WorldWideScience

Sample records for reflectometry tdr sensors

  1. Design and testing of access-tube TDR soil water sensor

    Science.gov (United States)

    We developed the design of a waveguide on the exterior of an access tube for use in time-domain reflectometry (TDR) for in-situ soil water content sensing. In order to optimize the design with respect to sampling volume and losses, we derived the electromagnetic (EM) fields produced by a TDR sensor...

  2. Design and evaluation of a high sensitivity spiral TDR scour sensor

    Science.gov (United States)

    Gao, Quan; (Bill Yu, Xiong

    2015-08-01

    Bridge scour accounts for more than half of the reported bridge failures in the United States. Scour monitoring technology based on time domain reflectometry (TDR) features the advantages of being automatic and inexpensive. The senior author’s team has developed a few generations of a TDR bridge scour monitoring system, which have succeeded in both laboratory and field evaluations. In this study, an innovative spiral TDR sensor is proposed to further improve the sensitivity of the TDR sensor in scour detection. The spiral TDR sensor is made of a parallel copper wire waveguide wrapped around a mounting rod. By using a spiral path for the waveguide, the TDR sensor achieves higher sensitivity than the traditional straight TDR probes due to longer travel distance of the electromagnetic (EM) wave per unit length in the spiral probe versus traditional probe. The performance of the new TDR spiral scour sensor is validated by calibration with liquids with known dielectric constant and wet soils. Laboratory simulated scour-refilling experiments are performed to evaluate the performance of the new spiral probe in detecting the sediment-water interface and therefore the scour-refill process. The tests results indicate that scour depth variation of less than 2 cm can be easily detected by this new spiral sensor. A theory is developed based on the dielectric mixing model to simplify the TDR signal analyses for scour depth detection. The sediment layer thickness (directly related to scour depth) varies linearly with the square root of the bulk dielectric constant of the water-sediment mixture measured by the spiral TDR probe, which matches the results of theoretical prediction. The estimated sediment layer thickness and therefore scour depth from the spiral TDR sensor agrees very well with that by direct physical measurement. The spiral TDR sensor is four times more sensitive than a traditional straight TDR probe.

  3. Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR

    Directory of Open Access Journals (Sweden)

    P. Leidenberger

    2006-01-01

    Full Text Available We present a numerical model for time domain reflectometry (TDR signal propagation in dispersive dielectric materials. The numerical probe model is terminated with a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. We derive analytical approximations for the capacitance, the inductance and the conductance of three-wire probes. We couple the time domain model with global optimization in order to reconstruct water content profiles from TDR traces. For efficiently solving the inverse problem we use genetic algorithms combined with a hierarchical parameterization. We investigate the performance of the method by reconstructing synthetically generated profiles. The algorithm is then applied to retrieve dielectric profiles from TDR traces measured in the field. We succeed in reconstructing dielectric and ohmic profiles where conventional methods, based on travel time extraction, fail.

  4. Monitoring slope movement using time domain reflectometry (TDR) technology and early warning system

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhamad Tahir, Lakam Mejus; Johari Abd Latif

    2006-01-01

    Many options of electronic instrumentation are available for monitoring unstable and/or potentially unstable slopes. One of the tools is applying TDR technology which is now regarded as a cost effective and alternative means for locating the depth to a shear plane or zone in a landslide. TDR uses an electronic voltage pulse that is reflected like radar from a damaged or deformed location in a coaxial cable. To monitor slope movement, coaxial cables are grouted in boreholes and interrogated using a TDR cable tester, which is attached to a programmed data logger. Characteristic cable signatures can be stored and compared over time for any changes indicating slope movement. This paper describes a case study documenting TDR installation procedure, data acquisition system and on-site TDR data collection of an unstable hill slope in Kampong Bharu -Bukit Tinggi, Bentong. A possibility of using a remotely automated monitoring system (advanced telemetry and data logger) that can incorporate with other types of sensors (e.g. rain gauge, vibrating wire piezometer, in-place inclinometer) together with many TDR sensor cables as an integrated package for early-warning of potential unstable slope movement around the area was highlighted and proposed. (Author)

  5. Monitoring changes in soil water content on adjustable soil slopes of a soil column using time domain reflectometry (TDR) techniques

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhd Tahir; Lakam Anak Mejus; Johari Abdul Latif

    2004-01-01

    Time Domain Reflectometry (TDR) is one of non-destructive methods and widely used in hydrology and soil science for accurate and flexible measurement of soil water content The TDR technique is based on measuring the dielectric constant of soil from the propagation of an electromagnetic pulse traveling along installed probe rods (parallel wire transmission line). An adjustable soil column i.e., 80 cm (L) x 35 cm (H) x 44 cm (W) instrumented with six pairs of vertically installed CS615 reflectometer probes (TDR rods) was developed and wetted under a laboratory simulated rainfall and their sub-surface moisture variations as the slope changes were monitored using TDR method Soil samples for gravimetric determination of water content, converted to a volume basis were taken at selected times and locations after the final TDR reading for every slope change made of the soil column Comparisons of water contents by TDR with those from grawmetric samples at different slopes of soil column were examined. The accuracy was found to be comparable and to some extent dependent upon the variability of the soil. This study also suggests that the response of slope (above 20 degrees) to the gradual increase in water content profile may cause soil saturation faster and increased overland flow (runoff especially on weak soil conditions

  6. Soil Moisture Measurement through Time Domain Reflectometry (TDR). Irrigation Application; Medicion de la humedad del suelo por reflectometria en el dominio temporal (TDR). Aplicacion en irrigacion

    Energy Technology Data Exchange (ETDEWEB)

    Quinonez Pedroza, Hector E.; Ruelle, Pierre; Nemeth Ildiko [Cemagre, (France)

    2002-03-01

    Knowledge of how moisture varies in the soil is essential to determine the actual rate of evapotranspiration in crops and, thus, the amount of water necessary for irrigation. Lisimeters, tensiometers and the neutron probe have been widely used for precise measurement of soil moisture in order to calibrate models of irrigation scheduling or to calculate volumes of irrigation water. Despite the usefulness of such measurements, these methods have limited use because of problems like high cost of lisimeters and neutron probes as well as their strict regulation, limited range of validity of tensiometers. Moreover, the measurements obtained from these methods generally describe noncontinuous points in time. Time Domain Reflectometry (TDR) is a viable to such methods because of its precision and the continuity of its measurements. This study evaluates soil moisture, using the neutron and TDR methods in maize crop irrigated by gravity in closed furrows. The results show that even though the absolute determinations of moisture are different in the 30-90 cm profiles, moisture variations were similar in all cases and respond consequently to the additions of water and to evapotranspiration. Neutron probe drawback become evident on its no-continuous measurements contrasting with the continuous measurements of TDR, which allows a detailed analysis of the infiltration and evapotranspiration phenomenal at instantaneous time scales. [Spanish] El conocimiento de la variacion de la humedad del suelo es esencial para determinar la evapotranspiracion real de los cultivos. Esta ultima, a su vez, permite conocer las cantidades necesarias de agua de riego. Los lisimetros, los tensiometros y el aspersor de nuestro s han sido ampliamente usados para la medicion precisa de la humedad del suelo con propositos de calibracion de modelos de programacion del riego o para su utilizacion directa en el calculo de volumenes de riego. A pesar de la importancia de tales mediciones, su uso es muy

  7. Comparing bulk electrical conductivities spatial series obtained by Time Domain Reflectometry and Electromagnetic Induction sensors

    Science.gov (United States)

    Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil

  8. Dendrimer sensors probed with neutron reflectometry

    International Nuclear Information System (INIS)

    Cavaye, Hamish; Smith, Arthur R.G.; Burn, Paul L.; Lo, Shih-Chun; Meredith, Paul; Gentle, Ian R.; James, Michael; Nelson, Andrew

    2009-01-01

    Full text: Oxidative photoluminescence (PL) quenching utilizing conjugated polymers as the sensing has proved to be one of the best of many methods for sensing explosive analytes.[1] However are a number of issues that can make polymers difficult to work with, including complex morphologies reproducibility of syntheses, and the need to include elaborate structures to reduce the packing of the polymer chains. Dendrimers, consisting of a core, dendrons, and surface groups, address these issues by being monodisperse and modular in their design. Determining how analytes are sequestered into thin films is important for solid-state sensors. We show that thin (230 ± 30 A ) and thick (750 ± 50 A) films of a first-generation dendrimer comrised of 2-ethylhexyloxy surface groups, biphenyl-based dendrons, and a 9,9,9',9'-tetra-n-propyl-2,2'-bifluorene core, can rapidly and reversibly detect p-nitrotoll oxidative luminescence quenching. For both the thin and thick films the PL is quenched by just 4 s . Combined PL and neutron reflectometry measurements on pristine and analyte-satura showed that during the adsorption process the films swelled, being on average 4% thicker for thin and thick dendrimer films. At the same time the PL was completely quenched. On removal of the analyte the films returned to their original thickness and scattering length density, and the restored, showing that the sensing process was fully reversible.

  9. Umidade do solo no semiárido pernambucano usando-se reflectometria no domínio do tempo (TDR Soil moisture in Pernambuco semiarid using time domain reflectometry (TDR

    Directory of Open Access Journals (Sweden)

    Thais E. M. dos Santos

    2011-07-01

    Full Text Available Objetivou-se com o presente trabalho investigar a variabilidade temporal do conteúdo superficial da água no solo, através da reflectometria no domínio do tempo (TDR, em consequência das características de precipitação ocorridas no semiárido pernambucano, estudando esta dinâmica sob diferentes tipos de cobertura superficial do solo. O estudo foi realizado em uma encosta de uma bacia representativa, em um Argissolo Amarelo Eutrófico típico, onde foram instaladas quatro parcelas experimentais dotadas de duas sondas TDR, para investigação da umidade do solo e do sistema para monitoramento do escoamento superficial. Os tratamentos adotados foram: cobertura natural (CN, solo descoberto (SD, palma forrageira (P e barramentos, associados à cobertura morta (B+CM. A partir dos resultados obtidos durante o período de ocorrência de chuvas erosivas, a umidade do solo apresentou elevada variabilidade no tempo, estando relacionada aos diferentes tipos de cobertura e propriedades do solo. A cobertura morta mostrou ser a prática conservacionista mais adequada para manutenção da umidade do solo.Present study aimed to investigate the temporal variability of surface water content in soil by time domain reflectometry (TDR, as consequence of precipitation characteristics of Pernambuco semiarid, studying such dynamics under different types of the soil cover. The study was conducted in a slope of a representative catchment, in a Typic Hapludalf soil, where four experimental plots were installed with two TDR probes for soil moisture investigation as well as monitoring the runoff. Treatments were natural cover (CN, bare soil (SD, cactus (P and microdams associated with mulch (B + CM. From the results obtained during a period with erosive rainfall, it was found that soil moisture observed during the experimental period showed high variability in time, related to different types of coverage and soil properties. Mulching was the most appropriate

  10. Comparison of performance of inclinometer casing and TDR technique

    Science.gov (United States)

    Aghda, S. M. Fatemi; Ganjalipour, K.; Nabiollahi, K.

    2018-03-01

    TDR (Time Domain Reflectometry) and GPR (Ground Penetrating Radar) are two of the electromagnetic methods in applied geophysics, which using them for various applications are developing. The Time Domain Reflectometry is a remote sensing method that has been used for years to determine the nature of the materials and spatial location. The use of TDR system has led to innovative applications of it and comparing it with previous measuring techniques, since it has developed. In this study, not only a summary of the basics of TDR application for monitoring of ground deformation is offered, but also a comparison of this technology with other measurement techniques (inclinometer casing) is provided. Actually, this paper presents a case study in which the opportunity arose to compare these two technologies in detecting subsurface deformation in slopes. A TDR system includes a radar wave receiver & generator, a transmission line and a waveguide. The generated electro-magnetic pulse moves toward the waveguide within the conductor cable and enters the test environment. For this study, slopes overlooking the Darian dam bottom outlet, power house and spillway were instrumented with RG59/U coaxial cables for TDR monitoring and slope inclinometer. Coaxial cables - as a TDR sensor - and inclinometer casings were installed in a same bore hole where coaxial cable was attached to the inclinometer casing. Shear and tensile deformations of the cable, which is caused by ground movements, significantly impacts on cable reflection coefficient. In Darian dam boreholes, the cable points subject to the shear and stretch were correlated with deformation points of the inclinometer casings in incremental displacement graphs. This study shows that TDR technique is more sensitive than inclinometer casing for small movement in the slide planes. Because manual processing of TDR data is hard and need experienced personnel, the authors have designed an algorithm to compare the shape of the new TDR

  11. Detection and characterization of corrosion of bridge cables by time domain reflectometry

    Science.gov (United States)

    Liu, Wei; Hunsperger, Robert G.; Folliard, Kevin; Chajes, Michael J.; Barot, Jignesh; Jhaveri, Darshan; Kunz, Eric

    1999-02-01

    In this paper, we develop and demonstrate a nondestructive evaluation technique for corrosion detection of embedded or encased steel cables. This technique utilizes time domain reflectometry (TDR), which has been traditionally used to detect electrical discontinuities in transmission lines. By applying a sensor wire along with the bridge cable, we can model the cable as an asymmetric, twin-conductor transmission line. Physical defects of the bridge cable will change the electromagnetic properties of the line and can be detected by TDR. Furthermore, different types of defects can be modeled analytically, and identified using TDR. TDR measurement results from several fabricated bridge cable sections with built-in defects are reported.

  12. BASE Temperature Data Record (TDR) from the SSM/I and SSMIS Sensors, CSU Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The BASE Temperature Data Record (TDR) dataset from Colorado State University (CSU) is a collection of the raw unprocessed antenna temperature data that has been...

  13. A Study on the Development and Application of Spatial-TDR Sensor for the Management of Groundwater at Riverside

    Directory of Open Access Journals (Sweden)

    Mincheol Park

    2018-04-01

    Full Text Available For sustainable use of water and land, efficient management of river water and groundwater at riverside is required for development. For this purpose, both the groundwater as well as the unsaturated areas should be measured and managed. However, existing point-type sensors have physical limitations. In this study, we developed a spatial-TDR (Time-Domain reflectometer sensor and calibration algorithm for efficient management of riverside groundwater and conducted laboratory and field experiments on whether groundwater level and the unsaturated area can be measured. The rod-type probe shown in ASTM (American Society for Testing and Materials D 6780-05 was modified into a steel wire-type sensing line so that it could be penetrated into the boring hole. The developed sensing line with steel wire is superior in transport and construction to make observations on the groundwater level, but it requires a separate filtering and calibration procedure because it contains a relatively large amount of noise. The raw data of the electric waveform is filtered by applying the moving-average method and the discrete Fourier transform (DFT. The calibration equation for the voltage of electric pulse and degree of saturation of soil calculated in laboratory experiments can be used to calculate the groundwater level and the unsaturated area of the real embankment. The spatial-TDR sensor developed in this study can measure both the groundwater level and the unsaturated area by improving the physical limit of the existing point-TDR sensor of probe-type. Therefore, it can greatly help efficient management of groundwater at riverside. It is necessary to put them into practical use through continuous improvement and experimental verification.

  14. Effect of Roots on Infiltration Process around a Tree - an Application of Tension-TDR Probes

    Science.gov (United States)

    -Lun Li, Sheng; Liang, Wei-Li

    2014-05-01

    The infiltration processe around a tree is usually complex because of preferential pathways around roots. In order to clarify the effect of tree roots on the infiltration process, we simultaneously measured volumetric water content (θ) and metric potential (ψ) with a high-density installation of Tensio-TDR probes, which could provid in situ soil-water characteristic curves in a small area around tree roots. A tension-TDR probe includes a coiled time domain reflectometry (TDR) probe around the porous cup of a standard tensiometer. The investigation was carried out around a Taiwanese cedar (Taiwania cryptomerioides) in a mixed coniferous forested stand. There were 24 soil moisture sensors and 12 Tensio-TDR probes installed in different depths of two soil profiles, respectively. The result suggested that the Tensio-TDR probe is better to determine the occurrence of preferential flow around tree roots than soil moisture sensors. Woody roots promoted the occurrence of lateral flows and caused rapid increases of θ in the deeper soil layers. Soil porosity was high in the area with fine roots where infiltration was dominated by vertical flows. We also compared the difference betweenthe field and laboratory soil-water characteristic curves, which were determined by the θ and ψ datasets from the field and the measurement using pressure plate method in a laboratory, respectively.

  15. Distributed electrical time domain reflectometry (ETDR) structural sensors: design models and proof-of-concept experiments

    Science.gov (United States)

    Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen

    1993-07-01

    A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.

  16. Special Sensor Microwave Imager/Sounder (SSMIS) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  17. Extended Special Sensor Microwave Imager (SSM/I) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager (SSM/I) is a seven-channel linearly polarized passive microwave radiometer that operates at frequencies of 19.36 (vertically and...

  18. Mobile TDR for geo-referenced measurement of soil water content and electrical conductivity

    DEFF Research Database (Denmark)

    Thomsen, Anton; Schelde, Kirsten; Drøscher, Per

    2007-01-01

    The development of site-specific crop management is constrained by the availability of sensors for monitoring important soil and crop related conditions. A mobile time-domain reflectometry (TDR) unit for geo-referenced soil measurements has been developed and used for detailed mapping of soil wat...... analysis of the soil water measurements, recommendations are made with respect to sampling strategies. Depending on the variability of a given area, between 15 and 30 ha can be mapped with respect to soil moisture and electrical conductivity with sufficient detail within 8 h...

  19. A reevaluation of TDR propagation time determination in soils and geological media

    Science.gov (United States)

    Time domain reflectometry (TDR) is an established method for the determination of apparent dielectric permittivity and water content in soils. Using current waveform interpretation procedures, signal attenuation and variation in dielectric media properties along the transmission line can significant...

  20. Field performance of three real-time moisture sensors in sandy loam and clay loam soils

    Science.gov (United States)

    The study was conducted to evaluate HydraProbe (HyP), Campbell Time Domain Reflectometry (TDR) and Watermarks (WM) moisture sensors for their ability to estimate water content based on calibrated neutron probe measurements. The three sensors were in-situ tested under natural weather conditions over ...

  1. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.

    Science.gov (United States)

    Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-04-03

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.

  2. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review

    Science.gov (United States)

    Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen

    2018-01-01

    Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024

  3. Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review

    Directory of Open Access Journals (Sweden)

    Zhenyang Ding

    2018-04-01

    Full Text Available Distributed optical fiber sensors (DOFS offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.

  4. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  5. A new probe for in situ TDR moisture measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yokuda, E. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Smith, R. (Sonsub Services, Inc., Houston, TX (United States))

    1993-01-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented.

  6. A new probe for in situ TDR moisture measurement

    International Nuclear Information System (INIS)

    Yokuda, E.; Smith, R.

    1993-01-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented

  7. A new probe for in situ TDR moisture measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yokuda, E. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Smith, R. [Sonsub Services, Inc., Houston, TX (United States)

    1993-05-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented.

  8. Design and field tests of a directly coupled waveguide-on-access-tube soil water sensor

    Science.gov (United States)

    Sensor systems capable of monitoring soil water content can provide a useful tool for irrigation control. Current systems are limited by installation depth, labor, accuracy, and cost. Time domain reflectometry (TDR) is an approach for monitoring soil water content that relates the travel time of an ...

  9. Analytical investigation of response of birefringent fiber Bragg grating sensors in distributed monitoring system based on optical frequency domain reflectometry

    Science.gov (United States)

    Wada, D.; Murayama, H.

