WorldWideScience

Sample records for regional air quality

  1. Regional Air Quality Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on regional air quality, including trace level SO2, nitric acid, ozone, carbon monoxide, and NOy; and particulate sulfate, nitrate, and...

  2. Urban air quality in the Asian region

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, Philip K. [Center for Air Resources Engineering and Science, Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699-5708 (United States)], E-mail: hopkepk@clarkson.edu; Cohen, David D. [Australian Nuclear Science and Technology Organisation (ANSTO), Physics Division, Private Mail Bag 1, Menai 2234, NSW (Australia); Begum, Bilkis A.; Biswas, Swapan K. [Bangladesh Atomic Energy Commission (BAEC), Atomic Energy Centre, Dhaka (AECD), P.O. Box 164, Dhaka (Bangladesh); Ni Bangfa [China Institute of Atomic Energy (CIAE), China National Nuclear Corp. (CNNC), P.O. Box 275-50, Beijing 102413 (China); Pandit, Gauri Girish [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Santoso, Muhayatun [Center for Nuclear Technology of Material and Radiometry, National Nuclear Energy Agency (BATAN), Jl. Tamansari 71, Bandung 40132 (Indonesia); Chung, Yong-Sam [Hanaro Center, Korea Atomic Energy Research Institute (KAERI), 150 Dukjin-dong, Yusung-ku, P.O. Box 105, Daejon 305-600 (Korea, Republic of); Davy, Perry; Markwitz, Andreas [Institute of Geological and Nuclear Sciences (GNS), 30 Gracefield Road, P.O. Box 31-312, Lower Hutt (New Zealand); Waheed, Shahida; Siddique, Naila [Division of Nuclear Chemistry, PINSTECH, Pakistan Atomic Energy Commission (PAEC), P.O. Box 1482, Nilore, Islamabad (Pakistan); Santos, Flora L.; Pabroa, Preciosa Corazon B. [Philippine Nuclear Research Institute (PNRI), Commonwealth Avenue, Diliman, P.O. Box 213, Quezon City 1101 (Philippines); Seneviratne, Manikkuwadura Consy Shirani [Atomic Energy Authority, 60/460, Baseline Road, Orugodawatta, Wellampitiya (Sri Lanka); Wimolwattanapun, Wanna; Bunprapob, Supamatthree [Thailand Institute of Nuclear Technology (TINT), 16 Vibhavadi Rangsit Road, Bangkok 10900 (Thailand); Thu Bac Vuong [Centre for Radiation Protection, Institute of Nuclear Sciences and Technology, P.O. Box 5T-160, Cau Giay (Viet Nam)] (and others)

    2008-10-01

    Over the past decade, member states of the Regional Co-operation Agreement (RCA), an intergovernmental agreement for the East Asia and Pacific region under the auspices of the IAEA with the assistance of international organizations and financial institutions such as the World Bank and the Asian Development Bank, have started to set in place policies and legislation for air pollution abatement. To support planning and evaluate the effectiveness of control programs, data are needed that characterizes urban air quality. The focus of this measurement program describe in this report is on size segregated particulate air pollution. Such airborne particulate matter can have a significant impact on human health and urban visibility. These data provide the input to receptor models that may permit the mitigation of these impacts by identification and quantitative apportionment of the particle sources. The aim of this report is to provide an overview of the measurements of concentrations and composition of particulate air pollution in two size fractions across the participating countries. For many of the large cities in this region, the measured particulate matter concentrations are greater than air quality standards or guidelines that have been adopted in developed countries.

  3. Urban air quality in the Asian region

    International Nuclear Information System (INIS)

    Hopke, Philip K.; Cohen, David D.; Begum, Bilkis A.; Biswas, Swapan K.; Ni Bangfa; Pandit, Gauri Girish; Santoso, Muhayatun; Chung, Yong-Sam; Davy, Perry; Markwitz, Andreas; Waheed, Shahida; Siddique, Naila; Santos, Flora L.; Pabroa, Preciosa Corazon B.; Seneviratne, Manikkuwadura Consy Shirani; Wimolwattanapun, Wanna; Bunprapob, Supamatthree; Thu Bac Vuong

    2008-01-01

    Over the past decade, member states of the Regional Co-operation Agreement (RCA), an intergovernmental agreement for the East Asia and Pacific region under the auspices of the IAEA with the assistance of international organizations and financial institutions such as the World Bank and the Asian Development Bank, have started to set in place policies and legislation for air pollution abatement. To support planning and evaluate the effectiveness of control programs, data are needed that characterizes urban air quality. The focus of this measurement program describe in this report is on size segregated particulate air pollution. Such airborne particulate matter can have a significant impact on human health and urban visibility. These data provide the input to receptor models that may permit the mitigation of these impacts by identification and quantitative apportionment of the particle sources. The aim of this report is to provide an overview of the measurements of concentrations and composition of particulate air pollution in two size fractions across the participating countries. For many of the large cities in this region, the measured particulate matter concentrations are greater than air quality standards or guidelines that have been adopted in developed countries

  4. Ambient air quality predictions in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    This report presents dispersion modelling predictions for SO 2 , NOx, CO, HC and particulate matter (PM), which complement regional monitoring observations. The air quality simulation models provide a scientific means of relating industrial emissions to changes in ambient air quality. The four models applied to the emission sources in the region were: (1) SCREEN3, (2) ISC3BE, (3) ADEPT2, and (4) the box model. Model predictions were compared to air quality guidelines. It was concluded that the largest SO 2 concentrations were associated with intermittent flaring, and with the Suncor Powerhouse whose emissions are continuous. 45 refs., 36 tabs., 40 figs

  5. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...

  6. Ambient air quality observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Both Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. In recognition of the effects that this will have on the environment, Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere, while Syncrude plans to develop additional ambient air quality, sulphur deposition and biomonitoring programs. This report discussed the ambient air quality monitoring that was undertaken in the Fort McMurray-Fort McKay airshed. Twelve continuous ambient air quality stations and 76 passive monitoring stations are maintained in the region. Environment Canada maintains eight precipitation monitoring stations in northern Alberta and Saskatchewan. Source characterization, ambient air quality and meteorology observations, air quality monitoring, and air quality data from continuous sulphur dioxide, hydrogen sulphide, nitrogen oxides, ozone, carbon monoxide, hydrocarbon, acid rain and particulates analyzers were reviewed. The documentation of all computer files used for the analysis of the air quality data is discussed in the Appendix. 47 refs., 39 tabs., 53 figs

  7. 40 CFR 81.112 - Charleston Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.112 Charleston Intrastate Air Quality Control Region. The Charleston Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... Quality Control Region: Region 1. 81.107Greenwood Intrastate Air Quality Control Region: Region 2. 81...

  8. 40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The Phoenix-Tucson Intrastate Air Quality Control Region has been renamed the Maricopa Intrastate Air Quality Control Region... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Maricopa Intrastate Air Quality...

  9. 40 CFR 81.88 - Billings Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.88 Billings Intrastate Air Quality Control Region. The Metropolitan Billings Intrastate Air Quality Control Region (Montana) has been renamed the Billings Intrastate Air Quality Control... to by Montana authorities as follows: Sec. 481.168Great Falls Intrastate Air Quality Control Region...

  10. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    Science.gov (United States)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  11. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...

  12. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION... Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control Region. The Metropolitan Indianapolis Intrastate Air Quality Control Region consists of the territorial...

  13. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  14. Modelling the regional effects of climate change on air quality

    International Nuclear Information System (INIS)

    Giorgi, F.; Meleux, F.

    2007-01-01

    The life cycle of pollutants is affected by chemical as well as meteorological factors, such as wind, temperature, precipitation, solar radiation. Therefore, climatic changes induced by anthropogenic emissions of greenhouse gases may be expected to have significant effects on air quality. Because of the spatial variability of the pollutant emissions and climate-change signals, these effects are particularly relevant at the regional to local scales. This paper first briefly reviews modelling tools and methodologies used to study regional climate-change impacts on air quality. Patterns of regional precipitation, temperature, and sea-level changes emerging from the latest set of general circulation model projections are then discussed. Finally, the specific case of climate-change effects on summer ozone concentrations over Europe is presented to illustrate the potential impacts of climate change on pollutant amounts. It is concluded that climate change is an important factor that needs to be taken into account when designing future pollution-reduction policies. (authors)

  15. 40 CFR 81.104 - Central Pennsylvania Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.104 Section 81.104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.104 Central Pennsylvania Intrastate Air Quality Control Region. The Central Pennsylvania Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  16. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.43 Section 81.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial area...

  17. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.31 Section 81.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  18. 40 CFR 81.117 - Southeast Missouri Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.117 Section 81.117 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.117 Southeast Missouri Intrastate Air Quality Control Region. The Southeast Missouri Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  19. 40 CFR 81.90 - Androscoggin Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.90 Section 81.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.90 Androscoggin Valley Interstate Air Quality Control Region. The Androscoggin Valley Interstate Air Quality Control Region (Maine-New Hampshire) consists of the territorial...

  20. 40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.78 Section 81.78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...

  1. 40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.45 Section 81.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...

  2. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.30 Section 81.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  3. 40 CFR 81.123 - Southeastern Oklahoma Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.123 Section 81.123 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.123 Southeastern Oklahoma Intrastate Air Quality Control Region. The Southeastern Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  4. 40 CFR 81.98 - Burlington-Keokuk Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.98 Section 81.98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.98 Burlington-Keokuk Interstate Air Quality Control Region. The Burlington-Keokuk Interstate Air Quality Control Region (Illinois-Iowa) is revised to consist of the...

  5. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.16 Section 81.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  6. 40 CFR 81.49 - Southeast Florida Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.49 Section 81.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.49 Southeast Florida Intrastate Air Quality Control Region. The Southeast Florida Intrastate Air Quality Control Region is redesignated to consist of the territorial area...

  7. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.47 Section 81.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma Intrastate...

  8. 40 CFR 81.59 - Cumberland-Keyser Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.59 Section 81.59 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.59 Cumberland-Keyser Interstate Air Quality Control Region. The Cumberland-Keyser Interstate Air Quality Control Region (Maryland-West Virginia) has been revised to consist...

  9. 40 CFR 81.20 - Metropolitan Cincinnati Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.20 Section 81.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.20 Metropolitan Cincinnati Interstate Air Quality Control Region. The Metropolitan Cincinnati Interstate Air Quality Control Region (Ohio-Kentucky-Indiana) is revised to consist of...

  10. 40 CFR 81.97 - Southwest Florida Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.97 Section 81.97 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.97 Southwest Florida Intrastate Air Quality Control Region. The Southwest Florida Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  11. 40 CFR 81.101 - Metropolitan Dubuque Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.101 Section 81.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.101 Metropolitan Dubuque Interstate Air Quality Control Region. The Metropolitan Dubuque Interstate Air Quality Control Region (Illinois-Iowa-Wisconsin) consists of the...

  12. 40 CFR 81.79 - Northeastern Oklahoma Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.79 Section 81.79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.79 Northeastern Oklahoma Intrastate Air Quality Control Region. The Metropolitan Tulsa Intrastate Air Quality Control Region has been renamed the Northeastern Oklahoma Intrastate...

  13. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.48 Section 81.48 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of the...

  14. 40 CFR 81.116 - Northern Missouri Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.116 Section 81.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.116 Northern Missouri Intrastate Air Quality Control Region. The Northern Missouri Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  15. 40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.24 Section 81.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial area...

  16. 40 CFR 81.106 - Greenville-Spartanburg Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.106 Section 81.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.106 Greenville-Spartanburg Intrastate Air Quality Control Region. The Greenville-Spartanburg Intrastate Air Quality Control Region (South Carolina) consists of the territorial...

  17. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.44 Section 81.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  18. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee-Escanaba (Michigan)-Marinette (Wisconsin) Interstate Air Quality Control Region has been renamed the Lake Michigan Intrastate Air Quality Control Region (Wisconsin) and revised to consist of the territorial area...

  19. 40 CFR 81.51 - Portland Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland Interstate Air Quality Control Region (Oregon-Washington) has been revised to consist of the territorial area... Portland Interstate Air Quality Control Region (Oregon-Washington) will be referred to by Washington...

  20. 40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.34 Section 81.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  1. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.19 Section 81.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  2. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.28 Section 81.28 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  3. 40 CFR 81.119 - Western Tennessee Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.119 Section 81.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.119 Western Tennessee Intrastate Air Quality Control Region. The Western Tennessee Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  4. 40 CFR 81.115 - Northwest Nevada Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.115 Section 81.115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.115 Northwest Nevada Intrastate Air Quality Control Region. The Northwest Nevada Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  5. 40 CFR 81.41 - Metropolitan Birmingham Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.41 Section 81.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.41 Metropolitan Birmingham Intrastate Air Quality Control Region. The Metropolitan Birmingham Intrastate Air Quality Control Region (Alabama) has been revised to consist of the...

  6. 40 CFR 81.14 - Metropolitan Chicago Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.14 Section 81.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.14 Metropolitan Chicago Interstate Air Quality Control Region. The Metropolitan Chicago Interstate Air Quality Control Region (Illinois-Indiana) is revised to consist of the...

  7. 40 CFR 81.118 - Southwest Missouri Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.118 Section 81.118 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.118 Southwest Missouri Intrastate Air Quality Control Region. The Southwest Missouri Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  8. 40 CFR 81.89 - Metropolitan Cheyenne Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.89 Section 81.89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.89 Metropolitan Cheyenne Intrastate Air Quality Control Region. The Metropolitan Cheyenne Intrastate Air Quality Control Region (Wyoming) consists of the territorial area...

  9. 40 CFR 81.87 - Metropolitan Boise Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.87 Section 81.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.87 Metropolitan Boise Intrastate Air Quality Control Region. The Metropolitan Boise Intrastate Air Quality Control Region (Idaho) consists of the territorial area encompassed...

  10. 40 CFR 81.23 - Southwest Pennsylvania Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.23 Section 81.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.23 Southwest Pennsylvania Intrastate Air Quality Control Region. The Southwest Pennsylvania Intrastate Air Quality Control Region is redesignated to consist of the territorial...

  11. 40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.75 Section 81.75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been revised...

  12. 40 CFR 81.122 - Mississippi Delta Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.122 Section 81.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.122 Mississippi Delta Intrastate Air Quality Control Region. The Mississippi Delta Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  13. 40 CFR 81.120 - Middle Tennessee Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.120 Section 81.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.120 Middle Tennessee Intrastate Air Quality Control Region. The Middle Tennessee Intrastate Air Quality Control Region consists of the territorial area encompassed by...

  14. 40 CFR 81.63 - Metropolitan Fort Smith Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Metropolitan Fort Smith Interstate Air... Air Quality Control Regions § 81.63 Metropolitan Fort Smith Interstate Air Quality Control Region. The Metropolitan Fort Smith Interstate Air Quality Control Region (Arkansas-Oklahoma) has been revised to consist...

  15. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Mississippi Intrastate Air... Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...

  16. 40 CFR 81.216 - Northeast Indiana Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Indiana Intrastate Air... Air Quality Control Regions § 81.216 Northeast Indiana Intrastate Air Quality Control Region. The Northeast Indiana Intrastate Air Quality Control Region (Indiana) consists of the territorial area...

  17. 40 CFR 81.237 - Northeast Georgia Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Georgia Intrastate Air... Air Quality Control Regions § 81.237 Northeast Georgia Intrastate Air Quality Control Region. The Northeast Georgia Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  18. 40 CFR 81.139 - Northeast Arkansas Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Arkansas Intrastate Air... Air Quality Control Regions § 81.139 Northeast Arkansas Intrastate Air Quality Control Region. The Northeast Arkansas Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  19. 40 CFR 81.251 - Northeast Kansas Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Kansas Intrastate Air... Air Quality Control Regions § 81.251 Northeast Kansas Intrastate Air Quality Control Region. The Northeast Kansas Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  20. 40 CFR 81.162 - Northeast Plateau Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Plateau Intrastate Air... Air Quality Control Regions § 81.162 Northeast Plateau Intrastate Air Quality Control Region. The Northeast Plateau Intrastate Air Quality Control Region (California) consists of the territorial area...

  1. On Regional Modeling to Support Air Quality Policies (book chapter)

    Science.gov (United States)

    We examine the use of the Community Multiscale Air Quality (CMAQ) model in simulating the changes in the extreme values of air quality that are of interest to the regulatory agencies. Year-to-year changes in ozone air quality are attributable to variations in the prevailing meteo...

  2. 40 CFR 81.111 - Georgetown Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.111 Georgetown Intrastate Air Quality Control Region. The Georgetown Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Georgetown Intrastate Air Quality...

  3. 40 CFR 81.42 - Chattanooga Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.42 Chattanooga Interstate Air Quality Control Region. The Chattanooga Interstate Air Quality Control Region (Georgia-Tennessee) has been revised to consist of the territorial area... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Chattanooga Interstate Air Quality...

  4. 40 CFR 81.107 - Greenwood Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.107 Greenwood Intrastate Air Quality Control Region. The Greenwood Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Greenwood Intrastate Air Quality...

  5. 40 CFR 81.110 - Camden-Sumter Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.110 Camden-Sumter Intrastate Air Quality Control Region. The Camden-Sumter Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Camden-Sumter Intrastate Air Quality...

  6. 40 CFR 81.80 - Las Vegas Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.80 Las Vegas Intrastate Air Quality Control Region. The Las Vegas Intrastate Air Quality Control Region (Nevada) has been revised to consist of the territorial area encompassed by... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Las Vegas Intrastate Air Quality...

  7. 40 CFR 81.108 - Columbia Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.108 Columbia Intrastate Air Quality Control Region. The Columbia Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Columbia Intrastate Air Quality...

  8. 40 CFR 81.17 - Metropolitan Los Angeles Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.17 Metropolitan Los Angeles Air Quality Control Region. The Metropolitan Los Angeles Air Quality Control Region consists of the following territorial area (including the territorial... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Metropolitan Los Angeles Air Quality...

  9. 40 CFR 81.109 - Florence Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.109 Florence Intrastate Air Quality Control Region. The Florence Intrastate Air Quality Control Region (South Carolina) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Florence Intrastate Air Quality...

  10. 40 CFR 81.52 - Wasatch Front Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.52 Wasatch Front Intrastate Air Quality Control Region. The Wasatch Front Intrastate Air Quality Control Region (Utah) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Wasatch Front Intrastate Air Quality...

  11. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air Quality...

  12. 40 CFR 81.95 - Central Florida Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.95 Central Florida Intrastate Air Quality Control Region. The Central Florida Intrastate Air Quality Control Region consists of the territorial area encompassed by the boundaries of the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Central Florida Intrastate Air Quality...

  13. 40 CFR 81.35 - Louisville Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.35 Louisville Interstate Air Quality Control Region. The Louisville Interstate Air Quality Control Region (Kentucky-Indiana) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Louisville Interstate Air Quality...

  14. 40 CFR 81.32 - Puget Sound Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.32 Puget Sound Intrastate Air Quality Control Region. The Puget Sound Intrastate Air Quality Control Region (Washington) consists of the territorial area encompassed by the... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Puget Sound Intrastate Air Quality...

  15. Approved Air Quality Implementation Plans in Region 10

    Science.gov (United States)

    Landing page for information about EPA-approved air quality State Implementation Plans (SIPs), Tribal Implementation Plans (TIPs), and Federal Implementation Plans (FIPs) in Alaska, Idaho, Oregon, Washington.

  16. 40 CFR 81.38 - Metropolitan Houston-Galveston Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Metropolitan Houston-Galveston... Designation of Air Quality Control Regions § 81.38 Metropolitan Houston-Galveston Intrastate Air Quality Control Region. The Metropolitan Houston-Galveston Intrastate Air Quality Control Region (Texas) has been...

  17. ARAMIS a regional air quality model for air pollution management: evaluation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Solar, M. R.; Gamez, P.; Olid, M.

    2015-07-01

    The aim of this research was to better understand the dynamics of air pollutants and to forecast the air quality over regional areas in order to develop emission abatement strategies for air pollution and adverse health effects. To accomplish this objective, we developed and applied a high resolution Eulerian system named ARAMIS (A Regional Air Quality Modelling Integrated System) over the north-east of Spain (Catalonia), where several pollutants exceed threshold values for the protection of human health. The results indicate that the model reproduced reasonably well observed concentrations, as statistical values fell within Environmental Protection Agency (EPA) recommendations and European (EU) regulations. Nevertheless, some hourly O{sub 3} exceedances in summer and hourly peaks of NO{sub 2} in winter were underestimated. Concerning PM10 concentrations less accurate model levels were obtained with a moderate trend towards underestimation during the day. (Author)

  18. ARAMIS a regional air quality model for air pollution management: evaluation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Soler, M.R.; Gamez, P.; Olid, M.

    2015-07-01

    The aim of this research was to better understand the dynamics of air pollutants and to forecast the air quality over regional areas in order to develop emission abatement strategies for air pollution and adverse health effects. To accomplish this objective, we developed and applied a high resolution Eulerian system named ARAMIS (A Regional Air Quality Modelling Integrated System) over the north-east of Spain (Catalonia), where several pollutants exceed threshold values for the protection of human health. The results indicate that the model reproduced reasonably well observed concentrations, as statistical values fell within Environmental Protection Agency (EPA) recommendations and European (EU) regulations. Nevertheless, some hourly O3 exceedances in summer and hourly peaks of NO2 in winter were underestimated. Concerning PM10 concentrations less accurate model levels were obtained with a moderate trend towards underestimation during the day. (Author)

  19. 40 CFR 81.55 - Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Pennsylvania-Upper Delaware... Designation of Air Quality Control Regions § 81.55 Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region. The Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control...

  20. 40 CFR 81.134 - Austin-Waco Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Austin-Waco Intrastate Air Quality Control Region. 81.134 Section 81.134 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Quality Control Regions § 81.134 Austin-Waco Intrastate Air Quality Control Region. The Austin-Waco...

  1. 40 CFR 81.256 - Northeast Iowa Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Iowa Intrastate Air Quality Control Region. 81.256 Section 81.256 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Quality Control Regions § 81.256 Northeast Iowa Intrastate Air Quality Control Region. The Northeast Iowa...

  2. 40 CFR 81.121 - Four Corners Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Four Corners Interstate Air Quality Control Region. 81.121 Section 81.121 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Quality Control Regions § 81.121 Four Corners Interstate Air Quality Control Region. The Four Corners...

  3. 40 CFR 81.176 - San Luis Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false San Luis Intrastate Air Quality Control Region. 81.176 Section 81.176 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Quality Control Regions § 81.176 San Luis Intrastate Air Quality Control Region. The San Luis Intrastate...

  4. 40 CFR 81.93 - Hampton Roads Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Hampton Roads Intrastate Air Quality Control Region. 81.93 Section 81.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Quality Control Regions § 81.93 Hampton Roads Intrastate Air Quality Control Region. The Metropolitan...

  5. Local and regional air quality over 1997 based on decrees

    International Nuclear Information System (INIS)

    Vissenberg, H.A.; Warmenhoven, R.C.G.

    1999-01-01

    Eleven of the 12 Dutch provinces and 52 of the 79 municipalities (over 40.000 inhabitants) reported on their air quality for 19997. The National Institute of Public Health and the Environment (RIVM) and the Directorate-General for Environmental Protection of the Ministry of VROM then combined these reports into an annual national report for 1997. The largest in several years, still 35 percent of the municipalities failed to meet their reported obligations. Most of the reports on air quality are incomplete on the contribution of large point sources and traffic to local air quality. For 1997 one province reported an exceedence of the limit value of nitrogen dioxide. In four provinces the target value of nitrogen dioxide was exceeded. The province of Zuid-Holland has to report next year on its air quality over 1998 because of exceeding of the limit value and the provinces Friesland and Utrecht have to report because they did not report (completely) over 1997. The 52 municipalities reported in total 60 exceedences of the (provisional) limit value over 1997: 20 roads with an exceedence of the nitrogen dioxide (provisional) limit value, 2 roads with an exceedence of the carbon monoxide limit value and 38 roads with an exceedance of the benzene limit value. Nine municipalities have to report on their air quality over 1998; Amsterdam, Arnhem, Breda, Den Haag, Leiden, Nijmegen, Sittard, Utrecht and Zwolle. Also the 27 municipalities which did not report over 1997 have to report over 1998; Alphen a/d Rijn, Dordrecht, Ede, Eindhoven, Enschede, Gouda, Groningen, Heerhugowaard, Heerlen, Helmond, 's Hertogenbosch, Heusden, Katwijk, Leeuwarden, Maarssen, Maastricht, Oosterhout, Oss, Purmerend, Ridderkerk, Roosendaal, Veldhoven, Smallingerland, Tilburg, Velsen, Vlaardingen and Zwijndrecht. Seven provinces and eight municipalities also reported on their policy to either maintain their air quality or improve it. Exceedance of limit values means that on a local scale air quality

  6. Screening procedure to evaluate effects of air pollution on Eastern Region wildernesses cited as Class I air quality areas.

    Science.gov (United States)

    Mary Beth Adams; Dale S. Nichols; Anthony C. Federer; Keith F. Jensen; Harry Parrott

    1991-01-01

    The USDA Forest Service's Eastern Region manages eight wilderness areas that have been designated as Class I air quality areas by the Federal Clean Air Act. As part of this legislation, Federal land managers are required to consult with air pollution regulators on the potential impacts of proposed air pollution emissions--including phytotoxic gases and acidic...

  7. Situation of regional plans for air quality. Acknowledgement of sanitary aspects. Situation of realised impact studies of urban air pollution

    International Nuclear Information System (INIS)

    D'Helf, M.; Cassadou, S.

    2005-01-01

    The law on air and use of energy recommended in 1996 the implementation of regional plans for air quality (P.Q.R.A.) that have to rely on an evaluation of air pollution effects on health. 21 P.Q.R.A. have been published and the report gives the situation, their sanitary orientations and their applications. An inquiry lead in the 21 regions, near the different regional actors in the air and health field completes the report. (N.C.)

  8. Air quality study of the Islamabad/Rawalpindi region

    International Nuclear Information System (INIS)

    Siddique, N.; Waheed, S.; Daud, M.; Khalid, N.; Arif, M.

    2012-01-01

    Over 1100 pairs of coarse and fine filters were collected using Gent samplers and polycarbonate filters from 4 sites in Islamabad and Rawalpindi from the period 1998 to 2010. The Black carbon (BC) in these samples was determined by reflectance measurement while their elemental composition were determined using the techniques of instrumental neutron activation analysis (INAA), ion beam analysis (IBA) and X-ray fluorescence (XRF) spectrometry. Islamabad is a well planned and relatively small city as compared to Rawalpindi, Lahore or Karachi therefore its air quality is better than the air quality of other major Pakistani cities. It was found that the new air quality standards to be implemented in Pakistan with effect from January 2012 may not be attained even in Islamabad without the implementation of control and remedial measures. An overview of the elemental data obtained and calculation of enrichment factors (EF) and application of positive matrix factorization (PMF) showed that the particles in Islamabad originated from re-suspended soil, vehicular emissions and coal combustion. (Orig./A.B.)

  9. Air quality remote sensing over alpine regions with METEOSAT SEVIRI

    Science.gov (United States)

    Emili, E.; Popp, C.; Petitta, M.; Riffler, M.; Wunderle, S.

    2009-04-01

    It is well demonstrated that small aerosol particles or particulate matter (PM10 and PM2.5) affect air quality and can have severe effects on human's health. Hence, it is of great interest for public institutions to have an efficient PM monitoring network. In the last decades this data has been provided from ground-based instruments. Moreover, due to the fast development of space-borne remote sensing instruments, we can now be able to take advantage of air pollution measurements from space, which bears the potential to fill up the gap of spatial coverage from ground-based networks. This also improves the capability to assess air pollutants transport properties together with a better implementation in forecasting data assimilation procedures. In this study we examine the possibility of using data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI), on-board of the geostationary Meteosat Second Generation (MSG) platform, to provide PM concentrations values over Switzerland. SEVIRI's high temporal resolution (15 minutes) could be very useful in investigating the daily behaviour of air pollutants and therefore be a good complement to measurements from polar orbiting sensors (e.g. MODIS). Switzerland is of particular interest because of its mountainous orography that hampers pollutants dispersion. Further, major transalpine connection routes, often characterised by high traffic load, act as a significant air pollution source. The south of Switzerland is also occasionally influenced by pollutants transported from the highly industrialised Po Valley in northern Italy. We investigate the existence of a linear relation between the SEVIRI retrieved AOD (Aerosol Optical Depth) and the PM concentration obtained from the ground-based air quality network NABEL (Nationales Beobachtungsnetz fuer Luftfremdstoffe). The temporal trend of this two quantities shows a significant relationship over various locations. The correlation coefficient is in some cases higher than 0

  10. Forcing of a photochemical air quality model with atmospheric fields simulated by a regional climate model

    CSIR Research Space (South Africa)

    Naidoo, M

    2010-10-01

    Full Text Available to the enhanced greenhouse effect (e.g. Engelbrecht et al, 2009). Such changes are likely to influence the future transport and chemistry of air pollutants over the region. The complexity in which climate change may affect regional air quality is evident...

  11. Passive samplers and community science in regional air quality measurement, education and communication

    International Nuclear Information System (INIS)

    DeForest Hauser, Cindy; Buckley, Alexandra; Porter, Juliana

    2015-01-01

    Charlotte, in Mecklenburg County, North Carolina, was ranked in the top ten cities with the worst air quality for ozone in the United States by the American Lung Association from 2009 to 2011. Nearby counties that may experience similar air quality do not have state or county monitors. This study utilized NO x and ozone Ogawa passive samplers and community scientists to monitor air quality in five counties surrounding Charlotte and increase public engagement in air quality issues. Community scientists deployed samplers weekly at a residential site within each county. Samples were analyzed using spectrophotometry and ion chromatography. Elevated NO x concentrations were observed in four of the five counties relative to those with existing monitors. Ozone concentrations showed little county to county variation, except Iredell and Cabarrus which had higher concentrations than Rowan. Community involvement in this work led to an increase in local dissemination of the results, thus increasing air quality awareness. - Highlights: • NO x concentrations in four adjacent counties were higher than the Mecklenburg site. • Ozone concentrations showed little county to county variation. • Passive samplers and community science can extend the air quality monitoring network. • Community science increases community awareness of air quality issues. - Regional community air quality monitoring is important in educating communities about air quality science issues that can impact personal health and behavior

  12. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals before...

  13. Local Air Quality Conditions and Forecasts

    Science.gov (United States)

    ... Monitor Location Archived Maps by Region Canada Air Quality Air Quality on Google Earth Links A-Z About AirNow AirNow International Air Quality Action Days / Alerts AirCompare Air Quality Index (AQI) ...

  14. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    Science.gov (United States)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  15. Methodology for Air Quality Forecast Downscaling from Regional- to Street-Scale

    Science.gov (United States)

    Baklanov, Alexander; Nuterman, Roman; Mahura, Alexander; Amstrup, Bjarne; Hansen Saas, Bent; Havskov Sørensen, Jens; Lorenzen, Thomas; Weismann, Jakob

    2010-05-01

    The most serious air pollution events occur in cities where there is a combination of high population density and air pollution, e.g. from vehicles. The pollutants can lead to serious human health problems, including asthma, irritation of the lungs, bronchitis, pneumonia, decreased resistance to respiratory infections, and premature death. In particular air pollution is associated with increase in cardiovascular disease and lung cancer. In 2000 WHO estimated that between 2.5 % and 11 % of total annual deaths are caused by exposure to air pollution. However, European-scale air quality models are not suited for local forecasts, as their grid-cell is typically of the order of 5 to 10km and they generally lack detailed representation of urban effects. Two suites are used in the framework of the EC FP7 project MACC (Monitoring of Atmosphere Composition and Climate) to demonstrate how downscaling from the European MACC ensemble to local-scale air quality forecast will be carried out: one will illustrate capabilities for the city of Copenhagen (Denmark); the second will focus on the city of Bucharest (Romania). This work is devoted to the first suite, where methodological aspects of downscaling from regional (European/ Denmark) to urban scale (Copenhagen), and from the urban down to street scale. The first results of downscaling according to the proposed methodology are presented. The potential for downscaling of European air quality forecasts by operating urban and street-level forecast models is evaluated. This will bring a strong support for continuous improvement of the regional forecast modelling systems for air quality in Europe, and underline clear perspectives for the future regional air quality core and downstream services for end-users. At the end of the MACC project, requirements on "how-to-do" downscaling of European air-quality forecasts to the city and street levels with different approaches will be formulated.

  16. ANTHROPIC IMPACT ON AIR QUALITY IN THE DANUBE REGION

    Directory of Open Access Journals (Sweden)

    VOINA A.

    2016-07-01

    Full Text Available There were monitored by data acquisition both in summer and winter period, the concentrations of pollutants - SO2, NO2 and particulate matter (PM10 – existing in air on the territory of 6 counties bordering the Danube. After processing and analysis of collected data have been found that: SO2 pollution may be due primarily burning fuel with high sulfur content and / or industrial activities for carbonic products (anodes for obtaining the electrolytic aluminum, graphite electrodes etc.; pollution with NO2 comes primarily from automobile exhaust gases; particulate matter pollution may be due both loess soil (high winds in dry periods characteristic of the area i

  17. EMMA model: an advanced operational mesoscale air quality model for urban and regional environments

    International Nuclear Information System (INIS)

    Jose, R.S.; Rodriguez, M.A.; Cortes, E.; Gonzalez, R.M.

    1999-01-01

    Mesoscale air quality models are an important tool to forecast and analyse the air quality in regional and urban areas. In recent years an increased interest has been shown by decision makers in these types of software tools. The complexity of such a model has grown exponentially with the increase of computer power. Nowadays, medium workstations can run operational versions of these modelling systems successfully. Presents a complex mesoscale air quality model which has been installed in the Environmental Office of the Madrid community (Spain) in order to forecast accurately the ozone, nitrogen dioxide and sulphur dioxide air concentrations in a 3D domain centred on Madrid city. Describes the challenging scientific matters to be solved in order to develop an operational version of the atmospheric mesoscale numerical pollution model for urban and regional areas (ANA). Some encouraging results have been achieved in the attempts to improve the accuracy of the predictions made by the version already installed. (Author)

  18. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse

  19. Modeling prescribed burning experiments and assessing the fire impacts on local to regional air quality

    Science.gov (United States)

    Zhou, L.; Baker, K. R.; Napelenok, S. L.; Elleman, R. A.; Urbanski, S. P.

    2016-12-01

    Biomass burning, including wildfires and prescribed burns, strongly impact the global carbon cycle and are of increasing concern due to the potential impacts on ambient air quality. This modelling study focuses on the evolution of carbonaceous compounds during a prescribed burning experiment and assesses the impacts of burning on local to regional air quality. The Community Multiscale Air Quality (CMAQ) model is used to conduct 4 and 2 km grid resolution simulations of prescribed burning experiments in southeast Washington state and western Idaho state in summer 2013. The ground and airborne measurements from the field experiment are used to evaluate the model performance in capturing surface and aloft impacts from the burning events. Phase partitioning of organic compounds in the plume are studied as it is a crucial step towards understanding the fate of carbonaceous compounds. The sensitivities of ambient concentrations and deposition to emissions are conducted for organic carbon, elemental carbon and ozone to estimate the impacts of fire on air quality.

  20. Science-policy interplay: Air quality management in the Pearl River Delta region and Hong Kong

    Science.gov (United States)

    Zhong, Liuju; Louie, Peter K. K.; Zheng, Junyu; Yuan, Zibing; Yue, Dingli; Ho, Josephine W. K.; Lau, Alexis K. H.

    2013-09-01

    The information provided by the scientific studies and control measures implemented in the Pearl River Delta (PRD) region of China reveals that tremendous progress has been made in the understanding of regional air pollution issues and the deployment of mitigation measures for alleviating these problems. Given the unparalleled rapid economic growth in the PRD over the past two decades, such progress was only made possible by strong, science-based support and the partnerships between government and research institutions in the region and overseas. Researchers from these partnership programs and related studies have deployed cutting-edge expertise and experience in various crucial mainland China and mainland China/Hong Kong-level projects. China recognizes the importance of protecting the environment and cleaning up the air in the pursuit of sustainable growth and economic development. To avoid falling into a cycle of event-driven clean-up efforts, China has recently taken a major step and updated the national ambient air quality standards. Clearly, China is implementing an increasing number of evidence-based policies to address air pollution problems. Thus, to bring a fresh impetus at a national level, the PRD must maintain and augment the Hong Kong-mainland collaborative momentum, inducing a "whole-China" effort to clean up air pollution. To strengthen the science-based support system and ensure continuous and concerted effort in implementing the regional multi-pollutant control strategy, there must be an overarching and integral Hong Kong-Guangdong science consortium framework supporting the formulation of regional policy and control measures built on common goals under the "one country, two systems" principle. The "PRD Approach" of the air quality management regime reflected regional cooperative efforts in synchronous air pollutant control, catalyzed the crucial role of information disclosure and subtly transformed the air quality management approach to overcome

  1. Introduction to Indoor Air Quality

    Science.gov (United States)

    ... Offices Regional Offices Labs and Research Centers Indoor Air Quality (IAQ) Contact Us Share Introduction to Indoor Air Quality Health Effects Primary Causes Identifying Problems Improving IAQ ...

  2. Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing

    Science.gov (United States)

    Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang

    2016-04-01

    From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models

  3. U.S. Forest Service Region 1 Lake Chemistry, NADP, and IMPROVE air quality data analysis

    Science.gov (United States)

    Jill Grenon; Mark Story

    2009-01-01

    This report was developed to address the need for comprehensive analysis of U.S. Forest Service (USFS) Region 1 air quality monitoring data. The monitoring data includes Phase 3 (long-term data) lakes, National Atmospheric Deposition Program (NADP), and Interagency Monitoring of Protected Visual Environments (IMPROVE). Annual and seasonal data for the periods of record...

  4. 40 CFR 81.142 - Central Massachusetts Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Central Massachusetts Intrastate Air Quality Control Region. 81.142 Section 81.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Township—Ashburnham, Ashby, Athol, Auburn, Barre, Berlin, Blackstone, Boylston, Brookfield, Charlton...

  5. 40 CFR 81.143 - Central Virginia Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Central Virginia Intrastate Air Quality Control Region. 81.143 Section 81.143 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., Lynchburg, Martinsville, South Boston. Towns—Blackstone, Farmville, Rocky Mount, South Hill. ...

  6. 77 FR 45326 - Approval, Disapproval and Promulgation of Air Quality Implementation Plans; Arizona; Regional...

    Science.gov (United States)

    2012-07-31

    ... available in either location (e.g., Confidential Business Information). To inspect the hard copy materials..., Disapproval and Promulgation of Air Quality Implementation Plans; Arizona; Regional Haze State and Federal Implementation Plans AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule; notice of additional...

  7. Impact of emission control on regional air quality in the Pearl Delta River region, southern China

    Science.gov (United States)

    Wang, N.; Xuejiao, D.

    2017-12-01

    The Pearl River Delta (PRD) in China has been suffering from air quality issues and the government has implemented a series of strategies in controlling emissions. In an attempt to provide scientific support for improving air quality, the paper investigates the concerning past-to-present air quality data and assesses air quality resulting from emission control. Statistical data revealed that energy consumption doubled from 2004 to 20014 and vehicle usage increased significantly from 2006 to 2014. Due to the effect of control efforts, primary emission of SO2, NOx and PM2.5 decreased resulting in ambient concentrations of SO2, NO2 and PM10 decreased by 66%, 20% and 24%, respectively. However, O3 increased 19% because of the increase of VOC emission. A chemical transport model, the Community Multi-scale Air Quality, was employed to evaluate the responses of nitrate, ammonium, SOA, PM2.5 and O3 to changes in NOx, VOC and NH3 emissions. Three scenarios, a baseline scenario, a CAP scenario (control strength followed as past tendency), and a REF scenario (strict control referred to latest policy and plans), were conducted to investigate the responses and mechanisms. NOx controlling scenarios showed that NOx, nitrate and PM2.5 reduced by 1.8%, 0.7% and 0.2% under CAP and reduced by 7.2%, 1.8% and 0.3% under REF, respectively. The results indicated that reducing NOx emission caused the increase of atmospheric oxidizability, which might result in a compensation of PM2.5 due to the increase of nitrate or sulfate. NH3 controlling scenarios showed that nitrate was sensitive to NH3 emission in PRD, with nitrate decreased by 0 - 10.6% and 0 - 48% under CAP and REF, respectively. Since controlling NH3 emissions not only reduced ammonium but also significantly reduced nitrate, the implement of NH3 controlling strategy was highly suggested. The VOC scenarios revealed that though SOA was not the major component of PM2.5, controlling VOC emission might take effect in southwestern PRD

  8. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    Science.gov (United States)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  9. Assessing the Future Vehicle Fleet Electrification: The Impacts on Regional and Urban Air Quality.

    Science.gov (United States)

    Ke, Wenwei; Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wang, Shuxiao; Hao, Jiming

    2017-01-17

    There have been significant advancements in electric vehicles (EVs) in recent years. However, the different changing patterns in emissions at upstream and on-road stages and complex atmospheric chemistry of pollutants lead to uncertainty in the air quality benefits from fleet electrification. This study considers the Yangtze River Delta (YRD) region in China to investigate whether EVs can improve future air quality. The Community Multiscale Air Quality model enhanced by the two-dimensional volatility basis set module is applied to simulate the temporally, spatially, and chemically resolved changes in PM 2.5 concentrations and the changes of other pollutants from fleet electrification. A probable scenario (Scenario EV1) with 20% of private light-duty passenger vehicles and 80% of commercial passenger vehicles (e.g., taxis and buses) electrified can reduce average PM 2.5 concentrations by 0.4 to 1.1 μg m -3 during four representative months for all urban areas of YRD in 2030. The seasonal distinctions of the air quality impacts with respect to concentration reductions in key aerosol components are also identified. For example, the PM 2.5 reduction in January is mainly attributed to the nitrate reduction, whereas the secondary organic aerosol reduction is another essential contributor in August. EVs can also effectively assist in mitigating NO 2 concentrations, which would gain greater reductions for traffic-dense urban areas (e.g., Shanghai). This paper reveals that the fleet electrification in the YRD region could generally play a positive role in improving regional and urban air quality.

  10. 40 CFR 81.73 - South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region. 81.73 Section 81.73 Protection of Environment... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.73 South Bend-Elkhart (Indiana)-Benton...

  11. 40 CFR 81.133 - Amarillo-Lubbock Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of... County, Collingsworth County, Crosby County, Dallam County, Deaf Smith County, Dickens County, Donley...

  12. Air quality modeling for effective environmental management in the mining region.

    Science.gov (United States)

    Asif, Zunaira; Chen, Zhi; Han, Yi

    2018-04-18

    Air quality in the mining sector is a serious environmental concern and associated with many health issues. The air quality management in mining region has been facing many challenges due to lack of understanding of atmospheric factors and physical removal mechanism. A modeling approach called mining air dispersion model (MADM) is developed to predict air pollutants concentration in the mining region while considering the deposition effect. The model is taken into account through the planet's boundary conditions and assuming that the eddy diffusivity depends on the downwind distance. The developed MADM is applied to a mining site in Canada. The model provides values as the predicted concentrations of PM 10 , PM 2.5 , TSP, NO 2 and six heavy metals (As, Pb, Hg, Cd, Zn, Cr) at various receptor locations. The model shows that neutral stability conditions are dominant for the study site. The maximum mixing height is achieved (1280 m) during the evening of summer, and minimum mixing height (380 m) is attained during the evening of winter. The dust fall (PM coarse) deposition flux is maximum during February and March with the deposition velocity of 4.67 cm/s. The results are evaluated with the monitoring field values, revealing a good agreement for the target air pollutants with R-squared ranging from 0.72 to 0.96 for PM 2.5 ; 0.71 to 0.82 for PM 10 and from 0.71 to 0.89 for NO 2 . The analyses illustrate that presented algorithm in this model can be used to assess air quality for the mining site in a systematic way. The comparison of MADM and CALPUFF modeling values are made for four different pollutants (PM 2.5 , PM 10 , TSP, and NO 2 ) under three different atmospheric stability classes (stable, neutral and unstable). Further, MADM results are statistically tested against CALPUFF for the air pollutants and model performance is found satisfactory.

