valve when about 14 t of sodium was spilled in the plant room over a period of 1/2 hour. The event has been reported (IAEA/IWGFR meeting in 1988) and this presentation gives a short review of important feedback. The Almeria accident was one of the reasons that from that time spray fires had to be taken into account in the safety analyses of nuclear power plants. Due to the fact that spray fire codes were not available in a sufficiently validated state, safety analyses were provisionally based on the feedback from sodium fire tests and also from the Almeria accident itself. The behaviour of spray fires showed that severe destruction, up to melting of metallic structures may occur, but even with a large spray fire is limited roughly within the spray fire zone itself. This could be subsequently be predicted by codes like NABRAND in Germany and FEUMIX in France. Almeria accident has accelerated R and D and code development with respect to spray fires. As example for a code validation some figures are given for the NABRAND code. Another large sodium fire accident happened in 1992 in the test facility at Bensberg in Germany (ILONA). This accident occurred during preheating of a sodium filled vessel which was provisionally installed in the basement of the ILONA test facility at Bensberg. Due to failure of a pressure relief valve the pressure in the vessel increased. As a consequence the plug in a dip tube for draining the vessel failed and about 4,5 t of sodium leaked slowly from the vessel. The plant room was not cladded with steel liners or collecting pans (it was not designed for permanent sodium plant operation). So leaking sodium came directly in

  10. Why So Many More Americans Die in Fires

    Science.gov (United States)

    Cranberg, Lawrence

    2009-03-01

    ``Why So Many More Americans Die in Fires'' is the headline on Page 3 of The New York Times' full-page story on December 22, l991, by D. G. McNeil, Jr. This is a partial report based on personal experience with domestic fire making for thermal comfort since l975 (1) and a published claim (2) of unique safety benefits.The McNeil report attributes the problem to ``A Case of Bad Attitude'' and ``A Reliance on Technology.'' That implies a ``bad attitude'' on the part of technologists - a conclusion consistent with this technologist's thirty-five years of experience with fellow technologists, who has found ``buck-passing'' the favorite recourse of technologists in the highest places in government even though, as McNeil has written, ``Many children never wake up. Smoke or toxic gases overcome them as they sleep. When fire fighters lift them, their imprints remain.'' Regrettably, in this author's experience, the courts have also displayed a ``bad attitude'' where ``life and death issues'' have been pleaded. 1. L. Cranberg, Slot Flame Stablity with Hohlraum Radiation Pattern, BAPS, Series II, Vol. 20, No. 9, Sept., l978. 2. L. Cranberg, Fireplace Firesafety, Fire Journal, Letter, May/June,l987

  11. FIREDATA, Nuclear Power Plant Fire Event Data Base

    International Nuclear Information System (INIS)

    Wheelis, W.T.

    2001-01-01

    1 - Description of program or function: FIREDATA contains raw fire event data from 1965 through June 1985. These data were obtained from a number of reference sources including the American Nuclear Insurers, Licensee Event Reports, Nuclear Power Experience, Electric Power Research Institute Fire Loss Data and then collated into one database developed in the personal computer database management system, dBASE III. FIREDATA is menu-driven and asks interactive questions of the user that allow searching of the database for various aspects of a fire such as: location, mode of plant operation at the time of the fire, means of detection and suppression, dollar loss, etc. Other features include the capability of searching for single or multiple criteria (using Boolean 'and' or 'or' logical operations), user-defined keyword searches of fire event descriptions, summary displays of fire event data by plant name of calendar date, and options for calculating the years of operating experience for all commercial nuclear power plants from any user-specified date and the ability to display general plant information. 2 - Method of solution: The six database files used to store nuclear power plant fire event information, FIRE, DESC, SUM, OPEXPER, OPEXBWR, and EXPERPWR, are accessed by software to display information meeting user-specified criteria or to perform numerical calculations (e.g., to determine the operating experience of a nuclear plant). FIRE contains specific searchable data relating to each of 354 fire events. A keyword concept is used to search each of the 31 separate entries or fields. DESC contains written descriptions of each of the fire events. SUM holds basic plant information for all plants proposed, under construction, in operation, or decommissioned. This includes the initial criticality and commercial operation dates, the physical location of the plant, and its operating capacity. OPEXPER contains date information and data on how various plant locations are

  12. Dynamics of H II regions around exiled O stars

    Science.gov (United States)

    Mackey, Jonathan; Langer, Norbert; Gvaramadze, Vasilii V.

    2013-11-01

    At least 25 per cent of massive stars are ejected from their parent cluster, becoming runaways or exiles, travelling with often-supersonic space velocities through the interstellar medium (ISM). Their overpressurized H II regions impart kinetic energy and momentum to the ISM, compress and/or evaporate dense clouds, and can constrain properties of both the star and the ISM. Here, we present one-, two- and (the first) three-dimensional simulations of the H II region around a massive star moving supersonically through a uniform, magnetized ISM, with properties appropriate for the nearby O star ζ Oph. The H II region leaves an expanding overdense shell behind the star and, inside this, an underdense wake that should be filled with hot gas from the shocked stellar wind. The gas column density in the shell is strongly influenced by the ISM magnetic field strength and orientation. Hα emission maps show that H II region remains roughly circular, although the star is displaced somewhat from the centre of emission. For our model parameters, the kinetic energy feedback from the H II region is comparable to the mechanical luminosity of the stellar wind, and the momentum feedback rate is >100 times larger than that from the wind and ≈10 times larger than the total momentum input rate available from radiation pressure. Compared to the star's eventual supernova explosion, the kinetic energy feedback from the H II region over the star's main-sequence lifetime is >100 times less, but the momentum feedback is up to 4 times larger. H II region dynamics are found to have only a small effect on the ISM conditions that a bow shock close to the star would encounter.

  13. Urban-wildland fires: how California and other regions of the US can learn from Australia

    International Nuclear Information System (INIS)

    Stephens, Scott L; Moritz, Max A; Adams, Mark A; Handmer, John; Kearns, Faith R; Leicester, Bob; Leonard, Justin

    2009-01-01

    Most urban-wildland interface (UWI) fires in California and the other regions of the US are managed in a similar fashion: fire agencies anticipate the spread of fire, mandatory evacuations are ordered, and professional fire services move in and attempt to suppress the fires. This approach has not reduced building losses in California. Conversely, losses and the associated suite of environmental impacts, including reduced air quality, have dramatically increased over the last three decades. In contrast to California, Australia has developed a more effective 'Prepare, stay and defend, or leave early' policy. Using this approach, trained residents decide whether they will stay and actively defend their well-prepared property or leave early before a fire threatens them. Australian strategies have the distinct advantage of engaging and preparing those most affected by such fires: homeowners. Investing more in fire suppression alone, the common response after large UWI fires in California, will not reduce losses. US society has attempted to accommodate many of the natural hazards inherent to the landscapes that we inhabit; by examining the Australian model, we may approach a more sustainable coexistence with fire as well. However, it should be noted that some California communities are so vulnerable that a 'Prepare and leave early' strategy may be the only option.

  14. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, A [Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, 1040 Vienna (Austria); Balzter, H [Department of Geography, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); George, C, E-mail: ab@ipf.tuwien.ac.a [Earth Observation, Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB (United Kingdom)

    2009-10-15

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km{sup 2} under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  15. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    International Nuclear Information System (INIS)

    Bartsch, A; Balzter, H; George, C

    2009-01-01

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km 2 under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  16. Searching for Compact Radio Sources Associated with UCH ii Regions

    Energy Technology Data Exchange (ETDEWEB)

    Masqué, Josep M.; Trinidad, Miguel A.; Rodríguez-Rico, Carlos A. [Departamento de Astronomía, Universidad de Guanajuato, Apdo. Postal 144, 36000 Guanajuato, México (Mexico); Rodríguez, Luis F.; Kurtz, Stan; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, México (Mexico); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2017-02-10

    Ultra-compact (UC)H ii regions represent a very early stage of massive star formation. The structure and evolution of these regions are not yet fully understood. Interferometric observations showed in recent years that compact sources of uncertain nature are associated with some UCH ii regions. To examine this, we carried out VLA 1.3 cm observations in the A configuration of selected UCH ii regions in order to report additional cases of compact sources embedded in UCH ii regions. With these observations, we find 13 compact sources that are associated with 9 UCH ii regions. Although we cannot establish an unambiguous nature for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that are probably deeply embedded in the dense ionized gas of the UCH ii region. These sources are photoevaporated by the exciting star of the region and will last for 10{sup 4}–10{sup 5} years. They may play a crucial role in the evolution of the UCH ii region as the photoevaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem of these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photoevaporating objects such as those of the first type, but with significantly lower mass depletion rates. The remaining sources of this second type appear unresolved, and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.

  17. 75 FR 21979 - NRC Region II Address and Main Telephone Number Changes

    Science.gov (United States)

    2010-04-27

    ... Region II Address and Main Telephone Number Changes AGENCY: Nuclear Regulatory Commission. ACTION: Final... address for its Region II office and to update the main telephone number. The Region II office move and... update the NRC Region II office street address and office main telephone number. The physical location of...

  18. Far-infrared observations of Large Magellanic Cloud H II regions

    International Nuclear Information System (INIS)

    Werner, M.W.; Becklin, E.E.; Gatley, I.; Ellis, M.J.; Hyland, A.R.; Robinson, G.; Thomas, J.A.

    1978-01-01

    Far-infrared emission has been measured from four Large Magellanic Cloud H II regions: the 30 Doradus nebula, MC75, MC76 and MC77. The far-infrared radiation is thermal emission from dust heated by starlight. The results show that the LMC H II regions, like H II regions in the Galaxy, have far-infrared luminosities comparable to the total luminosity of their exciting stars. (author)

  19. Assessment of crown fire initiation and spread models in Mediterranean conifer forests by using data from field and laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez y Silva, F.; Guijarro, M.; Madrigal, J.; Jiménez, E.; Molina, J.R.; Hernando, C.; Vélez, R.; Vega, J.A.

    2017-11-01

    Aims of study: To conduct the first full-scale crown fire experiment carried out in a Mediterranean conifer stand in Spain; to use different data sources to assess crown fire initiation and spread models, and to evaluate the role of convection in crown fire initiation. Area of study: The Sierra Morena mountains (Coordinates ETRS89 30N: X: 284793-285038; Y: 4218650-4218766), southern Spain, and the outdoor facilities of the Lourizán Forest Research Centre, northwestern Spain. Material and methods: The full-scale crown fire experiment was conducted in a young Pinus pinea stand. Field data were compared with data predicted using the most used crown fire spread models. A small-scale experiment was developed with Pinus pinaster trees to evaluate the role of convection in crown fire initiation. Mass loss calorimeter tests were conducted with P. pinea needles to estimate residence time of the flame, which was used to validate the crown fire spread model. Main results: The commonly used crown fire models underestimated the crown fire spread rate observed in the full-scale experiment, but the proposed new integrated approach yielded better fits. Without wind-forced convection, tree crowns did not ignite until flames from an intense surface fire contacted tree foliage. Bench-scale tests based on radiation heat flux therefore offer a limited insight to full-scale phenomena. Research highlights: Existing crown fire behaviour models may underestimate the rate of spread of crown fires in many Mediterranean ecosystems. New bench-scale methods based on flame buoyancy and more crown field experiments allowing detailed measurements of fire behaviour are needed.

  20. Assessment of crown fire initiation and spread models in Mediterranean conifer forests by using data from field and laboratory experiments

    International Nuclear Information System (INIS)

    Rodríguez y Silva, F.; Guijarro, M.; Madrigal, J.; Jiménez, E.; Molina, J.R.; Hernando, C.; Vélez, R.; Vega, J.A.

    2017-01-01

    Aims of study: To conduct the first full-scale crown fire experiment carried out in a Mediterranean conifer stand in Spain; to use different data sources to assess crown fire initiation and spread models, and to evaluate the role of convection in crown fire initiation. Area of study: The Sierra Morena mountains (Coordinates ETRS89 30N: X: 284793-285038; Y: 4218650-4218766), southern Spain, and the outdoor facilities of the Lourizán Forest Research Centre, northwestern Spain. Material and methods: The full-scale crown fire experiment was conducted in a young Pinus pinea stand. Field data were compared with data predicted using the most used crown fire spread models. A small-scale experiment was developed with Pinus pinaster trees to evaluate the role of convection in crown fire initiation. Mass loss calorimeter tests were conducted with P. pinea needles to estimate residence time of the flame, which was used to validate the crown fire spread model. Main results: The commonly used crown fire models underestimated the crown fire spread rate observed in the full-scale experiment, but the proposed new integrated approach yielded better fits. Without wind-forced convection, tree crowns did not ignite until flames from an intense surface fire contacted tree foliage. Bench-scale tests based on radiation heat flux therefore offer a limited insight to full-scale phenomena. Research highlights: Existing crown fire behaviour models may underestimate the rate of spread of crown fires in many Mediterranean ecosystems. New bench-scale methods based on flame buoyancy and more crown field experiments allowing detailed measurements of fire behaviour are needed.

  1. Fire regime in Mediterranean ecosystem

    Science.gov (United States)

    Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo

    2010-05-01

    The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in

  2. Evaluation of the Onset of Flashover in Room Fire Experiments

    DEFF Research Database (Denmark)

    Poulsen, Annemarie; Jomaas, Grunde; Bwalya, Alex

    2013-01-01

    Two series of full scale room fire tests comprising 16 experiments are used for a study of the onset of flashover. The fire loads were varied and represented seven different commercial applications and two non-combustible linings with significantly different thermal inertia were used. The test...... results showed that by lowering the thermal inertia and thereby lowering the heat loss from the room and at the same time increasing the thermal feedback, a thermal runaway occurred before significant fire spread; but only for objects composed of a mixture of plastic/rubber/textiles and wood....../celluloses. In these cases the onset of thermal runaway was found to occur at room temperatures in the range 300C to 420C, supporting that the room temperature at the onset of thermal runaway is strongly dependent on the thermal inertia. It also shows that the onset of thermal runaway cannot in all cases implicitly...

  3. Experiments and CFD simulations of DTBP pool fires; Experimentelle Untersuchungen und CFD-Simulationen von DTBP-Poolfeuern

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Hyunjoo

    2007-07-01

    Flammable liquids are used increasingly often world-wide. Their storage, transport and chemical reactions are a considerable safety problem in industrial plants. Heat release and combustion products of big fires are a high hazard for persons, the immediate vicinity and the environment in general. Investigations of pool fires were carried out for a realistic assessment of the potential hazards to persons and plants in the immediate vicinity. Most of the available data on fire effects, safety distances and other measures relevant to fire protection are for hydrocarbons, alcohols and liquefied gases. LIttle is known on pool fires of liquid organic peroxides, which have quite different combustion characteristics with higher mass burnup rates and higher heat emissions into the vicinity. The dissertation presents experiments to characterize the combustion characteristics of organic peroxides as a function of the pool diameter. Di-tert-butylperoxide (DTBPL) was chosen for the experiments because it has a relatively high thermal stability as compared to other organic peroxides. Mass burnup rates, flame temperatures, the surface emissive power (SEP), the strength of thermal radiation and the flame length were measured as a function of the pool diameter. Further, parameters required for CFD simulations of DTBP pool fires were identified experimentally in order to ensure realistic modelling of real fires as a basis, e.g., for assessing safety distances. Experiments on large pool fires are costly and require much equipment and technical preparations so that fires are limited to pool diameters of only a few meters as a rule. CFD simulations would be capable of improving the prediction of safety-relevant parameters like flame temperature, surface emissive power, radiation strength and flame length without limiting the pool diameter or the fuel volume. Appropriate sub-models were used for modelling pool fires of organic peroxides, and the simulation results were critically

  4. Pipe Overpack Container Fire Testing: Phase I II & III.

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Victor G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ammerman, Douglas J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lopez, Carlos [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The Pipe Overpack Container (POC) was developed at Rocky Flats to transport plutonium residues with higher levels of plutonium than standard transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In 1996 Sandia National Laboratories (SNL) conducted a series of tests to determine the degree of protection POCs provided during storage accident events. One of these tests exposed four of the POCs to a 30-minute engulfing pool fire, resulting in one of the 7A drum overpacks generating sufficient internal pressure to pop off its lid and expose the top of the pipe container (PC) to the fire environment. The initial contents of the POCs were inert materials, which would not generate large internal pressure within the PC if heated. POCs are now being used to store combustible TRU waste at Department of Energy (DOE) sites. At the request of DOE’s Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA), starting in 2015 SNL conducted a series of fire tests to examine whether PCs with combustibles would reach a temperature that would result in (1) decomposition of inner contents and (2) subsequent generation of sufficient gas to cause the PC to over-pressurize and release its inner content. Tests conducted during 2015 and 2016 were done in three phases. The goal of the first phase was to see if the PC would reach high enough temperatures to decompose typical combustible materials inside the PC. The goal of the second test phase was to determine under what heating loads (i.e., incident heat fluxes) the 7A drum lid pops off from the POC drum. The goal of the third phase was to see if surrogate aerosol gets released from the PC when the drum lid is off. This report will describe the various tests conducted in phase I, II, and III, present preliminary results from these tests, and discuss implications for the POCs.

  5. Overview of TJ-II experiments

    International Nuclear Information System (INIS)

    Sanchez, J.; Acedo, M.; Alonso, A.

    2007-01-01

    This paper presents an overview of experimental results and progress made in investigating the link between magnetic topology, electric fields and transport in the TJ-II stellarator. The smooth change from positive to negative electric field observed in the core region as the density is raised is correlated with global and local transport data. A statistical description of transport is emerging as a new way to describe the coupling between profiles, plasma flows and turbulence. TJ-II experiments show that the location of rational surfaces inside the plasma can, in some circumstances, provide a trigger for the development of core transitions, providing a critical test for the various models that have been proposed to explain the appearance of transport barriers in relation to magnetic topology. In the plasma core, perpendicular rotation is strongly coupled to plasma density, showing a reversal consistent with neoclassical expectations. In contrast, spontaneous sheared flows in the plasma edge appear to be coupled strongly to plasma turbulence, consistent with the expectation for turbulent driven flows. The local injection of hydrocarbons through a mobile limiter and the erosion produced by plasmas with well-known edge parameters opens the possibility of performing carbon transport studies, relevant for understanding co-deposit formation in fusion devices

  6. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Science.gov (United States)

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  7. 75 FR 16204 - Region II Buffalo District Advisory Council; Public Meeting

    Science.gov (United States)

    2010-03-31

    ... SMALL BUSINESS ADMINISTRATION Region II Buffalo District Advisory Council; Public Meeting AGENCY... meeting of the Region II Buffalo District Advisory Council. The meeting will be open to the public. DATES... Federal Advisory Committee Act (5 U.S.C., Appendix 2), SBA announces the meeting of the Region II Buffalo...

  8. 77 FR 20871 - Region II Buffalo District Advisory Council; Public Meeting

    Science.gov (United States)

    2012-04-06

    ... SMALL BUSINESS ADMINISTRATION Region II Buffalo District Advisory Council; Public Meeting AGENCY... meeting of the Region II Buffalo District Advisory Council. The meeting will be open to the public. DATES... Committee Act (5 U.S.C., Appendix 2), SBA announces the meeting of the Region II Buffalo District Advisory...

  9. 76 FR 59480 - Region II Buffalo District Advisory Council; Public Meeting

    Science.gov (United States)

    2011-09-26

    ... SMALL BUSINESS ADMINISTRATION Region II Buffalo District Advisory Council; Public Meeting AGENCY... meeting of the Region II Buffalo District Advisory Council. The meeting will be open to the public. DATES... Federal Advisory Committee Act (5 U.S.C., Appendix 2), SBA announces the meeting of the Region II Buffalo...

  10. Ionised gas kinematics in bipolar H II regions

    Science.gov (United States)

    Dalgleish, Hannah S.; Longmore, Steven N.; Peters, Thomas; Henshaw, Jonathan D.; Veitch-Michaelis, Joshua L.; Urquhart, James S.

    2018-05-01

    Stellar feedback plays a fundamental role in shaping the evolution of galaxies. Here we explore the use of ionised gas kinematics in young, bipolar H II regions as a probe of early feedback in these star-forming environments. We have undertaken a multi-wavelength study of a young, bipolar H II region in the Galactic disc, G316.81-0.06, which lies at the centre of a massive (˜103 M⊙) infrared-dark cloud filament. It is still accreting molecular gas as well as driving a ˜0.2 pc ionised gas outflow perpendicular to the filament. Intriguingly, we observe a large velocity gradient (47.81 ± 3.21 km s-1 pc-1) across the ionised gas in a direction perpendicular to the outflow. This kinematic signature of the ionised gas shows a reasonable correspondence with the simulations of young H II regions. Based on a qualitative comparison between our observations and these simulations, we put forward a possible explanation for the velocity gradients observed in G316.81-0.06. If the velocity gradient perpendicular to the outflow is caused by rotation of the ionised gas, then we infer that this rotation is a direct result of the initial net angular momentum in the natal molecular cloud. If this explanation is correct, this kinematic signature should be common in other young (bipolar) H II regions. We suggest that further quantitative analysis of the ionised gas kinematics of young H II regions, combined with additional simulations, should improve our understanding of feedback at these early stages.

  11. Safety test No. S-6, launch pad abort sequential test Phase II: solid propellant fire

    International Nuclear Information System (INIS)

    Snow, E.C.

    1975-08-01

    In preparation for the Lincoln Laboratory's LES 8/9 space mission, a series of tests was performed to evaluate the nuclear safety capability of the Multi-Hundred Watt (MHW) Radioisotope Thermoelectric Generator (RTG) to be used to supply power for the satellite. One such safety test is Test No. S-6, Launch Pad Abort Sequential Test. The objective of this test was to subject the RTG and its components to the sequential environments characteristic of a catastrophic launch pad accident to evaluate their capability to contain the 238 PuO 2 fuel. This sequence of environments was to have consisted of the blast overpressure and fragments, followed by the fireball, low velocity impact on the launch pad, and solid propellant fire. The blast overpressure and fragments were subsequently eliminated from this sequence. The procedures and results of Phase II of Test S-6, Solid Propellant Fire are presented. In this phase of the test, a simulant Fuel Sphere Assembly (FSA) and a mockup of a damaged Heat Source Assembly (HSA) were subjected to single proximity solid propellant fires of approximately 10-min duration. Steel was introduced into both tests to simulate the effects of launch pad debris and the solid rocket motor (SRM) casing that might be present in the fire zone. (TFD)

  12. H II region-like galaxies

    International Nuclear Information System (INIS)

    French, H.B.

    1979-01-01

    Line fluxes in the region 3700 to 7100A are presented for 14 galaxies with strong, sharp, H II region-like emission lines. Ten of these galaxies are low luminosity objects (M > -17); the others have M approx. < -20. Ratios of the line fluxes are used to derive electron temperatures and densities, and the abundances of helium, oxygen, nitrogen, neon, and sulfur relative to hydrogen. The low luminosity galaxies are generally found to have oxygen abundances about 30% of normal, while the high luminosity ones generally have about 60% of normal. These galaxies are found to be almost certainly photoionized by hot main sequence stars. The velocity dispersion has been measured for one object; the mass of stars derived for it is several times smaller than the mass of neutral hydrogen which has previously been found in an extended halo around this object. The continuum colors of these galaxies are very blue, and are indistinguishable from those of extragalactic H II regions. No older red population has been convincingly detected. Galactic chemical evolution is investigated through a comparison of the relative abundances in these galaxies with their normal values. It is found that: (i) there is a primary contribution to the nitrogen abundance ((N/O)/sub p = 0.019), but that 80% of the nitrogen in the Galaxy today is of secondary origin; (ii) Ne/O appears to be constant for all objects (Ne/O = 0.23); and (iii) S/O decreases with increasing oxygen abundance, implying that most sulfur is produced in the most massive stars

  13. Improving satellite-based post-fire evapotranspiration estimates in semi-arid regions

    Science.gov (United States)

    Poon, P.; Kinoshita, A. M.

    2017-12-01

    Climate change and anthropogenic factors contribute to the increased frequency, duration, and size of wildfires, which can alter ecosystem and hydrological processes. The loss of vegetation canopy and ground cover reduces interception and alters evapotranspiration (ET) dynamics in riparian areas, which can impact rainfall-runoff partitioning. Previous research evaluated the spatial and temporal trends of ET based on burn severity and observed an annual decrease of 120 mm on average for three years after fire. Building upon these results, this research focuses on the Coyote Fire in San Diego, California (USA), which burned a total of 76 km2 in 2003 to calibrate and improve satellite-based ET estimates in semi-arid regions affected by wildfire. The current work utilizes satellite-based products and techniques such as the Google Earth Engine Application programming interface (API). Various ET models (ie. Operational Simplified Surface Energy Balance Model (SSEBop)) are compared to the latent heat flux from two AmeriFlux eddy covariance towers, Sky Oaks Young (US-SO3), and Old Stand (US-SO2), from 2000 - 2015. The Old Stand tower has a low burn severity and the Young Stand tower has a moderate to high burn severity. Both towers are used to validate spatial ET estimates. Furthermore, variables and indices, such as Enhanced Vegetation Index (EVI), Normalized Difference Moisture Index (NDMI), and the Normalized Burn Ratio (NBR) are utilized to evaluate satellite-based ET through a multivariate statistical analysis at both sites. This point-scale study will able to improve ET estimates in spatially diverse regions. Results from this research will contribute to the development of a post-wildfire ET model for semi-arid regions. Accurate estimates of post-fire ET will provide a better representation of vegetation and hydrologic recovery, which can be used to improve hydrologic models and predictions.

  14. Assessing the outstanding 2003 fire events in Portugal with a Regional Climate Model

    Science.gov (United States)

    Trigo, Ricardo; Jerez, Sonia; Camara, Carlos; Montávez, Juan Pedro

    2013-04-01

    The heatwave that struck western Iberia in the early days of August 2003 was characterized by record high values of both maximum (47.3°C) and minimum (30.6°c) temperatures in Portugal, associated with extremely low humidity levels and relatively intense wind speed (Trigo et al., 2006). These conditions triggered the most devastating sequence of large fires ever registered in Portugal. The estimated total burnt area was about 450.000 ha, including 280.000 ha of forest (Pereira et al., 2011). The outstanding total burnt area value corresponds to roughly 5% of the Portuguese territory, and represents approximately twice the previous maximum observed in 1998 (~220.000 ha), and about four times the long-term average observed between 1980 and 2004. Here we characterise this unusual episode using meteorological fields obtained from both observations and a regional climate model. In this work we use the longest (49-years) high-resolution regional climate simulation available driven by reanalysis data spanning from 1959 to 2007 and covering the entire Iberian Peninsula. This long run was obtained using the MM5 model with a spatial resolution of 10 km. Using this high spatial and temporal resolution we have computed the Canadian Fire Weather Index (FWI) System to produce hourly values of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behaviour (van Wagner, 1987). We show the temporal evolution of high resolution patterns for several fire related variables during the most important days for triggering new fires (the first week of August 2003). Besides the absolute value of Tmax, Tmin, wind (speed and direction), relative humidity and FWI we also evaluate the corresponding anomalies of these fields, obtained after removing the long-term smoothed daily climatology. Pereira M.G., Malamude B.D., Trigo R.M., Alves P.I. (2011) "The History and Characteristics of the 1980-2005 Portuguese Rural Fire Database

  15. Bipolar H II regions produced by cloud-cloud collisions

    Science.gov (United States)

    Whitworth, Anthony; Lomax, Oliver; Balfour, Scott; Mège, Pierre; Zavagno, Annie; Deharveng, Lise

    2018-05-01

    We suggest that bipolar H II regions may be the aftermath of collisions between clouds. Such a collision will produce a shock-compressed layer, and a star cluster can then condense out of the dense gas near the center of the layer. If the clouds are sufficiently massive, the star cluster is likely to contain at least one massive star, which emits ionizing radiation, and excites an H II region, which then expands, sweeping up the surrounding neutral gas. Once most of the matter in the clouds has accreted onto the layer, expansion of the H II region meets little resistance in directions perpendicular to the midplane of the layer, and so it expands rapidly to produce two lobes of ionized gas, one on each side of the layer. Conversely, in directions parallel to the midplane of the layer, expansion of the H II region stalls due to the ram pressure of the gas that continues to fall towards the star cluster from the outer parts of the layer; a ring of dense neutral gas builds up around the waist of the bipolar H II region, and may spawn a second generation of star formation. We present a dimensionless model for the flow of ionized gas in a bipolar H II region created according to the above scenario, and predict the characteristics of the resulting free-free continuum and recombination-line emission. This dimensionless model can be scaled to the physical parameters of any particular system. Our intention is that these predictions will be useful in testing the scenario outlined above, and thereby providing indirect support for the role of cloud-cloud collisions in triggering star formation.

  16. Experimental study of fire barriers preventing vertical fire spread in ETISs

    Directory of Open Access Journals (Sweden)

    Xin Huang

    2013-11-01

    Full Text Available In recent years, the external thermal insulation system (ETIS has been applied increasingly in a large amount of buildings for energy conservation purpose. However, the increase use of combustible insulation materials in the ETIS has raised serious fire safety problems. Fires involving this type of ETIS have caused severe damage and loss. In order to improve its fire safety, fire barriers were suggested to be installed. This paper introduces fire experiments that have been done to study the effects of fire barriers on preventing vertical fire spread along the ETIS. The experiments were performed according to BS 8414-1:2002 “Fire performance of external cladding systems – Part 1: Test method for non-loadbearing external cladding systems applied to the face of the building”. The test facility consists of a 9 m high wall. The fire sources were wood cribs with a fire size of 3 ± 0.5 MW. The insulation materials were expanded polystyrene foam (EPS. The fire barrier was a horizontal strip of rockwool with a width of 300 mm. Thermocouples were used to measure temperatures outside and inside the ETIS. A series of experiments with different fire scenarios were done: no fire barrier, two fire barriers and three fire barriers at different heights. Test results were compared. The results show that the ETIS using EPS without fire barriers almost burned out, while the ETIS with fire barriers performed well in preventing fire spread. The temperatures above the fire barrier were much lower than those below the fire barrier, and most of the insulation materials above the top fire barrier stayed in place.

  17. Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savannahs

    Science.gov (United States)

    Alistair M.S. Smith; Martin J. Wooster; Nick A. Drake; Frederick M. Dipotso; Michael J. Falkowski; Andrew T. Hudak

    2005-01-01

    The remote sensing of fire severity is a noted goal in studies of forest and grassland wildfires. Experiments were conducted to discover and evaluate potential relationships between the characteristics of African savannah fires and post-fire surface spectral reflectance in the visible to shortwave infrared spectral region. Nine instrumented experimental fires were...

  18. Stratifying Tropical Fires by Land Cover: Insights into Amazonian Fires, Aerosol Loading, and Regional Deforestation

    Science.gov (United States)

    TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.

    2010-01-01

    This study analyzes changes in the number of fires detected on forest, grass, and transition lands during the 2002-2009 biomass burning seasons using fire detection data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the total number of detected fires correlates well with MODIS mean aerosol optical depth (AOD) from year to year, in accord with other studies. However, we also show that the ratio of forest to savanna fires varies substantially from year to year. Forest fires have trended downward, on average, since the beginning of 2006 despite a modest increase in 2007. Our study suggests that high particulate matter loading detected in 2007 was likely due to a large number of savanna/agricultural fires that year. Finally, we illustrate that the correlation between annual Brazilian deforestation estimates and MODIS fires is considerably higher when fires are stratified by MODIS-derived land cover classifications.

  19. Effects of Lightning and Other Meteorological Factors on Fire Activity in the North American Boreal Forest: Implications for Fire Weather Forecasting

    Science.gov (United States)

    Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.

    2010-01-01

    The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum

  20. Cooperation between regional fire brigades and EDF's power plants

    International Nuclear Information System (INIS)

    Gaudin, B.; Pigeon, M.

    2000-01-01

    An emergency plan has been worked out at each nuclear power plant. This plan involves public authorities, regional fire brigades, hospitals, and EDF's own emergency means. This organization implies that in case of emergency both outside help and intern means have to cooperate efficiently on the site. In order to clarify roles and order hierarchy, common intervention protocols have been written and tested. Joint exercises involving outside help and intern means are regularly organized to test the emergency organization and train the staff. (A.C.)

  1. Implementation & Flight Testing of IMPACT system for Autonomous ISR using Collaborating UAVs with Application to Wild Fire Monitoring, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI and MIT propose to further develop, implement and test the Integrated Mission Planning (ii) Robust on-line learning for prediction of the fire spread using the...

  2. Modeling anthropogenic and natural fire ignitions in an inner-alpine valley

    Directory of Open Access Journals (Sweden)

    G. Vacchiano

    2018-03-01

    Full Text Available Modeling and assessing the factors that drive forest fire ignitions is critical for fire prevention and sustainable ecosystem management. In southern Europe, the anthropogenic component of wildland fire ignitions is especially relevant. In the Alps, however, the role of fire as a component of disturbance regimes in forest and grassland ecosystems is poorly known. The aim of this work is to model the probability of fire ignition for an Alpine region in Italy using a regional wildfire archive (1995–2009 and MaxEnt modeling. We analyzed separately (i winter forest fires, (ii winter fires on grasslands and fallow land, and (iii summer fires. Predictors were related to morphology, climate, and land use; distance from infrastructures, number of farms, and number of grazing animals were used as proxies for the anthropogenic component. Collinearity among predictors was reduced by a principal component analysis. Regarding ignitions, 30 % occurred in agricultural areas and 24 % in forests. Ignitions peaked in the late winter–early spring. Negligence from agrosilvicultural activities was the main cause of ignition (64 %; lightning accounted for 9 % of causes across the study time frame, but increased from 6 to 10 % between the first and second period of analysis. Models for all groups of fire had a high goodness of fit (AUC 0.90–0.95. Temperature was proportional to the probability of ignition, and precipitation was inversely proportional. Proximity from infrastructures had an effect only on winter fires, while the density of grazing animals had a remarkably different effect on summer (positive correlation and winter (negative fires. Implications are discussed regarding climate change, fire regime changes, and silvicultural prevention. Such a spatially explicit approach allows us to carry out spatially targeted fire management strategies and may assist in developing better fire management plans.

  3. Modeling anthropogenic and natural fire ignitions in an inner-alpine valley

    Science.gov (United States)

    Vacchiano, Giorgio; Foderi, Cristiano; Berretti, Roberta; Marchi, Enrico; Motta, Renzo

    2018-03-01

    Modeling and assessing the factors that drive forest fire ignitions is critical for fire prevention and sustainable ecosystem management. In southern Europe, the anthropogenic component of wildland fire ignitions is especially relevant. In the Alps, however, the role of fire as a component of disturbance regimes in forest and grassland ecosystems is poorly known. The aim of this work is to model the probability of fire ignition for an Alpine region in Italy using a regional wildfire archive (1995-2009) and MaxEnt modeling. We analyzed separately (i) winter forest fires, (ii) winter fires on grasslands and fallow land, and (iii) summer fires. Predictors were related to morphology, climate, and land use; distance from infrastructures, number of farms, and number of grazing animals were used as proxies for the anthropogenic component. Collinearity among predictors was reduced by a principal component analysis. Regarding ignitions, 30 % occurred in agricultural areas and 24 % in forests. Ignitions peaked in the late winter-early spring. Negligence from agrosilvicultural activities was the main cause of ignition (64 %); lightning accounted for 9 % of causes across the study time frame, but increased from 6 to 10 % between the first and second period of analysis. Models for all groups of fire had a high goodness of fit (AUC 0.90-0.95). Temperature was proportional to the probability of ignition, and precipitation was inversely proportional. Proximity from infrastructures had an effect only on winter fires, while the density of grazing animals had a remarkably different effect on summer (positive correlation) and winter (negative) fires. Implications are discussed regarding climate change, fire regime changes, and silvicultural prevention. Such a spatially explicit approach allows us to carry out spatially targeted fire management strategies and may assist in developing better fire management plans.

  4. Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China

    Directory of Open Access Journals (Sweden)

    Meifang Liu

    2017-03-01

    Full Text Available Grassland fire is one of the most important disturbance factors of the natural ecosystem. Climate factors influence the occurrence and development of grassland fire. An analysis of the climate conditions of fire occurrence can form the basis for a study of the temporal and spatial variability of grassland fire. The purpose of this paper is to study the effects of monthly time scale climate factors on the occurrence of grassland fire in HulunBuir, located in the northeast of the Inner Mongolia Autonomous Region in China. Based on the logistic regression method, we used the moderate-resolution imaging spectroradiometer (MODIS active fire data products named thermal anomalies/fire daily L3 Global 1km (MOD14A1 (Terra and MYD14A1 (Aqua and associated climate data for HulunBuir from 2000 to 2010, and established the model of grassland fire climate index. The results showed that monthly maximum temperature, monthly sunshine hours and monthly average wind speed were all positively correlated with the fire climate index; monthly precipitation, monthly average temperature, monthly average relative humidity, monthly minimum relative humidity and the number of days with monthly precipitation greater than or equal to 5 mm were all negatively correlated with the fire climate index. We used the active fire data from 2011 to 2014 to validate the fire climate index during this time period, and the validation result was good (Pearson’s correlation coefficient was 0.578, which showed that the fire climate index model was suitable for analyzing the occurrence of grassland fire in HulunBuir. Analyses were conducted on the temporal and spatial distribution of the fire climate index from January to December in the years 2011–2014; it could be seen that from March to May and from September to October, the fire climate index was higher, and that the fire climate index of the other months is relatively low. The zones with higher fire climate index are mainly

  5. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    Science.gov (United States)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP) observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM) and the Fire Inventory from NCAR (FINN) are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP) and the Global Fire Assimilation System (GFAS) are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA) field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September-31 October 2012. Aerosol optical thickness (AOT550 nm) derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS) operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO) emission estimates exhibit significant linear correlations (r, p > 0.05 level, Student t test) between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model simulation driven by 3BEM and FINN

  6. EBR-II: twenty years of operating experience

    International Nuclear Information System (INIS)

    Lentz, G.L.; Buschman, H.W.; Smith, R.N.

    1985-01-01

    Experimental Breeder Reactor No. 2 (EBR-II) is an unmoderated, sodium-cooled reactor with a design power of 62.5 MWt. For the last 20 years EBR-II has operated safely, has demonstrated stable operating characteristics, has shown excellent performance of its sodium components, and has had an excellent plant factor. These years of operating experience provide a valuable resource to the nuclear community for the development and design of future liquid metal fast reactors. This report provides a brief description of the EBR-II plant and its early operating experience, describes some recent problems of interest to the nuclear community, and also mentions some of the significant operating achievements of EBR-II. Finally, a few words and speculations on EBR-II's future are offered. 4 figs., 1 tab

  7. SIMMER-II analysis of transition-phase experiments

    International Nuclear Information System (INIS)

    Wehner, T.R.; Bell, C.R.