    2014-01-01

    When Fiber Bragg gratings (FBGs) are used as strain sensors, both longitudinal and lateral strain can be applied uniformly or non-uniformly over the length of the FBGs. In order for the demodulation of such FBG signal, this paper investigates the response of birefringent FBGs which are monitored by distributed measurement system based on optical frequency domain reflectometry. A numerical model of the distributed measurement system is built based on piece-wise uniform approach, which considers polarization states of propagating lights. The numerical model simulates analytical response of birefringent FBGs especially when birefringence induces power fluctuations in the distributed spectra, which can be noise or new opportunity for sensitive monitoring of birefringence. Simulation results show the relationships between the power fluctuations and the polarization states of the propagating lights. Consequently, appropriate methods of polarization control for sensitive distributed birefringent FBG monitoring are discussed.

  10. Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Karunarathna, Anurudda Kumara

    2013-01-01

    Time domain reflectometry (TDR) is used widely for measuring soil-water content. New TDR coil probe technology facilitates the development of small, nondestructive probes for simultaneous measurement of soil-water content (θ) and soil-water potential (ψ). In this study we developed mini tensiomet...... between measured soil-water retention curves (ψ > –100 cm H2O) by the new T-TDR coil probes and independent measurements by the hanging water column method....

  11. CORRTEX: a compact and versatile system for time domain reflectometry

    International Nuclear Information System (INIS)

    Deupree, R.G.; Eilers, D.D.; McKown, T.O.; Storey, W.H.

    1981-01-01

    The CORRTEX (COntinuous Reflectometry for Radius versus Time EXperiments) system was designed to be an adaptable and versatile unit for performing time domain reflectometry (TDR). The system consists of a coaxial cable, a digital TDR, which uses a Motorola 6800 microprocessor, a power source or battery pack, and an output terminal or recording driver. Desirable criteria for the system are discussed as well as the operation of the CORRTEX system. The types of present applications of the CORRTEX system are summarized and data presented

  12. Assessing the accuracy of TDR-based water leak detection system

    Directory of Open Access Journals (Sweden)

    S.M. Fatemi Aghda

    2018-03-01

    Full Text Available The use of TDR system to detect leakage locations in underground pipes has been developed in recent years. In this system, a bi-wire is installed in parallel with the underground pipes and is considered as a TDR sensor. This approach greatly covers the limitations arisen with using the traditional method of acoustic leak positioning. TDR based leak detection method is relatively accurate when the TDR sensor is in contact with water in just one point. Researchers have been working to improve the accuracy of this method in recent years.In this study, the ability of TDR method was evaluated in terms of the appearance of multi leakage points simultaneously. For this purpose, several laboratory tests were conducted. In these tests in order to simulate leakage points, the TDR sensor was put in contact with water at some points, then the number and the dimension of the simulated leakage points were gradually increased. The results showed that with the increase in the number and dimension of the leakage points, the error rate of the TDR-based water leak detection system increases.The authors tried, according to the results obtained from the laboratory tests, to develop a method to improve the accuracy of the TDR-based leak detection systems. To do that, they defined a few reference points on the TDR sensor. These points were created via increasing the distance between two conductors of TDR sensor and were easily identifiable in the TDR waveform. The tests were repeated again using the TDR sensor having reference points. In order to calculate the exact distance of the leakage point, the authors developed an equation in accordance to the reference points. A comparison between the results obtained from both tests (with and without reference points showed that using the method and equation developed by the authors can significantly improve the accuracy of positioning the leakage points. Keywords: Multiple leakage points, TDR, Reference points

  13. Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements

    Science.gov (United States)

    Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio

    2018-02-01

    This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This

  14. Assessing the accuracy of TDR-based water leak detection system

    Science.gov (United States)

    Fatemi Aghda, S. M.; GanjaliPour, K.; Nabiollahi, K.

    2018-03-01

    The use of TDR system to detect leakage locations in underground pipes has been developed in recent years. In this system, a bi-wire is installed in parallel with the underground pipes and is considered as a TDR sensor. This approach greatly covers the limitations arisen with using the traditional method of acoustic leak positioning. TDR based leak detection method is relatively accurate when the TDR sensor is in contact with water in just one point. Researchers have been working to improve the accuracy of this method in recent years. In this study, the ability of TDR method was evaluated in terms of the appearance of multi leakage points simultaneously. For this purpose, several laboratory tests were conducted. In these tests in order to simulate leakage points, the TDR sensor was put in contact with water at some points, then the number and the dimension of the simulated leakage points were gradually increased. The results showed that with the increase in the number and dimension of the leakage points, the error rate of the TDR-based water leak detection system increases. The authors tried, according to the results obtained from the laboratory tests, to develop a method to improve the accuracy of the TDR-based leak detection systems. To do that, they defined a few reference points on the TDR sensor. These points were created via increasing the distance between two conductors of TDR sensor and were easily identifiable in the TDR waveform. The tests were repeated again using the TDR sensor having reference points. In order to calculate the exact distance of the leakage point, the authors developed an equation in accordance to the reference points. A comparison between the results obtained from both tests (with and without reference points) showed that using the method and equation developed by the authors can significantly improve the accuracy of positioning the leakage points.

  15. Estimation of water absorption coefficient using the TDR method

    Science.gov (United States)

    Suchorab, Zbigniew; Majerek, Dariusz; Brzyski, Przemysław; Sobczuk, Henryk; Raczkowski, Andrzej

    2017-07-01

    Moisture accumulation and transport in the building barriers is an important feature that influences building performance, causing serious exploitation problems as increased energy use, mold and bacteria growth, decrease of indoor air parameters that may lead to sick building syndrome (SBS). One of the parameters that is used to describe moisture characteristic of the material is water absorption coefficient being the measure of capillary behavior of the material as a function of time and the surface area of the specimen. As usual it is determined using gravimetric methods according to EN 1925:1999 standard. In this article we demonstrate the possibility of determination of water absorption coefficient of autoclaved aerated concrete (AAC) using the Time Domain Reflectometry (TDR) method. TDR is an electric technique that had been adopted from soil science and can be successfully used for real-time monitoring of moisture transport in building materials and envelopes. Data achieved using TDR readouts show high correlation with standard method of moisture absorptivity coefficient determination.

  16. Plasma diagnostic reflectometry

    International Nuclear Information System (INIS)

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B.; Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S.

    1996-01-01

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements

  17. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index...

  18. Accuracy improvement in the TDR-based localization of water leaks

    Directory of Open Access Journals (Sweden)

    Andrea Cataldo

    Full Text Available A time domain reflectometry (TDR-based system for the localization of water leaks has been recently developed by the authors. This system, which employs wire-like sensing elements to be installed along the underground pipes, has proven immune to the limitations that affect the traditional, acoustic leak-detection systems.Starting from the positive results obtained thus far, in this work, an improvement of this TDR-based system is proposed. More specifically, the possibility of employing a low-cost, water-absorbing sponge to be placed around the sensing element for enhancing the accuracy in the localization of the leak is addressed.To this purpose, laboratory experiments were carried out mimicking a water leakage condition, and two sensing elements (one embedded in a sponge and one without sponge were comparatively used to identify the position of the leak through TDR measurements. Results showed that, thanks to the water retention capability of the sponge (which maintains the leaked water more localized, the sensing element embedded in the sponge leads to a higher accuracy in the evaluation of the position of the leak. Keywords: Leak localization, TDR, Time domain reflectometry, Water leaks, Underground water pipes

  19. Improved theory of time domain reflectometry with variable coaxial cable length for electrical conductivity measurements

    Science.gov (United States)

    Although empirical models have been developed previously, a mechanistic model is needed for estimating electrical conductivity (EC) using time domain reflectometry (TDR) with variable lengths of coaxial cable. The goals of this study are to: (1) derive a mechanistic model based on multisection tra...

  20. Application of time-domain reflectometry to monitoring conditions in crushed tuff test plots at Los Alamos, New Mexico: Interpretation and recommendations for landfill monitoring

    International Nuclear Information System (INIS)

    Filippone, C.L.; Schofield, T.G.

    1994-08-01

    Horizontal and vertical measurements of moisture content were obtained daily using time domain reflectometry (TDR) at four sites in two crushed tuff experimental plots over a period of 287 days. Moisture contents were also measured weekly at the same locations and at two additional locations in the plots using the neutron probe method. Results are assessed to determine the influence of waveguide length and waveguide orientation on TDR moisture content measurements, the degree of spatial variability in measured moisture content in this engineered porous material, and the ability of TDR to resolve vertical moisture content gradients. Recommendations are made for TDR instrumentation of mixed waste landfill monitoring systems

  1. Landfill cover performance monitoring using time domain reflectometry

    International Nuclear Information System (INIS)

    Neher, E.R.; Cotten, G.B.; McElroy, D.

    1998-01-01

    Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data

  2. TDR water content inverse profiling in layered soils during infiltration and evaporation

    Science.gov (United States)

    Greco, R.; Guida, A.

    2009-04-01

    During the last three decades, time domain reflectometry (TDR) has become one of the most commonly used tools for soil water content measurements either in laboratory or in the field. Indeed, TDR provides easy and cheap water content estimations with relatively small disturbance to the investigated soil. TDR measurements of soil water content are based on the strong correlation between relative dielectric permittivity of wet soil and its volumetric water content. Several expressions of the relationship between relative dielectric permittivity and volumetric water content have been proposed, empirically stated (Topp et al., 1980) as well as based on semi-analytical approach to dielectric mixing models (Roth et al., 1990; Whalley, 1993). So far, TDR field applications suffered the limitation due to the capability of the technique of estimating only the mean water content in the volume investigated by the probe. Whereas the knowledge of non homogeneous vertical water content profiles was needed, it was necessary to install either several vertical probes of different length or several horizontal probes placed in the soil at different depths, in both cases strongly increasing soil disturbance as well as the complexity of the measurements. Several studies have been recently dedicated to the development of inversion methods aimed to extract more information from TDR waveforms, in order to estimate non homogeneous moisture profiles along the axis of the metallic probe used for TDR measurements. A common feature of all these methods is that electromagnetic transient through the wet soil along the probe is mathematically modelled, assuming that the unknown soil water content distribution corresponds to the best agreement between simulated and measured waveforms. In some cases the soil is modelled as a series of small layers with different dielectric properties, and the waveform is obtained as the result of the superposition of multiple reflections arising from impedance

  3. Measuring water content in soil using TDR: A state-of-the-art in 1998

    International Nuclear Information System (INIS)

    Topp, G.C.; Ferre, P.A.

    2000-01-01

    Over the past decade or so, the development and continuing refinement of the time-domain reflectometry (TDR) technique for in-situ, nondestructive measurement of water content has revolutionized the study and management of the transfer and storage of water within the soil profile. The principles for the application of TDR to water content are now well accepted and straight forward. For many mineral soils, the calibration for water content has a linear relationship with the square root of the relative permittivity measured by TDR. This allows a two-point calibration. TDR-measured water content has been applied successfully to water balance studies ranging from the km scale of small watersheds to the nun scale of the root-soil interface. Soil probes can be designed to meet many and varied requirements. The performance of a number of probe geometries is presented, including some of their strengths and weaknesses. Although coated soil probes allow measurement in more conductive soils, the probe coatings alter the water-content calibration both in sensitivity and linearity. Three general options are available for determining profiles of soil water content from the soil surface to a depth of 1 m. Soil probes of differing total depths extending to the surface are the most accessible. Soil probes buried at selected depths provide easily repeatable values. The vertically installed single probe, Aith depth segments separated by diodes, allows repeated measurement in a single vertical slice. The portability of TDR instrumentation coupled with the simplicity and flexibility of probes has allowed the mapping of spatial patterns of water content and field-based spatial and temporal soil water content distributions. The usefulness and power of the TDR technique for characterizing soil water content is increasing rapidly through continuing improvements in instrument operating range, probe design, multiplexing and automated data collection. (author)

  4. Measurements of effective non-rainfall in soil with the use of time-domain reflectometry technique

    Science.gov (United States)

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Skierucha, Wojciech

    2014-05-01

    The non-rainfall vectors are fog, dew, hoarfrost and vapour adsorption directly from the atmosphere. The measurements of the amount of water supplied to the soil due to their temporary existence are essential, because in dry areas such water uptake can exceed that of rainfall. Although several devices and methods were proposed for estimating the effective non-rainfall input into the soil, the measurement standard has not yet been established. This is mainly due to obstacles in measuring small water additions to the medium, problems with taking readings in actual soil samples and atmospheric disturbances during their course in natural environment. There still exists the need for automated devices capable of measuring water deposition on real-world soil surfaces, whose resolution is high enough to measure the non-rainfall intensity and increase rate, which are usually very low. In order to achieve the desirable resolution and accuracy of the effective non-rainfall measurements the time-domain reflectometry (TDR) technique was employed. The TDR sensor designed and made especially for the purpose was an untypical waveguide. It consisted of a base made of laminate covered with copper, which served as a bottom of a cuboidal open container in which the examined materials were placed, and a copper signal wire placed on the top of the container. The wire adhered along its entire length to the tested material in order to eliminate the formation of air gaps between the two, what enhanced the accuracy of the measurements. The tested porous materials were glass beads, rinsed sand and three soil samples, which were collected in south-eastern Poland. The diameter ranges of their constituent particles were measured with the use of the laser diffraction technique. The sensor filled with the wetted material was placed on a scale and connected to the TDR meter. The automated readings of mass and TDR time were collected simultaneously every minute. The TDR time was correlated with the

  5. Development and evaluation of TDR probe for water rational management on substrates used in forest seedlings production

    Directory of Open Access Journals (Sweden)

    Lucas Masayuki Sato

    2009-04-01

    Full Text Available Time Domain Reflectometry (TDR is a reliable technique to estimate in situ moisture content in different types of materials using probes. The forest seedlings production implies in a comprehensive and empirical process of water management applied to the substrate used for cultivation in dibble-tube. This type of cultivation requires analysis of the physical characteristics of water and nutrients retention of the substrate. The main goal of this research was to develop and evaluate a TDR coaxial probe for rational management of water in the forest seedlings production. Initially, a physical validation of the probe was performed considering the following parameters: reflection coefficient, characteristic impedance and spatial sensitivity. Also, the performance of the probe was evaluated to estimate water content in laboratory conditions and we obtained a calibration curve for each type of porous material used. The results demonstrated the viability of TDR probes to estimate water content in soil and substrates.

  6. A sensor array system for monitoring moisture dynamics inunsaturated soil

    Energy Technology Data Exchange (ETDEWEB)

    Salve, R.; Cook, P.J.

    2007-05-15

    To facilitate investigations of moisture dynamics inunsaturated soil, we have developed a technique to qualitatively monitorpatterns of saturation changes. Field results suggest that this device,the sensor array system (SAS), is suitable for determining changes inrelative wetness along vertical soil profiles. The performance of theseprobes was compared with that of the time domain reflectometry (TDR)technique under controlled and field conditions. Measurements from bothtechniques suggest that by obtaining data at high spatial and temporalresolution, the SAS technique was effective in determining patterns ofsaturation changes along a soil profile. In addition, hardware used inthe SAS technique was significantly cheaper than the TDR system, and thesensor arrays were much easier to install along a soilprofile.

  7. Metrological assessment of TDR performance for measurement of potassium concentration in soil solution

    Directory of Open Access Journals (Sweden)

    Isaac de M. Ponciano

    2016-04-01

    Full Text Available ABSTRACT Despite the growing use of the time domain reflectometry (TDR technique to monitoring ions in the soil solution, there are few studies that provide insight into measurement error. To overcome this lack of information, a methodology, based on the central limit theorem error, was used to quantify the uncertainty associated with using the technique to estimate potassium ion concentration in two soil types. Mathematical models based on electrical conductivity and soil moisture derived from TDR readings were used to estimate potassium concentration, and the results were compared to potassium concentration determined by flame spectrophotometry. It was possible to correct for random and systematic errors associated with TDR readings, significantly increasing the accuracy of the potassium estimation methodology. However, a single TDR reading can lead to an error of up to ± 18.84 mg L-1 K+ in soil solution (0 to 3 dS m-1, with a 95.42% degree of confidence, for a loamy sand soil; and an error of up to ± 12.50 mg L-1 of K+ (0 to 2.5 dS m-1 in soil solution, with a 95.06% degree of confidence, for a sandy clay soil.

  8. A Model-Based Probabilistic Inversion Framework for Wire Fault Detection Using TDR

    Science.gov (United States)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2010-01-01

    Time-domain reflectometry (TDR) is one of the standard methods for diagnosing faults in electrical wiring and interconnect systems, with a long-standing history focused mainly on hardware development of both high-fidelity systems for laboratory use and portable hand-held devices for field deployment. While these devices can easily assess distance to hard faults such as sustained opens or shorts, their ability to assess subtle but important degradation such as chafing remains an open question. This paper presents a unified framework for TDR-based chafing fault detection in lossy coaxial cables by combining an S-parameter based forward modeling approach with a probabilistic (Bayesian) inference algorithm. Results are presented for the estimation of nominal and faulty cable parameters from laboratory data.

  9. Theseus: tethered distributed robotics (TDR)

    Science.gov (United States)

    Digney, Bruce L.; Penzes, Steven G.

    2003-09-01

    The Defence Research and Development Canada's (DRDC) Autonomous Intelligent System's program conducts research to increase the independence and effectiveness of military vehicles and systems. DRDC-Suffield's Autonomous Land Systems (ALS) is creating new concept vehicles and autonomous control systems for use in outdoor areas, urban streets, urban interiors and urban subspaces. This paper will first give an overview of the ALS program and then give a specific description of the work being done for mobility in urban subspaces. Discussed will be the Theseus: Thethered Distributed Robotics (TDR) system, which will not only manage an unavoidable tether but exploit it for mobility and navigation. Also discussed will be the prototype robot called the Hedgehog, which uses conformal 3D mobility in ducts, sewer pipes, collapsed rubble voids and chimneys.

  10. An automatic time domain reflectometry device to measure and store soil water contents for stand-alone field use

    NARCIS (Netherlands)

    Elsen, van den H.G.M.; Kokot, J.; Skierucha, W.; Halbertsma, J.M.

    1995-01-01

    A field set-up was developed to measure soil moisture content on ten different positions using the time domain reflectometry (TDR) technique. The set-up works on a 12 V battery or solar panel system, independent of an external power source, has low power consumption, and compact dimensions. The

  11. Estimation of water percolation by different methods using TDR

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva

    2014-02-01

    Full Text Available Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR in a drainage lysimeter. We used Darcy's law with K(θ functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ predicted by the method of Hillel et al. (1972 provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980, Sisson et al. (1980 and van Genuchten (1980 underestimated water percolation.

  12. Comparing spatial series of soil bulk electrical conductivity as obtained by Time Domain Reflectometry and Electrical Resistivity Tomography

    Science.gov (United States)

    Saeed, Ali; Dragonetti, Giovanna; Comegna, Allessandro; Garre, Sarah; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    Conventional ground survey of soil root zone salinity by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity, σb, in the field. This approach is faster and cheaper, and allows a more intensive surveying. Measurements of σb can be made either in situ or with remote devices. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on the Electrical Resistivity Tomography (ERT) techniques represent an alternative in respect to those traditional for soil salinity characterization. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from ERT sensors. The latter, in turn, depends on the specific depth distribution of the σb, as well as on the electrical configuration of the sensor used. With these premises, the main aim of this study is to estimate the vertical σb distribution starting from resistivity data series measured using the ERT method under different salinity conditions and using TDR data as ground-truth data for calibration and validation of the ERT sensor. This way, limited measured TDR data may be used for translating extensive ERT apparent electrical conductivity, σa, measurements to estimate depth

  13. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  14. Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gavric, Gordan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.