  13. Air quality

    International Nuclear Information System (INIS)

    1995-01-01

    This chapter of the 'Assessment of the state of the environment in Lebanon' describes the air quality and identifies the most important air quality issues. Baseline information about the factors affecting dispersion and the climate of Lebanon presents as well and overall estimation of total emissions in Lebanon. Emissions from vehicles, electricity and power plants generation are described. Industrial emitters of air pollutants are described for each kind of industry i.e.cement plants, Selaata fertilizer factory, sugar-beet factory, refineries and for those derived from the use of leaded fuel . Impact of economic and human activities on air quality in Lebanon (especially in Beirut and Tripoli) are quantified by quantities of CO 2 , SO 2 , NO x , total suspended particulates(TSP), deposition and their environmental effects on health. In abscence of emissions monitoring, data available are expressed in terms of fuel use, output and appropriate empirical factors, national output and workfores sizes. Finally key issues and some potential mitigation /management approaches are presented

  14. Potential Impacts of Future Climate Change on Regional Air Quality and Public Health over China

    Science.gov (United States)

    Hong, C.; Zhang, Q.; Zhang, Y.; He, K.

    2017-12-01

    Future climate change would affect public health through changing air quality. Climate extremes and poor weather conditions are likely to occur at a higher frequency in China under a changing climate, but the air pollution-related health impacts due to future climate change remain unclear. Here the potential impacts of future climate change on regional air quality and public health over China is projected using a coupling of climate, air quality and epidemiological models. We present the first assessment of China's future air quality in a changing climate under the Representative Concentration Pathway 4.5 (RCP4.5) scenario using the dynamical downscaling technique. In RCP4.5 scenario, we estimate that climate change from 2006-2010 to 2046-2050 is likely to adversely affect air quality covering more than 86% of population and 55% of land area in China, causing an average increase of 3% in O3 and PM2.5 concentrations, which are found to be associated with the warmer climate and the more stable atmosphere. Our estimate of air pollution-related mortality due to climate change in 2050 is 26,000 people per year in China. Of which, the PM2.5-related mortality is 18,700 people per year, and the O3-related mortality is 7,300 people per year. The climate-induced air pollution and health impacts vary spatially. The climate impacts are even more pronounced on the urban areas where is densely populated and polluted. 90% of the health loss is concentrated in 20% of land areas in China. We use a simple statistical analysis method to quantify the contributions of climate extremes and find more intense climate extremes play an important role in climate-induced air pollution-related health impacts. Our results indicate that global climate change will likely alter the level of pollutant management required to meet future air quality targets as well as the efforts to protect public health in China.

  15. Greater Vancouver regional district air quality management plan : implementation status report

    International Nuclear Information System (INIS)

    2001-03-01

    In December 1994, an Air Quality Management Plan (AQMP) was adopted by the Greater Vancouver Regional District. The AQMP included ways to improve air quality in the region, leading to reduced emissions from commercial and industrial operations. This Plan encourages cooperation with the various communities affected to achieve clean air lifestyles and manage emissions from human activity to enhance human health and the integrity of the environment. The reduction of total emissions of the common air contaminants sulphur and nitrogen oxides, particulate matter, carbon monoxide and volatile organic compounds by 38 per cent is the stated aim of the AQMP. Five years of planning resulted in the formulation of the AQMP. The issues addressed were assigned one of four priorities as follows: priority 1 deals with ground level ozone and fine particulate, priority 2 looks at visibility, hazardous air pollutants, and global climate change, priority 3 concerns odour, carbon monoxide, sulphur dioxide, acidic deposition, and nitrogen dioxide, and priority 4 contains total suspended particulate matter and volatile organic compounds. A total of 54 Emission Reduction Measures were established, and the document reviewed them. Progress is being made in all areas. 2 tabs., 3 figs

  16. Impact of global climate change on regional air quality: Introduction to the thematic issue

    International Nuclear Information System (INIS)

    Vautard, R.; Hauglustaine, D.

    2007-01-01

    Despite the major international efforts devoted to the understanding and to the future estimate of global climate change and its impact on regional scale processes, the evolution of the atmospheric composition in a changing climate is far to be understood. In particular, the future evolution of the concentration of near-surface pollutants determining air quality at a scale affecting human health and ecosystems is a subject of intense scientific research. This thematic issue reviews the current scientific knowledge of the consequences of global climate change on regional air quality and its related impact on the biosphere and on human mortality. This article provides a presentation of the key issues, summarizes the current knowledge, and introduces the thematic issue. (authors)

  17. Local and regional interactions between air quality and climate in New Delhi- A sector based analysis

    Science.gov (United States)

    Marrapu, Pallavi

    Deteriorating air quality is one of the major problems faced worldwide and in particular in Asia. The world's most polluted megacities are located in Asia highlighting the urgent need for efforts to improve the air quality. New Delhi (India), one of the world's most polluted cities, was the host of the Common Wealth Games during the period of 4-14 October 2010. This high profile event provided a good opportunity to accelerate efforts to improve air quality. Computational advances now allow air quality forecast models to fully couple the meteorology with chemical constituents within a unified modeling system that allows two-way interactions. The WRF-Chem model is used to simulate air quality in New Delhi. The thesis focuses on evaluating air quality and meteorology feedbacks. Four nested domains ranging from South Asia, Northern India, NCR Delhi and Delhi city at 45km, 15km, 5km and 1.67km resolution for a period of 20 day (26th Sep--15th Oct, 2010) are used in the study. The predicted mean surface concentrations of various pollutants show similar spatial distributions with peak values in the middle of the domain reflecting the traffic and population patterns in the city. Along with these activities, construction dust and industrial emissions contribute to high levels of criteria pollutants. The study evaluates the WRF-Chem capabilities using a new emission inventory developed over Delhi at a fine resolution of 1.67km and evaluating the results with observational data from 11 monitoring sties placed at various Game venues. The contribution of emission sectors including transportation, power, industry, and domestic to pollutant concentrations at targeted regions are studied and the results show that transportation and domestic sector are the major contributors to the pollution levels in Delhi, followed by industry. Apart from these sectors, emissions outside of Delhi contribute 20-50% to surface concentrations depending on the species. This indicates that pollution

  18. 77 FR 11879 - Approval and Promulgation of Air Quality Implementation Plans; State of Mississippi; Regional...

    Science.gov (United States)

    2012-02-28

    ... broad geographic area and emit fine particles (PM 2.5 ) (e.g., sulfates, nitrates, organic carbon... photochemical grid models. Air Quality Model: The EPA's Models-3/Community Multiscale Air Quality (CMAQ...

  19. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management.

    Science.gov (United States)

    Schweizer, Don; Cisneros, Ricardo; Traina, Samuel; Ghezzehei, Teamrat A; Shaw, Glenn

    2017-10-01

    Wildland fire is an important ecological process in the California Sierra Nevada. Personal accounts from pre-20th century describe a much smokier environment than present day. The policy of suppression beginning in the early 20th century and climate change are contributing to increased megafires. We use a single particulate monitoring site at the wildland urban interface to explore impacts from prescribed, managed, and full suppression wildland fires from 2006 to 2015 producing a contextual assessment of smoke impacts over time at the landscape level. Prescribed fire had little effect on local fine particulate matter (PM 2.5 ) air quality with readings typical of similar non-fire times; hourly and daily good to moderate Air Quality Index (AQI) for PM 2.5 , maximum hourly concentrations 21-103 μg m -3 , and mean concentrations between 7.7 and 13.2 μg m -3 . Hourly and daily AQI was typically good or moderate during managed fires with 3 h and one day reaching unhealthy while the site remained below National Ambient Air Quality Standards (NAAQS), with maximum hourly concentrations 27-244 μg m -3 , and mean concentrations 6.7-11.7 μg m -3 . The large high intensity fire in this area created the highest short term impacts (AQI unhealthy for 4 h and very unhealthy for 1 h), 11 unhealthy for sensitive days, and produced the only annual value (43.9 μg m -3 ) over the NAAQS 98th percentile for PM 2.5 (35 μg m -3 ). Pinehurst remained below the federal standards for PM 2.5 when wildland fire in the local area was managed to 7800 ha (8-22% of the historic burn area). Considering air quality impacts from smoke using the NAAQS at a landscape level over time can give land and air managers a metric for broader evaluation of smoke impacts particularly when assessing ecologically beneficial fire. Allowing managers to control the amount and timing of individual wildland fire emissions can help lessen large smoke impacts to public health from a megafire

  20. ESTIMATION AND PROGNOSIS OF QUALITY OF ATMOSPHERIC AIR AT REGIONAL LEVEL

    Directory of Open Access Journals (Sweden)

    POLISCHUK S. Z.

    2016-08-01

    Full Text Available Raising of problem. The problem of quality of atmospheric air takes a special place among problems of protection of a surrounding environment. It is caused first of all by vital necessity of atmospheric air for all alive on the Earth, influence of a condition of an atmosphere on global climatic processes and biosphere as a whole due to huge mobility of air weights with which harmful impurity can be transferred. These questions for industrial regions where the level of anthropogenous influence has reached critical size are especially actual. The Dnepropetrovsk area concerns to such regions also. By development of scripts of development of such regions and their territorial components there is a necessity for definition of possible consequences of anthropogenous processes, which occur (or can occur in atmospheric air. It demands strengthening прогнозных functions of ecological monitoring, in particular on atmospheric air, at planning and building of territories, at a choice of the optimum script of town-planning. Purpose. To improve a subsystem of an estimation and the forecast of a condition of atmospheric air on an example of system of ecological monitoring «Pridneprov'e» the Dnepropetrovsk area by means of introduction of a complex of the mathematical models focused on large industrial region which will allow at presence of criteria and parameters to receive as statistical (for the short-term forecast during steady atmospheric processes, and dynamic estimations of a condition of atmospheric air, the forecast of changes of parameters of atmospheric air and distribution of polluting substances, and also their influence on an environment and the person. Conclusion. The offered approach allows to consider complex parameters of steady development, territorial, branch, social, economic and ecological, time aspects, opportunities of atmospheric air as a polyresource, provides the forecast and an estimation of a condition of atmospheric air

  1. Hygienic assessment of ambient air quality and health risks to population of Krasnoyarsk region

    Directory of Open Access Journals (Sweden)

    D.V. Goryaev

    2016-06-01

    Full Text Available This study fulfills the hygienic assessment of ambient air quality in the populated areas of the Krasnoyarsk Region. It is shown that the total number of emission sources in the region is more than 23 600 units, what is higher than in previous years. Around 90.7 % out of them correspond to the set standards of permissible emissions. Air monitoring was carried by the establishments of Roshydromet, Rospotrebnadzor and by other organizations at 94 observation posts in eight urban districts and 2 municipal districts of the region. The status of the ambient air in a sequence of the populated areas of Krasnoyarsk region, namely in the cities Achinsk, Kansk, Krasnoyarsk, Lesosibirsk, Minusinsk, Norilsk, is characterized by the presence of certain pollutants, the level of which exceeds the hygienic standards. Prioritized pollutants are benzo(apyrene, suspended solids, nitrogen, and sulfur dioxide, formaldehyde and others. In the settlements the economic entities violate the legal requirements in the field of sanitary and epidemiological welfare of the population. The probability of the population’s health deterioration grows along with the growth of risk factors. The risks of respiratory diseases, immune system, blood and blood-forming organs and the additional mortality are assessed as unacceptable. Ensuring air quality of the urban residential areas and municipal districts of the Krasnoyarsk Territory requires the introducing the complex measures to improve it. The established levels of human health risk associated with exposure to polluted air are an additional criterion for selection of the priority objects when planning the implementation of risk-based model for supervisory activities in the field of sanitary and epidemiological welfare of the population.

  2. Biomonitoring of air quality in the metropolitan region of Recife, PE, Brazil

    International Nuclear Information System (INIS)

    Santos, Thiago Oliveira dos

    2016-01-01

    The interest on questions related to environmental conservation has increased in recent decades, being air pollution one of the main public health problems in huge urban centers. Major part of this atmospheric contamination is caused by gaseous pollutants and inhalable particulate matter. One of the main sources is the burning of fossil fuels mainly emitted by motor vehicles. Some organisms, like lichen and atmospheric bromeliad, are able to accumulate chemical elements in their tissues, thereby becoming excellent tools for air quality studies of monitoring. The present work evaluated the air quality in the Metropolitan Region of Recife (RMR) using the lichen Cladonia verticillaris and the bromeliad Tillandsia recurvata, through the quantification of chemical elements associated to vehicles traffic. The biomonitors were transferred to 40 points distributed in the RMR with different intensities of the vehicle traffic. After the exposition period of six months, Al, Ba, Ca, Cd, Cl, Fe, Mg, Mn, P, Pb, Sb, Sr, Th, V and Zn were quantified by Energy Dispersive X-Ray Fluorescence (EDXRF) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The organisms were complementary, being appropriated tools for monitoring the air quality. The vehicle traffic was considered one of the major contributor for increasing chemical elements in the RMR urban atmosphere. (author)

  3. Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqiang; Bowden, Jared H.; Adelman, Zachariah; Naik, Vaishali; Horowitz, Larry W.; Smith, Steven J.; West, J. Jason

    2016-08-01

    Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation for US air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for US air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the total co-benefits into contributions from domestic GHG mitigation vs. mitigation in foreign countries. We use the Weather Research and Forecasting (WRF) model to dynamically downscale future global climate to the regional scale and the Sparse Matrix Operator Kernel Emissions (SMOKE) program to directly process global anthropogenic emissions to the regional domain, and we provide dynamical boundary conditions from global simulations to the regional Community Multi-scale Air Quality (CMAQ) model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern US (ranging from 0.6 to 1.0 µg m-3) than the west (0–0.4 µg m-3) for fine particulate matter (PM2.5), with an average of 0.47 µg m-3 over the US; for O3, the total co-benefits are more uniform at 2–5 ppb, with a US average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions in co-emitted air pollutants have a much greater influence on both PM2.5 (96 % of the total co-benefits) and O3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the US O3 reduction

  4. Impact of emissions from the Los Angeles port region on San Diego air quality during regional transport events.

    Science.gov (United States)

    Ault, Andrew P; Moore, Meagan J; Furutani, Hiroshi; Prather, Kimberly A

    2009-05-15

    Oceangoing ships emit an estimated 1.2-1.6 million metric tons (Tg) of PM10 per year and represent a significant source of air pollution to coastal communities. As shown herein, ship and other emissions near the Los Angeles and Long Beach Port region strongly influence air pollution levels in the San Diego area. During time periods with regional transport, atmospheric aerosol measurements in La Jolla, California show an increase in 0.5-1 microm sized single particles with unique signatures including soot, metals (i.e., vanadium, iron, and nickel), sulfate, and nitrate. These particles are attributed to primary emissions from residual oil sourcessuch as ships and refineries, as well as traffic in the port region, and secondary processing during transport. During regional transport events, particulate matter concentrations were 2-4 times higher than typical average concentrations from local sources, indicating the health, environmental, and climate impacts from these emission sources must be taken into consideration in the San Diego region. Unless significant regulations are imposed on shipping-related activities, these emission sources will become even more important to California air quality as cars and truck emissions undergo further regulations and residual oil sources such as shipping continue to expand.

  5. Net radiative forcing and air quality responses to regional CO emission reductions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-05-01

    Full Text Available Carbon monoxide (CO emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005. Net radiative forcing (RF is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m−2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP100 are estimated as −0.124 mW m−2 (Tg CO−1 and 1.34, respectively, for the global CO reduction, and ranging from −0.115 to −0.131 mW m−2 (Tg CO−1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S–28° N followed by the northern midlatitudes (28° N–60° N, independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international

  6. Past, Present, and Future Anthropogenic Emissions over Asia: a Regional Air Quality Modeling Perspective

    Science.gov (United States)

    Woo, Jung-Hun; Jung, Bujeon; Choi, Ki-Chul; Seo, Ji-Hyun; Kim, Tae Hyung; Park, Rokjin J.; Youn, Daeok; Jeong, Jaein; Moon, Byung-Kwon; Yeh, Sang-Wook

    2010-05-01

    Climate change will also affect future regional air quality which has potential human health, ecosystem, and economic implications. To analyze the impacts of climate change on Asian air quality, the NIER (National Institute of Environmental Research, Korea) integrated modeling framework was developed based on global-to-regional climate and atmospheric chemistry models. In this study, we developed emission inventories for the modeling framework for 1980~2100 with an emphasis on Asia emissions. Two emission processing systems which have functions of emission projection, spatial/temporal allocation, and chemical speciation have been also developed in support of atmospheric chemistry models including GEOS-Chem and Models-3/CMAQ. Asia-based emission estimates, projection factors, temporal allocation parameters were combined to improve regional modeling capability of past, present and future air quality over Asia. The global CO emissions show a 23% decrease from the years 1980 to 2000. For the future CO (from year 2000 to 2100), the A2 scenario shows a 95% increase due to the B40 (Residential-Biofuel) sector of Western Africa, Eastern Africa and East Asia and the F51 (Transport Road-Fossil fuel) sector of Middle East, USA and South Asia. The B1 scenario, however, shows a 79% decrease of emissions due to B40 and F51 sectors of East Asia, South Asia and USA for the same period. In many cases, Asian emissions play important roles for global emission increase or decrease depending on the IPCC scenarios considered. The regional ozone forming potential will be changed due to different VOC/NOx emission ratio changes in the future. More similarities and differences of Asian emission characteristics, in comparison with its global counterpart, are investigated.

  7. Modelling the influence of peri-urban trees in the air quality of Madrid region (Spain)

    International Nuclear Information System (INIS)

    Alonso, Rocio; Vivanco, Marta G.; Gonzalez-Fernandez, Ignacio; Bermejo, Victoria; Palomino, Inmaculada; Garrido, Juan Luis; Elvira, Susana; Salvador, Pedro; Artinano, Begona

    2011-01-01

    Tropospheric ozone (O 3 ) is considered one of the most important air pollutants affecting human health. The role of peri-urban vegetation in modifying O 3 concentrations has been analyzed in the Madrid region (Spain) using the V200603par-rc1 version of the CHIMERE air quality model. The 3.7 version of the MM5 meteorological model was used to provide meteorological input data to the CHIMERE. The emissions were derived from the EMEP database for 2003. Land use data and the stomatal conductance model included in CHIMERE were modified according to the latest information available for the study area. Two cases were considered for the period April-September 2003: (1) actual land use and (2) a fictitious scenario where El Pardo peri-urban forest was converted to bare-soil. The results show that El Pardo forest constitutes a sink of O 3 since removing this green area increased O 3 levels over the modified area and over down-wind surrounding areas. - Highlights: → Role of peri-urban vegetation in modifying O 3 pollution in Madrid (Spain). → The CHIMERE air quality model was adapted to Mediterranean conditions. → Preserving the peri-urban forest lowers O 3 concentrations over the surrounding areas. → Evergreen broadleaf and deciduous forests removed more atmospheric O 3 than conifers. - Peri-urban forests contribute to ameliorate ozone air pollution.

  8. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    Directory of Open Access Journals (Sweden)

    T. Wang

    2010-08-01

    Full Text Available This paper presents the first results of the measurements of trace gases and aerosols at three surface sites in and outside Beijing before and during the 2008 Olympics. The official air pollution index near the Olympic Stadium and the data from our nearby site revealed an obvious association between air quality and meteorology and different responses of secondary and primary pollutants to the control measures. Ambient concentrations of vehicle-related nitrogen oxides (NOx and volatile organic compounds (VOCs at an urban site dropped by 25% and 20–45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions. A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed >34–88% to the peak ozone concentrations at the urban site in Beijing. Regional sources also contributed significantly to the CO concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv, indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2, total sulfur (SO2+PM2.5 sulfate, carbon monoxide (CO, reactive aromatics (toluene and xylenes sharply decreased (by 8–64% in 2008, but no significant changes were observed for the concentrations of

  9. Comparison of boundary conditions from Global Chemistry Model (GCM) for regional air quality application

    Science.gov (United States)

    Lam, Yun Fat; Cheung, Hung Ming; Fu, Joshua; Huang, Kan

    2015-04-01

    Applying Global Chemistry Model (GCM) for regional Boundary Conditions (BC) has become a common practice to account for long-range transport of air pollutants in the regional air quality modeling. The limited domain model such as CMAQ and CAMx requires a global BC to prescribe the real-time chemical flux at the boundary grids, in order to give a realistic estimate of boundary impacts. Several GCMs have become available recently for use in regional air quality studies. In this study, three GCM models (i.e., GEOS-chem, CHASER and IFS-CB05 MACC provided by Seoul National University, Nagoya University and ECWMF, respectively) for the year of 2010 were applied in CMAQ for the East Asia domain under the framework of Model Inter-comparison Study Asia Phase III (MISC-Asia III) and task force on Hemispheric Transport of Air Pollution (HTAP) jointed experiments. Model performance evaluations on vertical profile and spatial distribution of O3 and PM2.5 have been made on those three models to better understand the model uncertainties from the boundary conditions. Individual analyses on various mega-cities (i.e., Hong Kong, Guangzhou, Taipei, Chongqing, Shanghai, Beijing, Tianjin, Seoul and Tokyo) were also performed. Our analysis found that the monthly estimates of O3 for CHASER were a bit higher than GEOS-Chem and IFS-CB05 MACC, particularly in the northern part of China in the winter and spring, while the monthly averages of PM2.5 in GEOS-Chem were the lowest among the three models. The hourly maximum values of PM2.5 from those three models (GEOS-Chem, CHASER and IFS-CB05 MACC are 450, 321, 331 μg/m3, while the maximum O3 are 158, 212, 380 ppbv, respectively. Cross-comparison of CMAQ results from the 45 km resolution were also made to investigate the boundary impacts from the global GCMs. The results presented here provide insight on how global GCM selection influences the regional air quality simulation in East Asia.

  10. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    International Nuclear Information System (INIS)

    Marlier, Miriam E; DeFries, Ruth S; Kim, Patrick S; Koplitz, Shannon N; Jacob, Daniel J; Gaveau, David L A; Mickley, Loretta J; Margono, Belinda A; Myers, Samuel S

    2015-01-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010–2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations

  11. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    Science.gov (United States)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.

    2015-05-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and

  12. Transportation and air quality

    International Nuclear Information System (INIS)

    Roseland, M.

    1992-01-01

    In the greater Vancouver regional district (GVRD), some 80% of the annual production of 600,000 tonnes of air pollutants come from motor vehicles. Three critical air quality issues in the GVRD are discussed: local air pollution, ozone layer depletion, and greenhouse gas emissions, all of which are fundamentally linked to transportation. Overall air quality in the GVRD has been judged acceptable by current federal standards, but ground-level ozone has exceeded maximum tolerable levels at some locations and concentrations of suspended particulates are above maximum acceptable levels. Serious deterioration in air quality has been predicted unless a concerted effort is made to manage air quality on an airshed-wide basis. The GVRD is developing Canada's first Air Management Plan with the goal of halving atmospheric emissions by 2000. GVRD transportation priorities stress public transit, walking, cycling, car pooling, and reducing of travel demand; however, the viability of such strategies depends on decisions made outside the transportation sector. Restricted authority and jurisdiction also hinder GVRD goals; the regional level of government has no authority over highways or transit and only has authority for pollution control in some parts of the Fraser Valley. Airshed quality management, using the Los Angeles example, is seen as a possible direction for future GVRD policymaking in the transportation sector. A single regional planning agency with responsibility for transportation, land use, and air quality management appears as the best option for an integrated approach to solve multiple problems. 19 refs

  13. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    Science.gov (United States)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-10-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions which result from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of inorganic NH3 fertilizer applied, soil processes, local meteorology, and ambient air concentrations. Initial fertilizer application often occurs when crops are planted. A state-level evaluation of EPIC-simulated, cumulative planted area compares well with similar USDA reported estimates. EPIC-annual, inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6% low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric particle nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  14. Regional air-quality and acid-deposition modeling and the role for visualization

    International Nuclear Information System (INIS)

    Novak, J.H.; Dennis, R.L.

    1991-11-01

    The U.S. Environmental Protection Agency (EPA) uses air quality and deposition models to advance the scientific understanding of basic physical and chemical processes related to air pollution, and to assess the effectiveness of alternative emissions control strategies. The paper provides a brief technical description of several regional scale atmospheric models, their current use within EPA, and related data analysis issues. Spatial analysis is a key component in the evaluation and interpretation of the model predictions. Thus, the authors highlight several types of analysis enhancements focusing on those related to issues of spatial scale, user access to models and analysis tools, and consolidation of air quality modeling and graphical analysis capabilities. They discuss their initial experience with a Geographical Information System (GIS) pilot project that generated the initial concepts for the design of an integrated modeling and analysis environment. And finally, they present current plans to evolve this modeling/visualization approach to a distributed, heterogeneous computing environment which enables any research scientist or policy analyst to use high performance visualization techniques from his/her desktop

  15. A genetic-algorithm-aided stochastic optimization model for regional air quality management under uncertainty.

    Science.gov (United States)

    Qin, Xiaosheng; Huang, Guohe; Liu, Lei

    2010-01-01

    A genetic-algorithm-aided stochastic optimization (GASO) model was developed in this study for supporting regional air quality management under uncertainty. The model incorporated genetic algorithm (GA) and Monte Carlo simulation techniques into a general stochastic chance-constrained programming (CCP) framework and allowed uncertainties in simulation and optimization model parameters to be considered explicitly in the design of least-cost strategies. GA was used to seek the optimal solution of the management model by progressively evaluating the performances of individual solutions. Monte Carlo simulation was used to check the feasibility of each solution. A management problem in terms of regional air pollution control was studied to demonstrate the applicability of the proposed method. Results of the case study indicated the proposed model could effectively communicate uncertainties into the optimization process and generate solutions that contained a spectrum of potential air pollutant treatment options with risk and cost information. Decision alternatives could be obtained by analyzing tradeoffs between the overall pollutant treatment cost and the system-failure risk due to inherent uncertainties.

  16. 76 FR 27973 - Approval and Promulgation of Air Quality Implementation Plans; State of Delaware; Regional Haze...

    Science.gov (United States)

    2011-05-13

    ... located across a broad geographic area and emit fine particles (PM 2.5 ) (e.g., sulfates, nitrates... Quality Model: The EPA's Models-3/Community Multiscale Air Quality (CMAQ) version 4.5.1 is a photochemical...

  17. 77 FR 11798 - Approval and Promulgation of Air Quality Implementation Plans; Rhode Island; Regional Haze

    Science.gov (United States)

    2012-02-28

    ...., sulfates, nitrates, organic carbon, elemental carbon, and soil dust), which also impair visibility by... Quality Model: The EPA's Models-3/Community Multiscale Air Quality (CMAQ) version 4.5.1 is a photochemical...

  18. 77 FR 46911 - Approval and Promulgation of Air Quality Implementation Plans; Michigan; Regional Haze State...

    Science.gov (United States)

    2012-08-06

    ...-air quality environmental impacts of compliance; (3) any existing pollution control technology in use... relying on EPA's Cross-State Air Pollution Rule (CSAPR) to address these requirements. EPA is also taking...) monitoring network, show that visibility impairment caused by air pollution occurs virtually all the time at...

  19. Atmospheric emission data inventory for air quality planning at a regional scale

    Energy Technology Data Exchange (ETDEWEB)

    Cosmi, C. [C.N.R., Ist. di Metodologie Avanzate di Analisi Ambientali, Tito Scalo (Italy); Cuomo, V. [Universita degli Studi della Basilicata, Dipt. di Ingegneria e Fisica dell' Ambiente, Potenza (Italy)]|[C.N.R., Ist. di Metodologie Avanzate di Analisi Ambientali, Tito Scalo (Italy); Macchiato, M. [Unita di Napoli, Ist. Nazionale per la Fisica della Materia, Napoli (Italy); Mangiamele, L.; Marmo, G.; Salvia, M. [Universita degli Studi della Basilicata, Dipt. di Ingegneria e Fisica dell' Ambiente, Potenza (Italy)

    1999-07-01

    The inventory of pollutant emissions data and its management is the first step to assess the potential environmental impacts and the social-economic implications of different planning strategies. This requires to prepare a very flexible database which allows the user an easy querying of data, their up-grading, the possibility of comparing different information and to use software tools based on Geographical Information Systems to represent the localisation of emissions sources and their fallout on the territory. This paper describes the pollutant emissions inventory carried out for the Basilicata Region (Southern Italy) in the framework of a regional plan for air quality and environmental recovery. This inventory was built up taking into account the most recent normative framework, and points out the most important features of the emissions sources relatively to the investigated pollutants and to the different territorial areas. (Author)

  20. On the long-term impact of emissions from central European cities on regional air quality

    Directory of Open Access Journals (Sweden)

    P. Huszar

    2016-02-01

    Full Text Available For the purpose of qualifying and quantifying the impact of urban emission from Central European cities on the present-day regional air quality, the regional climate model RegCM4.2 was coupled with the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the 2001–2010 period either with all urban emissions included (base case or without considering urban emissions. Further, the sensitivity of ozone production to urban emissions was examined by performing reduction experiments with −20 % emission perturbation of NOx and/or non-methane volatile organic compounds (NMVOC. The modeling system's air quality related outputs were evaluated using AirBase, and EMEP surface measurements showed reasonable reproduction of the monthly variation for ozone (O3, but the annual cycle of nitrogen dioxide (NO2 and sulfur dioxide (SO2 is more biased. In terms of hourly correlations, values achieved for ozone and NO2 are 0.5–0.8 and 0.4–0.6, but SO2 is poorly or not correlated at all with measurements (r around 0.2–0.5. The modeled fine particulates (PM2.5 are usually underestimated, especially in winter, mainly due to underestimation of nitrates and carbonaceous aerosols. European air quality measures were chosen as metrics describing the cities emission impact on regional air pollution. Due to urban emissions, significant ozone titration occurs over cities while over rural areas remote from cities, ozone production is modeled, mainly in terms of number of exceedances and accumulated exceedances over the threshold of 40 ppbv. Urban NOx, SO2 and PM2.5 emissions also significantly contribute to concentrations in the cities themselves (up to 50–70 % for NOx and SO2, and up to 60 % for PM2.5, but the contribution is large over rural areas as well (10–20 %. Although air pollution over cities is largely determined by the local urban emissions, considerable (often a few tens of % fraction of the

  1. Impact of oil spill from ship on air quality around coastal regions of Korea

    Science.gov (United States)

    Shon, Zang-Ho; Song, Sang-Keun

    2010-05-01

    Regional air quality around coastal regions, where regular maritime traffic emissions from cargo, other commercial, fishing and military vessels are significantly active, can be affected by their direct emission of primary air pollutants (NOx, SO2, particulate matter (PM), etc.). For instance, harbor traffic exerted an important impact on NO2, SO2, O3, and PM levels. In addition, regional air quality around coastal regions is also affected by oil spill caused by ship accident in the coast. On 7 Dec., 2007, a barge carrying a crane hit the oil tanker MT Hebei Sprit off the west coast of the Republic of Korea, Yellow Sea (approximately 10 km off the coast), at 0700 local time, causing the spill of total estimated 12,547 tons of Iranian heavy (IH) and Kuwait Export (KE) crude oils. Since then, oil began coming on shore late in the night on 7 Dec. More than 150 km of coastline had been identified as being impacted by 17 Dec. Much of the affected area is part of the Taean-gun National Park and the nearest coastal city to spilled area is Taean. On 8 Dec., the flow of oil from the tanker was stopped when the holes were patched. The accident is the worst oil spill in Korea and the spill area is about one-third of the size of the Exxon Valdez oil spill. The short- and long-term effects of oil spill on marine environment have been numerously studied, not on atmospheric environment. In this study, the air quality impact near spilled area by the evaporation of hydrocarbons from the oil spill is studied in detail. The evaporation rates of the volatile fractions of the crude oils released by oil spill were estimated based on their mole fractions of crude oils and mass transfer coefficients. Based on a molecular diffusion process, the flux of spilled oil component (Fivap, mol m-2 s-1) can be expressed as follows: Fivap = Kivap(Civap - C∞vap) (1) where Civap is concentration (mol m-3) of a component i of crude oil vapor in the air at the oil-air interface; C∞vap is the

  2. Air Quality Co-Benefits of a Carbon Policy: Regional Implementation

    Science.gov (United States)

    Thompson, T. M.; Rausch, S.; Saari, R.; Selin, N. E.

    2013-12-01

    We use an integrated modeling framework to assess the air quality influence of climate change policies in the Northeast U.S. states for air pollution, and their relative health and economic benefits. We analyze three carbon policy scenarios, each reducing the same total amount of GHG emissions in the Northeast United States: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy, a Clean Energy Scenario (CES) reducing emissions from the electricity sector only, and a Transportation Scenario (TRN) reducing emissions from the transportation sector only. Regional CES policy and a regional TRN policy will cost about 10 times and 50 times more than a CAT policy, respectively. Regional CAT policy will lead to a 6% greater reduction in carbon emissions nationally in the year 2030 compared to an electric or transportation sector cap with the same regional targets. This is because, unlike a total economy cap, targeted policy options will likely cause increases in carbon emissions outside of the region covered (called carbon leakage). The human health benefits of the CAT, CES and TRN policies are 530%, 118%, and 10% of the costs of each policy respectively, meaning that the CAT and CES policies will likely fully pay for themselves in the NE U.S. We estimate that the value of human health co-benefits associated with reductions of ground level ozone and particulate matter of the CES scenario is twice that of the CAT and TRN scenarios. Economic welfare costs for each of three regionally applied carbon emissions reduction scenario are shown in blue. The calculated dollar amount of the human health benefits point estimate is shown in red with the 95% confidence interval, associated with human health response only, shown using the green line. Values are in billions of year 2006 US dollars.

  3. Constraining the uncertainty in emissions over India with a regional air quality model evaluation

    Science.gov (United States)

    Karambelas, Alexandra; Holloway, Tracey; Kiesewetter, Gregor; Heyes, Chris

    2018-02-01

    To evaluate uncertainty in the spatial distribution of air emissions over India, we compare satellite and surface observations with simulations from the U.S. Environmental Protection Agency (EPA) Community Multi-Scale Air Quality (CMAQ) model. Seasonally representative simulations were completed for January, April, July, and October 2010 at 36 km × 36 km using anthropogenic emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model following version 5a of the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project (ECLIPSE v5a). We use both tropospheric columns from the Ozone Monitoring Instrument (OMI) and surface observations from the Central Pollution Control Board (CPCB) to closely examine modeled nitrogen dioxide (NO2) biases in urban and rural regions across India. Spatial average evaluation with satellite retrievals indicate a low bias in the modeled tropospheric column (-63.3%), which reflects broad low-biases in majority non-urban regions (-70.1% in rural areas) across the sub-continent to slightly lesser low biases reflected in semi-urban areas (-44.7%), with the threshold between semi-urban and rural defined as 400 people per km2. In contrast, modeled surface NO2 concentrations exhibit a slight high bias of +15.6% when compared to surface CPCB observations predominantly located in urban areas. Conversely, in examining extremely population dense urban regions with more than 5000 people per km2 (dense-urban), we find model overestimates in both the column (+57.8) and at the surface (+131.2%) compared to observations. Based on these results, we find that existing emission fields for India may overestimate urban emissions in densely populated regions and underestimate rural emissions. However, if we rely on model evaluation with predominantly urban surface observations from the CPCB, comparisons reflect model high biases, contradictory to the knowledge gained using satellite observations. Satellites thus

  4. Passive samplers and community science in regional air quality measurement, education and communication.

    Science.gov (United States)

    DeForest Hauser, Cindy; Buckley, Alexandra; Porter, Juliana

    2015-08-01

    Charlotte, in Mecklenburg County, North Carolina, was ranked in the top ten cities with the worst air quality for ozone in the United States by the American Lung Association from 2009 to 2011. Nearby counties that may experience similar air quality do not have state or county monitors. This study utilized NOx and ozone Ogawa passive samplers and community scientists to monitor air quality in five counties surrounding Charlotte and increase public engagement in air quality issues. Community scientists deployed samplers weekly at a residential site within each county. Samples were analyzed using spectrophotometry and ion chromatography. Elevated NOx concentrations were observed in four of the five counties relative to those with existing monitors. Ozone concentrations showed little county to county variation, except Iredell and Cabarrus which had higher concentrations than Rowan. Community involvement in this work led to an increase in local dissemination of the results, thus increasing air quality awareness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    Directory of Open Access Journals (Sweden)

    A. J. Prenni

    2016-02-01

    Full Text Available The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013–2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long-term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than 4 months.

  6. A new air quality modelling approach at the regional scale using lidar data assimilation

    International Nuclear Information System (INIS)

    Wang, Y.

    2013-01-01

    Assimilation of lidar observations for air quality modelling is investigated via the development of a new model, which assimilates ground-based lidar network measurements using optimal interpolation (OI) in a chemistry transport model. First, a tool for assimilating PM 10 (particulate matter with a diameter lower than 10 μm) concentration measurements on the vertical is developed in the air quality modelling platform POLYPHEMUS. It is applied to western Europe for one month from 15 July to 15 August 2001 to investigate the potential impact of future ground-based lidar networks on analysis and short-term forecasts (the description of the future) of PM 10 . The efficiency of assimilating lidar network measurements is compared to the efficiency of assimilating concentration measurements from the AirBase ground network, which includes about 500 stations in western Europe. A sensitivity study on the number and location of required lidars is also performed to help define an optimal lidar network for PM 10 forecasts. Secondly, a new model for simulating normalised lidar signals (PR 2 ) is developed and integrated in POLYPHEMUS. Simulated lidar signals are compared to hourly ground-based mobile and in-situ lidar observations performed during the MEGAPOLI (Mega-cities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) summer experiment in July 2009. It is found that the model correctly reproduces the vertical distribution of aerosol optical properties and their temporal variability. Additionally, two new algorithms for assimilating lidar signals are presented and evaluated during MEGAPOLI. The aerosol simulations without and with lidar data assimilation are evaluated using the AIRPARIF (a regional operational network in charge of air quality survey around the Paris area) database to demonstrate the feasibility and the usefulness of assimilating lidar profiles for aerosol forecasts. Finally

  7. Modeling the Impacts of Global Climate and Regional Land Use Change on Regional Climate, Air Quality and Public Health in the New York Metropolitan Region

    Science.gov (United States)

    Rosenthal, J. E.; Knowlton, K. M.; Kinney, P. L.

    2002-12-01

    There is an imminent need to downscale the global climate models used by international consortiums like the IPCC (Intergovernmental Panel on Climate Change) to predict the future regional impacts of climate change. To meet this need, a "place-based" climate model that makes specific regional projections about future environmental conditions local inhabitants could face is being created by the Mailman School of Public Health at Columbia University, in collaboration with other researchers and universities, for New York City and the 31 surrounding counties. This presentation describes the design and initial results of this modeling study, aimed at simulating the effects of global climate change and regional land use change on climate and air quality over the northeastern United States in order to project the associated public health impacts in the region. Heat waves and elevated concentrations of ozone and fine particles are significant current public health stressors in the New York metropolitan area. The New York Climate and Health Project is linking human dimension and natural sciences models to assess the potential for future public health impacts from heat stress and air quality, and yield improved tools for assessing climate change impacts. The model will be applied to the NY metropolitan east coast region. The following questions will be addressed: 1. What changes in the frequency and severity of extreme heat events are likely to occur over the next 80 years due to a range of possible scenarios of land use and land cover (LU/LC) and climate change in the region? 2. How might the frequency and severity of episodic concentrations of ozone (O3) and airborne particulate matter smaller than 2.5 æm in diameter (PM2.5) change over the next 80 years due to a range of possible scenarios of land use and climate change in the metropolitan region? 3. What is the range of possible human health impacts of these changes in the region? 4. How might projected future human

  8. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts

    Directory of Open Access Journals (Sweden)

    M. Crippa

    2016-03-01

    Full Text Available The EDGARv4.3.1 (Emissions Database for Global Atmospheric Research global anthropogenic emissions inventory of gaseous (SO2, NOx, CO, non-methane volatile organic compounds and NH3 and particulate (PM10, PM2.5, black and organic carbon air pollutants for the period 1970–2010 is used to develop retrospective air pollution emissions scenarios to quantify the roles and contributions of changes in energy consumption and efficiency, technology progress and end-of-pipe emission reduction measures and their resulting impact on health and crop yields at European and global scale. The reference EDGARv4.3.1 emissions include observed and reported changes in activity data, fuel consumption and air pollution abatement technologies over the past 4 decades, combined with Tier 1 and region-specific Tier 2 emission factors. Two further retrospective scenarios assess the interplay of policy and industry. The highest emission STAG_TECH scenario assesses the impact of the technology and end-of-pipe reduction measures in the European Union, by considering historical fuel consumption, along with a stagnation of technology with constant emission factors since 1970, and assuming no further abatement measures and improvement imposed by European emission standards. The lowest emission STAG_ENERGY scenario evaluates the impact of increased fuel consumption by considering unchanged energy consumption since the year 1970, but assuming the technological development, end-of-pipe reductions, fuel mix and energy efficiency of 2010. Our scenario analysis focuses on the three most important and most regulated sectors (power generation, manufacturing industry and road transport, which are subject to multi-pollutant European Union Air Quality regulations. Stagnation of technology and air pollution reduction measures at 1970 levels would have led to 129 % (or factor 2.3 higher SO2, 71 % higher NOx and 69 % higher PM2.5 emissions in Europe (EU27, demonstrating the large

  9. Impacts of Marcellus Shale Natural Gas Production on Regional Air Quality

    Science.gov (United States)

    Swarthout, R.; Russo, R. S.; Zhou, Y.; Mitchell, B.; Miller, B.; Lipsky, E. M.; Sive, B. C.

    2012-12-01

    Natural gas is a clean burning alternative to other fossil fuels, producing lower carbon dioxide (CO2) emissions during combustion. Gas deposits located within shale rock or tight sand formations are difficult to access using conventional drilling techniques. However, horizontal drilling coupled with hydraulic fracturing is now widely used to enhance natural gas extraction. Potential environmental impacts of these practices are currently being assessed because of the rapid expansion of natural gas production in the U.S. Natural gas production has contributed to the deterioration of air quality in several regions, such as in Wyoming and Utah, that were near or downwind of natural gas basins. We conducted a field campaign in southwestern Pennsylvania on 16-18 June 2012 to investigate the impact of gas production operations in the Marcellus Shale on regional air quality. A total of 235 whole air samples were collected in 2-liter electropolished stainless- steel canisters throughout southwestern Pennsylvania in a regular grid pattern that covered an area of approximately 8500 square km. Day and night samples were collected at each grid point and additional samples were collected near active wells, flaring wells, fluid retention reservoirs, transmission pipelines, and a processing plant to assess the influence of different stages of the gas production operation on emissions. The samples were analyzed at Appalachian State University for methane (CH4), CO2, C2-C10 nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates and selected reduced sulfur compounds. In-situ measurements of ozone (O3), CH4, CO2, nitric oxide (NO), total reactive nitrogen (NOy), formaldehyde (HCHO), and a range of volatile organic compounds (VOCs) were carried out at an upwind site and a site near active gas wells using a mobile lab. Emissions associated with gas production were observed throughout the study region. Elevated mixing ratios of CH4 and CO2 were observed in the

  10. 77 FR 11827 - Approval and Promulgation of Air Quality Implementation Plans; State of Maryland; Regional Haze...