    1985-01-01

    Analyses of Los Alamos transition-phase experiments with the SIMMER-II computer code are reported. These transient boilup experiments simulated the recriticality-induced transient motion of a boiling pool of molten fuel, molten steel and steel vapor, within a subassembly duct in a liquid-metal fast breeder reactor during the transition phase of a core-disruptive accident. The two purposes of these experiments were to explore and reach a better understanding of fast reactor safety issues, and to provide data for SIMMER-II verification. Experimental data, consisting of four pressure traces and a high-speed movie, were recorded for four sets of initial conditions. For three of the four cases, SIMMER-II-calculated pressures compared reasonably well with the experimental pressures. After a modification to SIMMER-II's liquid-vapor drag correlation, the comparison for the fourth case was reasonable also. 12 refs., 4 figs

  8. Evaluating the SEVIRI Fire Thermal Anomaly Detection Algorithm across the Central African Republic Using the MODIS Active Fire Product

    Directory of Open Access Journals (Sweden)

    Patrick H. Freeborn

    2014-02-01

    Full Text Available Satellite-based remote sensing of active fires is the only practical way to consistently and continuously monitor diurnal fluctuations in biomass burning from regional, to continental, to global scales. Failure to understand, quantify, and communicate the performance of an active fire detection algorithm, however, can lead to improper interpretations of the spatiotemporal distribution of biomass burning, and flawed estimates of fuel consumption and trace gas and aerosol emissions. This work evaluates the performance of the Spinning Enhanced Visible and Infrared Imager (SEVIRI Fire Thermal Anomaly (FTA detection algorithm using seven months of active fire pixels detected by the Moderate Resolution Imaging Spectroradiometer (MODIS across the Central African Republic (CAR. Results indicate that the omission rate of the SEVIRI FTA detection algorithm relative to MODIS varies spatially across the CAR, ranging from 25% in the south to 74% in the east. In the absence of confounding artifacts such as sunglint, uncertainties in the background thermal characterization, and cloud cover, the regional variation in SEVIRI’s omission rate can be attributed to a coupling between SEVIRI’s low spatial resolution detection bias (i.e., the inability to detect fires below a certain size and intensity and a strong geographic gradient in active fire characteristics across the CAR. SEVIRI’s commission rate relative to MODIS increases from 9% when evaluated near MODIS nadir to 53% near the MODIS scene edges, indicating that SEVIRI errors of commission at the MODIS scene edges may not be false alarms but rather true fires that MODIS failed to detect as a result of larger pixel sizes at extreme MODIS scan angles. Results from this work are expected to facilitate (i future improvements to the SEVIRI FTA detection algorithm; (ii the assimilation of the SEVIRI and MODIS active fire products; and (iii the potential inclusion of SEVIRI into a network of geostationary

  9. Modeling of compartment fire

    International Nuclear Information System (INIS)

    Sathiah, P.; Siccama, A.; Visser, D.; Komen, E.

    2011-01-01

    Fire accident in a containment is a serious threat to nuclear reactors. Fire can cause substantial loss to life and property. The risk posed by fire can also exceed the risk from internal events within a nuclear reactor. Numerous research efforts have been performed to understand and analyze the phenomenon of fire in nuclear reactor and its consequences. Modeling of fire is an important subject in the field of fire safety engineering. Two approaches which are commonly used in fire modeling are zonal modeling and field modeling. The objective of this work is to compare zonal and field modeling approach against a pool fired experiment performed in a well-confined compartment. Numerical simulations were performed against experiments, which were conducted within PRISME program under the framework of OECD. In these experiments, effects of ventilation flow rate on heat release rate in a confined and mechanically ventilated compartment is investigated. Time dependent changes in gas temperature and oxygen mass fraction were measured. The trends obtained by numerical simulation performed using zonal model and field model compares well with experiments. Further validation is needed before this code can be used for fire safety analyses. (author)

  10. Fire simulation in nuclear facilities: the FIRAC code and supporting experiments

    International Nuclear Information System (INIS)

    Burkett, M.W.; Martin, R.A.; Fenton, D.L.; Gunaji, M.V.

    1984-01-01

    The fire accident analysis computer code FIRAC was designed to estimate radioactive and nonradioactive source terms and predict fire-induced flows and thermal and material transport within the ventilation systems of nuclear fuel cycle facilities. FIRAC maintains its basic structure and features and has been expanded and modified to include the capabilities of the zone-type compartment fire model computer code FIRIN developed by Battelle Pacific Northwest Laboratory. The two codes have been coupled to provide an improved simulation of a fire-induced transient within a facility. The basic material transport capability of FIRAC has been retained and includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, gas dynamics, material transport, and fire and radioactive source terms also can be simulated. Also, a sample calculation has been performed to illustrate some of the capabilities of the code and how a typical facility is modeled with FIRAC. In addition to the analytical work being performed at Los Alamos, experiments are being conducted at the New Mexico State University to support the FIRAC computer code development and verification. This paper summarizes two areas of the experimental work that support the material transport capabiities of the code: the plugging of high-efficiency particulate air (HEPA) filters by combustion aerosols and the transport and deposition of smoke in ventilation system ductwork

  11. Fire simulation in nuclear facilities--the FIRAC code and supporting experiments

    International Nuclear Information System (INIS)

    Burkett, M.W.; Martin, R.A.; Fenton, D.L.; Gunaji, M.V.

    1985-01-01

    The fire accident analysis computer code FIRAC was designed to estimate radioactive and nonradioactive source terms and predict fire-induced flows and thermal and material transport within the ventilation systems of nuclear fuel cycle facilities. FIRAC maintains its basic structure and features and has been expanded and modified to include the capabilities of the zone-type compartment fire model computer code FIRIN developed by Battelle Pacific Northwest Laboratory. The two codes have been coupled to provide an improved simulation of a fire-induced transient within a facility. The basic material transport capability of FIRAC has been retained and includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, gas dynamics, material transport, and fire and radioactive source terms also can be simulated. Also, a sample calculation has been performed to illustrate some of the capabilities of the code and how a typical facility is modeled with FIRAC. In addition to the analytical work being performed at Los Alamos, experiments are being conducted at the New Mexico State University to support the FIRAC computer code development and verification. This paper summarizes two areas of the experimental work that support the material transport capabilities of the code: the plugging of high-efficiency particulate air (HEPA) filters by combustion aerosols and the transport and deposition of smoke in ventilation system ductwork

  12. Wind bubbles within H ii regions around slowly moving stars

    Science.gov (United States)

    Mackey, Jonathan; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert

    2015-01-01

    Interstellar bubbles around O stars are driven by a combination of the star's wind and ionizing radiation output. The wind contribution is uncertain because the boundary between the wind and interstellar medium is difficult to observe. Mid-infrared observations (e.g., of the H ii region RCW 120) show arcs of dust emission around O stars, contained well within the H ii region bubble. These arcs could indicate the edge of an asymmetric stellar wind bubble, distorted by density gradients and/or stellar motion. We present two-dimensional, radiation-hydrodynamics simulations investigating the evolution of wind bubbles and H ii regions around massive stars moving through a dense (nH = 3000 cm-3), uniform medium with velocities ranging from 4 to 16 km s-1. The H ii region morphology is strongly affected by stellar motion, as expected, but the wind bubble is also very aspherical from birth, even for the lowest space velocity considered. Wind bubbles do not fill their H ii regions (we find filling factors of 10-20 per cent), at least for a main sequence star with mass M⋆ ~ 30 M⊙. Furthermore, even for supersonic velocities the wind bow shock does not significantly trap the ionization front. X-ray emission from the wind bubble is soft, faint, and comes mainly from the turbulent mixing layer between the wind bubble and the H ii region. The wind bubble radiates <1 per cent of its energy in X-rays; it loses most of its energy by turbulent mixing with cooler photoionized gas. Comparison of the simulations with the H ii region RCW 120 shows that its dynamical age is ≲0.4 Myr and that stellar motion ≲4 km s-1 is allowed, implying that the ionizing source is unlikely to be a runaway star but more likely formed in situ. The region's youth, and apparent isolation from other O or B stars, makes it very interesting for studies of massive star formation and of initial mass functions. Movies are available in electronic form at http://www.aanda.org

  13. Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region

    Science.gov (United States)

    Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall

    2011-01-01

    Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...

  14. Practitioner Perceptions of Wildland Fire Management across South Europe and Latin America

    Directory of Open Access Journals (Sweden)

    Domingo M. Molina-Terrén

    2016-08-01

    Full Text Available Wildfire presents a challenge to natural resource managers the world over, and the intentional setting of fires can be used to alleviate some of the challenges associated with wildfire management. Prescribed burning can be used prior to wildfires to reduce fuel loads and promote ecological integrity in fire-adapted systems, while suppression burning can help firefighters control the direction, extent, and intensity of wildfire behavior under extreme conditions. In both cases, the success of intentional fire use depends on training, knowledge, experience, and institutional and social support. The influence of these factors can significantly impact whether fire use is perceived as positive or negative, increasing or decreasing, and whether managers are supportive of its incorporation into their management planning and decision-making. Perceived impediments to fire use are likely to differ based on location, level of training and experience, and even the social context of fire management specific to different job positions in natural resource management. In order to explore how managers and stakeholders across the world perceive fire use, we surveyed over 700 respondents from 12 countries and three continents. This study represents the largest survey of perceptions on managed fire use ever conducted. Perceptions differed across age categories, job positions, and regions. Countries or regions with larger amounts of wildfire area burned tended to be more supportive of fire use for suppression, while countries with less wildfire had less positive perceptions of fire use for either prescribed or suppression burning. Bureaucracy and social perceptions were identified as impediments to using prescribed fire prior to wildfire occurrence, but neither were identified as impediments to fire use during suppression procedures. Across the countries, fire use in suppression was viewed more positively than prescribed fire use prior to wildfire occurrence.

  15. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA experiment

    Directory of Open Access Journals (Sweden)

    G. Pereira

    2016-06-01

    Full Text Available Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. While most fire emission inventories utilize the parameters of burned area, vegetation fuel load, emission factors, and other parameters to estimate the biomass burned and its associated emissions, several more recent inventories apply an alternative method based on fire radiative power (FRP observations to estimate the amount of biomass burned and the corresponding emissions of trace gases and aerosols. The Brazilian Biomass Burning Emission Model (3BEM and the Fire Inventory from NCAR (FINN are examples of the first, while the Brazilian Biomass Burning Emission Model with FRP assimilation (3BEM_FRP and the Global Fire Assimilation System (GFAS are examples of the latter. These four biomass burning emission inventories were used during the South American Biomass Burning Analysis (SAMBBA field campaign. This paper analyzes and inter-compared them, focusing on eight regions in Brazil and the time period of 1 September–31 October 2012. Aerosol optical thickness (AOT550 nm derived from measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS operating on board the Terra and Aqua satellites is also applied to assess the inventories' consistency. The daily area-averaged pyrogenic carbon monoxide (CO emission estimates exhibit significant linear correlations (r, p  >  0.05 level, Student t test between 3BEM and FINN and between 3BEM_ FRP and GFAS, with values of 0.86 and 0.85, respectively. These results indicate that emission estimates in this region derived via similar methods tend to agree with one other. However, they differ more from the estimates derived via the alternative approach. The evaluation of MODIS AOT550 nm indicates that model

  16. Fire and Smoke Model Evaluation Experiment: Coordination of a study to improve smoke modeling for fire operations within the United States

    Science.gov (United States)

    French, N. H. F.; Ottmar, R. D.; Brown, T. J.; Larkin, N. K.

    2017-12-01

    The Fire and Smoke Model Evaluation Experiment (FASMEE) is an integrative research effort to identify and collect critical measurements to improve operational wildland fire and smoke prediction systems. FASMEE has two active phases and one suggested phase. Phase 1 is the analysis and planning process to assess the current state of fire-plume-smoke modeling and to determine the critical measurements required to evaluate and improve these operational fire and smoke models. As the major deliverable for Phase 1, a study plan has been completed that describes the measurement needs, field campaigns, and command, safety and air space de-confliction plans necessary to complete the FASMEE project. Phase 2 is a set of field campaigns to collect data during 2019-2022. Future Improvements would be a set of analyses and model improvements based on the data collected within Phase 2 that is dependent on identifying future funding sources. In this presentation, we will review the FASMEE Study Plan and detailed measurements and conditions expected for the four to five proposed research burns. The recommended measurements during Phase 2 span the four interrelated disciplines of FASMEE: fuels and consumption, fire behavior and energy, plume dynamics and meteorology, and smoke emissions, chemistry, and transport. Fuel type, condition, and consumption during wildland fire relates to several fire impacts including radiative heating, which provides the energy that drives fire dynamics. Local-scale meteorology is an important factor which relates to atmospheric chemistry, dispersion, and transport. Plume dynamics provide the connection between fire behavior and far-field smoke dispersion, because it determines the vertical distribution of the emissions. Guided by the data needs and science questions generated during Phase 1, three wildland fire campaigns were selected. These included the western wildfire campaign (rapid deployment aimed at western wildfires supporting NOAA, NASA, and NSF

  17. A transient overpower experiment in EBR-II

    International Nuclear Information System (INIS)

    Herzog, J.P.; Tsai, H.; Dean, E.M.; Aoyama, T.; Yamamoto, K.

    1994-01-01

    The TOPI-IE test was a transient overpower test on irradiate mixed-oxide fuel pins in the Experimental Breeder Reactor-II (EBR-II). The test, the fifth in a series, was part of a cooperative program between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan to conduct operational transient testing on mixed-oxide fuel pins in the metal-fueled EBR-II. The principle objective of the TOPI-1E test was to assess breaching margins for irradiated mixed-oxide fuel pins over the Plant Protection System (PPS) thresholds during a slow, extended overpower transient. This paper describes the effect of the TOPI-1E experiment on reactor components and the impact of the experiment on the long-term operability of the reactor. The paper discusses the role that SASSYS played in the pre-test safety analysis of the experiment. The ability of SASSYS to model transient overpower events is detailed by comparisons of data from the experiment with computed reactor variables from a SASSYS post-test simulation of the experiment

  18. Wind Tunnel Experiments to Study Chaparral Crown Fires.

    Science.gov (United States)

    Cobian-Iñiguez, Jeanette; Aminfar, AmirHessam; Chong, Joey; Burke, Gloria; Zuniga, Albertina; Weise, David R; Princevac, Marko

    2017-11-14

    The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer was constructed with excelsior (shredded wood). We developed a methodology to measure mass loss, temperature, and flame height for both fuel layers. Thermocouples placed in each layer estimated temperature. A video camera captured the visible flame. Post-processing of digital imagery yielded flame characteristics including height and flame tilt. A custom crown mass loss instrument developed in-house measured the evolution of the mass of the crown layer during the burn. Mass loss and temperature trends obtained using the technique matched theory and other empirical studies. In this study, we present detailed experimental procedures and information about the instrumentation used. The representative results for the fuel mass loss rate and temperature filed within the fuel bed are also included and discussed.

  19. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.

    Science.gov (United States)

    Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C

    2018-04-15

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.

  20. The Influence of Large-Scale Circulation on Fire Outbreaks in the Amazon Region

    Science.gov (United States)

    Pires, L. B. M.; Romao, M.; Freitas, A. C. V.

    2017-12-01

    The combination of alterations in land use cover and severe droughts may dramatically increase fire outbreaks. Tropical convection in the Amazon Basin is regulated mainly by large-scale atmospheric systems such as the Walker circulation. Many of the documented drought episodes in the Amazon occurred during intense El Niño events such as those recorded in 1926, 1983, 1997-1998, and 2010. However, not all El Niño events are related to drought in the Amazon. Recent studies have also pointed out the importance of the tropical Atlantic Ocean in the modulation of the Amazonian climate, as observed during the drought episodes in 2005 and 2010. This work investigates the fire outbreak tendency in the Amazon region, and the influence of large-scale circulation on these events. Data from the Fire Program of the Center for Weather Forecasting and Climate Studies (CPTEC/INPE) show a substantial increase in the number of fire outbreaks in the last few years, especially during 2016. However, in the 2017 year a sharp drop in fire outbreaks reaching levels similar to the years prior to 2016 is being noted, already showing a reduction of 54% in relation to the preceding 2016 year. The 2015-2016 period was marked by one of the strongest El Niño in history. This was reflected in the increase of the number of fire outbreaks due to the increase of the drought and temperature elevation period. On the other hand, the 2017 year is being characterized by a condition of neutrality in relation to the El Niño-Southern Oscillation (ENSO) phenomena, and have overall presented positive sea surface temperature (SST) anomalies in the tropical Atlantic. Variations of these systems and their relation to fire outbreaks is demonstrated.

  1. Streaming-plasma measurements in the Baseball II-T mirror experiment

    International Nuclear Information System (INIS)

    Damm, C.C.; Foote, J.H.; Futch, A.H.; Goodman, R.K.; Hornady, R.S.; Osher, J.E.; Porter, G.D.

    1977-01-01

    The warm plasma from a deuterium-loaded titanium washer gun, streaming along magnetic-field lines through the steady-state magnetic well of Baseball II, has been examined for its suitability in this experimental situation as a target plasma for hot-ion buildup experiments and for microinstability control. The gun was positioned near the magnetic axis outside the mirror region. Measurements were made with gridded, end-loss detectors placed outside the opposite mirror, a microwave interferometer, a beam-attenuation detector, and other diagnostics

  2. Infrared study of seven possible compact H II regions

    International Nuclear Information System (INIS)

    Sibille, F.; Lunel, M.; Bergeat, J.

    1976-01-01

    We report observations of seven possible compact H II regions in the infrared with the hydrogen spectrum in order to derive extinction and emission measures. The emission measure is compared with available radio data. For two sources, agreement is found between radio and infrared data. Infrared excess is found in four sources, its origin is discussed. Two sources cannot be interpreted as compact H II regions. (orig.) [de

  3. Analysis of historical forest fire regime in Madrid region (1984-2010) and its relation with land-use/land-cover changes

    Science.gov (United States)

    Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta

    2013-04-01

    Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land

  4. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    International Nuclear Information System (INIS)

    Sathiah, Pratap; Roelofs, Ferry

    2014-01-01

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor

  5. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Roelofs, Ferry, E-mail: roelofs@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755ZG Petten (Netherlands)

    2014-10-15

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor.

  6. Fires of sodium installations

    International Nuclear Information System (INIS)

    Hajek, L.; Tlalka, R.

    1984-01-01

    A survey is presented of the literature dealing with fires of sodium installations between 1974 and 1981. Also described are three experimental fires of ca 50 kg of sodium in an open area, monitored by UJV Rez. The experimental conditions of the experiments are described and a phenomenological description is presented of the course of the fires. The experiments showed a relationship between wind velocity in the area surrounding the fire and surface temperature of the sodium flame. Systems analysis methods were applied to sodium area, spray and tube fires. (author)

  7. ERB-II operating experience

    International Nuclear Information System (INIS)

    Smith, R.N.; Cissel, D.W.; Smith, R.R.

    1977-01-01

    As originally designed and operated, EBR-II successfully demonstrated the concept of a sodium-cooled fast breeder power plant with a closed fuel reprocessing cycle (mini-nuclear park). Subsequent operation has been as an irradiation facility, a role which will continue into the foreseeable future. Since the beginning of operation in 1961, operating experience of EBR-II has been very satisfactory. Most of the components and systems have performed well. In particular, the mechanical performance of heat-removal systems has been excellent. A review of the operating experience reveals that all the original design objectives have been successfully demonstrated. To date, no failures or incidents resulting in serious in-core or out-of-core consequences have occurred. No water-to-sodium leaks have been detected over the life of the plant. At the present time, the facility is operating very well and continuously except for short shutdowns required by maintenance, refueling, modification, and minor repair. A plant factor of 76.9% was achieved for the calendar year 1976

  8. Fires in refugee and displaced persons settlements: The current situation and opportunities to improve fire prevention and control.

    Science.gov (United States)

    Kazerooni, Yasaman; Gyedu, Adam; Burnham, Gilbert; Nwomeh, Benedict; Charles, Anthony; Mishra, Brijesh; Kuah, Solomon S; Kushner, Adam L; Stewart, Barclay T

    2016-08-01

    We aimed to describe the burden of fires in displaced persons settlements and identify interventions/innovations that might address gaps in current humanitarian guidelines. We performed a systematic review of: (i) academic and non-academic literature databases; and (ii) guidelines from leading humanitarian agencies/initiatives regarding fire prevention/control. Of the 1521 records retrieved, 131 reports described settlement fires in 31 hosting countries since 1990. These incidents resulted in 487 deaths, 790 burn injuries, displacement of 382,486 individuals and destruction of 50,509 shelters. There was a 25-fold increase in the rate of settlement fires from 1990 to 2015 (0.002-0.051 per 100,000 refugees, respectively). Only 4 of the 15 leading humanitarian agencies provided recommendations about fire prevention/control strategies. Potentially useful interventions/innovations included safer stoves (e.g. solar cookers) and fire retardant shelter materials. The large and increasing number of fires in displaced persons settlements highlights the need to redress gaps in humanitarian fire prevention/control guidelines. The way forward includes: (i) developing consensus among aid agencies regarding fire prevention/control strategies; (ii) evaluating the impact of interventions/innovations on the burden of fires; and (iii) engaging agencies in a broader discussion about protecting camp residents from armed groups. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  9. Combined use of weather forecasting and satellite remote sensing information for fire risk, fire and fire impact monitoring

    Directory of Open Access Journals (Sweden)

    Wolfgang Knorr

    2011-06-01

    Full Text Available The restoration of fire-affected forest areas needs to be combined with their future protection from renewed catastrophic fires, such as those that occurred in Greece during the 2007 summer season. The present work demonstrates that the use of various sources of satellite data in conjunction with weather forecast information is capable of providing valuable information for the characterization of fire danger with the purpose of protecting the Greek national forest areas. This study shows that favourable meteorological conditions have contributed to the fire outbreak during the days of the unusually damaging fires in Peloponnese as well as Euboia (modern Greek: Evia at the end of August 2007. During those days, Greece was located between an extended high pressure system in Central Europe and a low pressure system in the Middle East. Their combination resulted in strong north-northeasterly winds in the Aegean Sea. As a consequence, strong winds were also observed in the regions of Evia and Peloponnese, especially in mountainous areas. The analysis of satellite images showing smoke emitted from the fires corroborates the results from the weather forecasts. A further analysis using the Fraction of Absorbed Photosyntetically Active Radiation (FAPAR as an indicator of active vegetation shows the extent of the destruction caused by the fire. The position of the burned areas coincides with that of the active fires detected in the earlier satellite image. Using the annual maximum FAPAR as an indicator of regional vegetation density, it was found that only regions with relatively high FAPAR were burned.

  10. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    Science.gov (United States)

    Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien

    2018-05-01

    Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these

  11. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    Directory of Open Access Journals (Sweden)

    H.-H. Lee

    2018-05-01

    Full Text Available Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF model coupled with a chemistry component (WRF-Chem to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning versus non-fire (including fossil fuel combustion, and road dust, etc. sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a fossil fuel burning only, (b biomass burning only, and (c both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from  ∼  4110 per year in 2002 to  ∼  6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is

  12. A GIS-based decision support system for determining the shortest and safest route to forest fires: a case study in Mediterranean Region of Turkey.

    Science.gov (United States)

    Akay, Abdullah E; Wing, Michael G; Sivrikaya, Fatih; Sakar, Dursun

    2012-03-01

    The ability of firefighting vehicles and staff to reach a fire area as quickly as possible is critical in fighting against forest fires. In this study, a Geographical Information System-based decision support system was developed to assist fire managers in determining the fastest and the safest or more reliable access routes from firefighting headquarters to fire areas. The decision support system was tested in the Kahramanmaras Forestry Regional Directoratein the Mediterranean region of Turkey. The study area consisted of forested lands which had been classified according to fire sensitivity. The fire response routing simulations considered firefighting teams located in 20 firefighting headquarter locations. The road network, the locations of the firefighting headquarters, and possible fire locations were mapped for simulation analysis. In alternative application simulations, inaccessible roads which might be closed due to fire or other reasons were indicated in the network analysis so that the optimum route was not only the fastest but also the safest and most reliable path. The selection of which firefighting headquarters to use was evaluated by considering critical response time to potential fire areas based on fire sensitivity levels. Results indicated that new firefighting headquarters should be established in the region in order to provide sufficient firefighting response to all forested lands. In addition, building new fire access roads and increasing the design speed on current roads could also increase firefighting response capabilities within the study area.

  13. Analyses of out-of-pile freezing experiments by SIMMER-II

    International Nuclear Information System (INIS)

    Sawada, Tetsuo; Ninokata, Hisashi

    1994-01-01

    This paper describes the interpretation of the TRAN Simulation experiments performed by SIMBATH facility of KfK. Two typical TRAN Simulation experiments were analyzed by using the SIMMER-II code. The original TRAN experiments were performed at SNL in order to examine the freezing behavior of molten UO 2 injected into an annular channel. In the TRAN Simulation experiments of SIMBATH series, similar freezing phenomena were investigated for molten thermite, i.e., a mixture of Al 2 O 3 and iron, instead of UO 2 . The analyses of the simulation experiments by SIMMER-II code aimed at clarifying the applicability of the code and interpreting the freezing process during the experiments. Distribution of molten materials that had deposited in the test section was compared between experimental measurements and calculation by SIMMER-II. Through this study, it has been confirmed that SIMMER-II can well reproduce the TRAN Simulation experiments with allowable difference. The calculations by SIMMER-II also suggested that further model improvements, e.g., freezing on a convex surface, would be effective for a better interpretation of the freezing phenomena. (author)

  14. Developing Models to Predict the Number of Fire Hotspots from an Accumulated Fuel Dryness Index by Vegetation Type and Region in Mexico

    Directory of Open Access Journals (Sweden)

    D. J. Vega-Nieva

    2018-04-01

    Full Text Available Understanding the linkage between accumulated fuel dryness and temporal fire occurrence risk is key for improving decision-making in forest fire management, especially under growing conditions of vegetation stress associated with climate change. This study addresses the development of models to predict the number of 10-day observed Moderate-Resolution Imaging Spectroradiometer (MODIS active fire hotspots—expressed as a Fire Hotspot Density index (FHD—from an Accumulated Fuel Dryness Index (AcFDI, for 17 main vegetation types and regions in Mexico, for the period 2011–2015. The AcFDI was calculated by applying vegetation-specific thresholds for fire occurrence to a satellite-based fuel dryness index (FDI, which was developed after the structure of the Fire Potential Index (FPI. Linear and non-linear models were tested for the prediction of FHD from FDI and AcFDI. Non-linear quantile regression models gave the best results for predicting FHD using AcFDI, together with auto-regression from previously observed hotspot density values. The predictions of 10-day observed FHD values were reasonably good with R2 values of 0.5 to 0.7 suggesting the potential to be used as an operational tool for predicting the expected number of fire hotspots by vegetation type and region in Mexico. The presented modeling strategy could be replicated for any fire danger index in any region, based on information from MODIS or other remote sensors.

  15. Fire models for assessment of nuclear power plant fires

    International Nuclear Information System (INIS)

    Nicolette, V.F.; Nowlen, S.P.

    1989-01-01

    This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs

  16. Analysis of the tropospheric water distribution during FIRE 2

    Science.gov (United States)

    Westphal, Douglas L.

    1993-01-01

    The Penn State/NCAR mesoscale model, as adapted for use at ARC, was used as a testbed for the development and validation of cloud models for use in General Circulation Models (GCM's). This modeling approach also allows us to intercompare the predictions of the various cloud schemes within the same dynamical framework. The use of the PSU/NCAR mesoscale model also allows us to compare our results with FIRE-II (First International Satellite Cloud Climatology Project Regional Experiment) observations, instead of climate statistics. Though a promising approach, our work to date revealed several difficulties. First, the model by design is limited in spatial coverage and is only run for 12 to 48 hours at a time. Hence the quality of the simulation will depend heavily on the initial conditions. The poor quality of upper-tropospheric measurements of water vapor is well known and the situation is particularly bad for mid-latitude winter since the coupling with the surface is less direct than in summer so that relying on the model to spin-up a reasonable moisture field is not always successful. Though one of the most common atmospheric constituents, water vapor is relatively difficult to measure accurately, especially operationally over large areas. The standard NWS sondes have little sensitivity at the low temperatures where cirrus form and the data from the GOES 6.7 micron channel is difficult to quantify. For this reason, the goals of FIRE Cirrus II included characterizing the three-dimensional distribution of water vapor and clouds. In studying the data from FIRE Cirrus II, it was found that no single special observation technique provides accurate regional distributions of water vapor. The Raman lidar provides accurate measurements, but only at the Hub, for levels up to 10 km, and during nighttime hours. The CLASS sondes are more sensitive to moisture at low temperatures than are the NWS sondes, but the four stations only cover an area of two hundred kilometers on a side

  17. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Michael D.; Clemens, D. P., E-mail: pavelmi@bu.edu, E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  18. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    Science.gov (United States)

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. © 2016 John Wiley & Sons Ltd.

  19. Regiones H II alrededor de estrellas WR

    Science.gov (United States)

    Giménez Benitez, S.; Niemela, V.

    En base a observaciones espectroscópicas en el rango óptico, obtenidas en el CASLEO, se estudian las condiciones físicas de tres regiones H II alrededor de estrellas WR: N76 en el entorno de Ab7, en la Nube Menor de Magallanes, N79 alrededor de Br 2, en la Nube Mayor de Magallanes y G2.4+1.4 alrededor de WR 102, en nuestra Galaxia. Estas regiones presentan una alta ionización. Se observa la línea nebular de HeII en 4686 Å . Utilizando líneas nebulares de diagnóstico, se derivan los valores de la densidad y la temperatura electrónica, así como también las abundancias de algunos de los elementos químicos nebulares.

  20. Soil shapes community structure through fire.

    Science.gov (United States)

    Ojeda, Fernando; Pausas, Juli G; Verdú, Miguel

    2010-07-01

    Recurrent wildfires constitute a major selecting force in shaping the structure of plant communities. At the regional scale, fire favours phenotypic and phylogenetic clustering in Mediterranean woody plant communities. Nevertheless, the incidence of fire within a fire-prone region may present strong variations at the local, landscape scale. This study tests the prediction that woody communities on acid, nutrient-poor soils should exhibit more pronounced phenotypic and phylogenetic clustering patterns than woody communities on fertile soils, as a consequence of their higher flammability and, hence, presumably higher propensity to recurrent fire. Results confirm the predictions and show that habitat filtering driven by fire may be detected even in local communities from an already fire-filtered regional flora. They also provide a new perspective from which to consider a preponderant role of fire as a key evolutionary force in acid, infertile Mediterranean heathlands.

  1. LMFBR operational safety: the EBR-II experience

    International Nuclear Information System (INIS)

    Sackett, J.I.; Allen, N.L.; Dean, E.M.; Fryer, R.M.; Larson, H.A.; Lehto, W.K.

    1978-01-01

    The mission of the Experimental Breeder Reactor II (EBR-II) has evolved from that of a small LMFBR demonstration plant to a major irradiation-test facility. Because of that evolution, many operational-safety issues have been encountered. The paper describes the EBR-II operational-safety experience in four areas: protection-system design, safety-document preparation, tests of off-normal reactor conditions, and tests of elements with breached cladding

  2. Influence of declivitous secondary air on combustion characteristics of a down-fired 300-MWe utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhengqi Li; Feng Ren; Zhichao Chen; Zhao Chen; Jingjie Wang [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2010-02-15

    Industrial experiments were performed with a 300-MWe full-scale down-fired boiler. New data is reported for (i) gas temperature distributions within the primary air and coal mixture flows, (ii) gas compositions, such as O{sub 2}, CO, CO{sub 2} and NOx, and (iii) gas temperatures within the near-wall region. The data complements previously-obtained data from the same utility boiler before being modified by declination of the F-tier secondary air. By directing secondary air under the arches, the region where the primary air and pulverized coal mixture is ignited is brought forward within the boiler. Gas temperatures rose in the fuel-burning zone and fell in the fuel-burnout zone. As a result the quantity of unburned carbon in fly ash and the gas temperature at the furnace outlet were both lowered. 20 refs., 7 figs., 2 tabs.

  3. The contribution of natural fire management to wilderness fire science

    Science.gov (United States)

    Carol Miller

    2014-01-01

    When the federal agencies established policies in the late 1960s and early 1970s to allow the use of natural fires in wilderness, they launched a natural fire management experiment in a handful of wilderness areas. As a result, wildland fire has played more of its natural role in wilderness than anywhere else. Much of what we understand about fire ecology comes from...

  4. Numerical modeling of the effects of fire-induced convection and fire-atmosphere interactions on wildfire spread and fire plume dynamics

    Science.gov (United States)

    Sun, Ruiyu

    It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a

  5. The role of DOM in nitrogen processing in streams across arctic regions affected by fire

    Science.gov (United States)

    Rodriguez-Cardona, B.; Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Wymore, A.; Coble, A. A.; Prokishkin, A. S.; Zito, P.; Podgorski, D. C.; Spencer, R. G.; McDowell, W. H.

    2017-12-01

    In stream ecosystems, inputs of dissolved organic carbon (DOC) have a strong influence on nitrogen (N) processing. Previous studies have demonstrated that increases in DOC concentrations can promote greater N removal in many stream ecosystems. Most of what we know about C and N coupling comes from studies of temperate streams; less is known about this relationship in the Arctic. Streams in Arctic ecosystems are facing rapid changes in climate and disturbance regimes, in particular increasing fire frequencies that are likely to alter biogeochemical cycles. Although fires can lead to increases in NO3 concentrations in streams, the effects of fire on DOC (concentration and composition) have been difficult to generalize. We studied the relationships between DOC and N in two locations; the Central Siberian Plateau, Russia and the Yukon-Kuskokwim (YK) River Delta, Alaska. Streams in both regions show increases in NO3 concentrations after fire, while DOC concentrations decrease in Siberia but increase in streams within the YK-Delta. These patterns in DOC and NO3 create a gradient in DOC and nutrient concentrations, allowing us to study this coupling in a wider Pan-Arctic scope. In order to assess the role of DOC in Arctic N processing, we conducted NO3 and NH4 additions to stream microcosms at the Alaskan site as well as whole-stream additions in Siberia. We hypothesized that nutrient uptake would be high in older burn sites of Siberia and recently burned sites in the YK-Delta, due to greater DOC concentrations and availability. Our results suggest that nitrogen dynamics in the Alaskan sites is strongly responsive to C availability, but is less so in Siberian sites. The potential impacts of permafrost thawing and fires on DOM and nutrient dynamics thus appear to not be consistent across the Arctic suggesting that different regions of the Arctic have unique biogeochemical controls.

  6. H II region in NGC 6744: Spectrophotometry and chemical abundances

    International Nuclear Information System (INIS)

    Talent, D.L.

    1982-01-01

    Spectrophotometry of emission lines in the lambdalambda3700--6800 spectral range is presented for An H II region in an outer arm of NGC6744, a southern hemisphere galaxy of type SAB(r)bc II. The electron temperature, derived from the [O III] lines and assuming N/sub e/ = 100 cm -3 , was found to be 9,630 +- 450 K. Ionic abundances, derived in the usual fashion from the measured line strengths, were corrected to total relative number abundances by application of the standard ionization correction factor (ICF) scheme and by comparison to models. The derived abundances, relative to log Hequivalent12.00, are log He = 10.96 +- 0.06, log N = 7.34 +- 0.26, log O log O = 8.44 +- 0.10, log Ne = 7.80 +- 0.16, and log S = 6.75 +- 0.28. The NGC 6744 H II region abundances, and various ratios, are compared to similar data for H II regions in the SMC, LMC, and the Perseus arm of the Galaxy,. From the comparison it is suggested that the histories of nucleosynthesis in the outer regions of NGC 6744 and the Galaxy could have been quite similar

  7. Plasma opening switch experiments on the Particle Beam Accelerator II

    International Nuclear Information System (INIS)

    Sweeney, M.A.; McDaniel, D.H.; Mendel, C.W.; Rochau, G.E.; Moore, W.B.S.; Mowrer, G.R.; Simpson, W.W.; Zagar, D.M.; Grasser, T.; McDougal, C.D.

    1989-01-01

    Plasma opening switch (POS) experiments have been done since 1986 on the PBFA-II ion beam accelerator to develop a rugged POS that will open rapidly ( 80%) into a high impedance (> 10 ohm) load. In a recent series of experiments on PBFA II, the authors have developed and tested three different switch designs that use magnetic fields to control and confine the injected plasma. All three configurations couple current efficiently to a 5-ohm electron beam diode. In this experimental series, the PBFA-II Delta Series, more extensive diagnostics were used than in previous switch experiments on PBFA II or on the Blackjack 5 accelerator at Maxwell Laboratories. Data from the experiments with these three switch designs is presented

  8. An investigation of crown fuel bulk density effects on the dynamics of crown fire initiation in shrublands

    Science.gov (United States)

    Watcharapong Tachajapong; Jesse Lozano; Shankar Mahalingam; Xiangyang Zhou; David R. Weise

    2008-01-01

    Crown fire initiation is studied by using a simple experimental and detailed physical modeling based on Large Eddy Simulation (LES). Experiments conducted thus far reveal that crown fuel ignition via surface fire occurs when the crown base is within the continuous flame region and does not occur when the crown base is located in the hot plume gas region of the surface...

  9. Fire experiences: principal lessons learned, application in PWR power plants

    International Nuclear Information System (INIS)

    Schoemacker, M.

    1984-01-01

    The article reviews the principal design rules to be borne in mind for PWR nuclear units installation. These rule takes into account: the specific character of materials involved (safety aspect for nuclear construction), experience acquired as a result of fires in EDF production units, and the results obtained from tests carried out by the EDF at Fort de Chelles between 1980 and 1982, especially in the field of PVC cables [fr

  10. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our

  11. Rx fire laws: tools to protect fire: the `ecological imperative?

    Science.gov (United States)

    Dale Wade; Steven Miller; Johnny Stowe; James Brenner

    2006-01-01

    The South is the birthplace of statutes and ordinances that both advocate and protect the cultural heritage of woods burning, which has been practiced in this region uninterrupted for more than 10,000 years. We present a brief overview of fire use in the South and discuss why most southern states recognized early on that periodic fire was necessary to sustain fire...

  12. Linen Fire as Biosorbent to Remove Heavy Metal Ions From Wastewater Modeling

    OpenAIRE

    Ildar G. Shaikhiev

    2014-01-01

    The possibility of using linen fires – lnopererabotk i waste as a sorption material for the extraction of heavy metal ions from wastewater modeling. It is shown that treatment with acid solutions linen fires a low concentration increases the surface area of linen fires and thus sorption capacity for heavy metal ions. The values of the maximum sorption capacity ions Fe (III), Co (II), Ni (II) and Zn (II) under static and dynamic conditions. IR spectroscopy...