  15. Models for moisture estimation in different horizons of yellow argisol using TDR

    Directory of Open Access Journals (Sweden)

    Karla Silva Santos Alvares de Almeida

    2017-08-01

    Full Text Available The determination of soil moisture is very important because it is the property with the most influence on the dielectric constant of the medium. Time-domain reflectometry (TDR is an indirect technique used to estimate the water content of the soil (? based on its dielectric constant (Ka. Like any other technique, it has advantages and disadvantages. Among the major disadvantages is the need for calibration, which requires consideration of the soil characteristics. This study aimed to perform the calibration of a TDR100 device to estimate the volumetric water content of four horizons of a Yellow Argisol. Calibration was performed under laboratory conditions using disturbed soil samples contained in PVC columns. The three rods of the handcrafted probes were vertically installed in the soil columns. Weight measurements with digital scales and daily readings of the dielectric constant with the TDR device were taken. For all soil horizons evaluated, the best fits between the dielectric constant and the volumetric water content were related to the cubic polynomial model. The Ledieu model overestimated by approximately 68 % the volumetric water content in the A and AB horizons, and underestimating by 69 % in Bt2, in relation to volumetric water content obtained by gravimetry. The underestimation by linear, Topp, Roth, and Malicki models ranged from 50 % to 85 % for all horizons.

  16. Time-Domain Reflectometry for Tamper Indication in Unattended Monitoring Systems for Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Pacific Northwest National Laboratory (PNNL) leads a collaboration that is exploring various tamper-indicating (TI) measures that could help to address some of the long-standing detector and data-transmission authentication challenges with IAEA’s unattended systems. PNNL is investigating the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s progress and preliminary findings from the first year of the study, and describes the path forward.

  17. Time domain reflectometry measured moisture content of sewage sludge compost across temperatures.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Liu, Hong-Tao; Chen, Jun; Zheng, Guo-Di

    2013-01-01

    Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm(3)cm(-3), temperature of 70°C and conductivity of 4.32 mS cm(-1). TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20°C to 70°C, composting material with 0.10-0.70 cm(3)cm(-3) moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors. Copyright © 2012. Published by Elsevier Ltd.

  18. Reflectometry on D17

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, R [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    As part of the package of instrument upgrades planned over the next few years, D17 is based on a straightened cold neutron-guide and converted into a dedicated and versatile reflectometer. In the meantime, in order for ILL to become as fully involved as possible in this growing area of activity, the current D17 has been optimised for reflectometry. Results of this project are presented. (author).

  19. Survey of the future concrete structures lifetime measuring the water content: 4 types of embedded sensor under checking

    International Nuclear Information System (INIS)

    Moreau, G.; Salin, J.; Masson, B.; Dubois, J.P.; Agostini, F.; Skoczylas, F.

    2011-01-01

    Today thermal and mechanical properties are well-measured with common sensors like respectively PT100 sensors and vibrating wire sensors or new sensors like optical fiber sensors. On the other hand there is no reference sensor for the measurement of the concrete moisture. In this paper, we present our laboratory evaluation's protocol and first result for four different technologies of concrete moisture sensor based on our owner requirement. Specimens of porous mortar (E/C ∼ 0.8) with embedded sensor are placed into a temperature and humidity controlled climatic chamber. Then, different air relative humidity steps are enforced. Before each relative humidity change, stabilization of the mass of specimens is expected. The four technologies are based on: 1) capacity between two electrodes. The sensor is embedded in a porous Teflon cap. The sensor measures the humidity of air at equilibrium with concrete. Today it is the most common moisture sensor; 2) Elongation measurement of a calibrated nano porous material with a vibrating wire sensor. The sensor measures the hygroscopic volume change related to the humidity of the surrounding concrete. This sensor called Hydravib has been developed by Cementys S.A.S.; 3) Time Domain Reflectometry (TDR). The sensor measures an Electro Magnetic Wave time propagation in the concrete and this one is a function of the concrete permittivity; 4) gas permeability measurement of the ambient concrete. The sensor measures a pressure drop through a porous stainless filter. This study evaluates the capacities of four sensor technologies to indirectly measure one key parameter of concrete structure: the moisture concrete. Capacitive sensor does not seem to fulfill our requirements. Hydravib presents sensitivity to the moisture concrete evolution but it needs more development and a nano porous material calibration. Finally TDR and Pulse sensors present very promising results

  20. The HLT, DAQ and DCS TDR

    CERN Multimedia

    Wickens, F. J

    At the end of June the Trigger-DAQ community achieved a major milestone with the submission to the LHCC of the Technical Design Report (TDR) for DAQ, HLT and DCS. The first unbound copies were handed to the LHCC referees on the scheduled date of 30th June, this was followed a few days later by a limited print run which produced the first bound copies (see Figure 1). As had previously been announced both to the LHCC and the ATLAS Collaboration it was not possible on this timescale to give a complete validation of all of the aspects of the architecture in the TDR. So it had been agreed that further work would continue over the summer to provide more complete results for the formal review by the LHCC of the TDR in September. Thus there followed an intense programme of measurements and analysis: especially to provide results for HLT both in testbeds and for the event selection software itself; to provide additional information on scaling of the dataflow aspects; to provide first results on the new prototype ROBin...

  1. Contributions to the 4. reflectometry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Clairet, F

    1999-09-15

    This document contains ten papers presented during the 4. workshop on reflectometry. Those papers deal with the utility of reflectometry to plasma density fluctuations study or reflectometry based plasma diagnostics: X mode reflectometry on edge density profile measurements on Tore Supra; recent results of reflectometry on ASDEX-UPGRADE; automatic evaluation of density profiles with high temporal resolution; the TJ-II reflectometry system; doppler reflectometry for the investigation of poloidally propagating density perturbations; poloidal rotation measuremin Tore Supra by oblique reflectometry; pulsed radar reflectometry at TEXTOR-94; density profile reconstruction methods using dispersive effects in pulse radar reflectometry; fluctuation reflectometry: two dimensional full wave modelling; phase ramping and modulation of reflectometer signals. (A.L.B.)

  2. Contributions to the 4. reflectometry workshop

    International Nuclear Information System (INIS)

    Clairet, F.

    1999-09-01

    This document contains ten papers presented during the 4. workshop on reflectometry. Those papers deal with the utility of reflectometry to plasma density fluctuations study or reflectometry based plasma diagnostics: X mode reflectometry on edge density profile measurements on Tore Supra; recent results of reflectometry on ASDEX-UPGRADE; automatic evaluation of density profiles with high temporal resolution; the TJ-II reflectometry system; doppler reflectometry for the investigation of poloidally propagating density perturbations; poloidal rotation measurement in Tore Supra by oblique reflectometry; pulsed radar reflectometry at TEXTOR-94; density profile reconstruction methods using dispersive effects in pulse radar reflectometry; fluctuation reflectometry: two dimensional full wave modelling; phase ramping and modulation of reflectometer signals. (A.L.B.)

  3. Comparison of soil water measurement using the neutron scattering, time domain reflectometry and capacitance methods. Results of a consultants meeting

    International Nuclear Information System (INIS)

    2000-02-01

    Soil water measurement based on neutron scattering has been a valuable tool for the past 40 years because it possesses many of the above mentioned qualities. However, licensing, training of users and safety regulations pertaining to the radioactive source in these devices make their use preventive and expensive in some situations such as unattended monitoring. Disposal of gauges is also increasingly expensive. In past years, the high dielectric constant property of water at high frequencies has been used as the basis to estimate the soil water content. The two major techniques that make use of this property are the capacitance sensors and time domain reflectometry (TDR). The capacitance approach makes use of radio frequencies for determining soil dielectric constant and thus its water content. Significant progress has been made in this approach, with the ability to carry out profile measurement in recent improvement. However, poor precision, dependant on soil types, salinity and temperature are some of the concern relating to the method, making its use difficult for routine soil water measurements. The TDR measures the propagation of an electromagnetic pulse along the transmission lines (wave guides). By measuring the travel time, the velocity and hence the apparent dielectric constant of the soil can be estimated. This then allows the water content of the soil to be determined. Major advances in TDR equipment, probe configurations, data logging and multiplexing, make this a promising technique for point specific monitoring of soil water. In view of the restrictive use of neutron probes, the rapid advancement and the decreasing cost of the non-nuclear methods in recent years, there is a need to compare these methodologies in order to formulate recommendations and establish guidelines for future uses. The objectives of the consultants meeting, as defined by the IAEA in agreement with its mandate, were: To compare the advantages and disadvantages in the various soil

  4. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR

    Science.gov (United States)

    Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz

    2014-12-01

    The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of

  5. Larmor precession reflectometry

    International Nuclear Information System (INIS)

    Lauter, H.J.; Toperverg, B.P.; Lauter-Pasyuk, V.; Petrenko, A.; Aksenov, V.

    2004-01-01

    Larmor precession phase encoding is applied to modulate TOF reflection spectra measured from a polymer multilayer and from an Fe/Cr multilayer. It is proposed that decoding of the spectra can be used to extract the small-angle scattering signal from the polymer film-embedded nanoparticles. The second example is directed to demonstrate one of the plausible realizations of the vector polarization analysis in reflectometry of magnetic systems. This would allow to unambiguously reconstruct the transverse and lateral distribution of the magnetization vectors throughout the multilayered superlattices

  6. Synchrotron Moessbauer reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, D.L.; Bottyan, L.; Deak, L.; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Spiering, H. [Johannes Gutenberg Universitaet Mainz, Institut fuer Anorganische und Analytische Chemie (Germany); Dekoster, J.; Langouche, G. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    2000-07-15

    Grazing incidence nuclear resonant scattering of synchrotron radiation can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and recent experiments of this new kind of reflectometry are briefly reviewed. Methodological aspects are discussed. Model calculations demonstrate how the orientations of the sublattice magnetisation in ferro- and antiferromagnetic multilayers affect time-integral and time-differential spectra. Experimental examples show the efficiency of the method in investigating finite-stacking, in-plane and out-of-plane anisotropy and spin-flop effects in magnetic multilayers.

  7. Approximation of Gas Volume in a Seafloor Sediment using Time Domain Reflectometry in the Okhotsk Sea

    Science.gov (United States)

    Aoki, S.; Noborio, K.; Matsumoto, R.

    2013-12-01

    Global warming has accelerated in recent decades as the concentration of carbon dioxide has increased in the atmosphere due to fossil fuel burning. In addition, increases in consuming fossil fuels have led to their depletion in recent years. One practical measure to meet these two challenges is the conversion of energy resources to natural gas that has less environmental impact. Gas hydrates that contain natural gas have been discovered in the sea around Japan. They are expected to serve as a new non-conventional natural gas resource. To understand the mechanism of gas hydrate accumulation, the amount of free gas in sediments should be known. However, it is difficult to measure this non-destructively without affecting other properties. In this study we examined a technique for measuring the amount of free gas using Time Domain Reflectometry (TDR). TDR was a method of measuring the dielectric constant of the soil. This method is based on the relationship between the volumetric water content and dielectric constant, to estimate the volumetric water content indirectly. TDR has commonly been used to measure the moisture content of soil such as cultivation and paddy. In our study, we used TDR to estimate the gas ratio in the sea-bottom sediment obtained from the Sea of Okhotsk. Measurement by the TDR method was difficult in a high electrical conductivity solution such as seawater. Therefore, we blunted the measurement sensitivity by coating TDR probe with plastic, which makes it possible to measure. We found that the gas phase rates differed depending on the depth and location, so gas phase existed up to about 10%.

  8. Active Time-Domain Reflectometry for Unattended Safeguards Systems: FY16 Report

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gavric, Gordan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zalavadia, Mital A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Daniel T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-21

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Traditional data security measures, for example tamper-indicating (TI) conduit, are impractical for the long separation distances (often 100 meters or more) between unattended monitoring system (UMS) components. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) for the detection of cable tampering in unattended radiation detection systems. The instrument concept under investigation would allow for unmanned cable integrity measurements, remote surveillance reporting and locating of cable faults and/or tampers. This report describes PNNL’s FY16 progress and includes: an overview of the TDR methods under investigation; description of the TDR evaluation testbed developed by PNNL; development and testing of advanced signal processing algorithms to extract weak signals from relatively high noise levels; and initial testing of a laboratory prototype intended for IAEA UMS applications and based on a commercially available TDR module. Preliminary viability findings and recommendations for the next stage of development and testing are provided.

  9. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    Science.gov (United States)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2017-08-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  10. Some aspects of time domain reflectometry, neutron scattering, and capacitance methods for soil water content measurement

    International Nuclear Information System (INIS)

    Evett, S.R.

    2000-01-01

    Soil-water measurements encounter particular problems related to the physics of the method used. For time domain reflectometry (TDR), these relate to wave form shape changes caused by soil, soil water, and TDR probe properties. Methods of wave form interpretation that overcome these problems are discussed and specific computer algorithms are presented. Neutron scattering is well understood, but calibration methods remain critical to accuracy and precision, and are discussed with recommendations for field calibration and use. Capacitance probes tend to exhibit very small radii of influence, thus are sensitive to small-scale changes in soil properties, and are difficult or impossible to field calibrate. Field comparisons of neutron and capacitance probes are presented. (author)

  11. Fault Detection of Aircraft Cable via Spread Spectrum Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Xudong SHI

    2014-03-01

    Full Text Available As the airplane cable fault detection based on TDR (time domain reflectometry is affected easily by various noise signals, which makes the reflected signal attenuate and distort heavily, failing to locate the fault. In order to solve these problems, a method of spread spectrum time domain reflectometry (SSTDR is introduced in this paper, taking the advantage of the sharp peak of correlation function. The test signal is generated from ML sequence (MLS modulated by sine wave in the same frequency. Theoretically, the test signal has the very high immunity of noise, which can be applied with excellent precision to fault location on the aircraft cable. In this paper, the method of SSTDR was normally simulated in MATLAB. Then, an experimental setup, based on LabVIEW, was organized to detect and locate the fault on the aircraft cable. It has been demonstrated that SSTDR has the high immunity of noise, reducing some detection errors effectively.

  12. New types of time domain reflectometry sensing waveguides for bridge scour monitoring

    Science.gov (United States)

    Lin, Chih-Ping; Wang, Kai; Chung, Chih-Chung; Weng, Yu-Wen

    2017-07-01

    Scour is a major threat to bridge safety, especially in harsh fluvial environments. Real-time monitoring of bridge scour is still very limited due to the lack of robust and economic scour monitoring device. Time domain reflectometry (TDR) is an emerging waveguide-based technique holding great promise to develop more durable scour monitoring devices. This study presents new types of TDR sensing waveguides in forms of either sensing rod or sensing wire, taking into account of the measurement range, durability, and ease of field installation. The sensing rod is composed of a hollow grooved steel rod paired up with a metal strip on the insulating groove, while the sensing wire consists of two steel strands with one of them coated with an insulating jacket. The measurement sensitivity is inevitably sacrificed when other properties such as the measurement range, field durability, and installation easiness are enhanced. Factors affecting the measurement sensitivity were identified and experimentally evaluated for better arranging the waveguide conductors. A data reduction method for scour-depth estimation without the need for identifying the sediment/water reflection and a two-step calibration procedure for rating propagation velocities were proposed to work with the new types of TDR sensing waveguides. Both the calibration procedure and the data reduction method were experimentally validated. The test results indicated that the new TDR sensing waveguide provides accurate scour depth measurements regardless of the sacrificed sensitivity. The insulating coating of the new TDR sensing waveguide was also demonstrated to be effective in extending the measurement range up to at least 15 m.

  13. Reflectometry diagnostics on TCV

    Science.gov (United States)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  14. NEXT-100 Technical Design Report (TDR). Executive summary

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Borges, F I G M; Conde, C A N; Dias, T H V T; Fernandes, L M P; Carmona, J M; Castel, J; Cebrián, S; Dafni, T; Catalá, J M; Esteve, R; Chan, D; Egorov, M; Evtoukhovitch, P; Ferreira, A L; Ferrer-Ribas, E

    2012-01-01

    In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (ββ0ν) in 136 XE at the Laboratorio Subterráneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 × 8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.

  15. NEXT-100 Technical Design Report (TDR). Executive summary

    Science.gov (United States)

    Álvarez, V.; Borges, F. I. G. M.; Cárcel, S.; Carmona, J. M.; Castel, J.; Catalá, J. M.; Cebrián, S.; Cervera, A.; Chan, D.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Egorov, M.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Ferrer-Ribas, E.; Freitas, E. D. C.; Gehman, V. M.; Gil, A.; Giomataris, I.; Goldschmidt, A.; Gómez, H.; Gómez-Cadenas, J. J.; González, K.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Herrero, V.; Iguaz, F. J.; Irastorza, I. G.; Kalinnikov, V.; Kiang, D.; Labarga, L.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Miller, T.; Moiseenko, A.; Monrabal, F.; Monteiro, C. M. B.; Monzó, J. M.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Natal da Luz, H.; Navarro, G.; Nebot, M.; Nygren, D.; Oliveira, C. A. B.; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Renner, J.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Segui, L.; Serra, L.; Shuman, D.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Vázquez, D.; Velicheva, E.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; Weber, T.; White, J.; Yahlali, N.

    2012-06-01

    In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (ββ0ν) in 136XE at the Laboratorio Subterráneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 × 8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.

  16. Cable Damage Detection System and Algorithms Using Time Domain Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G A; Robbins, C L; Wade, K A; Souza, P R

    2009-03-24

    This report describes the hardware system and the set of algorithms we have developed for detecting damage in cables for the Advanced Development and Process Technologies (ADAPT) Program. This program is part of the W80 Life Extension Program (LEP). The system could be generalized for application to other systems in the future. Critical cables can undergo various types of damage (e.g. short circuits, open circuits, punctures, compression) that manifest as changes in the dielectric/impedance properties of the cables. For our specific problem, only one end of the cable is accessible, and no exemplars of actual damage are available. This work addresses the detection of dielectric/impedance anomalies in transient time domain reflectometry (TDR) measurements on the cables. The approach is to interrogate the cable using time domain reflectometry (TDR) techniques, in which a known pulse is inserted into the cable, and reflections from the cable are measured. The key operating principle is that any important cable damage will manifest itself as an electrical impedance discontinuity that can be measured in the TDR response signal. Machine learning classification algorithms are effectively eliminated from consideration, because only a small number of cables is available for testing; so a sufficient sample size is not attainable. Nonetheless, a key requirement is to achieve very high probability of detection and very low probability of false alarm. The approach is to compare TDR signals from possibly damaged cables to signals or an empirical model derived from reference cables that are known to be undamaged. This requires that the TDR signals are reasonably repeatable from test to test on the same cable, and from cable to cable. Empirical studies show that the repeatability issue is the 'long pole in the tent' for damage detection, because it is has been difficult to achieve reasonable repeatability. This one factor dominated the project. The two-step model

  17. A review on neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Soo; Lee, Chang Hee; Shim, Hae Seop; Seong, Baek Seok

    1999-03-01

    This report contains principle and characteristic of neutron reflectometry. Therefore, in case of operating neutron reflectometer at HANARO in future, it will be a reference to the user who wishes to use the instrument effectively. Also, the current situation of neutron reflectometer operating in the world was examined. The detail of neutron reflectometer such as GANS(MURR), ADAM(ILL), POSY II(ANL), ROG(IRI) was described. The recent research situation on neutron reflectometry was also examined and it helps us to determine research field. (author)

  18. [Application of time domain reflectometry for determination of wate content in Xiangsha Yangwei pills].

    Science.gov (United States)

    Long, Feng-Lai; Sun, Xiao-Mei; Peng, Xiu-Juan; Liu, Peng; He, Fang-Hui

    2016-08-01

    Xiangsha Yangwei pill was selected as a model drug in this research, and time domain reflectometry (TDR) was used to determine the water content in the pill. The effects of five factors including the number of pill layers, pill packing density, atmospheric moisture, ambient temperature and the ratio of pill formula were investigated on water content. The results showed that the number of pill layers and ambient temperature had significant effects on water content of pills, while the pill packing density, atmospheric moisture and pill formula ratio had little effect on the determination of water content in pills. The reflection value was stable when 6 layers of pills were used. Under the condition of 25 ℃ and 45% relative humidity, the water content of pills ranged from 4.01% to 22.38%, showing good linear relationship between water content and reflection value, and the model equation was as follows: Y=0.279X-21.670 (R²=0.997 0). Verification experiment was used to explain the feasibility of this prediction model. The precision of the method complied with the methodology standard. It is concluded that TDR can be used in determination of water content in Xiangsha Yangwei pills. Additionally, TDR, as a new way to quickly and efficiently determine the water content, has a prospect application in the processing of traditional Chinese medicine pharmacy, especially for concentrated pill. Copyright© by the Chinese Pharmaceutical Association.