    Science.gov (United States)

    2012-02-28

    ... geographic area and emit PM 2.5 (e.g., sulfates, nitrates, organic carbon, elemental carbon, and soil dust... Multiscale Air Quality (CMAQ) version 4.5.1 is a photochemical grid model capable of addressing ozone, PM...

  11. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions.

    Science.gov (United States)

    Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G

    2015-04-21

    We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.

  12. Tropospheric aerosols radiation feedback on the climate of Pearl River Delta Region using an air quality model

    Science.gov (United States)

    Nduka, I. C.

    2016-12-01

    The Pearl River Delta (PRD) region, one of the most vibrant economic regions in China has been witnessing rapid population, economic and structural growth and development. It is also one of the regions mostly polluted with trace gases and particulates. Recent reviews show large uncertainties in climate modification studies, indicating the need for further investigations, such as the role of tropospheric aerosols on direct and indirect climate modification. The aim of this research is to appraise the impacts of tropospheric aerosols on the climate of PRD region. An integrated air quality downscale meteorology and air quality from regional scale (27km) to local scale (3km). The model will be evaluated for both meteorology and air quality by comparing model results with measurements. The radiative forcing of tropospheric aerosols will also be determined so as to estimate the feedbacks and impacts on the climate. This research, when completed, is expected to improve our understanding of tropospheric aerosol-cloud thermodynamic interactions at regional and local scales, thus enhancing our knowledge of the regional and local climate system, which is anticipated to provide critical references for formulating sustainable environment and air quality policies.

  13. Evaluation of the air quality in the metropolitan region of Belo Horizonte, Minas Gerais: first results

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Igor Felipe Silva, E-mail: igorfelipedx@yahoo.com.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Cruz, Ananda Borjaille; Fonseca, Raquel Luiza M.; Barreto, Alberto Avellar; Menezes, Maria Angela de B.C., E-mail: abc@cdtn.br, E-mail: menezes@cdtn.br, E-mail: aab@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte (Brazil)

    2015-07-01

    The Metropolitan Region of Belo Horizonte presents many industrial activities related to several industries, mainly mining activities, besides the high population concentration, which also contributes to several industrial typologies due to the existence of qualified work and to the vicinity of a future consumer market. This concentration of the population also implies in a great number of vehicles and, consequently, in big traffic jams. The particulate material is one of the pollutants which cause higher environmental risk and it is a mixture of solid and liquid particles in the air which form aerosols. These aerosols, which contain organic and inorganic substances, vary of size, form, composition and origin. In order to characterize the quality of the airborne particulate matter and identify the pollutant sources, a research is being developing in the Metropolitan Region of Belo Horizonte. This paper is focused on presenting the methodology of sampling, determination of concentration of particulates, elemental concentration analysis by k{sub 0}-Neutron Activation method and meteorological analysis, related to two sampling points, one at CDTN/CNEN and other at UFMG. (author)

  14. Evaluation of the air quality in the metropolitan region of Belo Horizonte, Minas Gerais: first results

    International Nuclear Information System (INIS)

    Moura, Igor Felipe Silva

    2015-01-01

    The Metropolitan Region of Belo Horizonte presents many industrial activities related to several industries, mainly mining activities, besides the high population concentration, which also contributes to several industrial typologies due to the existence of qualified work and to the vicinity of a future consumer market. This concentration of the population also implies in a great number of vehicles and, consequently, in big traffic jams. The particulate material is one of the pollutants which cause higher environmental risk and it is a mixture of solid and liquid particles in the air which form aerosols. These aerosols, which contain organic and inorganic substances, vary of size, form, composition and origin. In order to characterize the quality of the airborne particulate matter and identify the pollutant sources, a research is being developing in the Metropolitan Region of Belo Horizonte. This paper is focused on presenting the methodology of sampling, determination of concentration of particulates, elemental concentration analysis by k 0 -Neutron Activation method and meteorological analysis, related to two sampling points, one at CDTN/CNEN and other at UFMG. (author)

  15. Isoprene Emission Factors for Subtropical Street Trees for Regional Air Quality Modeling.

    Science.gov (United States)

    Dunn-Johnston, Kristina A; Kreuzwieser, Jürgen; Hirabayashi, Satoshi; Plant, Lyndal; Rennenberg, Heinz; Schmidt, Susanne

    2016-01-01

    Evaluating the environmental benefits and consequences of urban trees supports their sustainable management in cities. Models such as i-Tree Eco enable decision-making by quantifying effects associated with particular tree species. Of specific concern are emissions of biogenic volatile organic compounds, particularly isoprene, that contribute to the formation of photochemical smog and ground level ozone. Few studies have quantified these potential disservices of urban trees, and current models predominantly use emissions data from trees that differ from those in our target region of subtropical Australia. The present study aimed (i) to quantify isoprene emission rates of three tree species that together represent 16% of the inventoried street trees in the target region; (ii) to evaluate outputs of the i-Tree Eco model using species-specific versus currently used, generic isoprene emission rates; and (iii) to evaluate the findings in the context of regional air quality. Isoprene emission rates of (Myrtaceae) and (Proteaceae) were 2.61 and 2.06 µg g dry leaf weight h, respectively, whereas (Sapindaceae) was a nonisoprene emitter. We substituted the generic isoprene emission rates with these three empirical values in i-Tree Eco, resulting in a 182 kg yr (97%) reduction in isoprene emissions, totaling 6284 kg yr when extrapolated to the target region. From these results we conclude that care has to be taken when using generic isoprene emission factors for urban tree models. We recommend that emissions be quantified for commonly planted trees, allowing decision-makers to select tree species with the greatest overall benefit for the urban environment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Air quality

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The anthropic pollution sources are essentially industrial or bound to transport. A phenomenon of these last twenty years is the decreasing of the industrial pollution and the increasing of pollution coming from automobiles. Emissions of furans and dioxines coming from municipal wastes are measured. A special attention is mentioned for polycyclic aromatic hydrocarbons coming from incomplete combustions. A last aspect of air pollution is studied with the effect on man, ecosystems and materials, by modeling or direct measurements. (N.C.)

  17. Uncertainties in emission estimates of greenhouse gases and air pollutants in China and India and their impacts on regional air quality

    Science.gov (United States)

    Saikawa, E.; Trail, M.; Young, C. L.; Zhong, M.; Avramov, A.; Kim, H.; Wu, Q.; Janssens-Maenhout, G. G. A.; Kurokawa, J. I.; Klimont, Z.; Wagner, F.; Naik, V.; Horowitz, L. W.; Zhao, Y.; Nagpure, A.; Gurjar, B.; Zhang, Q.

    2017-12-01

    Greenhouse gas and air pollutant precursor emissions have been increasing rapidly in both China and India, resulting in local to regional scale effects on air quality. Modelers use emission inventories to represent the temporal and spatial distribution of impacts of air pollutant emissions on regional and global air quality. However, large uncertainties exist in emission inventories. Quantification of uncertainties in emission estimates is essential to better understand the linkages among emissions, air quality, climate, and health. We use Monte Carlo methods to assess the uncertainties of the existing carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emission estimates for both China and India. We focus on the period between 2000 and 2008. In addition to national totals, we also analyze emissions from four source sectors, including industry, transport, power, and residential. We also assess differences in the existing emission estimates within each of the subnational regions. We find large disagreements among the existing inventories at disaggregated levels. We further assess the impact of these differences in emissions on air quality using a chemical transport model. More efforts are needed to constrain emissions, especially in the Indo-Gangetic Plains and in the East and Central regions of China, where large differences across emission inventories result in concomitant large differences in the simulated concentrations of PM and ozone. Our study also highlights the importance of constraining SO2, NOx, and NH3 emissions for secondary PM concentrations over China and India.

  18. Downscaling a Global Climate Model to Simulate Climate Change Impacts on U.S. Regional and Urban Air Quality

    Science.gov (United States)

    Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A. G.

    2013-01-01

    Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12km by 12km resolution, as well as the effect of evolving climate conditions on the air quality at major U.S. cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the U.S. during fall (Western U.S., Texas, Northeastern, and Southeastern U.S), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). We also find that daily peak temperatures tend to increase in most major cities in the U.S. which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.

  19. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China.

    Science.gov (United States)

    Wang, N; Lyu, X P; Deng, X J; Guo, H; Deng, T; Li, Y; Yin, C Q; Li, F; Wang, S Q

    2016-12-15

    To evaluate the impact of emission control measures on the air quality in the Pearl River Delta (PRD) region of South China, statistic data including atmospheric observations, emissions and energy consumptions during 2006-2014 were analyzed, and a Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model was used for various scenario simulations. Although energy consumption doubled from 2004 to 2014 and vehicle number significantly increased from 2006 to 2014, ambient SO 2 , NO 2 and PM 10 were reduced by 66%, 20% and 24%, respectively, mainly due to emissions control efforts. In contrast, O 3 increased by 19%. Model simulations of three emission control scenarios, including a baseline (a case in 2010), a CAP (a case in 2020 assuming control strength followed past control tendency) and a REF (a case in 2020 referring to the strict control measures based on recent policy/plans) were conducted to investigate the variations of air pollutants to the changes in NO x , VOCs and NH 3 emissions. Although the area mean concentrations of NO x , nitrate and PM 2.5 decreased under both NO x CAP (reduced by 1.8%, 0.7% and 0.2%, respectively) and NO x REF (reduced by 7.2%, 1.8% and 0.3%, respectively), a rising of PM 2.5 was found in certain areas as reducing NO x emissions elevated the atmospheric oxidizability. Furthermore, scenarios with NH 3 emission reductions showed that nitrate was sensitive to NH 3 emissions, with decreasing percentages of 0-10.6% and 0-48% under CAP and REF, respectively. Controlling emissions of VOCs reduced PM 2.5 in the southwestern PRD where severe photochemical pollution frequently occurred. It was also found that O 3 formation in PRD was generally VOCs-limited while turned to be NO x -limited in the afternoon (13:00-17:00), suggesting that cutting VOCs emissions would reduce the overall O 3 concentrations while mitigating NO x emissions in the afternoon could reduce the peak O 3 levels. Copyright © 2016 Elsevier B

  20. Air quality

    CSIR Research Space (South Africa)

    Thambiran, Tirusha

    2017-12-01

    Full Text Available ., Blaikie, P., Cannon, T. & Davis, I. 2004. At risk: Natural hazards, people’s vulnerability, and disasters (2nd edition). London: Routledge. Ziervogel, G. & Calder R. 2003. Climate variability and rural livelihoods: Assessing the impact of seasonal... Julia Mambo Kristy Faccer 4 | Global Change Global Change Global Change Global Change | i the quality of research being conducted in South Africa. In addition, South African academics occupy key positions in the Future Earth initiative...

  1. Indoor Air Quality

    Science.gov (United States)

    ... protect yourself and your family. Learn more Air Quality at Work Workers should breathe easy while on the job, but worksites with poor air quality put employees at risk. Healthy air is essential ...

  2. Air Quality System (AQS)

    Science.gov (United States)

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  3. Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta region

    Science.gov (United States)

    Tong, Cheuk Hei Marcus; Yim, Steve Hung Lam; Rothenberg, Daniel; Wang, Chien; Lin, Chuan-Yao; Chen, Yongqin David; Lau, Ngar Cheung

    2018-05-01

    Air pollution is an increasingly concerning problem in many metropolitan areas due to its adverse public health and environmental impacts. Vertical atmospheric conditions have strong effects on vertical mixing of air pollutants, which directly affects surface air quality. The characteristics and magnitude of how vertical atmospheric conditions affect surface air quality, which are critical to future air quality projections, have not yet been fully understood. This study aims to enhance understanding of the annual and seasonal sensitivities of air pollution to both surface and vertical atmospheric conditions. Based on both surface and vertical meteorological characteristics provided by 1994-2003 monthly dynamic downscaling data from the Weather and Research Forecast Model, we develop generalized linear models (GLMs) to study the relationships between surface air pollutants (ozone, respirable suspended particulates, and sulfur dioxide) and atmospheric conditions in the Pearl River Delta (PRD) region. Applying Principal Component Regression (PCR) to address multi-collinearity, we study the contributions of various meteorological variables to pollutants' concentration levels based on the loading and model coefficient of major principal components. Our results show that relatively high pollutant concentration occurs under relatively low mid-level troposphere temperature gradients, low relative humidity, weak southerly wind (or strong northerly wind) and weak westerly wind (or strong easterly wind). Moreover, the correlations vary among pollutant species, seasons, and meteorological variables at various altitudes. In general, pollutant sensitivity to meteorological variables is found to be greater in winter than in other seasons, and the sensitivity of ozone to meteorology differs from that of the other two pollutants. Applying our GLMs to anomalous air pollution episodes, we find that meteorological variables up to mid troposphere (∼700 mb) play an important role in

  4. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    NARCIS (Netherlands)

    Aouizerats, B.; van der Werf, G.R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We

  5. Regional/Urban Air Quality Modeling Assessment over China Using the Models-3/CMAQ System

    Science.gov (United States)

    Fu, J. S.; Jang, C. C.; Streets, D. G.; Li, Z.; Wang, L.; Zhang, Q.; Woo, J.; Wang, B.

    2004-12-01

    China is the world's most populous country with a fast growing economy that surges in energy comsumption. It has become the second largest energy consumer after the United States although the per capita level is much lower than those found in developed or developing countries. Air pollution has become one of the most important problems of megacities such as Beijing and Shanghai and has serious impacts on public health, causes urban and regional haze. The Models-3/CMAQ modeling application that has been conducted to simulate multi-pollutants in China is presented. The modeling domains cover East Asia (36-kmx36-km) including Japan, South Korea, Korea DPR, Indonesia, Thailand, India and Mongolia, East China (12-kmx12-km) and Beijing/Tianjing, Shanghai (4-kmx4-km). For this study, the Asian emission inventory based on the emission estimates of the year 2000 that supported the NASA TRACE-P program is used. However, the TRACE-P emission inventory was developed for a different purpose such as global modeling. TRACE-P emission inventory may not be practical in urban area. There is no China national emission inventory available. Therefore, TRACE-P emission inventory is used on the East Asia and East China domains. The 8 districts of Beijing and Shanghai local emissions inventory are used to replace TRACE-P in 4-km domains. The meteorological data for the Models-3/CMAQ run are extracted from MM5. The model simulation is performed during the period January 1-20 and July 1-20, 2001 that presented the winter and summer time for China areas. The preliminary model results are shown O3 concentrations are in the range of 80 -120 ppb in the urban area. Lower urban O3 concentrations are shown in Beijing areas, possibly due to underestimation of urban man-made VOC emissions in the TRACE-P inventory and local inventory. High PM2.5 (70ug/m3 in summer and 150ug/m3 in winter) were simulated over metropolitan & downwind areas with significant secondary constituents. More comprehensive

  6. 77 FR 17367 - Approval and Promulgation of Air Quality Implementation Plans; Connecticut; Regional Haze

    Science.gov (United States)

    2012-03-26

    ... dark object can be viewed against the sky. The deciview is a useful measure for tracking progress in... non-air quality environmental impacts of compliance; and (4) the remaining useful life of any... in use at the source; (4) the remaining useful life of the source; and (5) the degree of improvement...

  7. Monitoring and assessment of regional air quality in China using space observations (Marco Polo)

    NARCIS (Netherlands)

    Ronald, A. van der; Timmermans, R.; Bai, J.; Zhang, Q.; Wal, L. van der

    2013-01-01

    In this paper we will present the FP7-project 'MarcoPolo'. The main objective of MarcoPolo is to improve air quality monitoring, modelling and forecasting over China using satellite data. During the project a new emission inventory will be constructed by combining Chinese and European expertise. It

  8. 77 FR 75703 - Partial Approval and Disapproval of Air Quality Implementation Plans; Arizona; Regional Haze and...

    Science.gov (United States)

    2012-12-21

    ... 2.5 can also cause serious health effects and mortality in humans and contributes to environmental... Technical Support System (TSS) which provides an analysis of the causes of haze, and the levels of... determined by using air quality measurements to estimate light extinction and then transforming the value of...

  9. A Seasonal Perspective on Regional Air Quality in CentralCalifornia - Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Robert A.; Brown, Nancy J.; Tonse, Shaheen R.; Jin, Ling

    2006-12-01

    Central California spans a wide variety of urban, agricultural, and natural terrain, including the San Francisco Bay area, the Central Valley, and the Sierra Nevada Mountains. Population within this region is growing rapidly, and there are persistent, serious air pollution problems including fine particulate matter (PM{sub 2.5}) and ozone. Summertime photochemical air pollution is the focus of the present study, which represents a first phase in the development and application of a modeling capability to assess formation and transport of ozone and its precursors within Central California over an entire summer season. This contrasts with past studies that have examined pollutant dynamics for a few selected high-ozone episodes each lasting 3-5 days. The Community Multiscale Air Quality model (CMAQ) has been applied to predict air pollutant formation and transport in Central California for a 15-day period beginning on July 24, 2000. This period includes a 5-day intensive operating period (July 29 to August 2) from the Central California Ozone Study (CCOS). Day-specific meteorological conditions were modeled by research collaborators at NOAA using a mesoscale meteorological model (MM5). Pollutant emissions within the study domain were based on CARB emission inventory estimates, with additional efforts conducted as part of this research to capture relevant emissions variability including (1) temperature and sunlight-driven changes in biogenic VOC, (2) weekday/weekend and diurnal differences in light-duty (LD) and heavy-duty (HD) motor vehicle emissions, (3) effects of day-specific meteorological conditions on plume rise from point sources such as power plants. We also studied the effects of using cleaner pollutant inflow boundary conditions, lower than indicated during CCOS aircraft flights over the Pacific Ocean, but supported by other surface, ship-based, balloon and aircraft sampling studies along the west coast. Model predictions were compared with measured

  10. Aerosols: connection between regional climatic change and air quality (Iupac Technical Report)

    NARCIS (Netherlands)

    Slanina, J.; Zhang, Y.H.

    2004-01-01

    yAerosols play an important role in all problems connected with air pollution, ranging from very local effects and human health problems to regional problems such as acid deposition and eutrophication up to continental and global questions such as stratospheric ozone loss and climatic change. In

  11. 77 FR 34218 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Regional Haze

    Science.gov (United States)

    2012-06-11

    ... Boulevard, Chicago, Illinois 60604. This facility is open from 8:30 a.m. to 4:30 p.m., Monday through Friday... Agency, Region 5, 77 West Jackson Boulevard, Chicago, Illinois 60604, (312) 886-6031, [email protected] and the BART guidelines. Alcoa identified low NO X burners (LNB), LNB combined with over- fire air...

  12. 77 FR 31240 - Approval and Promulgation of Air Quality Implementation Plans; State of Florida; Regional Haze...

    Science.gov (United States)

    2012-05-25

    ... CAIR to address BART requirements related to both nitrogen oxides (NOx) and sulfur dioxide (SO 2..., memorandum from William L. Wehrum, Acting Assistant Administrator for Air and Radiation, to EPA Regional... generating plant with a total generating capacity in excess of 750 megawatts (MW), a state must use the...

  13. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    Directory of Open Access Journals (Sweden)

    H.-H. Lee

    2018-05-01

    Full Text Available Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF model coupled with a chemistry component (WRF-Chem to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning versus non-fire (including fossil fuel combustion, and road dust, etc. sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a fossil fuel burning only, (b biomass burning only, and (c both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from  ∼  4110 per year in 2002 to  ∼  6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is

  14. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    Science.gov (United States)

    Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien

    2018-05-01

    Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these

  15. The Impact of a Potential Shale Gas Development in Germany and the United Kingdom on Local and Regional Air Quality

    Science.gov (United States)

    Weger, L.; Lupascu, A.; Cremonese, L.; Butler, T. M.

    2017-12-01

    Numerous countries in Europe that possess domestic shale gas reserves are considering exploiting this unconventional gas resource as part of their energy transition agenda. While natural gas generates less CO2 emissions upon combustion compared to coal or oil, making it attractive as a bridge in the transition from fossil fuels to renewables, production of shale gas leads to emissions of CH4 and air pollutants such as NOx, VOCs and PM. These gases in turn influence the climate as well as air quality. In this study, we investigate the impact of a potential shale gas development in Germany and the United Kingdom on local and regional air quality. This work builds on our previous study in which we constructed emissions scenarios based on shale gas utilization in these counties. In order to explore the influence of shale gas production on air quality, we investigate emissions predicted from our shale gas scenarios with the Weather Research and Forecasting model with chemistry (WRF-Chem) model. In order to do this, we first design a model set-up over Europe and evaluate its performance for the meteorological and chemical parameters. Subsequently we add shale gas emissions fluxes based on the scenarios over the area of the grid in which the shale gas activities are predicted to occur. Finally, we model these emissions and analyze the impact on air quality on both a local and regional scale. The aims of this work are to predict the range of adverse effects on air quality, highlight the importance of emissions control strategies in reducing air pollution, to promote further discussion, and to provide policy makers with information for decision making on a potential shale gas development in the two study countries.

  16. Impact of regional haze towards air quality in Malaysia: A review

    Science.gov (United States)

    Latif, Mohd Talib; Othman, Murnira; Idris, Nurfathehah; Juneng, Liew; Abdullah, Ahmad Makmom; Hamzah, Wan Portia; Khan, Md Firoz; Nik Sulaiman, Nik Meriam; Jewaratnam, Jegalakshimi; Aghamohammadi, Nasrin; Sahani, Mazrura; Xiang, Chung Jing; Ahamad, Fatimah; Amil, Norhaniza; Darus, Mashitah; Varkkey, Helena; Tangang, Fredolin; Jaafar, Abu Bakar

    2018-03-01

    Haze is a common phenomenon afflicting Southeast Asia (SEA), including Malaysia, and has occurred almost every year within the last few decades. Haze is associated with high level of air pollutants; it reduces visibility and affects human health in the affected SEA countries. This manuscript aims to review the potential origin, chemical compositions, impacts and mitigation strategies of haze in Malaysia. "Slash and burn" agricultural activities, deforestation and oil palm plantations on peat areas, particularly in Sumatra and Kalimantan, Indonesia were identified as the contributing factors to high intensity combustions that results in transboundary haze in Malaysia. During the southwest monsoon (June to September), the equatorial SEA region experiences a dry season and thus an elevated number of fire events. The prevailing southerly and south-westerly winds allow the cross-boundary transportation of pollutants from the burning areas in Sumatra and Kalimantan in Indonesia, to Peninsular Malaysia and Malaysian Borneo, respectively. The dry periods caused by the El Niño - Southern Oscillation (ENSO) prolong the duration of poor air quality. The size range of particulate matter (PM) in haze samples indicates that haze is dominated by fine particles. Secondary inorganic aerosols (SIA, such as SO42- and NH4+) and organic substances (such as levoglucosan, LG) were the main composition of PM during haze episodes. Local vehicular emissions and industrial activities also contribute to the amount of pollutants and can introduce toxic material such as polyaromatic hydrocarbons (PAHs). Haze episodes have contributed to increasing hospital visits for treatments related to chronic obstructive pulmonary diseases, upper respiratory infections, asthma and rhinitis. Respiratory mortality increased 19% due to haze episodes. Children and senior citizens are more likely to suffer the health impacts of haze. The inpatient cost alone from haze episodes was estimated at around USD 91

  17. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    OpenAIRE

    Xie, Y; Paulot, F; Carter, WPL; Nolte, CG; Luecken, DJ; Hutzell, WT; Wennberg, PO; Cohen, RC; Pinder, RW

    2013-01-01

    The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation ch...

  18. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    OpenAIRE

    Xie, Y.; Carter, W. P. L.; Nolte, C. G.; Luecken, D. J.; Hutzell, W. T.; Wennberg, P. O.; Cohen, R. C.; Pinder, R. W.

    2013-01-01

    The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NO_x recycling rates. We incorporate recent advances in isoprene oxidation chemistry int...

  19. Technical and Non-Technical Measures for air pollution emission reduction: The integrated assessment of the regional Air Quality Management Plans through the Italian national model

    Science.gov (United States)

    D'Elia, I.; Bencardino, M.; Ciancarella, L.; Contaldi, M.; Vialetto, G.

    2009-12-01

    The Italian Air Quality legislation underwent sweeping changes with the implementation of the 1996 European Air Quality Framework Directive when the Italian administrative Regions were entrusted with air quality management tasks. The most recent Regional Air Quality Management Plans (AQMPs) highlighted the importance of Non-Technical Measures (NTMs), in addition to Technical Measures (TMs), in meeting environmental targets. The aim of the present work is to compile a list of all the TMs and NTMs taken into account in the Italian Regional AQMPs and to give in the target year, 2010, an estimation of SO 2, NO x and PM 10 emission reductions, of PM 10 concentration and of the health impact of PM 2.5 concentrations in terms of Life Expectancy Reduction. In order to do that, RAINS-Italy, as part of the National Integrated Modeling system for International Negotiation on atmospheric pollution (MINNI), has been applied. The management of TMs and NTMs inside RAINS have often obliged both the introduction of exogenous driving force scenarios and the control strategy modification. This has inspired a revision of the many NTM definitions and a clear choice of the definition adopted. It was finally highlighted that only few TMs and NTMs implemented in the AQMPs represent effective measures in reaching the environmental targets.

  20. Impacts of using reformulated and oxygenated fuel blends on the regional air quality of the upper Rhine valley

    Directory of Open Access Journals (Sweden)

    J.-F. Vinuesa

    2006-01-01

    Full Text Available The effects of using three alternative gasoline fuel blends on regional air quality of the upper Rhine valley have been investigated. The first of the tested fuels is oxygenated by addition of ethyl-tertio-butyl ether (ETBE, the second is based on a reformulation of its composition and the third on is both oxygenated and reformulated. The upper Rhine valley is a very sensitive region for pollution episodes and several meteorological and air quality studies have already been performed. High temporal and spatial emission inventories are available allowing relevant and realistic modifications of the emission inventories. The calculation period, i.e., 11 May 1998, corresponds to a regional photochemical ozone pollution episode during which ozone concentrations exceeded several times the information threshold of the ozone directive of the European Union (180 μg m-3 as 1 hourly average. New emission inventories are set up using specific emission factors related to the alternative fuels by varying the fraction of gasoline passenger cars (from 50% to 100% using the three fuel blends. Then air quality modeling simulations are performed using these emission inventories over the upper Rhine valley. The impact of alternative fuels on regional air quality is evaluated by comparing these simulations with the one using a reference emission inventory, e.g., where no modifications of the fuel composition are included. The results are analyzed by focusing on peak levels and daily averaged concentrations. The use of the alternative fuels leads to general reductions of ozone and volatile organic compounds (VOC and increases of NOx levels. We found different behaviors related to the type of the area of concern i.e. rural or urban. The impacts on ozone are enhanced in urban areas where 15% reduction of the ozone peak and daily averaged concentrations can be reached. This behavior is similar for the NOx for which, in addition, an increase of the levels can be noted

  1. Air quality and disease

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Climate change is an important determinant of air quality. Climate change is an important determinant of air quality. Poor air quality associated with higher levels of respiratory and cardiovascular disease. Exposure to high levels of ground-level ozone associated with ...

  2. 77 FR 11958 - Approval and Promulgation of Air Quality Implementation Plans; State of Missouri; Regional Haze...

    Science.gov (United States)

    2012-02-28

    ... viewed against the sky. B. Requirements of the CAA and EPA's Regional Haze Rule (RHR) In section 169A of... quality environmental impacts of compliance; and (4) the remaining useful life of any potentially affected... compliance, (3) any existing pollution control technology in use at the source, (4) the remaining useful life...

  3. 77 FR 42833 - Approval, Disapproval and Promulgation of Air Quality Implementation Plans; Arizona; Regional...

    Science.gov (United States)

    2012-07-20

    ... Quality Environmental Impacts 3. Existing Pollution Control Technology 4. Remaining Useful Life of the... Useful Life of the Source 5. Degree of Improvement in Visibility a. Modeling Protocol b. Baseline... viewed against the sky. B. History of Regional Haze Regulations In section 169A of the 1977 Amendments to...

  4. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    Science.gov (United States)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is

  5. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions

    Science.gov (United States)

    Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru

    2018-02-01

    A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.

  6. Emissions inventories for urban airshed model application in the Philadelphia Aqcr (Air Quality Control Region)

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    This report documents the procedures used to develop emissions input required by the Urban Airshed photochemical oxidant model. Ambient air quality data were gathered as part of another effort during the summer of 1979 in Philadelphia to be used in the model validation effort. For 1979 and the 1987 projection year, ES compiled hour by hour emissions data for a representative weekday in the oxidant season. The pollutants inventoried are five categories of VOC required by the Airshed model, four categories of VOC defined in RAPS, NO, NO2, CO, SO2, and TSP. Point and area sources were considered with the highway vehicle portion of the inventory being subcontracted to DVRPC. County level area source data were allocated to a 502-cell grid system. Projections were made so that ozone air quality in 1987 could be investigated. ES developed annualized EIS/PandR data and data files containing temporal and VOC/NOx profiles in order to generate the data packets required by the Airshed model.

  7. Air Quality and Climate Change

    International Nuclear Information System (INIS)

    Colette, A.; Rouil, L.; Bessagnet, B.; Schucht, S.; Szopa, S.; Vautard, R.; Menut, L.

    2013-01-01

    Climate change and air quality are closely related: through the policy measures implemented to mitigate these major environmental threats but also through the geophysical processes that drive them. We designed, developed and implemented a comprehensive regional air quality and climate modeling System to investigate future air quality in Europe taking into account the combined pressure of future climate change and long range transport. Using the prospective scenarios of the last generation of pathways for both climate change (emissions of well mixed greenhouse gases) and air pollutants, we can provide a quantitative view into the possible future air quality in Europe. We find that ozone pollution will decrease substantially under the most stringent scenario but the efforts of the air quality legislation will be adversely compensated by the penalty of global warming and long range transport for the business as usual scenario. For particulate matter, the projected reduction of emissions efficiently reduces exposure levels. (authors)

  8. Reformulated and alternative fuels: modeled impacts on regional air quality with special emphasis on surface ozone concentration.

    Science.gov (United States)

    Schell, Benedikt; Ackermann, Ingmar J; Hass, Heinz

    2002-07-15

    The comprehensive European Air Pollution and Dispersion model system was used to estimate the impacts of the usage of reformulated and alternative fuels on regional air quality with special emphasis on surface ozone concentrations. A severe western European summer smog episode in July 1994 has been used as a reference, and the model predictions have been evaluated for this episode. A forecast simulation for the year 2005 (TREND) has been performed, including the future emission development based on the current legislation and technologies available. The results of the scenario TREND are used as a baseline for the other 2005 fuel scenarios, including fuel reformulation, fuel sulfur content, and compressed natural gas (CNG) as an alternative fuel. Compared to the year 1994, significant reductions in episode peak ozone concentrations and ozone grid hours are predicted for the TREND scenario. These reductions are even more pronounced within the investigated alternative and reformulated fuel scenarios. Especially, low sulfur fuels are appropriate for an immediate improvement in air quality, because they effect the emissions of the whole fleet. Furthermore, the simulation results indicate that the introduction of CNG vehicles would also enhance air quality with respect to ozone.

  9. Indoor Air Quality Manual.

    Science.gov (United States)

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  10. Prescribed fire and air quality in the American South: a review of conflicting interests and a technique for incorporating the land manager into regional air quality modeling

    Science.gov (United States)

    Gary L. Achtemeier

    2013-01-01

    In this paper, conflicting interests in prescribed burn practice and improving air quality in the South are reviewed. Conflicting societal interests and legislative actions threaten to curtail the use of prescribed fire to manage for endangered species and for other land management objectives in the South. This comes at a time when efforts are being made to increase...

  11. Qualitative and quantitative examination of the performance of regional air quality models representing different modeling approaches

    International Nuclear Information System (INIS)

    Bhumralkar, C.M.; Ludwig, F.L.; Shannon, J.D.; McNaughton, D.

    1985-04-01

    The calculations of three different air quality models were compared with the best available observations. The comparisons were made without calibrating the models to improve agreement with the observations. Model performance was poor for short averaging times (less than 24 hours). Some of the poor performance can be traced to errors in the input meteorological fields, but error exist on all levels. It should be noted that these models were not originally designed for treating short-term episodes. For short-term episodes, much of the variance in the data can arise from small spatial scale features that tend to be averaged out over longer periods. These small spatial scale features cannot be resolved with the coarse grids that are used for the meteorological and emissions inputs. Thus, it is not surprising that the models performed for the longer averaging times. The models compared were RTM-II, ENAMAP-2 and ACID. (17 refs., 5 figs., 4 tabs

  12. Air Quality System (AQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements...

  13. Estimation of regional air-quality damages from Marcellus Shale natural gas extraction in Pennsylvania

    International Nuclear Information System (INIS)

    Litovitz, Aviva; Abramzon, Shmuel; Curtright, Aimee; Samaras, Constantine; Burger, Nicholas

    2013-01-01

    This letter provides a first-order estimate of conventional air pollutant emissions, and the monetary value of the associated environmental and health damages, from the extraction of unconventional shale gas in Pennsylvania. Region-wide estimated damages ranged from $7.2 to $32 million dollars for 2011. The emissions from Pennsylvania shale gas extraction represented only a few per cent of total statewide emissions, and the resulting statewide damages were less than those estimated for each of the state’s largest coal-based power plants. On the other hand, in counties where activities are concentrated, NO x emissions from all shale gas activities were 20–40 times higher than allowable for a single minor source, despite the fact that individual new gas industry facilities generally fall below the major source threshold for NO x . Most emissions are related to ongoing activities, i.e., gas production and compression, which can be expected to persist beyond initial development and which are largely unrelated to the unconventional nature of the resource. Regulatory agencies and the shale gas industry, in developing regulations and best practices, should consider air emissions from these long-term activities, especially if development occurs in more populated areas of the state where per-ton emissions damages are significantly higher. (letter)

  14. Impact of Marcellus Shale natural gas development in southwest Pennsylvania on volatile organic compound emissions and regional air quality.

    Science.gov (United States)

    Swarthout, Robert F; Russo, Rachel S; Zhou, Yong; Miller, Brandon M; Mitchell, Brittney; Horsman, Emily; Lipsky, Eric; McCabe, David C; Baum, Ellen; Sive, Barkley C

    2015-03-03

    The Marcellus Shale is the largest natural gas deposit in the U.S. and rapid development of this resource has raised concerns about regional air pollution. A field campaign was conducted in the southwestern Pennsylvania region of the Marcellus Shale to investigate the impact of unconventional natural gas (UNG) production operations on regional air quality. Whole air samples were collected throughout an 8050 km(2) grid surrounding Pittsburgh and analyzed for methane, carbon dioxide, and C1-C10 volatile organic compounds (VOCs). Elevated mixing ratios of methane and C2-C8 alkanes were observed in areas with the highest density of UNG wells. Source apportionment was used to identify characteristic emission ratios for UNG sources, and results indicated that UNG emissions were responsible for the majority of mixing ratios of C2-C8 alkanes, but accounted for a small proportion of alkene and aromatic compounds. The VOC emissions from UNG operations accounted for 17 ± 19% of the regional kinetic hydroxyl radical reactivity of nonbiogenic VOCs suggesting that natural gas emissions may affect compliance with federal ozone standards. A first approximation of methane emissions from the study area of 10.0 ± 5.2 kg s(-1) provides a baseline for determining the efficacy of regulatory emission control efforts.

  15. 77 FR 24793 - Approval and Promulgation of Air Quality Implementation Plans; State of New York; Regional Haze...

    Science.gov (United States)

    2012-04-25

    ...- air quality environmental impacts of compliance, (3) any existing pollution control technology in use.... Implication of Clean Air Interstate Rule and Cross State Air Pollution Rule II. What is the background for EPA... CAIR rule, on July 6, 2011 EPA finalized the Cross- State Air Pollution Rule (CSAPR); a rule intended...

  16. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    Science.gov (United States)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration

  17. The Impact of the Aerosol Direct Radiative Forcing on Deep Convection and Air Quality in the Pearl River Delta Region

    Science.gov (United States)

    Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.

    2018-05-01

    Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.

  18. Ozone, air quality and climatic change

    International Nuclear Information System (INIS)

    Van Noije, T.

    2008-01-01

    Changes in climate due to increased greenhouse gas emissions differ per region. Regional climate changes can also be caused by regional changes in air quality, though. On the other hand, global and regional changes in climate also lead to changes in air quality without any changes in sources of pollution. This article discusses the various aspects of the interaction between air quality and climate change with extra focus on the role of ozone. [mk] [nl

  19. A study of the influence of regional environmental expenditure on air quality in China: the effectiveness of environmental policy.

    Science.gov (United States)

    He, Lingyun; Wu, Meng; Wang, Deqing; Zhong, Zhangqi

    2018-03-01

    Based on the panel data model, data on environmental expenditures, the air quality index, economic aggregates, industrial structures, etc., of seven seriously polluted cities in China, from the period 2007-2015, were collected, and this paper estimates the general relationship between environmental expenditures and the air quality index. Besides, the impact of the fuel tax policy on air quality as well as on the relationship between environmental expenditure and the air quality index is tested using the method of regression discontinuity. We find that there is a long-term equilibrium relationship between environmental expenditure and air quality index as well as a 0.0507% positive effect of the former on the latter. Second, for Beijing, Taiyuan, Chongqing, and Lanzhou, a 1% increase in environmental expenditure leads to 0.0773, 0.0125, 0.0965, and 0.0912% decreases in the air quality index, respectively; however, for Shijiazhuang, Ji'nan, and Urumqi, effect of environmental expenditure on air quality is insignificant. Third, both economic growth and optimization of the industrial structure can lead to an improvement of air quality. Fourth, since the implementation of the fuel tax policy in 2009, the air quality of the sample cities has improved, and the pulling effect of environmental expenditure on the air quality index has decreased from 0.0507 to 0.0048%. Our findings cannot only clarify the effect of environmental expenditures on air quality but can also objectively judge the effectiveness of environmental policies of China to a certain extent. It may benefit Chinese government to effectively govern air pollution with fiscal tools in conjunction with economic and environmental characteristics.

  20. Air quality impact of the shut-down of a hospital waste incinerator in the Oporto region

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, M.; Pereira, M.; Borrego, C. [IDAD - Inst. do Ambiente e Desenvolvimento (Portugal)

    2004-09-15

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are injected into the atmosphere by various combustion processes and dispersed throughout the environment by atmospheric transport. These combustion processes include the incineration of municipal solid wastes (MSW). The construction of a MSW incinerator in the Portuguese region of Oporto in 1998 led to the development of an external air quality monitoring program. Since that year, the collection of a total of 89 samples has provided a characterization of PCDD/PCDF levels in the Oporto region. To trace any source of contamination, a comparison of the PCDD/PCDF homologue profiles in environmental samples is made by a simple direct comparison and by cluster analysis. The determination of characteristic homologue profiles in representative environmental samples is essential to evaluate the relationship between sources and impacted areas. This information helps to understand the impact of the surrounding industries on the environment and public health, having in mind that the Oporto region is one of the major industrial and densely inhabited areas of Portugal. The present paper focuses on PCDD/PCDF ambient air data obtained in this region since June 1998 until February 2004.

  1. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  2. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    Directory of Open Access Journals (Sweden)

    Y. Xie

    2013-08-01

    Full Text Available The CMAQ (Community Multiscale Air Quality us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA (United States Environmental Protection Agency CMAQ model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2 recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination on the southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4–9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs and their relationship with O3 by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 hours or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of

  3. Air Quality Modeling for the Urban Jackson, Mississippi Region Using a High Resolution WRF/Chem Model

    Directory of Open Access Journals (Sweden)

    Shelton J. Swanier

    2011-06-01

    Full Text Available In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi region using an online WRF/Chem (Weather Research and Forecasting–Chemistry model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators.

  4. Development of visibility forecasting modeling framework for the Lower Fraser Valley of British Columbia using Canada's Regional Air Quality Deterministic Prediction System.

    Science.gov (United States)

    So, Rita; Teakles, Andrew; Baik, Jonathan; Vingarzan, Roxanne; Jones, Keith

    2018-05-01

    Visibility degradation, one of the most noticeable indicators of poor air quality, can occur despite relatively low levels of particulate matter when the risk to human health is low. The availability of timely and reliable visibility forecasts can provide a more comprehensive understanding of the anticipated air quality conditions to better inform local jurisdictions and the public. This paper describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System (RAQDPS) for the Lower Fraser Valley of British Columbia. A baseline model (GM-IMPROVE) was constructed using the revised IMPROVE algorithm based on unprocessed forecasts from the RAQDPS. Three additional prototypes (UMOS-HYB, GM-MLR, GM-RF) were also developed and assessed for forecast performance of up to 48 hr lead time during various air quality and meteorological conditions. Forecast performance was assessed by examining their ability to provide both numerical and categorical forecasts in the form of 1-hr total extinction and Visual Air Quality Ratings (VAQR), respectively. While GM-IMPROVE generally overestimated extinction more than twofold, it had skill in forecasting the relative species contribution to visibility impairment, including ammonium sulfate and ammonium nitrate. Both statistical prototypes, GM-MLR and GM-RF, performed well in forecasting 1-hr extinction during daylight hours, with correlation coefficients (R) ranging from 0.59 to 0.77. UMOS-HYB, a prototype based on postprocessed air quality forecasts without additional statistical modeling, provided reasonable forecasts during most daylight hours. In terms of categorical forecasts, the best prototype was approximately 75 to 87% correct, when forecasting for a condensed three-category VAQR. A case study, focusing on a poor visual air quality yet low Air Quality Health Index episode

  5. Air quality model guideline

    International Nuclear Information System (INIS)

    Idriss, A.; Spurrell, F.

    2009-06-01

    Alberta Environment has developed a guidelines for operations and proposed operations that require approvals under the province's Environmental Protection and Enhancement Act or that operate under a code of practice for emissions to the atmosphere. In an effort to ensure consistency in the use of dispersion models for regulatory applications in Alberta, this document provided detailed guidance on suitable methods and approaches that should be employed to assess air quality from emission sources, specifically, information required to demonstrate that a source meets the Alberta ambient air quality objectives. The document outlined the statutory authority and provided an overview of the approach. It provided detailed advice on the types and uses of dispersion models with particular reference to the modelling protocol, input data, and output interpretation. Guidance on the application of regulatory models were also presented. Various models were described and their intended uses were explained. Internet addresses for different modelling resources were also offered. Last, some information about regional modelling in the province of Alberta was discussed. 40 refs., 4 tabs., 7 figs., 3 appendices.

  6. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source...... apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2002 the air quality was measured in four Danish cities and at two background sites. NO2 and PM10 were at several stations found in concentrations above the new EU limit values, which the Member...

  7. The impact of traffic emissions on air quality in the Berlin-Brandenburg region - a case study on cycling scenarios

    Science.gov (United States)

    Kuik, F.; Lauer, A.; von Schneidemesser, E.; Butler, T. M.