  13. Emission-line diagnostics of nearby H II regions including interacting binary populations

    Science.gov (United States)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  14. Southern Africa Fire Network (SAFNet) regional burned-area product-validation protocol

    CSIR Research Space (South Africa)

    Roy, DP

    2005-10-10

    Full Text Available on the spatial extent and timing of burning, as clouds may preclude hotspot detection and because the satellite may not overpass when burning occurs (Justice et al. 2002). Algorithms that use multi-temporal satellite data to map the areas affected by the passage... independent reference data from aircraft observations of prescribed fires and wildfires (Kaufman et al. 1998). However, aircraft campaigns are expensive to undertake in a regionally representative manner and are difficult to coordinate with cloud...

  15. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    Science.gov (United States)

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  16. Calibration of the CAFE-3D fire code with controlled indoor fire data

    International Nuclear Information System (INIS)

    Lopez, C.; Koski, J.A.; Khalil, I.; Suo-Anttila, A.

    2004-01-01

    The Container Analysis Fire Environment (CAFE) code contains a computational fluid dynamics (CFD) based fire model that has been successfully coupled to standard finite element computer codes. This coupling of CFD and finite element codes allows for a more realistic modeling of the thermal performance of objects engulfed in fire, which aids in the design and risk analysis of radioactive material packages. The CAFE fire model is based on a three-dimensional finite volume formulation of basic fire chemistry and fluid dynamics. This fire model includes a variable-density primitive-variable formulation of mass, momentum, energy and species equations. Multiple chemical species and soot formation are included in the combustion model. Thermal radiation is modeled as diffusive radiation transport inside the flame zone and as view-factor radiation outside the flame zone. Turbulence is modeled with an eddy diffusivity model. The soot model is coupled to the diffusive radiation formulation using the Rosseland approximation and the optical properties of soot. In order to verify and improve the accuracy of computers codes, they should be benchmarked against test data. This paper describes a set of experiments that were performed at the Fire Laboratory for Accreditation of Modeling by Experiment (FLAME) fire facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The paper also describes how the data collected from the experiments was used to calibrate and benchmark the CAFE-3D fire code. Detailed description of the tests performed and comparisons between the calculated results and the collected data from the experiments are provided

  17. Climate Change Transforms Fire Regimes but Does not Eliminate Forest Carbon Sequestration in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Henne, P. D.; Hawbaker, T. J.; Berryman, E.

    2017-12-01

    Annual area burned in the Rocky Mountains varies with climatic conditions. However, projecting long-term changes in wildfire presents an enduring challenge because climate also constrains vegetation and fuel availability. We combined an aridity-threshold fire model with the Landis-II dynamic landscape vegetation model (NECN extension) to project climate change impacts on vegetation, area burned, and ecosystem carbon balance in the Greater Yellowstone Ecosystem (GYE). We developed a fire model that relates drought stress to area burned by quantifying an aridity threshold separating large and small years in 15 ecoregions in the Intermountain West. A significant positive correlation (r2 = 0.97) exists between mean fire-season aridity and ecoregion-specific aridity thresholds. We simulated vegetation and fire dynamics in the GYE at 250 m spatial resolution with Landis-II, using projections from five climate models and two emissions scenarios for the period 1980-2100 AD. We determined if each simulation year exceeded the regional aridity threshold, then randomly drew the number of fires and size of individual fires from fire-size distributions from large or small fire years. Burned area increases dramatically in most climate scenarios, especially after 2060, when most years exceed the aridity threshold. Productivity gains due to rising temperatures partially offset biomass lost to fire, but C stocks plateau or decline after 2060 in most simulations as burned area increases, and drought stress causes post-fire regeneration to decline at low elevations. However, species level changes (e.g. expansion by drought-tolerant Pseuodotsuga menziesii) help maintain productivity in sites where water becomes limiting. Fire-adapted Pinus contorta occupies less total area, but a greater proportion of remaining forests, and Picea engelmannii and Abies lasiocarpa significantly decline. Although fire and climate change will alter species distributions and forest structure, our results

  18. Coal-fired power materials - Part II

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, V.; Purgert, R.; Rawls, P. [Electric Power Research Institute, Palo Alto, CA (United States)

    2008-09-15

    Part 1 discussed some general consideration in selection of alloys for advanced ultra supercritical (USC) coal-fired power plant boilers. This second part covers results reported by the US project consortium, which has extensively evaluated the steamside oxidation, fireside corrosion, and fabricability of the alloys selected for USC plants. 3 figs.

  19. Fire safety

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Hostikka, S.; Mangs, J.; Huhtanen, R.; Palmen, H.; Salminen, A.; Turtola, A.

    1998-01-01

    According to experience and probabilistic risk assessments, fires present a significant hazard in a nuclear power plant. Fires may be initial events for accidents or affect safety systems planned to prevent accidents and to mitigate their consequences. The project consists of theoretical work, experiments and simulations aiming to increase the fire safety at nuclear power plants. The project has four target areas: (1) to produce validated models for numerical simulation programmes, (2) to produce new information on the behavior of equipment in case of fire, (3) to study applicability of new active fire protecting systems in nuclear power plants, and (4) to obtain quantitative knowledge of ignitions induced by important electric devices in nuclear power plants. These topics have been solved mainly experimentally, but modelling at different level is used to interpret experimental data, and to allow easy generalisation and engineering use of the obtained data. Numerical fire simulation has concentrated in comparison of CFD modelling of room fires, and fire spreading on cables on experimental data. So far the success has been good to fair. A simple analytical and numerical model has been developed for fire effluents spreading beyond the room of origin in mechanically strongly ventilated compartments. For behaviour of equipment in fire several full scale and scaled down calorimetric experiments were carried out on electronic cabinets, as well as on horizontal and vertical cable trays. These were carried out to supply material for CFD numerical simulation code validation. Several analytical models were developed and validated against obtained experimental results to allow quick calculations for PSA estimates as well as inter- and extrapolations to slightly different objects. Response times of different commercial fire detectors were determined for different types of smoke, especially emanating from smoldering and flaming cables to facilitate selection of proper detector

  20. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (FALSIRE II)

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Pugh, C.E.; Keeney, J. [Oak Ridge National Lab., TN (United States); Schulz, H.; Sievers, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Gemany)

    1996-11-01

    A summary of Phase II of the Project for FALSIRE is presented. FALSIRE was created by the Fracture Assessment Group (FAG) of the OECD/NEA`s Committee on the Safety of Nuclear Installations (CNSI) Principal Working Group No. 3. FALSIRE I in 1988 assessed fracture methods through interpretive analyses of 6 large-scale fracture experiments in reactor pressure vessel (RPV) steels under pressurized- thermal-shock (PTS) loading. In FALSIRE II, experiments examined cleavage fracture in RPV steels for a wide range of materials, crack geometries, and constraint and loading conditions. The cracks were relatively shallow, in the transition temperature region. Included were cracks showing either unstable extension or two stages of extensions under transient thermal and mechanical loads. Crack initiation was also investigated in connection with clad surfaces and with biaxial load. Within FALSIRE II, comparative assessments were performed for 7 reference fracture experiments based on 45 analyses received from 22 organizations representing 12 countries. Temperature distributions in thermal shock loaded samples were approximated with high accuracy and small scatter bands. Structural response was predicted reasonably well; discrepancies could usually be traced to the assumed material models and approximated material properties. Almost all participants elected to use the finite element method.

  1. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (FALSIRE II)

    International Nuclear Information System (INIS)

    Bass, B.R.; Pugh, C.E.; Keeney, J.; Schulz, H.; Sievers, J.

    1996-11-01

    A summary of Phase II of the Project for FALSIRE is presented. FALSIRE was created by the Fracture Assessment Group (FAG) of the OECD/NEA's Committee on the Safety of Nuclear Installations (CNSI) Principal Working Group No. 3. FALSIRE I in 1988 assessed fracture methods through interpretive analyses of 6 large-scale fracture experiments in reactor pressure vessel (RPV) steels under pressurized- thermal-shock (PTS) loading. In FALSIRE II, experiments examined cleavage fracture in RPV steels for a wide range of materials, crack geometries, and constraint and loading conditions. The cracks were relatively shallow, in the transition temperature region. Included were cracks showing either unstable extension or two stages of extensions under transient thermal and mechanical loads. Crack initiation was also investigated in connection with clad surfaces and with biaxial load. Within FALSIRE II, comparative assessments were performed for 7 reference fracture experiments based on 45 analyses received from 22 organizations representing 12 countries. Temperature distributions in thermal shock loaded samples were approximated with high accuracy and small scatter bands. Structural response was predicted reasonably well; discrepancies could usually be traced to the assumed material models and approximated material properties. Almost all participants elected to use the finite element method

  2. Extinguishing experiments of sodium fires carried out by TNO

    International Nuclear Information System (INIS)

    Meijer, G.J.A.M.; Rulkens, W.H.

    1979-01-01

    For the collection of burning sodium from the components and pipes of the secondary circuit of SNR 300, spill-trays are foreseen which are connected to dump tanks. These spill-trays are covered with a sieve in order to reduce the flow of air to the sodium in the spill-tray and hence to reduce the burning rate. In order to further minimize the consequences of a large sodium fire for the components, the licensing authority required as a back-up the installation of a remotely operated distribution system by means of which an extinguishing powder can be sprayed upon the spill-trays. Experiments were carried out in which the effectiveness of different extinguishing powders in combination with the sieve covered spill-trays were tested in a comparative manner. Attention was paid to the question whether such a spray system would have also additional benefits in the case of smaller sodium leaks. To this purpose three commercially available extinguishing powders were tested, one on a sodium chloride, two on a carbonate base. Also the effectiveness of the sieves proper with respect to reducing the burning rate was tested without applying any extinguishing powders. Finally for a reference some tests were done on open spill-trays, i.e. spill-trays not covered with a sieve.The investigations which were carried out in 1976-1977 were limited to fire experiments, aspects of transport of the powder in the distribution system were not investigated

  3. Preliminary optimization experiments of coupled liquid hydrogen moderator for KENS-II

    International Nuclear Information System (INIS)

    Watanabe, N.; Kiyanagi, Y.; Inoue, K.; Furusaka, M.; Ikeda, S.; Arai, M.; Iwasa, H.

    1989-01-01

    As a preliminary optimization experiment on the cold-neutron source for KENS-II, energy and time distributions of cold neutrons emanating from coupled liquid-hydrogen moderators with and without a premoderator in a graphite reflector were measured and compared with those from a decoupled liquid-hydrogen moderator. The results showed that the energy spectra from the coupled liquid-hydrogen moderators are almost the same as those from a decoupled one. Relative gain of the former to the latter is fairly high, more than 5, and further increases with increasing wavelength. The broadening of the neutron pulse width in coupled moderators at the cold-neutron region is not so significant and only 1.5 times compared to the solid methane moderator presently operated at KENS-II. 2 refs., 12 figs., 1 tab

  4. Recent operating experiences and programs at EBR-II

    International Nuclear Information System (INIS)

    Lentz, G.L.

    1984-01-01

    Experimental Breeder Reactor No. II (EBR-II) is a pool-type, unmoderated, sodium-cooled reactor with a design power of 62.5 MWt and an electrical generation capability of 20 MW. It has been operated by Argonne National Laboratory for the US government for almost 20 years. During that time, it has operated safely and has demonstrated stable operating characteristics, high availability, and excellent performance of its sodium components. The 20 years of operating experience of EBR-II is a valuable resource to the nuclear community for the development and design of future LMFBR's. Since past operating experience has been extensively reported, this report will focus on recent programs and events

  5. THE GREEN BANK TELESCOPE H II REGION DISCOVERY SURVEY. III. KINEMATIC DISTANCES

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L. D. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Bania, T. M. [Institute for Astrophysical Research, Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Balser, Dana S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Rood, Robert T., E-mail: Loren.Anderson@mail.wvu.edu [Astronomy Department, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903-0818 (United States)

    2012-07-20

    Using the H I emission/absorption method, we resolve the kinematic distance ambiguity and derive distances for 149 of 182 (82%) H II regions discovered by the Green Bank Telescope H II Region Discovery Survey (GBT HRDS). The HRDS is an X-band (9 GHz, 3 cm) GBT survey of 448 previously unknown H II regions in radio recombination line and radio continuum emission. Here, we focus on HRDS sources from 67 Degree-Sign {>=} l {>=} 18 Degree-Sign , where kinematic distances are more reliable. The 25 HRDS sources in this zone that have negative recombination line velocities are unambiguously beyond the orbit of the Sun, up to 20 kpc distant. They are the most distant H II regions yet discovered. We find that 61% of HRDS sources are located at the far distance, 31% at the tangent-point distance, and only 7% at the near distance. 'Bubble' H II regions are not preferentially located at the near distance (as was assumed previously) but average 10 kpc from the Sun. The HRDS nebulae, when combined with a large sample of H II regions with previously known distances, show evidence of spiral structure in two circular arc segments of mean Galactocentric radii of 4.25 and 6.0 kpc. We perform a thorough uncertainty analysis to analyze the effect of using different rotation curves, streaming motions, and a change to the solar circular rotation speed. The median distance uncertainty for our sample of H II regions is only 0.5 kpc, or 5%. This is significantly less than the median difference between the near and far kinematic distances, 6 kpc. The basic Galactic structure results are unchanged after considering these sources of uncertainty.

  6. Ecological effects of alternative fuel-reduction treatments: highlights of the National Fire and Fire Surrogate study (FFS)

    Science.gov (United States)

    James D. McIver; Scott L. Stephens; James K. Agee; Jamie Barbour; Ralph E. J. Boerner; Carl B. Edminster; Karen L. Erickson; Kerry L. Farris; Christopher J. Fettig; Carl E. Fiedler; Sally Haase; Stephen C. Hart; Jon E. Keeley; Eric E. Knapp; John F. Lehmkuhl; Jason J. Moghaddas; William Otrosina; Kenneth W. Outcalt; Dylan W. Schwilk; Carl N. Skinner; Thomas A. Waldrop; C. Phillip Weatherspoon; Daniel A. Yaussy; Andrew Youngblood; Steve Zack

    2012-01-01

    The 12-site National Fire and Fire Surrogate study (FFS) was a multivariate experiment that evaluated ecological consequences of alternative fuel-reduction treatments in seasonally dry forests of the US. Each site was a replicated experiment with a common design that compared an un-manipulated control, prescribed fire, mechanical and mechanical + fire treatments....

  7. Drought, Fire and Insects in Western US Forests: Observations to Improve Regional Land System Modeling

    Science.gov (United States)

    Law, B. E.; Yang, Z.; Berner, L. T.; Hicke, J. A.; Buotte, P.; Hudiburg, T. W.

    2015-12-01

    Drought, fire and insects are major disturbances in the western US, and conditions are expected to get warmer and drier in the future. We combine multi-scale observations and modeling with CLM4.5 to examine the effects of these disturbances on forests in the western US. We modified the Community Land Model, CLM4.5, to improve simulated drought-related mortality in forests, and prediction of insect outbreaks under future climate conditions. We examined differences in plant traits that represent species variation in sensitivity to drought, and redefined plant groupings in PFTs. Plant traits, including sapwood area: leaf area ratio and stemwood density were strongly correlated with water availability during the ecohydrologic year. Our database of co-located observations of traits for 30 tree species was used to produce parameterization of the model by species groupings according to similar traits. Burn area predicted by the new fire model in CLM4.5 compares well with recent years of GFED data, but has a positive bias compared with Landsat-based MTBS. Biomass mortality over recent decades increased, and was captured well by the model in general, but missed mortality trends of some species. Comparisons with AmeriFlux data showed that the model with dynamic tree mortality only (no species trait improvements) overestimated GPP in dry years compared with flux data at semi-arid sites, and underestimated GPP at more mesic sites that experience dry summers. Simulations with both dynamic tree mortality and species trait parameters improved estimates of GPP by 17-22%; differences between predicted and observed NEE were larger. Future projections show higher productivity from increased atmospheric CO2 and warming that somewhat offsets drought and fire effects over the next few decades. Challenges include representation of hydraulic failure in models, and availability of species trait and carbon/water process data in disturbance- and drought-impacted regions.

  8. Chemistry experiences from a containment fire at Ringhals unit 2

    International Nuclear Information System (INIS)

    Arvidsson, Bengt; Svanberg, Pernilla; Bengtsson, Bernt

    2012-09-01

    containment, together with 1000 smear test (cotton pads) for chloride analysis in the chemistry laboratory to evaluate contamination levels and verify the cleaning procedures and results. The main chemistry issues and concerns have been related to surface and water contamination of chloride, bromide, carbon, lead, copper and zinc from corrosion point of view. Lack of specification and guidelines for several of this parameters forced Ringhals to establish some internal guidelines and technical basis for clean up and restart of the plant. The solubility of soot particles was found to be very low and more adhesive to surfaces at high temperature, this caused some concerns and actions to clean up reactor coolant from soot particles before fuel reload and heating. An extensive review of stainless steel Outer Diameter Stress Corrosion Cracking (ODSCC) was performed independently from the fire incident during the outage, indicating a high number of crack indications of 1-3 mm depth, all within acceptance criteria for material thickness and operation. The indications are more likely to be addressed to almost 40 years of operation in marine atmosphere then the fire itself, even if the chloride contamination from fire may have supported some propagation. All found cracks were grinded according to authority requirements and no pipes needed to be replaced. The heating and start-up of Ringhals 2 could be done successfully without any water chemistry deviations due to the fire and the following cycle have been normal. The cleanness of R2 containment surfaces are now highly improved compared to earlier outages or other sea-cooled power plants. However, an extended program has been introduced to follow external surface chloride contamination built up in containment more frequently, together with inspections of ODSCC. The workload from the containment fire has been extreme and the chemistry and corrosion experiences several. This paper gives a summary of the results, challenges, solutions and

  9. Detecting stellar-wind bubbles through infrared arcs in H II regions

    Science.gov (United States)

    Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.

    2016-02-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within H II regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H II regions around individual stars to predict the infrared emission properties of the dust within the H II region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H II region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H II region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H II regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

  10. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    Science.gov (United States)

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  11. Fire simulation of pool fire with effects of a ventilation controlled compartment by using a fire model, CFAST

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Shirai, Koji; Eguchi, Yuzuru; Matsuyama, Ken

    2015-01-01

    The basic performance for numerical analysis of fire parameters in a compartment by using a zone model, CFAST (Consolidated model of Fire growth And Smoke Transport), which has been widely applied for fire protection design of buildings, was examined. Special attentions were paid to the effects of compartment geometry under poor ventilation conditions with mechanical systems. The simulations were carried out under conditions corresponding to previous experiments, in which fire parameters have been precisely measured. The comparison between numerical simulations and experiments indicated that the CFAST principally has a capability to represent the time-histories of air-temperature in the high air-temperature layer generated in the vicinity of ceiling of the compartment, by applying the proper boundary conditions. These results suggest that numerical analysis for time-series of air temperature and smoke concentration in compartments must be a powerful tool for discussion on validity of fire protection schemes. (author)

  12. Small Galactic H II regions. II. The molecular clouds and star formation

    International Nuclear Information System (INIS)

    Hunter, D.A.; Thronson, H.A. Jr.; Wilton, C.

    1990-01-01

    CO maps of molecular clouds associated with 11 small Galactic H II regions are presented and compared with IR images obtained by IRAS. The molecular masses of the clouds are computed and compared with the masses of the stellar content. The mapped clouds have masses of 1000-60,000 solar and are typical of the more numerous, smaller Galactic molecular clouds. All of the clouds have recently made massive OB stars, and many have complex spatial and kinematic structures. The coincidence of IRAS sources and CO peaks suggests that many of the clouds have sites of star formation other than the optically visible H II region. Star-formation efficiencies are uncertain, with values for the clouds ranging from 0.02 to 0.6 with an average value of 0.2. There is no trend of the upper stellar mass limit with Galactic radius and with molecular cloud mass. 53 refs

  13. RESEARCH OF EFFECTIVENESS OF „PLAMOSTOP“ FIRE

    Directory of Open Access Journals (Sweden)

    Patrik MITRENGA

    2016-06-01

    Full Text Available The paper deals with testing of a water-miscible intumescent fire retardant. Experiments are conducted by thermal analysis (TG / DTG, DSC, cone calorimeter and non-standardized methods for monitoring weight loss when exposed to flame burning. Based on the experiment results and other information the most appropriate methods for testing fire retardants are reviewed. All methods by which experiments have been carried out are described. Our own method for testing fire retardants was created. It is also evaluated the effectiveness of a representative fire retardant of wood by all mentioned methods. The result of the experiment is to evaluate the suitability of each method for testing of fire retardants and evaluation fire retardant “Plamostop”.

  14. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    Science.gov (United States)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  15. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    Science.gov (United States)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments

  16. Get immersed and black in fire ash world. Field Wildgeographers experience.

    Science.gov (United States)

    Pereira, Paulo; Cerdà, Artemi; Misiune, Ieva; Jordan, Antonio

    2015-04-01

    Ash is the footprint left by the fire. This residue is very important to landscape recover and is an important source of soil protection after the fire. Get immersed in fire ash world is the same thing of get dirty and do not be recognizable in a fire affected area. To measure ash in the field we have to be careful where to step, how to do the experimental design, collect samples and find with accuracy the places measured before. A good methodology is needed in design field experiments, collect ash samples and monitoring ash evolution (Cerdà and Doerr, 2008; Bodi et al., 2014; Pereira and Ubeda, 2010; Pereira et al. 2011; 2012, 2013, 2014, 2015). The objective of this work is to share with the Avatar world the methodologies used when wildgeographers get immersed in fire ash world, including: 1) Identify the best study area 2) Experimental design 3) Sample collection 4) Get dirty and have fun in the field 5) Laboratory, Statistical and spatial analysis Acknoledgements The author are thankful for the support of the projects POSTFIRE (Soil quality, erosion control and plant cover recovery under different post-fire management scenarios, CGL2013-47862-C2-1-R) funded by the Spanish Ministry of Economy and Competitiveness; GL2008-02879/BTE, LEDDRA 243857, RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecteur: Connecting European Connectivity Research), FUEGORED (Spanish Network of Forest Fire Effects on Soils, http://grupo.us.es/fuegored/) and to Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya. References Bodi, M., Martin, D.A., Santin, C., Balfour, V., Doerr, S.H., Pereira, P., Cerda, A., Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. Cerdà, A. y Doerr, S.H. 2008. The effect of ash and needle cover on surface

  17. Specifics of fire-preventing arrangements in the forests of Baikal region

    Directory of Open Access Journals (Sweden)

    M. D. Evdokimenko

    2017-10-01

    Full Text Available Fire risk in major forest types and concomitant vegetation complexes across all altitudinal belts has been analyzed. High fire risk in woodlands is determined by domination of light needle coniferous stands in their structure and specific climate with continuous spring-summer droughts. Thus, the risk of landscape wildfires is high. The most drastic situations occur in very dry years of climatic cycles during forest pyrogenic anomalies when fire spreads across the main landscapes in several nature areas. Current fire-frequency is incompatible with high biosphere status of nature complex of Lake Baikal as an object of the World nature heritage. Extensive forest exploitation is unacceptable as well. Fire-prevention measures in the area require modernization. According to the results of many years of comparative studies of fire risk in phytocenoses with different species composition and structure of tree layers, the techniques of making fire stopping barriers were developed. The scheme of dividing the managed forests into isolated cells separated by special obstacles and fire-resistant forest borders combined with commonly used fire barriers is suggested. Fire-resistant barriers should be formed on both sides of main roads, passing through the intensively exploited woodlands dominating with common pine Pinus sylvestris L., Siberian stone pine Pinus sibirica Du Tour, Siberian spruce Picea obovata Ledeb., and Siberian fir Abies sibirica Ledeb. tree species. Such barriers are intended to stop the fire front of crown fires. The barrier width is determined by the cell order. The barriers are bordered with clearings with scarified soil strips of 3–4 meters in width. Trees and shrubs damaged in the process are removed during clutter cleaning. In places where the barrier passes through coniferous tree stands longitudinal corridors with scarified soil strips every 20–30 meters should be made. Reforestation and thinning are supposed to be combined with

  18. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    Science.gov (United States)

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  19. Interagency Wildland Fire Cooperation

    National Research Council Canada - National Science Library

    2004-01-01

    Wildlife Fire Assistance includes training personnel, forms partnerships for prescribed burns, state and regional data for fire management plans, develops agreements for DoD civilians to be reimbursed...

  20. A spatio-temporal analysis of fires in South Africa

    Directory of Open Access Journals (Sweden)

    Sheldon Strydom

    2016-11-01

    Full Text Available The prevalence and history of fires in Africa has led to the continent being named "the fire continent". Fires are common on the continent and lead to a high number of annual fire disasters which result in many human fatalities and considerable financial loss. Increased population growth and concentrated settlement planning increase the probability of fire disasters and the associated loss of human life and financial loss when disasters occur. In order to better understand the spatial and temporal variations and characteristics of fires in South Africa, an 11-year data set of MODIS-derived Active Fire Hotspots was analysed using an open source geographic information system. The study included the mapping of national fire frequency over the 11-year period. Results indicate that the highest fire frequency occurred in the northeastern regions of South Africa, in particular the mountainous regions of KwaZulu-Natal and Mpumalanga, and in the Western Cape. Increasing trends in provincial fire frequency were observed in eight of the nine provinces of South Africa, with Mpumalanga the only province for which a decrease in annual fire frequency was observed. Temporally, fires were observed in all months for all provinces, although distinct fire seasons were observed and were largely driven by rainfall seasons. The southwestern regions of South Africa (winter-rainfall regions experienced higher fire frequencies during the summer months and the rest of the country (summer-rainfall regions during the winter months. Certain regions those which experienced bimodal rainfall seasons did not display distinct fire seasons because of the complex wet and dry seasons. Investigation into the likely effects of climate change on South African fire frequency revealed that increased air temperatures and events such as La Niña have a marked effect on fire activity.

  1. Learning Fire Investigation the Clean Way: The Virtual Experience

    Science.gov (United States)

    Davies, Amanda; Dalgarno, Barney

    2009-01-01

    The effective teaching of fire investigation skills presents logistical challenges because of the difficulty of providing students with access to suitable fire damaged buildings so that they can undertake authentic investigation tasks. At Charles Sturt University (CSU), in the subject JST415, "Fire Investigation Cause and Origin…

  2. Negligent and intentional fires in Portugal: the role of human and biophysical drivers on the temporal distribution

    Science.gov (United States)

    Parente, Joana; Pereira, Mário; Amraoui, Malik; Tedim, Fantina

    2017-04-01

    Portugal is the European country with higher number of fires (NF) and burnt area (BA) per unit of land area. The annual number of fires for which the cause of fire is known is not constant and relatively small (typically less than 50% of annual number of records). Nevertheless, the analysis of the fire causes reveals that the vast majority (99%) of the fires in Portugal are of human origin and only a small fraction are of natural origin (1% caused by lightning). The study period will be the recent years of 2012 - 2014, when fire recording procedures are more reliable and the cause of ignition was assessed for more than 50% (19376) of the fires. The fires with approximately seventy different causes of fire defined/recognized by the Portuguese Forest Service (ICNF) were grouped into negligent, intentional and natural fires. For this study the authors proposes the use of the Nomenclature of Territorial Units for Statistics level II, which divides Portugal in 5 basic economic regions, namely Norte, Centro, Área Metropolitana de Lisboa, Alentejo, and Algarve. Most of the fires (54%) occur in the so-called critical period defined between July and September, but high wildfire activity may also occur in few periods of the remaining months (especially in February and March). The intentional fires represent 40% of total NF but accounts for 53% of total BA during the study period. The temporal distribution are described and interpreted in terms of the climate, fire weather, land use land cover (LULC), distance to communication routes (roads and railways) and topographic variables (altitude, slope) using statistical analysis and GIS techniques. Results points to: a) higher number of negligent than intentional fires; b) higher BA on critical period in years 2012 and 2013; c) decrease in time and decrease from critical period to non-critical period of the number of fires, in all regions; and d) the dominant role of fire weather in the observed temporal patterns. We strongly

  3. A Gravity data along LARSE (Los Angeles Regional Seismic Experiment) Line II, Southern California

    Science.gov (United States)

    Wooley, R.J.; Langenheim, V.E.

    2001-01-01

    The U.S. Geological Survey conducted a detailed gravity study along part of the Los Angeles Regional Seismic Experiment (LARSE) transect across the San Fernando Basin and Transverse Ranges to help characterize the structure underlying this area. 249 gravity measurements were collected along the transect and to augment regional coverage near the profile. An isostatic gravity low of 50-60 mGal reflects the San Fernando-East Ventura basin. Another prominent isostatic gravity with an amplitude of 30 mGal marks the Antelope Valley basin. Gravity highs occur over the Santa Monica Mountains and the Transverse Ranges. The highest isostatic gravity values coincide with outcrops of Pelona schist.

  4. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Directory of Open Access Journals (Sweden)

    Lluís Brotons

    Full Text Available Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain. We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape

  5. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  6. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  7. Climate effect on forest fire static risk assessment

    Science.gov (United States)

    Bodini, Antonella; Cossu, Antonello; Entrade, Erika; Fiorucci, Paolo; Gaetani, Francesco; Parodi, Ulderica

    2010-05-01

    The availability of a long data series of fire perimeters combined with a detailed knowledge of topography and land cover allow to understand which are the main features involved in forest fire occurrences and their behaviour. In addition, climate indexes obtained from the analysis of time series with more than 20 years of complete records allow to understand the role of climate on fire regime, both in terms of direct effects on fire behaviour and the effect on vegetation cover. In particular, indices of extreme events have been considered like CDD (maximum number of consecutive dry days) and HWDI (heat wave duration index: maximum period > 5 consecutive days with Tmax >5°C above the 1961-1990 daily Tmax normal), together with the usual indices describing rainfall and temperature regimes. As a matter of fact, based on this information it is possible to develop statistical methods for the objective classification of forest fire static risk at regional scale. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in Liguria and is almost absent in Sardinia. What is common in the two regions is the widespread presence of shrub species frequently spread by fire. The analysis in the two regions thus allows in a rather limited area to consider almost all the species and the climate conditions that characterize the Mediterranean region. More than 10000 fire perimeters that burnt about 800 km2 were considered in the analysis

  8. Global Burned Area and Biomass Burning Emissions from Small Fires

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  9. Operational experiences of (in)direct co-combustion in coal and gas fired power plants in Europe

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Meijer, R.; Konings, T.; Van Aart, F.

    2001-02-01

    The operational experiences of direct and indirect co-combustion of biomass/waste in European coal and natural gas fired power plants are addressed. The operational experiences of mainly Dutch direct co-combustion activities in coal fired power plants are discussed; whereas an overview of European indirect co-combustion activities is presented. The technical, environmental, and economic feasibility of different indirect co-combustion concepts (i.e. upstream gasification, pyrolysis, combustion with steam-side integration) is investigated, and the results are compared with the economic preferable concept of direct co-combustion. Main technical constraints that limit the co-combustion capacity of biomass/waste in conventional coal fired power plants are: the grindability of the biomass/coal blend, the capacity of available unit components, and the danger of severe slagging, fouling, corrosion and erosion. The main environmental constraints that have to be taken into account are the quality of produced solid waste streams (fly ash, bottom ash, gypsum) and the applicable air emission regulations. 6 refs

  10. [The mutations of the D-loop hypervariable region II and hypervariable region III of mitochondrial DNA in oral squamous cell carcinoma].

    Science.gov (United States)

    Wang, Yao-Zhong; Jia, Mu-Yun; Yuan, Rong-Tao; Han, Guo-Dong; Bu, Ling-Xue

    2010-06-01

    To investigate the frequency of mitochondrial DNA (mtDNA) D-loop hypervariable region II (HVR II) and hypervariable region III (HVR III) mutations in oral squamous cell carcinoma (OSCC) and their correlation to provide the new targets for the prevention and treatment of OSCC. The D-loop HVR II and HVR III regions of mtDNA in seven cases with OSCC tissues, matched with paracancerous tissues and normal mucosa tissues from the same case, were amplified by polymerase chain raction (PCR), then were detected by direct sequencing to find the mutantsites after the comparison of all sequencing results with the mtDNA Cambridge sequence in the GenBank database. 82 (56 species) nucleotide changes, with 51(26 species) nucleotide polymorphism, were found after the comparison of all sequencing results with the mtDNA Cambridge sequence in the GenBank database. 31(30 species) mutations, with 21 located within the HVR II and HVR III regions, were found in 3 tumor tissue samples, their paracancerous and normal mucosa tissue were found more polymorphic changes but no mutation. The mtDNA D-loop HVR II and HVR III regions mutation rate was 42.9% (3/7) in OSCC. The mtDNA D-loop HVR II and HVR III regions were highly polymorphic and mutable regions in OSCC. It suggested that the D-loop HVR II and HVR III regions of mtDNA might play a significant role in the tumorigenesis of OSCC. It may become new targets for the gene therapy of OSCC by regulating the above indexes.

  11. Exploring fire dynamics with BFAST approach: case studies in Sardinia, Italy

    Science.gov (United States)

    Quarfeld, Jamie; di Mauro, Biagio; Colombo, Roberto; Verbesselt, Jan

    2016-04-01

    detecting fire occurrence. EVI showed it was more sensitive to the influence of the Savitkzy-Golay smoothing filter than NBR or NDVI; II. The quantitative assessment of resilience for different land covers (maquis, mixed forest, shrubland) allows discrimination of diverse post-fire dynamics. Mixed forest showed an overall lower resilience compared to maquis and shrubland. Detection of post-fire breakpoints appears to occur in a similar time sequence with respect to both year of fire occurrence and land cover. III. The combined use of several climate and landscape components enables characterization of different features of post-fire dynamics in a Mediterranean ecosystem. In summary, the approach used in this study provides useful insight into complex post-fire vegetation dynamics in Mediterranean regions from a remote sensing perspective. Tailoring of the methodologies employed this study can inform a broad spectrum of forest and wildfire management activities, from monitoring and decision support during the fire season to long-term fuel management and landscape planning, with the general goal of reducing fire exposure and losses from future wildfires. Results can be expanded to include additional LS descriptors or soil geological aspects that contribute to a stronger integration of remote sensing data in operational natural resource management plans for ecosystem conservation and natural hazard prevention.

  12. HOT AEROSOL FIRE EXTINGUISHING AGENTS AND THE ASSOCIATED TECHNOLOGIES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Xiaotian Zhang

    2015-09-01

    Full Text Available AbstractSince the phase out of Halon extinguishers in the 1980s, hot aerosol fire suppression technology has gained much attention. Unlike traditional inert gas, foam, water mist and Halon fire suppression agents, hot aerosol fire extinguishing agents do not need to be driven out by pressurized gases and can extinguish class A, B, C, D and K fires at 30 to 200 g/m3. Generally, hot aerosol fire extinguishing technology has developed from a generation I oil tank suppression system to a generation III strontium salt based S-type system. S-type hot aerosol fire extinguishing technology greatly solves the corrosion problem of electrical devices and electronics compared to potassium salt based generation I & II hot aerosol fire extinguishing technology. As substitutes for Halon agents, the ODP and GWP values of hot fire extinguishing aerosols are nearly zero, but those fine aerosol particles can cause adverse health effects once inhaled by human. As for configurations of hot aerosol fire extinguishing devices, fixed or portable cylindrical canisters are the most common among generation II & III hot aerosol fire extinguishers across the world, while generation I hot aerosol fire suppression systems are integrated with the oil tank as a whole. Some countries like the U.S., Australia, Russia and China, etc. have already developed standards for manufacturing and quality control of hot aerosol fire extinguishing agents and norms for hot aerosol fire extinguishing system design under different fire protection scenarios. Coolants in hot aerosol fire suppression systems, which are responsible for reducing hot aerosol temperature to avoid secondary fire risk are reviewed for the first time. Cooling effects are generally achieved through vaporization and endothermic chemical decomposition of coolants. Finally, this review discussed areas applying generation I, II or III hot aerosol fire suppression technologies. The generation III hot aerosol fire extinguishing

  13. Variability of fire behavior, fire effects, and emissions in Scotch pine forests of central Siberia

    Science.gov (United States)

    D. J. McRae; Susan Conard; G. A. Ivanova; A. I. Sukhinin; Steve Baker; Y. N. Samsonov; T. W. Blake; V. A. Ivanov; A. V. Ivanov; T. V. Churkina; WeiMin Hao; K. P. Koutzenogij; Nataly Kovaleva

    2006-01-01

    As part of the Russian FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project, replicated 4-ha experimental fires were conducted on a dry Scotch pine (Pinus sylvestris)/lichen (Cladonia sp.)/feathermoss (Pleurozeum schreberi) forest site in central Siberia. Observations from the initial seven surface fires (2000-2001) ignited under a range of burning...

  14. H II regions ionized by sigma and tau Sco

    Energy Technology Data Exchange (ETDEWEB)

    Gaylard, M J [Council for Scientific and Industrial Research, Pretoria (South Africa). National Inst. for Telecommunications Research

    1984-11-15

    The H142..cap alpha.. line has been detected in Sharpless 9, which is ionized by sigmaSco, and in RCW 129, ionized by tau Sco. The electron temperatures in the two H II regions are 5700 +- 340 K and 4200 +- 600 K respectively. The thermal radio emission from S9 is asymmetric with respect to the stellar position, and the emission peak coincides with the position of the optical red emission features to the north and west of the star. There is no evidence for collisional excitation. S9 is a density-bounded H II region in the champagne phase, the bright rims and radio peak marking the ionization front.

  15. The molecular environment of the pillar-like features in the H II region G46.5-0.2

    Science.gov (United States)

    Paron, S.; Celis Peña, M.; Ortega, M. E.; Fariña, C.; Petriella, A.; Rubio, M.; Ashley, R. P.

    2017-10-01

    At the interface of H II regions and molecular gas, peculiar structures appear, some of them with pillar-like shapes. Understanding their origin is important for characterizing triggered star formation and the impact of massive stars on the interstellar medium. In order to study the molecular environment and influence of radiation on two pillar-like features related to the H II region G46.5-0.2, we performed molecular line observations with the Atacama Submillimeter Telescope Experiment and spectroscopic optical observations with the Isaac Newton Telescope. From the optical observations, we identified the star that is exciting the H II region as spectral type O4-6. The molecular data allowed us to study the structure of the pillars and an HCO+ cloud lying between them. In this HCO+ cloud, which has no well-defined 12CO counterpart, we found direct evidence of star formation: two molecular outflows and two associated near-IR nebulosities. The outflow axis orientation is perpendicular to the direction of the radiation flow from the H II region. Several Class I sources are also embedded in this HCO+ cloud, showing that it is usual that young stellar objects (YSOs) form large associations occupying a cavity bounded by pillars. On the other hand, it was confirmed that the radiation-driven implosion (RDI) process is not occurring in one of the pillar tips.