  19. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    Energy Technology Data Exchange (ETDEWEB)

    Ghezzehei, T.A.

    2008-05-29

    Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.

  20. Automated general temperature correction method for dielectric soil moisture sensors

    Science.gov (United States)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a

  1. Seasonal variations measured by TDR and GPR on an anthropogenic sandy soil and the implications for utility detection

    Science.gov (United States)

    Curioni, Giulio; Chapman, David N.; Metje, Nicole

    2017-06-01

    The electromagnetic (EM) soil properties are dynamic variables that can change considerably over time, and they fundamentally affect the performance of Ground Penetrating Radar (GPR). However, long-term field studies are remarkably rare and records of the EM soil properties and their seasonal variation are largely absent from the literature. This research explores the extent of the seasonal variation of the apparent permittivity (Ka) and bulk electrical conductivity (BEC) measured by Time Domain Reflectometry (TDR) and their impact on GPR results, with a particularly important application to utility detection. A bespoke TDR field monitoring station was specifically developed and installed in an anthropogenic sandy soil in the UK for 22 months. The relationship between the temporal variation of the EM soil properties and GPR performance has been qualitatively assessed, highlighting notably degradation of the GPR images during wet periods and a few days after significant rainfall events following dry periods. Significantly, it was shown that by assuming arbitrary average values (i.e. not extreme values) of Ka and BEC which do not often reflect the typical conditions of the soil, it can lead to significant inaccuracies in the estimation of the depth of buried targets, with errors potentially up to approximately 30% even over a depth of 0.50 m (where GPR is expected to be most accurate). It is therefore recommended to measure or assess the soil conditions during GPR surveys, and if this is not possible to use typical wet and dry Ka values reported in the literature for the soil expected at the site, to improve confidence in estimations of target depths.

  2. Spatial Variability Analysis of Within-Field Winter Wheat Nitrogen and Grain Quality Using Canopy Fluorescence Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Xiaoyu Song

    2017-03-01

    Full Text Available Wheat grain protein content (GPC is a key component when evaluating wheat nutrition. It is also important to determine wheat GPC before harvest for agricultural and food process enterprises in order to optimize the wheat grading process. Wheat GPC across a field is spatially variable due to the inherent variability of soil properties and position in the landscape. The objectives of this field study were: (i to assess the spatial and temporal variability of wheat nitrogen (N attributes related to the grain quality of winter wheat production through canopy fluorescence sensor measurements; and (ii to examine the influence of spatial variability of soil N and moisture across different growth stages on the wheat grain quality. A geostatistical approach was used to analyze data collected from 110 georeferenced locations. In particular, Ordinary Kriging Analysis (OKA was used to produce maps of wheat GPC, GPC yield, and wheat canopy fluorescence parameters, including simple florescence ratio and Nitrogen Balance Indices (NBI. Soil Nitrate-Nitrogen (NO3-N content and soil Time Domain Reflectometry (TDR value in the study field were also interpolated through the OKA method. The fluorescence parameter maps, soil NO3-N and soil TDR maps obtained from the OKA output were compared with the wheat GPC and GPC yield maps in order to assess their relationships. The results of this study indicate that the NBI spatial variability map in the late stage of wheat growth can be used to distinguish areas that produce higher GPC.

  3. Rapid screening of fatty acid alkyl esters in olive oils by time domain reflectometry.

    Science.gov (United States)

    Berardinelli, Annachiara; Ragni, Luigi; Bendini, Alessandra; Valli, Enrico; Conte, Lanfranco; Guarnieri, Adriano; Toschi, Tullia Gallina

    2013-11-20

    The main aim of the present research is to assess the possibility of quickly screening fatty acid alkyl esters (FAAE) in olive oils using time domain reflectometry (TDR) and partial least-squares (PLS) multivariate statistical analysis. Eighteen virgin olive oil samples with fatty acid alkyl ester contents and fatty acid ethyl ester/methyl ester ratios (FAEE/FAME) ranging from 3 to 100 mg kg(-1) and from 0.3 to 2.6, respectively, were submitted to tests with time domain resolution of 1 ps. The results obtained in test set validation demonstrated that this new and fast analytical approach is able to predict FAME, FAEE, and FAME + FAEE contents with R(2) values of 0.905, 0.923, and 0.927, respectively. Further measurements on mixtures between olive oil and FAAE standards confirmed that the prediction is based on a direct influence of fatty acid alkyl esters on the TDR signal. The suggested technique appeared potentially suitable for monitoring one of the most important quality attribute of the olive oil in the extraction process.

  4. Reflectometry for Wendelstein 7-X

    International Nuclear Information System (INIS)

    Hirsch, M.; Holzhauer, E.; Hartfuss, H.-J.

    2006-01-01

    Diagnostic equipment for the fully optimized stellarator Wendelstein 7-X involves a reflectometry system dedicated to measuring edge density profiles and characterizing density perturbations and their poloidal propagation velocity. Preparatory work such as design activities and the installation of a first antenna pair belongs to the so-called start-up diagnostics. For start-up a high-directivity broadband dual antenna arrangement is proposed where the optimization of the beam waists can be decoupled from the variable sightlines, which offers flexibility for the different modes of reflectometer operation. It is shown that for large devices such as W7-X the critical value for an optimum antenna arrangement is the aperture of the first plasma facing optical element, usually a first mirror, rather than the limitations arising from the finite plasma curvature

  5. Self-Sensing TDR with Micro-Strip Line

    Science.gov (United States)

    2015-06-11

    the CFRP plate is quasi-isotropic [0/+45/0/-45/90/+45 /0/-45/90]S. The material used to fabricate the CFRP laminate is Toray T800S/3900-2B prepreg ...specimen. The specimen is 1750 mm long, 200 mm wide and is 2.6 mm thick. The material used to fabricate the CFRP laminate is Toray T800S/epoxy prepreg ...is adopted. In the present project, CFRP laminated plates are adopted as a target structure for application of self-sensing TDR. The previous

  6. Sampling and TDR probe insertion in the determination of the volumetric soil water content Procedimentos de amostragem e do modo de inserção no solo de sondas TDR na determinação da umidade volumétrica do solo

    Directory of Open Access Journals (Sweden)

    W. G. Teixeira

    2003-08-01

    Full Text Available Volumetric soil water content (theta can be evaluated in the field by direct or indirect methods. Among the direct, the gravimetric method is regarded as highly reliable and thus often preferred. Its main disadvantages are that sampling and laboratory procedures are labor intensive, and that the method is destructive, which makes resampling of a same point impossible. Recently, the time domain reflectometry (TDR technique has become a widely used indirect, non-destructive method to evaluate theta. In this study, evaluations of the apparent dielectric number of soils (epsilon and samplings for the gravimetrical determination of the volumetric soil water content (thetaGrav were carried out at four sites of a Xanthic Ferralsol in Manaus - Brazil. With the obtained epsilon values, theta was estimated using empirical equations (thetaTDR, and compared with thetaGrav derived from disturbed and undisturbed samples. The main objective of this study was the comparison of thetaTDR estimates of horizontally as well as vertically inserted probes with the thetaGrav values determined by disturbed and undisturbed samples. Results showed that thetaTDR estimates of vertically inserted probes and the average of horizontally measured layers were only slightly and insignificantly different. However, significant differences were found between the thetaTDR estimates of different equations and between disturbed and undisturbed samples in the thetaGrav determinations. The use of the theoretical Knight et al. model, which permits an evaluation of the soil volume assessed by TDR probes, is also discussed. It was concluded that the TDR technique, when properly calibrated, permits in situ, nondestructive measurements of q in Xanthic Ferralsols of similar accuracy as the gravimetric method.A umidade volumétrica do solo (teta no campo pode ser avaliada por métodos diretos e indiretos. Dentre os métodos diretos, o gravimétrico é considerado altamente confiável e, conseq

  7. In situ quantification of membrane foulant accumulation by reflectometry

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Roosjen, A.; Tang, K.; Norde, W.; Boom, R.M.

    2010-01-01

    In this paper, we present laser light reflectometry [1] (not to be mistaken with ultrasound reflectometry [2] that uses ultrasound waves) as a tool for quantitative investigation of (the initial stages of) fouling on membrane-like surfaces. Reflectometry allows in situ investigation of adsorption

  8. Microwave reflectometry for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    1992-01-01

    This document contains a collection of 26 papers on ''Microwave Reflectometry for Fusion Plasma Diagnostics'', presented at the IAEA Technical Committee Meeting of the same name held at the JET Joint Undertaking, Abingdon, United Kingdom, March 4-6, 1992. It contains five papers on the measurement of plasma density profiles, six papers on theory and simulations in support of the development and application of this type of plasma diagnostics, eight papers on the measurement of density transients and fluctuations, and seven on new approaches to reflectometry-based plasma diagnostics. Refs, figs and tabs

  9. Preliminary simulation study of doppler reflectometry

    International Nuclear Information System (INIS)

    Ishii, Yuta; Hojo, Hitoshi; Yoshikawa, Masashi; Ichimura, Makoto; Haraguchi, Yusuke; Imai, Tsuyoshi; Mase, Atsushi

    2010-01-01

    A preliminary simulation study of Doppler reflectometry is performed. The simulations solve Maxwell's equations by a finite difference time domain (FDTD) code method in two dimensions. A moving corrugated metal target is used as a plasma cutoff layer to study the basic features of Doppler reflectometry. We examined the effects of the full width at half maximum (FWHM) of the electromagnetic waves and the corrugation depth of the metal target. Furthermore, the effect of a nonuniform plasma is studied using this FDTD analysis. The Doppler shift and velocity are compared with those obtained from FDTD analysis of a uniform plasma. (author)

  10. Neutron reflectometry for interfacial materials characterization

    International Nuclear Information System (INIS)

    Lin, Eric K.; Pochan, Darrin J.; Kolb, Rainer; Wu Wenli; Satija, Sushil K.

    1998-01-01

    Neutron reflectometry provides a powerful non-destructive analytic technique to measure physical properties of interfacial materials. The sample reflectivity provides information about composition, thickness, and roughness of films with 0.1 nm resolution. The use of neutrons has the additional advantage of being able to label selected atomic species by using different isotopes. Two examples are presented to demonstrate the use of neutron reflectometry in measuring the thermal expansion of a buried thin polymer film and measuring the change in polymer mobility near a solid substrate

  11. Time domain reflectometry-measuring dielectric permittivity to detect soil non-acqeous phase liquids contamination-decontamination processes

    Directory of Open Access Journals (Sweden)

    A. Comegna

    2013-09-01

    Full Text Available Contamination of soils with non-aqueous phase liquids (NAPL constitutes a serious geo-environmental problem, given the toxicity level and high mobility of these organic compounds. To develop effective decontamination methods, characterisation and identification of contaminated soils are needed. The objective of this work is to explore the potential of dielectric permittivity measurements to detect the presence of NAPLs in soils. The dielectric permittivity was measured by Time Domain Reflectometry method (TDR in soil samples with either different volumetric content of water (w and NAPL (NAPL or at different stages during immiscible displacement test carried out with two different flushing solutions. A mixing model proposed by Francisca and Montoro, was calibrated to estimate the volume fraction of contaminant present in soil. Obtained results, showed that soil contamination with NAPL and the monitoring of immiscible fluid displacement, during soil remediation processes, can be clearly identified from dielectric measurements.

  12. Recent reflectometry results from the UCLA plasma diagnostics group

    International Nuclear Information System (INIS)

    Gilmore, M.; Doyle, E.J.; Kubota, S.; Nguyen, X.V.; Peebles, W.A.; Rhodes, T.L.; Zeng, L.

    2001-01-01

    The UCLA Plasma Diagnostics Group has an active ongoing reflectometry program. The program is threefold, including 1) profile and 2) fluctuation measurements on fusion devices (DIII-D, NSTX, and others), and 3) basic reflectometry studies in linear and laboratory plasmas that seek to develop new measurement capabilities and increase the physics understanding of reflectometry. Recent results on the DIII-D tokamak include progress toward the implementation of FM reflectometry as a standard density profile diagnostic, and correlation length measurements in QDB discharges that indicate a very different scaling than normally observed in L-mode plasmas. The first reflectometry measurements in a spherical torus (ST) have also been obtained on NSTX. Profiles in NSTX show good agreement with those of Thomson scattering. Finally, in a linear device, a local magnetic field strength measurement based on O-X correlation reflectometry has been demonstrated to proof of principle level, and correlation lengths measured by reflectometry are in good agreement with probes. (author)

  13. Incoherent Optical Frequency Domain Reflectometry for Distributed Thermal Sensing

    DEFF Research Database (Denmark)

    Karamehmedovic, Emir

    2006-01-01

    comprising a pump laser, optical filters, optical fibre and photo-detectors are presented. Limitations, trade-offs and optimisation processes are described for setups having different specifications with respect to range, resolution and accuracy. The analysis is conducted using computer simulation programs...... developed and implemented in Matlab. The computer model is calibrated and tested, and describes the entire system with high precision. Noise analysis and digital processing of the detected signal are discussed as well. An equation describing the standard deviation of the measured temperature is derived......This thesis reports the main results from an investigation of a fibre-optic distributed temperature sensor based on spontaneous Raman scattering. The technique used for spatial resolving is the incoherent optical frequency domain reflectometry, where a pump laser is sine modulated with a stepwise...

  14. Applications of electromagnetic principles in the design and development of proximity wireless sensors

    Science.gov (United States)

    Alam, Md Nazmul

    Sensors and sensing system are playing dominant roles in monitoring the health of infrastructure, such as bridges, power lines, gas pipelines, rail roads etc. Sensing modalities employing Surface Acoustic Waves (SAW), Electromagnetic (EM) and optical have been investigated and reported. Sensors that utilize the perturbation of EM fields as function of the change in the physical structural or material phenomenon are of particular interest because of their inherent synergy with electronic system and diagnostic techniques, e.g. Time Domain Reflectometry (TDR), Joint-Time-Frequency-Domain-Reflectometry (JTFDR). The focus of this work is to study and develop new sensing and monitoring concepts that are based on EM principles. First, the analyses, design and development of a static electric field type sensor are presented for application in embedded concrete moisture content measurement. The analytical formulation and results based on conformal mapping method for an interdigitated sensor clearly show the dependency of the field penetration depth and the inter-electrode capacitance on the electrode sizes and their spacings. It is observed that larger electrode size and small separation are needed in order to achieve substantially higher capacitance or large field penetration depth. A meander and a circular sensor are fabricated and tested to demonstrate concrete moisture content measurements that show that moisture content is a linear function of sensor interelectrode capacitance. Second, sub-wavelength dimension non-intrusive wave launchers are designed and tested that can launch TDR or JTFDR type broadband surface wave waveforms in the VHF-UHF bands in order to detect cable faults. Greater than 3:1 transmission bandwidth (100-300 MHz) is obtained with a cylindrical launcher on square orthogonal ground plane while with a CSW launcher more than an octave (100-240 MHz) bandwidth is achieved. Open circuit faults are detected using surface waves and TDR on two XLPE cables

  15. Evaluation of rainfall infiltration characteristics in a volcanic ash soil by time domain reflectometry method

    Directory of Open Access Journals (Sweden)

    S. Hasegawa

    1997-01-01

    Full Text Available Time domain reflectometry (TDR was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980 underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h-1 on to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h-1, non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm; this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate

  16. NEXT-100 Technical Design Report (TDR). Executive Summary

    CERN Document Server

    ,

    2012-01-01

    In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay in Xe-136. The document formalizes the ANGEL design presented in our Conceptual Design Report (CDR). The baseline detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The ANGEL design calls for an asymmetric TPC, with photomultipliers behind a transparent cathode and position-sensitive light pixels behind the anode. We have chosen the low background R11410-10 PMTs for energy and timing and Hamamatsu MPPCs (S10362-11-050P model) as tracking pixels. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window coated with terphenyl-butadiene (TPB) . MPPCs will be arranged in Dice Boards (DB) holding 64 senso...

  17. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  18. Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry

    International Nuclear Information System (INIS)

    Liehr, Sascha; Wendt, Mario; Krebber, Katerina

    2010-01-01

    We present the latest advances in distributed strain measurement in perfluorinated polymer optical fibres (POFs) using backscatter techniques. Compared to previously introduced poly(methyl methacrylate) POFs, the measurement length can be extended to more than 500 m at improved spatial resolution of a few centimetres. It is shown that strain in a perfluorinated POF can be measured up to 100%. In parallel to these investigations, the incoherent optical frequency domain reflectometry (OFDR) technique is introduced to detect strained fibre sections and to measure distributed length change along the fibre with sub-millimetre resolution by applying a cross-correlation algorithm to the backscatter signal. The overall superior performance of the OFDR technique compared to the optical time domain reflectometry in terms of accuracy, dynamic range, spatial resolution and measurement speed is presented. The proposed sensor system is a promising technique for use in structural health monitoring applications where the precise detection of high strain is required

  19. Recent Developments in Synchrotron Moessbauer Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Deak, L.; Bottyan, L.; Major, M.; Nagy, D. L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Spiering, H. [Johannes Gutenberg Universitaet, Mainz, Institute fuer Anorganische und Analytische Chemie (Germany); Szilagyi, E.; Tancziko, F. [KFKI Research Institute for Particle and Nuclear Physics (Hungary)

    2002-12-15

    Synchrotron Moessbauer Reflectometry (SMR), the grazing incidence nuclear resonant scattering of synchrotron radiation, can be applied to perform depth-selective phase analysis and to determine the isotopic and magnetic structure of thin films and multilayers. Principles and methodological aspects of SMR are briefly reviewed. Off-specular SMR provides information from the lateral structure of multilayers. In anti-ferromagneticly coupled systems the size of magnetic domains can be measured.

  20. Polarized neutron reflectometry on thin magnetic films

    International Nuclear Information System (INIS)

    Van Der Graaf, A.