    2016-12-01

    Many European cities continue to struggle with exceedances of NO2 limit values at measurement sites near roads, of which a large contribution is attributed to emissions from traffic. In this study, we explore how urban air quality can be improved with different traffic measures using the example of the Berlin-Brandenburg region. In order to simulate urban background air quality we use the Weather Research and Forecasting model with chemistry (WRF-Chem) at a horizontal resolution of 1km. We use emission input data at a horizontal resolution of 1km obtained by downscaling TNO-MACC III emissions based on local proxy data including population and traffic densities. In addition we use a statistical approach combining the simulated urban background concentrations with information on traffic densities to estimate NO2 at street level. This helps assessing whether the emission scenarios studied here can lead to significant reductions in NO2 concentrations at street level. The emission scenarios in this study represent a range of scenarios in which car traffic is replaced with bicycle traffic. Part of this study was an initial discussion phase with stakeholders, including policy makers and NGOs. The discussions have shown that the different stakeholders are interested in a scientific assessment of the impact of replacing car traffic with bicycle traffic in the Berlin-Brandenburg urban area. Local policy makers responsible for city planning and implementing traffic measures can make best use of scientific modeling results if input data and scenarios are as realistic as possible. For these reasons, the scenarios cover very idealized optimistic ("all passenger cars are replaced by bicycles") and pessimistic ("all cyclists are replaced by cars") scenarios to explore the sensitivity of simulated urban background air quality to these changes, as well as additional scenarios based on city-specific data to analyze more realistic situations. Of particular interest is how these impact

  8. Ozone - Current Air Quality Index

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... resources for Hawaii residents and visitors more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  9. Improving Indoor Air Quality

    Science.gov (United States)

    Usually the most effective way to improve indoor air quality is to eliminate individual sources of pollution or to reduce their emissions. Some sources, like those that contain asbestos, can be sealed or enclosed.

  10. State Air Quality Standards.

    Science.gov (United States)

    Pollution Engineering, 1978

    1978-01-01

    This article presents in tabular form the air quality standards for sulfur dioxide, carbon monoxide, nitrogen dioxide, photochemicals, non-methane hydrocarbons and particulates for each of the 50 states and the District of Columbia. (CS)

  11. Process air quality data

    Science.gov (United States)

    Butler, C. M.; Hogge, J. E.

    1978-01-01

    Air quality sampling was conducted. Data for air quality parameters, recorded on written forms, punched cards or magnetic tape, are available for 1972 through 1975. Computer software was developed to (1) calculate several daily statistical measures of location, (2) plot time histories of data or the calculated daily statistics, (3) calculate simple correlation coefficients, and (4) plot scatter diagrams. Computer software was developed for processing air quality data to include time series analysis and goodness of fit tests. Computer software was developed to (1) calculate a larger number of daily statistical measures of location, and a number of daily monthly and yearly measures of location, dispersion, skewness and kurtosis, (2) decompose the extended time series model and (3) perform some goodness of fit tests. The computer program is described, documented and illustrated by examples. Recommendations are made for continuation of the development of research on processing air quality data.

  12. Examining Air Quality-Meteorology Interactions on Regional to Hemispheric Scales

    Science.gov (United States)

    This presentation provides motivation for coupling the atmospheric dynamics and chemistry calculations in air pollution modeling systems, provides an overview of how this coupling is achieved in the WRF-CMAQ 2-way coupled model, presents results from various applications of the m...

  13. 77 FR 21896 - Approval and Promulgation of Air Quality Implementation Plans; State of Nevada; Regional Haze...

    Science.gov (United States)

    2012-04-12

    ... air (OFA) systems, mechanical collectors for particulate control, wet scrubbers that use soda ash for... for ammonia slip from SCR or SNCR to impact the salability and disposal of fly ash, as well as to create a visible stack plume. The potential for transportation and storage of ammonia to result in an...

  14. The impact of China's vehicle emissions on regional air quality in 2000 and 2020: a scenario analysis

    Directory of Open Access Journals (Sweden)

    E. Saikawa

    2011-09-01

    Full Text Available The number of vehicles in China has been increasing rapidly. We evaluate the impact of current and possible future vehicle emissions from China on Asian air quality. We modify the Regional Emission Inventory in Asia (REAS for China's road transport sector in 2000 using updated Chinese data for the number of vehicles, annual mileage, and emission factors. We develop two scenarios for 2020: a scenario where emission factors remain the same as they were in 2000 (No-Policy, NoPol, and a scenario where Euro 3 vehicle emission standards are applied to all vehicles (except motorcycles and rural vehicles. The Euro 3 scenario is an approximation of what may be the case in 2020 as, starting in 2008, all new vehicles in China (except motorcycles were required to meet the Euro 3 emission standards. Using the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem, we examine the regional air quality response to China's vehicle emissions in 2000 and in 2020 for the NoPol and Euro 3 scenarios. We evaluate the 2000 model results with observations in Japan, China, Korea, and Russia. Under NoPol in 2020, emissions of carbon monoxide (CO, nitrogen oxides (NOx, non-methane volatile organic compounds (NMVOCs, black carbon (BC, and organic carbon (OC from China's vehicles more than double compared to the 2000 baseline. If all vehicles meet the Euro 3 regulations in 2020, however, these emissions are reduced by more than 50% relative to NoPol. The implementation of stringent vehicle emission standards leads to a large, simultaneous reduction of the surface ozone (O3 mixing ratios and particulate matter (PM2.5 concentrations. In the Euro 3 scenario, surface O3 is reduced by more than 10 ppbv and surface PM2.5 is reduced by more than 10 μg m−3 relative to NoPol in Northeast China in all seasons. In spring, surface O3 mixing ratios and PM2.5 concentrations in

  15. 76 FR 49711 - Approval and Promulgation of Air Quality Implementation Plans; State of New Jersey; Regional Haze...

    Science.gov (United States)

    2011-08-11

    ... matter (PM 2.5 ) (e.g., sulfates, nitrates, organic carbon, elemental carbon, and soil dust), which also.../Community Multiscale Air Quality (CMAQ) version 4.5.1 is a photochemical grid model capable of addressing...

  16. Global Air Quality and Climate

    Science.gov (United States)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; hide

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  17. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China

    Science.gov (United States)

    Wang, Shanshan; Nan, Jialiang; Shi, Chanzhen; Fu, Qingyan; Gao, Song; Wang, Dongfang; Cui, Huxiong; Saiz-Lopez, Alfonso; Zhou, Bin

    2015-01-01

    Atmospheric ammonia (NH3) has great environmental implications due to its important role in ecosystem and global nitrogen cycle, as well as contribution to secondary particle formation. Here, we report long-term continuous measurements of NH3 at different locations (i.e. urban, industrial and rural) in Shanghai, China, which provide an unprecedented portrait of temporal and spatial characteristics of atmospheric NH3 in and around this megacity. In addition to point emission sources, air masses originated from or that have passed over ammonia rich areas, e.g. rural and industrial sites, increase the observed NH3 concentrations inside the urban area of Shanghai. Remarkable high-frequency NH3 variations were measured at the industrial site, indicating instantaneous nearby industrial emission peaks. Additionally, we observed strong positive exponential correlations between NH4+/(NH4++NH3) and sulfate-nitrate-ammonium (SNA) aerosols, PM2.5 mass concentrations, implying a considerable contribution of gas-to-particle conversion of ammonia to SNA aerosol formation. Lower temperature and higher humidity conditions were found to favor the conversion of gaseous ammonia to particle ammonium, particularly in autumn. Although NH3 is currently not included in China’s emission control policies of air pollution precursors, our results highlight the urgency and importance of monitoring gaseous ammonia and improving its emission inventory in and around Shanghai. PMID:26514559

  18. 77 FR 11452 - Approval and Promulgation of Air Quality Implementation Plans; State of Georgia; Regional Haze...

    Science.gov (United States)

    2012-02-27

    ... object can be viewed against the sky. \\4\\ Areas designated as mandatory Class I areas consist of national... quality environmental impacts of compliance; and (4) the remaining useful life of any potentially affected... compliance, (3) any existing pollution control technology in use at the source, (4) the remaining useful life...

  19. 77 FR 11894 - Approval and Promulgation of Air Quality Implementation Plans; South Carolina; Regional Haze...

    Science.gov (United States)

    2012-02-28

    ... object can be viewed against the sky. \\4\\ Areas designated as mandatory Class I areas consist of national... quality environmental impacts of compliance; and (4) the remaining useful life of any potentially affected... compliance, (3) any existing pollution control technology in use at the source, (4) the remaining useful life...

  20. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  1. Indoor air quality and risk of severe lower respiratory tract infection in Inuit infants in Baffin Region, Nunavut

    Energy Technology Data Exchange (ETDEWEB)

    Kovesi, T. [Children' s Hospital of Easterrn Ontario, Ottawa, ON (Canada)

    2008-07-01

    This paper discussed the indoor air quality in the houses of Inuit infants in Nunavut and the health implications. Inuit infants in the Baffin (Qikiqtani) Region of Nunavut have the highest reported rate in the world of severe lower respiratory tract infection (LRTI) including bronchiolitis and pneumonia requiring hospitalization. This population also has a high rate of long-term complications after severe LRTI. The houses in the region are small and crowded and tend to be kept warm and humid. Although the homes are heated with low-sulphur Arctic diesel, there is no evidence of leakage from furnaces, as nitrogen dioxide concentrations are low. Houses are generally clean, with very low levels of dust mites and generally low levels of indoor mould. However, indoor smoking is prevalent. According to measured ventilation of indoor carbon dioxide (CO{sub 2}) concentrations, most houses have ventilation rates below recommended standards. A controlled trial of installing heat recovery ventilators (HRVs) in the homes of the 68 young Inuit children in 3 communities in the Baffin Region has shown that active HRVs can significantly reduce mean indoor CO{sub 2} concentrations and increase occupant comfort. Health outcomes are currently undergoing analysis. 11 refs.

  2. 77 FR 11914 - Approval and Promulgation of Air Quality Implementation Plans; Vermont; Regional Haze

    Science.gov (United States)

    2012-02-28

    ... model. The model uses simulations of chemical reactions, emissions of PM 2.5 and PM 2.5 precursors, and... Requirements 2. Modeling to Support the LTS and Determine Visibility Improvement for Uniform Rate of Progress 3... action on regional haze that emanates from a variety of sources until monitoring, modeling and scientific...

  3. 76 FR 41158 - Approval and Promulgation of Air Quality Implementation Plans; West Virginia; Regional Haze State...

    Science.gov (United States)

    2011-07-13

    ... viewed against the sky. B. Requirements of the CAA and EPA's Regional Haze Rule (RHR) In section 169A of... environmental impacts of compliance; and (4) the remaining useful life of any potentially affected sources... remaining useful life of the source, and (5) the degree of improvement in visibility which may reasonably be...

  4. 77 FR 11937 - Approval and Promulgation of Air Quality Implementation Plans; State of Alabama; Regional Haze...

    Science.gov (United States)

    2012-02-28

    ..., at which a dark object can be viewed against the sky. B. Requirements of the CAA and EPA's Regional... compliance; and (4) the remaining useful life of any potentially affected sources. States must demonstrate in... existing pollution control technology in use at the source, (4) the remaining useful life of the source...

  5. Regional air quality impacts of increased natural gas production and use in Texas.

    Science.gov (United States)

    Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T

    2013-04-02

    Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 μg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.

  6. 77 FR 39938 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Regional Haze State...

    Science.gov (United States)

    2012-07-06

    ... the Environment (MDE), on February 13, 2012. This action is being taken in accordance with the... are listed in the www.regulations.gov Web site. Although listed in the electronic docket, some... Regional Haze Plan for the first implementation period through 2018. The formal SIP revision (MDE SIP...

  7. 77 FR 3712 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Regional Haze

    Science.gov (United States)

    2012-01-25

    ... participated in MRPO's inter-RPO consultations. MANE-VU, the RPO for the Northeastern states, facilitated... visibility in 2018 under three scenarios in this analysis. The first scenario reflected simple emissions... Midwest states and with states in other regions through inter-RPO processes. Ohio considered the factors...

  8. 77 FR 24385 - Approval and Promulgation of Air Quality Implementation Plans; Maine; Regional Haze

    Science.gov (United States)

    2012-04-24

    ... Wisconsin), Maine lacks a State cost effectiveness threshold in its Best Available Retrofit Technology (BART... by these States. Response: While States have the option to develop a cost effectiveness threshold, the Regional Haze Rule does not require States to set a bright line threshold for cost effectiveness...

  9. 76 FR 36450 - Approval and Promulgation of Air Quality Implementation Plans; State of Nevada; Regional Haze...

    Science.gov (United States)

    2011-06-22

    ... regional haze. This legislation established the Grand Canyon Visibility Transport Commission (GCVTC), which... Canyon National Park (NP), Sycamore Canyon Wilderness Area (WA), Pine Mountain WA, Mazatal WA, and Sierra Ancha WA. In California, they are Desolation WA, Dome Land WA, Hoover WA, Joshua Tree NP, Kaiser WA...

  10. 77 FR 46952 - Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Regional Haze

    Science.gov (United States)

    2012-08-07

    ... July 31, 2018. Wisconsin submitted its regional haze plan on January 18, 2012, with a supplemental.... Response: In cases like this where a subject is addressed by both the general guidance in the draft... option at that time. Further, this approach does not require an election of one set of mass caps by July...

  11. Energy and air quality

    International Nuclear Information System (INIS)

    1981-12-01

    This is one of a series of handbooks designed to provide nontechnical readers with a general understanding of the interaction between energy development and environmental media and to provide a rudimentary data base from which estimates of potential future impacts can be made. This handbook describes the air quality impacts of energy development and summarizes the major federal legislation which regulates the potential air quality impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which can be used as the basis for measurement, and in some cases, prediction of the potential conflicts between energy development and achieving and maintaining clean air. Energy utilization is the largest emission source of man-made air pollutants. Choices in energy resource development and utilization generate varying emissions or discharges into the atmosphere, the emissions are affected by the assimilative character of the atmosphere, and the resultant air pollutant concentrations have biological and aesthetic effects. This handbook describes the interrelationships of energy-related air emissions under various methods of pollution control, the assimilative character of the air medium, and the effects of air pollution. The media book is divided into three major sections: topics of concern relating to the media and energy development, descriptions of how to use available data to quantify and examine energy/environmental impacts, and the data

  12. Nitrous Oxide Emissions from Biofuel Crops and Atmospheric Aerosols: Associations with Air Quality and Regional Climate

    Science.gov (United States)

    Pillai, Priya Ramachandran

    Emissions of greenhouse gases (GHG) and primary release and secondary formation of aerosols alter the earth's radiative balance and therefore have important climatic implications. Savings in carbon dioxide (CO2) emissions accomplished by replacing fossil fuels with biofuels may increase the nitrous oxide (N2O) emissions. Among various atmospheric trace gases, N2O, irrespective of its low atmospheric concentration, is the fourth most important gas in causing the global greenhouse effect. Major processes, those affect the concentration of atmospheric N2O, are soil microbial activities leading to nitrification and denitrification. Therefore, anthropogenic activities such as industrial emissions, and agricultural practices including application of nitrogenous fertilizers, land use changes, biomass combustion all contribute to the atmospheric N2O concentration. The emission rates of N2O related to biofuel production depend on the nitrogen (N) fertilizer uptake efficiency of biofuel crops. However, crops with less N demand, such as switchgrass may have more favorable climate impacts when compared to crops with high N demands, such as corn. Despite its wide environmental tolerance, the regional adaptability of the potential biofuel crop switch grass varies considerably. Therefore, it is important to regionally quantify the GHG emissions and crop yield in response to N-fertilization. A major objective of this study is to quantify soil emissions of N2O from switchgrass and corn fields as a function of N-fertilization. The roles of soil moisture and soil temperature on N2O fluxes were analyzed. These N2O observations may be used to parameterize the biogeochemical models to better understand the impact of different N2O emission scenarios. This study allows for improvements in climate models that focus on understanding the environmental impacts of the climate change mitigation strategy of replacing fossil fuels with biofuels. As a second major objective, the top of the

  13. Indoor air quality

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Indoor Air Quality is rapidly becoming a major environmental concern because a significant amount of people spend a substantial amount of time in a variety of different indoor environments. Health effects from indoor pollutants fall into two categories: those that are experienced immediately after exposure and those that do not show up until years later. They are: radon, formaldehyde, asbestos, lead and household organic chemicals. The authors presented a source-by-source look at the most common indoor air pollutants, their potential health effects, and ways to reduce their levels in the home. There are three basic strategies to improve indoor air quality: one method is source control, another is through ventilation improvements, and the third is the utilization of some sort of mechanical device such as air cleaners

  14. Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality

    Directory of Open Access Journals (Sweden)

    M. Trail

    2013-09-01

    Full Text Available Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with the Weather Research and Forecasting (WRF model to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the contiguous United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF regional climate model (RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high-resolution simulations produce somewhat different results than the coarse-resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (western US, Texas, northeastern, and southeastern US, one region during summer (Texas, and one region where changes potentially would lead to better air quality during spring (Northeast. Changes in regional climate that would enhance ozone levels are increased temperatures and stagnation along with decreased precipitation and ventilation. We also find that daily peak temperatures tend to increase in most major cities in the US, which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air

  15. Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China

    Directory of Open Access Journals (Sweden)

    M. Xie

    2016-05-01

    Full Text Available Anthropogenic heat (AH emissions from human activities caused by urbanization can affect the city environment. Based on the energy consumption and the gridded demographic data, the spatial distribution of AH emission over the Yangtze River Delta (YRD region is estimated. Meanwhile, a new method for the AH parameterization is developed in the WRF/Chem model, which incorporates the gridded AH emission data with the seasonal and diurnal variations into the simulations. By running this upgraded WRF/Chem for 2 typical months in 2010, the impacts of AH on the meteorology and air quality over the YRD region are studied. The results show that the AH fluxes over the YRD have been growing in recent decades. In 2010, the annual-mean values of AH over Shanghai, Jiangsu and Zhejiang are 14.46, 2.61 and 1.63 W m−2, respectively, with the high value of 113.5 W m−2 occurring in the urban areas of Shanghai. These AH emissions can significantly change the urban heat island and urban-breeze circulations in the cities of the YRD region. In Shanghai, 2 m air temperature increases by 1.6 °C in January and 1.4 °C in July, the PBLH (planetary boundary layer height rises up by 140 m in January and 160 m in July, and 10 m wind speed is enhanced by 0.7 m s−1 in January and 0.5 m s−1 in July, with a higher increment at night. The enhanced vertical movement can transport more moisture to higher levels, which causes the decrease in water vapor at ground level and the increase in the upper PBL (planetary boundary layer, and thereby induces the accumulative precipitation to increase by 15–30 % over the megacities in July. The adding of AH can impact the spatial and vertical distributions of the simulated pollutants as well. The concentrations of primary air pollutants decrease near the surface and increase at the upper levels, due mainly to the increases in PBLH, surface wind speed and upward air vertical movement. But surface O3

  16. Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China

    Science.gov (United States)

    Xie, Min; Liao, Jingbiao; Wang, Tijian; Zhu, Kuanguang; Zhuang, Bingliang; Han, Yong; Li, Mengmeng; Li, Shu

    2016-05-01

    Anthropogenic heat (AH) emissions from human activities caused by urbanization can affect the city environment. Based on the energy consumption and the gridded demographic data, the spatial distribution of AH emission over the Yangtze River Delta (YRD) region is estimated. Meanwhile, a new method for the AH parameterization is developed in the WRF/Chem model, which incorporates the gridded AH emission data with the seasonal and diurnal variations into the simulations. By running this upgraded WRF/Chem for 2 typical months in 2010, the impacts of AH on the meteorology and air quality over the YRD region are studied. The results show that the AH fluxes over the YRD have been growing in recent decades. In 2010, the annual-mean values of AH over Shanghai, Jiangsu and Zhejiang are 14.46, 2.61 and 1.63 W m-2, respectively, with the high value of 113.5 W m-2 occurring in the urban areas of Shanghai. These AH emissions can significantly change the urban heat island and urban-breeze circulations in the cities of the YRD region. In Shanghai, 2 m air temperature increases by 1.6 °C in January and 1.4 °C in July, the PBLH (planetary boundary layer height) rises up by 140 m in January and 160 m in July, and 10 m wind speed is enhanced by 0.7 m s-1 in January and 0.5 m s-1 in July, with a higher increment at night. The enhanced vertical movement can transport more moisture to higher levels, which causes the decrease in water vapor at ground level and the increase in the upper PBL (planetary boundary layer), and thereby induces the accumulative precipitation to increase by 15-30 % over the megacities in July. The adding of AH can impact the spatial and vertical distributions of the simulated pollutants as well. The concentrations of primary air pollutants decrease near the surface and increase at the upper levels, due mainly to the increases in PBLH, surface wind speed and upward air vertical movement. But surface O3 concentrations increase in the urban areas, with maximum

  17. Air Quality Guide for Ozone

    Science.gov (United States)

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one of our nation’s most common air pollutants. Use the chart below to help reduce ...

  18. Air Quality Management Process Cycle

    Science.gov (United States)

    Air quality management are activities a regulatory authority undertakes to protect human health and the environment from the harmful effects of air pollution. The process of managing air quality can be illustrated as a cycle of inter-related elements.

  19. Integration of population mobility in the evaluation of air quality measures on local and regional scales

    Science.gov (United States)

    Dhondt, S.; Beckx, C.; Degraeuwe, B.; Lefebvre, W.; Kochan, B.; Bellemans, T.; Int Panis, L.; Macharis, C.; Putman, K.

    2012-11-01

    By focussing on air pollutant concentration levels only, the variation in population mobility is not taken into account when assessing the exposure. Transportation policies have an impact on both concentration levels and mobility patterns. The impact of a fuel price increase policy on population exposure to elemental carbon (EC) was evaluated and compared to the base scenario (current situation), taking into account time-activity patterns - including time in commute. We assessed the effect on exposure of both the change in concentrations and whereabouts. The decrease in exposure due to the fuel price increase using residential information only was limited to areas near highways and urban centres. Integrating population movement, exposures to EC were higher and the decrease in exposure was no longer limited to areas near traffic hotspots. For inhabitants of urban areas, the exposure integrating time-activity patterns was more similar to the residential exposure, as they spent more time in their own neighbourhood. For people living further away from traffic hotspots, the estimated impact of the policy was higher than expected for residential exposure. These people profited both from the higher decrease in concentrations at their work/shop/leisure destinations in more urban areas and, as they have to travel longer, also had a larger gain from the high decrease in concentrations during transport. Therefore, the impact of changing concentrations is underestimated when using residential exposure only. These results show the importance of taking into activity-travel patterns when planning future actions.

  20. Air quality risk management.

    Science.gov (United States)

    Williams, Martin L

    2008-01-01

    Rather than attempt to provide a comprehensive account of air quality risk assessment, as might be found in a textbook or manual, this article discusses some issues that are of current importance in the United Kingdom and the rest of Europe, with special emphasis on risk assessment in the context of policy formulation, and emerging scientific knowledge. There are two pollutants of particular concern and that both pose challenges for risk assessment and policy, and they are particulate matter (PM) and ozone. The article describes some issues for health risk assessment and finally some forward-looking suggestions for future approaches to air quality management.

  1. Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review

    International Nuclear Information System (INIS)

    Yadav, Ishwar Chandra; Linthoingambi Devi, Ningombam; Li, Jun; Syed, Jabir Hussain; Zhang, Gan; Watanabe, Hirozumi

    2017-01-01

    Although, many biomass burning (BB) emissions products (particulate matter and trace gases) are believed to be trans-boundary pollutants that originates from India and China (the two most populous countries in Asia), the information about BB emission and related contents is limited for Indo-China Peninsula (ICP) region. This motivated us to review this region pertaining to BB emission. The main objective of the review is to document the current status of BB emission in ICP region. In order to highlight the impact of BB on regional air quality and global climate change, the role of BB emission in ICP region is also discussed. Based on the available literature and modeling simulations studies, it is evidenced that ICP is one of the hotspot regional source for aerosols in terms of BB emissions. In addition, regional emissions through BB have significant implications for regional air quality especially in the neighboring countries such as China, Taiwan and India. Our assessment highlight that there is still a general lack of reliable data and research studies addressing BB related issues in context of environmental and human health. There is therefore a critical need to improve the current knowledge base, which should build upon the research experience and further research into these issues is considered vital to help inform future policies/control strategies. - Highlights: • Forest burning is the main sources of BB emissions in the ICP region. • ICP is one of the hotspot regional source for aerosols in terms of BB emissions. • BB emission in ICP significantly affects regional air quality and global climate. - Indo-China Peninsula is one of the hotspot sources of aerosols in terms of biomass burning emissions that significantly influence regional air quality and global climate change.

  2. Air Pollution Monitoring | Air Quality Planning & Standards ...

    Science.gov (United States)

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. To accomplish this, OAQPS must be able to evaluate the status of the atmosphere as compared to clean air standards and historical information.

  3. Trading emissions improve air quality

    International Nuclear Information System (INIS)

    Lents, J.M.

    1993-01-01

    While admitting sharply contrasting views exist, James M. Lents of the South Coast Air Quality Management District in southern California sees emissions trading open-quotes as a lifesaver for our troubled planet.close quotes He explains: open-quotes If political support for the environment is to be maintained, we must seek the most economical and flexible means of pursuing cleanup. At present, market incentives and emissions trading represent our best hope.close quotes Lents is putting his money where his pen is. The air quality management district he heads plans to use market incentives, including emissions trading, to reduce air pollution in the notoriously dirty southern California area. When the system goes into operation in 1994, he estimates it will save southern California businesses more than $400 million a year in compliance costs, while also making major improvements in the region's air quality. If the idea works there, why won't it work elsewhere, even on a global scale, Lents asks? He believes it will. But open-quotes the ultimate success of emissions-trading programs, whether regional, national, or international in scope, lies in the proof that they're actually achieving reductions in harmful emissions,close quotes he emphasizes. open-quotes These reductions must be real and verifiable to satisfy the Clean Air Act and a skeptical public.close quotes

  4. Indoor Air Quality

    DEFF Research Database (Denmark)

    Selman, Ayser Dawod; Heiselberg, Per

    Overall purpose of the research is to provide an overview of the relevance and importance of various defined Indoor Air Quality (IAQ) parameters in a European perspective. Based on the report it should be possible to prioritize which countries to target for further activities as well as it should...

  5. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The Danish Air Quality Monitoring Programme (LMP IV) has been revised in accordance with the Framework Directive and the first three daughter directives of SO2, NOx/NO2, PM10, lead, benzene, CO and ozone. PM10 samplers are under installation and the installation will be completed during 2002...

  6. Indoor air quality

    International Nuclear Information System (INIS)

    Hollowell, C.D.

    1981-06-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced ventilation in buildings may significantly increase exposure to indoor air pollution and perhaps have adverse effects on occupant health and comfort. Preliminary findings suggest that reduced ventilation may adversely affect indoor air quality unless appropriate control strategies are undertaken. The strategies used to control indoor air pollution depend on the specific pollutant or class of pollutants encountered, and differ somewhat depending on whether the application is to an existing building or a new building under design and construction. Whenever possible, the first course of action is prevention or reduction of pollutant emissions at the source. In most buildings, control measures involve a combination of prevention, removal, and suppression. Common sources of indoor air pollution in buildings, the specific pollutants emitted by each source, the potential health effects, and possible control techniques are discussed

  7. Airflow and air quality simulations over the western mountainous region with a four-dimensional data assimilation technique

    Science.gov (United States)

    Yamada, Tetsuji; Kao, Chih-Yue; Bunker, Susan

    We apply a three-dimensional meteorological model with a four-dimensional data assimilation (4-DDA) technique to simulate diurnal variations of wind, temperature, water vapor, and turbulence in a region extending from the west coast to east of the Rockies and from northern Mexico to Wyoming. The wind data taken during the 1985 SCENES ( Subregional Cooperative Electric Utility, Dept. of Defense, National Park Service, and Environmental Protection Agency Study on Visibility) field experiments are successfully assimilated into the model through the 4-DDA technique by 'nudging' the modeled winds toward the observed winds. The modeled winds and turbulence fields are then used in a Lagrangian random-particle statistical model to investigate how pollutants from potential sources are transported and diffused. Finally, we calculate the ground concentrations through a kernel density estimator. Two scenarios in different weather patterns are investigated with simulation periods up to 6 days. One is associated with the evolution of a surface cold front and the other under a high-pressure stagnant condition. In the frontal case, the impact of air-mass movement on the ground concentrations of pollutants released from the Los Angeles area is well depicted by the model. Also, the pollutants produced from Los Angeles can be transported to the Grand Canyon area within 24 h. However, if we use only the data that were obtained from the regular NWS rawinsonde network, whose temporal and spatial resolutions are coarser than those of the special network, the plume goes north-northeast and never reaches the Grand Canyon area. In the stagnant case, the pollutants meander around the source area and can have significant impact on local air quality.

  8. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    Science.gov (United States)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  9. Air Quality Assessment Using Interpolation Technique

    Directory of Open Access Journals (Sweden)

    Awkash Kumar

    2016-07-01

    Full Text Available Air pollution is increasing rapidly in almost all cities around the world due to increase in population. Mumbai city in India is one of the mega cities where air quality is deteriorating at a very rapid rate. Air quality monitoring stations have been installed in the city to regulate air pollution control strategies to reduce the air pollution level. In this paper, air quality assessment has been carried out over the sample region using interpolation techniques. The technique Inverse Distance Weighting (IDW of Geographical Information System (GIS has been used to perform interpolation with the help of concentration data on air quality at three locations of Mumbai for the year 2008. The classification was done for the spatial and temporal variation in air quality levels for Mumbai region. The seasonal and annual variations of air quality levels for SO2, NOx and SPM (Suspended Particulate Matter have been focused in this study. Results show that SPM concentration always exceeded the permissible limit of National Ambient Air Quality Standard. Also, seasonal trends of pollutant SPM was low in monsoon due rain fall. The finding of this study will help to formulate control strategies for rational management of air pollution and can be used for many other regions.

  10. Urban air quality in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Mar (ed.) [Spanish Research Council - CSIC, Barcelona (Spain). Inst. for Environmental Assessment and Water Research

    2013-07-01

    This book provides an overview of air quality in urban environments in Europe, focusing on air pollutant emission sources and formation mechanisms, measurement and modeling strategies, and future perspectives. The emission sources described are biomass burning, vehicular traffic, industry and agriculture, but also African dust and long-range transport of pollutants across the European regions. The impact of these emission sources and processes on atmospheric particulate matter, ozone, nitrogen oxides and volatile and semi-volatile organic compounds is discussed and critical areas for particulate matter and nitrogen dioxide in Europe are identified. Finally, this volume presents future perspectives, mainly regarding upcoming air quality monitoring strategies, metrics of interest, such as submicron and nanoparticles, and indoor and outdoor exposure scenarios.

  11. Air quality indicators

    International Nuclear Information System (INIS)

    Clench-Aas, Jocelyn; Guerreiro, Cristina; Bartonova, Alena

    1999-06-01

    This report proposes and describes in detail several air quality indicators that may be used to describe population exposure. The suggested indicators account for temporal and spatial patterns of pollution and movements of individuals between different micro-environments. The Air Quality Indicator /AQI) should represent both the spatial and temporal aspects of pollution exposure that may have important effects on health. Two indicators are needed, the Population Air Quality Indicator and the Individual Air Quality Indicator. Mean concentrations, 98th percentile and maximum values are the traditional indicators for estimating exposure. the temporal variability of PM-10 and NO 2 , however, is here described by means of: 1) The rate of change of pollution as the difference between two consecutive hourly values and of 2) episodes, described in terms of number, duration and winter episode period, maximum concentration in the episode and integrated episode exposure (episode AOT50/100). The spatial variation of AQIs can be described in several ways, e.g.: 1) Concentrations in neighbouring grid squares can be compared as an indication of spatial variation and 2) point estimates can be compared to grid values for a description of variation within a grid. Both methods are presented here. A test of the representativity of static point estimates for pollution exposure is to compare them to an estimate of air pollution exposure accounting for movements between different locations, obtained using diaries. The ultimate aim of AQIs is to describe the population exposure to ambient pollution. This is done by estimating the number of people exposed using different characteristics of AQIs. The data used to describe these indicators originates from dispersion modelling of short-term air pollution concentrations in Oslo. Two series of data are used. One represents hour-for hour concentrations in the 1 km 2 grid system covering the city of Oslo, winter 1994/95, calculated by the grid

  12. Applications of Satellite Remote Sensing Products to Enhance and Evaluate the AIRPACT Regional Air Quality Modeling System

    Science.gov (United States)

    Herron-Thorpe, F. L.; Mount, G. H.; Emmons, L. K.; Lamb, B. K.; Jaffe, D. A.; Wigder, N. L.; Chung, S. H.; Zhang, R.; Woelfle, M.; Vaughan, J. K.; Leung, F. T.

    2013-12-01

    The WSU AIRPACT air quality modeling system for the Pacific Northwest forecasts hourly levels of aerosols and atmospheric trace gases for use in determining potential health and ecosystem impacts by air quality managers. AIRPACT uses the WRF/SMOKE/CMAQ modeling framework, derives dynamic boundary conditions from MOZART-4 forecast simulations with assimilated MOPITT CO, and uses the BlueSky framework to derive fire emissions. A suite of surface measurements and satellite-based remote sensing data products across the AIRPACT domain are used to evaluate and improve model performance. Specific investigations include anthropogenic emissions, wildfire simulations, and the effects of long-range transport on surface ozone. In this work we synthesize results for multiple comparisons of AIRPACT with satellite products such as IASI ammonia, AIRS carbon monoxide, MODIS AOD, OMI tropospheric ozone and nitrogen dioxide, and MISR plume height. Features and benefits of the newest version of AIRPACT's web-interface are also presented.

  13. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE model v1.0

    Directory of Open Access Journals (Sweden)

    C. B. Zapata

    2018-04-01

    Full Text Available The California Regional Multisector Air Quality Emissions (CA-REMARQUE model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU scenario and an 80 % GHG reduction (GHG-Step scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors that are consistent with the future GHG scenarios for the following economic sectors: (i on-road, (ii rail and off-road, (iii marine and aviation, (iv residential and commercial, (v electricity generation, and (vi biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG

  14. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0

    Science.gov (United States)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs

  15. Evaluating the capability of regional-scale air quality models to capture the vertical distribution of pollutants

    Directory of Open Access Journals (Sweden)

    E. Solazzo

    2013-06-01

    Full Text Available This study is conducted in the framework of the Air Quality Modelling Evaluation International Initiative (AQMEII and aims at the operational evaluation of an ensemble of 12 regional-scale chemical transport models used to predict air quality over the North American (NA and European (EU continents for 2006. The modelled concentrations of ozone and CO, along with the meteorological fields of wind speed (WS and direction (WD, temperature (T, and relative humidity (RH, are compared against high-quality in-flight measurements collected by instrumented commercial aircraft as part of the Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service airCraft (MOZAIC programme. The evaluation is carried out for five model domains positioned around four major airports in NA (Portland, Philadelphia, Atlanta, and Dallas and one in Europe (Frankfurt, from the surface to 8.5 km. We compare mean vertical profiles of modelled and measured variables for all airports to compute error and variability statistics, perform analysis of altitudinal error correlation, and examine the seasonal error distribution for ozone, including an estimation of the bias introduced by the lateral boundary conditions (BCs. The results indicate that model performance is highly dependent on the variable, location, season, and height (e.g. surface, planetary boundary layer (PBL or free troposphere being analysed. While model performance for T is satisfactory at all sites (correlation coefficient in excess of 0.90 and fractional bias ≤ 0.01 K, WS is not replicated as well within the PBL (exhibiting a positive bias in the first 100 m and also underestimating observed variability, while above 1000 m, the model performance improves (correlation coefficient often above 0.9. The WD at NA airports is found to be biased in the PBL, primarily due to an overestimation of westerly winds. RH is modelled well within the PBL, but in the free troposphere large

  16. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia

    International Nuclear Information System (INIS)

    Marlier, Miriam E; DeFries, Ruth S; Kim, Patrick S; Koplitz, Shannon N; Jacob, Daniel J; Mickley, Loretta J; Myers, Samuel S

    2015-01-01

    Fires associated with agricultural and plantation development in Indonesia impact ecosystem services and release emissions into the atmosphere that degrade regional air quality and contribute to greenhouse gas concentrations. In this study, we estimate the relative contributions of the oil palm, timber (for wood pulp and paper), and logging industries in Sumatra and Kalimantan to land cover change, fire activity, and regional population exposure to smoke concentrations. Concessions for these three industries cover 21% and 49% of the land area in Sumatra and Kalimantan respectively, with the highest overall area in lowlands on mineral soils instead of more carbon-rich peatlands. In 2012, most remaining forest area was located in logging concessions for both islands, and for all combined concessions, there was higher remaining lowland and peatland forest area in Kalimantan (45% and 46%, respectively) versus Sumatra (20% and 27%, respectively). Emissions from all combined concessions comprised 41% of total fire emissions (within and outside of concession boundaries) in Sumatra and 27% in Kalimantan for the 2006 burning season, which had high fire activity relative to decadal emissions. Most fire emissions were observed in concessions located on peatlands and non-forested lowlands, the latter of which could include concessions that are currently under production, cleared in preparation for production, or abandoned lands. For the 2006 burning season, timber concessions from Sumatra (47% of area and 88% of emissions) and oil palm concessions from Kalimantan (33% of area and 67% of emissions) contributed the most to concession-related fire emissions from each island. Although fire emissions from concessions were higher in Kalimantan, emissions from Sumatra contributed 63% of concession-related smoke concentrations for the population-weighted region because fire sources were located closer to population centers. In order to protect regional public health, our results

  17. Air-quality in the mid-21st century for the city of Paris under two climate scenarios; from regional to local scale

    OpenAIRE

    K. Markakis; M. Valari; A. Colette; O. Sanchez; O. Perrussel; C. Honore; R. Vautard; Z. Klimont; S. Rao

    2014-01-01

    Ozone and PM2.5 concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. High-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional scale emission projections developed by the Global Energy Assessment. Model evaluation is performed bas...

  18. Agriculture: Agriculture and Air Quality

    Science.gov (United States)

    Information on air emissions from agricultural practices, types of agricultural burning, air programs that may apply to agriculture, reporting requirements, and links to state and other federal air-quality information.

  19. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  20. Managing Air Quality - Control Strategies to Achieve Air Pollution Reduction

    Science.gov (United States)

    Considerations in designing an effective control strategy related to air quality, controlling pollution sources, need for regional or national controls, steps to developing a control strategy, and additional EPA resources.

  1. Situation of regional plans for air quality. Acknowledgement of sanitary aspects. Situation of realised impact studies of urban air pollution; Bilan des plans regionaux pour la qualite de l'air. Prise en compte des aspects sanitaires. Bilan des etudes d'impact de la pollution atmospherique urbaine realisees

    Energy Technology Data Exchange (ETDEWEB)

    D' Helf, M.; Cassadou, S

    2005-07-01

    The law on air and use of energy recommended in 1996 the implementation of regional plans for air quality (P.Q.R.A.) that have to rely on an evaluation of air pollution effects on health. 21 P.Q.R.A. have been published and the report gives the situation, their sanitary orientations and their applications. An inquiry lead in the 21 regions, near the different regional actors in the air and health field completes the report. (N.C.)

  2. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  3. Future Air Quality in Danish Cities

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Winther, M.

    The impact of new EU vehicle emission and fuel quality directives on the future air quality in Danish cities has been modelled for comparison with new limit values in the new EU directive on assessment and management of urban air quality. Nested modelling was applied using a set of air quality...... and emission models to predict concentration levels in the regional background, urban background and at street level. Air pollution levels were predicted to decrease for NO2, CO and benzene (ozone increased slightly) and the results show that the levels will not exceed the new EU limit values in 2010 despite...

  4. CARETS: A prototype regional environmental information system. Volume 7: Land use information and air quality planning. [Norfolk and Portsmouth, Virginia

    Science.gov (United States)

    Alexander, R. H. (Principal Investigator); Reed, W. E.; Lewis, J. E.

    1975-01-01

    The author has identified the following significant results. The pilot air quality system provided data for updating information on the sources of point and area emissions of SO2 and particulate matter affecting the Norfolk-Portsmouth area of Virginia for 1971-72 winter and the annual 1972 period. During the 1971-72 winter, estimated SO2 amounts over an area with a SW-NE axis in the central section of Norfolk exceeded both primary and secondary levels.

  5. Air quality in the German-Czech border region: A focus on harmful fractions of PM and ultrafine particles

    Science.gov (United States)

    Schladitz, Alexander; Leníček, Jan; Beneš, Ivan; Kováč, Martin; Skorkovský, Jiří; Soukup, Aleš; Jandlová, Jana; Poulain, Laurent; Plachá, Helena; Löschau, Gunter; Wiedensohler, Alfred

    2015-12-01

    A comprehensive air quality study has been carried out at two urban background sites in Annaberg-Buchholz (Germany) and Ústí nad Labem (Czech Republic) in the German-Czech border region between January 2012 and June 2014. Special attention was paid to quantify harmful fractions of particulate matter (PM) and ultrafine particle number concentration (UFP) from solid fuel combustion and vehicular traffic. Source type contributions of UFP were quantified by using the daily concentration courses of UFP and nitrogen oxide. Two different source apportionment techniques were used to quantify relative and absolute mass contributions: positive matrix factorization for total PM2.5 and elemental carbon in PM2.5 and chemical mass balance for total PM1 and organic carbon in PM1. Contributions from solid fuel combustion strongly differed between the non-heating period (April-September) and the heating period (October-March). Major sources of solid fuel combustion in this study were wood and domestic coal combustion, while the proportion of industrial coal combustion was low (source of organic carbon ranging from 34% to 43%. Wood combustion was an important source of organic carbon in Annaberg-Buchholz throughout the year. Heavy metals and less volatile polycyclic aromatic hydrocarbons (PAH) in the accumulation mode were related to solid fuel combustion with enhanced concentrations during the heating period. In contrast, vehicular PAH emissions were allocated to the Aitken mode. Only in Ústí nad Labem a significant contribution of photochemical new particle formation (e.g. from sulfur dioxide) to UFP of almost 50% was observed during noontime. UFPs from traffic emissions (nucleation particles) and primary emitted soot particles dominated at both sites during the rest of the day. The methodology of a combined source apportionment of UFP and PM can be adapted to other regions of the world with similar problems of atmospheric pollution to calculate the relative risk in

  6. Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review.

    Science.gov (United States)

    Yadav, Ishwar Chandra; Linthoingambi Devi, Ningombam; Li, Jun; Syed, Jabir Hussain; Zhang, Gan; Watanabe, Hirozumi

    2017-08-01

    Although, many biomass burning (BB) emissions products (particulate matter and trace gases) are believed to be trans-boundary pollutants that originates from India and China (the two most populous countries in Asia), the information about BB emission and related contents is limited for Indo-China Peninsula (ICP) region. This motivated us to review this region pertaining to BB emission. The main objective of the review is to document the current status of BB emission in ICP region. In order to highlight the impact of BB on regional air quality and global climate change, the role of BB emission in ICP region is also discussed. Based on the available literature and modeling simulations studies, it is evidenced that ICP is one of the hotspot regional source for aerosols in terms of BB emissions. In addition, regional emissions through BB have significant implications for regional air quality especially in the neighboring countries such as China, Taiwan and India. Our assessment highlight that there is still a general lack of reliable data and research studies addressing BB related issues in context of environmental and human health. There is therefore a critical need to improve the current knowledge base, which should build upon the research experience and further research into these issues is considered vital to help inform future policies/control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Indoor Air Quality in Schools.