  16. Deforestation and Forest Fires in Roraima and Their Relationship with Phytoclimatic Regions in the Northern Brazilian Amazon

    Science.gov (United States)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 103 km2 (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 103 km2 (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  17. Smoke regions extraction based on two steps segmentation and motion detection in early fire

    Science.gov (United States)

    Jian, Wenlin; Wu, Kaizhi; Yu, Zirong; Chen, Lijuan

    2018-03-01

    Aiming at the early problems of video-based smoke detection in fire video, this paper proposes a method to extract smoke suspected regions by combining two steps segmentation and motion characteristics. Early smoldering smoke can be seen as gray or gray-white regions. In the first stage, regions of interests (ROIs) with smoke are obtained by using two step segmentation methods. Then, suspected smoke regions are detected by combining the two step segmentation and motion detection. Finally, morphological processing is used for smoke regions extracting. The Otsu algorithm is used as segmentation method and the ViBe algorithm is used to detect the motion of smoke. The proposed method was tested on 6 test videos with smoke. The experimental results show the effectiveness of our proposed method over visual observation.

  18. Forest diversity, climate change and forest fires in the Mediterranean region of Turkey.

    Science.gov (United States)

    Ozturk, Munir; Gucel, Salih; Kucuk, Mahir; Sakcali, Serdal

    2010-01-01

    This paper reviews the forest resources in Turkey in the light of published literature and summarises extensive fieldwork undertaken in the Mediterranean phytogeograhical region of Turkey. The issues of landscape change and the associated drivers are addressed and the threats to the forest diversity are considered. It notes the impacts of climate change and forest fires and attemepts have been made to put forth future options for sustainable forest development.

  19. Optimizing prescribed fire allocation for managing fire risk in central Catalonia.

    Science.gov (United States)

    Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina

    2018-04-15

    We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Physics Regimes in the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    D.M. Meade; S.C.Jardin; C.E. Kessel; M.A. Ulrickson; J.H. Schultz; P.H. Rutherford; J.A. Schmidt; J.C. Wesley; K.M. Young; N.A.Uckan; R.J. Thome; P. Heitzenroeder; B.E. Nelson; and C.C.Baker

    2001-01-01

    Burning plasma science is recognized widely as the next frontier in fusion research. The Fusion Ignition Research Experiment (FIRE) is a design study of a next-step burning plasma experiment with the goal of developing a concept for an experimental facility to explore and understand the strong nonlinear coupling among confinement, magnetohydrodynamic (MHD) self-heating, stability, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. This will require plasmas dominated by alpha heating (Q greater than or equal to 5) that are sustained for a duration comparable to characteristic plasma timescales (greater than or equal to 10) tau(subscript ''E''), approximately 4 tau(subscript ''He''), approximately 2 tau(subscript ''skin''). The work reported here has been undertaken with the objective of finding the minimum size (cost) device to achieve these physics goals

  1. Depositional characteristics of post-fire flooding following the Schultz Fire, San Francisco Peaks, Arizona

    Science.gov (United States)

    Karen A. Koestner; Mike D. Carroll; Daniel G. Neary; Peter E. Koestner; Ann Youberg

    2011-01-01

    During the summer of 2010 the northern Arizona mountain town of Flagstaff experienced three fires all blazing the same week in late-June, the height of the fire season for this region. By July 1st, all three were extinguished, but that was only the first phase of disturbance. The largest and most detrimental of these fires was the Schultz Fire. From June 20th to July...

  2. Fire monitoring from space: from research to operation

    Science.gov (United States)

    Pergola, Nicola; Filizzola, Carolina; Corrado, Rosita; Coviello, Irina; lacava, Teodosio; Marchese, Francesco; Mazzeo, Giuseppe; Paciello, Rossana; Tramutoli, Valerio

    2013-04-01

    Each summer fires rage through European forests, burning hundreds of thousands of hectares per year, as a result of the many (up to 60000) forest fires that usually occur annually in Europe. Fires can threaten public health and safety, destroy property and cause economic damages. Despite of their medium extension (the average burnt area is less than 6 ha), much smaller if compared with other regions like the USA and Canada, the number of simultaneous active fires in Europe can be very high, fomented by weather conditions that, especially in summer times and for countries of South Europe, are particularly favourable to a rapid and dramatic development of flames. Fires still are not only a social problem, but also an environmental emergency, producing a continuous impoverishment of forests and possibly indirectly triggering other natural hazards (e.g. making slopes, without the trees action, more prone to landslides). Additionally, there is a general concern about the loss of biodiversity and the contribution to land degradation that fires may cause. Earth Observation satellite systems have been largely tested for fire detection and monitoring from space. Their spectral capability, synoptic view and revisit times can offer an added value in the operational use not only in real time, during fires fighting activities, but also in near-real or delay time during the phases of risk management and mitigation. However, the practice of an actual operational use of satellite products by end-users is still not usual at European level. This work is based on the experience carried out jointly by CNR-IMAA and the National Civil Protection Department (DPC), in the framework of a five-year agreement in which the operational use of an Earth observation satellite system for fires spotting and monitoring is tested. Satellite-based products, developed not only for detecting fires but also for continuously monitoring their evolution in time domain, have been provided to Civil Protection

  3. Vegetation recovery after fire in the Klamath-Siskiyou region, southern Oregon

    Science.gov (United States)

    Hibbs, David; Jacobs, Ruth

    2011-01-01

    In July 2002, lightning strikes started five forest fires that merged into one massive wildfire in the Klamath-Siskiyou Ecoregion of southern Oregon. Aided by drought, severe weather conditions, dry fuels, and steep topography, the fire grew to more than 200,000 hectares of mostly public forest land. Known as the Biscuit Fire, it was Oregon's largest forest fire in more than 130 years and one of the largest wildfires on record in the United States. Discussions centered around why such a massive fire was happening, how large would it become, who was keeping communities and homes safe, and what would be the final economic and ecological outcome. Weeks later when the fire was out, conversations turned to other questions, including what, if anything, should happen for forest recovery.

  4. Upgrade for Phase II of the Gerda experiment

    Science.gov (United States)

    Agostini, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hiller, R.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kermaïdic, Y.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Nisi, S.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Ransom, C.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zsigmond, A. J.; Zuber, K.; Zuzel, G.

    2018-05-01

    The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of ^{76}Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain "background-free" up to its design exposure (100 kg year). It will reach thereby a half-life sensitivity of more than 10^{26} year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.

  5. Estimates of wildland fire emissions

    Science.gov (United States)

    Yongqiang Liu; John J. Qu; Wanting Wang; Xianjun Hao

    2013-01-01

    Wildland fire missions can significantly affect regional and global air quality, radiation, climate, and the carbon cycle. A fundamental and yet challenging prerequisite to understanding the environmental effects is to accurately estimate fire emissions. This chapter describes and analyzes fire emission calculations. Various techniques (field measurements, empirical...

  6. Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    ). The shedding investigation was also made when the nearby plant sootblower (4m below) was working. It was identified that the mass uptake signal remained stable and the deposits in small pieces were continuously removed during 35% and 65% straw-firing. Previous findings of Vattenfall indicated that a mixture...... was limited to two weeks when 100% straw was fired due to ash deposition in the superheater region that has tube spacing specified for coal-firing (113mm). A series of 3-5 days deposit probe experiments were conducted utilizing 35 to 100% straw with wood on mass basis. The applied deposit probe was water...... two hours deposit mass uptake rate was 52.8 (g/m2/h), while it was 353.8 (g/m2/h) during 100% straw-firing. All tests in the superheater region for all applied straw shares indicated that with increase in straw share, final deposit mass uptake increased. The comparison of current and previous full...

  7. Deforestation and forest fires in Roraima and their relationship with phytoclimatic regions in the northern Brazilian Amazon.

    Science.gov (United States)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  8. THE DISCOVERY OF RAMAN SCATTERING IN H II REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Nicholls, David C.; Sutherland, Ralph S.; Kewley, Lisa J.; Groves, Brent A., E-mail: Michael.Dopita@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2016-06-10

    We report here on the discovery of faint extended wings of H α observed out to an apparent velocity of ∼7600 km s{sup −1} in the Orion Nebula (M42) and in five H ii regions in the Large and the Small Magellanic Clouds. We show that these wings are caused by Raman scattering of both the O i and Si ii resonance lines and stellar continuum UV photons with H i followed by radiative decay to the H i n = 2 level. The broad wings also seen in H β and in H γ result from Raman scattering of the UV continuum in the H i n = 4 and n = 5 levels, respectively. The Raman scattering fluorescence is correlated with the intensity of the narrow permitted lines of O i and Si ii. In the case of Si ii, this is explained by radiative pumping of the same 1023.7 Å resonance line involved in the Raman scattering by the Ly β radiation field. The subsequent radiative cascade produces enhanced Si ii λλ 5978.9, 6347.1, and 6371.4 Å permitted transitions. Finally, we show that in O i, radiative pumping of the 1025.76 Å resonance line by the Lyman series radiation field is also the cause of the enhancement in the permitted lines of this species lying near H α in wavelength, but here the process is a little more complex. We argue that all these processes are active in the zone of the H ii region near the ionization front.

  9. Incorporating field wind data into FIRETEC simulations of the International Crown Fire Modeling Experiment (ICFME): preliminary lessons learned

    Science.gov (United States)

    Rodman Linn; Kerry Anderson; Judith Winterkamp; Alyssa Broos; Michael Wotton; Jean-Luc Dupuy; Francois Pimont; Carleton Edminster

    2012-01-01

    Field experiments are one way to develop or validate wildland fire-behavior models. It is important to consider the implications of assumptions relating to the locality of measurements with respect to the fire, the temporal frequency of the measured data, and the changes to local winds that might be caused by the experimental configuration. Twenty FIRETEC simulations...

  10. Application of wildfire spread and behavior models to assess fire probability and severity in the Mediterranean region

    Science.gov (United States)

    Salis, Michele; Arca, Bachisio; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo; Santoni, Paul; Ager, Alan; Finney, Mark

    2010-05-01

    Characterizing the spatial pattern of large fire occurrence and severity is an important feature of the fire management planning in the Mediterranean region. The spatial characterization of fire probabilities, fire behavior distributions and value changes are key components for quantitative risk assessment and for prioritizing fire suppression resources, fuel treatments and law enforcement. Because of the growing wildfire severity and frequency in recent years (e.g.: Portugal, 2003 and 2005; Italy and Greece, 2007 and 2009), there is an increasing demand for models and tools that can aid in wildfire prediction and prevention. Newer wildfire simulation systems offer promise in this regard, and allow for fine scale modeling of wildfire severity and probability. Several new applications has resulted from the development of a minimum travel time (MTT) fire spread algorithm (Finney, 2002), that models the fire growth searching for the minimum time for fire to travel among nodes in a 2D network. The MTT approach makes computationally feasible to simulate thousands of fires and generate burn probability and fire severity maps over large areas. The MTT algorithm is imbedded in a number of research and fire modeling applications. High performance computers are typically used for MTT simulations, although the algorithm is also implemented in the FlamMap program (www.fire.org). In this work, we described the application of the MTT algorithm to estimate spatial patterns of burn probability and to analyze wildfire severity in three fire prone areas of the Mediterranean Basin, specifically Sardinia (Italy), Sicily (Italy) and Corsica (France) islands. We assembled fuels and topographic data for the simulations in 500 x 500 m grids for the study areas. The simulations were run using 100,000 ignitions under weather conditions that replicated severe and moderate weather conditions (97th and 70th percentile, July and August weather, 1995-2007). We used both random ignition locations

  11. Fire protection and fire fighting in nuclear installations

    International Nuclear Information System (INIS)

    1989-01-01

    Fires are a threat to all technical installations. While fire protection has long been a well established conventional discipline, its application to nuclear facilities requires special considerations. Nevertheless, for a long time fire engineering has been somewhat neglected in the design and operation of nuclear installations. In the nuclear industry, the Browns Ferry fire in 1975 brought about an essential change in the attention paid to fire problems. Designers and plant operators, as well as insurance companies and regulators, increased their efforts to develop concepts and methods for reducing fire risks, not only to protect the capital investment in nuclear plants but also to consider the potential secondary effects which could lead to nuclear accidents. Although the number of fires in nuclear installations is still relatively large, their overall importance to the safety of nuclear power plants was not considered to be very high. Only more recently have probabilistic analyses changed this picture. The results may well have to be taken into account more carefully. Various aspects of fire fighting and fire protection were discussed during the Symposium, the first of its kind to be organized by the IAEA. It was convened in co-operation with several organizations working in the nuclear or fire protection fields. The intention was to gather experts from nuclear engineering areas and the conventional fire protection field at one meeting with a view to enhancing the exchange of information and experience and to presenting current knowledge on the various disciplines involved. The presentations at the meeting were subdivided into eight sessions: standards and licensing (6 papers); national fire safety practices (7 papers); fire safety by design (11 papers); fire fighting (2 papers); computer fire modeling (7 papers); fire safety in fuel center facilities (7 papers); fire testing of materials (3 papers); fire risk assessment (5 papers). A separate abstract was

  12. Regional comparison of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Bowers, H.I.

    1984-01-01

    Nuclear's main disadvantages are its high capital investment cost and uncertainty in schedule compared with alternatives. Nuclear plant costs continue to rise whereas coal plant investment costs are staying relative steady. Based on average experience, nuclear capital investment costs are nearly double those of coal-fired generation plants. The capital investment cost disadvantage of nuclear is balanced by its fuel cost advantages. New base load nuclear power plants were projected to be competitive with coal-fired plants in most regions of the country. Nuclear power costs wre projected to be significantly less (10% or more) than coal-fired power costs in the South Atlantic region. Coal-fired plants were projected to have a significant economic advantage over nuclear plants in the Central and North Central regions. In the remaining seven regions, the levelized cost of power from either option was projected to be within 10%. Uncertainties in future costs of materials, services, and financing affect the relative economics of the nuclear and coal options significantly. 10 figures

  13. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    OpenAIRE

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Ni?o-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sen...

  14. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    Science.gov (United States)

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  15. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  16. Fire Propagation Performance of Intumescent Fire Protective Coatings Using Eggshells as a Novel Biofiller

    Directory of Open Access Journals (Sweden)

    M. C. Yew

    2014-01-01

    Full Text Available This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens’ B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I=4.3 and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.

  17. Cogeneration with natural gas fired internal combustion engines: Italian utility's 10 years operating experience

    International Nuclear Information System (INIS)

    Montermini, G.P.

    1992-01-01

    This paper describes the experience that AGAC, an Italian gas and water utility, has acquired in the operation of a 116 Km long district heating network serving about 40,000 inhabitants. The network is powered by a mix of methane fuelled Otto and diesel cycle engines, coal fired fluidized bed boilers, and methane fired boilers producing annually about 153,000 kW of thermal energy, 2,300 kW of cooling energy, and 28.8 million kWh of electric power. This paper reports on the performance of this system in terms of production and sales trends, equipment efficiency and compatibility with new European Communities air pollution standards

  18. Fire regimes and vegetation responses in two Mediterranean-climate regions Regímenes de incendios y respuestas de la vegetación en dos regiones de clima Mediterráneo

    Directory of Open Access Journals (Sweden)

    GLORIA MONTENEGRO

    2004-09-01

    Full Text Available Wildfires resulting from thunderstorms are common in some Mediterranean-climate regions, such as southern California, and have played an important role in the ecology and evolution of the flora. Mediterranean-climate regions are major centers for human population and thus anthropogenic impacts on fire regimes may have important consequences on these plant formations. However, changes in fire regimes may have different impacts on Mediterranean type-ecosystems depending on the capability of plants to respond to such perturbations. Therefore, we compare here fire regimes and vegetation responses of two Mediterranean-climate regions which differ in wildfire regimes and history of human occupation, the central zone of Chile (matorral and the southern area of California in United States (chaparral. In Chile almost all fires result from anthropogenic activities, whereas lightning fires resulting from thunderstorms are frequent in California. In both regions fires are more frequent in summer, due to high accumulation of dry plant biomass for ignition. Humans have markedly increased fires frequency both in the matorral and chaparral, but extent of burned areas has remained unaltered, probably due to better fire suppression actions and a decline in the built-up of dry plant fuel associated to increased landscape fragmentation with less flammable agricultural and urban developments. As expected, post-fire plant regeneration responses differs between the matorral and chaparral due to differences in the importance of wildfires as a natural evolutionary force in the system. Plants from the chaparral show a broader range of post-fire regeneration responses than the matorral, from basal resprouting, to lignotuber resprouting, and to fire-stimulated germination and flowering with fire-specific clues such as heat shock, chemicals from smoke or charred wood. Plants from the matorral have some resprouting capabilities after fire, but these probably evolved from

  19. Fire characteristics associated with firefighter injury on large federal wildland fires.

    Science.gov (United States)

    Britton, Carla; Lynch, Charles F; Torner, James; Peek-Asa, Corinne

    2013-02-01

    Wildland fires present many injury hazards to firefighters. We estimate injury rates and identify fire-related factors associated with injury. Data from the National Interagency Fire Center from 2003 to 2007 provided the number of injuries in which the firefighter could not return to his or her job assignment, person-days worked, and fire characteristics (year, region, season, cause, fuel type, resistance to control, and structures destroyed). We assessed fire-level risk factors of having at least one reported injury using logistic regression. Negative binomial regression was used to examine incidence rate ratios associated with fire-level risk factors. Of 867 fires, 9.5% required the most complex management and 24.7% required the next-highest level of management. Fires most often occurred in the western United States (82.8%), during the summer (69.6%), caused by lightening (54.9%). Timber was the most frequent fuel source (40.2%). Peak incident management level, person-days of exposure, and the fire's resistance to control were significantly related to the odds of a fire having at least one reported injury. However, the most complex fires had a lower injury incidence rate than less complex fires. Although fire complexity and the number of firefighters were associated with the risk for at least one reported injury, the more experienced and specialized firefighting teams had lower injury incidence. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Seasonal forecasting of fire over Kalimantan, Indonesia

    Science.gov (United States)

    Spessa, A. C.; Field, R. D.; Pappenberger, F.; Langner, A.; Englhart, S.; Weber, U.; Stockdale, T.; Siegert, F.; Kaiser, J. W.; Moore, J.

    2015-03-01

    Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities. In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean-atmosphere model. Based on analyses of long, up-to-date series observations on burnt area, rainfall, and tree cover, we demonstrate that fire activity is negatively correlated with rainfall and is positively associated with deforestation in Indonesia. There is a contrast between the southern region of Kalimantan (high fire activity, high tree cover loss, and strong non-linear correlation between observed rainfall and fire) and the central region of Kalimantan (low fire activity, low tree cover loss, and weak, non-linear correlation between observed rainfall and fire). The ECMWF seasonal forecast provides skilled forecasts of burnt and fire-affected area with several months lead time explaining at least 70% of the variance between rainfall and burnt and fire-affected area. Results are strongly influenced by El Niño years which show a consistent positive bias. Overall, our findings point to a high potential for using a more physical-based method for predicting fires with several months lead time in the tropics rather than one based on indexes only. We argue that seasonal precipitation forecasts should be central to Indonesia's evolving fire management policy.

  1. Fire, Climate, and Human Activity: A Combustive Combination

    Science.gov (United States)

    Kehrwald, N. M.; Battistel, D.; Argiriadis, E.; Barbante, C.; Barber, L. B.; Fortner, S. K.; Jasmann, J.; Kirchgeorg, T.; Zennaro, P.

    2017-12-01

    Ice and lake core records demonstrate that fires caused by human activity can dominate regional biomass burning records in the Common Era. These major increases in fires are often associated with extensive land use change such as an expansion in agriculture. Regions with few humans, relatively stable human populations and/or unvarying land use often have fire histories that are dominated by climate parameters such as temperature and precipitation. Here, we examine biomass burning recorded in ice cores from northern Greenland (NEEM, (77°27'N; 51°3.6'W), Alaska (Juneau Icefield, 58° 35' N; 134° 29'W) and East Antarctica (EPICA DOME C; 75°06'S; 123°21'E), along with New Zealand lake cores to investigate interactions between climate, fire and human activity. Biomarkers such as levoglucosan, and its isomers mannosan and galactosan, can only be produced by cellulose combustion and therefore are specific indicators of past fire activity archived in ice and lake cores. These fire histories add another factor to climate proxies from the same core, and provide a comparison to regional fire syntheses from charcoal records and climate models. For example, fire data from the JSBACH-Spitfire model for the past 2000 years demonstrates that a climate-only scenario would not increase biomass burning in high northern latitudes for the past 2000 years, while NEEM ice core and regional pollen records demonstrate both increased fire activity and land use change that may be ascribed to human activity. Additional biomarkers such as fecal sterols in lake sediments can determine when people were in an area, and can help establish if an increased human presence in an area corresponds with intensified fire activity. This combination of specific biomarkers, other proxy data, and model output can help determine the relative impact of humans versus climate factors on regional fire activity.

  2. Coal fires in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Alfred E.; Mulyana, Asep A.S. [Office of Surface Mining/Ministry of Energy and Mineral Resources Coal Fire Project, Ministry of Energy and Mineral Resources, Agency for Training and Education, Jl. Gatot Subroto, Kav. 49, Jakarta 12950 (Indonesia)

    2004-07-12

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests on the island of Borneo during extreme drought periods in 1982-1983, 1987, 1991, 1994 and 1997-1998. Estimates based on satellite data and ground observations are that more than five million hectares were burned in East Kalimantan during the 1997/1998 dry season. Not only were the economic losses and ecological damage from these surface fires enormous, they ignited coal seams exposed at the ground surface along their outcrops.Coal fires now threaten Indonesia's shrinking ecological resources in Kutai National Park and Sungai Wain Nature Reserve. Sungai Wain has one of the last areas of unburned primary rainforest in the Balikpapan-Samarinda area with an extremely rich biodiversity. Although fires in 1997/1998 damaged nearly 50% of this Reserve and ignited 76 coal fires, it remains the most valuable water catchment area in the region and it has been used as a reintroduction site for the endangered orangutan. The Office of Surface Mining provided Indonesia with the capability to take quick action on coal fires that presented threats to public health and safety, infrastructure or the environment. The US Department of State's Southeast Asia Environmental Protection Initiative through the US Agency for International Development funded the project. Technical assistance and training transferred skills in coal fire management through the Ministry of Energy and Mineral Resource's Training Agency to the regional offices; giving the regions the long-term capability to manage coal fires. Funding was also included to extinguish coal fires as

  3. Fire and explosion hazards to flora and fauna from explosives.

    Science.gov (United States)

    Merrifield, R

    2000-06-30

    Deliberate or accidental initiation of explosives can produce a range of potentially damaging fire and explosion effects. Quantification of the consequences of such effects upon the surroundings, particularly on people and structures, has always been of paramount importance. Information on the effects on flora and fauna, however, is limited, with probably the weakest area lying with fragmentation of buildings and their effects on different small mammals. Information has been used here to gain an appreciation of the likely magnitude of the potential fire and explosion effects on flora and fauna. This is based on a number of broad assumptions and a variety of data sources including World War II bomb damage, experiments performed with animals 30-40 years ago, and more recent field trials on building break-up under explosive loading.

  4. Effects of new environmental regulations on coal-fired generation

    International Nuclear Information System (INIS)

    LaCount, R.

    1999-01-01

    As restructuring of the electricity industry places downward pressure on power production costs, new environmental regulations are having the opposite effect. Although power plants may be subject to a variety of environmental regulations over the next ten years including reductions in mercury, toxics, and carbon dioxide, new regulations for sulfur dioxide (SO2) and nitrogen oxides (NOX) are poised to impact the electricity industry in the very short term. The cost for coal-fired power plants to comply with these new regulations has the potential to alter their competitive position. January 1, 2000 marks the beginning of Phase II for the Environmental Protection Agency's SO2 allowance market. Starting in January, all coal and oil plants above 25 MW will be required to comply with the federal SO2 provisions. Regulatory deadlines for NOX are also fast approaching; though the ultimate requirements are still subject to change. On May 1, 1999, a NOX allowance market began for states within the Northeast Ozone Transport Commission (OTC). A second phase of this program is scheduled to begin in 2003 that will lower the overall cap for allowable NOX emissions in the participating states. EPA is also working to expand the reach of regional NOX reductions in 2003 through its NOX SIP call. This program, which is currently subject to litigation, would require NOX reductions in 14 states outside of the OTC. A new study by Resource Data International (RDI), Coal-Fired Generation in Competitive Power Markets, assessed the potential impact that the new SO2 and NOX regulations may have on the competitiveness of coal-fired generation. Overall, the study shows that coal-fired generation will continue to grow despite significant environmental costs and competition from natural gas-fired units. The new environmental regulations have the effect of increasing the dispatch cost of coal-fired units from $0.65/MWh on average in the WSCC to $4.14/MWh on average in the MAAC region. The addition

  5. [Influence of fire disturbance on aboveground deadwood debris carbon storage in Huzhong forest region of Great Xing'an Mountains, Northeast China].

    Science.gov (United States)

    Yang, Da; He, Hong-shi; Wu, Zhi-wei; Liang, Yu; Huang, Chao; Luo, Xu; Xiao, Jiang-tao; Zhang, Qing-long

    2015-02-01

    Based on the field inventory data, the aboveground deadwood debris carbon storage under different fire severities was analyzed in Huzhong forest region of Great Xing' an Mountains. The results showed that the fire severity had a significant effect on aboveground deadwood debris carbon storage. The deadwood debris carbon storage was in the order of high-severity > low-severity > unburned in Larix gmelinii stands, and mixed conifer-broadleaf stands ( L. gmelinii and Betula platyphylla), and in the order of high severity > unburned > low-severity in B. platyphylla stands. Fire disturbance significantly changed the component percentage of the deadwood debris carbon storage. The component percentage of snags increased and litter decreased with the increasing fire severity. Logs and stumps did not change significantly with the increasing fire severity. The spatial variation of deadwood debris carbon storage in forests burned with low-severity fire was higher than that in unburned forests. The spatial variation of deadwood debris carbon storage with high-severity fires was lowest. This spatial variation needed to be accounted when calculating forest deadwood debris carbon storage.

  6. Status of the Gerda phase II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, Andrea [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    The Gerda experiment searches for the neutrinoless double beta decay (0νββ) in {sup 76}Ge. The first phase of the experiment collected 21.6 kg. yr of exposure with a background index (BI) of 0.01 cts/(keV . kg . yr). No signal was observed and a lower limit for the 0νββ half-life was set to T{sup 0νββ}{sub 1/2} < 2.1 . 10{sup 25} yr (90% C.L). The apparatus has now been upgraded to the Phase II configuration. In Phase II 38 kg of HPGe detectors will be operated to reach an exposure of 100 kg . yr. The goal of Gerda Phase II is to lower the BI to 10{sup -3} cts/(keV . kg . y), in order to reach the sensitivity for T{sup 0νββ}{sub 1/2} = O(10{sup 26}) yr. The additional target mass is constituted of 30 custom made BEGe detectors with higher energy resolution and better pulse shape discrimination performance. The detectors are operated in new radio-pure low-mass holders. The liquid argon surrounding the detectors has been instrumented to veto the background events which produce scintillation light. In this talk the current status and the performance of the Gerda Phase II are presented.

  7. Fire behavior in Mediterranean shrub species (Maquis) | Saglam ...

    African Journals Online (AJOL)

    The prediction of fire behavior in fire prone ecosystems is of vital importance in all phases of fire management including fire prevention, presuppression, suppression and fire use. This paper deals with an experimental burning exercise conducted in the Mediterranean region in Turkey. A series of 18 experimental fires were ...

  8. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  9. Risk Insights Gained from Fire Incidents

    International Nuclear Information System (INIS)

    Kazarians, Mardy; Nowlen, Steven P.

    1999-01-01

    There now exist close to 20 years of history in the application of Probabilistic Risk Assessment (PRA) for the analysis of fire risk at nuclear power plants. The current methods are based on various assumptions regarding fire phenomena, the impact of fire on equipment and operator response, and the overall progression of a fire event from initiation through final resolution. Over this same time period, a number of significant fire incidents have occurred at nuclear power plants around the world. Insights gained from US experience have been used in US studies as the statistical basis for establishing fire initiation frequencies both as a function of the plant area and the initiating fire source.To a lesser extent, the fire experience has also been used to assess the general severity and duration of fires. However, aside from these statistical analyses, the incidents have rarely been scrutinized in detail to verify the underlying assumptions of fire PRAs. This paper discusses an effort, under which a set of fire incidents are being reviewed in order to gain insights directly relevant to the methods, data, and assumptions that form the basis for current fire PRAs. The paper focuses on the objectives of the effort, the specific fire events being reviews methodology, and anticipated follow-on activities

  10. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    Science.gov (United States)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration

  11. Enhancing adaptive capacity for restoring fire-dependent ecosystems: the Fire Learning Network's Prescribed Fire Training Exchanges

    Directory of Open Access Journals (Sweden)

    Andrew G. Spencer

    2015-09-01

    Full Text Available Prescribed fire is a critical tool for promoting restoration and increasing resilience in fire-adapted ecosystems, but there are barriers to its use, including a shortage of personnel with adequate ecological knowledge and operational expertise to implement prescribed fire across multijurisdictional landscapes. In the United States, recognized needs for both professional development and increased use of fire are not being met, often because of institutional limitations. The Fire Learning Network has been characterized as a multiscalar, collaborative network that works to enhance the adaptive capacity of fire management institutions, and this network developed the Prescribed Fire Training Exchanges (TREXs to address persistent challenges in increasing the capacity for prescribed fire implementation. Our research was designed to investigate where fire professionals face professional barriers, how the TREX addresses these, and in what ways the TREX may be contributing to the adaptive capacity of fire management institutions. We evaluated the training model using surveys, interviews, focus groups, and participant observation. We found that, although the training events cannot overcome all institutional barriers, they incorporate the key components of professional development in fire; foster collaboration, learning, and network building; and provide flexible opportunities with an emphasis on local context to train a variety of professionals with disparate needs. The strategy also offers an avenue for overcoming barriers faced by contingent and nonfederal fire professionals in attaining training and operational experience, thereby increasing the variety of actors and resources involved in fire management. Although it is an incremental step, the TREX is contributing to the adaptive capacity of institutions in social-ecological systems in which fire is a critical ecological process.

  12. The dispersion of radioactive aerosols in fires

    International Nuclear Information System (INIS)

    Buijs, K.; Chavane de Dalmassy, B.; Pickering, S.

    1989-01-01

    Experimental results are reported on the resuspension, due to fire, of radioactive nuclear fuel particles from a variety of substrates. Experiments were carried out both on large and small scale. In small-scale fires uranium-plutonium oxide particles were used and in the large-scale fires cerium-europium oxide particles were used. The mechanisms of particle resuspension were investigated in separate series of experiments. It was found that in small-scale fires up to 20% of the particle inventory can be resuspended and in large-scale fires up to 75%. In both cases most of the resuspended material deposits within the fire chamber and a maximum of 2% is carried into the ventilation duct at the outlet of the fire chamber. The predominant resuspension mechanisms are bubble bursting in small-scale fires and turbulence in large-scale fires. (orig.)

  13. Mission and design of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Meade, D.M.; Jardin, S.C.; Schmidt, J.

    2001-01-01

    Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A key issue is to what extent pressure profile evolution driven by strong alpha heating will act to self-organize advanced configurations with large bootstrap current fractions and internal transport barriers. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q≥5) that are sustained for durations comparable to the characteristic plasma time scales (≥20 τ E and ∼τ skin , where τ skin is the time for the plasma current profile to redistribute at fixed current). The programmatic mission of FIRE is to attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major goal is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B. (author)

  14. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird).

    Science.gov (United States)

    Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.

  15. SNL/JAEA Collaborations on Sodium Fire Benchmarking.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Andrew Jordan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Takata, Takashi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ohshima, Hiroyuki [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Two sodium spray fire experiments performed by Sandia National Laboratories (SNL) were used for a code - to - code comparison between CONTAIN - LMR and SPHINCS. Both computer codes are used for modeling sodium accidents in sodium fast reactors. The comparison between the two codes provides insights into the ability of both codes to model sodium spray fires. The SNL T3 and T4 experiments are 20 kg sodium spray fires with sodium spray temperature s of 200 deg C and 500 deg C, respe ctively. Given the relatively low sodium temperature in the SNL T3 experiment, the sodium spray experienced a period of non - combustion. The vessel in the SNL T4 experiment experienced a rapid pressurization that caused of the instrumentation ports to fail during the sodium spray. Despite these unforeseen difficulties, both codes were shown in good agreement with the experiment s . The subsequent pool fire that develops from the unburned sodium spray is a significant characteristic of the T3 experiment. SPHIN CS showed better long - term agreement with the SNL T3 experiment than CONTAIN - LMR. The unexpected port failure during the SNL T4 experiment presented modelling challenges. The time at which the port failure occurred is unknown, but is believed to have occur red at about 11 seconds into the sodium spray fire. The sensitivity analysis for the SNL T4 experiment shows that with a port failure, the sodium spray fire can still maintain elevated pressures during the spray.

  16. Fire in Mediterranean climate ecosystems: a comparative overview

    Science.gov (United States)

    Keeley, Jon E.

    2012-01-01

    Four regions of the world share a similar climate and structurally similar plant communities with the Mediterranean Basin. These five areas, known collectively as "mediterranean-type climate (MTC) regions", are dominated by evergreen sclerophyllous-leaved shrublands, semi-deciduous scrub, and woodlands, all of which are prone to widespread crown fires. Summer droughts produce an annual fire hazard that contributes to a highly predictable fire regime. Fire has been an important factor driving the convergence of these systems and is reflected in plant traits such as lignotubers in resprouting shrubs and delayed reproduction that restricts recruitment to a postfire pulse of seedlings. On fertile soils where postfire resprouting is very rapid, opportunities for postfire seedling recruitment are limited and thus these woody taxa have not opted for delaying reproduction. Such fire-independent recruitment is widespread in the floras of MTC regions of the Mediterranean Basin and California and postfire seeding tends to dominate at the more arid end of the gradient. Due to very different geological histories in South Africa and Western Australia, substrates are nutrient poor and thus postfire resprouters do not pose a similar competitive challenge to seedlings and thus postfire seeding is very widespread in these floras. Although circumstantial evidence suggests that the MTC region of Chile had fire-prone landscapes in the Tertiary, these were lost with the late Miocene completion of the Andean uplift, which now blocks summer lightning storms from moving into the region. Today these five regions pose a significant fire management challenge due to the annual fire hazard and metropolitan centers juxtaposed with highly flammable vegetation. This challenge varies across the five MTC landscapes as a function of differences in regional fuel loads and population density.

  17. Effects of Fire on Soil Splash Erosion in Semi-steppe Rangelandof Karsanak Region,Chaharmahal and Bakhtiari

    Directory of Open Access Journals (Sweden)

    D. Baharlooi

    2016-02-01

    . Detachment rate is strongly influenced by soil properties, including soil texture and thickness of the water layer at the soil surface (De Ploey and Savat, 1968; Moss and Green, 1983; Sharma et al., 1991; Kinnell, 1991, Jomaa et al., 2010, soil strength, bulk density, cohesion, soil organic matter content, moisture content, infiltration capacity (Nearing et al., 1988; Owoputi, 1994; Morgan et al., 1998, Planchon et al., 2000, Ghahramani et al., 2011, soil initial water content, surface compaction and roughness (Planchon et al., 2000, the nature of soil aggregates and crust, porosity, capacity of ionic interchange, and clay content (Poesen and Torri, 1988. Several studies have shown that splash detachment rate is mainly related to surface rock fragments in soils with sparse vegetation cover (Jomaa et al., 2012. The present study was conducted to investigate the effects of fire on splash erosion and some erosion depended properties in semi-steppe rangeland of Karsanak region in Chaharmahal and Bakhtiari province which affected by man-made fire during 2008, 2009, 2010 and 2011. Materials and Methods: Soil samples were obtained on 2012 from the mentioned regions (8 samplesfrom the burned area and 8 samples as a control (unburned in the adjacent burned area from 0-7 cm depth. Splash erosion under simulated rainfall intensity of 2 mm per minute was measured using multivariate splash cup apparatus considering the slope of 5 and 25 degree. Soil pH, soil electrical conductivity, equivalent calcium carbonate, soil organic matter, sand size fraction particulate organic matter (SSF POM, mean weight diameter and, geometric mean diameter of aggregates, percent of macro and micro-aggregates, percent of clay, silt, sand, water dispersible clay and soil bulk density were measured. Statistical data analysis was performed by t-test at 5% level. Results Discussion: The results showed that soil splashing increased significantly in treatment 1 year after the fire in both slope 5 and 25 degree and

  18. Training experience at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Driscoll, J.W.; McCormick, R.P.; McCreery, H.I.

    1978-01-01

    The EBR-II Training Group develops, maintains,and oversees training programs and activities associated with the EBR-II Project. The group originally spent all its time on EBR-II plant-operations training, but has gradually spread its work into other areas. These other areas of training now include mechanical maintenance, fuel manufacturing facility, instrumentation and control, fissile fuel handling, and emergency activities. This report describes each of the programs and gives a statistical breakdown of the time spent by the Training Group for each program. The major training programs for the EBR-II Project are presented by multimedia methods at a pace controlled by the student. The Training Group has much experience in the use of audio-visual techniques and equipment, including video-tapes, 35 mm slides, Super 8 and 16 mm film, models, and filmstrips. The effectiveness of these techniques is evaluated in this report

  19. Fire Risk Analysis and Optimization of Fire Prevention Management for Green Building Design and High Rise Buildings: Hong Kong Experience

    Directory of Open Access Journals (Sweden)

    Yau Albert

    2014-12-01

    Full Text Available There are many iconic high rise buildings in Hong Kong, for example, International Commercial Centre, International Financial Centre, etc. Fire safety issue in high rise buildings has been raised by local fire professionals in terms of occupant evacuation, means of fire-fighting by fire fighters, sprinkler systems to automatically put off fires in buildings, etc. Fire risk becomes an important issue in building fire safety because it relates to life safety of building occupants where they live and work in high rise buildings in Hong Kong. The aim of this research is to identify the fire risk for different types of high rise buildings in Hong Kong and to optimise the fire prevention management for those high rise buildings with higher level of fire risk and to validate the model and also to carry out the study of the conflict between the current fire safety building code and the current trend of green building design. Survey via the 7-point scale questionnaire was conducted through 50 participants and their responses were received and analysed via the statistical tool SPSS software computer program. A number of statistical methods of testing for significantly difference in samples were adopted to carry out the analysis of the data received. When the statistical analysis was completed, the results of the data analysis were validated by two Fire Safety Experts in this area of specialisation and also by quantitative fire risk analysis.