    1997-01-01

    In order to be sensitive to magnetic scattering with X-rays very high intensities have to be used. This makes it necessary to use large installations like synchroton radiation sources providing high X-ray intensities. Polarized neutron experiments can be performed even at small reactors like the 2 MW reactor of IRI. In general polarized neutron reflectometry (PNR) is used to determine magnetization depth profiles, whereas X-ray reflectometry is used to study magnetic surfaces. Chapters 2 through 4 of this thesis are general chapters. The theory of neutron reflectometry is described in chapter 2, followed by a description of the ROG instrument (a time-of-flight reflectometer) in chapter 3, and chapter 4 deals with the data analysis. In the subsequent chapters PNR-experiments on different kinds of samples are discussed. First, experiments on a Co-Cr layer, a candidate to be used as perpendicular recording medium, are described in chapter 5. In chapter 6 it is shown that PNR can give information on metal evaporated videotapes, as presently available in every ordinary shop selling videotapes, and also on the writing process in these tapes. Chapter 7 deals with experiments on Fe/Si multilayers. The initial interest in such multilayers was to obtain information on magnetic coupling through a semiconductor. In chapter 8 PNR-experiments on spin-valve systems, that probably will be used as magnetic read head material, are described. Finally, chapter 9 gives some conclusions and recommendations for the future. 78 refs

  1. Utilização da TDR para monitoramento da solução de nitrato de potássio em Latossolo Vermelho-Amarelo Use of tdr for monitoring the potassium nitrate solution in dystrophic Red-Yellow Latossol

    Directory of Open Access Journals (Sweden)

    Leonardo do N. Lopes

    2010-10-01

    Full Text Available O conhecimento da distribuição e armazenamento da solução no solo é de grande importância para a agricultura, pois a interação entre os nutrientes e a água é um dos fatores que influenciam diretamente no rendimento das culturas. Das várias técnicas utilizadas para o monitoramento da solução no solo, a reflectometria no domínio do tempo (TDR vem sendo bastante difundida entre os pesquisadores por apresentar inúmeras vantagens, dentre as quais a mensuração em tempo real e a possibilidade de leituras automatizadas. O principal objetivo desta pesquisa foi avaliar a distribuição da solução de KNO3 no perfil de um Latossolo Vermelho-Amarelo. Sondas de Reflectometria no Domínio do Tempo (TDR foram utilizadas para monitorar a distribuição de solução no solo aplicada por gotejadores de fluxo constante nas vazões de 2; 4 e 8 L h-1. Considerando-se os resultados de diferentes perfis, observou-se maior armazenamento da solução próxima ao gotejador, diminuindo progressivamente para frente de molhamento. Pouco mais da metade da solução aplicada (65% foi armazenada na primeira camada (0-0,10 m para todos os ensaios, e 22% foi armazenada na próxima camada (0,10-0,20 m. Comparando-se diferentes taxas de aplicação, observou-se maior armazenamento de água para o gotejador de 4 L h-1, com 60; 72 e 63% de solução de KNO3 aplicada acumulada na primeira camada (0-0,10 m para gotejadores de 2; 4 e 8 L h-1, respectivamente. Os resultados sugerem que, com base no volume e frequência utilizada neste experimento, seria vantajoso aplicar pequenas quantidades de água em intervalos mais frequentes para reduzir perdas por percolação.Knowledge of water distribution in soil is of great importance to agriculture, since water is one of the factors that most influence the yield of crops. There are many techniques used for monitoring of soil water content, the Time Domain Reflectometry (TDR has been widespread among researchers to present

  2. Field estimation of soil water content. A practical guide to methods, instrumentation and sensor technology

    International Nuclear Information System (INIS)

    2008-01-01

    appreciable amounts of clays with high ion exchange capacities, even when using soil specific calibrations; (3) all sensors must be field calibrated (factory calibrations were inaccurate in most soils studied) in order to obtain reasonable accuracy; (4) the one exception to conclusion (3) is conventional time domain reflectometry (TDR, with waveform capture and graphical analysis), which is accurate to ±0.02 m 3 m -3 in most soils when using a calibration in travel time, effective frequency and bulk electrical conductivity (see Chapter 4); (5) with the possible exception of tensiometers and the granular matrix resistance sensors, none of the sensors studied is practical for on-farm irrigation scheduling; they are either too inaccurate (capacitance sensors) or too costly and difficult to use (TDR and NMM); (6) for research studies, only the NMM, conventional TDR and direct measurements have acceptable accuracy. In light of the intense commercial introduction of electromagnetic (EM) soil water sensors in the 1990s and to date, these conclusions are somewhat disappointing. However, the joint work of the expert group has resulted in numerous scientific publications detailing the problems with EM sensors, including the theoretical underpinnings of these problems, and sparked a special issue of the Vadose Zone Journal (Evett and Parkin, 2005) summarizing much of the fundamental work to date. Now that the problems are well understood, research and development of new sensor systems to overcome these problems can, and will, proceed to a satisfactory conclusion for both scientific studies and on-farm irrigation management

  3. Profiling water content in soils with TDR: Comparison with the neutron probe technique

    International Nuclear Information System (INIS)

    Laurent, J.P.

    2000-01-01

    In November 1996, at a site on the Grenoble campus a 1.2-m-long neutron access tube, a 0.8-m fibreglass Trime access tube and three sets of 1-m twin-rod TDR probes were installed. Weekly measurements were made over a 9-month period. In addition, soil samples were taken from time to time with an auger, to determine gravimetric water-contents. The soil bulk density profile was initially characterised by gammametry using a Campbell TM probe. A Troxler TM 4300 was used for the neutron-probe measurements. The TDR signals, for further processing by TDR-SSI, were logged using a Trase 2000 from Soil Moisture Equipment Corporation TM . TDR methods were employed without any special calibration of the permittivity/water-content relationship: standard internal calibrations of the devices or Topp polynomial relation were always applied. The results of all these water-content profiling methods were compared in three ways: (i) the water-content profiles were plotted directly on the same graph for different dates; (ii) all the water contents measured at all dates and all depths were plotted against a corresponding 'reference', namely neutron probe or gravimetry; (iii) water balances were calculated for each method and their respective time-profiles analysed. There was fairly good agreement among the three profiling methods, indicating that TDR is now a viable alternative to nuclear techniques for soil water-content profiling. (author)

  4. Dental optical coherence domain reflectometry explorer

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Matthew J. (Livermore, CA); Colston, Jr., Billy W. (Livermore, CA); Sathyam, Ujwal S. (Livermore, CA); Da Silva, Luiz B. (Pleasanton, CA)

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  5. Laser reflectometry of submegahertz liquid meniscus ringing.

    Science.gov (United States)

    Farahi, R H; Passian, A; Jones, Y K; Tetard, L; Lereu, A L; Thundat, T G

    2009-10-15

    Optical techniques that permit nondestructive probing of interfacial dynamics of various media are of key importance in numerous applications such as ellipsometry, mirage effect, and all-optical switching. Characterization of the various phases of microjet droplet formation yields important information for volume control, uniformity, velocity, and rate. The ringing of the meniscus and the associated relaxation time that occurs after droplet breakoff affect subsequent drop formation and is an indicator of the physical properties of the fluid. Using laser reflectometry, we present an analysis of the meniscus oscillations in an orifice of a piezoelectric microjet.

  6. Pulsed radar reflectometry of broadband fluctuations

    International Nuclear Information System (INIS)

    Gorkom, J.C. van; Pol, M.J. van de; Donne, A.J.H.; Schueller, F.C.

    2001-01-01

    The possibility to use pulsed radar reflectometry for turbulence studies is investigated. Good qualitative agreement is found between the power spectrum of variations in time-of-flight and the quadrature spectrum of a continuous-wave fluctuation reflectometer. Standard Fourier analysis is hampered considerably by missing samples in part of the experimental data. Using the Lomb-Scargle normalised periodogram for power spectrum estimation, reliable spectra are obtained even for signals in which as much as 60% of the samples is missing. (author)

  7. Neutron reflectometry: A probe for materials surfaces. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2006-01-01

    Research reactors play an important role in delivering the benefits of nuclear science and technology. The IAEA, through its project on the effective utilization of research reactors, has been providing technical support to Member States and promotes activities related to specific applications. Neutron beam research is one of the main components in materials science studies. Neutron reflectometry is extremely useful for characterizing thin films and layered structures, polymers, oxide coatings on metals and biological membranes. The neutron has been a major probe for investigating magnetic materials. Development of magnetic multilayers is important for diverse applications in sensors, memory devices, etc. The special nature of the interaction of the neutron with matter makes it an important tool to locate low z elements in the presence of high z elements, which is useful in biology and polymer science. The role of neutron reflectometry in research and development in materials science and technology was discussed in a consultants meeting held in 2003. Following this, a technical meeting was organized from 16 to 20 August 2004 in Vienna to discuss the current status of neutron reflectometry, including the instrumentation, data acquisition, data analysis and applications. Experts in the field of neutron reflectometry presented their contributions, after which there was a brainstorming session on various aspects of the technique and its applications. This publication is the outcome of deliberations during the meeting and the presentations by the participants. This publication will be of use to scientists planning to develop a neutron reflectometer at research reactors. It will also help disseminate knowledge and information to material scientists, biologists and chemists working towards characterizing and developing new materials

  8. Monitoring Landscape Scale Soil Water Content with Cosmic-Ray Neutron Sensors: Validation and Calibration

    International Nuclear Information System (INIS)

    Wahbi, Ammar; Avery, William A.; Dercon, Gerd; Heng, Lee; Weltin, Georg; Franz, Trenton E.; Strauss, Peter; Oismueller, Markus; Desilets, Darin

    2017-01-01

    Increasing populations growth combined with climate change are putting pressure on water resources and agricultural systems around the world. The need for effective water management strategies designed to maximize water use efficiency has made access to soil water content (SWC) information crucial to the global community. This work builds upon ongoing research that began in December 2013 in which a stationary Cosmic-Ray Neutron Sensor (CRNS) was used to monitor SWC within an agricultural system located in north central Austria. Past work at this study site at Petzenkirchen, Austria (100 km west of Vienna) has focused on the calibration and validation of the CRNS technology, and has shown the CRNS to reliably estimate SWC on a large scale (circle with radius of cca. 250 m) when compared to other methods of estimating SWC. This was determined via comparisons of insitu soil sampling, time domain reflectometry (TDR), and time domain transmissivity (TDT) of SWC with estimates of SWC determined from the CRNS. However, questions remain regarding the effective use of the CRNS technology.

  9. Phase-detected Brillouin optical correlation-domain reflectometry

    Science.gov (United States)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-05-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  10. Advancing Wetlands Mapping and Monitoring with GNSS Reflectometry

    Science.gov (United States)

    Zuffada, Cinzia; Chew, Clara; Nghiem, Son V.; Shah, Rashmi; Podest, Erika; Bloom, A. Anthony; Koning, Alexandra; Small, Eric; Schimel, David; Reager, J. T.; Mannucci, Anthony; Williamson, Walton; Cardellach, Estel

    2016-08-01

    Wetland dynamics is crucial to address changes in both atmospheric methane (CH4) and terrestrial water storage. Yet, both spatial distribution and temporal variability of wetlands remain highly unconstrained despite the existence of remote sensing products from past and present satellite sensors. An innovative approach to mapping wetlands is offered by the Global Navigation Satellite System Reflectometry (GNSS-R), which is a bistatic radar concept that takes advantage of the ever increasing number of GNSS transmitting satellites to yield many randomly distributed measurements with broad-area global coverage and rapid revisit time. Hence, this communication presents the science motivation for mapping of wetlands and monitoring of their dynamics, and shows the relevance of the GNSS-R technique in this context, relative to and in synergy with other existing measurement systems. Additionally, the communication discusses results of our data analysis on wetlands in the Amazon, specifically from the initial analysis of satellite data acquired by the TechDemoSat-1 mission launched in 2014. Finally, recommendations are provided for the design of a GNSS-R mission specifically to address wetlands science issues.

  11. High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals

    Science.gov (United States)

    Laloy, Eric; Huisman, Johan Alexander; Jacques, Diederik

    2014-11-01

    This study presents an novel Bayesian inversion scheme for high-dimensional undetermined TDR waveform inversion. The methodology quantifies uncertainty in the moisture content distribution, using a Gaussian Markov random field (GMRF) prior as regularization operator. A spatial resolution of 1 cm along a 70-cm long TDR probe is considered for the inferred moisture content. Numerical testing shows that the proposed inversion approach works very well in case of a perfect model and Gaussian measurement errors. Real-world application results are generally satisfying. For a series of TDR measurements made during imbibition and evaporation from a laboratory soil column, the average root-mean-square error (RMSE) between maximum a posteriori (MAP) moisture distribution and reference TDR measurements is 0.04 cm3 cm-3. This RMSE value reduces to less than 0.02 cm3 cm-3 for a field application in a podzol soil. The observed model-data discrepancies are primarily due to model inadequacy, such as our simplified modeling of the bulk soil electrical conductivity profile. Among the important issues that should be addressed in future work are the explicit inference of the soil electrical conductivity profile along with the other sampled variables, the modeling of the temperature-dependence of the coaxial cable properties and the definition of an appropriate statistical model of the residual errors.

  12. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Science.gov (United States)

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  13. The TDR: A Repository for Long Term Storage of Geophysical Data and Metadata

    Science.gov (United States)

    Wilson, A.; Baltzer, T.; Caron, J.

    2006-12-01

    For many years Unidata has provided easy, low cost data access to universities and research labs. Historically Unidata technology provided access to data in near real time. In recent years Unidata has additionally turned to providing middleware to serve longer term data and associated metadata via its THREDDS technology, the most recent offering being the THREDDS Data Server (TDS). The TDS provides middleware for metadata access and management, OPeNDAP data access, and integration with the Unidata Integrated Data Viewer (IDV), among other benefits. The TDS was designed to support rolling archives of data, that is, data that exist only for a relatively short, predefined time window. Now we are creating an addition to the TDS, called the THREDDS Data Repository (TDR), which allows users to store and retrieve data and other objects for an arbitrarily long time period. Data in the TDR can also be served by the TDS. The TDR performs important functions of locating storage for the data, moving the data to and from the repository, assigning unique identifiers, and generating metadata. The TDR framework supports pluggable components that allow tailoring an implementation for a particular application. The Linked Environments for Atmospheric Discovery (LEAD) project provides an excellent use case for the TDR. LEAD is a multi-institutional Large Information Technology Research project funded by the National Science Foundation (NSF). The goal of LEAD is to create a framework based on Grid and Web Services to support mesoscale meteorology research and education. This includes capabilities such as launching forecast models, mining data for meteorological phenomena, and dynamic workflows that are automatically reconfigurable in response to changing weather. LEAD presents unique challenges in managing and storing large data volumes from real-time observational systems as well as data that are dynamically created during the execution of adaptive workflows. For example, in order to

  14. Proceeding of the 5th international workshop on reflectometry

    International Nuclear Information System (INIS)

    Kawahata, Kazuo

    2001-05-01

    This is the proceedings of the 5th International Workshop on Reflectometry, which was held on 5-7 March, 2001, at the National Institute for Fusion Science. In this workshop, the latest experimental results in reflectometry (profile and fluctuations studies), new technological developments and a broad scope of the theory and simulation codes were presented. The 19 of the presented papers are indexed individually. (author)

  15. A scientometric evaluation of the Chagas disease implementation research programme of the PAHO and TDR.

    Directory of Open Access Journals (Sweden)

    Ana Laura Carbajal-de-la-Fuente

    2013-11-01

    Full Text Available The Special Programme for Research and Training in Tropical Diseases (TDR is an independent global programme of scientific collaboration cosponsored by the United Nations Children's Fund, the United Nations Development Program, the World Bank, and the World Health Organization. TDR's strategy is based on stewardship for research on infectious diseases of poverty, empowerment of endemic countries, research on neglected priority needs, and the promotion of scientific collaboration influencing global efforts to combat major tropical diseases. In 2001, in view of the achievements obtained in the reduction of transmission of Chagas disease through the Southern Cone Initiative and the improvement in Chagas disease control activities in some countries of the Andean and the Central American Initiatives, TDR transferred the Chagas Disease Implementation Research Programme (CIRP to the Communicable Diseases Unit of the Pan American Health Organization (CD/PAHO. This paper presents a scientometric evaluation of the 73 projects from 18 Latin American and European countries that were granted by CIRP/PAHO/TDR between 1997 and 2007. We analyzed all final reports of the funded projects and scientific publications, technical reports, and human resource training activities derived from them. Results about the number of projects funded, countries and institutions involved, gender analysis, number of published papers in indexed scientific journals, main topics funded, patents inscribed, and triatomine species studied are presented and discussed. The results indicate that CIRP/PAHO/TDR initiative has contributed significantly, over the 1997-2007 period, to Chagas disease knowledge as well as to the individual and institutional-building capacity.

  16. Feasibility of using cone penetrometer truck (CPT) to install time domain reflectometry (TDR) and fiber optic slope failure detectors in pavement structures.

    Science.gov (United States)

    2011-02-01

    A new method of cable installation using a heavy-duty Cone Penetration Test : (CPT) truck was developed and practiced successfully in this study. The coaxial and fiber : optic cables were pushed along with the cone rods by the hydraulic system integr...

  17. Measuring the layer-average volumetric water content in the uppermost 5 cm of soil using printed circuit board TDR probes

    International Nuclear Information System (INIS)

    Wang, W.; Kobayashi, T.; Chikushi, J.

    2000-01-01

    Newly designed printed circuit board TDR probes (PCBPs) were made, and they were calibrated by indoor experiment. A regression equation for estimating the volumetric water content from the dielectric constant measured with the PCBP was determined, which is almost the same as the well-known Topp's equation when the soil is rather wet while the difference becomes larger as the soil dries. The PCBP was designed to measure the average water content over a soil layer 5 cm thick because the thickness of soil layer involved in measuring water content by microwave remote sensing is several centimeters. A comparison experiment of measurements with PCBPs and those by microwave remote sensing was conducted in an arid area in the northwest of China. The results of this experiment show that the newly designed TDR probe is promising as the sensor to get ground truth of the surface wetness. This paper describes only the calibration of probes and the observations taken using them

  18. Dielectric dispersion and thermodynamic behavior of stearic acid binary mixtures with alcohol as co-solvent using time domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Maria Sylvester

    2017-08-01

    Full Text Available Dielectric permittivity and relaxation dynamics of binary and ternary mixture of stearic acid on various concentration and their thermodynamic effects are studied. The static dielectric constant (ε0, dielectric permittivity (ε′ and dielectric loss (ε′′ are found by bilinear calibration. The relaxation time (τ, dielectric strength (Δε and the excess permittivity (εE are found. The thermodynamic parameters such as enthalpy (ΔH, entropy (ΔS and Gibb’s free energy (ΔG are evolved. The significant changes in dielectric parameters are due to the intramolecular and intermolecular interactions in response to the applied frequency. The permittivity spectra of stearic acid–alcohol in the frequency range of 10MHz to 30GHz have been measured using picoseconds Time Domain Reflectometry (TDR. The dielectric parameters (ε0, ε′, ε′′ are found by bilinear calibration method. Influence of temperature in intermolecular interaction and the relaxation process are also studied. The FT-IR spectral analysis reveals that the conformation of functional groups and formation for hydrogen bonding are present in both binary and ternary mixtures of stearic acid.

  19. GNSS-Reflectometry based water level monitoring

    Science.gov (United States)

    Beckheinrich, Jamila; Schön, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this

  20. Use of a combined penetrometer-TDR moisture probe for soil compaction studies

    International Nuclear Information System (INIS)

    Pedro Vaz, C.M.

    2004-01-01

    measurement technique, we have developed a combined cone penetrometer-TDR moisture probe by wrapping two TDR wires around the penetrometer rod (combined rod TDR) as a double helix, so that both soil water content and penetration resistance can be measured simultaneously and at approximately the same location within the soil profile. The main advantage of the coiled design is that relative long travel times can be obtained, allowing accurate water content measurements for small-sized TDR probes. The objective of this lecture is to present the combined penetrometer-TDR probe as a new tool to study soil compaction. The presentation will cover the following topics: Theory of the dynamic cone penetrometer; Laboratory calibration of a coiled TDR moisture probe and application of the mixing model; Field calibration and use of the combined penetrometer-coiled TDR moisture probe; Penetration resistance, bulk density, water content and potential relationships; Practical applications of the combined penetrometer-coiled TDR moisture probe

  1. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    Science.gov (United States)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  2. Research proposal on : amplitude modulated reflectometry system for JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, T.; Estrada, T.; Luna, E. de la.

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been presented in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps' in the phase signal, which are a big problem when the phase values are much larger than 2 pi. The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad-band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for ionospheric studies and recently also proposed for fusion plasma. the main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts (approx 2 pi). (author)

  3. A survey of reflectometry techniques with applications to TFTR

    International Nuclear Information System (INIS)

    Collazo, I.; Stacey, W.M.; Wilgen, J.; Hanson, G.; Bigelow, T.; Thomas, C.E.; Bretz, N.