    Science.gov (United States)

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  8. Remote Sensing and Spatial Growth Modeling Coupled With Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    Science.gov (United States)

    Quattrochi, D. A.; Estes, M. G.; Crosson, W. L.; Johnson, H.; Khan, M.

    2006-05-01

    compared with USGS 1km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the Georgia Environmental Protection Division to evaluate how these transportation plans will affect future air quality. The coupled SGM and air quality modeling approach provides insight on what the impacts of Atlanta's growth will be on the local and regional environment and exists as a mechanism that can be used by policy makers to make rational decisions on urban growth and sustainability for the metropolitan area in the future.

  9. Spatial Growth Modeling and High Resolution Remote Sensing Data Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    Science.gov (United States)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    with USGS lkm land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the Georgia Environmental Protection Division to evaluate how these transportation plans will affect future air quality. The coupled SGM and air quality modeling approach provides insight on what the impacts of Atlanta s growth will be on the local and regional environment and exists as a mechanism that can be used by policy makers to make rational decisions on urban growth and sustainability for the metropolitan area in the future.

  10. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses

    OpenAIRE

    Cappa, Christopher D.; Jathar, Shantanu H.; Kleeman, Michael J.; Docherty, Kenneth S.; Jimenez, Jose L.; Seinfeld, John H.; Wexler, Anthony S.

    2016-01-01

    The influence of losses of organic vapors to chamber walls during secondary organic aerosol (SOA) formation experiments has recently been established. Here, the influence of such losses on simulated ambient SOA concentrations and properties is assessed in the UCD/CIT regional air quality model using the statistical oxidation model (SOM) for SOA. The SOM was fit to laboratory chamber data both with and without accounting for vapor wall losses following the approa...

  11. Urban air quality

    International Nuclear Information System (INIS)

    Fenger, J.

    1999-01-01

    Since 1950 the world population has more than doubled, and the global number of cars has increased by a factor of 10. In the same period the fraction of people living in urban areas has increased by a factor of 4. In year 2000 this will amount to nearly half of the world population. About 20 urban regions will each have populations above 10 million people. Seen over longer periods, pollution in major cities tends to increase during the built up phase, they pass through a maximum and are then again reduced, as abatement strategies are developed. In the industrialised western world urban air pollution is in some respects in the last stage with effectively reduced levels of sulphur dioxide and soot. In recent decades however, the increasing traffic has switched the attention to nitrogen oxides, organic compounds and small particles. In some cities photochemical air pollution is an important urban problem, but in the northern part of Europe it is a large-scale phenomenon, with ozone levels in urban streets being normally lower than in rural areas. Cities in Eastern Europe have been (and in many cases still are) heavily polluted. After the recent political upheaval, followed by a temporary recession and a subsequent introduction of new technologies, the situation appears to improve. However, the rising number of private cars is an emerging problem. In most developing countries the rapid urbanisation has so far resulted in uncontrolled growth and deteriorating environment. Air pollution levels are here still rising on many fronts. Apart from being sources of local air pollution, urban activities are significant contributors to transboundary pollution and to the rising global concentrations of greenhouse gasses. Attempts to solve urban problems by introducing cleaner, more energy-efficient technologies will generally have a beneficial impact on these large-scale problems. Attempts based on city planning with a spreading of the activities, on the other hand, may generate

  12. Influences of Regional Climate Change on Air Quality Across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations. Chapter 2

    Science.gov (United States)

    Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew

    2013-01-01

    Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.

  13. Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to spatiotemporal allocation of fire emissions.

    Science.gov (United States)

    Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T

    2014-09-15

    Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Modeling the Transport and Chemical Evolution of Onshore and Offshore Emissions and their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Alapaty

    2006-04-16

    This Annual report summarizes the research performed from 17 April 2005 through 16 April 2006. Major portions of the research in several of the project's current eight tasks have been completed. We have successfully developed the meteorological inputs using the best possible modeling configurations, resulting in improved representation of atmospheric processes. The development of the variable-grid-resolution emissions model, SMOKE-VGR, is also completed. The development of the MAQSIP-VGR has been completed and a test run was performed to ensure the functionality of this air quality model. We have incorporated new emission data base to update the offshore emissions. However, we have faced some bottleneck problems in the testing the integrity of the new database. For this reason, we have asked for a no cost extension of this project to tackle these scientific problems. Thus, the project is on a one-year delay schedule. During the reporting period, we solved all problems related to the new emission database. We are ready to move to developing the final product, implementation and testing of the variable grid technology into the Community Multiscale Air Quality Model (CMAQ) to develop the CMAQ-VGR. During the upcoming months we will perform the first CMAQ-VGR simulations over the Houston-Galveston region to study the roles of the meteorology, offshore emissions, and chemistry-transport interactions that determine the temporal and spatial evolution of ozone and its precursors.

  15. Air quality in the mid-21st century for the city of Paris under two climate scenarios; from the regional to local scale

    OpenAIRE

    Markakis, K.; Valari, M.; Colette, A.; Sanchez, O.; Perrussel, O.; Honore, C.; Vautard, R.; Klimont, Z.; Rao, S.

    2014-01-01

    Ozone and PM2.5 concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. A high-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional-scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10-year...

  16. Indoor Air Quality in Schools

    Science.gov (United States)

    This web site will educate the public about indoor environmental issues specific to educational facilities and the importance of developing and sustaining comprehensive indoor air quality management programs.

  17. Biomonitoring of air quality in the metropolitan region of Recife, PE, Brazil; Biomonitoracao da qualidade do ar na Regiao Metropolitana do Recife, PE

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Thiago Oliveira dos

    2016-08-01

    The interest on questions related to environmental conservation has increased in recent decades, being air pollution one of the main public health problems in huge urban centers. Major part of this atmospheric contamination is caused by gaseous pollutants and inhalable particulate matter. One of the main sources is the burning of fossil fuels mainly emitted by motor vehicles. Some organisms, like lichen and atmospheric bromeliad, are able to accumulate chemical elements in their tissues, thereby becoming excellent tools for air quality studies of monitoring. The present work evaluated the air quality in the Metropolitan Region of Recife (RMR) using the lichen Cladonia verticillaris and the bromeliad Tillandsia recurvata, through the quantification of chemical elements associated to vehicles traffic. The biomonitors were transferred to 40 points distributed in the RMR with different intensities of the vehicle traffic. After the exposition period of six months, Al, Ba, Ca, Cd, Cl, Fe, Mg, Mn, P, Pb, Sb, Sr, Th, V and Zn were quantified by Energy Dispersive X-Ray Fluorescence (EDXRF) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The organisms were complementary, being appropriated tools for monitoring the air quality. The vehicle traffic was considered one of the major contributor for increasing chemical elements in the RMR urban atmosphere. (author)

  18. Regional air-quality forecasting for the Pacific Northwest using MOPITT/TERRA assimilated carbon monoxide MOZART-4 forecasts as a near real-time boundary condition

    Directory of Open Access Journals (Sweden)

    F. L. Herron-Thorpe

    2012-06-01

    Full Text Available Results from a regional air quality forecast model, AIRPACT-3, were compared to AIRS carbon monoxide column densities for the spring of 2010 over the Pacific Northwest. AIRPACT-3 column densities showed high correlation (R > 0.9 but were significantly biased (~25% with consistent under-predictions for spring months when there is significant transport from Asia. The AIRPACT-3 CO bias relative to AIRS was eliminated by incorporating dynamic boundary conditions derived from NCAR's MOZART forecasts with assimilated MOPITT carbon monoxide. Changes in ozone-related boundary conditions derived from MOZART forecasts are also discussed and found to affect background levels by ± 10 ppb but not found to significantly affect peak ozone surface concentrations.

  19. Air Quality at Your Street

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Becker, Thomas; Ketzel, Matthias

    Citizens are frequently concerned about the air quality where they live, where they go to work, where their children go to kindergarten or where they want to move to. Municipalities may also have an interest in location based air quality information e.g. in relation to screening of complaints from...... concerned citizents, or in the context of localization of institutions, etc. The purpose of the project ‘Air Quality at Your Street’ is to create interactive air quality maps on the internet using webGIS to illustrate the geographical variation of air quality in Denmark for selected health related air...... pollutants. The maps show annual means of NO2, PM2.5 or PM10 for 2012. The user interface presents modelled air quality data on a map where the user can select map view, pan, zoom in and out, etc. It is also possible to get the air quality for a particular address by entering a specific address. Air quality...

  20. MODELING THE TRANSPORT AND CHEMICAL EVOLUTION OF ONSHORE AND OFFSHORE EMISSIONS AND THEIR IMPACT ON LOCAL AND REGIONAL AIR QUALITY USING A VARIABLE-GRID-RESOLUTION AIR QUALITY MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Alapaty

    2005-05-13

    This second annual report summarizes the research performed from 17 April 2004 through 16 April 2005. Major portions of the research in several of the project's current eight tasks have been completed. We have successfully developed the meteorological inputs using the best possible modeling configurations, resulting in improved representation of atmospheric processes. The development of the variable-grid-resolution emissions model, SMOKE-VGR, is also completed. The development of the MAQSIP-VGR has been completed and a test run was performed to ensure the functionality of this air quality model. Thus, the project is on schedule as planned. During the upcoming reporting period, we expect to perform the first MAQSIP-VGR simulations over the Houston-Galveston region to study the roles of the meteorology, offshore emissions, and chemistry-transport interactions that determine the temporal and spatial evolution of ozone and its precursors.

  1. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... and the humidity of the room air. At a low humidity level of 30% an increased velocity could compensate for the decrease in perceived air quality due to an elevated temperature ranging from 20 °C to 26 °C. In a room with 26 °C, increased air movement was also able to compensate for an increase in humidity from 30...... humidity (30, 40 and 70%) and pollution level (low and high). Most of the experiments were performed with and without facially applied airflow at elevated velocity. The importance of the use of recirculated room air and clean, cool and dry outdoor air was studied. The exposures ranged from 60. min to 235...

  2. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Facilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  3. Improving and monitoring air quality.

    Science.gov (United States)

    DuPont, André

    2018-05-01

    Since the authorization of the Clean Air Act Amendments of 1990, the air quality in the USA has significantly improved because of strong public support. The lessons learned over the last 25 years are being shared with the policy analysts, technical professionals, and scientist who endeavor to improve air quality in their communities. This paper will review how the USA has achieved the "high" standard of air quality that was envisioned in the early 1990s. This document will describe SO 2 gas emission reduction technology and highlight operation of emission monitoring technology. This paper describes the basic process operation of an air pollution control scrubber. A technical review of measures required to operate and maintain a large-scale pollution control system will be described. Also, the author explains how quality assurance procedures in performance of continuous emission monitoring plays a significant role in reducing air pollution.

  4. Reducing residential solid fuel combustion through electrified space heating leads to substantial air quality, health and climate benefits in China's Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Yang, J.; Mauzerall, D. L.

    2017-12-01

    During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and

  5. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Directory of Open Access Journals (Sweden)

    S. C. Anenberg

    2011-07-01

    more avoided deaths when BC and organic carbon (OC emissions are halved together, suggesting that these results greatly underestimate the full air pollution-related mortality benefits of BC mitigation strategies which generally decrease both BC and OC. The choice of concentration-response factor and health effect thresholds affects estimated global avoided deaths by as much as 56 % but does not strongly affect the regional distribution. Confidence in our results would be strengthened by reducing uncertainties in emissions, model parameterization of aerosol processes, grid resolution, and PM2.5 concentration-mortality relationships globally.

  6. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Science.gov (United States)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-07-01

    that these results greatly underestimate the full air pollution-related mortality benefits of BC mitigation strategies which generally decrease both BC and OC. The choice of concentration-response factor and health effect thresholds affects estimated global avoided deaths by as much as 56 % but does not strongly affect the regional distribution. Confidence in our results would be strengthened by reducing uncertainties in emissions, model parameterization of aerosol processes, grid resolution, and PM2.5 concentration-mortality relationships globally.

  7. U.S. EPA Environmental Quality Index - Air Domain

    Science.gov (United States)

    This is an invited presentation by Region 5, Air Office, who asked me to provide an overview of the Air Domain and health results associated with the Air Domain of the Environmental Quality Index. Region 5 is hosting an Air Toxics meeting for its member states (Ohio, Michigan, I...

  8. A Dynamic Evaluation Of A Model And An Estimate Of The Air Quality And Regional Climate Impacts Of Enhanced Solar Power Generation

    Science.gov (United States)

    Millstein, D.; Brown, N. J.; Zhai, P.; Menon, S.

    2012-12-01

    We use the WRF/Chem model (Weather Research and Forecasting model with chemistry) and pollutant emissions based on the EPA National Emission Inventories from 2005 and 2008 to model regional climate and air quality over the continental United States. Additionally, 2030 emission scenarios are developed to investigate the effects of future enhancements to solar power generation. Modeling covered 6 summer and 6 winter weeks each year. We model feedback between aerosols and meteorology and thus capture direct and indirect aerosol effects. The grid resolution is 25 km and includes no nesting. Between 2005 and 2008 significant emission reductions were reported in the National Emission Inventory. The 2008 weekday emissions over the continental U.S. of SO2 and NO were reduced from 2005 values by 28% and 16%, respectively. Emission reductions of this magnitude are similar in scale to the potential emission reductions from various energy policy initiatives. By evaluating modeled and observed air quality changes from 2005 to 2008, we analyze how well the model represents the effects of historical emission changes. We also gain insight into how well the model might predict the effects of future emission changes. In addition to direct comparisons of model outputs to ground and satellite observations, we compare observed differences between 2005 and 2008 to corresponding modeled differences. Modeling was extended to future scenarios (2030) to simulate air quality and regional climate effects of large-scale adoption of solar power. The 2030-year was selected to allow time for development of solar generation infrastructure. The 2030 emission scenario was scaled, with separate factors for different economic sectors, from the 2008 National Emissions Inventory. The changes to emissions caused by the introduction of large-scale solar power (here assumed to be 10% of total energy generation) are based on results from a parallel project that used an electricity grid model applied over

  9. Source apportionment of visual impairment during the California regional PM 10/PM 2.5 air quality study

    Science.gov (United States)

    Chen, Jianjun; Ying, Qi; Kleeman, Michael J.

    2009-12-01

    Gases and particulate matter predictions from the UCD/CIT air quality model were used in a visibility model to predict source contributions to visual impairment in the San Joaquin Valley (SJV), the southern portion of California's Central Valley, during December 2000 and January 2001. Within the SJV, daytime (0800-1700 PST) light extinction was dominated by scattering associated with airborne particles. Measured daytime particle scattering coefficients were compared to predicted values at approximately 40 locations across the SJV after correction for the increased temperature and decreased relative humidity produced by "smart heaters" placed upstream of nephelometers. Mean fractional bias and mean fractional error were -0.22 and 0.65, respectively, indicating reasonable agreement between model predictions and measurements. Particulate water, nitrate, organic matter, and ammonium were the major particulate species contributing to light scattering in the SJV. Daytime light extinction in the SJV averaged between December 25, 2000 and January 7, 2001 was mainly associated with animal ammonia sources (28%), diesel engines (18%), catalyst gasoline engines (9%), other anthropogenic sources (9%), and wood smoke (7%) with initial and boundary conditions accounting for 13%. The source apportionment results from this study apply to wintertime conditions when airborne particulate matter concentrations are typically at their annual maximum. Further study would be required to quantify source contributions to light extinction in other seasons.

  10. Modelin the Transport and Chemical Evolution of Onshore and Offshore Emissions and Their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Adel Hanna

    2008-10-16

    The overall objective of this research project was to develop an innovative modeling technique to adequately model the offshore/onshore transport of pollutants. The variable-grid modeling approach that was developed alleviates many of the shortcomings of the traditionally used nested regular-grid modeling approach, in particular related to biases near boundaries and the excessive computational requirements when using nested grids. The Gulf of Mexico region contiguous to the Houston-Galveston area and southern Louisiana was chosen as a test bed for the variable-grid modeling approach. In addition to the onshore high pollution emissions from various sources in those areas, emissions from on-shore and off-shore oil and gas exploration and production are additional sources of air pollution. We identified case studies for which to perform meteorological and air quality model simulations. Our approach included developing and evaluating the meteorological, emissions, and chemistry-transport modeling components for the variable-grid applications, with special focus on the geographic areas where the finest grid resolution was used. We evaluated the performance of two atmospheric boundary layer (ABL) schemes, and identified the best-performing scheme for simulating mesoscale circulations for different grid resolutions. Use of a newly developed surface data assimilation scheme resulted in improved meteorological model simulations. We also successfully ingested satellite-derived sea surface temperatures (SSTs) into the meteorological model simulations, leading to further improvements in simulated wind, temperature, and moisture fields. These improved meteorological fields were important for variable-grid simulations, especially related to capturing the land-sea breeze circulations that are critical for modeling offshore/onshore transport of pollutants in the Gulf region. We developed SMOKE-VGR, the variable-grid version of the SMOKE emissions processing model, and tested and

  11. Air quality indices : a review

    International Nuclear Information System (INIS)

    Hewings, J.

    2001-10-01

    Pollution Probe presents some background information that will help in the development of a national Air Quality Index (AQI) in Canada. This report examines the issues that should be addressed in revising the national Index of the Quality of Air (IQUA) or creating a new national Air Quality Index. The IQUA was devised in 1976 and provides Canadians with real-time information on the state of community air quality by including major pollutants and their synergies. It is currently being used for air quality management plans and air quality alert systems. At the same time that the IQUA was devised, the United States Environmental Protection Agency (US EPA) produced a parallel air quality index known as the Pollution Standard Index (PSI) which incorporated 5 criteria pollutants (particulate matter, sulphur dioxide, carbon monoxide, nitrogen oxide and ground level ozone) for which national health-based standards were devised. In 1999, the US EPA renamed their index the Air Quality Index (AQI) and made revisions to the primary health-based national ambient air quality standards for ground-level ozone and particulate matter. Separate values for PM2.5 and PM10 were incorporated and mandatory reporting was required for metropolitan areas with populations of 350,000 or more. Similarly, the IQUA has undergone major developments that affect the validity of the index, including: rejection by the Working Group on Air Quality Objectives and Guidelines of the previous maximum desirable and maximum acceptable air quality criteria, recognition that standards for many of the contaminants are outdated, developing more sensitive instrumentation for real-time monitoring of contaminants. This report also describes the use of the national short term Air Quality Index by provincial, territorial and local authorities in Canada. Pollution Probe recommends setting up a mechanism to review and revise IQUA on a regular basis that would incorporate governments, the medical profession, special

  12. Effect of regional precursor emission controls on long-range ozone transport – Part 1: Short-term changes in ozone air quality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-08-01

    Full Text Available Observations and models demonstrate that ozone and its precursors can be transported between continents and across oceans. We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions on surface ozone air quality in that region and all other regions. In doing so, we quantify the relative importance of long-range transport between all source-receptor pairs, for direct short-term ozone changes. We find that for population-weighted concentrations during the three-month "ozone-season", the strongest inter-regional influences are from Europe to the Former Soviet Union, East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for source regions in the tropics and Southern Hemisphere, which we attribute mainly to greater sensitivity to changes in NOx in the lower troposphere, and secondarily to increased vertical convection to the free troposphere in tropical regions, allowing pollutants to be transported further. Results show, for example, that NOx reductions in North America are ~20% as effective per unit NOx in reducing ozone in Europe during summer, as NOx reductions from Europe itself. Reducing anthropogenic emissions of non-methane volatile organic compounds (NMVOCs and carbon monoxide (CO by 10% in selected regions, can have as large an impact on long-range ozone transport as NOx reductions, depending on the source region. We find that for many source-receptor pairs, the season of greatest long-range influence does not coincide with the season when ozone is highest in the receptor region. Reducing NOx emissions in most source regions causes a larger decrease in export of ozone from the source region than in ozone production outside of the source region.

  13. Indoor Air Quality and Health

    Directory of Open Access Journals (Sweden)

    Alessandra Cincinelli

    2017-10-01

    Full Text Available In the last few decades, Indoor Air Quality (IAQ has received increasing attention from the international scientific community, political institutions, and environmental governances for improving the comfort, health, and wellbeing of building occupants.[...

  14. Indoor Air Quality Test House

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In order to enable studies of a range of indoor air quality and ventilation issues, EL maintains a highly instrumented three-bedroom test house. Previous...

  15. Mind Your Indoor Air Quality

    Science.gov (United States)

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  16. Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios

    NARCIS (Netherlands)

    Braspenning Radu, Olivia; van den Berg, Maarten; Klimont, Zbigniew; Deetman, Sebastiaan; Janssens-Maenhout, Greet; Muntean, Marilena; Heyes, Chris; Dentener, Frank; van Vuuren, Detlef P.

    Abstract In this paper, we present ten scenarios developed using the IMAGE2.4 framework (Integrated Model to Assess the Global Environment) to explore how different assumptions on future climate and air pollution policies influence emissions of greenhouse gases and air pollutants. These scenarios

  17. Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone

    NARCIS (Netherlands)

    Im, U.; Bianconi, R.; Solazzo, E.; Kioutsioukis, I.; Badia, A.; Balzarini, A.; Baró, R.; Bellasio, R.; Brunner, D.; Chemel, C.; Curci, G.; Flemming, J.; Forkel, R.; Giordano, L.; Jiménez-Guerrero, P.; Hirtl, M.; Hodzic, A.; Honzak, L.; Jorba, O.; Knote, C.; Kuenen, J.J.P.; Makar, P.A.; Manders-Groot, A.; Neal, L.; Pérez, J.L.; Pirovano, G.; Pouliot, G.; San Jose, R.; Savage, N.; Schroder, W.; Sokhi, R.S.; Syrakov, D.; Torian, A.; Tuccella, P.; Werhahn, J.; Wolke, R.; Yahya, K.; Zabkar, R.; Zhang, Y.; Zhang, J.; Hogrefe, C.; Galmarini, S.

    2015-01-01

    The second phase of the Air Quality Model Evaluation International Initiative (AQMEII) brought together sixteen modeling groups from Europe and North America, running eight operational online-coupled air quality models over Europe and North America on common emissions and boundary conditions. With

  18. Modeling the Transport and Chemical Evolution of Onshore and Offshore Emissions and their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Alapaty

    2004-10-16

    This semiannual report summarizes the research performed from 17 April through 16 October 2004. Major portions of the research in several of the project's current eight tasks have been completed, and the results obtained are briefly presented. We have successfully developed the meteorological inputs using the best possible modeling configurations, resulting in improved representation of atmospheric processes. Ingestion of satellite-derived sea surface temperatures in conjunction with the use of our new surface data assimilation technique have resulted in largely improved meteorological inputs to drive the MAQSIP-VGR. The development of the variable-grid-resolution emissions model, SMOKE-VGR, is also largely complete. We expect to develop the final configuration of the SMOKE-VGR during the upcoming reporting period. We are in the process of acquiring the newly released emissions database and offshore emissions data sets to update our archives. The development of the MAQSIP-VGR has been completed and a test run was performed to ensure the functionality of this air quality model. During the upcoming reporting period, we expect to perform the first MAQSIP-VGR simulations over the Houston-Galveston region to study the roles of the meteorology, offshore emissions, and chemistry-transport interactions that determine the temporal and spatial evolution of ozone and its precursors.

  19. Air quality conformity appendix.

    Science.gov (United States)

    2011-05-01

    Under the 1990 Clean Air Act Amendments (CAAA), because of the 8-hour ozone standard, Franklin, Delaware, Licking, Madison, Fairfield and Knox counties were designated as a basic nonattainment area for ozone in 2004. As a result of the PM 2.5 standar...

  20. Indoor air quality research

    International Nuclear Information System (INIS)

    1986-01-01

    The various types of pollutant found in indoor air are introduced and the effects on the health of the occupants of buildings summarized. The ''sick'' building syndrome is described in detail and the need for further investigation into its causes and remedies is stressed. 8 tabs

  1. Impact of AIRS Thermodynamic Profile on Regional Weather Forecast

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovee, Gary

    2010-01-01

    Prudent assimilation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. AIRS-enhanced analysis has warmer and moister PBL. Forecasts with AIRS profiles are generally closer to NAM analyses than CNTL. Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecasts. Including AIRS profiles in assimilation process enhances the moist instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  2. MODELING THE TRANSPORT AND CHEMICAL EVOLUTION OF ONSHORE AND OFFSHORE EMISSIONS AND THEIR IMPACT ON LOCAL AND REGIONAL AIR QUALITY USING A VARIABLE-GRID-RESOLUTION AIR QUALITY MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Alapaty

    2003-12-01

    This document, the project's first semiannual report, summarizes the research performed from 04/17/2003 through 10/16/2003. Portions of the research in several of the project's eight tasks were completed, and results obtained are briefly presented. We have tested the applicability of two different atmospheric boundary layer schemes for use in air quality model simulations. Preliminary analysis indicates that a scheme that uses sophisticated atmospheric boundary physics resulted in better simulation of atmospheric circulations. We have further developed and tested a new surface data assimilation technique to improve meteorological simulations, which will also result in improved air quality model simulations. Preliminary analysis of results indicates that using the new data assimilation technique results in reduced modeling errors in temperature and moisture. Ingestion of satellite-derived sea surface temperatures into the mesoscale meteorological model led to significant improvements in simulated clouds and precipitation compared to that obtained using traditional analyzed sea surface temperatures. To enhance the capabilities of an emissions processing system so that it can be used with our variable-grid-resolution air quality model, we have identified potential areas for improvements. Also for use in the variable-grid-resolution air quality model, we have tested a cloud module offline for its functionality, and have implemented and tested an efficient horizontal diffusion algorithm within the model.

  3. Manual on indoor air quality

    International Nuclear Information System (INIS)

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues

  4. Manual on indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  5. Aeromicrobiology/air quality

    Science.gov (United States)

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  6. The Regional Jet, Cancer or Cure? A Trend Analysis Detailing the Effects of the Regional Jet on the Quality of Air Service Offered at Small Community Airports

    National Research Council Canada - National Science Library

    Simmons, Torrence

    2000-01-01

    .... This study determines the influence of these factors in the determination of an airport's demand for air service, to predict which of the 201 communities would most likely lose its air service. The resulting findings were that 79 of the 201 small community airports were identified as those who had a possibility of losing air service and 34 of those 7 were identified as airports most likely to lose air service in the next decade.

  7. Impacts of using an ensemble Kalman filter on air quality simulations along the California-Mexico border region during Cal-Mex 2010 field campaign.

    Science.gov (United States)

    Bei, Naifang; Li, Guohui; Meng, Zhiyong; Weng, Yonghui; Zavala, Miguel; Molina, L T

    2014-11-15

    The purpose of this study is to investigate the impact of using an ensemble Kalman filter (EnKF) on air quality simulations in the California-Mexico border region on two days (May 30 and June 04, 2010) during Cal-Mex 2010. The uncertainties in ozone (O3) and aerosol simulations in the border area due to the meteorological initial uncertainties were examined through ensemble simulations. The ensemble spread of surface O3 averaged over the coastal region was less than 10ppb. The spreads in the nitrate and ammonium aerosols are substantial on both days, mostly caused by the large uncertainties in the surface temperature and humidity simulations. In general, the forecast initialized with the EnKF analysis (EnKF) improved the simulation of meteorological fields to some degree in the border region compared to the reference forecast initialized with NCEP analysis data (FCST) and the simulation with observation nudging (FDDA), which in turn leading to reasonable air quality simulations. The simulated surface O3 distributions by EnKF were consistently better than FCST and FDDA on both days. EnKF usually produced more reasonable simulations of nitrate and ammonium aerosols compared to the observations, but still have difficulties in improving the simulations of organic and sulfate aerosols. However, discrepancies between the EnKF simulations and the measurements were still considerably large, particularly for sulfate and organic aerosols, indicating that there are still ample rooms for improvement in the present data assimilation and/or the modeling systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Air quality management in Botswana

    Directory of Open Access Journals (Sweden)

    Modupe O. Akinola

    2017-06-01

    Full Text Available This paper examines air pollution situation and the history of air quality management in Botswana. The current air quality management in Botswana is still largely underpinned by the Atmospheric Pollution Prevention Act of 1971, supplemented by the more recently enacted legislations such as the Environmental Impact Assessment (EIA Act of 2010 and the Ambient Air Quality - Limits for Common Pollutants of 2012 published by the Botswana Bureau of Standards. Though commendable efforts have been made toward legislating against air and other forms of pollution, these have not yielded expected results in view of the prevailing levels of air pollutants like sulphur dioxide and fine particulate matters in the country’s atmospheric environment. Legislation as a sole measure may not be effective in tackling this challenge. Rather, government should also address some root-causes of the problem by making policies and programmes that will reduce unemployment and increase the earning capacity of citizenry. This will, among other things, effectively check poverty-induced biomass burning in the country. The paper looks at some other challenges of air pollution management and suggestions are made to tackle the identified problems.

  9. European air quality in the 2030's and 2050's: Impacts of global and regional emission trends and of climate change

    International Nuclear Information System (INIS)

    Lacressonniere, G.; Peuch, V.H.; Vautard, R.

    2014-01-01

    A chemistry-transport model using two-way nested regional (Europe) and global domains is used to evaluate the effects of climate and emission changes on air quality over Europe for the 2030's and 2050's, by comparison with the emissions and climate of the recent past. We investigated the pollutant levels under the implementations of reduced anthropogenic emissions (NOx, SO 2 , etc) over Europe and, at the global scale, under the Representative Concentrations Pathways (RCP8.5) scenario produced by the Fifth Assessment Report (AR5) of IPCC. The simulations show an increase in surface ozone in northwestern Europe and a decrease in southern areas in the future horizons studied here. Over Europe, average O 3 levels steadily increase with a rate of around 3 mg m 3 per decade in summer. For this pollutant, the contributions of long range transport over the Northern Hemisphere and climate changes have been assessed and appear to counterbalance and even slightly outweigh the effects of European reductions in precursors' anthropogenic emissions. The tropospheric ozone budget is found to be dominated by enhanced stratosphere-troposphere exchanges in future climate while the chemical budget is significantly reduced. Our results show that a NOx-limited chemical regime will stretch over most of Europe, including especially Western France in the future. These findings allow supporting efficient future precursor emissions abatement strategies in order to limit O 3 pollution and maintain or improve air quality standards in Europe. (authors)

  10. Forest fires and air quality issues in southern Europe

    Science.gov (United States)

    Ana Isabel Miranda; Enrico Marchi; Marco Ferretti; Millán M. Millán

    2009-01-01

    Each summer forest fires in southern Europe emit large quantities of pollutants to the atmosphere. These fires can generate a number of air pollution episodes as measured by air quality monitoring networks. We analyzed the impact of forest fires on air quality of specific regions of southern Europe. Data from several summer seasons were studied with the aim of...

  11. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    Science.gov (United States)

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  12. To what extent can China’s near-term air pollution control policy protect air quality and human health? A case study of the Pearl River Delta region

    International Nuclear Information System (INIS)

    Jiang, Xujia; Hong, Chaopeng; Zheng, Yixuan; Zheng, Bo; Guan, Dabo; Zhang, Qiang; Gouldson, Andy; He, Kebin

    2015-01-01

    Following a series of extreme air pollution events, the Chinese government released the Air Pollution Prevention and Control Action Plan in 2013 (China’s State Council 2013). The Action Plan sets clear goals for key regions (i.e. cities above the prefecture level, Beijing-Tianjin-Hebei Province, the Yangtze River Delta and the Pearl River Delta) and establishes near-term control efforts for the next five years. However, the extent to which the Action Plan can direct local governments’ activities on air pollution control remains unknown. Here we seek to evaluate the air quality improvement and associated health benefits achievable under the Action Plan in the Pearl River Delta (PRD) area from 2012 to 2017. Measure-by-measure quantification results show that the Action Plan would promise effective emissions reductions of 34% of SO 2 , 28% of NO x , 26% of PM 2.5 (particulate matter less than 2.5 μm in diameter), and 10% of VOCs (volatile organic compounds). These emissions abatements would lower the PM 2.5 concentration by 17%, surpassing the 15% target established in the Action Plan, thereby avoiding more than 2900 deaths and 4300 hospital admissions annually. We expect the implementation of the Action Plan in the PRD would be productive; the anticipated impacts, however, fall short of the goal of protecting the health of local residents, as there are still more than 33 million people living in places where the annual mean ambient PM 2.5 concentrations are greater than 35 μg m −3 , the interim target-3 of the World Health Organization (WHO). We therefore propose the next steps for air pollution control that are important not only for the PRD but also for all other regions of China as they develop and implement effective air pollution control policies. (letter)

  13. To what extent can China’s near-term air pollution control policy protect air quality and human health? A case study of the Pearl River Delta region

    Science.gov (United States)

    Jiang, Xujia; Hong, Chaopeng; Zheng, Yixuan; Zheng, Bo; Guan, Dabo; Gouldson, Andy; Zhang, Qiang; He, Kebin

    2015-10-01

    Following a series of extreme air pollution events, the Chinese government released the Air Pollution Prevention and Control Action Plan in 2013 (China’s State Council 2013). The Action Plan sets clear goals for key regions (i.e. cities above the prefecture level, Beijing-Tianjin-Hebei Province, the Yangtze River Delta and the Pearl River Delta) and establishes near-term control efforts for the next five years. However, the extent to which the Action Plan can direct local governments’ activities on air pollution control remains unknown. Here we seek to evaluate the air quality improvement and associated health benefits achievable under the Action Plan in the Pearl River Delta (PRD) area from 2012 to 2017. Measure-by-measure quantification results show that the Action Plan would promise effective emissions reductions of 34% of SO2, 28% of NOx, 26% of PM2.5 (particulate matter less than 2.5 μm in diameter), and 10% of VOCs (volatile organic compounds). These emissions abatements would lower the PM2.5 concentration by 17%, surpassing the 15% target established in the Action Plan, thereby avoiding more than 2900 deaths and 4300 hospital admissions annually. We expect the implementation of the Action Plan in the PRD would be productive; the anticipated impacts, however, fall short of the goal of protecting the health of local residents, as there are still more than 33 million people living in places where the annual mean ambient PM2.5 concentrations are greater than 35 μg m-3, the interim target-3 of the World Health Organization (WHO). We therefore propose the next steps for air pollution control that are important not only for the PRD but also for all other regions of China as they develop and implement effective air pollution control policies.

  14. Historical Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Historical Ambient Air Quality Data Inventory contains measured and estimated data on ambient air pollution for use in assessing air quality, assisting in...

  15. Assessing the Impact of Oil and Natural Gas Activities on Regional Air Quality in the Colorado Northern Front Range using WRF-Chem

    Science.gov (United States)

    Abdioskouei, M.; Carmichael, G. R.

    2017-12-01

    Recent increases in the Natural Gas (NG) production through hydraulic fracturing have questioned the climate benefit of switching from coal-fired to natural gas-fired power plants. Higher than expected levels of methane, VOCs, and NOx have been observed in areas close to oil and NG (OnG) operation facilities. High uncertainty in the OnG emission inventories and methane budget challenge the assessment of OnG impact on air quality and climate and consequently development of effective mitigation policies and control regulations. In this work, we focus on reducing the uncertainties around the OnG emissions by using high resolution (4x4 km2) WRF-Chem simulations coupled with detailed observation from the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ 2014) field campaign. First, we identified the optimal WRF-Chem configurations in the NFR area. We compared the performance of local and non-local Planetary Boundary Layer (PBL) schemes in predicting the PBL height and vertical mixing in the domain. We evaluated the impact of different meteorological and chemical initial and boundary conditions on the model performance. Next, simulations based on optimal configurations were used to assess the performance of the emission inventory (NEI-2011v2). To evaluate the impact of OnG emission on regional air quality and performance of NEI-2011 we tested the sensitivity of the model to the OnG emission. Comparison between simulated values and ground-based and airborne measurements shows a low bias of OnG emission in NEI-2011. Finally, inverse modeling techniques based on emission sensitivity simulations are being used to optimal scaling the OnG emission from the NEI-2011.

  16. 78 FR 53270 - Revision of Air Quality Implementation Plan; California; Sacramento Metropolitan Air Quality...

    Science.gov (United States)

    2013-08-29

    ... Quality Implementation Plan; California; Sacramento Metropolitan Air Quality Management District... to the Sacramento Metropolitan Air Quality Management District (SMAQMD or District) portion of the..., Sacramento Metropolitan Air Quality Management District, Rule 214 (Federal New Source Review), Rule 203...

  17. Air quality management planning (AQMP

    Directory of Open Access Journals (Sweden)

    Sivertsen Bjarne

    2012-01-01

    Full Text Available In most urban areas of the world, particulate matter (PM levels pose severe problems, addressed in several policy areas (air quality, climate change, and human health. PM presents multiple challenges due to the multitude of its sources, spanning many sectors of economic activity as well as nature, and due to the complexity of atmospheric processes involved in its transport and secondary formation. For the authorities, the goal is to assure minimal impacts of atmospheric PM levels, in practice represented by compliance with existing regulations and standards. This may be achieved through an air quality management plan (AQMP. In Northern America and in parts of Europe, comprehensive research programs have guided development of AQMP over the last forty years. This cumulated experience can be utilized by others who face the same problems, but have yet to develop their own substantial research base. The main purpose of the AQMP development process is to establish an effective and sound basis for planning and management of air quality in a selected area. This type of planning will ensure that significant sources of impacts are identified and controlled in a most cost-effective manner. The choice of tools, methods and input information is often dictated by their availability, and should be evaluated against current best practices. Important elements of the AQMP are the identification of sources and development of a complete emission inventory, the development and operation of an air quality monitoring programme, and the development and application of atmospheric dispersion models. Major task is to collect the necessary input data. The development of the AQMP will take into account: - Air Quality Management System (AQMS requirements; - Operational and functional structure requirements; - Source identification through emission inventories; - Source reduction alternatives, which may be implemented; - Mechanisms for facilitating interdepartmental

  18. Regional air pollution over Malaysia

    Science.gov (United States)

    Krysztofiak, G.; Catoire, V.; Dorf, M.; Grossmann, K.; Hamer, P. D.; Marécal, V.; Reiter, A.; Schlager, H.; Eckhardt, S.; Jurkat, T.; Oram, D.; Quack, B.; Atlas, E.; Pfeilsticker, K.

    2012-12-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in Nov. and Dec. 2011 a number of polluted air masses were observed in the marine and terrestrial boundary layer (0 - 2 km) and in the free troposphere (2 - 12 km) over Borneo/Malaysia. The measurements include isoprene, CO, CO2, CH4, N2O, NO2, SO2 as primary pollutants, O3 and HCHO as secondary pollutants, and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local and regional air pollution (e.g., biomass burning and fossil fuel burning, gas flaring on oil rigs, emission of ships and from urban areas, volcanic emissions, and biogenic emissions). Individual sources and location can be identified when the measurements are combined with a nested-grid regional scale chemical and meteorological model and lagrangian particle dispersion model (e.g., CCATT-BRAMS and FLEXPART). In the case of the former, emission inventories of the primary pollutants provide the basis for the trace gas simulations. In this region, the anthropogenic influence on air pollution seems to dominate over natural causes. For example, CO2 and CH4 often show strong correlations with CO, suggesting biomass burning or urban fossil fuel combustion dominates the combustion sources. The study of the CO/CO2 and CH4/CO ratios can help separate anthropogenic combustion from biomass burning pollution sources. In addition, these ratios can be used as a measure of combustion efficiency to help place the type of biomass burning particular to this region within the wider context of fire types found globally. On several occasions, CH4 enhancements are observed near the ocean surface, which are not directly correlated with CO enhancements thus indicating a non-combustion-related CH4 source. Positive correlations between SO2 and CO show the anthropogenic influence of oil rigs located in the South China Sea. Furthermore, SO2 enhancements are observed without any increase in CO

  19. Effect of regional precursor emission controls on long-range ozone transport – Part 2: Steady-state changes in ozone air quality and impacts on human mortality

    Directory of Open Access Journals (Sweden)

    J. J. West

    2009-08-01

    Full Text Available Large-scale changes in ozone precursor emissions affect ozone directly in the short term, and also affect methane, which in turn causes long-term changes in ozone that affect surface ozone air quality. Here we assess the effects of changes in ozone precursor emissions on the long-term change in surface ozone via methane, as a function of the emission region, by modeling 10% reductions in anthropogenic nitrogen oxide (NOx emissions from each of nine world regions. Reductions in NOx emissions from all world regions increase methane and long-term surface ozone. While this long-term increase is small compared to the intra-regional short-term ozone decrease, it is comparable to or larger than the short-term inter-continental ozone decrease for some source-receptor pairs. The increase in methane and long-term surface ozone per ton of NOx reduced is greatest in tropical and Southern Hemisphere regions, exceeding that from temperate Northern Hemisphere regions by roughly a factor of ten. We also assess changes in premature ozone-related human mortality associated with regional precursor reductions and long-range transport, showing that for 10% regional NOx reductions, the strongest inter-regional influence is for emissions from Europe affecting mortalities in Africa. Reductions of NOx in North America, Europe, the Former Soviet Union, and Australia are shown to reduce more mortalities outside of the source regions than within. Among world regions, NOx reductions in India cause the greatest number of avoided mortalities per ton, mainly in India itself. Finally, by increasing global methane, NOx reductions in one hemisphere tend to cause long-term increases in ozone concentration and mortalities in the opposite hemisphere. Reducing emissions of methane, and to a lesser extent carbon monoxide and non-methane volatile organic compounds, alongside NOx reductions would

  20. Considering the sanitary aspects in regional plans for air quality. Situation of sanitary impacts of urban air pollution studies; Prise en compte des aspects sanitaires dans les Plans regionaux pour la qualite de l'air. Bilan des etudes d'impact sanitaires de la pollution atmospherique urbaine realisees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-15

    The law on air and the rational use of energy of the 30. september 1996 forecasts the setting up of regional planning for the air quality that have to rely on the support of an evaluation of sanitary effects of air pollution. To help the local sanitary authorities in this mission, the National Institute of Sanitary Surveillance and the C.I.R.E. have realised a methodological guide on evaluation of sanitary impact of urban air pollution in different contexts. (N.C.)

  1. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.

    Science.gov (United States)

    Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian

    2011-10-01

    The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.

  2. Compliance with air quality regulations

    International Nuclear Information System (INIS)

    Steen, D.V.; Tackett, D.L.