  20. Exploring Early Angiosperm Fire Feedbacks using Coupled Experiments and Modelling Approaches to Estimate Cretaceous Palaeofire Behaviour

    Science.gov (United States)

    Belcher, Claire; Hudpsith, Victoria

    2016-04-01

    Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms

  1. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland

    Directory of Open Access Journals (Sweden)

    Tineke Kraaij

    2017-08-01

    Full Text Available Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed ‘recruitment’. Factors (in decreasing order of importance affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire and fire return interval (>7 years had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2–3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting

  2. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland.

    Science.gov (United States)

    Kraaij, Tineke; Cowling, Richard M; van Wilgen, Brian W; Rikhotso, Diba R; Difford, Mark

    2017-01-01

    Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae) which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa) where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents) of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire) fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed 'recruitment'). Factors (in decreasing order of importance) affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire) and fire return interval (>7 years) had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2-3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting that proteoid

  3. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    Science.gov (United States)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  4. Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire

    Science.gov (United States)

    J.A. Carvalho; C.A. Gurgel Veras; E.C. Alvarado; D.V. Sandberg; S.J. Leite; R. Gielow; E.R.C. Rabelo; J.C. Santos

    2010-01-01

    Fire characteristics in tropical ecosystems are poorly documented quantitatively in the literature. This paper describes an understorey fire propagating across the edges of a biomass burn of a cleared primary forest. The experiment was carried out in 2001 in the Amazon forest near Alta Floresta, state of Mato Grosso, Brazil, as part of biomass burning experiments...

  5. Fire protection devices in the controlled region of GKN nuclear power station

    International Nuclear Information System (INIS)

    Bernhardt, S.; Grauf, E.

    1976-01-01

    In the GKN nuclear power station ('Neckar reactor'), an 805 MW PWR reactor whose start-up is scheduled for the near future, fire protection measures have been realized that go far beyond those realized in other German nuclear power stations until now. One of the main reasons is that the authorities have been sensibilized by a fire in the refuelling cavity during construction and by the Browns Ferry fire and are therefore extremely thorough in their examination. Further subsections have been added to the fire prevention sections in order to provide better quenching devices for potential fire sites. (orig./AK) [de

  6. Exploring the Future of Fuel Loads in Tasmania, Australia: Shifts in Vegetation in Response to Changing Fire Weather, Productivity, and Fire Frequency

    Directory of Open Access Journals (Sweden)

    Rebecca Mary Bernadette Harris

    2018-04-01

    Full Text Available Changes to the frequency of fire due to management decisions and climate change have the potential to affect the flammability of vegetation, with long-term effects on the vegetation structure and composition. Frequent fire in some vegetation types can lead to transformational change beyond which the vegetation type is radically altered. Such feedbacks limit our ability to project fuel loads under future climatic conditions or to consider the ecological tradeoffs associated with management burns. We present a “pathway modelling” approach to consider multiple transitional pathways that may occur under different fire frequencies. The model combines spatial layers representing current and future fire danger, biomass, flammability, and sensitivity to fire to assess potential future fire activity. The layers are derived from a dynamically downscaled regional climate model, attributes from a regional vegetation map, and information about fuel characteristics. Fire frequency is demonstrated to be an important factor influencing flammability and availability to burn and therefore an important determinant of future fire activity. Regional shifts in vegetation type occur in response to frequent fire, as the rate of change differs across vegetation type. Fire-sensitive vegetation types move towards drier, more fire-adapted vegetation quickly, as they may be irreversibly impacted by even a single fire, and require very long recovery times. Understanding the interaction between climate change and fire is important to identify appropriate management regimes to sustain fire-sensitive communities and maintain the distribution of broad vegetation types across the landscape.

  7. Global track finder for Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Trusov, Viktor; Feindt, Michael; Heck, Martin; Kuhr, Thomas; Goldenzweig, Pablo [Karlsruhe Institute of Technology, IEKP (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    We present an implementation of a method based on the Legendre transformation for reconstruction charged particle tracks in the central drift chamber of the Belle II experiment. The method is designed for fast track finding and restoring circular patterns of track hits in transverse plane. It is done by searching for common tangents to drift circles of hits in the conformal space. With known transverse trajectories longitudinal momentum estimation performed by assigning stereo hits followed by determination of the track parameters. The method includes algorithms responsible for track quality estimation and reduction of rate of fakes. The work is targeting at increasing the efficiency and reducing the execution time because the computing power available to the experiment is limited. The algorithm is developed within the Belle II software environment with using Monte-Carlo simulation for probing its efficiency.

  8. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    Science.gov (United States)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in

  9. A novel approach for fire recognition using hybrid features and manifold learning-based classifier

    Science.gov (United States)

    Zhu, Rong; Hu, Xueying; Tang, Jiajun; Hu, Sheng

    2018-03-01

    Although image/video based fire recognition has received growing attention, an efficient and robust fire detection strategy is rarely explored. In this paper, we propose a novel approach to automatically identify the flame or smoke regions in an image. It is composed to three stages: (1) a block processing is applied to divide an image into several nonoverlapping image blocks, and these image blocks are identified as suspicious fire regions or not by using two color models and a color histogram-based similarity matching method in the HSV color space, (2) considering that compared to other information, the flame and smoke regions have significant visual characteristics, so that two kinds of image features are extracted for fire recognition, where local features are obtained based on the Scale Invariant Feature Transform (SIFT) descriptor and the Bags of Keypoints (BOK) technique, and texture features are extracted based on the Gray Level Co-occurrence Matrices (GLCM) and the Wavelet-based Analysis (WA) methods, and (3) a manifold learning-based classifier is constructed based on two image manifolds, which is designed via an improve Globular Neighborhood Locally Linear Embedding (GNLLE) algorithm, and the extracted hybrid features are used as input feature vectors to train the classifier, which is used to make decision for fire images or non fire images. Experiments and comparative analyses with four approaches are conducted on the collected image sets. The results show that the proposed approach is superior to the other ones in detecting fire and achieving a high recognition accuracy and a low error rate.

  10. Increased vulnerability to wildfires and post fire hydro-geomorphic processes in Portuguese mountain regions: what has changed?

    Directory of Open Access Journals (Sweden)

    Nunes A. N.

    2017-02-01

    Full Text Available The main objectives of this study were to understand the frequency of forest fires, post-fire off-site hydrological response and erosional processes from a social and ecological perspective in two basins located in the central cordillera, Portugal. It also discusses the driving forces that contribute towards increasing the social-ecological vulnerability of systems in the face of hazards and emphasizes the importance of learning from disasters. Based on the historical incidence of wildfires, it is possible to identify several areas affected by two, three or four fires, since 1975. Following the two major fires, in 1987 and 2005, flash floods, intense soil erosion and sedimentation processes were generated, causing severe damage. Significant socioeconomic, political and ecological changes have been affecting mountain regions in the last decades. Approximately 80% of the population and more than 90% of the livestock have disappeared, common lands have been afforested with Pinus pinaster, and several agricultural plots have been abandoned. These factors have all contributed towards creating non- or submanaged landscapes that have led to a dramatic increase in the magnitude and frequency of wildfires and to post-fire hydrological and erosional processes when heavy rainfall occurs. Moreover, the low population density, high level of population ageing and very fire-prone vegetation that now covers large areas of both basins, contribute to a situation of extreme socio-ecological vulnerability, meaning that disasters will continue to occur unless resilience can be restored to improve the capacity to cope with this high susceptibility to hazards.

  11. WTO’s information technology agreement (ITA and its expansion (ITA II: multilateralizing regionalism

    Directory of Open Access Journals (Sweden)

    Camilla Capucio

    2018-03-01

    Full Text Available Bearing in mind the complex context of the relationship between multilateralism and regionalism, the conclusion of plurilateral agreements within the WTO, open to participation of all interested members, offers a multilateral perspective of regionalism, in which the benefits of partial consensus are to be extended to the multilateral sphere. The ITA - Information Technology Agreement - is mentioned as an example of this possibility, and its recent expansion, through the negotiation of the ITA II, demonstrates the strengthening of this multilateralisation trend of regionalism, although with special features. Thus, this article is developed drawing the context and introduction of the theme of regionalism and multilateralism, and presents the theory of multilateralisation of regionalism and the ITA as one of those experiences, and its recent expansion as a resumption of the relevance of this theory. Considering the impasses for the conclusion of the Doha Round, the expansion of these partial consensus and the continuation of negotiations at the World Trade Organization by the conclusion of sectoral plurilateral agreements emerges as a possible way out, which demands a re-architecture of the interpretation of the role of the WTO in the global economic governance.

  12. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    Science.gov (United States)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest Fire Weather Index System (CFFWIS) to understand changes in wildland fire risk through differences between historical simulations and future projections. Our results are relatively homogeneous across the focus region and indicate modest increases in the magnitude of fire weather indices (FWIs) during northern hemisphere summer. The most pronounced changes occur in the date of the initialization of CFFWIS and peak of the wildland fire season, which in the future are trending earlier in the year, and in the significant increases in the length of high-risk episodes, defined by the number of consecutive days with FWIs above the current 95th percentile. Further analyses show that these changes are most closely linked to expected changes in the focus region's temperature and precipitation. These findings relate to the current understanding of particulate matter vis-à-vis wildfires and have implications for human health and local and regional changes in radiative forcings. When considering current fire management strategies which could be challenged by increasing wildland fire risk, fire management agencies could adapt new strategies to improve awareness, prevention, and resilience to mitigate potential impacts to critical infrastructure and population.

  13. Investigation for the sodium leak Monju. Sodium fire test-II

    International Nuclear Information System (INIS)

    Uchiyama, Naoki; Takai, Toshihide; Nishimura, Masahiro; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    2000-08-01

    As a part of the work for investigating the sodium leak accident which occurred in the Monju reactor (hereinafter referred to as Monju), sodium fire test-II was carried out using the SOLFA-1 (Sodium Leak, Fire and Aerosol) facility at OEC/PNC. In the test, the piping, ventilation duct, grating and floor liner were all full-sized and arranged in a rectangular concrete cell in the same manner as in Monju. The main objectives of the test were to confirm the leak and burning behavior of sodium from the damaged thermometer, and the effects of the sodium fire on the integrity of the surrounding structure. The main conclusions obtained from the test are shown below: (1) Burning Behavior of Leaked Sodium : Images taken with a cameras in the test reveal that in the early stages of the sodium leak, the sodium dropped down out of the flexible tube in drips. (2) Damage to the Ventilation Duct and Grating : The temperature of the ventilation duct's inner surface fluctuated between approximately 600degC and 700degC. The temperature of the grating began rising at the outset of the test, then fluctuated between roughly 600degC and 900degC. The maximum temperature was about 1000degC. After the test, damage to the ventilation duct and the grating was found. Damage to the duct was greater than that at Monju. (3) Effects on the Floor Liner : The temperature of the floor liner under the leak point exceed 1,000degC at 3 hours and 20 minutes into the test. A post test inspection of the liner revealed five holes in an area about 1m x 1m square under the leak point. There was also a decrease of the liner thickness on the north and west side of the leak point. (4) Effects on Concrete : The post test inspection revealed no surface damage on either the concrete side walls or the ceiling. However, the floor concrete was eroded to a maximum depth 8 cm due to a sodium-concrete reaction. The compressive strength of the concrete was not degraded in spite of the thermal effect. (5) Chemical

  14. Abrupt climate-independent fire regime changes

    Science.gov (United States)

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  15. Investigations concerning fire-induced accidents in nuclear facilities

    International Nuclear Information System (INIS)

    Lamuth, P.; Lernout, L.A.; Bonneval, F.; Cottaz, M.

    1996-01-01

    In the context of fire protection in technical buildings of French nuclear facilities, three principles have been adopted: prevention, detection and fire-fighting. Their implementation makes it possible on the one hand to limit the fire ignition and the fire growth, and on the other hand to prevent fire extent which would lead to unavailability of several safety related equipment. Although progress has been made in this direction, the fire risks have still not been eliminated. It is therefore essential to evaluate the fire effects and to assess their consequences. To this end, three main R and D programs have been conducted into fires. Part I sets out the fire PSA methodology used for a 900 MWe PWR. Part II gives an outline of two fire and ventilation computer codes useful for the fire PSA. Finally, part III gives an outline of the tests already performed and those currently under way in the two laboratories of the Institut de Protection et de Surete Nucleaire (IPSN) in order to qualify the codes and provide useful information for the safety assessment. (author)

  16. Pre-fire planning for nuclear power plants

    International Nuclear Information System (INIS)

    Talbert, J.H.

    1980-01-01

    Regardless of the fire prevention measures which are taken, plant experience indicates that fires will occur in a nuclear power plant. When a fire occurs, the plant staff must handle the fire emergency. Pre-fire planning is a method of developing detailed fire attack plans and salvage operations to protect equipment from damage due to fire and fire fighting operations. This paper describes the purpose and use of a pre-fire plan to achieve these goals in nuclear power plants

  17. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep.

    Science.gov (United States)

    Poe, G R; Nitz, D A; McNaughton, B L; Barnes, C A

    2000-02-07

    The idea that sleep could serve a cognitive function has remained popular since Freud stated that dreams were "not nonsense" but a time to sort out experiences [S. Freud, Letter to Wilhelm Fliess, May 1897, in The Origins of Psychoanalysis - Personal Letters of Sigmund Freud, M. Bonaparte, A. Freud, E. Kris (Eds.), Translated by E. Mosbacher, J. Strachey, Basic Books and Imago Publishing, 1954]. Rapid eye movement (REM) sleep, which is associated with dream reports, is now known to be is important for acquisition of some tasks [A. Karni, D. Tanne, B.S. Rubenstein, J.J.M. Askenasy, D. Sagi, Dependence on REM sleep of overnight improvement of a perceptual skill, Science 265 (1994) 679-682; C. Smith, Sleep states and learning: a review of the animal literature, Biobehav. Rev. 9 (1985) 157-168]; although why this is so remains obscure. It has been proposed that memories may be consolidated during REM sleep or that forgetting of unnecessary material occurs in this state [F. Crick, G. Mitchison, The function of dream sleep, Nature 304 (1983) 111-114; D. Marr, Simple memory: a theory for archicortex, Philos. Trans. R. Soc. B. 262 (1971) 23-81]. We studied the firing of multiple single neurons in the hippocampus, a structure that is important for episodic memory, during familiar and novel experiences and in subsequent REM sleep. Cells active in familiar places during waking exhibited a reversal of firing phase relative to local theta oscillations in REM sleep. Because firing-phase can influence whether synapses are strengthened or weakened [C. Holscher, R. Anwyl, M.J. Rowan, Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo, J. Neurosci. 15 (1977) 6470-6477; P.T. Huerta, J.E. Lisman, Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro, Neuron 15 (1995) 1053-1063; C. Pavlides, Y

  18. Lightning-caused fires in Central Spain

    DEFF Research Database (Denmark)

    Nieto Solana, Hector; Aguado, Inmaculada; García, Mariano

    2012-01-01

    Lightning-caused fire occurrence has been modelled for two different Spanish regions, Madrid andAragon, based on meteorological, terrain, and vegetation variables. The model was built on two very contrasting regions, one presenting low number of lightning-caused fires whereas the other presented...... in the model, where an increasing number of thunderstorms leads to a higher probability of occurrence. Validation was assessed through the Receiver Operator Characteristic, showing a good agreement between the modelled probabilities and the reported lightning-caused fires, with an Area Under the Curve around 0...

  19. Perturbative Heat Transport Experiments on TJ-II

    International Nuclear Information System (INIS)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-01-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs

  20. Perturbative Heat Transport Experiments on TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-07-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs.

  1. Fire risk analysis, fire simulation, fire spreading and impact of smoke and heat on instrumentation electronics - State-of-the-Art Report

    International Nuclear Information System (INIS)

    Roewekamp, M.; Bertrand, R.; Bonneval, F.; Hamblen, D.; Siu, N.; Aulamo, H.; Martila, J.; Sandberg, J.; Virolainen, R.

    2000-01-01

    OECD countries. The contents of each chapter are based on the writers' knowledge on his or her national practices and on the results of the questionnaire. The emphasis in the descriptions of the national practices also reflects the information supplied by the responding countries. Fire PSA is also used in other OECD countries, but the scope of this report is limited to those countries which responded to the questionnaire. The contents of this report are as follows: Fire PSA methodology overview - Based on a review of fire risk studies performed in the contributing countries, the report addresses different methodology and applications issues. Methodology issues, treated in Chapter 2, include the treatment of physical barriers, fire detection and suppression systems and fire fighting. They also include the treatment of operator actions and dependencies (both direct and indirect) between a fire and the plant's safety systems, definition of initiating events, and screening methods. Key assumptions and the effect of plant operational state (i.e., full power vs. low power operation) are dealt with in the report as well. Fire simulation models and codes applied or available - Chapter 3 of the report identifies which fire simulation codes have been used in actual PSAs. The models and scenarios used in different codes are described. To build confidence on fire simulation models, validation against experimental results in different types of fires is necessary. Fire experiments and the pre- and post experiment calculation used for code validation as well as ongoing fire simulation code development projects are discussed. Examples of fire scenarios and typical modeling assumptions are treated and numerous references are given in Chapter 3. References for experimental case studies and related simulation models and codes used for analyzing the production and spreading of smoke are also provided. The impact of smoke and heat - The immediate consequences of fires are caused by heat

  2. Vegetation fires and air pollution in Vietnam.

    Science.gov (United States)

    Le, Thanh Ha; Thanh Nguyen, Thi Nhat; Lasko, Kristofer; Ilavajhala, Shriram; Vadrevu, Krishna Prasad; Justice, Chris

    2014-12-01

    Forest fires are a significant source of air pollution in Asia. In this study, we integrate satellite remote sensing data and ground-based measurements to infer fire-air pollution relationships in selected regions of Vietnam. We first characterized the active fires and burnt areas at a regional scale from MODIS satellite data. We then used satellite-derived active fire data to correlate the resulting atmospheric pollution. Further, we analyzed the relationship between satellite atmospheric variables and ground-based air pollutant parameters. Our results show peak fire activity during March in Vietnam, with hotspots in the Northwest and Central Highlands. Active fires were significantly correlated with UV Aerosol Index (UVAI), aerosol extinction absorption optical depth (AAOD), and Carbon Monoxide. The use of satellite aerosol optical thickness improved the prediction of Particulate Matter (PM) concentration significantly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Methods for Prediction of Temperature Distribution in Flashover Caused by Backdraft Fire

    Directory of Open Access Journals (Sweden)

    Guowei Zhang

    2014-01-01

    Full Text Available Accurately predicting temperature distribution in flashover fire is a key issue for evacuation and fire-fighting. Now many good flashover fire experiments have be conducted, but most of these experiments are proceeded in enclosure with fixed openings; researches on fire development and temperature distribution in flashover caused by backdraft fire did not receive enough attention. In order to study flashover phenomenon caused by backdraft fire, a full-scale fire experiment was conducted in one abandoned office building. Process of fire development and temperature distribution in room and corridor were separately recorded during the experiment. The experiment shows that fire development in enclosure is closely affected by the room ventilation. Unlike existing temperature curves which have only one temperature peak, temperature in flashover caused by backdraft may have more than one peak value and that there is a linear relationship between maximum peak temperature and distance away from fire compartment. Based on BFD curve and experimental data, mathematical models are proposed to predict temperature curve in flashover fire caused by backdraft at last. These conclusions and experiment data obtained in this paper could provide valuable reference to fire simulation, hazard assessment, and fire protection design.

  4. Spread and burning behavior of continuous spill fires

    DEFF Research Database (Denmark)

    Zhao, Jinlong; Huang, Hong; Jomaas, Grunde

    2017-01-01

    Spill fire experiments with continuous discharge on a fireproof glass sheet were conducted to improve the understanding of spill fire spread and burning. Ethanol was used as the fuel and the discharge rate was varied from 2.8. mL/s to 7.6. mL/s. Three ignition conditions were used...... in the experiments; no ignition, instantaneous ignition and delayed ignition. The spread rate, regression rate, penetrated thermal radiation and the temperature of the bottom glass were analyzed. The experiments clearly show the entire spread process for spill fires. Further, the regression rate of spill fires...... at the quasi-steady burning was lower than that of pool fires and the ratio of the spill fires' regression rate to the pool fires' regression rate was found to be approximately 0.89. With respect to the radiative penetration and the heat conduction between the fuel layer and the glass, a regression rate...

  5. Response of Amazon Fires to the 2015/2016 El Niño and Evaluation of a Seasonal Fire Season Severity Forecast

    Science.gov (United States)

    Randerson, J. T.

    2016-12-01

    Recent work has established that year-to-year variability in drought and fire within the Amazon responds to a dual forcing from ocean-atmosphere interactions in the tropical Pacific and North Atlantic. Teleconnections between the Pacific and the Amazon are strongest between October and March, when El Niño contributes to below-average precipitation during the wet season. A reduced build-up of soil moisture during the wet season, in turn, may limit water availability and transpiration in tropical forests during the following dry season, lowering surface humidity, drying fuels, and allowing fires to spread more easily through the understory. The delayed influence of soil moisture through this land - atmosphere coupling provides a means to predict fire season severity 3-6 months before the onset of the dry season. With the aim of creating new opportunities for forest conservation, we have developed an experimental seasonal fire forecasting system for the Amazon. The 2016 fire season severity forecast, released in June by UCI and NASA, predicts unusually high risk across eastern Peru, northern Bolivia, and Brazil. Several surface and satellite data streams confirm that El Niño teleconnections had a significant impact on wet season hydrology within the Amazon. Rainfall observations from the Global Precipitation Climatology Centre provided evidence that cumulative precipitation deficits during August-April were 1 to 2 standard deviations below the long-term mean for most of the basin. These observations were corroborated by strong negative terrestrial water storage anomalies measured by the Gravity Recovery and Climate Experiment, and by fluorescence and vegetation index observations from other sensors that indicated elevated canopy stress. By August 3rd, satellite observations showed above average fire activity in most, but not all, forecast regions. Using additional satellite observations that become available later this year, we plan to describe the full spatial and

  6. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part II. Modeling the transport process

    International Nuclear Information System (INIS)

    Yoschenko, V.I.; Kashparov, V.A.; Levchuk, S.E.; Glukhovskiy, A.S.; Khomutinin, Yu.V.; Protsak, V.P.; Lundin, S.M.; Tschiersch, J.

    2006-01-01

    To predict parameters of radionuclide resuspension, transport and deposition during forest and grassland fires, several model modules were developed and adapted. Experimental data of controlled burning of prepared experimental plots in the Chernobyl exclusion zone have been used to evaluate the prognostic power of the models. The predicted trajectories and elevations of the plume match with those visually observed during the fire experiments in the grassland and forest sites. Experimentally determined parameters could be successfully used for the calculation of the initial plume parameters which provide the tools for the description of various fire scenarios and enable prognostic calculations. In summary, the model predicts a release of some per mille from the radionuclide inventory of the fuel material by the grassland fires. During the forest fire, up to 4% of 137 Cs and 9 Sr and up to 1% of the Pu isotopes can be released from the forest litter according to the model calculations. However, these results depend on the parameters of the fire events. In general, the modeling results are in good accordance with the experimental data. Therefore, the considered models were successfully validated and can be recommended for the assessment of the resuspension and redistribution of radionuclides during grassland and forest fires in contaminated territories

  7. Engineering Status of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Heitzenroeder, Philip J.; Meade, Dale; Thome, Richard J.

    2000-01-01

    FIRE is a compact, high field tokamak being studied as an option for the next step in the US magnetic fusion energy program. FIRE's programmatic mission is to attain, explore, understand, and optimize alpha-dominated plasmas to provide the knowledge necessary for the design of attractive magnetic fusion energy systems. This study began in 1999 with broad participation of the US fusion community, including several industrial participants. The design under development has a major radius of 2 m, a minor radius of 0.525 m, a field on axis of 10T and capability to operate at 12T with upgrades to power supplies. Toroidal and poloidal field magnets are inertially cooled with liquid nitrogen. An important goal for FIRE is a total project cost in the $1B range. This paper presents an overview of the engineering details which were developed during the FIRE preconceptual design study in FY99 and 00

  8. National and international standards and recommendations on fire protection and fire safety assessment

    International Nuclear Information System (INIS)

    Berg, H.P.

    2007-01-01

    Experience feedback from events in nuclear facilities worldwide has shown that fire can represent a safety significant hazard. Thus, the primary objectives of fire protection programmes are to minimize both the probability of occurrence and the consequences of a fire. The regulator body expects that the licensees justify their arrangements for identifying how fires can occur and spread, assess the vulnerability of plant equipment and structures, determine how the safe operation of a plant is affected, and introduce measures to prevent a fire hazard from developing and propagating as well as to mitigate its effects in case the fire cannot be prevented. For that purpose usually a comprehensive regulatory framework for fire protection has been elaborated, based on national industrial regulations, nuclear specific regulations as well as international recommendations or requirements. Examples of such national and international standards and recommendations on fire protection and fire safety assessment as well as ongoing activities in this field are described. (orig.)

  9. Sodium fire aerosol behaviour: a review of studies carried out under the auspices of the CEC

    International Nuclear Information System (INIS)

    Dunbar, I.H.

    1992-01-01

    The purpose of the present report was to produce a synthesis of the results of four studies (Reports EUR 9172 EN, EUR 9203 EN, SESRU No. EF.21.12.R/88.527 and EUR 13274 EN) bringing out their overall contribution to our understanding of the way sodium fire aerosols behave in secondary containment buildings. In particular the following questions are addressed in the light of the information produced by the CONT group studies: (i) Are current instrumentation techniques capable of obtaining the data about aerosols needed to validate the computer models. (ii) Is the current database produced by sodium fire experiments sufficient to validate the computer models. (iii) Can the current computer codes predict the behaviour of sodium fire aerosols in hypothetical LMFBR accidents with sufficient accuracy

  10. Observational tests for H II region models - A 'champagne party'

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, D; Tenorio-Tagle, G

    1979-09-01

    Observations of several neighboring H II regions associated with a molecular cloud were performed in order to test the champagne model of H II region-molecular cloud interaction leading to the supersonic expansion of molecular cloud gas. Nine different positions in the Gum 61 nebula were observed using an image dissector scanner attached to a 3.6-m telescope, and it is found that the area corresponds to a low excitation, high density nebula, with electron densities ranging between 1400 and 2800/cu cm and larger along the boundary of the ionized gas. An observed increase in pressure and density located in an interior region of the nebula is interpreted in terms of an area between two rarefaction waves generated together with a strong isothermal shock, responsible for the champagne-like streaming, by a pressure discontinuity between the ionized molecular cloud in which star formation takes place and the intercloud gas. It is noted that a velocity field determination would provide the key in understanding the evolution of such a region.

  11. Response of fire detectors to different smokes

    International Nuclear Information System (INIS)

    Bjoerkman, J.; Keski-Rahkonen, O.

    1997-01-01

    The purpose of this work is to characterize the behavior of fire alarm systems based on smoke detectors on smoldering fires especially cable fires in nuclear power plants (NPP). Full-scale fire experiments were carried out in a laboratory designed according to the standard EN54-9. The laboratory was instrumented with additional equipment such as thermocouples and flow meters which are not used in standard fire sensitivity tests. This allows the results to be used as experimental data for validation tasks of numerical fire simulation computerized fluid dynamics (CFD)-codes. The ultimate goal of the research is to model theoretically smoldering and flaming cable fires, their smoke production, transfer of smoke to detectors, as well as the response of detectors and fire alarm systems to potential fires. This would allow the use of numerical fire simulation to predict fire hazards in different fire scenarios found important in PSA (probability safety assessment) of NPPs. This report concentrates on explaining full-scale fire experiments in the smoke sensitivity laboratory and experimental results from fire tests of detectors. Validation tasks with CFD-codes will be first carried out 'blind' without any idea about corresponding experimental results. Accordingly, the experimental results cannot be published in this report. (orig.)

  12. Identifying the location of fire refuges in wet forest ecosystems.

    Science.gov (United States)

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential

  13. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    Science.gov (United States)

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  14. Performing of recent real scale cable fire experiments and presentation of the results in the frame of the international collaborative fire modeling project ICFMP. Final report

    International Nuclear Information System (INIS)

    Hosser, Dietmar; Riese, Olaf; Klingenberg, Mark

    2005-01-01

    As a part of the Fire Risk Research Program, the German iBMB (Institut fuer Baustoffe, Massivbau und Brandschutz) of Braunschweig University of Technology and GRS (Gesellschaft fuer Anlagenund Reaktorsicherheit mbH) are participating in an International Collaborative Fire Modeling Project (ICFMP) to assess and validate fire computer codes for nuclear power plant applications. This assessment is being conducted through benchmarking and validation exercises. The tests are simulating cable fires scenarios in a single compartment. The goal of the actual cable fire series is to investigate the effects of a natural fire to vertically routed cables (worst case) with different cable insulation material (PVC and FRNC). Another important aspect of cable fire is the risk of function failure. Therefore in the test series the short circuit and the conduction loss of cables are measured. This report includes a first description of the experimental results for test 1 - test 4 of the International Collaborative Fire Model Project conducted in December 2003 at the iBMB in Germany. The experimental data are reported on the International Collaborative Fire Model Project - Platform. The measured data shall be the basis for fire simulations. The tests show that the FRNC cables have significantly better characteristics in case of fire. No substantial flame spread takes place even in case of preheating. PVC cables could be ignited with a burner output of 50 kW, in contrary, the FRNC cables could be ignited at burner output of 150 kW. The preheating has a complex effect on the fire behavior of the cables. It may occur that gases are pyrolysed which are not ignited during the phase of preheating. These gases are transported from the cable surrounding and may leave the fire room. Short circuits occur first in case ''conductor to conductor'' and later in case ''conductor to tray''. The time periods until short circuits occur are strongly dependent on the preheating of the cables. In case of

  15. Sodium fire tests for investigating the sodium leak in Monju

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    1996-01-01

    As a part of the work for investigating the sodium leak accident which occurred in Monju on December 8, 1995, three tests, (1) sodium leak test, (2) sodium fire test-I, and (3) sodium fire test-II, were carried out at OEC/PNC. Main objectives of these tests are to confirm leak and burning behavior of sodium from the damaged thermometer, and effects of the sodium fire on integrity of the surrounding structure, etc. The main conclusions obtained from the tests are shown as below. 1) Average sodium leak rate obtained from the sodium leak test was about 50 g/sec. This was equivalent to the value estimated from level change in the sodium overflow tank in the Monju accident. 2) Observation from video cameras in the sodium fire tests revealed that in early stages of sodium leak, sodium dropped down out of the flexible tube of thermometer in drips. This dripping and burning were expanded in range as sodium splashed on the duct. 3) Though, in the sodium fire test-I, there was a decrease of about 1 mm at a thickness of the burning pan in the vicinity in just under in the leak point, there were completely no crack and failure. In the meantime, in the sodium fire test-II the six open holes were found in the floor liner. By this liner failure, the reaction between sodium and concrete might take place. At present, while the detailed evaluation on the sodium fire test-II has been mainly carried out, the investigation for clarifying the cause of the liner failure has been also carried out. (author)

  16. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    Science.gov (United States)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  17. Introduction of Sodium Fire Extinguishing System for STELLA-1

    Energy Technology Data Exchange (ETDEWEB)

    Gam, Dayoung; Kim, Jong-Man; Jung, Min-Hwan; Eoh, Jae-Hyuk; Jeong, Eoh Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This characteristic is a big advantage as a thermal transfer fluid. However, the high reactivity of sodium, especially with water and oxygen, and white aerosol in the event of fire can cause serious accidents. Thus, large sodium facility needs a specific-developed fire extinguishing system for a safe experiment. Korea Atomic Energy Research Institute (KAERI) has conducted sodium heat transfer experiments using the facility named the Sodium Integral Effect Test Loop for Safety Simulation and Assessment (STELLA-1). STELLA-1 fully equipped a sodium fire extinguishing system for the safe experiment and fire spread prevention. In this paper, a preparation of the fire extinguishing system of STELLA-1 facility is introduced. This paper can provide an example of how to design a sodium fire extinguishing system for a large sodium experiment facility. In this paper, a preparation of the fire extinguishment system for STELLA-1 as a large sodium experiment facility was introduced and explained. For safe operation of the liquid sodium utility, it is important to equip specific-developed fire extinguishing system because of the chemical characteristics of sodium. Operators should know the process and operating manual before conducting an experiment to prevent hazardous situation. Though the dry chemical extinguishing agent put out the fire target, removing agent at high temperature state can cause re-combustion. Thus, extinguishment confirmation work should be conducted after sufficient cooling time to stabilize the surface. And in case of fire at a sealed room, a method making the percentage of oxygen low(injecting nitrogen gas or argon gas) is effective.

  18. Introduction of Sodium Fire Extinguishing System for STELLA-1

    International Nuclear Information System (INIS)

    Gam, Dayoung; Kim, Jong-Man; Jung, Min-Hwan; Eoh, Jae-Hyuk; Jeong, Eoh Jiyoung

    2015-01-01

    This characteristic is a big advantage as a thermal transfer fluid. However, the high reactivity of sodium, especially with water and oxygen, and white aerosol in the event of fire can cause serious accidents. Thus, large sodium facility needs a specific-developed fire extinguishing system for a safe experiment. Korea Atomic Energy Research Institute (KAERI) has conducted sodium heat transfer experiments using the facility named the Sodium Integral Effect Test Loop for Safety Simulation and Assessment (STELLA-1). STELLA-1 fully equipped a sodium fire extinguishing system for the safe experiment and fire spread prevention. In this paper, a preparation of the fire extinguishing system of STELLA-1 facility is introduced. This paper can provide an example of how to design a sodium fire extinguishing system for a large sodium experiment facility. In this paper, a preparation of the fire extinguishment system for STELLA-1 as a large sodium experiment facility was introduced and explained. For safe operation of the liquid sodium utility, it is important to equip specific-developed fire extinguishing system because of the chemical characteristics of sodium. Operators should know the process and operating manual before conducting an experiment to prevent hazardous situation. Though the dry chemical extinguishing agent put out the fire target, removing agent at high temperature state can cause re-combustion. Thus, extinguishment confirmation work should be conducted after sufficient cooling time to stabilize the surface. And in case of fire at a sealed room, a method making the percentage of oxygen low(injecting nitrogen gas or argon gas) is effective

  19. Fire Influences on Atmospheric Composition, Air Quality, and Climate

    Science.gov (United States)

    Voulgarakis, Apostolos; Field, Robert D.

    2015-01-01

    Fires impact atmospheric composition through their emissions, which range from long-lived gases to short-lived gases and aerosols. Effects are typically larger in the tropics and boreal regions but can also be substantial in highly populated areas in the northern mid-latitudes. In all regions, fire can impact air quality and health. Similarly, its effect on large-scale atmospheric processes, including regional and global atmospheric chemistry and climate forcing, can be substantial, but this remains largely unexplored. The impacts are primarily realised in the boundary layer and lower free troposphere but can also be noticeable in upper troposphere/lower stratosphere (UT/LS) region, for the most intense fires. In this review, we summarise the recent literature on findings related to fire impact on atmospheric composition, air quality and climate. We explore both observational and modelling approaches and present information on key regions and on the globe as a whole. We also discuss the current and future directions in this area of research, focusing on the major advances in emission estimates, the emerging efforts to include fire as a component in Earth system modelling and the use of modelling to assess health impacts of fire emissions.

  20. The effect of regional-scale soil-moisture deficits on mesoscale atmospheric dynamics that influence fire severity

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.

    1994-09-30

    This study employs a three-dimensional, nonhydrostatic mesoscale model to evaluate the effects of horizontally heterogeneous soil moisture and vegetation type on the atmosphere during two periods in which wildland fires occurred. Numerical sensitivity simulations demonstrate that evapotranspiration significantly affects the boundary-layer structure embedded in the synoptic-scale circulations. In regions with sufficiently moist soils, evapotranspiration increases the humidity and modifies the diurnally varying temperature near the surface. Occasionally, changes in the humidity and temperature fields can also be seen a significant distance downwind of the moist soil regions. The perturbations in the temperature fields ultimately affect the wind speed and direction over or at the boundaries of the moist-soil regions, but only at certain times during the simulation period. The higher humidity also increases the cloudiness and changes the precipitation amounts, indicating that soil moisture and vegetation may play an important role in modifying the spatial distribution and intensity of precipitation. A lower atmospheric stability index, that is an indicator of the potential for wildland fire, is also calculated from the model results. This index is also sensitive to the horizontal distribution of soil moisture and vegetation, especially in regions with relatively moist soils. While only two periods are examined in this study, the impact of surface inhomogeneities in soil moisture and vegetation type on the atmosphere is expected to be highly dependent on the particular synoptic conditions and upon the distribution of soil moisture.

  1. Proceedings of the CSNI specialist meeting on interaction of fire and explosion with ventilation systems in nuclear facilities. Volume II

    International Nuclear Information System (INIS)

    1983-10-01

    Separate abstracts were prepared for the papers presented in the following areas: (1) experience and experimentation; (2) fire and explosion prevention, protection, and detection; and (3) application of related research

  2. Fully predictive simulation of real-scale cable tray fire based on small-scale laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Beji, Tarek; Merci, Bart [Ghent Univ. (Belgium). Dept. of Flow, Heat and Combustion Mechanics; Bonte, Frederick [Bel V, Brussels (Belgium)

    2015-12-15

    This paper presents a computational fluid dynamics (CFD)-based modelling strategy for real-scale cable tray fires. The challenge was to perform fully predictive simulations (that could be called 'blind' simulations) using solely information from laboratory-scale experiments, in addition to the geometrical arrangement of the cables. The results of the latter experiments were used (1) to construct the fuel molecule and the chemical reaction for combustion, and (2) to estimate the overall pyrolysis and burning behaviour. More particularly, the strategy regarding the second point consists of adopting a surface-based pyrolysis model. Since the burning behaviour of each cable could not be tracked individually (due to computational constraints), 'groups' of cables were modelled with an overall cable surface area equal to the actual value. The results obtained for one large-scale test (a stack of five horizontal trays) are quite encouraging, especially for the peak Heat Release Rate (HRR) that was predicted with a relative deviation of 3 %. The time to reach the peak is however overestimated by 4.7 min (i.e. 94 %). Also, the fire duration is overestimated by 5 min (i.e. 24 %). These discrepancies are mainly attributed to differences in the HRRPUA (heat release rate per unit area) profiles between the small-scale and large-scale. The latter was calculated by estimating the burning area of cables using video fire analysis (VFA).

  3. Fire and the endangered Indiana bat

    Science.gov (United States)

    Matthew B. Dickinson; Michael J. Lacki; Daniel R. Cox

    2009-01-01

    Fire and Indiana bats (Myotis sodalis) have coexisted for millennia in the central hardwoods region, yet past declines in populations of this endangered species, and the imperative of fire use in oak silviculture and ecosystem conservation, call for an analysis of both the risks and opportunities associated with using fires on landscapes in...

  4. Fire exposed aluminium structures

    NARCIS (Netherlands)

    Maljaars, J.; Fellinger, J.E.J.; Soetens, F.