    1993-12-01

    This report presents a review of reflectometry with particular attention to eXtraordinary mode (X-mode) reflectometry using the novel technique of dual frequency differential phase. The advantage of using an X-mode wave is that it can probe the edge of the plasma with much higher resolution and using a much smaller frequency range than with the Ordinary mode (O-Mode). The general problem with previous full phase reflectometry techniques is that of keeping track of the phase (on the order of 1000 fringes) as the frequency is swept over the band. The dual frequency phase difference technique has the advantage that since it is keeping track of the phase difference of two frequencies with a constant frequency separation, the fringe counting is on the order of only 3 to 5 fringes. This fringe count, combined with the high resolution of the X-mode wave and the small plasma access requirements of reflectometry, make X-mode reflectometry a very attractive diagnostic for today's experiments and future fusion devices

  4. A New Soil Water and Bulk Electrical Conductivity Sensor Technology for Irrigation and Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Evett, Steve; Schwartz, Robert; Casanova, Joaquin [Soil and Water Management Research Unit, Conservation and Production Research Laboratory, USDA-ARS, Bushland, Texas (United States); Anderson, Scott [Acclima, Inc., 2260 East Commercial Street, Meridian, Idaho 83642 (United States)

    2014-01-15

    Existing soil water content sensing systems based on electromagnetic (EM) properties of soils often over estimate and sometimes underestimate water content in saline and salt-affected soils due to severe interference from the soil bulk electrical conductivity (BEC), which varies strongly with temperature and which can vary greatly throughout an irrigation season and across a field. Many soil water sensors, especially those based on capacitance measurements, have been shown to be unsuitable in salt-affected or clayey soils (Evett et al., 2012a). The ability to measure both soil water content and BEC can be helpful for the management of irrigation and leaching regimes. Neutron probe is capable of accurately sensing water content in salt-affected soils but has the disadvantages of being: (1) labour-intensive, (2) not able to be left unattended in the field, (3) subject to onerous regulations, and (4) not able to sense salinity. The Waveguide-On-Access-Tube (WOAT) system based on time domain reflectometry (TDR) principles, recently developed by Evett et al. (2012) is a new promising technology. This system can be installed at below 3 m in 20-cm sensor segments to cover as much of the crop root zone as needed for irrigation management. It can also be installed to measure the complete soil profile from the surface to below the root zone, allowing the measurement of crop water use and water use efficiency - knowledge of which is key for irrigation and farm management, and for the development of new drought tolerant and water efficient crop varieties and hybrids, as well as watershed and environmental management.

  5. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Costley, A; Prentice, R [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R [Toulouse-3 Univ., 31 (France). Centre d` Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  6. Doppler reflectometry for the investigation of poloidally propagating density perturbations

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Kurzan, B.; Holzhauer, E.

    1999-01-01

    A modification of microwave reflectometry is discussed where the direction of observation is tilted with respect to the normal onto the reflecting surface. The experiment is similar to scattering where a finite resolution in k-space exists but keeps the radial localization of reflectometry. The observed poloidal wavenumber is chosen by Bragg's condition via the tilt angle and the resolution in k-space is determined by the antenna pattern. From the Doppler shift of the reflected wave the poloidal propagation velocity of density perturbations is obtained. The diagnostic capabilities of Doppler reflectometry are investigated using full wave code calculations. The method offers the possibility to observe changes in the poloidal propagation velocity of density perturbations and their radial shear with a temporal resolution of about 10μs. (authors)

  7. III Workshop on Microwave Reflectometry for Fusion Plasma Diagnostics

    International Nuclear Information System (INIS)

    Sanchez, J.; Luna, E. de la.

    1997-11-01

    Microwave reflectometry is based on the analysis of the properties (phase delay, time delay, amplitude) of a millimeter wave beam which is launched and reflected at the plasma critical layer. Operation with a fixed frequency beam can be used to analyze the electron density fluctuations in the reflecting region. If several frequencies are launched, information about the density profile can be obtained. In these proceedings, a collection of papers is presented on the issues of density fluctuation studies and profile analysis as well as a special contribution about the development of reflectometry for the ITER project. (Author) 145 refs

  8. III Workshop on Microwave Reflectometry for Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J; Luna, E de la

    1997-11-01

    Microwave reflectometry is based on the analysis of the properties (phase delay, time delay, amplitude) of a millimeter wave beam which is launched and reflected at the plasma critical layer. Operation with a fixed frequency beam can be used to analyze the electron density fluctuations in the reflecting region. If several frequencies are launched, information about the density profile can be obtained. In these proceedings, a collection of papers is presented on the issues of density fluctuation studies and profile analysis as well as a special contribution about the development of reflectometry for the ITER project. (Author) 145 refs.

  9. Recent results of reflectometry on ASDEX-upgrade

    International Nuclear Information System (INIS)

    Manso, M.; Serra, F.; Numes, I.; Cupido, L.; Grossmann, V.; Meneses, L.; Santos, J.; Silva, A.; Silva, F.; Varela, P.; Vergamota, S.; Maraschek, M.

    1999-01-01

    Reflectometry is well known to be very sensitive to plasma density fluctuations. The study of plasma response in broadband frequency operation is concentrated on the obtention of the main peak and many techniques have been developed to filter the unwanted components. In comparison little work has been done to understand the remaining part of the signal. This paper presents some recent results about plasma fluctuations obtained with FM-reflectometry on ASDEX-Upgrade. They demonstrate the rich content information of both the fixed frequency and broadband signals and suggest that they can be used in a complementary way. (A.L.B.)

  10. Desempenho de modelos de calibração de guias de onda acopladas a TDR e a multiplexadores em três tipos de solos Performance of calibration models for TDR and multiplexer - connected waveguides in three soil types

    Directory of Open Access Journals (Sweden)

    Eugenio Ferreira Coelho

    2006-02-01

    Full Text Available O trabalho teve como objetivo avaliar modelos de calibração para dois tipos de guias de onda de TDR, referentes a dois equipamentos (Trase System e TDR 100, acopladas diretamente ao analisador de umidade ou a multiplexadores. Amostras de três tipos de solo foram acondicionadas em segmentos de tubos de PVC e saturadas. Dois tipos de guias de onda de três hastes, com capacitor e com resistor foram inseridas dentro de cada segmento de tubo com solo e conectadas a dois equipamentos de TDR, diretamente no testador de cabos ou via multiplexadores. Dados de umidade obtidos por gravimetria e da constante dielétrica foram tomados em cada coluna durante a secagem do solo da saturação até umidades próximas do limite inferior de disponibilidade de água por meio de leituras com as guias de onda conectadas ao testador de cabos e conectadas ao multiplexador. Um modelo polinomial cúbico foi ajustado aos dados da constante dielétrica do solo (épsilon e da correspondente umidade (teta e cinco modelos de determinação de q em função de e foram testados quanto ao desempenho. Os resultados mostraram que não houve diferença significativa na calibração das guias de onda com capacitor para uso com a TDR Trase System, considerando a conexão das guias ao analisador de umidade ou a multiplexadores. No caso da TDR 100, as guias de onda com resistor devem ser calibradas conforme o seu uso. O modelo cúbico foi o de melhor desempenho seguido pelo modelo de Roth que estimou, com boa exatidão, os valores da constante dielétrica e da umidade com a mais próximo de 0,5 para as guias de onda com capacitor que com as guias com resistor.The study aimed at evaluating of calibration models for two kinds of TDR waveguides used with Trase System and TDR 100 equipments linked to the cable tester or the multiplexer. Disturbed samples of three soils were packed in PVC columns and, after soil saturation, two TDR waveguides of three rods with capacitor and with

  11. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  12. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  13. Analysis of human skin tissue by millimeter-wave reflectometry

    NARCIS (Netherlands)

    Smulders, P.F.M.

    2013-01-01

    Background/pupose: Millimeter-wave reflectometry is a potentially interesting technique to analyze the human skin in vivo in order to determine the water content locally in the skin. Purpose of this work is to investigate the possibility of skin-tissue differentiation. In addition, it addresses the

  14. Poloidal rotation velocity measurement in toroidal plasmas via microwave reflectometry

    International Nuclear Information System (INIS)

    Pavlichenko, O.S.; Skibenko, A.I.; Fomin, I.P.; Pinos, I.B.; Ocheretenko, V.L.; Berezhniy, V.L.

    2001-01-01

    Results of experiment modeling backscattering of microwaves from rotating plasma layer perturbed by fluctuations are presented. It was shown that auto- and crosscorrelation of reflected power have a periodicity equal to rotation period. Such periodicity was observed by microwave reflectometry in experiments on RF plasma production on U-3M torsatron and was used for measurement of plasma poloidal rotation velocity. (author)

  15. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    Science.gov (United States)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  16. TDR measurements looking for complex dielectric permittivity and complex magnetic permeability in lossy materials

    Science.gov (United States)

    Persico, Raffaele

    2017-04-01

    TDR probes can be exploited for the measure of the electromagnetic characteristics of the soil, or of any penetrable material. They are commonly exploited as instruments for the measure of the propagation velocity of the electromagnetic waves in the probed medium [1], in its turn useful for the proper focusing of GPR data [2-5]. However, a more refined hardware and processing can allow to extrapolate from these probes also the discrimination between dielectric and magnetic characteristics of the material under test, which can be relevant for a better interpretation of the buried scenario or in order to infer physical-chemical characteristics of the material at hand. This requires a TDR probe that can work in frequency domain, and in particular that allows to retrieve the reflection coefficient at the air soil interface. It has been already shown [6] that in lossless cases this can be promising. In the present contribution, it will be shown at the EGU conference that it is possible to look for both the relative complex permittivity and the relative magnetic permeability of the probed material, on condition that the datum has an acceptable SNR and that some diversity of information is guaranteed, either by multifrequency data or by a TDR that can prolong its arms in the soil. References [1] F. Soldovieri, G. Prisco, R. Persico, Application of Microwave Tomography in Hydrogeophysics: some examples, Vadose Zone Journal, vol. 7, n. 1 pp. 160-170, Feb. 2008. [2] I. Catapano, L. Crocco, R. Persico, M. Pieraccini, F. Soldovieri, "Linear and Nonlinear Microwave Tomography Approaches for Subsurface Prospecting: Validation on Real Data", IEEE Trans. on Antennas and Wireless Propagation Letters, vol. 5, pp. 49-53, 2006. [3] G. Leucci, N. Masini, R. Persico, F. Soldovieri." GPR and sonic tomography for structural restoration : the case of the Cathedral of Tricarico", Journal of Geophysics and Engineering, vol. 8, pp. S76-S92, Aug. 2011. [4] S. Piscitelli, E. Rizzo, F. Cristallo

  17. Dielectric properties of clay-rock and their influence on water content measurement with TDR probes

    International Nuclear Information System (INIS)

    Bore, T.; Coelho, D.; Robinet, J.C.; Delepine-Lesoille, S.; Placko, D.; Gatabin, C.; Sabouroux, P.; Six, G.; Taillade, F.

    2012-01-01

    Document available in extended abstract form only. Clays constitute major components for radioactive waste repositories managed by Andra. Water content monitoring is one of the indicators chosen to evaluate the health of the structure. In this perspective, several TDR probes have been installed in various structures, made of three types of clay materials: the bentonite, the clay-rock (Callovo-Oxfordian mud-stone) and the compacted crushed clay-rock. . The technique consists of a time-of-flight measurement of an electric pulse along the TDR probes. To convert flight time propagation delay into water content, calibrations are required. This conversion is however neither accurate, nor generalizable for other mixtures. For precise understanding and modeling of the sensing chain, a better knowledge the complex permittivity of clay materials is necessary. Chosen TDR sensing lines make use of a step electric pulse (such as Campbell TDR100). Considering the rise time of this system, the frequency content of the measured TDR wave form extends from about 20 kHz to roughly 1.5 GHz. Material dielectric must thus be characterized over a broad band frequency. The determination of the electromagnetic properties using non resonant method is fundamentally deduced from their impedance and the wave velocities in the materials. This kind of technique relies on a device able to direct the electromagnetic energy towards a material and to collect the reflected and transmitted parts. In a first step, we designed a transmission line to provide electromagnetic characterizations of clay material. The clay material under test is inserted into a brass coaxial cell specifically designed for our purposes. Two conical transition units surround the specimen holder. The electromagnetic properties of the sample are based on the reflection from the material and the transmission through the material measured by a vector network analyser (VNA). The determination of the electromagnetic properties from

  18. Combined distributed Raman and Bragg fiber temperature sensing using incoherent optical frequency domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Koeppel

    2018-02-01

    Full Text Available Optical temperature sensors offer unique features which make them indispensable for key industries such as the energy sector. However, commercially available systems are usually designed to perform either distributed or distinct hot spot temperature measurements since they are restricted to one measurement principle. We have combined two concepts, fiber Bragg grating (FBG temperature sensors and Raman-based distributed temperature sensing (DTS, to overcome these limitations. Using a technique called incoherent optical frequency domain reflectometry (IOFDR, it is possible to cascade several FBGs with the same Bragg wavelength in one fiber and simultaneously perform truly distributed Raman temperature measurements. In our lab we have achieved a standard deviation of 2.5 K or better at a spatial resolution in the order of 1 m with the Raman DTS. We have also carried out a field test in a high-voltage environment with strong magnetic fields where we performed simultaneous Raman and FBG temperature measurements using a single sensor fiber only.

  19. Interface alloying in multilayer thin films using polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Basu, Saibal

    2013-01-01

    Polarized Neutron Reflectometry (PNR) is an excellent tool to probe magnetic depth profile in multilayer thin film samples. In case of multilayer films with alternating magnetic and non-magnetic layers, PNR can provide magnetic depth profile at the interfaces with better than nanometer resolution. Using PNR and Xray Reflectometry (XRR) together one can obtain chemical composition and magnetic structure, viz. magnetic moment density at interfaces in multilayer films. We have used these two techniques to obtain kinetics of alloy formation at the interfaces and the magnetic nature of the alloy at the interfaces in several important thin films with magnetic/non-magnetic bilayers. These include Ni/Ti, Ni/Al and Si/Ni pairs. Results obtained from these studies will be presented in this talk. (author)

  20. Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    DEFF Research Database (Denmark)

    MacLeod, S. J.; See, A. M.; Keane, Z. K.

    2014-01-01

    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However......, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET....

  1. Electron density profile measurements by microwave reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Paume, M.; Chareau, J.M.

    1995-01-01

    A proposal is presented developing reflectometry diagnostic for electron density profile measurements as routine diagnostic without manual intervention as achieved at JET. Since density fluctuations seriously perturb the reflected signal and the measurement of the group delay, a method is described to overcome the irrelevant results with the help of an adaptive filtering technique. Accurate profiles are estimated for about 70% of the shots. (author) 3 refs.; 6 figs

  2. Analytical theory of Doppler reflectometry in slab plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Gusakov, E.Z.; Surkov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg (Russian Federation)

    2004-07-01

    Doppler reflectometry is considered in slab plasma model in the frameworks of analytical theory. The diagnostics locality is analyzed for both regimes: linear and nonlinear in turbulence amplitude. The toroidal antenna focusing of probing beam to the cut-off is proposed and discussed as a method to increase diagnostics spatial resolution. It is shown that even in the case of nonlinear regime of multiple scattering, the diagnostics can be used for an estimation (with certain accuracy) of plasma poloidal rotation profile. (authors)

  3. Carbon Fiber TOW Angle Determination Using Microwave Reflectometry

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.

  4. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    Science.gov (United States)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  5. Fibre-tree network for water-surface ranging using an optical time-domain reflectometry technique

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yamabayashi

    2014-10-01

    Full Text Available To monitor water level at long distance, a fibre-based time-domain reflectometry network is proposed. A collimator at each fibre end of a tree-type network retrieves 1.55 μm wavelength pulses that are reflected back from remote surfaces. Since this enables a power-supply-free sensor network with non-metal media, this system is expected to be less susceptible to lightning strikes and power cuts than conventional systems that use electrically powered sensors and metal cables. In the present Letter, a successful simultaneous monitoring experiment of two water levels in the laboratory, as well as a trial for detecting a disturbed surface by beam-expanding is reported.

  6. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers.

    Science.gov (United States)

    Parent, Francois; Loranger, Sebastien; Mandal, Koushik Kanti; Iezzi, Victor Lambin; Lapointe, Jerome; Boisvert, Jean-Sébastien; Baiad, Mohamed Diaa; Kadoury, Samuel; Kashyap, Raman

    2017-04-01

    We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

  7. Storing, Browsing, Querying, and Sharing Data: the THREDDS Data Repository (TDR)

    Science.gov (United States)

    Wilson, A.; Lindholm, D.; Baltzer, T.

    2005-12-01

    The Unidata Internet Data Distribution (IDD) network delivers gigabytes of data per day in near real time to sites across the U.S. and beyond. The THREDDS Data Server (TDS) supports public browsing of metadata and data access via OPeNDAP enabled URLs for datasets such as these. With such large quantities of data, sites generally employ a simple data management policy, keeping the data for a relatively short term on the order of hours to perhaps a week or two. In order to save interesting data in longer term storage and make it available for sharing, a user must move the data herself. In this case the user is responsible for determining where space is available, executing the data movement, generating any desired metadata, and setting access control to enable sharing. This task sequence is generally based on execution of a sequence of low level operating system specific commands with significant user involvement. The LEAD (Linked Environments for Atmospheric Discovery) project is building a cyberinfrastructure to support research and education in mesoscale meteorology. LEAD orchestrations require large, robust, and reliable storage with speedy access to stage data and store both intermediate and final results. These requirements suggest storage solutions that involve distributed storage, replication, and interfacing to archival storage systems such as mass storage systems and tape or removable disks. LEAD requirements also include metadata generation and access in order to support querying. In support of both THREDDS and LEAD requirements, Unidata is designing and prototyping the THREDDS Data Repository (TDR), a framework for a modular data repository to support distributed data storage and retrieval using a variety of back end storage media and interchangeable software components. The TDR interface will provide high level abstractions for long term storage, controlled, fast and reliable access, and data movement capabilities via a variety of technologies such as

  8. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  9. Downscaling Satellite Data for Predicting Catchment-scale Root Zone Soil Moisture with Ground-based Sensors and an Ensemble Kalman Filter

    Science.gov (United States)

    Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.

    2015-12-01

    Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p < 0.05) correlated with TDR measurements [r = 0.47-0.68]. The predictive skill of this data assimilation system is similar to the Penn State Integrated Hydrologic Modeling (PIHM) system. Uncertainty estimates are significantly (p < 0.05) correlated to cross validation error during wet and dry conditions, but more so in dry summer seasons. Developing an

  10. Sensor placement for soil water monitoring in lemon irrigated by micro sprinkler Posicionamento de sensores para monitoramento de água no solo em limoeiro irrigado por microaspersão

    Directory of Open Access Journals (Sweden)

    Eugênio F. Coelho

    2007-02-01

    Full Text Available This research had as its objective the investigation of an alternative strategy for soil sensor placement to be used in citrus orchards irrigated by micro sprinkler. An experiment was carried out in a Tahiti lemon orchard under three irrigation intervals of 1, 2 and 3 days. Soil water potential, soil water content distribution and root water extraction were monitored by a time-domain-reflectometry (TDR in several positions in soil profiles radial to the trees. Root length and root length density were determined from digital root images at the same positions in the soil profiles where water content was monitored. Results showed the importance of considering root water extraction in the definition of soil water sensor placement. The profile regions for soil water sensor placement should correspond to the intersection of the region containing at least 80% of total root length and the region of at least 80% of total water extraction. In case of tensiometers, the region of soil water potential above -80 kPa should be included in the intersection.Este trabalho teve como objetivo investigar uma estratégia alternativa de posicionamento de sensores de água no solo, para uso em pomares de citros irrigados por microaspersão. Um experimento foi conduzido em um pomar de limão Tahiti, sob três intervalos de irrigação: 1, 2 e 3 dias. A distribuição de umidade, potenciais de água e extração de água do solo foram monitorados por um analisador de umidade de reflectometria no domínio do tempo (TDR em várias posições, em perfis do solo radiais às plantas. Comprimento e densidade de raízes foram determinados a partir de imagens digitais nas mesmas posições onde a umidade fora monitorada. Os resultados mostraram a importância de se considerar a extração de água pelas raízes na definição da posição dos sensores de água do solo. As regiões do perfil para posicionamento de sensores de água do solo devem corresponder à interseção da

  11. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)

  12. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal

  13. Pinpointing chiral structures with front-back polarized neutron reflectometry.

    Science.gov (United States)

    O'Donovan, K V; Borchers, J A; Majkrzak, C F; Hellwig, O; Fullerton, E E

    2002-02-11

    A new development in spin-polarized neutron reflectometry enables us to more fully characterize the nucleation and growth of buried domain walls in layered magnetic materials. We applied this technique to a thin-film exchange-spring magnet. After first measuring the reflectivity with the neutrons striking the front, we measure with the neutrons striking the back. Simultaneous fits are sensitive to the presence of spiral spin structures. The technique reveals previously unresolved features of field-dependent domain walls in exchange-spring systems and has sufficient generality to apply to a variety of magnetic systems.