    1990-01-01

    Due to the probable passage of Clean Air Act Amendments in 1990, electric utilities throughout the United States are faced with numerous choices to comply with the new acid rain regulations, expected in 1991. The choice of a compliance plan is not a simple task. Every compliance option will be costly. At Ohio Edison, deliberations are quite naturally influenced by past compliance with air quality regulations. This paper discusses compliance with air quality regulations in the 1970's, clean coal technologies and advanced scrubbers, and compliance with air quality regulations in 1995 - 2000. The choice of a compliance strategy for many utilities will involve serving customer loads through some combination of scrubbers, clean coal technologies, fuel switching, fuel blending, redispatch of units, and emissions trading. Whatever the final choice, it must be economic while providing sufficient flexibility to accommodate the critical uncertainties of load growth, state regulatory treatment, markets for emission allowances, advancements in control technologies, additional federal requirements for air emissions, equipment outages and fuel supply disruptions.s

  3. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Deniz, E-mail: deniz.sari@tubitak.gov.tr [TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, 41470 Kocaeli (Turkey); Bayram, Abdurrahman [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir (Turkey)

    2014-08-01

    Air pollution in cities is a major environmental problem principally in the developing countries. The quantification of emissions is a basic requirement to assess the human influence to the atmosphere. The air quality generally shows decreases with the major contribution residential emissions and meteorology in the winter season in the big cities. Poor meteorological conditions especially inversion events for the efficient mixing of air pollutants occurred during the winter months in İzmir. With this work we quantify the amount of domestic heating emissions for particulate matter (PM10), sulfur dioxides (SO{sub 2}), nitrogen dioxides (NO{sub 2}), volatile organic compounds (VOC) and carbon monoxide (CO) together with greenhouse gases which are carbon dioxide (CO{sub 2}), nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) in İzmir for 2008–2009 winter season. The results showed that the most affected residential areas were central districts in the city center from domestic heating emissions due to meteorological condition and demographic reasons. Air quality modeling is a great tool for assisting policy makers how to decrease emissions and improve air quality. At the second part of the study, calculated emissions were modeled by using CALMET/CALPUFF dispersion modeling system and plotted in the form of air pollution maps by using geographical information system to determine the locations and estimate the effects of the new residential areas that will be established in the future in İzmir. - Highlights: • The air pollution in cities especially shows raises with the opening of winter season. • Air pollution has become a problem due to rapid urbanization in İzmir, Turkey. • The air quality shows decreases with the residential emissions in İzmir's winter. • With this work we quantify the amount of domestic heating emissions for pollutants. • The impact of emissions on local air-quality is determined by using dispersion model.

  4. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality

    International Nuclear Information System (INIS)

    Sari, Deniz; Bayram, Abdurrahman

    2014-01-01

    Air pollution in cities is a major environmental problem principally in the developing countries. The quantification of emissions is a basic requirement to assess the human influence to the atmosphere. The air quality generally shows decreases with the major contribution residential emissions and meteorology in the winter season in the big cities. Poor meteorological conditions especially inversion events for the efficient mixing of air pollutants occurred during the winter months in İzmir. With this work we quantify the amount of domestic heating emissions for particulate matter (PM10), sulfur dioxides (SO 2 ), nitrogen dioxides (NO 2 ), volatile organic compounds (VOC) and carbon monoxide (CO) together with greenhouse gases which are carbon dioxide (CO 2 ), nitrous oxide (N 2 O) and methane (CH 4 ) in İzmir for 2008–2009 winter season. The results showed that the most affected residential areas were central districts in the city center from domestic heating emissions due to meteorological condition and demographic reasons. Air quality modeling is a great tool for assisting policy makers how to decrease emissions and improve air quality. At the second part of the study, calculated emissions were modeled by using CALMET/CALPUFF dispersion modeling system and plotted in the form of air pollution maps by using geographical information system to determine the locations and estimate the effects of the new residential areas that will be established in the future in İzmir. - Highlights: • The air pollution in cities especially shows raises with the opening of winter season. • Air pollution has become a problem due to rapid urbanization in İzmir, Turkey. • The air quality shows decreases with the residential emissions in İzmir's winter. • With this work we quantify the amount of domestic heating emissions for pollutants. • The impact of emissions on local air-quality is determined by using dispersion model

  5. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Science.gov (United States)

    2012-05-21

    ... and 81 Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards; Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area Classifications...-9668-2] RIN 2060-AP37 Air Quality Designations for the 2008 Ozone National Ambient Air Quality...

  6. Spatio-temporal modelling of atmospheric pollution based on observations provided by an air quality monitoring network at a regional scale

    International Nuclear Information System (INIS)

    Coman, A.

    2008-01-01

    This study is devoted to the spatio-temporal modelling of air pollution at a regional scale using a set of statistical methods in order to treat the measurements of pollutant concentrations (NO 2 , O 3 ) provided by an air quality monitoring network (AIRPARIF). The main objective is the improvement of the pollutant fields mapping using either interpolation methods based on the spatial or spatio-temporal structure of the data (spatial or spatio-temporal kriging) or some algorithms taking into account the observations, in order to correct the concentrations simulated by a deterministic model (Ensemble Kalman Filter). The results show that nitrogen dioxide mapping based only on spatial interpolation (kriging) gives the best results, while the spatial repartition of the monitoring sites is good. For the ozone mapping it is the sequential data assimilation that leads us to a better reconstruction of the plume's form and position for the analyzed cases. Complementary to the pollutant mapping, another objective was to perform a local prediction of ozone concentrations on a 24-hour horizon; this task was performed using Artificial Neural Networks. The performance indices obtained using two types of neural architectures indicate a fair accuracy especially for the first 8 hours of prediction horizon. (author)

  7. Indoor Air Quality Management Program.

    Science.gov (United States)

    Anne Arundel County Public Schools, Annapolis, MD.

    In an effort to provide Indoor Air Quality (IAQ) management guidance, Anne Arundel County Public Schools was selected by the Maryland State Department of Education to develop a program that could be used by other school systems. A major goal was to produce a handbook that was "user friendly." Hence, its contents are a mix of history,…

  8. Lagrangian Sampling of 3-D Air Quality Model Results for Regional Transport Contributions to Sulfate Aerosol Concentrations at Baltimore, MD in Summer of 2004

    Science.gov (United States)

    The Lagrangian method provides estimates of the chemical and physical evolution of air arriving in the daytime boundary layer at Baltimore. Study results indicate a dominant role for regional transport contributions of those days when sulfate air pollution is highest in Baltimor...

  9. Generating emissions and meteorology to model the impacts of biomass burning emissions on regional air quality in South Africa

    CSIR Research Space (South Africa)

    Carter, WS

    2008-10-01

    Full Text Available inventory, trajectory analysis. 1. Introduction The Kruger National Park (KNP), situated on the border of South Africa and Mozambique was intensively studied for its emission contributions and effects on the atmosphere during both the SAFARI...-1992 and SAFARI-2000 campaigns. It is a region that is characterised by dry season biomass burning with more than 52% of its fires occurring throughout the winter months. As an initial step in this study, pyrogenic emissions from savanna...

  10. 32 CFR 989.30 - Air quality.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air Act..., Air Quality Compliance. 10 10 See footnote 1 to § 989.1. ...

  11. Regional air pollution at a turning point.

    Science.gov (United States)

    Grennfelt, Peringe; Hov, Oystein

    2005-02-01

    The control of transboundary air pollution in Europe has been successful. Emissions of many key pollutants are decreasing and there are signs of improvements in damaged ecosystems. The strategies under development within the CAFE programme under the European Commission and the Convention on Long-range Transboundary Air Pollution (CLRTAP), aim to take regional air pollution control a large step further, in particular with respect to small particles. In this paper we highlight the new strategies but look primarily at socioeconomic trends and climate change feedbacks that may have a significant influence on the outcome of the strategies and which so far have not been considered. In particular, we point out the influence on air quality of increased summer temperatures in Europe and of increasing emissions including international shipping, outside of Europe. Taken together the further emissions reductions in Europe and the increasing background pollution, slowly cause a greying of the Northern Hemisphere troposphere rather than the traditional picture of dominant emissions in Europe and North America ('black') with much lower emission intensities elsewhere ('white'). A hemispheric approach to further combat air pollution will become necessary in Europe and elsewhere.

  12. Wood energy and air quality

    International Nuclear Information System (INIS)

    2015-12-01

    This publication first recalls the main benefits of the use of wood, the first source of renewable energy in France: abundant and local resource, low CO 2 emission, competitiveness, job creation. It comments the relationship between the use of this source of energy and the compliance with air quality standards as they are notably defined by European directives, as the use of wood as heating source is one of the recommended lever to improve air quality. The publication comments emissions generated by this type of heating (mainly in the housing sector, with some critical meteorological periods). Levers for actions are discussed: fleet renewal to promote the best performing equipment, practice improvements (fuel quality, apparatus maintenance). Actions undertaken by the ADEME are briefly reviewed: support to individual equipment fleet modernisation, support to R and D, support to the sector, and information and communication

  13. A Fleet of Low-Cost Sensor Based Air Quality Monitors Is Used to Measure Carbon Dioxide and Carbon Monoxide in Two Settings: In the Ambient Environment to Explore the Regional-Scale Spatial Variability of These Compounds Via a Distributed Network, and in Homes to Investigate How Heating during Winter Months can Impact Indoor Air Quality.

    Science.gov (United States)

    Casey, J. G.; Hannigan, M.; Collier, A. M.; Coffey, E.; Piedrahita, R.

    2016-12-01

    Affordable, small, portable, quiet tools to measure atmospheric trace gases and air quality enable novel experimental design and new findings. Members of the Hannigan Lab at the University of Colorado in Boulder have been working over the last few years to integrate emerging affordable gas sensors into such an air quality monitor. Presented here are carbon monoxide (CO) and carbon dioxide (CO2) measurements from two field experiments that utilized these tools. In the first experiment, ten air quality monitors were located northeast of Boulder throughout the Denver Julesburg oil and gas basin. The Colorado Department of Health and Environment has several air quality monitoring sites in this broader region, each in an Urban center. One goal of the experiment was to determine whether or not significant spatial variability of EPA criteria pollutants like CO, exists on a sub-regulatory monitoring grid scale. Another goal of the experiment was to compare rural sampling locations with urban sites. The monitors collected continuous data (sampling every 15 seconds) at each location over the course of several months. Our sensor calibration procedures are presented along with our observations and an analysis of the spatial and temporal variability in CO and CO2. In the second experiment, we used eight of our air quality monitors to better understand how home heating fuel type can impact indoor air quality in two communities on the Navajo Nation. We sought to compare air quality in homes using one of four different fuels for heat (wood, wood plus coal, pellet, and gas). There are many factors that contribute to indoor air quality and the impact of an emission source, like a woodstove, within a home. Having multiple, easily deployable, air quality monitors allowed us to account for many of these factors. We sampled four homes at a time, aiming for one home from each of our fuel groups in each sampling period. We sampled inside and outside of each home for a period of 3-4 days

  14. Remote Sensing of Urban Thermal Landscape Characteristics and Their Affects on Local and Regional Meteorology and Air Quality: An Overview of NASA EOS-IDS Project Atlanta

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    As an entity, the city is a manifestation of human "management" of the land. The act of city-building, however, drastically alters the biophysical environment, which ultimately, impacts local and regional land-atmosphere energy exchange processes. Because of the complexity of both the urban landscape and the attendant energy fluxes that result from urbanization, remote sensing offers the only real way to synoptically quantify these processes. One of the more important land-atmosphere fluxes that occurs over cities relates to the way that thermal energy is partitioned across the heterogeneous urban landscape. The individual land cover and surface material types that comprise the city, such as pavements and buildings, each have their own thermal energy regimes. As the collective urban landscape, the individual thermal energy responses from specific surfaces come together to form the urban heat island phenomena, which prevails as a dome of elevated air temperatures over cities. Although the urban heat island has been known to exist for well over 150 years, it is not understood how differences in thermal energy responses for land covers across the city interact to produce this phenomenon, or how the variability in thermal energy responses from different surface types drive its development. Additionally, it can be hypothesized that as cities grow in size through time, so do their urban heat islands. The interrelationships between urban sprawl and the respective growth of the urban heat island, however, have not been investigated. Moreover, little is known of the consequential effects of urban growth, land cover change, and the urban heat island as they impact local and regional meteorology and air quality.

  15. Visual air quality simulation techniques

    Science.gov (United States)

    Molenar, John V.; Malm, William C.; Johnson, Christopher E.

    Visual air quality is primarily a human perceptual phenomenon beginning with the transfer of image-forming information through an illuminated, scattering and absorbing atmosphere. Visibility, especially the visual appearance of industrial emissions or the degradation of a scenic view, is the principal atmospheric characteristic through which humans perceive air pollution, and is more sensitive to changing pollution levels than any other air pollution effect. Every attempt to quantify economic costs and benefits of air pollution has indicated that good visibility is a highly valued and desired environmental condition. Measurement programs can at best approximate the state of the ambient atmosphere at a few points in a scenic vista viewed by an observer. To fully understand the visual effect of various changes in the concentration and distribution of optically important atmospheric pollutants requires the use of aerosol and radiative transfer models. Communication of the output of these models to scientists, decision makers and the public is best done by applying modern image-processing systems to generate synthetic images representing the modeled air quality conditions. This combination of modeling techniques has been under development for the past 15 yr. Initially, visual air quality simulations were limited by a lack of computational power to simplified models depicting Gaussian plumes or uniform haze conditions. Recent explosive growth in low cost, high powered computer technology has allowed the development of sophisticated aerosol and radiative transfer models that incorporate realistic terrain, multiple scattering, non-uniform illumination, varying spatial distribution, concentration and optical properties of atmospheric constituents, and relative humidity effects on aerosol scattering properties. This paper discusses these improved models and image-processing techniques in detail. Results addressing uniform and non-uniform layered haze conditions in both

  16. Air Quality Impacts of Petroleum Refining and Petrochemical Industries

    Directory of Open Access Journals (Sweden)

    Aiswarya Ragothaman

    2017-09-01

    Full Text Available Though refineries and petrochemical industries meet society’s energy demands and produce a range of useful chemicals, they can also affect air quality. The World Health Organization (WHO has identified polluted air as the single largest environmental risk, and hence it is necessary to strive for and maintain good air quality. To manage potential health impacts, it is important to implement proper air quality management by understanding the link between specific pollutant sources and resulting population exposures. These industries release pollutants such as Volatile Organic Compounds, greenhouse gases and particulate matter, from various parts of their operations. Air quality should be monitored and controlled more meticulously in developing nations where increased energy demands, industrialization and overpopulation has led to more emissions and lower air quality. This paper presents a review of findings and highlights from various studies on air quality impacts of petroleum refining and petrochemical plants in many regions in the world.

  17. 78 FR 63934 - Approval of Air Quality Implementation Plans; California; El Dorado County Air Quality Management...

    Science.gov (United States)

    2013-10-25

    ...] Approval of Air Quality Implementation Plans; California; El Dorado County Air Quality Management District... California for the El Dorado County Air Quality Management District (EDAQMD) portion of the California SIP... 24, 1987 Federal Register, May 25, 1988, U.S. EPA, Air Quality Management Division, Office of Air...

  18. Air quality inside passenger cars

    OpenAIRE

    Joanna Faber; Krzysztof Brodzik

    2017-01-01

    Vehicle interior is a specific environment of relatively small volume, with variety of materials placed inside, including hard and soft plastics, adhesives, paints, lubricants and many others. As a result, particularly in case of newly produced vehicles, large amounts and numbers of volatile species, especially volatile organic compounds (VOCs), may be emitted and have influence vehicle interior air quality (VIAQ). Despite the fact that many of these compounds may not be harmful for human hea...

  19. Modeling the Effects of Land Use on the Quality of Water, Air, Noise, and Habitat for a Five-County Region in Georgia

    Directory of Open Access Journals (Sweden)

    Virginia H. Dale

    2008-06-01

    Full Text Available A computer simulation model, the Regional Simulator (RSim, was constructed to project how land-use changes affect the quality of water, air, noise, and habitat of species of special concern. RSim was designed to simulate these environmental impacts for five counties in Georgia that surround and include Fort Benning. The model combines existing data and modeling approaches to simulate the effects of land-cover changes on: nutrient export by hydrological unit; peak 8-h average ozone concentrations; noise caused by small arms and blasts; and habitat changes for the rare Red-cockaded Woodpecker (Picoides borealis and gopher tortoise (Gopherus polyphemus. The model also includes submodules for urban growth, new urbanization influenced by existing roads, nonurban land cover transitions, and a new military training area under development at Fort Benning. The model was run under scenarios of business as usual (BAU and greatly increased urban growth for the region. The projections show that the effects of high urban growth will likely differ from those of BAU for noise and nitrogen and phosphorus loadings to surface water, but not for peak airborne ozone concentrations, at least in the absence of associated increases in industry and transportation use or technology changes. In both scenarios, no effects of urban growth are anticipated for existing populations of the federally endangered Red-cockaded Woodpecker. In contrast, habitat for gopher tortoise in the five-county region is projected to decline by 5 and 40% in the BAU and high urban growth scenarios, respectively. RSim is designed to assess the relative environmental impacts of planned activities both inside and outside military installations and to address concerns related to encroachment and transboundary influences.

  20. Air quality inside passenger cars

    Directory of Open Access Journals (Sweden)

    Joanna Faber

    2017-02-01

    Full Text Available Vehicle interior is a specific environment of relatively small volume, with variety of materials placed inside, including hard and soft plastics, adhesives, paints, lubricants and many others. As a result, particularly in case of newly produced vehicles, large amounts and numbers of volatile species, especially volatile organic compounds (VOCs, may be emitted and have influence vehicle interior air quality (VIAQ. Despite the fact that many of these compounds may not be harmful for human health, some of them may be toxic, and this is the reason for increasing concern of vehicle manufacturers and users recently. The level of contamination varies from one vehicle to another and may be influenced by atmospheric conditions, external pollution, user habits, quality of materials used and others. The main aim of this paper was to present current knowledge status on VIAQ, with indication of main air pollutants and their concentrations. Vehicle interior air quality is discussed on the basis of studies on new and used cars in different conditions and locations. Main sources of VOCs presence inside car cabin are discussed in this paper with additional information regarding materials emissions. Differences in sampling and analytical methodologies were not debated, however, since the results differs largely in the scope of both number and amount of VOCs, a need of testing methods harmonization is indicated. Presented data may be helpful for legislative requirements introduction.

  1. Federal Interagency Committee on Indoor Air Quality

    Science.gov (United States)

    The Federal Interagency Committee on Indoor Air Quality (CIAQ), which meets three times a year, was established by Congress to coordinate the activities of the Federal Government on issues relating to Indoor Air Quality.

  2. Helping air quality managers identify vulnerable communities

    CSIR Research Space (South Africa)

    Wright, C

    2008-10-01

    Full Text Available population exposure and vulnerability risk prioritisation model is proposed for potential use by air quality managers in conjunction with their air quality management plans. The model includes factors such as vulnerability caused by poverty, respiratory...

  3. 30 CFR 75.321 - Air quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away flammable...

  4. Air quality in Europe - 2012 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    This report presents an overview and analysis of the status and trends of air quality in Europe based on concentration measurements in ambient air and data on anthropogenic emissions and trends from 2001 - when mandatory monitoring of ambient air concentrations of selected pollutants first produced reliable air quality information - to 2010. (Author)

  5. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 1: Assessing the influence of constrained multi-generational ageing

    Science.gov (United States)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2016-02-01

    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation.Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions

  6. ASPECTS REGARDING AIR QUALITY IN DEVA AREA

    Directory of Open Access Journals (Sweden)

    CARMEN DRAGOTA

    2012-03-01

    Full Text Available Aspects regarding air quality in Deva area. The attenuation of air quality in the urban environment is determined by artificial warming, a result of the radiation emitted by constructions, economic activities, as well as the climatic elements characteristics. In the survey regarding air quality in Deva we will analyse the concentrations of NO2, O3, SO2 and their implications on air quality.

  7. Air pollution knows no boundaries: defining air catchment areas and making sense of physical and political boundaries in air quality management

    CSIR Research Space (South Africa)

    Scott, G

    2005-10-01

    Full Text Available Topics under discussion: Scales of transport and turbulence in the atmosphere; Examples of global, regional and local scale transports – concepts of an “air catchment”; Defining air quality management zones - international practice; Defining air...

  8. Air quality in Europe - 2011 report

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, C.; Larssen, S. (Norsk Inst. for Luftforskning (NILU), Lillestroem (Norway)); Leeuw, F. de (RIVM, Bilthoven (Netherlands)); Foltescu, V. (EEA, Copenhagen (Denmark))

    2011-11-15

    The annual report 'Air quality in Europe' summarises the most recent evaluation of Europe's air quality status. It is mainly based on air quality measurement data that have been made available officially by 32 EEA member countries as well as 6 EEA cooperating countries. The report includes maps and analyses of air quality status over the calendar year 2009. It also analyses air quality trends over the past years. The evaluation of the status and trends of air quality is based on ambient air measurements, in conjunction with reported anthropogenic emissions. The report summarizes the main effects of different air pollutants on human health, the environment and the climate. An overview of policies and measures at European level is also given for each pollutant. This report reviews progress towards meeting the requirements of the two air quality directives in force as well as the air quality guidelines set by the World Health Organization (WHO). The report is produced in support of European and national policy development and implementation in the field of air quality. It also supports air quality management and informs the general public on the current status and trends of air quality in Europe. (Author)

  9. Workshop on indoor air quality research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  10. Indoor Air Quality in Chemistry Laboratories.

    Science.gov (United States)

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  11. Workshop on indoor air quality research needs

    International Nuclear Information System (INIS)

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized

  12. Multiplatform inversion of the 2013 Rim Fire smoke emissions using regional-scale modeling: important nocturnal fire activity, air quality, and climate impacts

    Science.gov (United States)

    Saide, P. E.; Peterson, D. A.; da Silva, A. M., Jr.; Ziemba, L. D.; Anderson, B.; Diskin, G. S.; Sachse, G. W.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Jimenez, J. L.; Campuzano Jost, P.; Dibb, J. E.; Yokelson, R. J.; Toon, B.; Carmichael, G. R.

    2014-12-01

    Large wildfire events are increasingly recognized for their adverse effects on air quality and visibility, thus providing motivation for improving smoke emission estimates. The Rim Fire, one of the largest events in California's history, produced a large smoke plume that was sampled by the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) DC-8 aircraft with a full suite of in-situ and remote sensing measurements on 26-27 August 2013. We developed an inversion methodology which uses the WRF-Chem modeling system to constrain hourly fire emissions, using as initial estimates the NASA Quick Fire Emissions Dataset (QFED). This method differs from the commonly performed top-down estimates that constrain daily (or longer time scale) emissions. The inversion method is able to simultaneously improve the model fit to various SEAC4RS airborne measurements (e.g., organic aerosol, carbon monoxide (CO), aerosol extinction), ground based measurements (e.g., AERONET aerosol optical depth (AOD), CO), and satellite data (MODIS AOD) by modifying fire emissions and utilizing the information content of all these measurements. Preliminary results show that constrained emissions for a 6 day period following the largest fire growth are a factor 2-4 higher than the initial top-down estimates. Moreover, there is a tendency to increase nocturnal emissions by factors sometimes larger than 20, indicating that vigorous fire activity continued during the night. This deviation from a typical diurnal cycle is confirmed using geostationary satellite data. The constrained emissions also have a larger day-to-day variability than the initial emissions and correlate better to daily area burned estimates as observed by airborne infrared measurements (NIROPS). Experiments with the assimilation system show that performing the inversion using only satellite AOD data produces much smaller correction factors than when using all available data

  13. Lake and bulk sampling chemistry, NADP, and IMPROVE air quality data analysis on the Bridger-Teton National Forest (USFS Region 4)

    Science.gov (United States)

    Jill Grenon; Terry Svalberg; Ted Porwoll; Mark Story

    2010-01-01

    Air quality monitoring data from several programs in and around the Bridger-Teton (B-T) National Forest - National Atmospheric Deposition Program (NADP), longterm lake monitoring, long-term bulk precipitation monitoring (both snow and rain), and Interagency Monitoring of Protected Visual Environments (IMPROVE) - were analyzed in this report. Trends were analyzed using...

  14. AIRPACT Air Quality Forecasting for August 2001

    Science.gov (United States)

    Vaughan, J. K.; Lamb, B. K.; Westberg, H. H.; Fritz, B. G.; Bamesberger, L.; Bowman, C.; Figueroa-Kaminsky, C.; Otterson, S.; Wilson, R.; Arnold, J. R.; Mass, C.; Albright, M.; Jaffe, D. A.; Barrie, L. A.; Barchet, W. R.; Fast, J. D.; Jobson, B. T.

    2002-12-01

    The AIRPACT air-quality forecasting system was operational during the month of August, 2001, and provided daily forecasts of ozone and associated species throughout the PNW2001 period. The AIRPACT (air indicator report for public awareness and community tracking) project was supported by the U.S. EPA through the EMPACT program. The modeling effort within this project resulted in the assembly of a highly automated air quality forecasting system using MM5 meteorology coupled with a regional emissions sub-system, which both drove the CALMET-CALGRID Eulerian air-quality model. Results were posted to the project web-site and distributed via ftp each morning before operations decisions were finalized. Modeling outputs included 24-hour animations of estimated gridded area emissions and predicted gridded hourly average mixing ratios for ozone, among other species. A verification system for comparing AIRPACT results against the Washington Department of Ecology telemetered surface monitor data was in development during PNW2001. The various measurement components of PNW2001, in combination with the Ecology monitoring network, provided an excellent opportunity to compare AIRPACT ozone predictions with ozone observations from multiple measurement schemes, including surface monitors, aircraft sampling, and ozonesondes. The AIRPACT prediction verification against surface monitors at six downwind sites near Seattle, WA for August 2001 resulted in a normalized bias of 15% and a normalized gross error of 51%. Comparisons of AIRPACT predictions against ozonesondes and aircraft measurements are presented graphically in this poster.

  15. The air quality impact of the port of Amsterdam on its environment: Development of an air quality tool

    NARCIS (Netherlands)

    Klok, L.; Breemen, T. van; Hulskotte, J.

    2011-01-01

    Due to the expansion of the Port of Amsterdam, Urban development and the construction of new highways, air pollution levels are about to exceed European guidelines in and around the port region of Amsterdam. To assess the air quality in this region and the impact of theport emissions on its

  16. 78 FR 19990 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2013-04-03

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY... approved revisions to Ohio regulations that consolidated air quality standards in a new chapter of rules... State's air quality standards into Ohio Administrative Code (OAC) 3745-25 and modifying an assortment of...

  17. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards... apply to Ohio's SIP. Incorporating the air quality standards into Ohio's SIP helps assure that...

  18. 76 FR 72097 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Science.gov (United States)

    2011-11-22

    ... Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This rule establishes air quality designations for most areas in the United States for the 2008 lead (Pb) National Ambient Air Quality Standards...

  19. 77 FR 12482 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Science.gov (United States)

    2012-03-01

    ... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES: This... FR 66964) and codified at 40 CFR 50.16, ``National primary and secondary ambient air quality...

  20. Air quality in the mid-21. century for the city of Paris under two climate scenarios; from the regional to local scale

    International Nuclear Information System (INIS)

    Markakis, K.; Valari, M.; Colette, A.; Sanchez, O.; Perrussel, O.; Honore, C.; Vautard, R.; Klimont, Z.; Rao, S.

    2014-01-01

    Ozone and PM2.5 concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km x 4 km horizontal resolution for two future emission scenarios. A high-resolution (1 km x 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional-scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10-year control simulation. Ozone is in very good agreement with measurements while PM2.5 is underestimated by 20% over the urban area mainly due to a large wet bias in wintertime precipitation. A significant increase of maximum ozone relative to present-day levels over Paris is modeled under the 'business-as-usual' scenario (+7 ppb) while a more optimistic 'mitigation' scenario leads to a moderate ozone decrease (-3.5 ppb) in year 2050. These results are substantially different to previous regional scale projections where 2050 ozone is found to decrease under both future scenarios. A sensitivity analysis showed that this difference is due to the fact that ozone formation over Paris at the current urban-scale study is driven by volatile organic compound (VOC)-limited chemistry, whereas at the regional-scale ozone formation occurs under NOx-sensitive conditions. This explains why the sharp NOx reductions implemented in the future scenarios have a different effect on ozone projections at different scales. In rural areas, projections at both scales yield similar results showing that the longer timescale processes of emission transport and ozone formation are less sensitive to model resolution. PM2.5 concentrations decrease by 78% and 89% under business-as usual and mitigation scenarios, respectively, compared to the present-day period. The reduction is much more prominent over the urban part of the domain due to the effective reductions of road transport and residential emissions

  1. Air-quality in the mid-21st century for the city of Paris under two climate scenarios; from regional to local scale

    Science.gov (United States)

    Markakis, K.; Valari, M.; Colette, A.; Sanchez, O.; Perrussel, O.; Honore, C.; Vautard, R.; Klimont, Z.; Rao, S.

    2014-01-01

    Ozone and PM2.5 concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. High-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10 yr control simulation. Ozone is in very good agreement with measurements while PM2.5 is underestimated by 20% over the urban area mainly due to a large wet bias in wintertime precipitation. A significant increase of maximum ozone relative to present time levels over Paris is modeled under the "business as usual" scenario (+7 ppb) while a more optimistic mitigation scenario leads to moderate ozone decrease (-3.5 ppb) in year 2050. These results are substantially different to previous regional scale projections where 2050 ozone is found to decrease under both future scenarios. A sensitivity analysis showed that this difference is due to the fact that ozone formation over Paris at the current, urban scale study, is driven by VOC-limited chemistry, whereas at the regional scale ozone formation occurs under NOx-sensitive conditions. This explains why the sharp NOx reductions implemented in the future scenarios have a different effect on ozone projections at different scales. In rural areas projections at both scales yield similar results showing that the longer time-scale processes of emission transport and ozone formation are less sensitive to model resolution. PM2.5 concentrations decrease by 78% and 89% under "business as usual" and "mitigation" scenarios respectively compared to present time period. The reduction is much more prominent over the urban part of the domain due to the effective reductions of road transport and residential emissions resulting in the smoothing of the large urban increment

  2. Air quality in the mid-21st century for the city of Paris under two climate scenarios; from the regional to local scale

    Science.gov (United States)

    Markakis, K.; Valari, M.; Colette, A.; Sanchez, O.; Perrussel, O.; Honore, C.; Vautard, R.; Klimont, Z.; Rao, S.

    2014-07-01

    Ozone and PM2.5 concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. A high-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional-scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10-year control simulation. Ozone is in very good agreement with measurements while PM2.5 is underestimated by 20% over the urban area mainly due to a large wet bias in wintertime precipitation. A significant increase of maximum ozone relative to present-day levels over Paris is modeled under the "business-as-usual" scenario (+7 ppb) while a more optimistic "mitigation" scenario leads to a moderate ozone decrease (-3.5 ppb) in year 2050. These results are substantially different to previous regional-scale projections where 2050 ozone is found to decrease under both future scenarios. A sensitivity analysis showed that this difference is due to the fact that ozone formation over Paris at the current urban-scale study is driven by volatile organic compound (VOC)-limited chemistry, whereas at the regional-scale ozone formation occurs under NOx-sensitive conditions. This explains why the sharp NOx reductions implemented in the future scenarios have a different effect on ozone projections at different scales. In rural areas, projections at both scales yield similar results showing that the longer timescale processes of emission transport and ozone formation are less sensitive to model resolution. PM2.5 concentrations decrease by 78% and 89% under business-as-usual and mitigation scenarios, respectively, compared to the present-day period. The reduction is much more prominent over the urban part of the domain due to the effective reductions of road transport and residential emissions resulting in the

  3. Estimation of air quality by air pollution indices

    International Nuclear Information System (INIS)

    Liblik, Valdo; Kundel, Helmut

    1999-01-01

    A novel system for estimating the quality of atmospheric air in the over-ground air layer with the help of air pollution indices was developed. The method is based on a comparison of measured or calculated maximum short-term concentrations and average annual concentrations of pollutants with maximum permissible concentrations (with regard to human beings and vegetation). Special air quality estimation scales for residential areas and natural systems are presented. On the basis of the concentration of the substance under study zones of very high, high, rather high, moderate, low and very low air pollution were distinguished in the over-ground layer of the atmosphere. These are projected to land surface for landscape zonation. The application of the system of indices is demonstrated in the analysis of air quality for the towns of Kohtla-Jarve, Johvi and Kivioli (in 1997-1998). A comparative analysis of the air pollution zones distinguished on the basis of emissions and data from bio monitoring yielded satisfactory results. The system of air pollution indices developed enables to process the results of air monitoring in case of pollution fields of complicated composition so that the result for estimating the quality of ambient air in a residential area is easily understood by inhabitants and interpretable with the help of a special scale; analyse temporal changes in the quality of the air in towns, villages and other residential areas and use the results as basis for developing measures for reducing the pollution of ambient air; carry out zonation of large territories on the basis of air pollution levels (spatial air pollution zones are projected on the ground surface) and estimate air quality in places where air monitoring is lacking to forecast the possible effect of air pollution on natural systems (author)

  4. Air quality dispersion models from energy sources

    International Nuclear Information System (INIS)

    Lazarevska, Ana

    1996-01-01

    Along with the continuing development of new air quality models that cover more complex problems, in the Clean Air Act, legislated by the US Congress, a consistency and standardization of air quality model applications were encouraged. As a result, the Guidelines on Air Quality Models were published, which are regularly reviewed by the Office of Air Quality Planning and Standards, EPA. These guidelines provide a basis for estimating the air quality concentrations used in accessing control strategies as well as defining emission limits. This paper presents a review and analysis of the recent versions of the models: Simple Terrain Stationary Source Model; Complex Terrain Dispersion Model; Ozone,Carbon Monoxide and Nitrogen Dioxide Models; Long Range Transport Model; Other phenomenon Models:Fugitive Dust/Fugitive Emissions, Particulate Matter, Lead, Air Pathway Analyses - Air Toxic as well as Hazardous Waste. 8 refs., 4 tabs., 2 ills

  5. Photochemical smog modeling for assessment of potential impacts of different management strategies on air quality of the Bangkok Metropolitan Region, Thailand.

    Science.gov (United States)

    Oanh, Nguyen Thi Kim; Zhang, Baoning

    2004-10-01

    A photochemical smog model system, the Variable-Grid Urban Airshed Model/Systems Applications International Mesoscale Model (UAM-V/SAIMM), was used to investigate photochemical pollution in the Bangkok Metropolitan Region (BMR). The model system was first applied to simulate a historical photochemical smog episode of two days (January 13-14, 1997) using the 1997 anthropogenic emission database available at the Pollution Control Department and an estimated biogenic emission. The output 1-hr ozone (O3) for BMR, however, did not meet the U.S. Environmental Protection Agency suggested performance criteria. The simulated minimum and maximum O3 values in the domain were much higher than the observations. Multiple model runs with different precursor emission reduction scenarios showed that the best model performance with the simulated 1-hr O3 meeting all the criteria was obtained when the volatile organic compound (VOC) and oxides of nitrogen (NOx) emission from mobile source reduced by 50% and carbon monoxide by 20% from the original database. Various combinations of anthropogenic and biogenic emissions in Bangkok and surrounding provinces were simulated to assess the contribution of different sources to O3 pollution in the city. O3 formation in Bangkok was found to be more VOC-sensitive than NOx-sensitive. To attain the Thailand ambient air quality standard for 1-hr O3 of 100 ppb, VOC emission in BMR should be reduced by 50-60%. Management strategies considered in the scenario study consist of Stage I, Stage II vapor control, replacement of two-stroke by four-stroke motorcycles, 100% compressed natural gas bus, 100% natural gas-fired power plants, and replacement of methyltertiarybutylether by ethanol as an additive for gasoline.

  6. Representativeness of air quality monitoring networks

    NARCIS (Netherlands)

    Duyzer, J.; Hout, D. van den; Zandveld, P.; Ratingen, S. van

    2015-01-01

    The suitability of European networks to check compliance with air quality standards and to assess exposure of the population was investigated. An air quality model (URBIS) was applied to estimate and compare the spatial distribution of the concentration of nitrogen dioxide (NO2) in ambient air in

  7. Air Quality Criteria for Particulate Matter.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  8. Corrigendum to "A novel downscaling technique for the linkage of global and regional air quality modeling" published in Atmos. Chem. Phys., 9, 9169–9185, 2009

    Directory of Open Access Journals (Sweden)

    Y. F. Lam

    2010-04-01

    Full Text Available Recently, downscaling global atmospheric model outputs (GCTM for the USEPA Community Multiscale Air Quality (CMAQ Initial (IC and Boundary Conditions (BC have become practical because of the rapid growth of computational technologies that allow global simulations to be completed within a reasonable time. The traditional method of generating IC/BC by profile data has lost its advocates due to the weakness of the limited horizontal and vertical variations found on the gridded boundary layers. Theoretically, high quality GCTM IC/BC should yield a better result in CMAQ. Unfortunately, several researchers have found that the outputs from GCTM IC/BC are not necessarily better than profile IC/BC due to the excessive transport of O3 aloft in GCTM IC/BC. In this paper, we intend to investigate the effects of using profile IC/BC and global atmospheric model data. In addition, we are suggesting a novel approach to resolve the existing issue in downscaling.

    In the study, we utilized the GEOS-Chem model outputs to generate time-varied and layer-varied IC/BC for year 2002 with the implementation of tropopause determining algorithm in the downscaling process (i.e., based on chemical (O3 tropopause definition. The comparison between the implemented tropopause approach and the profile IC/BC approach is performed to demonstrate improvement of considering tropopause. It is observed that without using tropopause information in the downscaling process, unrealistic O3 concentrations are created at the upper layers of IC/BC. This phenomenon has caused over-prediction of surface O3 in CMAQ. In addition, the amount of over-prediction is greatly affected by temperature and latitudinal location of the study domain. With the implementation of the algorithm, we have successfully resolved the incompatibility issues in the vertical layer structure between global and regional chemistry models to yield better surface O3

  9. Metro Vancouver air quality management plan : progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    The Greater Vancouver Regional District (GVRD) developed an air quality management plan (AQMP) in 2005 as a means of addressing air quality issues in the region. The plan required progress reports every 2 years as well as a comprehensive review every 5 years. The AQMP established goals to minimize risk to public health from air pollution, improve visibility, and minimize the region's contributions to global climatic change by reducing emissions; implementing local air quality management programs; and enhancing air quality information and public awareness. The AQMP also included a sustainability framework for GVRD's policies and regulations related to regional growth, service delivery and political leadership. Regional strategies for solid waste and liquid waste management were developed in 2008. The sustainability framework has developed 3 priority goals: (1) to reduce diesel particulates by 75 per cent from Metro Vancouver corporate sources by 2012, (2) to be carbon neutral by 2012 excluding solid waste operations, and (3) to reduce regional GHGs by 15 per cent by 2015, and 33 per cent by 2020. Progress updates on regional planning efforts for the AQMP were presented. The report also outlined trends and performance measures used by the GVRD, and discussed changes in air quality issues and priorities that have occurred since the AQMP was adopted in 2005. 1 tab., 8 figs.

  10. Metro Vancouver air quality management plan : progress report

    International Nuclear Information System (INIS)

    2008-10-01

    The Greater Vancouver Regional District (GVRD) developed an air quality management plan (AQMP) in 2005 as a means of addressing air quality issues in the region. The plan required progress reports every 2 years as well as a comprehensive review every 5 years. The AQMP established goals to minimize risk to public health from air pollution, improve visibility, and minimize the region's contributions to global climatic change by reducing emissions; implementing local air quality management programs; and enhancing air quality information and public awareness. The AQMP also included a sustainability framework for GVRD's policies and regulations related to regional growth, service delivery and political leadership. Regional strategies for solid waste and liquid waste management were developed in 2008. The sustainability framework has developed 3 priority goals: (1) to reduce diesel particulates by 75 per cent from Metro Vancouver corporate sources by 2012, (2) to be carbon neutral by 2012 excluding solid waste operations, and (3) to reduce regional GHGs by 15 per cent by 2015, and 33 per cent by 2020. Progress updates on regional planning efforts for the AQMP were presented. The report also outlined trends and performance measures used by the GVRD, and discussed changes in air quality issues and priorities that have occurred since the AQMP was adopted in 2005. 1 tab., 8 figs

  11. 77 FR 12524 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Science.gov (United States)

    2012-03-01

    ... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... Indiana State Implementation Plan (SIP) for lead (Pb) under the Clean Air Act (CAA). This submittal incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES...

  12. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... the Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP) under the Clean Air Act. On April 8, 2009, and...

  13. Air quality management in China: issues, challenges, and options.

    Science.gov (United States)

    Wang, Shuxiao; Hao, Jiming

    2012-01-01

    This article analyzed the control progress and current status of air quality, identified the major air pollution issues and challenges in future, proposed the long-term air pollution control targets, and suggested the options for better air quality in China. With the continuing growth of economy in the next 10-15 years, China will face a more severe situation of energy consumption, electricity generation and vehicle population leading to increase in multiple pollutant emissions. Controlling regional air pollution especially fine particles and ozone, as well as lowering carbon emissions from fossil fuel consumption will be a big challenge for the country. To protect public health and the eco-system, the ambient air quality in all Chinese cities shall attain the national ambient air quality standards (NAAQS) and ambient air quality guideline values set by the World Health Organization (WHO). To achieve the air quality targets, the emissions of SO2, NOx, PM10, and volatile organic compounds (VOC) should decrease by 60%, 40%, 50%, and 40%, respectively, on the basis of that in 2005. A comprehensive control policy focusing on multiple pollutants and emission sources at both the local and regional levels was proposed to mitigate the regional air pollution issue in China. The options include development of clean energy resources, promotion of clean and efficient coal use, enhancement of vehicle pollution control, implementation of synchronous control of multiple pollutants including SO2, NOx, VOC, and PM emissions, joint prevention and control of regional air pollution, and application of climate friendly air pollution control measures.

  14. Air quality and radiative impacts of Arctic shipping emissions in the summertime in northern Norway: from the local to the regional scale

    Directory of Open Access Journals (Sweden)

    L. Marelle

    2016-02-01

    Full Text Available In this study, we quantify the impacts of shipping pollution on air quality and shortwave radiative effect in northern Norway, using WRF-Chem (Weather Research and Forecasting with chemistry simulations combined with high-resolution, real-time STEAM2 (Ship Traffic Emissions Assessment Model version 2 shipping emissions. STEAM2 emissions are evaluated using airborne measurements from the ACCESS (Arctic Climate Change, Economy and Society aircraft campaign, which was conducted in the summer 2012, in two ways. First, emissions of nitrogen oxides (NOx and sulfur dioxide (SO2 are derived for specific ships by combining in situ measurements in ship plumes and FLEXPART-WRF plume dispersion modeling, and these values are compared to STEAM2 emissions for the same ships. Second, regional WRF-Chem runs with and without STEAM2 ship emissions are performed at two different resolutions, 3 km  ×  3 km and 15 km  ×  15 km, and evaluated against measurements along flight tracks and average campaign profiles in the marine boundary layer and lower troposphere. These comparisons show that differences between STEAM2 emissions and calculated emissions can be quite large (−57 to +148 % for individual ships, but that WRF-Chem simulations using STEAM2 emissions reproduce well the average NOx, SO2 and O3 measured during ACCESS flights. The same WRF-Chem simulations show that the magnitude of NOx and ozone (O3 production from ship emissions at the surface is not very sensitive (< 5 % to the horizontal grid resolution (15 or 3 km, while surface PM10 particulate matter enhancements due to ships are moderately sensitive (15 % to resolution. The 15 km resolution WRF-Chem simulations are used to estimate the regional impacts of shipping pollution in northern Norway. Our results indicate that ship emissions are an important source of pollution along the Norwegian coast, enhancing 15-day-averaged surface concentrations of NOx ( ∼  +80 %, SO2 (

  15. Columbia River final environmental impact statement. Appendix B: Air quality

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix consists of eight chapters. Chapter 1 describes the air quality issues that were raised in the SOR scoping process and provides an overview of the study process used to evaluate air quality effects from various system operation alternatives. Chapter 2 describes the Federal, state, and local programs that regulate air quality and discusses the air quality standards that are relevant to the analysis. It also gives an overview of the limatology of the region and the existing air quality in the Columbia River Basin, including areas of non-attainment for relevant air quality standards. Chapter 3 presents the methods this study uses for the analysis of air quality and for the evaluation of human health effects from air pollutants. Chapter 4 provides the study results for the System Operating Strategy (SOS) alternatives and potential mitigation measures. Chapter 5 compares impacts on air quality and human health across alternatives, and discusses mitigation measures and cumulative effects. Chapters 6, 7, and 8 contain the list of preparers, glossary, and references, respectively. Technical exhibits supporting the analysis are also included

  16. Air quality strategy for Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Alex, N.K.Y. [Air Policy Group, Wanchai (Hong Kong). Environmental Protection Dept.