    2005-01-01

    Material properties and mechanical response models for fire design of steel structures are based on extensive research and experience. Contrarily, the behaviour of aluminium load bearing structures exposed to fire is relatively unexplored. This article gives an overview of physical and mechanical

  5. Prescribed fire research in Pennsylvania

    Science.gov (United States)

    Patrick Brose

    2009-01-01

    Prescribed fire in Pennsylvania is a relatively new forestry practice because of the State's adverse experience with highly destructive wildfires in the early 1900s. The recent introduction of prescribed fire raises a myriad of questions regarding its correct and safe use. This poster briefly describes the prescribed fire research projects of the Forestry Sciences...

  6. RADLAC II high current electron beam propagation experiment

    International Nuclear Information System (INIS)

    Frost, C.A.; Shope, S.L.; Mazarakis, M.G.; Poukey, J.W.; Wagner, J.S.; Turman, B.N.; Crist, C.E.; Welch, D.R.; Struve, K.W.

    1993-01-01

    The resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose

  7. Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data

    Science.gov (United States)

    Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan

    2013-01-01

    High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.

  8. ISO spectroscopy of compact HII regions in the Galaxy - II. Ionization and elemental abundances

    NARCIS (Netherlands)

    Martin-Hernandez, NL; Peeters, E; Morisset, C; Tielens, AGGM; Cox, P; Roelfsema, PR; Baluteau, JP; Schaerer, D; Mathis, JS; Damour, F; Churchwell, E; Kessler, MF

    Based on the ISO spectral catalogue of compact H II regions by Peeters et al. (2002), we present a first analysis of the hydrogen recombination and atomic fine-structure lines originated in the ionized gas. The sample consists of 34 H II regions located at galactocentric distances between R-Gal = 0

  9. Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches

    Science.gov (United States)

    Baker, K. R.; Woody, M. C.; Tonnesen, G. S.; Hutzell, W.; Pye, H. O. T.; Beaver, M. R.; Pouliot, G.; Pierce, T.

    2016-09-01

    Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions (SMOKE) model, Weather and Research Forecasting (WRF) meteorological model, and Community Multiscale Air Quality (CMAQ) photochemical grid model. The modeling system was applied to track the contribution from a wildfire (Wallow) and prescribed fire (Flint Hills) using both source sensitivity and source apportionment approaches. The model estimated fire contribution to primary and secondary pollutants are comparable using source sensitivity (brute-force zero out) and source apportionment (Integrated Source Apportionment Method) approaches. Model estimated O3 enhancement relative to CO is similar to values reported in literature indicating the modeling system captures the range of O3 inhibition possible near fires and O3 production both near the fire and downwind. O3 and peroxyacetyl nitrate (PAN) are formed in the fire plume and transported downwind along with highly reactive VOC species such as formaldehyde and acetaldehyde that are both emitted by the fire and rapidly produced in the fire plume by VOC oxidation reactions. PAN and aldehydes contribute to continued downwind O3 production. The transport and thermal decomposition of PAN to nitrogen oxides (NOX) enables O3 production in areas limited by NOX availability and the photolysis of aldehydes to produce free radicals (HOX) causes increased O3 production in NOX rich areas. The modeling system tends to overestimate hourly surface O3 at routine rural monitors in close proximity to the fires when the model predicts elevated fire impacts on O3 and Hazard Mapping System (HMS) data indicates possible fire impact. A sensitivity simulation in which solar radiation and photolysis rates were more aggressively attenuated by aerosol in the plume

  10. Fire blight in Georgia

    Directory of Open Access Journals (Sweden)

    Dali L. Gaganidze

    2018-03-01

    Full Text Available Fire blight is distinguished among the fruit tree diseases by harmfulness. Fire blight damages about 180 cultural and wild plants belonging to the Rosaceae family. Quince, apple and pear are the most susceptible to the disease. At present, the disease occurs in over 40 countries of Europe and Asia. Economic damage caused by fire blight is expressed not only in crop losses, but also, it poses threat of eradication to entire fruit tree gardens. Erwinia amylovora, causative bacteria of fire blight in fruit trees, is included in the A2 list of quarantine organisms. In 2016, the employees of the Plant Pest Diagnostic Department of the Laboratory of the Georgian Ministry of Agriculture have detected Erwinia amylovora in apple seedlings from Mtskheta district. National Food Agency, Ministry of Agriculture of Georgia informed FAO on pathogen detection. The aim of the study is detection of the bacterium Erwinia amylovora by molecular method (PCR in the samples of fruit trees, suspicious on fire blight collected in the regions of Eastern (Kvemo Kartli, Shida Kartli and Kakheti and Western Georgia (Imereti.The bacterium Erwinia amylovora was detected by real time and conventional PCR methods using specific primers and thus the fire blight disease confirmed in 23 samples of plant material from Shida Kartli (11 apples, 6 pear and 6 quince samples, in 5 samples from Kvemo Kartli (1 quince and 4 apple samples, in 2 samples of apples from Kakheti region and 1 sample of pear collected in Imereti (Zestafoni. Keywords: Fire blight, Erwinia amylovora, Conventional PCR, Real time PCR, DNA, Bacterium

  11. Study on the influence of smoke and exit signs on fire evacuation - Analysis of evacuation experiments in a real and virtual hotel

    NARCIS (Netherlands)

    Kobes, M.; Helsloot, I.; Vries, de B.; Post, J.G.; Oberije, N.; Groenewegen, K.

    2010-01-01

    Human behaviour in fires is mainly studied by incident evaluations and real-life experiments, such as unannounced evacuation drills. The possibilities of virtual reality for studying human behaviour in fires are so far hardly adopted by researchers. Nevertheless, the application of a behavioural

  12. Massive post-fire flowering events in a tropical mountain region of Brazil: high episodic supply of floral resources

    Directory of Open Access Journals (Sweden)

    Abel Augusto Conceição

    2013-12-01

    Full Text Available The species Vellozia sincorana L.B.Sm. & Ayensu is key to biodiversity conservation in the tropical mountain region of Brazil. The massive post-fire flowering of this endemic species provides a large, episodic supply of floral resources, mostly nectar, to animals.

  13. FIRE-SAT un sistema satellitare per il monitoraggio sistematico, dinamico ed integrato degli incendi boschivi: la sperimentazione operativa nella regione Basilicata

    Directory of Open Access Journals (Sweden)

    Antonio Lanorte

    2013-03-01

    Full Text Available Il problema della gestione del fenomeno degli incendi boschivi è molto complesso, perché comprende una serie diaspetti connessi alle caratteristiche della vegetazione, alla morfologia del territorio, ai fattori meteorologici, ai fattoriantropici, etc. Risulta pertanto fondamentale e molto utile un approccio modellistico. I modelli matematici fornisconoun supporto essenziale nella valutazione dell’efficacia di possibili strategie di previsione e controllo del fuoco.Abstract FIRE_SAT project has been funded by the Civil Protectionof the Basilicata Region in order to set up alow cost methodology for fire danger monitoringand fire effect estimation based on satellite EarthObservation techniques.To this aim, NASA Moderate Resolution ImagingSpectroradiometer (MODIS, ASTER, Landsat TMdata were used. Novel data processing techniqueshave been developed by researchers of the ARGONLaboratory of the CNR-IMAA for the operativemonitoring of fire. In this paper we only focuson the danger estimation model which has beenfruitfully used since 2008 to 2012 as an reliable operativetool to support and optimize fire fightingstrategies from the alert to the management ofresources including fire attacks.The daily updating of fire danger is carried outusing satellite MODIS images selected for theirspectral capability and availability free of chargefrom NASA web site. This makes these data setsvery suitable for an effective systematic (daily and sustainable low-cost monitoring of large areas. 

  14. SPQR II: A beam-plasma interaction experiment

    International Nuclear Information System (INIS)

    Bimbot, R.; Della-Negra, S.; Gardes, D.

    1986-01-01

    SPQR II is an interaction experiment designed to probe energy -and charge-exchange of C/sup n/ + ions at 2 MeV/a.m.u., flowing through a fully ionized plasma column of hydrogen with nl-script = 10 19 e-cm -2 at T = 5 eV

  15. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend

    2015-01-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...

  16. Effects of fire behavior on prescribed fire smoke characteristics: A case study

    International Nuclear Information System (INIS)

    Einfeld, W.; Ward, D.E.; Hardy, C.

    1991-01-01

    In this chapter the authors report results from a study that was designed to derive an estimate of the total release of important pollutant species from a well-characterized fire. Ground and aircraft measurements were coordinated to yield a relatively complete picture of fire behavior and accompanying smoke production. Results from these measurements are then integrated over the lifetime of the fire and compared to less rigorous methods of estimating pollutant yield. Results suggest that knowledge of fuel consumption by phase of combustion (flaming vs. smoldering) is important in making accurate estimates of the characteristics of smoke emissions from individual fires. Contributing factors such as fuel type, fuel loading, and meteorological history vary significantly by region and should be taken into account when compiling estimates of fuel consumption rates during both flaming and smoldering fire conditions

  17. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  18. Conversion of lime kilns from oil firing to biofuel firing: Operating experience and modelling; Konvertering av mesaugnar fraan olje- till biobraensleeldning: Drifterfarenheter och modellering

    Energy Technology Data Exchange (ETDEWEB)

    Wadsborn, Rickard; Berglin, Niklas; Richards, Tobias

    2007-12-15

    Alternative fuels and techniques affect the operation of the lime kiln and the recausticizing plant, as well as the liquor cycle. An important effect is due to the introduction of non-process elements (NPEs), e.g. potassium, phosphorus and magnesium that accumulate in the liquor and lime cycles, respectively. Temperature profile and flame stability in the kiln also tend to change, which may have effects on ring formation. Availability and maintenance requirements for different technical solutions are important for the real saving of fossil fuel that can be reached over a longer period. The project has aimed to compile experience of the type indicated above, and to develop tools that may facilitate conversion to biofuel firing. The objective has been to gain comprehensive knowledge of the biofuels that can be used for lime kiln firing and compare them, focusing on practical experience from the plants that use or have used biofuels. One goal has been to develop validated models that can be used to describe changes that occur in the lime kiln and the chemical recovery cycle when changing fuels. The primary target group for the report is people working with energy and process related tasks in the pulp industry, and those delivering fuels or system solutions to the industry. The project has comprised data collection and modelling, as well as interviews with operations managers and visits to the mills that have several years of experience with firing of biofuels to replace oil in the lime kiln. A compilation of operating experience shows that conversion to biofuel firing is fully possible with both bark and wood powder, or with fuel gas from gasification of bark or wood shavings, and that the biofuel can replace the main part of the fuel oil in the lime kiln. However, the possibility to introduce biofuels into the lime kiln varies from mill to mill, as the mill have different possibilities to handle variations in availability of the kiln and mass flows of lime. In

  19. First results of the Auroral Turbulance II rocket experiment

    DEFF Research Database (Denmark)

    Danielides, M.A.; Ranta, A.; Ivchenco, N.

    1999-01-01

    The Auroral Turbulance II sounding rocket was launched on February 11, 1997 into moderately active nightside aurora from the Poker Flat Research Range, Alaska, US. The experiment consisted of three independent, completely instrumented payloads launched by a single vehicle. The aim of the experiment...

  20. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests

    Science.gov (United States)

    Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla

    2011-01-01

    Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...

  1. Co-firing biomass and fossil fuels

    International Nuclear Information System (INIS)

    Junge, D.C.

    1991-01-01

    In June 1989, the Alaska Energy Authority and the University of Alaska Anchorage published a monograph summarizing the technology of co-firing biomass and fossil fuels. The title of the 180 page monograph is 'Use of Mixed Fuels in Direct Combustion Systems'. Highlights from the monograph are presented in this paper with emphasis on the following areas: (1) Equipment design and operational experience co-firing fuels; (2) The impact of co-firing on efficiency; (3) Environmental considerations associated with co-firing; (4) Economic considerations in co-firing; and (5) Decision making criteria for co-firing

  2. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Directory of Open Access Journals (Sweden)

    Adrián Regos

    Full Text Available Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain, we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050. An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire

  3. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Science.gov (United States)

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be

  4. Modeling fire susceptibility to delineate wildland-urban interface for municipal-scale fire risk management.

    Science.gov (United States)

    Whitman, Ellen; Rapaport, Eric; Sherren, Kate

    2013-12-01

    The wildland-urban interface (WUI) is the region where development meets and intermingles with wildlands. The WUI has an elevated fire risk due to the proximity of development and residents to wildlands with natural wildfire regimes. Existing methods of delineating WUI are typically applied over a large region, use proxies for risk, and do not consider site-specific fire hazard drivers. While these models are appropriate for federal and provincial risk management, municipal managers require models intended for smaller regions. The model developed here uses the Burn-P3 fire behavior model to model WUI from local fire susceptibility (FS) in two study communities. Forest fuel code (FFC) maps for the study communities were modified using remote sensing data to produce detailed forest edges, including ladder fuels, update data currency, and add buildings and roads. The modified FFC maps used in Burn-P3 produced bimodal FS distributions for each community. The WUI in these communities was delineated as areas within community bounds where FS was greater than or equal to -1 SD from the mean FS value ([Formula: see text]), which fell in the trough of the bimodal distribution. The WUI so delineated conformed to the definition of WUI. This model extends WUI modeling for broader risk management initiatives for municipal management of risk, as it (a) considers site-specific drivers of fire behavior; (b) models risk, represented by WUI, specific to a community; and, (c) does not use proxies for risk.

  5. Towards adaptive fire management for biodiversity conservation: experience in South African national parks

    CSIR Research Space (South Africa)

    Van Wilgen, BW

    2011-05-01

    Full Text Available heterogeneity in fires, the effects of fire on vegetation structure and on animals, and historic fire patterns. Ultimately, the goal was to use this understanding to develop an informed context for fire management. The original fire-related thresholds..., and to apply a single set of fire-related thresholds over the entire area. Mean annual rainfall varies from between approximately 350 mm in the north and approximately 750 mm in the south, and the effects of fire are far more marked in areas of higher...

  6. Prefrontal single-unit firing associated with deficient extinction in mice

    Science.gov (United States)

    Fitzgerald, Paul J; Whittle, Nigel; Flynn, Shaun M; Graybeal, Carolyn; Pinard, Courtney; Gunduz-Cinar, Ozge; Kravitz, Alexxai; Singewald, Nicolas; Holmes, Andrew

    2014-01-01

    increased the number of Zif268-labeled cells in layer II of IL, but failed to increase vmPFC single-unit firing. Collectively, these findings further support the important contribution these cortical regions play in determining the balance between robust extinction on the one hand, and sustained fear on the other. Elucidating the precise nature of these roles could help inform understanding of the pathophysiology of fear-related anxiety disorders. PMID:24231425

  7. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...

  8. Sodium fire protection

    International Nuclear Information System (INIS)

    Raju, C.; Kale, R.D.

    1979-01-01

    Results of experiments carried out with sodium fires to develop extinguishment techniques are presented. Characteristics, ignition temperature, heat evolution and other aspects of sodium fires are described. Out of the powders tested for extinguishment of 10 Kg sodium fires, sodium bi-carbonate based dry chemical powder has been found to be the best extinguisher followed by large sized vermiculite and then calcium carbonate powders distributed by spray nozzles. Powders, however, do not extinguish large fires effectively due to sodium-concrete reaction. To control large scale fires in a LMFBR, collection trays with protective cover have been found to cause oxygen starvation better than flooding with inert gas. This system has an added advantage in that there is no damage to the sodium facilities as has been in the case of powders which often contain chlorine compounds and cause stress corrosion cracking. (M.G.B.)

  9. Exploring spatial-temporal dynamics of fire regime features in mainland Spain

    Science.gov (United States)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-10-01

    This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).

  10. Relationship between leaf traits and fire-response strategies in shrub species of a mountainous region of south-eastern Australia.

    Science.gov (United States)

    Vivian, Lyndsey M; Cary, Geoffrey J

    2012-01-01

    Resprouting and seed recruitment are important ways in which plants respond to fire. However, the investments a plant makes into ensuring the success of post-fire resprouting or seedling recruitment can result in trade-offs that are manifested in a range of co-occurring morphological, life history and physiological traits. Relationships between fire-response strategies and other traits have been widely examined in fire-prone Mediterranean-type climates. In this paper, we aim to determine whether shrubs growing in a non-Mediterranean climate region exhibit relationships between their fire-response strategy and leaf traits. Field surveys were used to classify species into fire-response types. We then compared specific leaf area, leaf dry-matter content, leaf width, leaf nitrogen and carbon to nitrogen ratios between (a) obligate seeders and all other resprouters, and (b) obligate seeders, facultative resprouters and obligate resprouters. Leaf traits only varied between fire-response types when we considered facultative resprouters as a separate group to obligate resprouters, as observed after a large landscape-scale fire. We found no differences between obligate seeders and obligate resprouters, nor between obligate seeders and resprouters considered as one group. The results suggest that facultative resprouters may require a strategy of rapid resource acquisition and fast growth in order to compete with species that either resprout, or recruit from seed. However, the overall lack of difference between obligate seeders and obligate resprouters suggests that environmental factors are exerting similar effects on species' ecological strategies, irrespective of the constraints and trade-offs that may be associated with obligate seeding and obligate resprouting. These results highlight the limits to trait co-occurrences across different ecosystems and the difficulty in identifying global-scale relationships amongst traits.

  11. Operational Experience from LCLS-II Cryomodule Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renzhuo [Fermilab; Hansen, Benjamin [Fermilab; White, Michael [Fermilab; Hurd, Joseph [Fermilab; Atassi, Omar Al [Fermilab; Bossert, Richard [Fermilab; Pei, Liujin [Fermilab; Klebaner, Arkadiy [Fermilab; Makara, Jerry [Fermilab; Theilacker, Jay [Fermilab; Kaluzny, Joshua [Fermilab; Wu, Genfa [Fermilab; Harms, Elvin [Fermilab

    2017-07-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  12. Operational experience from LCLS-II cryomodule testing

    Science.gov (United States)

    Wang, R.; Hansen, B.; White, M.; Hurd, J.; Atassi, O. Al; Bossert, R.; Pei, L.; Klebaner, A.; Makara, J.; Theilacker, J.; Kaluzny, J.; Wu, G.; Harms, E.

    2017-12-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  13. Feasibility and acceptability of workers' health surveillance for fire fighters.

    Science.gov (United States)

    Plat, Marie-Christine J; Frings-Dresen, Monique Hw; Sluiter, Judith K

    2011-09-01

    The objective of this study was to test the feasibility and acceptability of a new workers' health surveillance (WHS) for fire fighters in a Dutch pilot-implementation project. In three fire departments, between November 2007 and February 2009, feasibility was tested with respect to i) worker intent to change health and behavior; ii) the quality of instructions for testing teams; iii) the planned procedure in the field; and iv) future WHS organisation. Acceptability involved i) satisfaction with WHS and ii) verification of the job-specificity of the content of two physical tests of WHS. Fire fighters were surveyed after completing WHS, three testing teams were interviewed, and the content of the two tests was studied by experts. nearly all of the 275 fire fighters intended to improve their health when recommended by the occupational physician. The testing teams found the instructions to be clear, and they were mostly positive about the organisation of WHS. Acceptability: the fire fighters rated WHS at eight points (out of a maximum of ten). The experts also reached a consensus about the optimal job-specific content of the future functional physical tests. Overall, it is feasible and acceptable to implement WHS in a definitive form in the Dutch fire-fighting sector.

  14. A Landscape-Scale, Applied Fire Management Experiment Promotes Recovery of a Population of the Threatened Gouldian Finch, Erythrura gouldiae, in Australia's Tropical Savannas.

    Directory of Open Access Journals (Sweden)

    Sarah Legge

    Full Text Available Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species--one endangered (Gouldian finch and two non-threatened (long-tailed finch and double-barred finch--from two large areas (> 2,830 km2 with initial contrasting fire regimes ('extreme': frequent, extensive, intense fire; versus 'benign': less frequent, smaller, lower intensity fires. Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food, different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty, and then lower muscle scores later in the wet season (suggesting prolonged food deprivation. Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the 'benign

  15. A Landscape-Scale, Applied Fire Management Experiment Promotes Recovery of a Population of the Threatened Gouldian Finch, Erythrura gouldiae, in Australia's Tropical Savannas.

    Science.gov (United States)

    Legge, Sarah; Garnett, Stephen; Maute, Kim; Heathcote, Joanne; Murphy, Steve; Woinarski, John C Z; Astheimer, Lee

    2015-01-01

    Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species--one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)--from two large areas (> 2,830 km2) with initial contrasting fire regimes ('extreme': frequent, extensive, intense fire; versus 'benign': less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the 'benign' fire regime

  16. SNEAK-4, a series of physics experiments for KNK II

    International Nuclear Information System (INIS)

    Engelmann, P.

    1969-10-01

    At the end of 1968 a three months program of neutron physics experiments was performed at SNEAK for the investigation of some nuclear properties of the KNK II reactor. The experiments were conducted by the Karlsruhe Nuclear Research Center in close cooperation with INTERATOM. The results of the measurements on SNEAK assemblies 4A and 4B are reported and compared with calculations. The experimental results of critical mass and reactivities, control rod worths, Doppler coefficient and power distribution were used to draw conclusions for the KNK II design

  17. Configuration of electro-optic fire source detection system

    Science.gov (United States)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  18. 46 CFR 28.315 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... After September 15, 1991, and That Operate With More Than 16 Individuals on Board § 28.315 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel 36 feet (11.8 meters) or more in length must...

  19. A vicious circle of fire, deforestation and climate change: an integrative study for the Amazon region

    Science.gov (United States)

    Thonicke, K.; Rammig, A.; Gumpenberger, M.; Vohland, K.; Poulter, B.; Cramer, W.

    2009-04-01

    The Amazon rainforest is threatened by deforestation due to wood extraction and agricultural production leading to increasing forest fragmentation and forest degradation. These changes in land surface characteristics and water fluxes are expected to further reduce convective precipitation. Under future climate change the stability of the Amazon rainforest is likely to decrease thus leading to forest dieback (savannization) or forest degradation (secondarization). This puts the Amazon rainforest at risk to reduce the generation of precipitation, to act as a carbon sink and biodiversity hotspot. Fires increased in the past during drought years and in open vegetation thereby further accelerating forest degradation. Deforestation as a result of socioeconomic development in the Amazon basin is projected to further increase in the 21st century and brings climate-induced changes forward. Combined effects of deforestation vs. climate change on the stability of the Amazon rainforest and the role of fire in this system need to be quantified in an integrated study. We present simulation results from future climate (AR4) and deforestation (SimAmazon) experiments using the LPJmL-SPITFIRE vegetation model. Land use change is the main driving factor of forest degradation before 2050, whereas extreme climate change scenarios lead to forest degradation by the end of 2100. Forest fires increase with increasing drought conditions during the 21st century. The resulting effects on vegetation secondarization and savannization and their feedbacks on fire spread and emissions will be presented. The effect of wildfires and intentional burning on forest degradation under future climate and socioeconomic change will be discussed, and recommendations for an integrated land use and fire management are given.

  20. Fire PRA requantification studies. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.

    1993-03-01

    This report describes the requantification of two existing fire probabilistic risk assessments (PRAs) using a fire PRA method and data that are being developed by the Electric Power Research Institute (EPRI). The two existing studies are the Seabrook Station Probabilistic Safety Assessment that was made in 1983 and the 1989 NUREG-1150 analysis of the Peach Bottom Plant. Except for the fire methods and data, the original assumptions were used. The results from the requantification show that there were excessive conservatisms in the original studies. The principal reason for a hundredfold reduction in the Peach Bottom core- damage frequency is the determination that no electrical cabinet fire in a switchgear room would damage both offsite power feeds. Past studies often overestimated the heat release from electrical cabinet fires. EPRI's electrical cabinet heat release rates are based on tests that were conducted for Sandia's fire research program. The rates are supported by the experience in the EPRI Fire Events Database for U.S. nuclear plants. Test data and fire event experience also removed excessive conservatisms in the Peach Bottom control and cable spreading rooms, and the Seabrook primary component cooling pump, turbine building relay and cable spreading rooms. The EPRI fire PRA method and data will show that there are excessive conservatisms in studies that were made for many plants and can benefit them accordingly

  1. Negligent and intentional fires in Portugal: the role of human and biophysical drivers on the spatial distribution

    Science.gov (United States)

    Parente, Joana; Pereira, Mário; Amraoui, Malik; Tedim, Fantina

    2017-04-01

    The European Mediterranean countries, such as Portugal, Spain, France, Italy and Greece, have the higher incidence of fire. Of these countries, Portugal present the highest average number of fires (NF) and one of the highest burnt area (BA), in spite of its relatively smaller land area. The study period is focused in the recent years of 2012 - 2014, when a total of 59 257 fires were recorded and the fire cause is known for more than 50% of the fire records. All fires with known causes were then classified into intentional (40% of the total number of fires) and negligent (60%), leading to a total of 45% of fires related with human factors and activities. Taking into account these values the authors believe it's necessary to better understand the fire regime of this type of fires for a better fire prevention, firefighting and crisis management. Accordingly, the use of statistical analysis and GIS techniques were used to assess the spatial distribution of the human caused fires in each of the NUTS (Nomenclature of Territorial Units for Statistics level I, which divides Portugal in 5 basic economic regions, namely Norte, Centro, Area Metropolitana de Lisboa, Alentejo, and Algarve. The number of fires distribution increases with latitude, making north of Portugal the region with the highest number of fires. The analysis will also aims to assess the role of the most important human and biophysical drivers of the spatial distribution, namely the population density, land use land cover (LULC), distance to communication routes (roads and railways) and topographic variables (altitude, slope). The results show that: a) population density is highly and positively correlated with the agglomeration of fire ignitions, but doesn't imply highest burned area; b) burnt area increase with the distance to roads and altitude; and, c) 58% of the fires occurred on agriculture areas and 33% of fires occurred in forest and scrubs areas. Acknowledgements: This work was supported by: (i) the

  2. Holocene fire dynamics in Fennoscandia

    Science.gov (United States)

    Clear, Jennifer; Seppa, Heikki; Kuosmanen, Niina; Molinari, Chiara; Lehsten, Veiko; Allen, Katherine; Bradshaw, Richard

    2015-04-01

    Prescribed burning is advocated in Fennoscandia to promote regeneration and to encourage biodiversity. This method of forest management is based on the perception that fire was much more frequent in the recent past and over a century of active fire suppression has created a boreal forest ecosystem almost free of natural fire. The absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce) with the successive spruce dominated forest further reducing fire ignition potential. However, humans have altered the natural fire dynamics of Fennoscandia since the early- to mid-Holocene and disentangling the anthropogenic driven fire dynamics from the natural fire dynamics is challenging. Through palaeoecology and sedimentary charcoal deposits we are able to explore the Holocene spatial and temporal variability and changing drivers of fire and vegetation dynamics in Fennoscandia. At the local-scale, two forest hollow environments (history are compared to identify unique and mutual changes in disturbance history. Pollen derived quantitative reconstruction of vegetation at both the local- and regional-scale identifies local-scale disturbance dynamics and large-scale ecosystem response. Spatio-temporal heterogeneity and variability in biomass burning is explored throughout Fennoscandia and Denmark to identify the changing drives of fire dynamics throughout the Holocene. Palaeo-vegetation reconstructions are compared to process-based, climate driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Early-Holocene fire regimes in Fennoscandia are driven by natural climate variations and fuel availability. The establishment and spread of Norway spruce is driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. The expansion of spruce led to a step-wise reduction in regional biomass

  3. Large-scale pool fires

    Directory of Open Access Journals (Sweden)

    Steinhaus Thomas

    2007-01-01

    Full Text Available A review of research into the burning behavior of large pool fires and fuel spill fires is presented. The features which distinguish such fires from smaller pool fires are mainly associated with the fire dynamics at low source Froude numbers and the radiative interaction with the fire source. In hydrocarbon fires, higher soot levels at increased diameters result in radiation blockage effects around the perimeter of large fire plumes; this yields lower emissive powers and a drastic reduction in the radiative loss fraction; whilst there are simplifying factors with these phenomena, arising from the fact that soot yield can saturate, there are other complications deriving from the intermittency of the behavior, with luminous regions of efficient combustion appearing randomly in the outer surface of the fire according the turbulent fluctuations in the fire plume. Knowledge of the fluid flow instabilities, which lead to the formation of large eddies, is also key to understanding the behavior of large-scale fires. Here modeling tools can be effectively exploited in order to investigate the fluid flow phenomena, including RANS- and LES-based computational fluid dynamics codes. The latter are well-suited to representation of the turbulent motions, but a number of challenges remain with their practical application. Massively-parallel computational resources are likely to be necessary in order to be able to adequately address the complex coupled phenomena to the level of detail that is necessary.

  4. Force Protection for Fire Fighters: Warm Zone Operations at Paramilitary Style Active Shooter Incidents in a Multi-Hazard Environment as a Fire Service Core Competency

    Science.gov (United States)

    2012-03-01

    Attacks,” Der Speigel, July 25, 2011, http://www.spiegel.de/international/europe/0,1518,776437,00.html 114 “Profile: Anders Behring Breivik ,” BBC...144 Patrick Donovan, “Puyallup Fire & Rescue’s Response to Active School Shooting Incident,” National Fire Academy (July 2008): 24, 26, 49...Learn Them.” Homeland Security Affairs Journal II, no. 2 (July 2006): 11. Donovan, Patrick . “Puyallup Fire & Rescue’s Response to Active School

  5. Spatial probability models of fire in the desert grasslands of the southwestern USA

    Science.gov (United States)

    Fire is an important driver of ecological processes in semiarid environments; however, the role of fire in desert grasslands of the Southwestern US is controversial and the regional fire distribution is largely unknown. We characterized the spatial distribution of fire in the desert grassland region...

  6. Stratospheric Aerosol and Gas Experiment II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide

    Science.gov (United States)

    Zawodny, Joseph M.; Mccormick, M. P.

    1991-01-01

    The first measurements ever to show a quasi-biennial oscillation (QBO) in NO2 have been made by the Stratospheric Aerosol and Gas Experiment II) (SAGE II) and are presented in this work along with observations of the well-known QBO in stratospheric ozone. The SAGE II instrument was launched aboard the Earth Radiation Budget satellite near the end of 1984. Measurements of ozone and nitrogen dioxide through early 1990 are analyzed for the presence of a quasi-biennial oscillation. The measurements show the global extent of both the O3 and NO2 QBO in the 25- to 40-km region of the stratosphere. The SAGE II QBO results for ozone compare favorably to theory and previous measurements. The QBO in NO2 is found to be consistent with the vertical and horizontal transport of NOy. Both species exhibit a QBO at extratropical latitudes consistent with strong meridional transport into the winter hemisphere.

  7. LHC Experiments Phase II - TDRs Approval Process

    CERN Document Server

    Forti, F

    2017-01-01

    The overall review process and steps of Phase II were described in CERN-LHCC-2015-077. As experiments submit detailed technical design reports (TDRs), the LHCC and UCG work in close connection to ensure a timely review of the scientific and technical feasibility as well as of the budget and schedule of the upgrade programme.

  8. The cometary H II regions of DR 21: Bow shocks or champagne flows or both?

    Science.gov (United States)

    Immer, K.; Cyganowski, C.; Reid, M. J.; Menten, K. M.

    2014-03-01

    We present deep Very Large Array H66α radio recombination line (RRL) observations of the two cometary H II regions in DR 21. With these sensitive data, we test the "hybrid" bow shock/champagne flow model previously proposed for the DR 21 H II regions. The ionized gas down the tail of the southern H II region is redshifted by up to ~30 km s-1 with respect to the ambient molecular gas, as expected in the hybrid scenario. The RRL velocity structure, however, reveals the presence of two velocity components in both the northern and southern H II regions. This suggests that the ionized gas is flowing along cone-like shells, swept-up by stellar winds. The observed velocity structure of the well-resolved southern H II region is most consistent with a picture that combines a stellar wind with stellar motion (as in bow shock models) along a density gradient (as in champagne flow models). The direction of the implied density gradient is consistent with that suggested by maps of dust continuum and molecular line emission in the DR 21 region. The image cubes are only available as a FITS file at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A39Table 2, Fig. 4, and Appendices A and B are available in electronic form at http://www.aanda.org

  9. Exploring spatial–temporal dynamics of fire regime features in mainland Spain

    Directory of Open Access Journals (Sweden)

    A. Jiménez-Ruano

    2017-10-01

    Full Text Available This paper explores spatial–temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial – regional and provincial/NUTS3 – levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974–2013. Temporal shifts in fire features are investigated by means of change point detection procedures – Pettitt test, AMOC (at most one change, PELT (pruned exact linear time and BinSeg (binary segmentation – at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann–Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA and varimax rotation to trend outputs – mainly Sen's slope values – to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann–Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1, summer burnt area (PC2, large fires (PC3 and natural fires (PC4.

  10. Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.

    Science.gov (United States)

    Stevens, Jens T; Latimer, Andrew M

    2015-06-01

    Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non-native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non-native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain-snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8-fold increase in population growth rates in Scotch broom and a 3.5-fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in

  11. A Vision-Based Approach to Fire Detection

    Directory of Open Access Journals (Sweden)

    Pedro Gomes

    2014-09-01

    Full Text Available This paper presents a vision-based method for fire detection from fixed surveillance smart cameras. The method integrates several well-known techniques properly adapted to cope with the challenges related to the actual deployment of the vision system. Concretely, background subtraction is performed with a context-based learning mechanism so as to attain higher accuracy and robustness. The computational cost of a frequency analysis of potential fire regions is reduced by means of focusing its operation with an attentive mechanism. For fast discrimination between fire regions and fire-coloured moving objects, a new colour-based model of fire's appearance and a new wavelet-based model of fire's frequency signature are proposed. To reduce the false alarm rate due to the presence of fire-coloured moving objects, the category and behaviour of each moving object is taken into account in the decision-making. To estimate the expected object's size in the image plane and to generate geo-referenced alarms, the camera-world mapping is approximated with a GPS-based calibration process. Experimental results demonstrate the ability of the proposed method to detect fires with an average success rate of 93.1% at a processing rate of 10 Hz, which is often sufficient for real-life applications.

  12. Radio observations of the CMa OB1 H II regions

    International Nuclear Information System (INIS)

    Gaylard, M.J.; Kemball, A.J.

    1984-01-01

    A sensitive 10 0 x 15 0 13-cm map made of the CMa OB1 H II regions' radio emission shows a strong similarity to Hα emission photographs. Sharpless 296 is shown to consist of a prominent central and western arc completed by a weaker southern loop, and with a faint northern bar. The emission is thermal, superimposed over a predominantly non-thermal background. The H142α recombination line has been detected at eight positions in S296, and in S292 and S297. The average electron temperature in S296 is 6900 +- 1300 K. The UV fluxes from the CMa OB1 stars account for the observed emission measures of the H II regions. The H142α 1sr velocities indicate that the ionized material is in contact with the molecular clouds. (author)

  13. FIRE PROTECTION SYSTEMS AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Aristov Denis Ivanovich

    2016-03-01

    Full Text Available The All-Russian Congress “Fire Stop Moscow” was de-voted to the analysis of the four segments of the industry of fire protection systems and technologies: the design of fire protec-tion systems, the latest developments and technologies of active and passive fire protection of buildings, the state and the devel-opment of the legal framework, the practice of fire protection of buildings and structures. The forum brought together the repre-sentatives of the industry of fire protection systems, scientists, leading experts, specialists in fire protection and representatives of construction companies from different regions of Russia. In parallel with the Congress Industrial Exhibition of fire protection systems, materials and technology was held, where manufacturers presented their products. The urgency of the “Fire Stop Moscow” Congress in 2015 organized by the Congress Bureau ODF Events lies primarily in the fact that it considered the full range of issues related to the fire protection of building and construction projects; studied the state of the regulatory framework for fire safety and efficiency of public services, research centers, private companies and busi-nesses in the area of fire safety. The main practical significance of the event which was widely covered in the media space, was the opportunity to share the views and information between management, science, and practice of business on implementing fire protection systems in the conditions of modern economic relations and market realities. : congress, fire protection, systems, technologies, fire protection systems, exhibition

  14. High resolution fire risk mapping in Italy

    Science.gov (United States)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko

    2014-05-01

    The high topographic and vegetation heterogeneity makes Italy vulnerable to forest fires both in the summer and in winter. In particular, northern regions are predominantly characterized by a winter fire regime, mainly due to frequent extremely dry winds from the north, while southern and central regions and the large islands are characterized by a severe summer fire regime, because of the higher temperatures and prolonged lack of precipitation. The threat of wildfires in Italy is not confined to wooded areas as they extend to agricultural areas and urban-forest interface areas. The agricultural and rural areas, in the last century, have been gradually abandoned, especially in areas with complex topography. Many of these areas were subject to reforestation, leading to the spread of pioneer species mainly represented by Mediterranean conifer, which are highly vulnerable to fire. Because of the frequent spread of fire, these areas are limited to the early successional stages, consisting mainly of shrub vegetation; its survival in the competition with the climax species being ensured by the spread of fire itself. Due to the frequency of fire ignition — almost entirely man caused — the time between fires on the same area is at least an order of magnitude less than the time that would allow the establishment of forest climax species far less vulnerable to fire. In view of the limited availability of fire risk management resources, most of which are used in the management of national and regional air services, it is necessary to precisely identify the areas most vulnerable to fire risk. The few resources available can thus be used on a yearly basis to mitigate problems in the areas at highest risk by defining a program of forest management interventions, which is expected to make a significant contribution to the problem in a few years' time. The goal of such detailed planning is to dramatically reduce the costs associated with water bombers fleet management and fire

  15. Detecting fire in video stream using statistical analysis

    Directory of Open Access Journals (Sweden)

    Koplík Karel

    2017-01-01

    Full Text Available The real time fire detection in video stream is one of the most interesting problems in computer vision. In fact, in most cases it would be nice to have fire detection algorithm implemented in usual industrial cameras and/or to have possibility to replace standard industrial cameras with one implementing the fire detection algorithm. In this paper, we present new algorithm for detecting fire in video. The algorithm is based on tracking suspicious regions in time with statistical analysis of their trajectory. False alarms are minimized by combining multiple detection criteria: pixel brightness, trajectories of suspicious regions for evaluating characteristic fire flickering and persistence of alarm state in sequence of frames. The resulting implementation is fast and therefore can run on wide range of affordable hardware.

  16. Forest fires may cause cooling in boreal Canada

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    As climate in North America continues to become warmer and drier through the 21st century, a new study finds that fire may be playing an increasingly important role in shaping the climate of the boreal regions of Canada. Forest fires change the amount of shortwave radiation absorbed by Earth's surface by reducing vegetation cover and changing the composition of plant species, thereby changing the reflectivity of the surface (albedo). Fires also affect other ecosystem processes and increase aerosol (particularly soot) emission and deposition, all of which alter regional climate through a series of feedbacks mechanisms. Jin et al. used satellite observations of surface albedo from 2000 to 2011 and fire perimeter data since 1970 to study how forest fires affect surface albedo and associated shortwave radiation at the surface, across forests in boreal Canada.