  14. Towards a 3-D magnetometry by neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Fermon, C. [CEA/Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules (DRECAM), 91 - Gif-sur-Yvette (France); Gilles, B. [Ecole Nationale Superieure d' Electrochimie et d' Electrometallurgie, 38 - Grenoble (France). Lab. de Thermodynamique et Physico-Chimie Metallurgiques; Marty, A. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee (DRFMC), 38 (France); Ott, F.; Menelle, A. [Laboratoire Leon Brillouin (LLB) - CEA/Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-01

    Polarised Neutron reflectometry with spin analysis allows one to probe the in-depth magnetic profiles of thin films down to about 100 nm. Analysis of specular reflections gives access to the in-plane vectorial absolute magnetic moment. Off-specular reflectometry gives information about lateral contrasts with typical lengths ranging from 5 {mu}m to 100 {mu}m. Furthermore, surface diffraction at grazing angle gives access to transverse dimensions between 10 nm and 300 nm with a resolution in that direction of several nm. The combination of these 3 techniques applied to thin magnetic objects like thin films, arrays of lines or arrays of dots, leads to 3-D patterns in the reciprocal space. The method is extremely sensitive while giving the average on a rather large surface. Such a technique is therefore not applicable for the study of a single magnetic dot, but it generates unique results in several cases including patterns of domain walls in thin films with perpendicular anisotropy, arrays of magnetic dots, patterned fines in magnetic thin films. (authors)

  15. Evaluation of the imaging properties of Microwave Imaging Reflectometry

    International Nuclear Information System (INIS)

    Hong, I; Lee, W; Leem, J; Nam, Y; Kim, M; Yun, G S; Park, H K; Domier, C W; Jr, N C Luhmann

    2012-01-01

    Microwave Imaging Reflectometry (MIR) has been developed for unambiguous measurement of electron density fluctuations in fusion plasmas. The loss of phase information limiting the use of conventional reflectometry can be minimized by a large aperture imaging optics and an array of detectors in the MIR embodiment. The evaluation of the optical system is critical for precise reconstruction of the fluctuations. The optical systems of the prototype TEXTOR MIR [2] and newly-designed KSTAR MIR [5] systems have been tested with a corrugated target simulating density fluctuations at the cut-off surface. The reconstructed phase from the MIR system has been compared to the directly measured phase of corrugations taking into account the rotational speed of the target. The effects of optical aberrations and interference between lenses on the phase reconstruction have been investigated by the 2D amplitude measurement of the reflected waves and the diffraction-based optical simulations. (CODE V) A preliminary design of the KSTAR MIR optics has been suggested which can minimize the aberration and interference effects.

  16. Differential CLE peptide perception by plant receptors implicated from structural and functional analyses of TDIF-TDR interactions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijie; Chakraborty, Sayan; Xu, Guozhou; Kobe, Bostjan

    2017-04-06

    Tracheary Element Differentiation Inhibitory Factor (TDIF) belongs to the family of post-translationally modified CLE (CLAVATA3/embryo surrounding region (ESR)-related) peptide hormones that control root growth and define the delicate balance between stem cell proliferation and differentiation in SAM (shoot apical meristem) or RAM (root apical meristem). In Arabidopsis, Tracheary Element Differentiation Inhibitory Factor Receptor (TDR) and its ligand TDIF signaling pathway is involved in the regulation of procambial cell proliferation and inhibiting its differentiation into xylem cells. Here we present the crystal structures of the extracellular domains (ECD) of TDR alone and in complex with its ligand TDIF resolved at 2.65 Åand 2.75 Å respectively. These structures provide insights about the ligand perception and specific interactions between the CLE peptides and their cognate receptors. Our in vitro biochemical studies indicate that the interactions between the ligands and the receptors at the C-terminal anchoring site provide conserved binding. While the binding interactions occurring at the N-terminal anchoring site dictate differential binding specificities between different ligands and receptors. Our studies will open different unknown avenues of TDR-TDIF signaling pathways that will enhance our knowledge in this field highlighting the receptor ligand interaction, receptor activation, signaling network, modes of action and will serve as a structure function relationship model between the ligand and the receptor for various similar leucine-rich repeat receptor-like kinases (LRR-RLKs).

  17. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    Science.gov (United States)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  18. Report on neutron reflectometry for the Australian Replacement Reactor

    International Nuclear Information System (INIS)

    James, M.

    2001-01-01

    There is a clear need for at least one neutron reflectometer at the Australian Replacement Research Reactor when it commences operation in 2005. The participants at the reflectometry workshop have identified that the neutron reflectometer to be built at the Australian Replacement Research Reactor must be capable of the study of: 1. Specular scattering from air/solid, solid/liquid and in particular 'free liquid' samples; and 2. Off-specular' scattering from the above sample types. 3. Kinetics phenomena on a minute or slower time scale; 4. A range of samples of differing thicknesses, ranging from ultra-thin films to thousand angstrom thick films. In order to achieve this the reflectometer should have the capacity to vary its resolution. Interest was also expressed at the ability to conduct glancing-angle and wide-angle scattering studies for the investigation of short length scale, in-plane structures. There was little interest expressed by the workshop participants for polarised neutron reflectometry. This report contains a scientific case for a neutron reflectometer to be built at the Australian Replacement Research Reactor on a cold neutron guide, which is based on the areas of scientific research expressed by the workshop participants. In addition, trends in neutron reflectometry research conducted at major overseas neutron facilities are noted. The new neutron Reflectometer should: 1. Be based on the Time-of-Flight method; 2. Have a vertical scattering plane (i.e. operate for horizontal samples); 3. Be located on the end of a cold neutron guide, or be built off the guide axis using a bender, 4. Have a position sensitive area detector, 5. Be similar in spirit to the new D17 reflectometer at the ILL. Basic aspects of a reflectometer design are discussed which meet the above-stated scientific criteria and include a preliminary list of instrument specifications, capabilities and ancillary equipment requested by the workshop participants. A preliminary instrument

  19. Simulation of Optical and Synthetic Imaging using Microwave Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    G.J. Kramer; R. Nazikian; E. Valeo

    2004-01-16

    Two-dimensional full-wave time-dependent simulations in full plasma geometry are presented which show that conventional reflectometry (without a lens) can be used to synthetically image density fluctuations in fusion plasmas under conditions where the parallel correlation length greatly exceeds the poloidal correlation length of the turbulence. The advantage of synthetic imaging is that the image can be produced without the need for a large lens of high optical quality, and each frequency that is launched can be independently imaged. A particularly simple arrangement, consisting of a single receiver located at the midpoint of a microwave beam propagating along the plasma midplane is shown to suffice for imaging purposes. However, as the ratio of the parallel to poloidal correlation length decreases, a poloidal array of receivers needs to be used to synthesize the image with high accuracy. Simulations using DIII-D relevant parameters show the similarity of synthetic and optical imaging in present-day experiments.

  20. Simulation of Optical and Synthetic Imaging using Microwave Reflectometry

    International Nuclear Information System (INIS)

    Kramer, G.J.; Nazikian, R.; Valeo, E.

    2004-01-01

    Two-dimensional full-wave time-dependent simulations in full plasma geometry are presented which show that conventional reflectometry (without a lens) can be used to synthetically image density fluctuations in fusion plasmas under conditions where the parallel correlation length greatly exceeds the poloidal correlation length of the turbulence. The advantage of synthetic imaging is that the image can be produced without the need for a large lens of high optical quality, and each frequency that is launched can be independently imaged. A particularly simple arrangement, consisting of a single receiver located at the midpoint of a microwave beam propagating along the plasma midplane is shown to suffice for imaging purposes. However, as the ratio of the parallel to poloidal correlation length decreases, a poloidal array of receivers needs to be used to synthesize the image with high accuracy. Simulations using DIII-D relevant parameters show the similarity of synthetic and optical imaging in present-day experiments

  1. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  2. Terahertz reflectometry imaging for low and high grade gliomas

    Science.gov (United States)

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-01-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes. PMID:27782153

  3. Neutron reflectometry as a tool to study magnetism

    International Nuclear Information System (INIS)

    Felcher, G. P.

    1999-01-01

    Polarized-neutron specular reflectometry (PNR) was developed in the 1980's as a means of measuring magnetic depth profiles in flat films. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify a variety of magnetic phenomena. It has been used to measure the absolute magnetization of films of thickness not exceeding a few atomic planes, the penetration of magnetic fields in micron-thick superconductors, and the detailed magnetic coupling across non-magnetic spacers in multilayers and superlattices. Although PNR is considered a probe of depth dependent magnetic structure, laterally averaged in the plane of the film, the development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth-sensitivity of specular reflectivity, off-specular reflectivity may be brought to resolve in-plane structures over nanometer to micron length scales

  4. Urethral pressure reflectometry in women with pelvic organ prolapse

    DEFF Research Database (Denmark)

    Khayyami, Yasmine; Lose, Gunnar; Klarskov, Niels

    2017-01-01

    at an abdominal pressure of 50 cmH2O (PO-Abd 50). UPR can help identify women with POP at risk of postoperative de novo SUI. The aim of this study was to investigate the reproducibility of UPR in women with POP. METHODS: Women with anterior or posterior vaginal wall prolapse were recruited for this prospective......INTRODUCTION AND HYPOTHESIS: The mechanism of continence in women with pelvic organ prolapse (POP) before and after surgery remains unknown. Urethral pressure reflectometry (UPR) separates women with stress urinary incontinence (SUI) from continent women by measuring urethral opening pressure...... studies to help reveal urodynamic features predictive of postoperative de novo SUI in women with POP....

  5. Utilizing GNSS Reflectometry to Assess Surface Inundation Dynamics in Tropical Wetlands

    Science.gov (United States)

    Jensen, K.; McDonald, K. C.; Podest, E.; Chew, C. C.

    2017-12-01

    Tropical wetlands play a significant role in global atmospheric methane and terrestrial water storage. Despite the growing number of remote sensing products from satellite sensors, both spatial distribution and temporal variability of wetlands remain highly uncertain. An emerging innovative approach to mapping wetlands is offered by GNSS reflectometry (GNSS-R), a bistatic radar concept that takes advantage of GNSS transmitting satellites to yield observations with global coverage and rapid revisit time. This technology offers the potential to capture dynamic inundation changes in wetlands at higher temporal fidelity and sensitivity under the canopy than presently possible. We present an integrative analysis of radiometric modeling, ground measurements, and several microwave remote sensing datasets traditionally used for wetland observations. From a theoretical standpoint, GNSS-R sensitivities for vegetation and wetlands are investigated with a bistatic radar model in order to understand the interactions of the signal with various land surface components. GNSS reflections from the TechDemoSat-1 (TDS-1), Soil Moisture Active Passive (SMAP), and Cyclone GNSS (CYGNSS) missions are tested experimentally with contemporaneous (1) field measurements collected from the Pacaya Samiria National Reserve in the Peruvian Amazon, (2) imaging radar from Sentinel-1 and PALSAR-2 observed over a variety of tropical wetland systems, and (3) pan-tropical coarse-resolution (25km) microwave datasets (Surface Water Microwave Product Series). We find that GNSS-R data provide the potential to extend capabilities of current remote sensing techniques to characterize surface inundation extent, and we explore how to maximize synergism between different satellite sensors to produce an enhanced wetland monitoring product.

  6. Asymmetric diffusion model for oblique-incidence reflectometry

    Institute of Scientific and Technical Information of China (English)

    Yaqin Chen; Liji Cao; Liqun Sun

    2011-01-01

    A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectom-etry. By fitting to this asymmetric diffusion model, the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp') away from the incident point; particularly, μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy. The method is verified by Monte Carlo simulations and experimentally tested on a phantom.%A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectometry.By fitting to this asymmetric diffusion model,the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp')away from the incident point;particularly,μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy.The method is verified by Monte Carlo simulations and experimentally tested on a phantom.Knowledge about the optical properties,including the absorption coefficient (μa) and the reduced scattering coefficient (μ's =μs(1-g)),where μs is the scattering coefficient and g is the anisotropy factor of scattering,of biological tissues plays an important role for optical therapeutic and diagnostic techniques in medicine.

  7. Urethral pressure reflectometry before and after tension-free vaginal tape

    DEFF Research Database (Denmark)

    Saaby, Marie-Louise; Klarskov, Niels; Lose, Gunnar

    2012-01-01

    Urethral pressure reflectometry (UPR) is a new method for measuring pressure and cross-sectional area in the urethra. Our aim was to investigate if the UPR parameters at rest and during squeeze were unchanged after TVT....

  8. Flextube reflectometry and pressure recordings for level diagnosis in obstructive sleep apnoea

    DEFF Research Database (Denmark)

    Faber, C E; Grymer, L; Hilberg, O

    2002-01-01

    The objective of this study was to compare sound reflections in a flexible tube (flextube reflectometry) with pressure-catheter recordings (ApneaGraph) for identifying the predominant obstructive level of the upper airway during sleep. Seventeen males with suspected obstructive sleep apnoea...... results were found in flextube reflectometry studies and pressure-recordings performed on different nights regarding the level distribution of obstructions during sleep. Possible explanations of this discrepancy are discussed....

  9. Theoretical aspects of the use of pulsed reflectometry in a spheromak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B. J., LLNL

    1998-06-11

    Pulsed reflectometry using both ordinary (O) and extraordinary (X) modes has the potential of providing time and space-resolved measurements of the electron density, the magnitude of the magnetic field, and the magnetic shear as a function of radius. Such a diagnostic also yields the current profile from the curl of the magnetic field. This research addresses theoretical issues associated with the use of reflectometry in the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. We have extended a reflectometry simulation model to accommodate O and X-mode mixed polarization and linear mode conversion between the two polarizations. A Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) formula for linear mode conversion agrees reasonably well with direct numerical solutions of the wave equation, and we have reconstructed the magnetic pitch-angle profile by matching the results of the WKBJ formula with the mode conversion data observed in simulations using a least-squares determination of coefficients in trial functions for the profile. The reflectometry data also yield information on fluctuations. Instrumental issues, e.g., the effects of microwave mixers and filters on model reflectometry pulses, have been examined to optimize the performance of the reflectometry diagnostics.

  10. A combined use of proximal sensors can magnify the terroir effect of every vintage

    Science.gov (United States)

    Priori, Simone; Bianconi, Nadia; Valboa, Giuseppe; Barbetti, Roberto; Fantappiè, Maria; L'Abate, Giovanni; Lorenzetti, Romina; Mocali, Stefano; Pellegrini, Sergio; Leprini, Marco; Perria, Rita; Storchi, Paolo; Costantini, Edoardo

    2014-05-01

    Grape composition, which affects the wine sensory qualities, depends on vine features (rootstock, scion, vine health) and vineyard management as much as environmental factors. Mapping soil at the vineyard scale, in particular, helps in optimizing the terroir expression of the wine. The terroir effect however varies every year, in dependence of the interaction between climate and soil. Aim of this research work was to set a methodology to dimension homogeneous harvest zones (HZ) in the vineyard and to test the vintage effect on them. Four terroir macro-units were selected within a wide farm in the Chianti Classico D.O.C.G. district (Siena, Central Italy). The selected macro-units represented the most common viticultural environments of the Chianti Classico D.O.C.G. and they were: 1) hills of high altitude (450-500 m a.s.l.) on feldspathic sandstones, with shallow sandy soils; 2) hills of high altitude (400-500 m a.s.l.) on clayey-calcareous flysches, with stony and calcareous soils; 3) hills of moderate altitude (250-350 m a.s.l.) on Pliocene sandy marine deposits; 4) hills and fluvial terraces of moderate altitude (200-300 m a.s.l., 50-100 m above the present river valley) on ancient fluvial deposits. Selected vineyards of each terroir macro-unit was surveyed by soil proximal sensing, to define two homogeneous zones (HZ) in terms of soil features in each macro-unit. The sensors used were: i) γ-ray spectrometer, to map the variability of soil surface in terms of parent material, texture and stoniness; ii) electromagnetic induction sensor (EMI) to determine the spatial variability of texture and soil moisture in the sub-surface horizons; iii) time domain reflectometry (TDR), to measure soil moisture content in the sub-surface soil horizon (30-50 cm). TDR measurements were performed in fixed points (about 1 each 1,000 m2) three times a year, during spring shoot growth (beginning of April), berries veraison (end of July-beginning of August) and final ripening phase

  11. One directional polarized neutron reflectometry with optimized reference layer method

    International Nuclear Information System (INIS)

    Masoudi, S. Farhad; Jahromi, Saeed S.

    2012-01-01

    In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.

  12. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    Science.gov (United States)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  13. A phased array antenna for Doppler reflectometry in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Stefan; Lechte, Carsten; Kasparek, Walter [IGVP, Universitaet Stuttgart, D-70569 Stuttgart (Germany); Hennequin, Pascale [Laboratoire de Physique des Plasmas, CNRS, Ecole Polytech., F-91128 Palaiseau (France); Conway, Garrard; Happel, Tim [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Collaboration: ASDEX Upgrade Team

    2016-07-01

    In a toroidal plasma, Doppler reflectometry (DR) allows investigating electron density fluctuations with finite k {sub perpendicular} {sub to}. The injected microwave beam's frequency determines the radial position of the probed region, its tilt angle selects the wavenumber satisfying the Bragg condition for backscattering. The rotation velocity can be calculated from the Doppler shift of the backscattered signal's frequency. By varying the injected frequency, radial profiles can be reconstructed. Varying the tilt angle resolves the k {sub perpendicular} {sub to} -spectrum of the fluctuations. For DR, a pair of phased array antennas (PAAs) has been designed, built, and installed in the ASDEX Upgrade tokamak. Beam steering is done by slightly changing the injected frequency, thus, the PAAs do not need any movable parts or electronics inside the vacuum vessel. From 75 to 105 GHz, the PAAs feature 13 frequency bands, each with an angular scan range of -20 to +20 {sup circle}. So, for each angle, there are 13 radial positions to be probed. The results from PAA characterisation, commissioning, and first DR measurements are presented.

  14. Doped organic films for OLEDs probed with neutron reflectometry

    International Nuclear Information System (INIS)

    Smith, Arthur R. G.; Lo, Shih-Chun; Gentle, Ian R.

    2009-01-01

    Full text: Conjugated organic semiconductors form an exciting class of materials that can be used in a variety of cutting edge technologies including organic light-emitting diodes, solar cells and transistors. In all these technologies the thin film morphology and interfacial interactions are key areas for their operation. In order to optimise the materials and devices it is critical to understand the structural property relationships for the organic semiconductors by relating the 'molecular' structure to the film morphology and correlating these to the photophysical and device characteristics. Organic light emitting diodes (OLEO) have gained interest for their superior performance compared to current display technologies. Optimising the active emissive layer remains a challenge which can significantly affect the final performance of the device [1]. We have investigated the layering behaviour of small molecule co-evaporated films of deuterated 4,4'-bis(9-carbazolyl)-1, 1 '-biphenyl doped with tris-phenylpyridine iridium(llI) using neutron reflectometry The behaviour of doped emissive layers is dependent on the ratio between dopant and host material. The morphology and internal structure of such films have not yet been investigated, leading to questions about the phase separation and ordering of layers within the film.