    1995-12-31

    Hong Kong has experienced unimpeded economic growth for four decades but at the same time has suffered from growing air pollution. A new look at the air quality strategy is therefore required to bring about sustainable development. (author)

  17. Air quality strategy for Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Alex, N K.Y. [Air Policy Group, Wanchai (Hong Kong). Environmental Protection Dept.

    1996-12-31

    Hong Kong has experienced unimpeded economic growth for four decades but at the same time has suffered from growing air pollution. A new look at the air quality strategy is therefore required to bring about sustainable development. (author)

  18. Air quality monitoring in Pakistan

    International Nuclear Information System (INIS)

    Ghauri, B.; Lodhi, A.

    2005-01-01

    Clean air is an important prerequisite for sustainable economic development and is a basic requirement for human health and welfare. The baseline information helps the policy maker in decision making and future planning such as industrial and economic development, establishment and implementation of environmental guidelines etc. Pakistan is a developing country and is confronted with a number of severe environmental problems, such as degradation of natural resources, industrial and vehicle related pollution, degradation of human health etc. SUPARCO has conducted a year long (2003-2004) baseline air quality study in the major urban areas of the country including Karachi, Lahore, Quetta, Rawalpindi, Islamabad and Peshawar in collaboration with ENERCON/ UNDP. The objectives of this study were to establish baseline levels and behavior of ambient airborne pollutants in urban centers with temporal and spatial parameters. Our study reveals that the maximum concentrations of CO were observed at Quetta (38 ppm) while other pollutants like SO/sub 2/, (52.5 ppb), NO/sub x/ (60.75 ppb), and 03 (44.8) were higher at Lahore compared to other urban areas of the country like Karachi, Peshawar etc. Maximum levels of all these pollutants were found in summer months. Comparatively lower concentrations of these pollutants were observed in Islamabad/Rawalpindi including CO (13.6 ppm), NO/sub x/ (41 ppb), SO/sub 2/ (32 ppb) and 03 (24.7 ppb). The maximum Particulate (TSP) and PM 10 levels were observed at Lahore (990,372 micro g/m3), Karachi (410, 306 micro g/m3), and in Quetta (778, 290 micro g/m3) etc. Airborne trace/ toxic metals including Pb, along with noise level were also determined. The existing levels of these pollutants were correlated with meteorological data (temperature, humidity, wind speed, wind direction) to assess the pollutant dispersion, as well as source apportionment. A data bank of the study will be prepared for air pollution impact studies. (author)

  19. Quality of air in Asuncion

    International Nuclear Information System (INIS)

    2007-12-01

    The quality of the air in the city of Asuncion was evaluated, studying the distribution of the main chemical elements that are present in the sampling sites, using Bio monitors Tillandsia Meridionalis Baker and Tillandsia Recurvata L. and analyzed by of the ray-x florescence, technique the data were analyzed by means of the AXIL software and the results were a statistically analyzed by the SPSS Software for the creation of the maps of concentration distribution of the different elements from interest. The project was carried out multidisciplinary group integrated by the CNEA as Coordinator and executor; the Facultad de Ciencias Agrarias; the Facultad de Ciencias Quimicas; the Facultad de Ciencias Exactas y Naturales of the Universidad Nacional de Asuncion, as well as the Municipalidad de Asuncion.The material was done by specialists in the field and with the financial support of the IAEA [es

  20. Urban air quality management. V. 1

    International Nuclear Information System (INIS)

    1997-01-01

    This is the first in a series of reports commissioned by the International Petroleum Industry Environmental Conservation Association (IPIECA) to represent members' views on the management of urban air quality in the growing cities in developing countries. In this report, a general, science based framework is provided as a basis for understanding the nature of the problem in any specific urban area, the range of solutions that might be available, and the potential impact of each solution and its least cost privatisation. The topics covered are: a process for urban air quality management; setting air quality targets; a structured approach to the assessment of current and future air quality modelling methodologies; identification and collation of air quality model input data; development of socio-economic scenarios -long-term trend forecasting; cost effectiveness studies; the IPIECA approach to urban air quality management - development of partnerships; encouraging commitment to implementation of programme recommendations. (7 figures; 2 tables; 18 references). (UK)

  1. 78 FR 10589 - Revision of Air Quality Implementation Plan; California; Sacramento Metropolitan Air Quality...

    Science.gov (United States)

    2013-02-14

    ... Quality Implementation Plan; California; Sacramento Metropolitan Air Quality Management District... Sacramento Metropolitan Air Quality Management District (SMAQMD or District) portion of the California State... sources within the areas covered by the plan as necessary to assure that the National Ambient Air Quality...

  2. 77 FR 73320 - Approval of Air Quality Implementation Plans; California; South Coast Air Quality Management...

    Science.gov (United States)

    2012-12-10

    ... Quality Implementation Plans; California; South Coast Air Quality Management District; Prevention of... Implementation Plan (SIP) revision for the South Coast Air Quality Management District (SCAQMD or District... in a August 15, 2012 letter from the South Coast Air Quality Management District regarding specific...

  3. Good air quality in offices improves productivity

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    Three recent independent studies have documented that the quality of indoor air has a significant and positive influence or? the productivity of office workers. A combined analysis of the results of the three studies shows a significant relationship between productivity and perceived indoor air...... quality. The impact on productivity justifies a much higher indoor air quality than the minimum levels prescribed in present standards and guidelines. One way of providing air of high quality for people to breathe, without involving excessive ventilation rates and energy use, is to provide "personalized...

  4. Good air quality in offices improves productivity

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    Three recent independent studies have documented that the quality of indoor air has a significant and positive influence on the productivity of office workers. A combined analysis of the results of the three studies shows a significant relationship between productivity and perceived indoor air...... quality. The impact on productivity justifies a much higher indoor air quality than the minimum levels prescribed in present standards and guidelines. One way of providing air of high quality for people to breathe, without involving excessive ventilation rates and energy use, is to provide "personalized...

  5. Postprocessing for Air Quality Predictions

    Science.gov (United States)

    Delle Monache, L.

    2017-12-01

    In recent year, air quality (AQ) forecasting has made significant progress towards better predictions with the goal of protecting the public from harmful pollutants. This progress is the results of improvements in weather and chemical transport models, their coupling, and more accurate emission inventories (e.g., with the development of new algorithms to account in near real-time for fires). Nevertheless, AQ predictions are still affected at times by significant biases which stem from limitations in both weather and chemistry transport models. Those are the result of numerical approximations and the poor representation (and understanding) of important physical and chemical process. Moreover, although the quality of emission inventories has been significantly improved, they are still one of the main sources of uncertainties in AQ predictions. For operational real-time AQ forecasting, a significant portion of these biases can be reduced with the implementation of postprocessing methods. We will review some of the techniques that have been proposed to reduce both systematic and random errors of AQ predictions, and improve the correlation between predictions and observations of ground-level ozone and surface particulate matter less than 2.5 µm in diameter (PM2.5). These methods, which can be applied to both deterministic and probabilistic predictions, include simple bias-correction techniques, corrections inspired by the Kalman filter, regression methods, and the more recently developed analog-based algorithms. These approaches will be compared and contrasted, and strength and weaknesses of each will be discussed.

  6. New Brunswick air quality monitoring results for the year 2000

    International Nuclear Information System (INIS)

    Hughes, R.

    2002-01-01

    Monitoring data for air quality in New Brunswick in 2000 is presented in this document. Designed for the general public, it summarizes the air quality results for 2000 and focuses on air quality assessment as it relates to existing air quality standards and objectives. The report also contains the long term trend data for representative sites. The New Brunswick Air Quality Regulation of the Clean Air Act specifies the air quality standards applicable for carbon monoxide, sulphur dioxide, hydrogen sulphide, nitrogen dioxide and total suspended particulate. The monitoring was conducted at 58 sites in 8 regional monitoring networks throughout the province. Thirteen additional sites were selected for the measurement of acid rain. Despite the fact that no standards were in effect in 2000 in New Brunswick for several substances, including inhalable particulate matter, ground-level ozone, volatile organic compounds, selected semi-volatile organic compounds, trace elements in particulate matter and mercury in air and precipitation, their levels were measured at some locations. The results indicate that emissions trends, variations in industrial output, changing process or emission control technologies, and weather conditions throughout the year explain most of the variations in results between regions. As a rule, compliance with standards is good. Acid rain continued to impact, especially in the southwestern districts of the province. Since 1996, the levels of mercury in precipitation has slightly declined. 39 refs., 43 figs

  7. Development of a source oriented version of the WRF/Chem model and its application to the California regional PM10 / PM2.5 air quality study

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2014-01-01

    Full Text Available A source-oriented version of the Weather Research and Forecasting model with chemistry (SOWC, hereinafter was developed. SOWC separately tracks primary particles with different hygroscopic properties rather than instantaneously combining them into an internal mixture. This approach avoids artificially mixing light absorbing black + brown carbon particles with materials such as sulfate that would encourage the formation of additional coatings. Source-oriented particles undergo coagulation and gas-particle conversion, but these processes are considered in a dynamic framework that realistically "ages" primary particles over hours and days in the atmosphere. SOWC more realistically predicts radiative feedbacks from anthropogenic aerosols compared to models that make internal mixing or other artificial mixing assumptions. A three-week stagnation episode (15 December 2000 to 6 January 2001 in the San Joaquin Valley (SJV during the California Regional PM10 / PM2.5 Air Quality Study (CRPAQS was chosen for the initial application of the new modeling system. Primary particles emitted from diesel engines, wood smoke, high-sulfur fuel combustion, food cooking, and other anthropogenic sources were tracked separately throughout the simulation as they aged in the atmosphere. Differences were identified between predictions from the source oriented vs. the internally mixed representation of particles with meteorological feedbacks in WRF/Chem for a number of meteorological parameters: aerosol extinction coefficients, downward shortwave flux, planetary boundary layer depth, and primary and secondary particulate matter concentrations. Comparisons with observations show that SOWC predicts particle scattering coefficients more accurately than the internally mixed model. Downward shortwave radiation predicted by SOWC is enhanced by ~1% at ground level chiefly because diesel engine particles in the source-oriented mixture are not artificially coated with material that

  8. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2016-03-01

    Full Text Available The influence of losses of organic vapors to chamber walls during secondary organic aerosol (SOA formation experiments has recently been established. Here, the influence of such losses on simulated ambient SOA concentrations and properties is assessed in the University of California at Davis / California Institute of Technology (UCD/CIT regional air quality model using the statistical oxidation model (SOM for SOA. The SOM was fit to laboratory chamber data both with and without accounting for vapor wall losses following the approach of Zhang et al. (2014. Two vapor wall-loss scenarios are considered when fitting of SOM to chamber data to determine best-fit SOM parameters, one with “low” and one with “high” vapor wall-loss rates to approximately account for the current range of uncertainty in this process. Simulations were run using these different parameterizations (scenarios for both the southern California/South Coast Air Basin (SoCAB and the eastern United States (US. Accounting for vapor wall losses leads to substantial increases in the simulated SOA concentrations from volatile organic compounds (VOCs in both domains, by factors of  ∼  2–5 for the low and  ∼  5–10 for the high scenarios. The magnitude of the increase scales approximately inversely with the absolute SOA concentration of the no loss scenario. In SoCAB, the predicted SOA fraction of total organic aerosol (OA increases from  ∼  0.2 (no to  ∼  0.5 (low and to  ∼  0.7 (high, with the high vapor wall-loss simulations providing best general agreement with observations. In the eastern US, the SOA fraction is large in all cases but increases further when vapor wall losses are accounted for. The total OA ∕ ΔCO ratio captures the influence of dilution on SOA concentrations. The simulated OA ∕ ΔCO in SoCAB (specifically, at Riverside, CA is found to increase substantially during the day only for the high vapor wall

  9. Health and air quality 2005 : phase 2 : valuation of health impacts from air quality in the Lower Fraser Valley airshed

    Energy Technology Data Exchange (ETDEWEB)

    Furberg, M.; Preston, K. [RWDI West Inc., Vancouver, BC (Canada); Sawyer, D. [Marbek Resource Consultants Ltd., Ottawa, ON (Canada); Brauer, M. [British Columbia Univ., Vancouver, BC (Canada). School of Occupational and Environmental Hygiene; Hanvelt, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Health Care and Epidemiology

    2005-07-15

    This study provided estimates the health benefits and costs associated with specified changes in ambient air concentrations of particulate matter (PM) and ozone in the Lower Fraser Valley (LFV). Estimates were developed on a regional level. The study focused on PM and ozone, as current air quality monitoring data and scientific findings have indicated that these are the air contaminants of greatest concern in the region. Known air quality health outcome relationships were applied in a spreadsheet model to predict changes in health outcomes associated with 6 ambient air quality scenarios for 3 sub-regions within the LFV airshed. Concentration response functions based on epidemiological studies were used to estimate the number of health events associated with changes in air quality. For each scenario, the model calculated the expected number of the following health outcomes: mortality; chronic bronchitis; respiratory hospital admissions; cardiac hospital admissions; emergency room visits; child acute bronchitis; restricted activity days; asthma symptom days; minor restricted activity days and acute respiratory symptom days. The model also produced the dollar value of the health outcomes. A dollar metric was used so that the health outcomes could be aggregated and compared with other air quality management actions such the costs of improving ambient air quality. Results indicated that improving ambient air quality in the LFV will produce valued and socially desirable benefits, including reduced mortality and morbidity. The measures contemplated by decision-makers to maintain and improve air quality in the LFV will trigger benefits that are likely to be significant. 101 refs., 7 tabs., 7 figs.

  10. Air quality measurements for site characterization

    International Nuclear Information System (INIS)

    Carter, M.W.; Conklin, W.C.

    1982-01-01

    Effective and timely site characterization is an important part of selecting a site for low-level waste disposal. Parameters measured can be compared with pertinent regulatory requirements, used for a reference base, helpful in evaluating environmental impacts, utilized in documenting changes in control programs, of value in modeling studies and other data uses, and beneficial in providing relevant sampling and methodology training. This paper will focus on specific air quality measurements which should be an inherent part of the site characterization program. The program is designed to measure, quantify, and identify contributions from site uses (operational procedures), atmospheric fallout, natural radioactivity, and vicinity and regional applications of radionuclides. The recommended air quality measurements program will be described in association with a reference site developd by the US Nuclear Regulatory Commission. Particular attention will be devoted to the type and quality of information which is needed, the scope of sampling and measurements, the frequency of measurements, locations and numbers of sampling stations, the period of time needed for site characterization, and the proper uses of the information once it has been obtained. Adequate characterization of the site will be most important in final site selection and in the operation of the site as to periodically assessing environmental impacts and helping guide any remedial control efforts designed to meet regulatory requirements

  11. Biodiversity, air quality and human health

    Science.gov (United States)

    David J. Nowak; Sarah Jovan; Christina Branquinho; Sofia Augusto; Manuel C. Ribeiro; Conor E. Kretsch

    2015-01-01

    Air pollution is a significant problem in cities across the world. It affects human health and well-being, ecosystem health, crops, climate, visibility and human-made materials. Health effects related to air pollution include its impact on the pulmonary, cardiac, vascular and neurological systems (Section 2). Trees affect air quality through a number of means (Section...

  12. Air quality on biomass harvesting operations

    Science.gov (United States)

    Dana Mitchell

    2011-01-01

    The working environment around logging operations can be very dusty. But, air quality around logging operations is not well documented. Equipment movements and trafficking on the landing can cause dust to rise into the air. The addition of a biomass chipper creates different air flow patterns and may stir up additional dust. This project addresses two topics related to...

  13. Regional Air Pollutions in Three Different Regions of Asia From a Transcontinental Transport Perspective

    Science.gov (United States)

    Pochanart, P.; Kanaya, Y.; Komazaki, Y.; Liu, Y.; Akimoto, H.

    2007-12-01

    Asia is known as one of the regions with the fastest rate of growing in industrialization and urbanization. As a result, the rapid increases of large-scale air pollution in Asia emerge as a serious concern at both domestic and international levels. Apart from the problems of air quality degradation, emission control, environmental risk, and health effect in a domestic level, evidences from scientific studies indicate that by the long-range transport, Asian air pollution is becoming a global problem. Observations and model studies confirm that air pollution from Asia could be transported to North America or farther. In this work, we investigate the Asian air pollutions, in particular ozone and some other atmospheric components such as carbon monoxide and black carbon, from the ground- based observations in the three different regions, namely 1) background region of Siberia and central Asia, 2) highly anthropogenic region in eastern China, and 3) the rim region of the Asia-Pacific. In a transcontinental transport perspective, these regions are regarded as the inflow region, source region, and outflow region of Asia, respectively. From the results, it is found that the influences from large-scale emission in East Asia are observed clearly in the source region, and to the significant extent in the outflow region. For the inflow region of Asia, our data in Siberia and Kyrgyzstan indicate that air masses in this region are mostly intact from large-scale anthropogenic emission, and remain much of the global background atmospheric pollution characteristic. When the air masses are transported to source region, the air pollutants level increased sharply and frequent episodes of extremely high pollutions have been observed. Our results show good correlation between the residence time of air masses over the source region in eastern China and the observed levels of air pollutants verifying the strong enhancements by anthropogenic emissions from industrialization and

  14. Current Indoor Air Quality in Japan.

    Science.gov (United States)

    Jinno, Hideto

    2016-01-01

    People spend more than two thirds of their daily time indoors. Hence, maintaining a healthy indoor environment is indispensable for the prevention of building related illness. In Japan, guidelines for indoor air quality have been established for 13 volatile/semi-volatile organic compounds (VOCs/SVOCs). These guidelines are now under revision by the Committee on Sick House Syndrome: Indoor Air Pollution. In order to gain information on the current indoor air pollutants and their levels, we carried out a nation-wide survey of VOCs and aldehydes in indoor residential air during 2012-2013. In this review, I concisely summarized the current indoor air quality of Japan.

  15. Selected Malaysia air quality pollutants assessment using ...

    African Journals Online (AJOL)

    Analysis of PCA, FA, KMO and Bartlett's test were done on five main air quality pollutants (O3, NO2, SO2, CO and PM10) from all around Malaysia. From the data analysis obtained, the concentrations of air quality pollutants all around Malaysia starting from 2008 to 2011 were acceptable and the most dominant major ...

  16. 40 CFR 240.205 - Air quality.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality. ...

  17. Indoor Air Quality: Maryland Public Schools.

    Science.gov (United States)

    Maryland State Dept. of Education, College Park. Office of Administration and Finance.

    Less than adequate indoor air quality in schools can lead to a higher risk of health problems, an increase in student and teacher absenteeism, diminished learning, and even hazardous conditions. An indoor air quality program that addresses the planning, design, maintenance, and operation of public school buildings should be implemented at the…

  18. Indoor Air Quality: A Guide for Educators.

    Science.gov (United States)

    California State Dept. of Education, Sacramento.

    Indoor air quality is a major concern for educators involved in the development of new school facilities, or the remodeling and maintenance of existing ones. This guide addresses the issue of air quality, the health concerns involved, and procedures for minimizing the impact of pollutants in the school environment. It defines common indoor air…

  19. Data Assimilation and Air Quality Forecasting

    NARCIS (Netherlands)

    Eskes, H.; Timmermans, R.; Curier, L.; Ruyter de Wildt, M. de; Segers, A.; Sauter, F.; Schaap, M.

    2014-01-01

    Lotos-Euros is a chemistry transportmodel developed in the Netherlands, and is used for air quality assessments and forecasts. Operational air quality forecasts for the Netherlands concerning ozone and PM10 are made available on the RIVM webpage (http://www.lml.rivm.nl/verw.html) and are used to

  20. Measurements of the air quality in the regional surroundings of Finnfjord AS. October 2011 to May 2012; Luftkvalitetsmaalinger i naeromraadet til Finnfjord AS. Oktober 2011 til mai 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hak, Claudia

    2012-07-01

    NILU was assigned by Finnfjord AS to carry out measurements of SO{sub 2} and NO{sub 2} at 15 locations in the Finnfjord area. The monthly concentrations which were measured in the period october 2011 to april 2011 were assessed with respect to Klif's recommended air quality criteria and EU limit values, as well as existing model results. The results were also compared to similar measurements performed in 1996.The half year average concentrations of SO{sub 2} and NO{sub 2} are significantly lower than the recommended air quality criteria and ranged between 2,2 {mu}g/m3 and 4,0 {mu}g/m3 for SO{sub 2}, with the highest values close to the smelter. For NO{sub 2}, the half year average was between 1,8 {mu}g/m3 and 6,8 {mu}g/m3, with the highest concentration occurring in Finnsnes. Some locations on Senja showed higher concentrations of both SO{sub 2} and NO{sub 2} than in the Finnfjord area. The concentration distribution of SO{sub 2} and NO{sub 2} mapped as result of the measurements differs from the model results, where the highest levels are exected between Finnfjord AS and Gisund bridge and in the direction of Rossfjordvatnet. (Author)

  1. EPA Region 3 Quality Management Plans

    Science.gov (United States)

    Has links to resources that describe the Region's Quality Assurance Program, which is a collection of the Region's ongoing quality assurance (QA) policies, procedures, responsibilities and management systems.

  2. Air Quality Monitoring: Risk-Based Choices

    Science.gov (United States)

    James, John T.

    2009-01-01

    Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.

  3. Air quality and urban management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M. [Stanford Univ. (United States). Center for Conservation Biology; Joffre, S. [Finnish Meteorological Inst., Helsinki (Finland)

    1995-12-31

    Important changes in the quality of urban air have occurred in Europe during the last 20 years. Urban air quality trends are clearly correlated to changes in production and consumption processes which have occurred in European cities during the last decades. However, the way these trends are linked with the changes in the urban structure is not yet fully appreciated. A set of indicators is proposed to examine the relationships between air quality, energy consumption and transportation trends. On this basis is argued that the current decentralization of the urban structure and specialization of land use are major driving forces in current urban air pollution. The range of actions and tools to improve urban air quality should include: (1) land use planning, (2) efficient urban management, and (3) measures directed to protecting the quality of the urban environment. (author)

  4. Air quality and urban management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M [Stanford Univ. (United States). Center for Conservation Biology; Joffre, S [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    Important changes in the quality of urban air have occurred in Europe during the last 20 years. Urban air quality trends are clearly correlated to changes in production and consumption processes which have occurred in European cities during the last decades. However, the way these trends are linked with the changes in the urban structure is not yet fully appreciated. A set of indicators is proposed to examine the relationships between air quality, energy consumption and transportation trends. On this basis is argued that the current decentralization of the urban structure and specialization of land use are major driving forces in current urban air pollution. The range of actions and tools to improve urban air quality should include: (1) land use planning, (2) efficient urban management, and (3) measures directed to protecting the quality of the urban environment. (author)

  5. Enhancing indoor air quality -The air filter advantage.

    Science.gov (United States)

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  6. Air Quality | Air Quality Planning & Standards | US EPA

    Science.gov (United States)

    2016-06-08

    Air pollution comes from many different sources: stationary sources such as factories, power plants, and smelters and smaller sources such as dry cleaners and degreasing operations; mobile sources such as cars, buses, planes, trucks, and trains; and naturally occurring sources such as windblown dust, and volcanic eruptions, all contribute to air pollution.

  7. Mexico City air quality: Progress of an international collaborative project to define air quality management options

    International Nuclear Information System (INIS)

    Streit, G.E.

    1992-01-01

    Mexico City, faces a severe air pollution problem due to a combination of circumstances. The city is in a high mountain basin at a subtropical latitude. The basin setting inhibits dispersion of pollution and contributes to frequent wintertime thermal inversions which further trap pollutants near the surface. The elevation and latitude combine to provide plentiful sunshine which, in comparison to more northern latitudes, is enhanced in the UV radiation which drives atmospheric photochemistry to produce secondary pollutants such as ozone. The Area Metropolitana de la Ciudad de Mexico AMCW is defined to include the 16 delegations of the Federal District (D.F.) and 17 highly urbanized municipalities in the State of Mexico which border the D.F. The 1990 census (XI Censo General de Poblacion y Vivienda de 1990) records that slightly over 15 million people live in the AMCM. There are numerous other nearby communities which are in the airshed region of Mexico City, but which are not included in the definition and population of the AMCM. The Mexico City Air Quality Research Initiative is one project that is examining the complex relationship between air pollution, economic growth, societal values, and air quality management policies. The project utilizes a systems approach including computer modeling, comprehensive measurement studies of Mexico City's air pollutants, environmental chemical reaction studies and socioeconomic analysis. Los Alamos National Laboratory (USA) and the Mexican Petroleum Institute are the designated lead institutions

  8. Status of ambient air quality at Barauni

    International Nuclear Information System (INIS)

    Kannan, G.K.

    1993-01-01

    Due to industrialization, Barauni has become a well developed industrial estate to be considered as industrial hub of Bihar. Contemporary to the industrial growth, the environmental quality also gradually deteriorated. Hence a need was felt to know the status of ambient air quality for proper planning of the future growth of industries. The ambient air quality was monitored at 16 stations in and around Barauni industrial estate during 3 major seasons for the period of one year. The results are discussed as to the status of the ambient air quality and suggestion have also been made for improvement. (author). 5 refs., 2 figs., 7 tabs

  9. THE ASSESSMENT OF MICROBIOLOGICAL INDOOR AIR QUALITY IN BAKERIES

    Directory of Open Access Journals (Sweden)

    Elżbieta Wołejko

    2016-05-01

    Full Text Available The aim of this study was to assess microbiological indoor air quality of selected bakeries located in the region of Podlasie. The microbiological studies were conducted in autumn in 2014 in three selected bakeries. Microbiological air counts were measured by impaction using an air sampler MAS-100 NT. The microbiological air studies, comprised the determination of the total number of psychrophilic and mesophilic bacteria, namely indicator bacteria such as: bacteria of the species Pseudomonas fluorescens, mannitol-positive and mannitol-negative Staphylococc, the total number of bacteria from the Enterobacteriaceae family and fungi found in atmospheric air. The results of the study of indoor air polluted with the analyzed groups of microorganisms differed depending on the type of test air and the location of the manufacturing plant. In the plants, the concentration of mesophilic bacteria and mannitol–positive and mannitol-negative Staphylococcus exceeded the limit values of unpolluted air, according to the Polish Standard recommendations.

  10. Clearing the air. Air quality modelling for policy support

    NARCIS (Netherlands)

    Hendriks, C.

    2017-01-01

    The studies presented in this thesis were performed to provide policy makers with more accurate information about the sources of air pollution and the possible consequences of future developments on air quality. This enables policy makers to make better informed decisions when formulating policies

  11. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    Science.gov (United States)

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  12. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio)

    International Nuclear Information System (INIS)

    Coombs, Kanistha C.; Chew, Ginger L.; Schaffer, Christopher; Ryan, Patrick H.; Brokamp, Cole; Grinshpun, Sergey A.; Adamkiewicz, Gary; Chillrud, Steve; Hedman, Curtis; Colton, Meryl; Ross, Jamie; Reponen, Tiina

    2016-01-01

    Green eco-friendly housing includes approaches to reduce indoor air pollutant sources and to increase energy efficiency. Although sealing/tightening buildings can save energy and reduce the penetration of outdoor pollutants, an adverse outcome can be increased buildup of pollutants with indoor sources. The objective of this study was to determine the differences in the indoor air quality (IAQ) between green and non-green homes in low-income housing complexes. In one housing complex, apartments were renovated using green principles (n = 28). Home visits were conducted immediately after the renovation, and subsequently at 6 months and at 12 months following the renovation. Of these homes, eight homes had pre-renovation home visits; this allowed pre- and post-renovation comparisons within the same homes. Parallel visits were conducted in non-green (control) apartments (n = 14) in a nearby low-income housing complex. The IAQ assessments included PM_2_._5, black carbon, ultrafine particles, sulfur, total volatile organic compounds (VOCs), formaldehyde, and air exchange rate. Data were analyzed using linear mixed-effects models. None of the indoor pollutant concentrations were significantly different between green and non-green homes. However, we found differences when comparing the concentrations before and after renovation. Measured immediately after renovation, indoor black carbon concentrations were significantly lower averaging 682 ng/m"3 in post-renovation vs. 2364 ng/m"3 in pre-renovation home visits (p = 0.01). In contrast, formaldehyde concentrations were significantly higher in post-renovated (0.03 ppm) than in pre-renovated homes (0.01 ppm) (p = 0.004). Questionnaire data showed that opening of windows occurred less frequently in homes immediately post-renovation compared to pre-renovation; this factor likely affected the levels of indoor black carbon (from outdoor sources) and formaldehyde (from indoor sources) more than the renovation status itself. To

  13. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, Kanistha C. [University of Cincinnati, Department of Environmental Health, P.O. Box 670056, Cincinnati, OH (United States); Chew, Ginger L. [Centers for Disease Control and Prevention (CDC), National Center for Environmental Health, Air Pollution and Respiratory Health Branch, 4770 Buford Hwy., N.E., MS-F60, Atlanta, GA (United States); Schaffer, Christopher [University of Cincinnati, Department of Environmental Health, P.O. Box 670056, Cincinnati, OH (United States); Ryan, Patrick H. [University of Cincinnati, Department of Environmental Health, P.O. Box 670056, Cincinnati, OH (United States); Department of Pediatrics, Cincinnati Children' s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH (United States); Brokamp, Cole; Grinshpun, Sergey A. [University of Cincinnati, Department of Environmental Health, P.O. Box 670056, Cincinnati, OH (United States); Adamkiewicz, Gary [Harvard University, T.H. Chan School of Public Health, Department of Environmental Health, 401 Park Drive, Boston, MA (United States); Chillrud, Steve [Columbia University, Lamont-Doherty Earth Observatory, Geochemistry Division, P.O. Box 8000, Palisades, New York (United States); Hedman, Curtis [University of Wisconsin-Madison, Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI (United States); Colton, Meryl [Harvard University, T.H. Chan School of Public Health, Department of Environmental Health, 401 Park Drive, Boston, MA (United States); Ross, Jamie [Columbia University, Lamont-Doherty Earth Observatory, Geochemistry Division, P.O. Box 8000, Palisades, New York (United States); Reponen, Tiina [University of Cincinnati, Department of Environmental Health, P.O. Box 670056, Cincinnati, OH (United States)

    2016-06-01

    Green eco-friendly housing includes approaches to reduce indoor air pollutant sources and to increase energy efficiency. Although sealing/tightening buildings can save energy and reduce the penetration of outdoor pollutants, an adverse outcome can be increased buildup of pollutants with indoor sources. The objective of this study was to determine the differences in the indoor air quality (IAQ) between green and non-green homes in low-income housing complexes. In one housing complex, apartments were renovated using green principles (n = 28). Home visits were conducted immediately after the renovation, and subsequently at 6 months and at 12 months following the renovation. Of these homes, eight homes had pre-renovation home visits; this allowed pre- and post-renovation comparisons within the same homes. Parallel visits were conducted in non-green (control) apartments (n = 14) in a nearby low-income housing complex. The IAQ assessments included PM{sub 2.5}, black carbon, ultrafine particles, sulfur, total volatile organic compounds (VOCs), formaldehyde, and air exchange rate. Data were analyzed using linear mixed-effects models. None of the indoor pollutant concentrations were significantly different between green and non-green homes. However, we found differences when comparing the concentrations before and after renovation. Measured immediately after renovation, indoor black carbon concentrations were significantly lower averaging 682 ng/m{sup 3} in post-renovation vs. 2364 ng/m{sup 3} in pre-renovation home visits (p = 0.01). In contrast, formaldehyde concentrations were significantly higher in post-renovated (0.03 ppm) than in pre-renovated homes (0.01 ppm) (p = 0.004). Questionnaire data showed that opening of windows occurred less frequently in homes immediately post-renovation compared to pre-renovation; this factor likely affected the levels of indoor black carbon (from outdoor sources) and formaldehyde (from indoor sources) more than the renovation status

  14. Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches

    Science.gov (United States)

    Baker, K. R.; Woody, M. C.; Tonnesen, G. S.; Hutzell, W.; Pye, H. O. T.; Beaver, M. R.; Pouliot, G.; Pierce, T.

    2016-09-01

    Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions (SMOKE) model, Weather and Research Forecasting (WRF) meteorological model, and Community Multiscale Air Quality (CMAQ) photochemical grid model. The modeling system was applied to track the contribution from a wildfire (Wallow) and prescribed fire (Flint Hills) using both source sensitivity and source apportionment approaches. The model estimated fire contribution to primary and secondary pollutants are comparable using source sensitivity (brute-force zero out) and source apportionment (Integrated Source Apportionment Method) approaches. Model estimated O3 enhancement relative to CO is similar to values reported in literature indicating the modeling system captures the range of O3 inhibition possible near fires and O3 production both near the fire and downwind. O3 and peroxyacetyl nitrate (PAN) are formed in the fire plume and transported downwind along with highly reactive VOC species such as formaldehyde and acetaldehyde that are both emitted by the fire and rapidly produced in the fire plume by VOC oxidation reactions. PAN and aldehydes contribute to continued downwind O3 production. The transport and thermal decomposition of PAN to nitrogen oxides (NOX) enables O3 production in areas limited by NOX availability and the photolysis of aldehydes to produce free radicals (HOX) causes increased O3 production in NOX rich areas. The modeling system tends to overestimate hourly surface O3 at routine rural monitors in close proximity to the fires when the model predicts elevated fire impacts on O3 and Hazard Mapping System (HMS) data indicates possible fire impact. A sensitivity simulation in which solar radiation and photolysis rates were more aggressively attenuated by aerosol in the plume

  15. Air quality assessment in Salim Slam Tunnel

    International Nuclear Information System (INIS)

    El-Fadel, M.; Hashisho, Z.; Saikaly, P.

    1999-01-01

    Full text.Vehicle emissions constitute a serious occupational environmental hazard particularly in confined spaces such as tunnels and underground parking garages. these emissions at elevated concentrations, can cause adverse health effects, which range from nausea and eye irritation to mutagenicity, carcinogenicity and even death. This paper presents an environmental air quality assessment in a tunnel located in a highly congested urban area. For this purpose, air samples were collected and analyzed for the presence of primary air pollutants, priority metals, and volatile organic carbons. Air quality modeling was conducted to simulate variations of pollutant concentrations in the tunnel under worst case scenarios including traffic congestion and no air ventilation. Field measurements and mathematical simulation results were used to develop a strategy for proper air quality management in tunnels

  16. Investigating the air quality in aircraft cabins

    International Nuclear Information System (INIS)

    Nilsen, Steinar K.

    2002-01-01

    In recent years, there has been increasing concern about the air quality in aircraft cabins and its effects on health and safety for crew and passengers. Some of the major worries are risk of communication of infectious diseases, high incidence of respiratory diseases caused by low air moisture, and increased concentration of carbon dioxide from exhaled air due to the cabin air being recirculated. It also happens that fumes and gases enter the cabin by way of the ventilation system. This article describes the EU-funded research programme called CabinAir. The project aims to: (1) establish the current level of air quality in aircraft cabins, (2) establish the relationship between cabin air quality and the performance of environmental control and filtration systems, the air distribution, the energy consumption and the environmental impact of fuel burn. (3) develop new designs and technical solutions to improve the environmental control system and cabin air distribution/control systems, (4) optimise air quality in the cabin and minimise fuel consumption and environmental impacts, (5) develop performance specifications for the components, (6) draft European Pre-Normative Standards

  17. An inexact fuzzy-chance-constrained air quality management model.

    Science.gov (United States)

    Xu, Ye; Huang, Guohe; Qin, Xiaosheng

    2010-07-01

    Regional air pollution is a major concern for almost every country because it not only directly relates to economic development, but also poses significant threats to environment and public health. In this study, an inexact fuzzy-chance-constrained air quality management model (IFAMM) was developed for regional air quality management under uncertainty. IFAMM was formulated through integrating interval linear programming (ILP) within a fuzzy-chance-constrained programming (FCCP) framework and could deal with uncertainties expressed as not only possibilistic distributions but also discrete intervals in air quality management systems. Moreover, the constraints with fuzzy variables could be satisfied at different confidence levels such that various solutions with different risk and cost considerations could be obtained. The developed model was applied to a hypothetical case of regional air quality management. Six abatement technologies and sulfur dioxide (SO2) emission trading under uncertainty were taken into consideration. The results demonstrated that IFAMM could help decision-makers generate cost-effective air quality management patterns, gain in-depth insights into effects of the uncertainties, and analyze tradeoffs between system economy and reliability. The results also implied that the trading scheme could achieve lower total abatement cost than a nontrading one.

  18. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    Science.gov (United States)

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  19. Toronto air quality index health links analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pengelly, D [McMaster Inst. of Environment and Health, Hamilton, ON (Canada); Campbell, M; Macfarlane, R; Li-Muller, A [Toronto Public Health, ON (Canada)

    2001-10-01

    Based on data acquired in the year 1995, Toronto Public Health published a report called Air Pollution Burden of Illness in Toronto. In that report, it was estimated that up to 1000 Toronto residents die prematurely each year while another 5500 are admitted to hospitals due to six smog-related air pollutants. In the present document, the authors examined the air quality classifications of the Ontario Air Quality Index (AQI) in an attempt to determine whether the values adequately reflect the state of air quality and the associated burden of illness in Toronto. After careful examination of the results, it became apparent that 92 per cent of the premature mortality and hospitalization took place at times when the Air Quality Index was in the very good or good range. At times when the Air Quality Index was in the moderate or poor-very poor range, an estimated 8 per cent of the burden of illness occurred. These results indicate that the concentration range of a pollutant used to classify the good and very good categories is not always in agreement with the pollutant levels responsible for the adverse health effects. As demonstrated by this study, the air quality associated with the very good or good range described by the AQI is responsible for negative health effects in Toronto, and are lower than the provincial criteria of Ontario. The air quality conditions that may have an impact on health are not always correctly identified by the current AQI system. The authors are recommending a review of the provincial criteria for several air pollutants, and the current AQI system needs to be modified. 16 refs., tabs., figs.

  20. Ambient air pollution and semen quality.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Kim, Keewan; Mumford, Sunni L; Buck Louis, Germaine M; Chen, Zhen; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2018-05-01

    Ambient air pollution is associated with systemic increases in oxidative stress, to which sperm are particularly sensitive. Although decrements in semen quality represent a key mechanism for impaired fecundability, prior research has not established a clear association between air pollution and semen quality. To address this, we evaluated the association between ambient air pollution and semen quality among men with moderate air pollution exposure. Of 501 couples in the LIFE study, 467 male partners provided one or more semen samples. Average residential exposure to criteria air pollutants and fine particle constituents in the 72 days before ejaculation was estimated using modified Community Multiscale Air Quality models. Generalized estimating equation models estimated the association between air pollutants and semen quality parameters (volume, count, percent hypo-osmotic swollen, motility, sperm head, morphology and sperm chromatin parameters). Models adjusted for age, body mass index, smoking and season. Most associations between air pollutants and semen parameters were small. However, associations were observed for an interquartile increase in fine particulates ≤2.5 µm and decreased sperm head size, including -0.22 (95% CI -0.34, -0.11) µm 2 for area, -0.06 (95% CI -0.09, -0.03) µm for length and -0.09 (95% CI -0.19, -0.06) µm for perimeter. Fine particulates were also associated with 1.03 (95% CI 0.40, 1.66) greater percent sperm head with acrosome. Air pollution exposure was not associated with semen quality, except for sperm head parameters. Moderate levels of ambient air pollution may not be a major contributor to semen quality. Published by Elsevier Inc.

  1. Determination and evaluation of air quality control. Manual of ambient air quality control in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lahmann, E.

    1997-07-01

    Measurement of air pollution emissions and ambient air quality are essential instruments for air quality control. By undertaking such measurements, pollutants are registered both at their place of origin and at the place where they may have an effect on people or the environment. Both types of measurement complement each other and are essential for the implementation of air quality legislation, particularly, in compliance with emission and ambient air quality limit values. Presented here are similar accounts of measurement principles and also contains as an Appendix a list of suitability-tested measuring devices which is based on information provided by the manufacturers. In addition, the guide of ambient air quality control contains further information on discontinuous measurement methods, on measurement planning and on the assessment of ambient air quality data. (orig./SR)

  2. Air Quality Case Studies Report

    Science.gov (United States)

    1995-08-01

    The Federal Highway Administration (FHWA) recognizes that many metropolitan areas are struggling with how to respond adequately to the 1990 Clean Air Act Amendments (CAAA) and the 1991 Intermodal Surface Transportation Efficiency Act (ISTEA), particu...

  3. Air quality management in Riga area

    Energy Technology Data Exchange (ETDEWEB)

    Leitass, A. [Riga City Council (Latvia). Air Monitoring Dept.

    1995-12-31

    The present Air Quality Management System was started in 1992 as a result of co-operation between two cities - Riga and Norrkoping (Sweden) supported by BITS (The Swedish Agency for International Technical and Economic Co-operation). Lots of Swedish companies were involved in different parts of this project. The strategy is designed by INDIC company developing the AIRVIRO which is a computer based system for all aspects of air quality management. Air pollution in Riga is a serious problem affecting health and damaging valuable buildings of historic value. The majority of the city`s air pollution is the result of emission sources inside the city. The traffic is the predominant source of pollution now. The fossil fuel power stations in the country are not considered to affect the air quality situation in Riga. (author)

  4. Air quality management in Riga area

    Energy Technology Data Exchange (ETDEWEB)

    Leitass, A [Riga City Council (Latvia). Air Monitoring Dept.

    1996-12-31

    The present Air Quality Management System was started in 1992 as a result of co-operation between two cities - Riga and Norrkoping (Sweden) supported by BITS (The Swedish Agency for International Technical and Economic Co-operation). Lots of Swedish companies were involved in different parts of this project. The strategy is designed by INDIC company developing the AIRVIRO which is a computer based system for all aspects of air quality management. Air pollution in Riga is a serious problem affecting health and damaging valuable buildings of historic value. The majority of the city`s air pollution is the result of emission sources inside the city. The traffic is the predominant source of pollution now. The fossil fuel power stations in the country are not considered to affect the air quality situation in Riga. (author)

  5. Air quality and future energy system planning

    Science.gov (United States)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  6. Air quality information system (AQIS) for Gauteng: defining best practice

    CSIR Research Space (South Africa)

    Kganyago, P

    2006-10-01

    Full Text Available The National Environmental Management: Air Quality Act, 2004 (Act No 39 of 2004), need for national framework. The national framework will include the norms and standards for air quality information management. NAQIS (National Air Quality...

  7. Air quality monitoring at Seoul, Korea as a part of East-Asian air surveillance network

    International Nuclear Information System (INIS)

    Hashimoto, Y.; Sekine, Y.; Kim, H.K.; Otoshi, T.