  17. Prompt Burst Energetics (PBE) experiment analyses using the SIMMER-II computer code

    International Nuclear Information System (INIS)

    Tomkins, J.L.; Hitchcock, J.T.; Young, M.F.

    1979-01-01

    Two of the Prompt Burst Energetics (PBE) in-pile experiments conducted at Sandia Laboratories PBE-5S and PBE-SG2, have been investigated with SIMMER-II. These two tests utilize fresh uranium oxide and fresh uranium carbide pins, respectively, in stagnant sodium. The purpose of the analysis is to investigate the applicability of SIMMER-II to this type of experiment. Qualitative agreement with measured data is seen for PBE-5S. PBE-SG2 results agree somewhat less well but demonstrate SIMMER-II's potential for describing fuel-coolant-interactions with further model development

  18. Spitzer observations of dust emission from H II regions in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W. [Now at Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA. (United States); Evans, Jessica Marie; Xue, Rui; Chu, You-Hua; Gruendl, Robert A.; Segura-Cox, Dominique M., E-mail: ianws@bu.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-04-01

    Massive stars can alter physical conditions and properties of their ambient interstellar dust grains via radiative heating and shocks. The H II regions in the Large Magellanic Cloud (LMC) offer ideal sites to study the stellar energy feedback effects on dust because stars can be resolved, and the galaxy's nearly face-on orientation allows us to unambiguously associate H II regions with their ionizing massive stars. The Spitzer Space Telescope survey of the LMC provides multi-wavelength (3.6-160 μm) photometric data of all H II regions. To investigate the evolution of dust properties around massive stars, we have analyzed spatially resolved IR dust emission from two classical H II regions (N63 and N180) and two simple superbubbles (N70 and N144) in the LMC. We produce photometric spectral energy distributions (SEDs) of numerous small subregions for each region based on its stellar distributions and nebular morphologies. We use DustEM dust emission model fits to characterize the dust properties. Color-color diagrams and model fits are compared with the radiation field (estimated from photometric and spectroscopic surveys). Strong radial variations of SEDs can be seen throughout the regions, reflecting the available radiative heating. Emission from very small grains drastically increases at locations where the radiation field is the highest, while polycyclic aromatic hydrocarbons (PAHs) appear to be destroyed. PAH emission is the strongest in the presence of molecular clouds, provided that the radiation field is low.

  19. Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution

    Science.gov (United States)

    Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.

    2018-01-01

    In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.

  20. SPQR II: A beam-plasma interaction experiment

    Science.gov (United States)

    Bimbot, R.; Della-Negra, S.; Gardès, D.; Rivet, M. F.; Fleurier, C.; Dumax, B.; Hoffman, D. H. H.; Weyrich, K.; Deutsch, C.; Maynard, G.

    1986-01-01

    SPQR II is an interaction experiment designed to probe energy -and charge-exchange of Cn+ ions at 2 MeV/a.m.u., flowing through a fully ionized plasma column of hydrogen with nℓ=1019 e-cm-2 at T=5 eV. One expects a factor of two enhanced stopping over the cold gas case.

  1. Experiment to study K+ → π+ + ''nothing'' at LAMPF II

    International Nuclear Information System (INIS)

    Marlow, D.R.

    1985-05-01

    An experiment to measure K + → π + + ''nothing'' (where ''nothing'' denotes unobservable neutral particles) at LAMPF II is described. This experiment is capable of measuring one K + → π + nu anti nu event for branching ratio of 10 -12 . 12 refs

  2. A Comparative Observational Study of YSO Classification in Four Small Star-forming H ii Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung-Ju; Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Kerton, C. R., E-mail: sjkang@kasi.re.kr, E-mail: kerton@iastate.edu [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2017-08-10

    We have developed a new young stellar object (YSO) identification and classification technique using mid-infrared Wide-field Infrared Survey Explorer (WISE) data. We compare this new technique with previous WISE YSO detection and classification methods that used either infrared colors or spectral energy distribution slopes. In this study, we also use the new technique to detect and examine the YSO population associated with four small H ii regions: KR 7, KR 81, KR 120, and KR 140. The relatively simple structure of these regions allows us to effectively use both spatial and temporal constraints to identify YSOs that are potential products of triggered star formation. We are also able to identify regions of active star formation around these H ii regions that are clearly not influenced by the H ii region expansion, and thus demonstrate that star formation is on-going on megayear timescales in some of these molecular clouds.

  3. STAR FORMATION ACTIVITY IN THE GALACTIC H II REGION Sh2-297

    International Nuclear Information System (INIS)

    Mallick, K. K.; Ojha, D. K.; Dewangan, L. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Tamura, M.

    2012-01-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm –3 and 9.15 × 10 5 cm –6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ∼7.'5 × 7.'5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H – K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ∼0.1-2 M ☉ and 0.5-2 Myr using optical (V/V–I) and NIR (J/J–H) CM diagrams. The mean age of the YSOs is found to be ∼1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  4. Star Formation Activity in the Galactic H II Region Sh2-297

    Science.gov (United States)

    Mallick, K. K.; Ojha, D. K.; Samal, M. R.; Pandey, A. K.; Bhatt, B. C.; Ghosh, S. K.; Dewangan, L. K.; Tamura, M.

    2012-11-01

    We present a multiwavelength study of the Galactic H II region Sh2-297, located in the Canis Major OB1 complex. Optical spectroscopic observations are used to constrain the spectral type of ionizing star HD 53623 as B0V. The classical nature of this H II region is affirmed by the low values of electron density and emission measure, which are calculated to be 756 cm-3 and 9.15 × 105 cm-6 pc using the radio continuum observations at 610 and 1280 MHz, and Very Large Array archival data at 1420 MHz. To understand local star formation, we identified the young stellar object (YSO) candidates in a region of area ~7farcm5 × 7farcm5 centered on Sh2-297 using grism slitless spectroscopy (to identify the Hα emission line stars), and near infrared (NIR) observations. NIR YSO candidates are further classified into various evolutionary stages using color-color and color-magnitude (CM) diagrams, giving 50 red sources (H - K > 0.6) and 26 Class II-like sources. The mass and age range of the YSOs are estimated to be ~0.1-2 M ⊙ and 0.5-2 Myr using optical (V/V-I) and NIR (J/J-H) CM diagrams. The mean age of the YSOs is found to be ~1 Myr, which is of the order of dynamical age of 1.07 Myr of the H II region. Using the estimated range of visual extinction (1.1-25 mag) from literature and NIR data for the region, spectral energy distribution models have been implemented for selected YSOs which show masses and ages to be consistent with estimated values. The spatial distribution of YSOs shows an evolutionary sequence, suggesting triggered star formation in the region. The star formation seems to have propagated from the ionizing star toward the cold dark cloud LDN1657A located west of Sh2-297.

  5. OWR/RTNS-II low exposure spectral effects experiment

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1985-05-01

    The first RTNS-II irradiation of the Low Exposure Spectral Experiment has been completed. The dosimetry has been analyzed, and expressions have been determined that fit the data very well. The effects of including the angular variation of the neutron spectrum were investigated

  6. SPITZER AND HERSCHEL MULTIWAVELENGTH CHARACTERIZATION OF THE DUST CONTENT OF EVOLVED H II REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, R. [NASA Herschel Science Center, California Institute of Technology, 1200, East California Boulevard, Pasadena, CA 91125 (United States); Umana, G. [INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Veneziani, M.; Noriega-Crespo, A. [Infrared Processing and Analysis Center, California Institute of Technology, 1200, East California Boulevard, Pasadena, CA 91125 (United States); Anderson, L. D. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Piacentini, F. [Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma (Italy); Pinheiro Goncalves, D. [Department of Astronomy and Astrophysics, University of Toronto 50 George Street, Toronto, ON M5S 3H4 (Canada); Paradis, D.; Bernard, J.-P. [Centre d' Etude Spatiale des Rayonnements, 9 Avenue du Colonel Roche, F-31028 Toulouse Cedex 4 (France); Tibbs, C. T. [Spitzer Science Center, California Institute of Technology, 1200, East California Boulevard, Pasadena, CA 91125 (United States); Natoli, P., E-mail: paladini@ipac.caltech.edu [Istituto Nazionale di Fisica Nucleare, Sezione Ferrara, I-44100 Ferrara (Italy)

    2012-12-01

    We have analyzed a uniform sample of 16 evolved H II regions located in a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign Galactic field centered at (l,b) = (30 Degree-Sign , 0 Degree-Sign ) and observed as part of the Herschel Hi-GAL survey. The evolutionary stage of these H II regions was established using ancillary radio-continuum data. By combining Hi-GAL PACS (70 {mu}m, 160 {mu}m) and SPIRE (250 {mu}m, 350 {mu}m, and 500 {mu}m) measurements with MIPSGAL 24 {mu}m data, we built spectral energy distributions of the sources and showed that a two-component gray-body model is a good representation of the data. In particular, wavelengths >70 {mu}m appear to trace a cold dust component, for which we estimated an equilibrium temperature of the big grains (BGs) in the range 20-30 K, while for {lambda} < 70 {mu}m, the data indicate the presence of a warm dust component at temperatures of the order of 50-90 K. This analysis also revealed that dust is present in the interior of H II regions, although likely not in a large amount. In addition, the data seem to corroborate the hypothesis that the main mechanism responsible for the (partial) depletion of dust in H II regions is radiation-pressure-driven drift. In this framework, we speculated that the 24 {mu}m emission that spatially correlates with ionized gas might be associated with either very small grain or BG replenishment, as recently proposed for the case of wind-blown bubbles. Finally, we found that evolved H II regions are characterized by distinctive far-IR and submillimeter colors, which can be used as diagnostics for their identification in unresolved Galactic and extragalactic regions.

  7. Upgrading of fire safety in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1998-01-01

    Indian nuclear power programme started with the installation of 2 nos. of Boiling Water Reactor (BWR) at Tarapur (TAPS I and II) of 210 MWe each commissioned in the year 1996. The Pressurized Heavy Water Reactor (PHWR) programme in the country started with the installation of 2x220 MWe stations at Rawatbhatta near Kota (RAPS I and II) in the State of Rajasthan in the sixties. At the present moment, the country has 10 stations in operation. Construction is going on for 4 more units of 220 MWe where as work on two more 500 MWe units is going to start soon. Fire safety systems for the earlier units were engineered as per the state-of-art knowledge available then. The need for review of fire protection systems in the Indian nuclear power plants has also been felt since long almost after Brown's Ferry fire in 1975 itself. Task forces consisting of fire experts, systems design engineers, O and M personnel as well as the Fire Protection engineers at the plant were constituted for each plant to review the existing fire safety provisions in details and highlight the upgradation needed for meeting the latest requirements as per the national as well as international practices. The recommendations made by three such task forces for the three plants are proposed to be reviewed in this paper. The paper also highlights the recommendations to be implemented immediately as well as on long-term basis over a period of time

  8. Coal fire mapping of East Basuria Colliery, Jharia coalfield using ...

    Indian Academy of Sciences (India)

    detect coal fire regions based on surface tem- perature ..... and non-coal fire regions have been delineated well in the ..... System Development Notes; Paterson Grant and Watson .... Schloemer S 2006 Innovative technologies for exploration,.

  9. Fire safety regulations and licensing

    International Nuclear Information System (INIS)

    Berg, H.P.

    1998-01-01

    Experience of the past tow decades of nuclear power plant operation and results obtained from modern analytical techniques confirm that fires may be a real threat to nuclear safety and should receive adequate attention from the design phase throughout the life of the plant. Fire events, in particular influence significantly plant safety due to the fact that fires have the potential to simultaneously damage components of redundant safety-related equipment. Hence, the importance of fire protection for the overall safety of a nuclear power plant has to be reflected by the fire safety regulations and to be checked during the licensing process of a plant as well as during the continuous supervision of the operating plant

  10. Firing patterns in the adaptive exponential integrate-and-fire model.

    Science.gov (United States)

    Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram

    2008-11-01

    For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.

  11. Cold Climate Structural Fire Danger Rating System?

    Directory of Open Access Journals (Sweden)

    Maria-Monika Metallinou

    2018-03-01

    Full Text Available Worldwide, fires kill 300,000 people every year. The fire season is usually recognized to be in the warmer periods of the year. Recent research has, however, demonstrated that the colder season also has major challenges regarding severe fires, especially in inhabited (heated wood-based structures in cold-climate areas. Knowledge about the effect of dry cellulose-based materials on fire development, indoor and outdoor, is a motivation for monitoring possible changes in potential fire behavior and associated fire risk. The effect of wind in spreading fires to neighboring structures points towards using weather forecasts as information on potential fire spread behavior. As modern weather forecasts include temperature and relative humidity predictions, there may already be sufficient information available to develop a structural fire danger rating system. Such a system may include the following steps: (1 Record weather forecasts and actual temperature and relative humidity inside and outside selected structures; (2 Develop a meteorology-data-based model to predict indoor relative humidity levels; (3 Perform controlled drying chamber experiments involving typical hygroscopic fire fuel; (4 Compare the results to the recorded values in selected structures; and (5 Develop the risk model involving the results from drying chamber experiments, weather forecasts, and separation between structures. Knowledge about the structures at risk and their use is also important. The benefits of an automated fire danger rating system would be that the society can better plan for potentially severe cold-climate fires and thereby limit the negative impacts of such fires.

  12. Fire Risk Scoping Study: Investigation of nuclear power plant fire risk, including previously unaddressed issues

    International Nuclear Information System (INIS)

    Lambright, J.A.; Nowlen, S.P.; Nicolette, V.F.; Bohn, M.P.

    1989-01-01

    An investigation of nuclear power plant fire risk issues raised as a result of the USNRC sponsored Fire Protection Research Program at Sandia National Laboratories has been performed. The specific objectives of this study were (1) to review and requantify fire risk scenarios from four fire probabilistic risk assessments (PRAs) in light of updated data bases made available as a result of USNRC sponsored Fire Protection Research Program and updated computer fire modeling capabilities, (2) to identify potentially significant fire risk issues that have not been previously addressed in a fire risk context and to quantify the potential impact of those identified fire risk issues where possible, and (3) to review current fire regulations and plant implementation practices for relevance to the identified unaddressed fire risk issues. In performance of the fire risk scenario requantifications several important insights were gained. It was found that utilization of a more extensive operational experience base resulted in both fire occurrence frequencies and fire duration times (i.e., time required for fire suppression) increasing significantly over those assumed in the original works. Additionally, some thermal damage threshold limits assumed in the original works were identified as being nonconservative based on more recent experimental data. Finally, application of the COMPBRN III fire growth model resulted in calculation of considerably longer fire damage times than those calculated in the original works using COMPBRN I. 14 refs., 2 figs., 16 tabs

  13. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Miesel, Jessica R.; Hockaday, William C.; Kolka, Randall K.; Townsend, Philip A.

    2015-06-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition of postfire SOM. We sampled the forest floor layer (i.e., full organic horizon) and 0-10 cm mineral soil from stands dominated by coniferous (Pinus banksiana Lamb.) or deciduous (Populus tremuloides Michx.) species 1-2 months after the 2011 Pagami Creek wildfire in northern Minnesota. We used solid-state 13C NMR to characterize SOM composition across a gradient of fire severity in both forest cover types. SOM composition was affected by fire, even when no statistically significant losses of total C stocks were evident. The most pronounced differences in SOM composition between burned and unburned reference areas occurred in the forest floor for both cover types. Carbohydrate stocks in forest floor and mineral horizons decreased with severity level in both cover types, whereas pyrogenic C stocks increased with severity in the coniferous forest floor and decreased in only the highest severity level in the deciduous forest floor. Loss of carbohydrate and lignin pools contributed to a decreased SOM stability index and increased decomposition index. Our results suggest that increases in fire severity expected to occur under future climate scenarios may lead to changes in SOM composition and dynamics with consequences for postfire forest recovery and C uptake.

  14. Little evidence for fire-adapted plant traits in Mediterranean climate regions.

    Science.gov (United States)

    Bradshaw, S Don; Dixon, Kingsley W; Hopper, Stephen D; Lambers, Hans; Turner, Shane R

    2011-02-01

    As climate change increases vegetation combustibility, humans are impacted by wildfires through loss of lives and property, leading to an increased emphasis on prescribed burning practices to reduce hazards. A key and pervading concept accepted by most environmental managers is that combustible ecosystems have traditionally burnt because plants are fire adapted. In this opinion article, we explore the concept of plant traits adapted to fire in Mediterranean climates. In the light of major threats to biodiversity conservation, we recommend caution in deliberately increasing fire frequencies if ecosystem degradation and plant extinctions are to be averted as a result of the practice. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  15. Spatio-temporal evolution of forest fires in Portugal

    Science.gov (United States)

    Tonini, Marj; Pereira, Mário G.; Parente, Joana

    2017-04-01

    A key issue in fire management is the ability to explore and try to predict where and when fires are more likely to occur. This information can be useful to understand the triggering factors of ignitions and for planning strategies to reduce forest fires, to manage the sources of ignition and to identify areas and frame period at risk. Therefore, producing maps displaying forest fires location and their occurrence in time can be of great help for accurately forecasting these hazardous events. In a fire prone country as Portugal, where thousands of events occurs each year, it is involved to drive information about fires over densities and recurrences just by looking at the original arrangement of the mapped ignition points or burnt areas. In this respect, statistical methods originally developed for spatio-temporal stochastic point processes can be employed to find a structure within these large datasets. In the present study, the authors propose an approach to analyze and visualize the evolution in space and in time of forest fires occurred in Portugal during a long frame period (1990 - 2013). Data came from the Portuguese mapped burnt areas official geodatabase (by the Institute for the Conservation of Nature and Forests), which is the result of interpreted satellite measurements. The following statistical analyses were performed: the geographically-weighted summary statistics, to analyze the local variability of the average burned area; the space-time Kernel density, to elaborate smoothed density surfaces representing over densities of fires classed by size and on North vs South region. Finally, we emploied the volume rendering thecnique to visualize the spatio-temporal evolution of these events into a unique map: this representation allows visually inspecting areas and time-step more affected from a high aggregation of forest fires. It results that during the whole investigated period over densities are mainly located in the northern regions, while in the

  16. Characteristics of Borneo and Sumatra fire plume heights and smoke clouds and their impact on regional El Niño-induced drought

    Science.gov (United States)

    Tosca, Michael; Randerson, James; Zender, Cs; Flanner, Mg; Nelson, Dl; Diner, Dj; Rasch, Pj; Logan, Ja

    2010-05-01

    During the dry season, anthropogenic fires in tropical forests and peatlands in equatorial Asia produce regionally expansive smoke clouds. We estimated the altitude of smoke clouds from these fires, characterized the sensitivity of these clouds to regional drought and El Niño variability, and investigated their effect on climate. We used the MISR satellite product and MISR INteractive eXplorer (MINX) software to estimate the heights of 382 smoke plumes (smoke with a visible surface source and transport direction) on Borneo and 143 plumes on Sumatra for 2001—2009. In addition, we estimated the altitudes of 10 smoke clouds (opaque regions of smoke with no detectable surface source or transport direction) on Borneo during 2006. Most smoke plumes (84%) were observed during El Niño events (2002, 2004, 2006, and 2009); this is consistent with higher numbers of active fire detections and larger aerosol optical depths observed during El Niño years. Annually averaged plume heights on Borneo were positively correlated to the Oceanic Niño Index (ONI), an indicator of El Niño (r2 = 0.53), and the mean plume height for all El Niño years was 772.5 ± 15.9m, compared to 711.4 ± 28.7m for non-El Niño years. The median altitude of the 10 smoke clouds observed on Borneo during 2006 was 1313m, considerably higher than the median of nearby smoke plumes (787m). The difference in height between individual plumes and regional smoke clouds may be related to deeper planetary boundary layers and injection heights later in the afternoon (after the 10:30am MISR overpass) or other atmospheric mixing processes that occur on synoptic timescales. We investigated the climate response to these expansive smoke clouds using the Community Atmosphere Model (CAM). Climate responses to smoke from two 30 year simulations were compared: one simulation was forced with fire emissions typical of a dry (El Niño) burning year, while the other was forced with emissions typical of a low (La Ni

  17. Dynamics, patterns and causes of fires in Northwestern Amazonia.

    Science.gov (United States)

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests.

  18. [Polymorphisms of mitochondrial DNA hypervariable regions HVR I and HVR II in Changdu Tibetan in China].

    Science.gov (United States)

    Zhao, Jianmin; Kang, Longli; Bian, Liqiang; La, Zong

    2008-10-01

    To analyze the sequence polymorphisms of mitochondrial DNA HVR I and HVR II in Tibetan population in Changdu area of Tibet. mtDNAs obtained from 97 unrelated individuals were amplified and directly sequenced. One hundred and eleven variable sites were identified, including nucleotide transitions, transversions, insertions and deletions. In HVR I region (nt16024-nt16365), sixty-eight polymorphic sites and 92 haplotypes were observed, and the genetic diversity was 0.9985. In HVR II region (nt73-nt340), forty-three polymorphic sites and 91 haplotypes were detected, and the genetic diversity was 0.9882. The random match probability of HVR I and HVR II regions were 0.0120 and 0.0118, respectively. When the sequence analysis of HVR I and HVR II regions were combined, ninety-seven different haplotypes were found. The combined match probability of two unrelated persons having the same sequence was 0.0103. There are some unique polymorphic loci in the Changdu Tibetan population. The results suggest that there are significant difference in the genetic structure in the mitochondrial DNA D-loop region between Changdu Tibetans and other Asian populations and Caucasians. Sequence polymorphism in mitochondrial DNA HVR I and HVR II can be used as a genetic marker for forensic individual identification and genetic analysis.

  19. Fire effects on soils: the human dimension.

    Science.gov (United States)

    Santín, Cristina; Doerr, Stefan H

    2016-06-05

    Soils are among the most valuable non-renewable resources on the Earth. They support natural vegetation and human agro-ecosystems, represent the largest terrestrial organic carbon stock, and act as stores and filters for water. Mankind has impacted on soils from its early days in many different ways, with burning being the first human perturbation at landscape scales. Fire has long been used as a tool to fertilize soils and control plant growth, but it can also substantially change vegetation, enhance soil erosion and even cause desertification of previously productive areas. Indeed fire is now regarded by some as the seventh soil-forming factor. Here we explore the effects of fire on soils as influenced by human interference. Human-induced fires have shaped our landscape for thousands of years and they are currently the most common fires in many parts of the world. We first give an overview of fire effect on soils and then focus specifically on (i) how traditional land-use practices involving fire, such as slash-and-burn or vegetation clearing, have affected and still are affecting soils; (ii) the effects of more modern uses of fire, such as fuel reduction or ecological burns, on soils; and (iii) the ongoing and potential future effects on soils of the complex interactions between human-induced land cover changes, climate warming and fire dynamics.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  20. Climate Impacts of Fire-Induced Land-Surface Changes

    Science.gov (United States)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  1. Fire and Deforestation Dynamics in South America over the Past 50 Years

    Science.gov (United States)

    van Marle, M.; Field, R. D.; van der Werf, G.

    2015-12-01

    Fires play an important role in the Earth system and are one of the major sources of greenhouse gases and aerosols. Satellites have been key to understand their spatial and temporal variability in space and time, but the most frequently used satellite datasets start only in 1995. There are still large uncertainties about the frequency and intensity of fires in the pre-satellite time period, especially in regions with active deforestation, which may have changed dramatically in intensity in the past decades influencing fire dynamics. We used two datasets to extend the record of fires and deforestation in the Amazon region back in time: 1) annual forest loss rates starting in 1990 derived from Vegetation Optical Depth (VOD), which is a satellite-based vegetation product that can be used as proxy for forest loss, and 2) horizontal visibility as proxy for fire emissions, reported by weather stations and airports in the Amazon, which started around 1940, and having widespread coverage since 1973. We show that these datasets overlap with fire emission estimates from the Global Fire Emissions Database (GFED) enabling us to estimate fire emissions over the last 50 years. We will discuss how fires have varied over time in this region with globally significant emissions, how droughts have influenced fire activity and deforestation rates, and what the impact is of land-use change caused by fire on emissions in the Amazon region.

  2. Full-scale fire experiments on vertical horizontal cable trays

    International Nuclear Information System (INIS)

    Mangs, J.; Keski-Rahkonen, O.

    1997-10-01

    Two full-scale fire experiments on PVC cables used in nuclear power plants were carried out, one with cables in vertical position and one with cables in horizontal position. The vertical cable bundle, 3 m high, 300 mm wide and 30 mm thick, was attached to a steel cable ladder. The vertical bundle experiment was carried out in nearly free space with three walls near the cable ladder guiding air flow in order to stabilise flames. The horizontal cable experiment was carried out in a small room with five cable bundles attached to steel cable ladders. Three of the 2 m long cable bundles were located in an array, equally spaced above each other near one long side of the room and two correspondingly near the opposite long side. The vertical cable bundle was ignited with a small propane gas burner beneath the lower edge of the bundle. The horizontal cable bundles were ignited with a small propane burner beneath the lowest bundle in an array of three bundles. Rate of heat release by means of oxygen consumption calorimetry, mass change, CO 2 , CO and smoke production rate and gas, wall and cable surface temperatures were measured as a function of time, as well as time to sprinkler operation and failure of test voltage in cables. Additionally, the minimum rate of heat release needed to ignite the bundle was determined. This paper concentrates on describing and recording the experimental set-up and the data obtained. (orig.)

  3. Impact of fire on the macrofungal diversity in scrub jungles of south-west India

    Directory of Open Access Journals (Sweden)

    Ammatanda A. Greeshma

    2016-01-01

    Full Text Available Fortnightly survey in control and fire-impacted regions of scrub jungle of south-west coast of India during south-west monsoon (50 m2 quadrats up to 10 weeks yielded 34 and 25 species of macrofungi, respectively. The species as well as sporocarp richness were the highest during the fourth week, while the diversity attained the highest during the second week in control region. In fire-impacted region, the species and sporocarp richness and diversity peaked at sixth week. Seven species common to both regions were Chlorophyllum molybdites, Lepiota sp., Leucocoprinus birnbaumii, Marasmius sp. 3, Polyporus sp., Schizophyllum commune and Tetrapyrgos nigripes. The overall sporocarp richness was higher in fire-impacted than in control region. The Jaccard’s similarity between regions was 13.5%, while fortnights of regions ranged from 0% (10th week to 11.7% (eighth week. Control region showed single-species dominance by Xylaria hypoxylon, while multispecies dominance by Cyathus striatus and Lentinus squarrosulus in fire-impacted region. Except for air temperature, nine abiotic factors significantly differed between control and fire-impacted regions. The Pearson correlation was positive between species richness and phosphorus content in fire-impacted region (r = 0.696, while sporocarp richness was negatively correlated with pH in control region (r = −0.640. Economically viable species were 12 and 10 without overlap in control and fire-impacted regions, respectively.

  4. Microstructural analysis of the type-II boundary region in Alloy 152 weld

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The weld metals are more susceptible to SCC growth and that most cracks are blunted by the fusion boundary. However, they also found that some cracking occurs along the fusion boundary, often in an area with high hardness. Nelson et al. investigated a DMW of Monel 409 stainless steel and American Iron and Steel Institute (AISI) 1080 alloy and found a type-II boundary, which exists parallel to the fusion boundary in the dilution zone. They conclude that the type-II boundary is a potential path for crack growth. While there are several theories for the mechanisms of the type-II boundary formation, they conclude that the type-II boundary forms from the allotropic δ-γ transformation at the base metal in the elevated austenitic temperature range. As the operation time of nuclear power plants using DMWs of Alloy 152 and A533 Gr. B increases, these DMWs must be evaluated for their resistance to SCC for long-term operations. However, only few studies have investigated the thermal aging effects induced by long-term operations at high temperature. Type-II boundary is known as a potential crack path from the results of crack growth test at DMW without any heat treatment. So the analysis about type-II boundary with applying heat treatment could be helpful to evaluate the susceptibility to SCC of structural materials. The objective of this study is to analyze the detailed microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B, after applying heat treatment simulating thermal aging effect of a nuclear power plant operation condition to evaluate the susceptibility of this region to SCC. The microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B were analyzed with an energy dispersive x-ray spectroscope attached to a scanning electron microscope (SEM-EDS), electron backscatter diffraction (EBSD), and a nanoindentation test. Microstructural, grain boundary orientation, nanohardness analysis were conducted in the type-II

  5. Microstructural analysis of the type-II boundary region in Alloy 152 weld

    International Nuclear Information System (INIS)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Ji Hyun

    2014-01-01

    The weld metals are more susceptible to SCC growth and that most cracks are blunted by the fusion boundary. However, they also found that some cracking occurs along the fusion boundary, often in an area with high hardness. Nelson et al. investigated a DMW of Monel 409 stainless steel and American Iron and Steel Institute (AISI) 1080 alloy and found a type-II boundary, which exists parallel to the fusion boundary in the dilution zone. They conclude that the type-II boundary is a potential path for crack growth. While there are several theories for the mechanisms of the type-II boundary formation, they conclude that the type-II boundary forms from the allotropic δ-γ transformation at the base metal in the elevated austenitic temperature range. As the operation time of nuclear power plants using DMWs of Alloy 152 and A533 Gr. B increases, these DMWs must be evaluated for their resistance to SCC for long-term operations. However, only few studies have investigated the thermal aging effects induced by long-term operations at high temperature. Type-II boundary is known as a potential crack path from the results of crack growth test at DMW without any heat treatment. So the analysis about type-II boundary with applying heat treatment could be helpful to evaluate the susceptibility to SCC of structural materials. The objective of this study is to analyze the detailed microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B, after applying heat treatment simulating thermal aging effect of a nuclear power plant operation condition to evaluate the susceptibility of this region to SCC. The microstructure of the type-II boundary region in the DMW of Alloy 152 and A533 Gr. B were analyzed with an energy dispersive x-ray spectroscope attached to a scanning electron microscope (SEM-EDS), electron backscatter diffraction (EBSD), and a nanoindentation test. Microstructural, grain boundary orientation, nanohardness analysis were conducted in the type-II

  6. Plasma-filled diode experiments on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Rochau, G.E.; McDaniel, D.H.; Moore, W.B.; Zuchowski, N.; Padilla, R.

    1987-01-01

    The PBFA-II accelerator is designed to use a Plasma Opening Switch (POS) for pulse shaping and voltage multiplication using inductive storage. The vacuum section of the machine consists of a set of short magnetically insulated transmission lines (MITLs) that both act as a voltage adder for series stacking of the pulses out of the 72 parallel plate water lines, and as a 100 nH (total) storage inductor upstream of a biconically shaped POS region. There are two POS plasma injection areas, located above and below an equatorial load, which has consisted of either a short circuit, a blade (electron beam) diode, or an Applied B magnetically insulated ion diode. The POS is designed to conduct up to 6 MA, and open into a 5 ohm diode load in 10 ns or less. Under these conditions, the voltage at the load is predicted to exceed 24 MV. Initial POS experiments using these loads have produced 1) opening times of typically 20 ns or longer, 2) poor current transfer efficiency (less than 50%) when load impedances averaged 2 ohms or more, and 3) differential switch opening in azimuthal segments of the power feed, thought to be caused by poor plasma uniformity across the flashboard plasma source. One possible explanation for 2) is that efficient transfer out of the POS requires that the current carried to the load be magnetically insulated, or else considerable energy will be deposited in the feed region between the POS and load. This had indeed been observed. The problem is further exacerbated by the longer current turn-on times that occur when an ion diode is used as the load

  7. Fire in Fennoscandia: A palaeo-perspective of spatial and temporal variability in fire frequency and vegetation dynamics

    Science.gov (United States)

    Clear, Jennifer; Bradshaw, Richard; Seppä, Heikki

    2014-05-01

    Active fire suppression in Fennoscandia has created a boreal forest ecosystem that is almost free of fire. Absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce), though the character and structure of spruce forests operates as a positive feedback retarding fire frequency. This lack of fire and dominance by Picea abies may have assisted declines in deciduous tree species, with a concomitant loss of floristic diversity. Forest fires are driven by a complex interplay between natural (climate, vegetation and topography) and anthropogenic disturbance and through palaeoecology we are able to explore spatio-temporal variability in the drivers of fire, changing fire dynamics and the subsequent consequences for forest succession, development and floristic diversity over long timescales. High resolution analysis of palaeoenvironmental proxies (pollen and macroscopic charcoal) allows Holocene vegetation and fire dynamics to be reconstructed at the local forest-stand scale. Comparisons of fire histories with pollen-derived quantitative reconstruction of vegetation at local- and regional-scales identify large-scale ecosystem responses and local-scale disturbance. Spatio-temporal heterogeneity and variability in biomass burning is explored to identify the drivers of fire and palaeovegetation reconstructions are compared to process-based, climate-driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Fire was not always so infrequent in the northern European forest with early-Holocene fire regimes driven by natural climate variations and fuel availability. The establishment and spread of Picea abies was probably driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. Picea expansion led to a step-wise reduction in regional biomass burning and here we show the now

  8. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    NARCIS (Netherlands)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest

  9. Entdeckung elektroschwacher Produktion einzelner Top-Quarks mit dem CDF II Experiment; Discovery electroweak production of single top quarks with the CDF II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Luck, Jan [Karlsruhe Inst. of Technology (KIT) (Germany)

    2009-01-01

    This thesis presents a neural network search for combined as well as separate s- and t-channel single top-quark production with the CDF II experiment at the Tevatron using 3.2 fb-1 of collision data. It is the twelfth thesis dealing with single top-quark production performed within the CDF Collaboration, whereas three have been done in Run I [53–55] and eight in Run II [23, 25, 28, 39, 56–59].

  10. Towards adaptive fire management for biodiversity conservation: Experience in South African National Parks

    Directory of Open Access Journals (Sweden)

    Brian W. van Wilgen

    2011-05-01

    Conservation implications: Significant challenges face the managers of fire-prone and fire adapted ecosystems, where the attainment of ecosystem goals may require approaches (like encouraging high-intensity fires at hot and dry times of the year that threaten societal goals related to safety. In addition, approaches to fire management have focused on encouraging particular fire patterns in the absence of a sound understanding of their ecological outcomes. Adaptive management offers a framework for addressing these issues, but will require higher levels of agreement, monitoring and assessment than have been the case to date.

  11. Dayton Aircraft Cabin Fire Model, Version 3. Volume II. Program User’s Guide and Appendices.

    Science.gov (United States)

    1982-06-01

    HEAT RELEASE RATE (BTU/FT*FT*SEC) FOR A FIRE C FLML - FLAME LENGTH OF A FIRE. SUBSCR IS FIRE NUMBER (FT) C FSN1 - COUNTER OF NUMBER OF FLAMING...53H ENTRMNT FLAME LENGTH ABSN COEFF SMOKE GEN RATE 0 2 *14HXY CNSPTN RATE/ 3 9X,53H(SG FT) (CU FT/SEC) (BTU/SEC) (CU FT/SEC) 4 .53H (FT) (l/FT) (PART...THE CENTER OF THE FIRE BASE FROM THE C FLOOR C C YZ - THE HYDRAULIC RADIUS OF THE FIRE BASE AREA C C FLML - THE FLAME LENGTH FOR THE FIRE C C ALPC

  12. Fire safety requirements for electrical cables towards nuclear reactor safety

    International Nuclear Information System (INIS)

    Raju, M.R.

    2002-01-01

    Full text: Electrical power supply forms a very important part of any nuclear reactor. Power supplies have been categorized in to class I, II, III and IV from reliability point. The safety related equipment are provided with highly reliable power supply to achieve the safety of very high order. Vast network of cables in a nuclear reactor are grouped and segregated to ensure availability of power to at least one group under all anticipated occurrences. Since fire can result in failures leading to unavailability of power caused by common cause, both passive and active fire protection methods are adopted in addition to fire detection system. The paper describes the requirement for passive fire protection to electrical cables viz. fire barrier and fire breaks. The paper gives an account of the tests required to standardize the products. Fire safety implementation for cables in research reactors is described

  13. Environmental monitoring survey of oil and gas fields in Region II in 2009. Summary report; Miljoeovervaaking av olje- og gassfelt i Region II i 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-15

    The oil companies Statoil ASA, ExxonMobil Exploration and Production Norway AS, Total E&P Norge AS, Talisman Energy Norge AS and Marathon Petroleum Norge AS commissioned Section of Applied Environmental Research at UNI RESEARCH AS to undertake the monitoring survey of Region II in 2009. Similar monitoring surveys in Region II have been carried out in 1996, 2000, 2003 and 2006. The survey in 2009 included in total 18 fields: Rev, Varg, Sigyn, Sleipner Vest, Sleipner OEst, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Vale, Skirne, Byggve, Heimdal, Volve, Vilje og Alvheim. Sampling was conducted from the vessel MV Libas between May 18 and May 27. Samples were collected from in totally 137 sampling sites, of which 15 were regional sampling sites. Samples for chemical analysis were collected at all sites, whereas samples for benthos analysis were collected at 12 fields. As in previous surveys, Region II is divided into natural sub-regions. One sub-region is shallow (77-96 m) sub-region, a central sub-region (107-130 m) and a northern subregion (115-119 m). The sediments of the shallow sub-region had relatively lower content of TOM and pelite and higher content of fine sand than the central and northern sub-regions. Calculated areas of contamination are shown for the sub-regions in Table 1.1. The fields Sigyn, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Skirne, Byggve, Vilje og Alvheim showed no contamination of THC. At the other fields there were minor changes from 2006. The concentrations of barium increased in the central sub-region from 2006 to 2009, also at fields where no drilling had been undertaken during the last years. The same laboratory and methods are used during the three last regional investigations. The changes in barium concentrations may be due to high variability of barium concentrations in the sediments. This is supported by relatively large variations in average barium concentrations at the regional sampling sites in

  14. 46 CFR 27.209 - What are the requirements for training crews to respond to fires?

    Science.gov (United States)

    2010-10-01

    ... are familiar with their fire-fighting duties, and, specifically, with the following contingencies: (1) Fighting a fire in the engine room and elsewhere on board the vessel, including how to— (i) Operate all of the fire-extinguishing equipment on board the vessel; (ii) Stop any mechanical ventilation system for...

  15. Recent results from AMANDA II

    International Nuclear Information System (INIS)

    Hanson, K.; Ahrens, J.; Bai, X.; Barwick, S.W.; Becka, T.; Becker, K.-H.; Bernardini, E.; Bertrand, D.; Binon, F.; Biron, A.; Boeser, S.; Botner, O.; Bouhali, O.; Burgess, T.; Carius, S.; Castermans, T.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Cowen, D.F.; Davour, A.; De Clercq, C.; De Young, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Ekstroem, P.; Feser, T.; Gaisser, T.K.; Gaug, M.; Gerhardt, L.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Herque, P.; Hill, G.C.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Koci, B.; Koepke, L.; Kuehn, K.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Minaeva, Y.; Miocinovic, P.; Morse, R.; Nahnhauer, R.; Neunhoeffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Steele, D.; Steffen, P.; Stokstad, R.G.; Sudhoff, P.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Tilav, S.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedemann, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Yodh, G.; Young, S.

    2003-01-01

    We present new data taken with the AMANDA-II neutrino telescope array. The AMANDA-II upgrade was completed at the beginning of 2000. It significantly extends the sensitivity of the 10-string AMANDA-B10 detector to high- and ultrahigh-energy neutrino fluxes into regions of interest for probing current astrophysical models which remain unexplored by other experiments

  16. Forest Fire Finder - DOAS application to long-range forest fire detection

    Science.gov (United States)

    Valente de Almeida, Rui; Vieira, Pedro

    2017-06-01

    Fires are an important factor in shaping Earth's ecosystems. Plant and animal life, in almost every land habitat, are at least partially dependent on the effects of fire. However, their destructive force, which has often proven uncontrollable, is one of our greatest concerns, effectively resulting in several policies in the most important industrialised regions of the globe. This paper aims to comprehensively characterise the Forest Fire Finder (FFF), a forest fire detection system based mainly upon a spectroscopic technique called differential optical absorption spectroscopy (DOAS). The system is designed and configured with the goal of detecting higher-than-the-horizon smoke columns by measuring and comparing scattered sunlight spectra. The article covers hardware and software, as well as their interactions and specific algorithms for day mode operation. An analysis of data retrieved from several installations deployed in the course of the last 5 years is also presented. Finally, this paper features a discussion on the most prominent future improvements planned for the system, as well as its ramifications and adaptations, such as a thermal imaging system for short-range fire seeking or environmental quality control.

  17. EOSLT Consortium Biomass Co-firing. WP 4. Biomass co-firing in oxy-fuel combustion. Part 1. Lab- Scale Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fryda, L.E. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2011-07-15

    In the frame of WP4 of the EOS LT Co-firing program, the ash formation and deposition of selected coal/biomass blends under oxyfuel and air conditions were studied experimentally in the ECN lab scale coal combustor (LCS). The fuels used were Russian coal, South African coal and Greek Lignite, either combusted separately or in blends with cocoa and olive residue. The first trial period included tests with the Russian and South African coals and their blends with cocoa, the second trial period included Lignite with olive residue tests and a final period firing only Lignite and Russian coal, mainly to check and verify the observed results. During the testing, also enriched air combustion was applied, in order to establish conclusions whether a systematic trend on ash formation and deposition exists, ranging from conventional air, to enriched air (improving post combustion applications) until oxyfuel conditions. A horizontal deposition probe equipped with thermocouples and heat transfer sensors for on line data acquisition, and a cascade impactor (staged filter) to obtain size distributed ash samples including the submicron range at the reactor exit were used. The deposition ratio and the deposition propensity measured for the various experimental conditions were higher in all oxyfuel cases. No significant variations in the ash formation mechanisms and the ash composition were established. Finally the data obtained from the tests performed under air and oxy-fuel conditions were utilised for chemical equilibrium calculations in order to facilitate the interpretation of the measured data; the results indicate that temperature dependence and fuels/blends ash composition are the major factors affecting gaseous compound and ash composition rather than the combustion environment, which seems to affect neither the ash and fine ash (submicron) formation, nor the ash composition. The ash deposition mechanisms were studied in more detail in Part II of this report.

  18. Logic of quench protection assembly for BEPC II interaction region superconducting magnet

    International Nuclear Information System (INIS)

    Chen Fusan; Cheng Jian

    2006-01-01

    Two superconducting magnet complexes are used in BEPC II interaction region. The corresponding quench protection system divides all related faults into two classes and takes different protection actions according to the urgency degree. Since BEPC II has two operating modes and the superconducting magnets use different power supplies in different operating modes, the quench protection system must take the mode switching into consideration. (authors)

  19. Regional impacts of expanding gas-fired electric generation in the northeast US and eastern Canada

    International Nuclear Information System (INIS)

    Mitchell, G.

    2002-01-01

    New York, New England, Ontario, Quebec and Canada's Maritime provinces come under the jurisdiction of the Northeast Power Coordinating Committee (NPCC) of the North American Electric Reliability Council (NERC). The objective of this Council is to assist with the coordination of electric supply, as well as transmission planning and reliability for the utilities. The annual ten year forecast of electric supply, demand and fuel sources produced by the NERC formed the basis for the data presented. The deregulation of the electricity market in a few jurisdictions in the region resulted in the break-up of several electric utilities into their core components, namely, generation, distribution and transmission. The generation sector is where the fastest break-up activity is taking place, and merchant energy companies are emerging. Each of these merchant energy companies is competing against the other to effect sales into the wholesale power market through the building of at risk generation plants. The deregulation process is subjected to different processes and time tables depending on each state or province regulations. The construction of new power plants in the region is being driven by the merchant energy companies. They are building low capital cost and highly efficient natural gas combined-cycle base load plants as well as lower cost and moderately efficient natural gas/oil-fired simple-cycle peaking plants. This activity is mainly restricted to the United States, since hydroelectric power, coal and nuclear power are the main presence in Canada. New England experiences summer peaks while Canada has winter peak electric demand. To optimize intra-regional peak generation capacity sharing, there is an opportunity for the electric industry to move gas by wire, and a number of projects are being developed. It is expected that pipeline expansion will be lower in Quebec and Ontario and result in more capacity expansions from the Maritimes combined with intra-regional

  20. Fire Sales and House Prices

    DEFF Research Database (Denmark)

    Andersen, Steffen; Meisner Nielsen, Kasper

    We exploit a natural experiment in Denmark to investigate when forced sales lead to fire sale discounts. Forced sales result from sudden deaths of house owners in an institutional environment in which beneficiaries are forced to settle the estate, and hence sell the house, within 12 months. We...... and the urgency of the sale also affect the average discount: Discounts are larger when house prices contract, in thin markets where demand is lower, and when the sale is more likely to be a fire sale because of financial or liquidity constraints. Late fire sales are more likely when the house price...... forced sales lead to fire sale discounts....

  1. Sodium fire studies in France. Safety experiments applied to fast reactors

    International Nuclear Information System (INIS)

    Fruchard, Y.; Colome, J.; Malet, J.C.; Berlin, M.; Duverger de Cuy, G.; Justin, J.; Duco, J.

    1976-01-01

    In fast reactors, the risk of sodium fires must be analyzed in detail and the consequences of an accidental fire must be known precisely. Beyond the search for prevention and detection means, techniques must be developed to set up a limit to damages created by an accidental fire: extinguishing, aerosol confinement, protection of the reactor structures. The program developed by the Nuclear Safety Department of the Commissariat a l'Energie Atomique to solve these various problems is described. The main results and their applications to the Super-Phenix reactor are presented [fr

  2. A Cretaceous origin for fire adaptations in the Cape flora.

    Science.gov (United States)

    He, Tianhua; Lamont, Byron B; Manning, John

    2016-10-05

    Fire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world's most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute strongly to the overall flora. It is hypothesized that the current fire regimes in the Cape could be as old as 6-8 million years (My), while indirect evidence indicates that the onset of fire could have reached 18 million years ago (Ma). Here, we trace the origin of fire-dependent traits in two monocot families that are significant elements in the fire-prone Cape flora. Our analysis shows that fire-stimulated flowering originated in the Cape Haemodoraceae 81 Ma, while fire-stimulated germination arose in the African Restionaceae at least 70 Ma, implying that wildfires have been a significant force in the evolution of the Cape flora at least 60 My earlier than previous estimates. Our results provide strong evidence for the presence of fire adaptations in the Cape from the Cretaceous, leading to the extraordinary persistence of a fire-adapted flora in this biodiversity hotspot, and giving support to the hypothesis that Cretaceous fire was a global phenomenon that shaped the evolution of terrestrial floras.

  3. The frequency of forest fires in Scots pine stands of Tuva, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, G A; Kukavskaya, E A [Russian Academy of Sciences, Siberian Branch, V N Sukachev Institute of Forest, Akademgorodok, Krasnoyarsk, 660036 (Russian Federation); Ivanov, V A [Siberian State Technological University, Krasnoyarsk, 660049 (Russian Federation); Soja, A J, E-mail: GAIvanova@ksc.krasn.r [National Institute of Aerospace, Resident at NASA Langley Research Center, MS 420, Hampton, VA 23681-2199 (United States)

    2010-01-15

    Forest fires resulting from long periods of drought cause extensive forest ecosystem destruction and can impact on the carbon balance and air quality and feed back to the climate system, regionally and globally. Past fire frequency is reconstructed for Tuvan Scots pine stands using dendrochronology and statistics. Central Tuvan Scots pine (Pinus sylvestris) stands are subject to annual fire regimes; however high intensity fires are rare but they are responsible for most of the damage. Low, medium, and high severity fires have shaped the multi-story Scots pine communities, locally and regionally. Fire type and frequency are directly related to weather and climate and are also dependent on anthropogenic influences. The primary dry period, which promotes fire ignition and spread, in Tuva occurs in April and May. In some years, the precipitation deficit combined with high air temperatures induces long periods of drought. Unlike the typical surface fire regime, forest fires that burn during these extreme droughts often become crown fires that result in substantial forest damage and carbon release. The mean fire interval (MFI) is found to be 10.4 years in Balgazyn stands, and the landscape-scale MFI is 22.4 years. High severity, stand-replacing crown fires have a longer MFI. The warmer and dryer weather that is predicted by global climate models is evident in Tuva, and we believe that these changes in weather and climate have resulted in increased fire intensity and severity, rather than fire frequency in the Tuvan region.

  4. The frequency of forest fires in Scots pine stands of Tuva, Russia

    International Nuclear Information System (INIS)

    Ivanova, G A; Kukavskaya, E A; Ivanov, V A; Soja, A J

    2010-01-01

    Forest fires resulting from long periods of drought cause extensive forest ecosystem destruction and can impact on the carbon balance and air quality and feed back to the climate system, regionally and globally. Past fire frequency is reconstructed for Tuvan Scots pine stands using dendrochronology and statistics. Central Tuvan Scots pine (Pinus sylvestris) stands are subject to annual fire regimes; however high intensity fires are rare but they are responsible for most of the damage. Low, medium, and high severity fires have shaped the multi-story Scots pine communities, locally and regionally. Fire type and frequency are directly related to weather and climate and are also dependent on anthropogenic influences. The primary dry period, which promotes fire ignition and spread, in Tuva occurs in April and May. In some years, the precipitation deficit combined with high air temperatures induces long periods of drought. Unlike the typical surface fire regime, forest fires that burn during these extreme droughts often become crown fires that result in substantial forest damage and carbon release. The mean fire interval (MFI) is found to be 10.4 years in Balgazyn stands, and the landscape-scale MFI is 22.4 years. High severity, stand-replacing crown fires have a longer MFI. The warmer and dryer weather that is predicted by global climate models is evident in Tuva, and we believe that these changes in weather and climate have resulted in increased fire intensity and severity, rather than fire frequency in the Tuvan region.

  5. Timing fire to minimize damage in managing oak ecosystems

    Science.gov (United States)

    Daniel C. Dey; Callie Jo Schweitzer

    2015-01-01

    The long history of fire in North America spans millennia and is recognized as an important driver in the widespread and long-term dominance of oak species. Early European settlers intensified the occurrence of fire from about 1850 to 1950, with dates varying by region. This resulted in much forest damage and gained fire a negative reputation. The lack of fire for the...

  6. Insulin-like growth factor II (IGF II) in human brain: regional distribution of IGF II and of higher molecular mass forms

    International Nuclear Information System (INIS)

    Haselbacher, G.K.; Schwab, M.E.; Pasi, A.; Humbel, R.E.

    1985-01-01

    Twenty-four distinct areas of human brain were analyzed for the presence of insulin-like growth factor (IGF). As reported for cerebrospinal fluid, only IGF II-like immunoreactivity, but no significant amounts of IGF I-like immunoreactivity, could be found. Upon gel permeation chromatography, two to five distinct size classes were separated on the basis of their immunoreactivity. Radioimmunoassays and a bioassay also gave results indistinguishable from those of serum IGF II. The highest amounts of IGF II-like immunoreactivity occur in the anterior pituitary. This is up to 100 times more than in most other brain regions analyzed. The higher molecular mass immunoreactive species were partially characterized. After immunoaffinity purification, the 38- and 26-kDa species are active in a bioassay. Specific IGF-binding protein activity could be shown after purification of the 38- and 26-kDa species on an IGF-affinity column. The 13-kDa species released significant amounts of 7.5-kDa material. The results are interpreted as evidence for the presence of IGF II synthesized locally in human brain

  7. Data for Room Fire Model Comparisons.

    Science.gov (United States)

    Peacock, Richard D; Davis, Sanford; Babrauskas, Vytenis

    1991-01-01

    With the development of models to predict fire growth and spread in buildings, there has been a concomitant evolution in the measurement and analysis of experimental data in real-scale fires. This report presents the types of analyses that can be used to examine large-scale room fire test data to prepare the data for comparison with zone-based fire models. Five sets of experimental data which can be used to test the limits of a typical two-zone fire model are detailed. A standard set of nomenclature describing the geometry of the building and the quantities measured in each experiment is presented. Availability of ancillary data (such as smaller-scale test results) is included. These descriptions, along with the data (available in computer-readable form) should allow comparisons between the experiment and model predictions. The base of experimental data ranges in complexity from one room tests with individual furniture items to a series of tests conducted in a multiple story hotel equipped with a zoned smoke control system.

  8. Data for Room Fire Model Comparisons

    Science.gov (United States)

    Peacock, Richard D.; Davis, Sanford; Babrauskas, Vytenis

    1991-01-01

    With the development of models to predict fire growth and spread in buildings, there has been a concomitant evolution in the measurement and analysis of experimental data in real-scale fires. This report presents the types of analyses that can be used to examine large-scale room fire test data to prepare the data for comparison with zone-based fire models. Five sets of experimental data which can be used to test the limits of a typical two-zone fire model are detailed. A standard set of nomenclature describing the geometry of the building and the quantities measured in each experiment is presented. Availability of ancillary data (such as smaller-scale test results) is included. These descriptions, along with the data (available in computer-readable form) should allow comparisons between the experiment and model predictions. The base of experimental data ranges in complexity from one room tests with individual furniture items to a series of tests conducted in a multiple story hotel equipped with a zoned smoke control system. PMID:28184121

  9. Drought effects on large fire activity in Canadian and Alaskan forests

    International Nuclear Information System (INIS)

    Xiao Jingfeng; Zhuang Qianlai

    2007-01-01

    Fire is the dominant disturbance in forest ecosystems across Canada and Alaska, and has important implications for forest ecosystems, terrestrial carbon dioxide emissions and the forestry industry. Large fire activity had increased in Canadian and Alaskan forests during the last four decades of the 20th century. Here we combined the Palmer Drought Severity Index and historical large fire databases to demonstrate that Canada and Alaska forest regions experienced summer drying over this time period, and drought during the fire season significantly affected forest fire activity in these regions. Climatic warming, positive geopotential height anomalies and ocean circulation patterns were spatially and temporally convolved in causing drought conditions, which in turn enhanced fuel flammability and thereby indirectly affected fire activity. Future fire regimes will likely depend on drought patterns under global climate change scenarios

  10. Spatial and Temporal Variability and Trends in 2001-2016 Global Fire Activity

    Science.gov (United States)

    Earl, Nick; Simmonds, Ian

    2018-03-01

    Fire regimes across the globe have great spatial and temporal variability, and these are influence by many factors including anthropogenic management, climate, and vegetation types. Here we utilize the satellite-based "active fire" product, from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, to statistically analyze variability and trends in fire activity from the global to regional scales. We split up the regions by economic development, region/geographical land use, clusters of fire-abundant areas, or by religious/cultural influence. Weekly cycle tests are conducted to highlight and quantify part of the anthropogenic influence on fire regime across the world. We find that there is a strong statistically significant decline in 2001-2016 active fires globally linked to an increase in net primary productivity observed in northern Africa, along with global agricultural expansion and intensification, which generally reduces fire activity. There are high levels of variability, however. The large-scale regions exhibit either little change or decreasing in fire activity except for strong increasing trends in India and China, where rapid population increase is occurring, leading to agricultural intensification and increased crop residue burning. Variability in Canada has been linked to a warming global climate leading to a longer growing season and higher fuel loads. Areas with a strong weekly cycle give a good indication of where fire management is being applied most extensively, for example, the United States, where few areas retain a natural fire regime.

  11. Regional impacts of expanding gas-fired electric generation in the Northeast U.S. and Eastern Canada

    International Nuclear Information System (INIS)

    Mitchell, G.K.

    2001-01-01

    For the purpose of this presentation, the author placed emphasis on the northeast United States, including New York, New England, plus Ontario, Quebec and the Maritime provinces in Canada. The entire region comes under the Northeast Power Coordinating Committee (NPCC) of the North American Electric Reliability Council (NERC). The objective of this Council is to assist with the coordination of electric supply as well as transmission planning and reliability of the utilities. The annual ten year forecast of electric supply, demand and fuel sources produced by the NERC formed the basis for the data presented. The deregulation of the electricity market in a few jurisdictions in the region resulted in the break-up of several electric utilities into their core components: generation, distribution and transmission. The generation sector is where the fastest break-up activity is taking place and merchant energy companies are emerging. Each of these merchant energy companies is competing against the other to effect sales into the wholesale power market through the building of at risk generation plants. The deregulation process is subjected to different processes and time tables depending on each state or provincial regulations. The construction of new power plants in the region is being driven by the merchant energy companies. They are building low capital cost and highly efficient natural gas combined-cycle base load plants as well as lower cost and moderately efficient natural gas/oil-fired simple-cycle peaking plants. This activity is mainly restricted to the United States, since hydroelectric power, coal and nuclear power are the main presence in Canada. New England experiences summer peaks while Canada has winter peak electric demand. To optimize intra-regional peak generation capacity sharing, there is an opportunity for the electric industry to move gas by wire, and a number of projects are being developed. It is expected that pipeline expansion will be lower in

  12. Standpipe systems for fire protection

    CERN Document Server

    Isman, Kenneth E

    2017-01-01

    This important new manual goes beyond the published NFPA standards on installation of standpipe systems to include the rules in the International Building Code, municipal fire codes, the National Fire Code of Canada, and information on inspection, testing, and maintenance of standpipe systems. Also covered are the interactions between standpipe and sprinkler systems, since these important fire protection systems are so frequently installed together. Illustrated with design examples and practical applications to reinforce the learning experience, this is the go-to reference for engineers, architects, design technicians, building inspectors, fire inspectors, and anyone that inspects, tests or maintains fire protection systems. Fire marshals and plan review authorities that have the responsibility for reviewing and accepting plans and hydraulic calculations for standpipe systems are also an important audience, as are firefighters who actually use standpipe systems. As a member of the committees responsible for s...

  13. Visibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in Turkey.

    Science.gov (United States)

    Kucuk, Omer; Topaloglu, Ozer; Altunel, Arif Oguz; Cetin, Mehmet

    2017-07-01

    For a successful fire suppression, it is essential to detect and intervene forest fires as early as possible. Fire lookout towers are crucial assets in detecting forest fires, in addition to other technological advancements. In this study, we performed a visibility analysis on a network of fire lookout towers currently operating in a relatively fire-prone region in Turkey's Western Black Sea region. Some of these towers had not been functioning properly; it was proposed that these be taken out of the grid and replaced with new ones. The percentage of visible areas under the current network of fire lookout towers was 73%; it could rise to 81% with the addition of newly proposed towers. This study was the first research to conduct a visibility analysis of current and newly proposed fire lookout towers in the Western Black Sea region and focus on its forest fire problem.

  14. El Nino and Health Risks from Landscape Fire Emissions in Southeast Asia

    Science.gov (United States)

    Marlier, Miriam E.; Defries, Ruth S.; Voulgarakis, Apostolos; Kinney, Patrick L.; Randerson, James T.; Shindell, Drew T.; Chen, Yang; Faluvegi, Greg

    2013-01-01

    Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Nino-induced droughts and anthropogenic land-use change. We show that during strong El Nino years, fires contribute up to 200 micrograms per cubic meter and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50 micrograms per cubic metre 24-hr PM(sub 2.5) interim target and an estimated 10,800 (6,800-14,300)-person (approximately 2 percent) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.

  15. FALSIRE Phase II. CSNI project for Fracture Analyses of Large-Scale International Reference Experiments (Phase II). Comparison report

    International Nuclear Information System (INIS)

    Sievers, J.; Schulz, H.; Bass, R.; Pugh, C.; Keeney, J.

    1996-11-01

    A summary of Phase II of the Project for Fracture Analysis of Large-Scale International Reference Experiments (FALSIRE) is presented. A FALSIRE II Workshop focused on analyses of reference fracture experiments. More than 30 participants representing 22 organizations from 12 countries took part in the workshop. Final results for 45 analyses of the reference experiments were received from the participating analysts. For each experiment, analysis results provided estimates of variables that include temperature, crack-mouth-opening displacement, stress, strain, and applied K and J values. The data were sent electronically to the Organizing Committee, who assembled the results into a comparative data base using a special-purpose computer program. A comparative assessment and discussion of the analysis results are presented in the report. Generally, structural responses of the test specimens were predicted with tolerable scatter bands. (orig./DG)

  16. Overview of TJ-II experiments

    International Nuclear Information System (INIS)

    Alejaldre, C.; Alonso, J.; Almoguera, L.

    2005-01-01

    This paper presents an overview of experimental results and progress made in investigating the role of magnetic configuration on stability and transport in the TJ-II stellarator. Global confinement studies have revealed a positive dependence of energy confinement on the rotational transform and plasma density, together with different parametric dependences for metallic and boronised wall conditions. Spontaneous and biasing-induced improved confinement transitions, with some characteristics that resemble those of previously reported H-mode regimes in other stellarator devices, have been observed. Also, magnetic configuration scan experiments have shown an interplay between magnetic structure (rationals, magnetic shear), transport and electric fields. Although the DC radial electric fields are comparable with those expected from neoclassical calculations, additional mechanisms based on neoclassical/turbulent bifurcations and kinetic effects are needed to explain the impact of magnetic topology on flows and radial electric fields. Local transport studies have demonstrated a dependence of plasma diffusivities and convective velocities on plasma density and heating power in consistency with global confinement properties. Hydrocarbon fuelling experiments in configurations with a low order rational value in the rotational transform located in the proximity of the last close flux surface (n = 4/m = 2) have shown the impurity screening properties related to the expected divertor effect. First experiments in NBI plasmas are reported. (author)

  17. Forest fire risk zonation mapping using remote sensing technology

    Science.gov (United States)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  18. Optimization of fire protection measures and quality controls in nuclear power plants

    International Nuclear Information System (INIS)

    Brenig, H.; Holtschmidt, H.; Liemersdorf, H.; Suetterlin, L.; Dobbernack, R.; Hahn, C.; Hosser, D.; Kordina, K.; Schneider, U.; Sprey, W.; Wesche, H.

    1985-09-01

    This study presents theoretical and experimental investigations on the evaluation of fire hazards and the optimization of fire protection measures in German nuclear power plants. Differences between the method presented here and the US ''Fire Hazard Analysis'' result from the inclusion of the stringent redundancy concept of German nuclear power plants and the emphasis placed on passive structural fire protection measures. The method includes a time-dependent quantification of fire-specific event sequences. Fire occurrence frequencies and the reliabilities of active fire protection measures were derived from German experiences and literature abroad. The reliability data of passive fire protection measures were obtained by an evaluation of experiments and probabilistic analyses. For the calculation of fire sequences fundamental experiments were taken into consideration. For the quantification of the time-dependent event trees a methodology was applied which permits an evaluation of the influence of the individual measures. The consequences of fire were investigated for ten fire events identified as decisive, and the fire sequence paths important in terms of safety were quantified. Their annual frequencies are within a range of 10 -3 to 8.10 -6 . (orig./HP) [de

  19. Post-fire vegetation recovery in Portugal based on spot/vegetation data

    Science.gov (United States)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2010-04-01

    A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

  20. Characterization of optical systems for the ALPS II experiment

    International Nuclear Information System (INIS)

    Spector, Aaron D.; Baehre, Robin; Willke, Benno; Hannover Univ.

    2016-09-01

    ALPS II is a light shining through a wall style experiment that will use the principle of resonant enhancement to boost the conversion and reconversion probabilities of photons to relativistic WISPs. This will require the use of long baseline low-loss optical cavities. Very high power build up factors in the cavities must be achieved in order to reach the design sensitivity of ALPS II. This necessitates a number of different sophisticated optical and control systems to maintain the resonance and ensure maximal coupling between the laser and the cavity. In this paper we report on the results of the characterization of these optical systems with a 20m cavity and discuss the results in the context of ALPS II.

  1. Operating experience of the EBR-II steam generating system

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Quilici, M.D.; Radtke, W.H.

    1981-01-01

    The Experimental Breeder Reactor II (EBR-II) is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C (820 F) and 8.62 MPa (1250 psi). The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. Safety and reliability are maximized by using duplex tubes and tubesheets. The performance of the system has been excellent and essentially trouble free. The operating experience of EBR-II provides confidence that the technology can be applied to commercial LMFBR's for an abundant supply of energy for the future. 5 refs

  2. Model of large pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Fay, J.A. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: jfay@mit.edu

    2006-08-21

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables.

  3. Model of large pool fires

    International Nuclear Information System (INIS)

    Fay, J.A.

    2006-01-01

    A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables

  4. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    Science.gov (United States)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  5. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    NARCIS (Netherlands)

    Aouizerats, B.; van der Werf, G.R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We

  6. Radio recombination lines from H II regions

    International Nuclear Information System (INIS)

    Silverglate, P.R.

    1978-01-01

    Radio recombination lines have been observed from forty-six H II regions. The Arecibo 1000-foot radio telescope was used to provide high sensitivity and high angular resolution at 1400 MHz (gain approx. 7.7 0 K/Jy, HPBW = 3:2) and 2372 MHZ (gain approx. 6.3 0 K/Jy, HPBW = 2'). Observations were made at 1400 MHz in the frequency switching mode, and at 2372 MHz in the total power mode. Gaussians were fit to be observed lines to derive velocities, line widths, and line temperatures. From the velocities kinematic distances were derived. For eleven sources H I absorption measurements were also made. The absorption spectra enabled the kinematic distance ambiguity to be resolved for some sources. The absorption spectra themselves were found to have extremely sharp, non-gaussian edges. One explanation for these is a model where the interstellar medium contains many H I cloudlets with T/sub s/less than or equal to 100 0 K and turbulent velocities less than or equal to 3 km/s. The H I absorption spectrum is then a superposition of many narrow gaussian profiles. It was also found from a comparison of H I absorption velocities with radio recombination line velocities that peculiar motions exist in the interstellar medium with velocities of up to 10 km/s. Using the measured line temperatures and continuum temperatures, estimates were desired of emission measures, electron temperatures, and electron densities, using a non-LTE analysis. Non-LTE effects were important only for the hottest and densest H II regions. The non-LTE calculations were checked through a comparison derivation of electron temperatures using hydrogen beta lines

  7. Learning from escaped prescribed fire reviews

    Science.gov (United States)

    Anne E. Black; Dave Thomas; James Saveland; Jennifer D. Ziegler

    2011-01-01

    The U.S. wildland fire community has developed a number of innovative methods for conducting a review following escape of a prescribed fire (expanding on the typical regional or local reviews, to include more of a learning focus - expanded After Action Reviews, reviews that incorporate High Reliability Organizing, Facilitated Learning Analyses, etc). The stated purpose...

  8. Characteristics of planetary nebulae and H II regions based on lambda = 1. 35 cm continuum measurements

    Energy Technology Data Exchange (ETDEWEB)

    Braz, M A; Jardim, J O; Kaufmann, P [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia et Astrofisica

    1975-11-01

    Physical parameters are derived and discussed for stronger H II regions and planetary nebulae for which continuum radio data at lambda = 1.35 cm was obtained. The study includes southern hemisphere planetary nebulae IC-418, NGC-6,302, NGC-6,369, and H II regions RCW-65, RCW-87, RCW-99, H 2-3 and H 2-6.

  9. Fire protection in the nuclear power plant

    International Nuclear Information System (INIS)

    Takuma, Masao

    1977-01-01

    According to the publication by US NRC, 32 fires have occurred in the nuclear power stations in operation, but most of them were small fire, and did not affect the safety of the nuclear power stations. The largest fire was that which occurred in the Browns Ferry Nuclear Power Station of TVA, USA, in March, 1976. It did not jeopardize the safety of the reactor facilities, and the leak of radioactive substance did not occur at all. But the investigation was made extensively by the joint committee of both houses, the government and others, and the deficiency in the countermeasures to fire was found, and it was clarified that some revision would by required on the standard applied heretofore. It was the valuable experience for improving further the safety of nuclear power stations. The fire occurred by the ignition of the polyurethane for sealing cable penetrations due to candle flame for testing. About 1600 cables were burned. When fire breaks out in a nuclear power station, it is necessary to stop and cool the reactor without fail, and to prevent the leak of radioactive substances definitely. In case of the fire in Browns Ferry, these requirements were fulfilled satisfactorily. The countermeasures on the basis of the experience in Browns Ferry and the design of the counterplan to fire in nuclear power stations are explained. (Kako, I.)

  10. EBR-II experience with sodium cleaning and radioactivity decontamination

    International Nuclear Information System (INIS)

    Ruther, W.E.; Smith, C.R.F.

    1978-01-01

    The EBR-II is now in Its 13th year of operation. During that period more than 2400 subassemblies have been cleaned of sodium without a serious incident of any kind by a two-step process developed at Argonne. Sodium cleaning and decontamination of other reactor components has been performed only on the relatively few occasions in which a repair or replacement has been required. A summary of the EBR-II experience will be presented. A new facility will be described for the improved cleaning and maintenance of sodium-wetted primary components

  11. EBR-II experience with sodium cleaning and radioactivity decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W E; Smith, C R.F. [Argonne National Laboratory, Argonne (United States)

    1978-08-01

    The EBR-II is now in Its 13th year of operation. During that period more than 2400 subassemblies have been cleaned of sodium without a serious incident of any kind by a two-step process developed at Argonne. Sodium cleaning and decontamination of other reactor components has been performed only on the relatively few occasions in which a repair or replacement has been required. A summary of the EBR-II experience will be presented. A new facility will be described for the improved cleaning and maintenance of sodium-wetted primary components.

  12. Fire patterns of South Eastern Queensland in a global context: A review

    Science.gov (United States)

    Philip Le C. F. Stewart; Patrick T. Moss

    2015-01-01

    Fire is an important driver in ecosystem evolution, composition, structure and distribution, and is vital for maintaining ecosystems of the Great Sandy Region (GSR). Charcoal records for the area dating back over 40, 000 years provide evidence of the great changes in vegetation composition, distribution and abundance in the region over time as a result of fire. Fires...

  13. Environmental monitoring survey of oil and gas fields in Region II in 2009. Summary report; Miljoeovervaaking av olje- og gassfelt i Region II i 2009. Sammendragsrapport

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-15

    The oil companies Statoil ASA, ExxonMobil Exploration and Production Norway AS, Total E&P Norge AS, Talisman Energy Norge AS and Marathon Petroleum Norge AS commissioned Section of Applied Environmental Research at UNI RESEARCH AS to undertake the monitoring survey of Region II in 2009. Similar monitoring surveys in Region II have been carried out in 1996, 2000, 2003 and 2006. The survey in 2009 included in total 18 fields: Rev, Varg, Sigyn, Sleipner Vest, Sleipner Oest, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Vale, Skirne, Byggve, Heimdal, Volve, Vilje og Alvheim. Sampling was conducted from the vessel MV Libas between May 18 and May 27. Samples were collected from in totally 137 sampling sites, of which 15 were regional sampling sites. Samples for chemical analysis were collected at all sites, whereas samples for benthos analysis were collected at 12 fields. As in previous surveys, Region II is divided into natural sub-regions. One sub-region is shallow (77-96 m) sub-region, a central sub-region (107-130 m) and a northern subregion (115-119 m). The sediments of the shallow sub-region had relatively lower content of TOM and pelite and higher content of fine sand than the central and northern sub-regions. Calculated areas of contamination are shown for the sub-regions in Table 1.1. The fields Sigyn, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Skirne, Byggve, Vilje og Alvheim showed no contamination of THC. At the other fields there were minor changes from 2006. The concentrations of barium increased in the central sub-region from 2006 to 2009, also at fields where no drilling had been undertaken during the last years. The same laboratory and methods are used during the three last regional investigations. The changes in barium concentrations may be due to high variability of barium concentrations in the sediments. This is supported by relatively large variations in average barium concentrations at the regional sampling sites in

  14. Design of an experiment to measure fire exposure of packages aboard container cargo ships

    International Nuclear Information System (INIS)

    Koski, J.A.

    1998-01-01

    The test described in this paper is intended to measure the typical accident environment for a radioactive materials package in a fire abroad a container cargo ship. A stack of nice used standard cargo containers will be variously loaded with empty packages, simulated packages and combustible cargo and placed over a large hydrocarbon pool fire of one hour duration. Fire environments, both inside and outside the containers, typical of on-deck stowage will be measured as well as the potential for container-to-container fire spread. With the use of the inverse heat conduction calculations, the local heat transfer to the simulated packages can be estimated from thermocouple data. Data recorded will also provide information on fire durations in each container, fire intensity and container-to-container fire spread characteristics. (authors)

  15. Study of methodology for low power/shutdown fire PSA

    International Nuclear Information System (INIS)

    Yan Zhen; Li Zhaohua; Li Lin; Song Lei

    2014-01-01

    As a risk assessment technology based on probability, the fire PSA is accepted abroad by nuclear industry in its application in the risk assessment for nuclear power plants. Based on the industry experience, the fire-induced impact on the plant safety during low power and shutdown operation cannot be neglected, therefore fire PSA can be used to assess the corresponding fire risk. However, there is no corresponding domestic guidance/standard as well as accepted analysis methodology up to date. Through investigating the latest evolvement on fire PSA during low power and shutdown operation, and integrating its characteristic with the corresponding engineering experience, an engineering methodology to evaluate the fire risk during low power and shutdown operation for nuclear power plant is established in this paper. In addition, an analysis demonstration as an example is given. (authors)

  16. FireBird - a small satellite fire monitoring mission: Status and first results

    Science.gov (United States)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  17. Thermodynamic consequences of sodium leaks and fires in reactor containments

    International Nuclear Information System (INIS)

    Cherdron, W.; Jordan, S.

    1989-01-01

    In the technical and design concept of containment systems of sodium cooled breeder reactors due consideration must be given to the fact, that sodium penetration through leakages leads to sodium fires. The temperature and pressure rise caused by sodium fires makes it indispensable to analyze these accidents to be able to asses the safety of the whole system. To study the thermodynamic consequences of sodium leaks and fires, a long series of experiments on pool fires, spray fires and combined fires has been performed in the FAUNA-facility. In the pool fire experiments the pool area has been varied between 2 m 2 and 12 m 2 , with up to 500 kg of sodium at 500 deg. C inlet temperature. Burning rates between 20 and 40 kg Na/m 2 /h, depending on the particular conditions, can be stated for such types of fires. Combined fires, simulating a leakage through an insulation, have been investigated using a special sodium outlet 6 m above a 12 m 2 burning pan. The sodium flow ejection rate in these experiments covered the range of 50 up to 710 gr Na/sec, the maximum total amount of sodium released into the FAUNA vessel was 810 kg. The consequences of combined fires cover the range between pool fires and spray fires. The sodium spray fires were performed using a sodium spray system (150 liters of sodium at 500 deg. C and up to 6 bars overpressure), installed in the FAUNA containment, ejecting the sodium vertically upwards towards the impact plate at the top of the containment. In a series of experiments the spray nozzles have been varied from circular holes to sharp and rough edged slits, the flow rate covered the range from 0.8 kg Na/sec up to 56 Na/sec. It has been found that the nozzle design influences somewhat the course of the pressure increase, but the maximum overpressure is mainly determined by the sodium flow rate and the amount of sodium ejected. (author)

  18. Numerical modeling of laboratory-scale surface-to-crown fire transition

    Science.gov (United States)

    Castle, Drew Clayton

    Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed

  19. Aging assessment for active fire protection systems

    International Nuclear Information System (INIS)

    Ross, S.B.; Nowlen, S.P.; Tanaka, T.

    1995-06-01

    This study assessed the impact of aging on the performance and reliability of active fire protection systems including both fixed fire suppression and fixed fire detection systems. The experience base shows that most nuclear power plants have an aggressive maintenance and testing program and are finding degraded fire protection system components before a failure occurs. Also, from the data reviewed it is clear that the risk impact of fire protection system aging is low. However, it is assumed that a more aggressive maintenance and testing program involving preventive diagnostics may reduce the risk impact even further

  20. Seasonal changes in the human alteration of fire regimes beyond the climate forcing

    Science.gov (United States)

    Fréjaville, Thibaut; Curt, Thomas

    2017-03-01

    Human activities have altered fire regimes for millennia by suppressing or enhancing natural fire activity. However, whether these anthropogenic pressures on fire activity have exceeded and will surpass climate forcing still remains uncertain. We tested if, how and the extent to which seasonal fire activity in southern France has recently (1976-2009) deviated from climate-expected trends. The latter were simulated using an ensemble of detrended fire-climate models. We found both seasonal and regional contrasts in climatic effects through a mixture of drought-driven and fuel-limited fire regimes. Dry contemporary conditions chiefly drove fire frequency and burned area, although higher fire activity was related to wetter conditions in the last three years. Surprisingly, the relative importance of preceding wet conditions was higher in winter than in summer, illustrating the strong potential dependency of regional fire-climate relationships on the human use and control of fires. In the Mediterranean mountains, warm winters and springs favour extensive fires in the following dry summer. These results highlight that increasing dryness with climate change could have antagonistic effects on fire regime by leading to larger fires in summer (moisture-limited), but lower fire activity in winter (fuel-limited fire regime). Furthermore, fire trends have significantly diverged from climatic expectations, with a strong negative alteration in fire activity in the Mediterranean lowlands and the summer burned area in the mountains. In contrast, alteration of winter fire frequency in the Mediterranean and Temperate mountains has shifted from positive to negative (or null) trends during the mid-1990s, a period when fire suppression policy underwent major revisions. Our findings demonstrate that changes in land-use and fire suppression policy have probably exceeded the strength of climate change effects on changing fire regime in southern Europe, making regional predictions of future