    1989-01-01

    Global scale air pollution study is a recent trend due to a perception that air pollution is changing climate and other essential earth's conditions that could seriously affect our lives. One of the important tasks which can contribute to protect our natural environment must be to know about the present and changing air quality. For this purpose, a regional air monitoring plan was designed by a research group and has proceeded to set up stations in the eastern Asia including Japan, Korea and China to get continuous data which can contribute to world wide data base of air quality. This project was initiated at Seoul, Korea in April, 1986 by the method of National Air Surveillance Network, Japan. Airborne particles were collected by so-called Hi-vol and Lo-vol, and their components were analyzed by neutron activation analysis and others. The results of Seoul sampling as a first step of this network plan are presented

  8. Air pollution and urban air quality management in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Santosa, Sri J. [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta (Indonesia); Okuda, Tomoaki; Tanaka, Shigeru [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama (Japan)

    2008-06-15

    The trade-led industry and economic development after the Asian financial crisis a decade ago has been accelerated in Indonesia to improve the quality of life of its population. This rapid development of Indonesia was in fact heavily fueled by fossil fuels, especially oil, followed by natural gas and coal. The exploitation of fossil fuel in fueling the development resulted in significant environmental quality degradation. Air pollution is perhaps Indonesia's most severe environmental problem. Industry and transportation were the typical main sources of urban air pollutants. Moreover, Indonesia also failed to reach its original 2005 target for a complete phase-out of leaded gasoline. As a result, the level of Pb together with other pollutants such as CO, NO{sub x}, SO{sub 2}, and total suspended particulates has exceeded or at least approached the designated ambient air quality standards. The urban air pollution will not be lesser in extent, but surely will be more severe in the future. Unfortunately, the capability of the Indonesian authorities to manage the urban air quality is still very limited and the portion of the budget allocated to the improvement of urban air quality is still remarkably low, typically 1% of total. This is why the efforts to enhance the capability to manage the urban air quality could not be handled by the environmental authorities in Indonesia's cities themselves, but outside stimulation in the form of man power, consultant and equipment assistance along with financial support has been very important. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  9. Publications about Indoor Air Quality in Schools

    Science.gov (United States)

    Publications and resources that relate to indoor air quality in schools, and design tools for schools. These publications cover a wide range of issues, including IAQ management, student performance, asthma, mold and moisture, and radon.

  10. EMC: Air Quality Forecast Home page

    Science.gov (United States)

    Modeling with NCEP NMMB ( Z. Janjic) ECMWF GEMS Project WMO Sand and Dust Storm Warning and Advisory System Air Quality Forecast Links U.S. AQ Forecast Products Canadian AQ Forecastsp Navy Aerosol Prediction

  11. Cooperative Agreement Funding for Indoor Air Quality

    Science.gov (United States)

    The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.

  12. Air quality information system for Gauteng

    CSIR Research Space (South Africa)

    Nkuna, J

    2006-10-01

    Full Text Available Air pollution is one of the challenges for sustainable development (Johannesburg being rated fifth worst in the world) One of nine agreed strategies: “Improvement of Air Quality (reduce emissions from vehicles, industry, mines/tailing dams...

  13. Assessing air quality impacts of managed lanes.

    Science.gov (United States)

    2010-12-01

    Impacts on transit bus performance and air quality were investigated for a case study high-occupancy / toll (HOT) lane project on a corridor of I-95 near Miami. Trends in air pollutant concentration monitoring data in the study area first were analyz...

  14. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio).

    Science.gov (United States)

    Coombs, Kanistha C; Chew, Ginger L; Schaffer, Christopher; Ryan, Patrick H; Brokamp, Cole; Grinshpun, Sergey A; Adamkiewicz, Gary; Chillrud, Steve; Hedman, Curtis; Colton, Meryl; Ross, Jamie; Reponen, Tiina

    2016-06-01

    Green eco-friendly housing includes approaches to reduce indoor air pollutant sources and to increase energy efficiency. Although sealing/tightening buildings can save energy and reduce the penetration of outdoor pollutants, an adverse outcome can be increased buildup of pollutants with indoor sources. The objective of this study was to determine the differences in the indoor air quality (IAQ) between green and non-green homes in low-income housing complexes. In one housing complex, apartments were renovated using green principles (n=28). Home visits were conducted immediately after the renovation, and subsequently at 6 months and at 12 months following the renovation. Of these homes, eight homes had pre-renovation home visits; this allowed pre- and post-renovation comparisons within the same homes. Parallel visits were conducted in non-green (control) apartments (n=14) in a nearby low-income housing complex. The IAQ assessments included PM2.5, black carbon, ultrafine particles, sulfur, total volatile organic compounds (VOCs), formaldehyde, and air exchange rate. Data were analyzed using linear mixed-effects models. None of the indoor pollutant concentrations were significantly different between green and non-green homes. However, we found differences when comparing the concentrations before and after renovation. Measured immediately after renovation, indoor black carbon concentrations were significantly lower averaging 682 ng/m(3) in post-renovation vs. 2364 ng/m(3) in pre-renovation home visits (p=0.01). In contrast, formaldehyde concentrations were significantly higher in post-renovated (0.03 ppm) than in pre-renovated homes (0.01 ppm) (p=0.004). Questionnaire data showed that opening of windows occurred less frequently in homes immediately post-renovation compared to pre-renovation; this factor likely affected the levels of indoor black carbon (from outdoor sources) and formaldehyde (from indoor sources) more than the renovation status itself. To reduce IAQ

  15. Indoor Climate and Air Quality Problems

    DEFF Research Database (Denmark)

    Valbjørn, O.; Hagen, H.; Kukkonen, E.

    This report presents a stepwise method for the investigation of and remedial actions for indoor climate and air quality problems. The report gives the basis for evaluation of the prevalence and causes of building related symptoms like mucosal irritation and headache. The report adresses members...... of occupational health and safety organisations, consulting engineers and architects, and also the people responsible for the operation of buildings and installations which is essential for the indoor climate and air quality....

  16. Modeling regional air quality and climate: improving organic aerosol and aerosol activation processes in WRF/Chem version 3.7.1

    Science.gov (United States)

    Yahya, Khairunnisa; Glotfelty, Timothy; Wang, Kai; Zhang, Yang; Nenes, Athanasios

    2017-06-01

    Air quality and climate influence each other through the uncertain processes of aerosol formation and cloud droplet activation. In this study, both processes are improved in the Weather, Research and Forecasting model with Chemistry (WRF/Chem) version 3.7.1. The existing Volatility Basis Set (VBS) treatments for organic aerosol (OA) formation in WRF/Chem are improved by considering the following: the secondary OA (SOA) formation from semi-volatile primary organic aerosol (POA), a semi-empirical formulation for the enthalpy of vaporization of SOA, and functionalization and fragmentation reactions for multiple generations of products from the oxidation of VOCs. Over the continental US, 2-month-long simulations (May to June 2010) are conducted and results are evaluated against surface and aircraft observations during the Nexus of Air Quality and Climate Change (CalNex) campaign. Among all the configurations considered, the best performance is found for the simulation with the 2005 Carbon Bond mechanism (CB05) and the VBS SOA module with semivolatile POA treatment, 25 % fragmentation, and the emissions of semi-volatile and intermediate volatile organic compounds being 3 times the original POA emissions. Among the three gas-phase mechanisms (CB05, CB6, and SAPRC07) used, CB05 gives the best performance for surface ozone and PM2. 5 concentrations. Differences in SOA predictions are larger for the simulations with different VBS treatments (e.g., nonvolatile POA versus semivolatile POA) compared to the simulations with different gas-phase mechanisms. Compared to the simulation with CB05 and the default SOA module, the simulations with the VBS treatment improve cloud droplet number concentration (CDNC) predictions (normalized mean biases from -40.8 % to a range of -34.6 to -27.7 %), with large differences between CB05-CB6 and SAPRC07 due to large differences in their OH and HO2 predictions. An advanced aerosol activation parameterization based on the Fountoukis and Nenes

  17. Air quality management: challenges and solutions in delivering air quality action plans

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, C.I.; Longhurst, J.W.S.; Woodfield, N.K.

    2000-07-01

    The Air Quality Strategy for England, Scotland, Wales and Northern Ireland (DETR, 2001) has the aim of showing how improved local air quality in the UK may be delivered. Through a process of reviewing and assessing local air quality in both urban and rural localities, a clear picture is emerging of areas of the UK where air quality objectives are not likely to be met. The next challenge will be the identification of the required actions and new ways of working to achieve specific air quality objectives. The declaration of air quality management areas, where objectives are not predicted to be met by their target years, involves co-ordinated local action and collaborative working, which can only be effective with support across local authority departments and external stake holders. This paper provides a background to the relevant legislation underpinning, local air quality management and summarises the review and assessment process. It then comments on future directions in relation to the designation of Air Quality Management Areas and considers the requirements of action plans to deliver the goal of cleaner air in the UK. It is concluded that the UK has developed a highly sophisticated system of air quality management over a relatively short period of time, and with it has brought a new way of local authority working. The challenge of the next stage of the process is likely to be in implementing cost effective and proportional solutions to identified problems at the local level. (Author)

  18. Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-08-01

    Full Text Available Beijing has been publishing daily reports on its air quality since 2000, and while the air pollution index (API shows that the air quality has improved greatly since 2000, this is not the perception of Beijing’s residents. The new national ambient air quality standard (NAAQS-2012, which includes the monitoring of PM2.5, has posed stricter standards for evaluating air quality. With the new national standard, the air quality in Beijing is calculated using both NAAQS-2012 and the previous standard. The annual attainment rate has dropped from 75.5% to 50.7%. The spatial analysis of air quality shows that only a background station could attain the national standard, while urban and suburban stations exceed the national standard. Among the six pollutants included in the NAAQS-2012, PM2.5 is the major contributor to the air quality index (AQI comparing with the five other pollutants. The results indicate that under previous NAAQS without PM2.5 monitoring, the air quality has improved greatly in the past decade.  By considering PM2.5, the air quality attainment has dropped greatly. Furthermore, a great effort is needed for local government to bring down the PM2.5 concentration.

  19. 77 FR 52277 - Approval of Air Quality Implementation Plans; California; South Coast Air Quality Management...

    Science.gov (United States)

    2012-08-29

    ... Quality Implementation Plans; California; South Coast Air Quality Management District; Prevention of... rule. SUMMARY: EPA is proposing approval of a permitting rule submitted for the South Coast Air Quality Management District (District) portion of the California State Implementation Plan (SIP). The State is...

  20. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios

    Science.gov (United States)

    Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine

    2016-09-01

    One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil

  1. 40 CFR 52.1165 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality. The...

  2. 40 CFR 52.2729 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.2729 Section 52.2729 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  3. 40 CFR 52.1689 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.1689 Section 52.1689 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  4. 40 CFR 52.1234 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.1234 Section 52.1234 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  5. 40 CFR 52.2827 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.2827 Section 52.2827 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  6. 40 CFR 52.1603 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.1603 Section 52.1603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  7. 40 CFR 52.1180 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.1180 Section 52.1180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  8. 40 CFR 52.2779 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.2779 Section 52.2779 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  9. 40 CFR 52.2676 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.2676 Section 52.2676 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  10. 40 CFR 52.499 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  11. 40 CFR 52.2497 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.2497 Section 52.2497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  12. 40 CFR 52.738 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.738 Section 52.738 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The provisions...

  13. 40 CFR 52.96 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.96 Section 52.96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Alaska Department of Environmental Conservation Air Quality... deterioration of air quality. (b) The requirements of sections 160 through 165 of the Clean Air Act are not met...

  14. 40 CFR 52.793 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.793 Section 52.793 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The provisions...

  15. 40 CFR 52.1884 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  16. 40 CFR 52.432 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.432 Section 52.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulation for preventing significant deterioration of air quality. The provisions of...

  17. 40 CFR 52.632 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.632 Section 52.632 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air Act are not met... air quality. (b) Regulations for preventing significant deterioration of air quality. The provisions...

  18. Setting priorities for ambient air quality objectives

    International Nuclear Information System (INIS)

    2004-10-01

    Alberta has ambient air quality objectives in place for several pollutants, toxic substances and other air quality parameters. A process is in place to determine if additional air quality objectives are required or if existing objectives should be changed. In order to identify the highest priority substances that may require an ambient air quality objective to protect ecosystems and public health, a rigorous, transparent and cost effective priority setting methodology is required. This study reviewed, analyzed and assessed successful priority setting techniques used by other jurisdictions. It proposed an approach for setting ambient air quality objective priorities that integrates the concerns of stakeholders with Alberta Environment requirements. A literature and expert review were used to examine existing priority-setting techniques used by other jurisdictions. An analysis process was developed to identify the strengths and weaknesses of various techniques and their ability to take into account the complete pathway between chemical emissions and damage to human health or the environment. The key strengths and weaknesses of each technique were identified. Based on the analysis, the most promising technique was the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Several considerations for using TRACI to help set priorities for ambient air quality objectives were also presented. 26 refs, 8 tabs., 4 appendices

  19. Petroleum refining and air quality

    International Nuclear Information System (INIS)

    Raimbault, C.

    1992-01-01

    This paper studies the methods which may be developed in petroleum refineries or during petroleum products using for air pollution abatement: petroleum products desulfurization, lead elimination in gasoline and catalytic converters to reduce sulfur dioxide and nitrogen oxides in exhaust gases. Investments and costs estimation to adapt petroleum refineries for environment protection is also given. 1 ref., 6 figs., 6 tabs

  20. The Danish Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.; Manscher, O. H.

    The Danish Air Quality Monitoring Programme (LMP) was started in 1982 as the first nation-wide urban air pollution monitoring programme in Denmark. The programme has been adjusted to the pollution pattern by two revisions. The present phase (LMP III) was started in 1992. This report presents...... Copenhagen the same program is con-ducted as at the street stations with the inclusion of O3. Only NO, NO2 and O3 are reported from the other rural site. Air quality limit values have been implemented in Den-mark for NO2, SO2, TSP in order to protect human health. All limit values are based on EU limit...

  1. Indoor air quality: a UK perspective

    International Nuclear Information System (INIS)

    Wadge, A.

    1995-01-01

    Outdoor air quality has generally improved in the UK over the last 2 decades but during this period changing conditions within the home have tended to reduce ventilation and increase the opportunity for accumulation of undesirable levels of indoor air pollutants. Information obtained from laboratory and epidemiological studies suggest that indoor air pollutants are an important cause of avoidable morbidity and mortality in the UK. This paper reviews the major indoor air pollutants of concern in the UK and considers some of the special issues relevant to indoor environment. (author) 3 figs., 37 refs

  2. Air Quality and Indoor Environmental Exposures: Clinical ...

    Science.gov (United States)

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more polluted than ambient air, the USEPA lists poor IAQ as a major environmental concern. In the sections that follow, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. In some cases, exposure may be acute, with one or more pets (and owners) experiencing signs within a relatively short period. However, most exposures are episodic or chronic, making it difficult to definitively link poor IAQ to respiratory or other adverse health outcomes. Age or underlying immunologic, cardiac, or respiratory disease may further complicate the clinical picture, as those patients may be more sensitive to (and affected by) lower concentrations than prove problematic for healthy housemates. Because pets, like their owners, spend most of their lives indoors, we will discuss how certain home conditions can worsen indoor air quality and will briefly discuss measures to improve IAQ for owners and their pets. In this overview presentation, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. Because pets, like their owners, spend most of their lives indoo

  3. Residential indoor air quality guideline : ozone

    International Nuclear Information System (INIS)

    2010-01-01

    Ozone (O 3 ) is a colourless gas that reacts rapidly on surfaces and with other constituents in the air. Sources of indoor O 3 include devices sold as home air cleaners, and some types of office equipment. Outdoor O 3 is also an important contributor to indoor levels of O 3 , depending on the air exchange rate with indoor environments. This residential indoor air quality guideline examined factors that affect the introduction, dispersion and removal of O 3 indoors. The health effects of prolonged exposure to O 3 were discussed, and studies conducted to evaluate the population health impacts of O 3 were reviewed. The studies demonstrated that there is a significant association between ambient O 3 and adverse health impacts. Exposure guidelines for residential indoor air quality were discussed. 14 refs.

  4. Annual survey air quality 2003-2006

    International Nuclear Information System (INIS)

    Beijk, R.; Mooibroek, D.; Hoogerbrugge, R.

    2007-01-01

    Results from the Dutch National Air Quality Monitoring Network (LML) show that several European air quality limit values were exceeded in the Netherlands between 2003 and 2006. This applied mainly to nitrogen dioxide, particulate matter (PM10) and ozone. The number of exceedances was especially high in 2003, partly due to weather conditions such as enduring dry episodes. Ozone concentration levels above the alert threshold (smog alert) were measured in 2003 and 2006, with concentration levels above the alert threshold occurring mostly during heat episodes. Measurements for nitrogen dioxide showed a yearly average concentration at city street locations above the European limit value at approximately half the measuring sites between 2003 and 2006. Yearly average concentrations measured at regional locations have changed relatively little in the past four years, remaining below the limit value for this entire period. Particulate matter concentrations have been relatively constant in the past few three years, after peaking in 2003. There is an EU standard for particulate matter for short- and long-term exposure of the population, which is represented by year and day average concentrations, with a maximum number of exceedances per year allowed. The year averages for the 2003 to 2006 period are less than the standard for long-term exposure. The maximum number of days showing average concentrations above the limit value was violated at several locations in 2006. Both nitrogen dioxide and particulate matter are characterized by a clear downward trend when measured over a long period of time (15 and 14 years, respectively). However, it is not possible to determine from the past seven years whether this trend is still valid [nl

  5. Indoor Air Quality and Asthma

    Directory of Open Access Journals (Sweden)

    Robert Golden

    2017-02-01

    Full Text Available Numerous contaminants in indoor air and their potential to cause or exacerbate asthma continue to be a subject of public health concern. Many agents are causally associated with or can exacerbate asthma, particularly in children. For formaldehyde, an established respiratory irritant based on numerous studies, the evidence for an association with asthma is still considered only limited or suggestive. However, there is no evidence that indicates increased sensitivity to sensory irritation to formaldehyde in people often regarded as susceptible such as asthmatics. Acrolein, but not formaldehyde, was significantly associated with asthma in a large cohort of children. This prompted an evaluation of this highly irritating chemical that had never previously been considered in the context of the indoor air/childhood asthma issue. Because acrolein is more potent than formaldehyde as a respiratory irritant and ubiquitous in indoor air, it is plausible that previous studies on potential risk factors and childhood asthma may be confounded by formaldehyde acting as an unrecognized proxy for acrolein.

  6. Indoor air humidity, air quality, and health - An overview.

    Science.gov (United States)

    Wolkoff, Peder

    2018-04-01

    There is a long-standing dispute about indoor air humidity and perceived indoor air quality (IAQ) and associated health effects. Complaints about sensory irritation in eyes and upper airways are generally among top-two symptoms together with the perception "dry air" in office environments. This calls for an integrated analysis of indoor air humidity and eye and airway health effects. This overview has reviewed the literature about the effects of extended exposure to low humidity on perceived IAQ, sensory irritation symptoms in eyes and airways, work performance, sleep quality, virus survival, and voice disruption. Elevation of the indoor air humidity may positively impact perceived IAQ, eye symptomatology, and possibly work performance in the office environment; however, mice inhalation studies do not show exacerbation of sensory irritation in the airways by low humidity. Elevated humidified indoor air appears to reduce nasal symptoms in patients suffering from obstructive apnea syndrome, while no clear improvement on voice production has been identified, except for those with vocal fatigue. Both low and high RH, and perhaps even better absolute humidity (water vapor), favors transmission and survival of influenza virus in many studies, but the relationship between temperature, humidity, and the virus and aerosol dynamics is complex, which in the end depends on the individual virus type and its physical/chemical properties. Dry and humid air perception continues to be reported in offices and in residential areas, despite the IAQ parameter "dry air" (or "wet/humid air") is semantically misleading, because a sensory organ for humidity is non-existing in humans. This IAQ parameter appears to reflect different perceptions among other odor, dustiness, and possibly exacerbated by desiccation effect of low air humidity. It is salient to distinguish between indoor air humidity (relative or absolute) near the breathing and ocular zone and phenomena caused by moisture

  7. Analysis of hospital interior air quality audits

    Directory of Open Access Journals (Sweden)

    Lin Lee-Kuo

    2017-01-01

    Full Text Available In general, people spent more than 80∼90% of living time in the indoor every day, human health and indoor environmental quality are closely related. The hospital has a complex and unique environmental characteristics, medical personnel and patients are prolonged exposed to risk factors in a variety of environments. Therefore, the merits of indoor air quality in the hospital, not only has a threat to the health of medical personnel and patients, but also will directly affect the quality and efficiency of health care work. A regular monitoring can, improve and maintain a well of indoor air quality, thus ensuring the safety maintenance of medical personnel and patients in hospital, it has become an important issue for hospital. This study has literatures review to collate and analyse that are related issues with indoor air quality. Then measures the indoor air quality test with direct-reading instruments. In selected hospital of this study were field-tested, then use the measured data in the field, discussion and analysis of the causes of air pollutants and the establishment of the sensing area of pollutants Concentration empirical mode.

  8. Overview of NASA's Observations for Global Air Quality

    Science.gov (United States)

    Kaye, J. A.

    2015-12-01

    Observations of pollutants are central to the study of air quality. Much focus has been placed on local-scale observations that can help specific geographic areas document their air quality issues, plan abatement strategies, and understand potential impacts. In addition, long-range atmospheric transport of pollutants can cause downwind regions to not meet attainment standards. Satellite observations have shed significant light on air quality from local to regional to global scales, especially for pollutants such as ozone, aerosols, carbon monoxide, sulfur dioxide, and nitrogen dioxide. These observations have made use of multiple techniques and in some cases multiple satellite sensors. The satellite observations are complemented by surface observations, as well as atmospheric (in situ) observations typically made as part of focused airborne field campaigns. The synergy between satellite observations and field campaigns has been an important theme for recent and upcoming activities and plans. In this talk, a review of NASA's investments in observations relevant to global air quality will be presented, with examples given for a range of pollutants and measurement approaches covering the last twenty-five years. These investments have helped build national and international collaborations such that the global satellite community is now preparing to deploy a constellation of satellites that together will provide fundamental advances in global observations for air quality.

  9. How Will Air Quality Change in South Asia by 2050?

    Science.gov (United States)

    Kumar, Rajesh; Barth, Mary C.; Pfister, G. G.; Delle Monache, L.; Lamarque, J. F.; Archer-Nicholls, S.; Tilmes, S.; Ghude, S. D.; Wiedinmyer, C.; Naja, M.; Walters, S.

    2018-02-01

    Exposure to unhealthy air causes millions of premature deaths and damages crops sufficient to feed a large portion of the South Asian population every year. However, little is known about how future air quality in South Asia will respond to changing human activities. Here we examine the combined effect of changes in climate and air pollutant emissions projected by the Representative Concentration Pathways (RCP) 8.5 and RCP6.0 on air quality of South Asia in 2050 using a state-of-the-science Nested Regional Climate model with Chemistry (NRCM-Chem). RCP8.5 and RCP6.0 are selected to represent scenarios of highest and lowest air pollution in South Asia by 2050. NRCM-Chem shows the ability to capture observed key features of variability in meteorological parameters, ozone and related gases, and aerosols. NRCM-Chem results show that surface ozone and particulate matter of less than 2.5 μm in diameter will increase significantly by midcentury in South Asia under the RCP8.5 but remain similar to present day under RCP6.0. No RCP suggest an improvement in air pollution in South Asia by midcentury. Under RCP8.5, the frequency of air pollution events is predicted to increase by 20-120 days per year in 2050 compared to the present-day conditions, with particulate matter of less than 2.5 μm in diameter predicted to breach the World Health Organization ambient air quality guidelines on an almost daily basis in many parts of South Asia. These results indicate that while the RCP scenarios project a global improvement in air quality, they generally result in degrading air quality in South Asia.

  10. Effects of political institutions on air quality

    International Nuclear Information System (INIS)

    Bernauer, Thomas; Koubi, Vally

    2009-01-01

    We empirically test existing theories on the provision of public goods, in particular air quality, using data on sulfur dioxide (SO 2 ) concentrations from the Global Environment Monitoring Projects for 107 cities in 42 countries from 1971 to 1996. The results are as follows: First, we provide additional support for the claim that the degree of democracy has an independent positive effect on air quality. Second, we find that among democracies, presidential systems are more conducive to air quality than parliamentary ones. Third, in testing competing claims about the effect of interest groups on public goods provision in democracies we establish that labor union strength contributes to lower environmental quality, whereas the strength of green parties has the opposite effect. (author)

  11. Modeling regional air quality and climate: improving organic aerosol and aerosol activation processes in WRF/Chem version 3.7.1

    Directory of Open Access Journals (Sweden)

    K. Yahya

    2017-06-01

    Full Text Available Air quality and climate influence each other through the uncertain processes of aerosol formation and cloud droplet activation. In this study, both processes are improved in the Weather, Research and Forecasting model with Chemistry (WRF/Chem version 3.7.1. The existing Volatility Basis Set (VBS treatments for organic aerosol (OA formation in WRF/Chem are improved by considering the following: the secondary OA (SOA formation from semi-volatile primary organic aerosol (POA, a semi-empirical formulation for the enthalpy of vaporization of SOA, and functionalization and fragmentation reactions for multiple generations of products from the oxidation of VOCs. Over the continental US, 2-month-long simulations (May to June 2010 are conducted and results are evaluated against surface and aircraft observations during the Nexus of Air Quality and Climate Change (CalNex campaign. Among all the configurations considered, the best performance is found for the simulation with the 2005 Carbon Bond mechanism (CB05 and the VBS SOA module with semivolatile POA treatment, 25 % fragmentation, and the emissions of semi-volatile and intermediate volatile organic compounds being 3 times the original POA emissions. Among the three gas-phase mechanisms (CB05, CB6, and SAPRC07 used, CB05 gives the best performance for surface ozone and PM2. 5 concentrations. Differences in SOA predictions are larger for the simulations with different VBS treatments (e.g., nonvolatile POA versus semivolatile POA compared to the simulations with different gas-phase mechanisms. Compared to the simulation with CB05 and the default SOA module, the simulations with the VBS treatment improve cloud droplet number concentration (CDNC predictions (normalized mean biases from −40.8 % to a range of −34.6 to −27.7 %, with large differences between CB05–CB6 and SAPRC07 due to large differences in their OH and HO2 predictions. An advanced aerosol activation

  12. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    Science.gov (United States)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  13. Evolution of Air Quality Model at the US EPA

    Science.gov (United States)

    At the US EPA, we have developed an air quality model, CMAQ, in the past 20+ years. Throughout the years, the model has been upgraded with respect to advancement of science. We have extended the model from regional to hemispheric. We have coupled it with meteorological model, WR...

  14. Sustainable freight infrastructure to meet climate and air quality goals.

    Science.gov (United States)

    2012-02-01

    This report examines the potential for freight modal shift from truck-to-rail in the upper Midwestern U.S. : to improve air quality and reduce CO2 emissions. Two scenarios were generated, one focusing on : intra-regional freight movements within the ...

  15. Air quality effects of urban trees and parks

    Science.gov (United States)

    David Nowak; Gordon Heisler

    2010-01-01

    Parks are significant parts of the urban landscape and comprise about 6% of city and town areas in the conterminous United States. These urban parks are estimated to contain about 370 million trees with a structural value of approximately $300 billion. The number of park trees varies by region of the country, but they can produce significant air quality effects in and...

  16. Biomass and air quality the UK experience

    International Nuclear Information System (INIS)

    Dearnley, E.

    2009-01-01

    Policies to encourage the use of biomass in the UK can perhaps be held up as an example of how not to develop integrated environmental policy. The UK has considered the air quality effects of biomass burning only after putting in place policies that will hugely increase the amount of biomass burning plant that will be installed. Whilst these issues are now being addressed, it will be some time before a satisfactory framework will be in place. The current situation is not a positive one for all involved - air quality practitioners, climate change policy makers and the wider biomass industry. For clean air organisations such as Environmental Protection UK and our European counterparts there are essentially two lessons to take away. The first is that we have to raise our sights to look for potential threats to air quality from wider policy measures, and flag up potential concerns at the earliest opportunity. It is easy to focus on the job in hand (for example emissions from vehicles) and miss developments further afield. Secondly, and most importantly, we have to offer our own solutions to wider environmental challenges. Climate change is likely to remain the dominant global environmental issue for decades to come; clean air agencies need to understand this and put forward low carbon solutions that offer strong synergies with air quality. The alternative is for policy makers to see air i quality standards and clean air agencies as a barrier t to progress towards a low carbon economy, rather than a positive source of solutions. (N.C.)

  17. 40 CFR 52.683 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.683 Section 52.683 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) The State of Idaho Rules for Control of Air Pollution in Idaho, specifically... the Clean Air Act for preventing significant deterioration of air quality. (b) The requirements of...

  18. 30 CFR 250.302 - Definitions concerning air quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Definitions concerning air quality. 250.302... Definitions concerning air quality. For purposes of §§ 250.303 and 250.304 of this part: Air pollutant means..., pursuant to section 109 of the Clean Air Act, national primary or secondary ambient air quality standards...

  19. 76 FR 76048 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Science.gov (United States)

    2011-12-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 [EPA-HQ-OAR-2009-0443; FRL-9492-3] RIN 2060-AR17 Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards Correction In rule document 2011-29460 appearing on pages 72097-72120 in the issues of Tuesday, November 22, 2011...

  20. Indoor air quality in Brazilian universities.

    Science.gov (United States)

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  1. 40 CFR 52.931 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.931 Section 52.931 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) Regulations for preventing significant deterioration of air quality. The..., the Kentucky Division for Air Quality has determined that the application complies with the applicable...

  2. 40 CFR 52.2451 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.2451 Section 52.2451 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for preventing significant deterioration of air quality. The...

  3. 40 CFR 52.2528 - Significant deterioration of air quality.

    Science.gov (United States)

    2010-07-01

    ... quality. 52.2528 Section 52.2528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of Sections 160 through 165 of the Clean Air... Quality Deterioration. (b) Regulations for Preventing Significant Deterioration of Air Quality, the...

  4. Outdoor air pollution and sperm quality.

    Science.gov (United States)

    Lafuente, Rafael; García-Blàquez, Núria; Jacquemin, Bénédicte; Checa, Miguel Angel

    2016-09-15

    Exposure to air pollution has been clearly associated with a range of adverse health effects, including reproductive toxicity, but its effects on male semen quality are still unclear. We performed a systematic review (up to June 2016) to assess the impact of air pollutants on sperm quality. We included 17 semi-ecological, panel, and cohort studies, assessing outdoor air pollutants, such as PM2.5, PM10, NOx, SO2, and O3, and their effects on DNA fragmentation, sperm count, sperm motility, and sperm morphology. Thirteen studies assessed air pollution exposure measured environmentally, and six used biomarkers of air pollution exposure (two did both). We rated the studies using the Newcastle-Ottawa Scale and assessed with the exposure method. Taking into account these factors and the number of studies finding significant results (positive or negative), the evidence supporting an effect of air pollution on DNA fragmentation is weak but suggestive, on sperm motility is limited and probably inexistent, on lower sperm count is inconclusive, and on sperm morphology is very suggestive. Because of the diversity of air pollutants and sperm parameters, and the studies' designs, we were unable to perform a meta-analysis. In summary, most studies concluded that outdoor air pollution affects at least one of the four semen quality parameters included in the review. However, results lack consistency, and furthermore, studies were not comparable. Studies using standardized air pollution and semen measures are required to obtain more reliable conclusions. CRD42015007175. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. The effect of air quality on sleep

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wargocki, Pawel; Wyon, David Peter

    2014-01-01

    The effect of air quality on sleep was examined for occupants of 14 identical single-occupancy dormitory rooms. The subjects, half women, were exposed to two conditions (open/closed window), each for one week, resulting in night-time average CO2 levels of 660 and 2585 ppm, and air temperatures...... performance. Although no significant effects on the sleep quality scale or on next-day performance could be shown, there were significant and positive effects of a higher ventilation rate (open window) on the actigraph measured sleep latency and on the subjects’ assessment of the freshness of the air...... of 24.7 and 23.9°C, respectively. Sleep was assessed from movement data recorded on wristwatch-type actigraphs and from online morning questionnaires, including the Groningen Sleep Quality scale, questions about the sleep environment, next-day well-being, SBS symptoms, and two tests of mental...

  6. Investigation of infiltration and indoor air quality

    International Nuclear Information System (INIS)

    1990-03-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During the study, the statistical distribution of radon concentrations inside 2,400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures--caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors--have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO 2 , CO, SO 2 , and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality

  7. Biomonitoring of air quality using plants

    Energy Technology Data Exchange (ETDEWEB)

    Mulgrew, A.; Williams, P. [King' s Coll., London (United Kingdom). Monitoring and Assessment Research Centre - WHO Collaborating Centre for Monitoring and Assessment

    2000-02-01

    This report is an update of the MARC Report No. 32 'Biological Monitoring' and a first volume referring to a WHO project on biological monitoring. The monograph reviews comprehensively the existing literature on biological monitoring of air quality with plants. This review includes consideration of all plant species that are currently, or have a potential of, being used as bioindicators of air pollution. This review is intended to serve as a background paper for the derivation of guidelines for the use of biological monitors in air pollution control. (orig.)

  8. Biomonitoring of air quality using plants

    Energy Technology Data Exchange (ETDEWEB)

    Mulgrew, A; Williams, P [King' s Coll., London (United Kingdom). Monitoring and Assessment Research Centre - WHO Collaborating Centre for Monitoring and Assessment

    2000-02-01

    This report is an update of the MARC Report No. 32 'Biological Monitoring' and a first volume referring to a WHO project on biological monitoring. The monograph reviews comprehensively the existing literature on biological monitoring of air quality with plants. This review includes consideration of all plant species that are currently, or have a potential of, being used as bioindicators of air pollution. This review is intended to serve as a background paper for the derivation of guidelines for the use of biological monitors in air pollution control. (orig.)

  9. Research on Air Quality Evaluation based on Principal Component Analysis

    Science.gov (United States)

    Wang, Xing; Wang, Zilin; Guo, Min; Chen, Wei; Zhang, Huan

    2018-01-01

    Economic growth has led to environmental capacity decline and the deterioration of air quality. Air quality evaluation as a fundamental of environmental monitoring and air pollution control has become increasingly important. Based on the principal component analysis (PCA), this paper evaluates the air quality of a large city in Beijing-Tianjin-Hebei Area in recent 10 years and identifies influencing factors, in order to provide reference to air quality management and air pollution control.

  10. Air Quality Monitoring System and Benchmarking

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2017-01-01

    Air quality monitoring has become an integral part of smart city solutions. This paper presents an air quality monitoring system based on Internet of Things (IoT) technologies, and establishes a cloud-based platform to address the challenges related to IoT data management and processing capabilit...... capabilities, including data collection, storage, analysis, and visualization. In addition, this paper also benchmarks four state-of-the-art database systems to investigate the appropriate technologies for managing large-scale IoT datasets....

  11. Weather and Air Quality Data of Helsinki

    OpenAIRE

    Bhuiyan, Fairuz

    2016-01-01

    The topic of this thesis is “Weather and air quality data of Helsinki” and the main objective was researching, analyzing and classifying the contents and of the weather and air quality data for the Cityzer project. The final objective was to map and understand the data and the business ecosystem around it, and then classify the data and paint a picture of the whole ecosystem around the data. The aim was to work with the weather companies and partners, such as Vaisala, Pegasor, The Finnish...

  12. Do Individual and Neighborhood Characteristics Influence Perceived Air Quality?

    Science.gov (United States)

    Deguen, Séverine; Padilla, Manon; Padilla, Cindy; Kihal-Talantikite, Wahida

    2017-12-12

    Background : Despite improvements, air pollution still remains a major public health issue. Numerous epidemiological studies have demonstrated the adverse health effects of air pollution exposure based on modeled measures, but only a few have considered the health impact of perceived air quality. Improving our knowledge of individual perceptions is crucial to defining targeted actions and promoting appropriate intervention measures. Our objective is to investigate the relationship between subjective and objective measures of air pollution and to focus on how individual characteristics combined with the neighborhood socioeconomic deprivation index, measured at a fine spatial scale, may or may not alter this relationship. Materials and Methods : The subjective measures of air quality reported by a sample of Lyon residents were collected via an individual questionnaire. The objective measures of air pollution were modeled by the local air quality monitoring network of the Rhône-Alpes region at census block level. We used a socioeconomic deprivation index to capture the different socioeconomic dimensions at census block level. The statistical analysis was structured in two steps: (1) identification of individual determinants of the subjective measures of air quality using multiple correspondence analysis followed by hierarchical clustering; (2) identification of individual and contextual characteristics that may alter the relationship between the objective and subjective measures of air pollution. Results : Among the youngest and the middle aged population (ages 30 to 59), consistent results between level of satisfaction, perceived air quality and objective measures of air pollution were found whatever the individual characteristics of the population. It is less clear among the oldest population: globally no significant difference between the NO₂ concentrations and the level of satisfaction was observed. Conclusion s : We found a significant relationship between the

  13. A novel, fuzzy-based air quality index (FAQI) for air quality assessment

    Science.gov (United States)

    Sowlat, Mohammad Hossein; Gharibi, Hamed; Yunesian, Masud; Tayefeh Mahmoudi, Maryam; Lotfi, Saeedeh

    2011-04-01

    The ever increasing level of air pollution in most areas of the world has led to development of a variety of air quality indices for estimation of health effects of air pollution, though the indices have their own limitations such as high levels of subjectivity. Present study, therefore, aimed at developing a novel, fuzzy-based air quality index (FAQI ) to handle such limitations. The index developed by present study is based on fuzzy logic that is considered as one of the most common computational methods of artificial intelligence. In addition to criteria air pollutants (i.e. CO, SO 2, PM 10, O 3, NO 2), benzene, toluene, ethylbenzene, xylene, and 1,3-butadiene were also taken into account in the index proposed, because of their considerable health effects. Different weighting factors were then assigned to each pollutant according to its priority. Trapezoidal membership functions were employed for classifications and the final index consisted of 72 inference rules. To assess the performance of the index, a case study was carried out employing air quality data at five different sampling stations in Tehran, Iran, from January 2008 to December 2009, results of which were then compared to the results obtained from USEPA air quality index (AQI). According to the results from present study, fuzzy-based air quality index is a comprehensive tool for classification of air quality and tends to produce accurate results. Therefore, it can be considered useful, reliable, and suitable for consideration by local authorities in air quality assessment and management schemes. Fuzzy-based air quality index (FAQI).

  14. 78 FR 47191 - Air Quality Designations for the 2010 Sulfur Dioxide (SO2) Primary National Ambient Air Quality...

    Science.gov (United States)

    2013-08-05

    ... Air Quality Designations for the 2010 Sulfur Dioxide (SO[bdi2]) Primary National Ambient Air Quality... air quality designations for certain areas in the United States for the 2010 primary Sulfur Dioxide (SO 2 ) National Ambient Air Quality Standard (NAAQS). The EPA is issuing this rule to identify areas...

  15. The AirQuality SenseBox

    Science.gov (United States)

    Demuth, Dustin; Nuest, Daniel; Bröring, Arne; Pebesma, Edzer

    2013-04-01

    In the past year, a group of open hardware enthusiasts and citizen scientists had large success in the crowd-funding of an open hardware-based sensor platform for air quality monitoring, called the Air Quality Egg. Via the kickstarter platform, the group was able to collect triple the amount of money than needed to fulfill their goals. Data generated by the Air Quality Egg is pushed to the data logging platform cosm.com, which makes the devices a part of the Internet of Things. The project aims at increasing the participation of citizens in the collection of data, the development of sensors, the operation of sensor stations, and, as data on cosm is publicly available, the sharing, visualization and analysis of data. Air Quality Eggs can measure NO2 and CO concentrations, as well as relative humidity and temperature. The chosen sensors are low-cost and have limited precision and accurracy. The Air Quality Egg consists of a stationary outdoor and a stationary indoor unit. Each outdoor unit will wirelessly transmit air quality measurements to the indoor unit, which forwards the data to cosm. Most recent versions of the Air Quality Egg allow a rough calibration of the gas sensors and on-the-fly conversion from raw sensor readings (impedance) to meaningful air quality data expressed in units of parts per billion. Data generated by these low-cost platforms are not intended to replace well-calibrated official monitoring stations, but rather augment the density of the total monitoring network with citizen sensors. To improve the usability of the Air Quality Egg, we present a new and more advanced concept, called the AirQuality SenseBox. We made the outdoor platform more autonomous and location-aware by adding solarpanels and rechargeable batteries as a power source. The AirQuality SenseBox knows its own position from a GPS device attached to the platform. As a mobile sensor platform, it can for instance be attached to vehicles. A low-cost and low-power wireless chipset

  16. Air quality and human welfare

    Directory of Open Access Journals (Sweden)

    Sundseth K.

    2009-02-01

    Full Text Available Human welfare is generally referring to allocation of resources to fit the well being of humans. If high standard of well-being is to be maintained, the concerns for a healthy environment must be balanced against requirements of economic growth. In a natural capital system, human welfare is best served by improving the quality and flow of desired services delivered rather than merely increasing the total money flow. An ecosystem based management of living and natural resource use will steer this progress to the best of human welfare while the efficiency of ecosystem based management depends strongly on the availability of integrated assessment tools that will combine environmental models and monitoring data with ecological economic valuation methods. In applied welfare economics, the methodological approach to assess resource allocations towards societal optimality and thereby establish criteria for government intervention is often linked to tools as Cost-ffectiveness Analysis (CEA, Cost-Benefit Assessment (CBA or Multi-criteria Analysis (MCA. By illustrating an assessment on costs and benefits of the implementation of Hg emission reduction measures in the coal sector, it becomes obvious that for a full analysis of societal costs and benefits, several aspects of Hg pollution, sources, impacts and co-benefits need to be considered.

  17. Integrating air-related health surveillance into air quality management: perceptions and practicalities

    CSIR Research Space (South Africa)

    Wright, C

    2012-06-01

    Full Text Available Health surveillance is presently not an integral part of air quality management in South Africa, although ambient air pollution standards are derived from health effects of personal exposure. In a survey to air quality officials and environmental...

  18. Impact of power generation on air quality

    International Nuclear Information System (INIS)

    Fisher, B.E.A.

    1999-01-01

    The article discusses the impact of the electric power industry on air quality. Much of the data are presented in chronological order starting with the London smogs in the late nineteenth century and the Clean Air Act of 1956. With the building of bigger and bigger coal-fired power stations, apparatus to restrict emissions of dust became common and a Royal Commission reported on the progress of smoke control in 1974 and 1976. The article is presented under the sub-headings of (i) role of Local Authorities; (ii) weather and smog; (iii) trends in emissions; (iv) dispersal and dilution; (v) smoke and sulfur dioxide exported; (vi) atmospheric lifetime of sulfur dioxide; (vii) proportionality between emissions and deposition; (viii) critical loads; (ix) international agreements on transboundary pollution; (x) road transport pollution; (xi) local air quality management and (xii) climate change

  19. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  20. Assessing future trends in indoor air quality

    International Nuclear Information System (INIS)

    van de Wiel, H.J.; Lebret, E.; van der Lingen, W.K.; Eerens, H.C.; Vaas, L.H.; Leupen, M.J.

    1990-01-01

    Several national and international health organizations have derived concentration levels below which adverse effects on men are not expected or levels below which the excess risk for individuals is less than a specified value. For every priority pollutant indoor concentrations below this limit are considered healthy. The percentage of Dutch homes exceeding such a limit is taken as a measure of indoor air quality for that component. The present and future indoor air quality of the Dutch housing stock is described for fourteen air pollutants. The highest percentages are scored by radon, environmental tobacco smoke, nitrogen dioxide from unvented combustion, and the potential presence of housedust mite and mould allergen in damp houses. Although the trend for all priority pollutants is downward the most serious ones remain high in the coming decades if no additional measures will be instituted