  15. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    Science.gov (United States)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  16. The Rise of GNSS Reflectometry for Earth Remote Sensing

    Science.gov (United States)

    Zuffada, Cinzia; Li, Zhijin; Nghiem, Son V.; Lowe, Steve; Shah, Rashmi; Clarizia, Maria Paola; Cardellach, Estel

    2015-01-01

    The Global Navigation Satellite System (GNSS) reflectometry, i.e. GNSS-R, is a novel remote-sensing technique first published in that uses GNSS signals reflected from the Earth's surface to infer its surface properties such as sea surface height (SSH), ocean winds, sea-ice coverage, vegetation, wetlands and soil moisture, to name a few. This communication discusses the scientific value of GNSS-R to (a) furthering our understanding of ocean mesoscale circulation toward scales finer than those that existing nadir altimeters can resolve, and (b) mapping vegetated wetlands, an emerging application that might open up new avenues to map and monitor the planet's wetlands for methane emission assessments. Such applications are expected to be demonstrated by the availability of data from GEROS-ISS, an ESA experiment currently in phase A, and CyGNSS [3], a NASA mission currently in development. In particular, the paper details the expected error characteristics and the role of filtering played in the assimilation of these data to reduce the altimetric error (when averaging many measurements).

  17. Simultaneous polarized neutron reflectometry and anisotropic magnetoresistance measurements.

    Science.gov (United States)

    Demeter, J; Teichert, A; Kiefer, K; Wallacher, D; Ryll, H; Menéndez, E; Paramanik, D; Steitz, R; Van Haesendonck, C; Vantomme, A; Temst, K

    2011-03-01

    A novel experimental facility to carry out simultaneous polarized neutron reflectometry (PNR) and anisotropic magnetoresistance (AMR) measurements is presented. Performing both techniques at the same time increases their strength considerably. The proof of concept of this method is demonstrated on a CoO/Co bilayer exchange bias system. Although information on the same phenomena, such as the coercivity or the reversal mechanism, can be separately obtained from either of these techniques, the simultaneous application optimizes the consistency between both. In this way, possible differences in experimental conditions, such as applied magnetic field amplitude and orientation, sample temperature, magnetic history, etc., can be ruled out. Consequently, only differences in the fundamental sensitivities of the techniques can cause discrepancies in the interpretation between the two. The almost instantaneous information obtained from AMR can be used to reveal time-dependent effects during the PNR acquisition. Moreover, the information inferred from the AMR measurements can be used for optimizing the experimental conditions for the PNR measurements in a more efficient way than with the PNR measurements alone.

  18. Influence of the liquid helium meniscus on neutron reflectometry data

    International Nuclear Information System (INIS)

    Kinane, C.J.; Kirichek, O.; Charlton, T.R.; McClintock, P.V.E.

    2016-01-01

    Neutron reflectometry offers a unique opportunity for the direct observation of nanostratification in 3 He- 4 He mixtures in the ultra-low temperature limit. Unfortunately the results of recent experiments could not be well-modelled on account of a seemingly anomalous variation of reflectivity with momentum transfer. We now hypothesize that this effect is attributable to an optical distortion caused by the liquid meniscus near the container wall. The validity of this idea is tested and confirmed through a subsidiary experiment on a D 2 O sample, showing that the meniscus can significantly distort results if the beam size in the horizontal plane is comparable with, or bigger than, the diameter of the container. The meniscus problem can be eliminated if the beam size is substantially smaller than the diameter of the container, such that reflection takes place only from the flat region of the liquid surface thus excluding the meniscus tails. Practical measures for minimizing the meniscus distortion effect are discussed.

  19. Research proposal on: amplitude modulated reflectometry system for the JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, B.; Estrada, T.; Luna, E. de la

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been present in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps in the phase signal, which are a big problem when the phase values are much larger than 2π The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad- band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for onospheric studies and recently also proposed for fusion plasmas. The main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts ( ∼ 2π ). (Author) 2 refs

  20. Soil water retention measurements using a combined tensiometer-coiled time domain reflectometry probe

    DEFF Research Database (Denmark)

    Vaz, C.M.P.; Hopmans, J.W.; Macedo, A.

    2002-01-01

    -coiled TDR probe was constructed by wrapping two copper wires (0.8 mm diam. and 35.5 cm long) along a 5-cm long porous cup of a standard tensiometer. The dielectric constant of five different soils (Oso Flaco [coarse-loamy, mixed Typic Cryorthod-fine-loamy, mixed, mesic Ustollic Haplargid], Ottawa sand [F-50...

  1. Water content monitoring for Flamanville 3 EPR trademark prestressed concrete containment. An application for TDR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, Alexis; Clauzon, Timothee [EDF DPIH DTG, Lyon (France); Taillade, Frederic [EDF R and D, Chatou (France); Martin, Gregoire [EDF CNEN, Montrouge (France)

    2015-07-01

    Long term operation of nuclear power plant requires an appropriate monitoring of containment structures. For prestressed concrete containment vessels, a key parameter for ageing analysis is the evolution of the amount of water remaining within the concrete pores. EDF decides to launch a development program, in order to determine what sensor technologies are able to achieve such kind of monitoring on large concrete structures. One of the main parts of this program is to determine the maximum allowable uncertainty for the measurement. Another stake is the calibration process of sensors dedicated to water content measurement in concrete structures and the management of the parameters which have the largest influence on the measurement process.

  2. Flextube reflectometry for level diagnosis in patients with obstructive sleep apnoea and snoring

    DEFF Research Database (Denmark)

    Faber, C E; Hilberg, O; Grymer, L

    2002-01-01

    The aim of this study was to use sound reflections in a flexible tube (flextube reflectometry) for identifying the predominant obstructive level of the upper airway in a series of patients referred to a sleep clinic. We also wished to study the relationship between the number of flextube narrowings...... per hour recording and the RDI (respiratory disturbance index = apnoeas and hypopneas per hour recording) by ResMed AutoSet (AS), which is a device based on nasal pressure variations. We performed sleep studies on 54 patients referred for snoring or OSA; 1) at home with AS; 2) in hospital using...... flextube reflectometry and AS simultaneously. The predominant obstructive level of the upper airway was retropalatal in 15 of the patients and retrolingual in 25 of the patients determined by flextube reflectometry. In 14 there was no predominant level of narrowing. We found a statistically significant...

  3. Use of Anal Acoustic Reflectometry in the Evaluation of Men With Passive Fecal Leakage

    DEFF Research Database (Denmark)

    Hornung, Benjamin R; Telford, Karen J; Carlson, Gordon L

    2017-01-01

    with greater sensitivity and discriminatory ability than conventional anal manometry. OBJECTIVE: The aim of this study was to determine whether men with fecal leakage have an abnormality in anal sphincter function that is detectable by anal acoustic reflectometry. DESIGN: This was an age-matched study......BACKGROUND: Men with passive fecal leakage represent a distinct clinical entity in which the pathophysiology remains unclear. Standard anorectal investigations fail to demonstrate consistent abnormalities in this group. Anal acoustic reflectometry is a new test of anal sphincter function...... of continent and incontinent men. SETTINGS: The study was conducted at a university teaching hospital. PATIENTS: Male patients with isolated symptoms of fecal leakage were recruited. Anal acoustic reflectometry, followed by conventional anal manometry, was performed. Results were then compared with those from...

  4. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    Science.gov (United States)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  5. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    Science.gov (United States)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  6. Advances in the density profile evaluation from broadband reflectometry on ASDEX upgrade

    International Nuclear Information System (INIS)

    Varela, P.; Manso, M.; Conway, G.

    2001-01-01

    The high temporal and spatial resolutions provided by broadband microwave reflectometry make it an attractive diagnostic technique to measure the density profile in fusion plasmas. However, great problems have been encountered due to the plasma turbulence that difficult, and sometimes prevent, the routine evaluation of density profiles. Advanced broadband systems employ ultra-fast sweeping in an attempt to perform the profile measurement in a time window smaller than the temporal scale of the main plasma fluctuations but this is not sufficient. Indeed, abrupt plasma movements and/or spatial turbulence always affect the reflectometry signals, as shown by numerical studies (with both one- and two-dimensional codes), for the case of ultra-fast sweeping and pulse radar systems. For this reason not only the system performance is important but the software tools also play a crucial role for reflectometry to become a standard density profile diagnostic. Here we present the recent advances towards automatic evaluation of density profiles from broadband reflectometry on ASDEX Upgrade. For regimes with moderate levels of plasma turbulence, density profiles are obtained from single reflectometry samples (temporal resolution of 20 μs), and for higher turbulence levels average profiles are obtained from bursts of ultra-fast (20 μs), closely spaced (10 μs) sweeps. This method improved the accuracy and reliability of density profiles, which can now be obtained automatically from the edge to the bulk plasma - using reflectometry alone - in most plasma regimes of ASDEX Upgrade. New data processing capability has been implemented that allows the profiles to be available to the end-users 10-12 minutes after each discharge. These developments were possible due to the flexibility and high performance of the control and data acquisition systems and to the large number of measurements that can be performed with the diagnostic during each discharge (720 profiles both on the low- and

  7. Caracterização física de dois substratos orgânicos para plantas e a estimativa da umidade por meio da reflectometria no domínio do tempo Physical characterization of two organic substrates for plants and the estimate of water content through the time domain reflectometry

    Directory of Open Access Journals (Sweden)

    Roger Manuel Mestas Valero

    2009-04-01

    influenced by substrates physical properties, mainly on irrigation handling, where understanding about water retention and pore aeration is essential. Water volume determination on substrates used during experiments has been necessary, and in this way the use of the Time Domain Reflectometry (TDR can represent an advance about this kind of researches. Based on water retention curve determination, this research, has been carried on physical characterizations of two organic substrates: coconut fiber and pine bark substrates. Also, a calibration curve has been adjusted for each tested substrates, and through TDR technique was estimated the water content. In a general, except to the dry density, the tested substrates has showed similar characteristics about its water-air relation. In the range readily available water, for both tested substrates, the TDR technique has showed a good performance on the water content estimative, with a determination coefficient of 0.9319 to the pine barks and 0.9385 to the coconut fiber.

  8. GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN): Mission Concept

    DEFF Research Database (Denmark)

    Cardellach, Estel; Wickert, Jens; Baggen, Rens

    2018-01-01

    . Over polar areas, the G-TERN will measure sea ice surface elevation (polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability...

  9. A faster urethral pressure reflectometry technique for evaluating the squeezing function

    DEFF Research Database (Denmark)

    Klarskov, Niels; Saaby, Marie-Louise; Lose, Gunnar

    2013-01-01

    Abstract Objective. Urethral pressure reflectometry (UPR) has shown to be superior in evaluating the squeeze function compared to urethral pressure profilometry. The conventional UPR measurement (step method) required up to 15 squeezes to provide one measure of the squeezing opening pressure...

  10. Application of Zeeman spatial beam-splitting in polarized neutron reflectometry

    OpenAIRE

    Kozhevnikov, S. V.; Ignatovich, V. K.; Radu, F.

    2017-01-01

    Neutron Zeeman spatial beam-splitting is considered at reflection from magnetically noncollinear films. Two applications of Zeeman beam-splitting phenomenon in polarized neutron reflectometry are discussed. One is the construction of polarizing devices with high polarizing efficiency. Another one is the investigations of magnetically noncollinear films with low spin-flip probability. Experimental results are presented for illustration.

  11. Differential reflectometry versus tactile sense detection of subgingival calculus in dentistry

    Science.gov (United States)

    Shakibaie, Fardad; Walsh, Laurence J.

    2012-10-01

    Detecting dental calculus is clinically challenging in dentistry. This study used typodonts with extracted premolar and molar teeth and simulated gingival tissue to compare the performance of differential reflectometry and periodontal probing. A total of 30 extracted teeth were set in an anatomical configuration in stone to create three typodonts. Clear polyvinyl siloxane impression material was placed to replicate the periodontal soft tissues. Pocket depths ranged from 10 to 15 mm. The three models were placed in a phantom head, and an experienced dentist assessed the presence of subgingival calculus first using the DetecTar (differential reflectometry) and then a periodontal probe. Scores from these two different methods were compared to the gold standard (direct examination of the root surface using 20× magnification) to determine the accuracy and reproducibility. Differential reflectometry was more accurate than tactile assessment (79% versus 60%), and its reproducibility was also higher (Cohen kappa 0.54 versus 0.39). Both methods performed better on single rooted premolar teeth than on multirooted teeth. These laboratory results indicate that differential reflectometry allows more accurate and reproducible detection of subgingival calculus than conventional probing, and supports its use for supplementing traditional periodontal examination methods in dental practice.

  12. Dissolution and Protection of Aluminium Oxide in Corrosive Aqueous Media - An Ellipsometry and Reflectometry Study

    NARCIS (Netherlands)

    Karlsson, P.M.; Postmus, B.R.; Palmqvist, A.E.C.

    2009-01-01

    Dissolution of alumina has been studied from wafers in aqueous solution by means of ellipsometry and reflectometry. It was discovered that the dissolution of aluminium oxide is promoted by ethanol amines like N,N-bis(2-hydroxyethyl)glycine and triethanolamine, and that this dissolution is retarded

  13. Full-wave Simulation of Doppler Reflectometry in the Presence of Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Lechte, C. [Institut fur Plasmaforschung, Universitat Stuttgart, Stuttgart (Germany)

    2011-07-01

    Doppler reflectometry is a microwave plasma diagnostic well suited for density fluctuation measurement. A meaningful interpretation of Doppler reflectometry measurements necessitates the analysis of the wave propagation in the plasma using simulations methods. While the beam path can usually be reconstructed with beam tracing methods, the modeling of the scattering process demands the use of wave simulation codes. Furthermore, in the presence of strong density fluctuations, the response from the plasma is dominated by dispersion and multiple scattering, and hence becomes non-linear. IPF-FD3D is the finite difference time domain code used to investigate the dependence of the scattering efficiency on the various plasma conditions. It uses the full set of Maxwell equations and the electron equation of motion in a cold plasma. First results in slab geometry indicate a strong dependence of the scattering efficiency on the density gradient, the incident angle, and the wave polarisation. Further complications arise with the introduction of broadband turbulent fluctuations, where additional knowledge of the radial spectrum is necessary to reconstruct the full fluctuation spectrum from Doppler reflectometry measurements. This paper presents the reconstruction of the turbulent fluctuation spectrum from simulated Doppler reflectometry measurements in slab geometry. Two cases of analytical turbulence in slab geometry are presented where the fluctuation wavenumber spectrum was recovered. It is planned to extend these investigations to X mode polarization and to supplement actual fusion experiments

  14. When thin is sexy - neutron reflectometry instrumentation at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    James, M.

    2003-01-01

    Full text: Neutron and X-ray reflectometry are techniques used to probe the structure of surfaces, thin-films or buried interfaces as well as processes occurring at surfaces and interfaces such as adsorption, adhesion and inter-diffusion. Applications cover adsorbed surfactant layers, self-assembled monolayers, biological membranes, electrochemical and catalytic interfaces, polymer coatings and photosensitive films. Contrast variation and selective deuteration of hydrogenous materials are important aspects of the neutron-based technique. Neutron reflectometry probes the structure of materials normal to the surface at depths of up to several thousand Angstroms, with an effective depth resolution of a few Angstroms. Neutron reflectometry experiments have been performed by a number of Australian researchers at overseas facilities for more than a decade, however this capability has previously been absent in this country. A neutron reflectometer has been recognised as one of the highest priority instruments to be constructed at the new 20MW research reactor facility at Lucas Heights (due for completion in 2006). In this presentation we report the design of the time-of-flight reflectometer to be constructed at the new research facility. The reflectometer will operate with a vertical scattering plane and thus be able to measure specular reflectometry from both solid and liquid samples. A series of disc choppers will enable the instrument resolution (ΔQ/Q) to be varied from 2% to > 15%. The detection system will consist of a 2-dimenional position sensitive detector that will also allow the measurement of off-specular reflectivity

  15. Viscoelastic assessment of anal canal function using acoustic reflectometry: a clinically useful technique.

    Science.gov (United States)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J; Hosker, Gordon L; Lose, Gunnar; Kiff, Edward S

    2012-02-01

    Anal acoustic reflectometry is a new reproducible technique that allows a viscoelastic assessment of anal canal function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, opening and closing elastance, and hysteresis. The aim of this study was to assess whether the parameters measured in anal acoustic reflectometry are clinically valid between continent and fecally incontinent subjects. This was an age- and sex-matched study of continent and incontinent women. The study was conducted at a university teaching hospital. One hundred women (50 with fecal incontinence and 50 with normal bowel control) were included in the study. Subjects were age matched to within 5 years. Parameters measured with anal acoustic reflectometry and manometry were compared between incontinent and continent groups using a paired t test. Diagnostic accuracy was assessed by the use of receiver operator characteristic curves. Four of the 5 anal acoustic reflectometry parameters at rest were significantly different between continent and incontinent women (eg, opening pressure in fecally incontinent subjects was 31.6 vs 51.5 cm H2O in continent subjects, p = 0.0001). Both anal acoustic reflectometry parameters of squeeze opening pressure and squeeze opening elastance were significantly reduced in the incontinent women compared with continent women (50 vs 99.1 cm H2O, p = 0.0001 and 1.48 vs 1.83 cm H2O/mm, p = 0.012). In terms of diagnostic accuracy, opening pressure at rest measured by reflectometry was significantly superior in discriminating between continent and incontinent women in comparison with resting pressure measured with manometry (p = 0.009). Anal acoustic reflectometry is a new, clinically valid technique in the assessment of continent and incontinent subjects. This technique, which assesses the response of the anal canal to distension and relaxation, provides a detailed viscoelastic assessment of anal canal function. This technique

  16. A TDR-based system for the localization of leaks in newly installed, underground pipes made of any material

    International Nuclear Information System (INIS)

    Cataldo, A; Cannazza, G; De Benedetto, E; Giaquinto, N

    2012-01-01

    In this paper, a time domain reflectometry-based system for locating leaks in underground pipes (made of any material) is presented. The proposed system simply requires that a biwire should be attached to the pipe (all along its length), at the time of installation. Basically, the biwire acts as a permanent sensing element that can be connected to the measurement instrument whenever it is necessary to check for the presence of leaks. It is worth emphasizing that such a simple and low-cost system could tremendously facilitate leak detection not only in water distribution systems but also in wastewater/sewer pipelines. The proposed system was validated through measurements on a newly installed pilot plant, in which a leak was intentionally provoked. (paper)

  17. Toward a multipoint optical fibre sensor system for use in process water systems based on artificial neural network pattern recognition

    International Nuclear Information System (INIS)

    King, D; Lyons, W B; Flanagan, C; Lewis, E

    2005-01-01

    An optical fibre sensor capable of detecting various concentrations of ethanol in water supplies is reported. The sensor is based on a U-bend sensor configuration and is incorporated into a 170-metre length of silica cladding silica core optical fibre. The sensor is interrogated using Optical Time Domain Reflectometry (OTDR) and it is proposed to apply artificial neural network (ANN) pattern recognition techniques to the resulting OTDR signals to accurately classify the sensor test conditions. It is also proposed that additional U-bend configuration sensors will be added to the fibre measurement length, in order to implement a multipoint optical fibre sensor system

  18. Monitoring Bare Soil Freeze–Thaw Process Using GPS-Interferometric Reflectometry: Simulation and Validation

    Directory of Open Access Journals (Sweden)

    Xuerui Wu

    2017-12-01

    Full Text Available Frozen soil and permafrost affect ecosystem diversity and productivity as well as global energy and water cycles. Although some space-based Radar techniques or ground-based sensors can monitor frozen soil and permafrost variations, there are some shortcomings and challenges. For the first time, we use GPS-Interferometric Reflectometry (GPS-IR to monitor and investigate the bare soil freeze–thaw process as a new remote sensing tool. The mixed-texture permittivity models are employed to calculate the frozen and thawed soil permittivities. When the soil freeze/thaw process occurs, there is an abrupt change in the soil permittivity, which will result in soil scattering variations. The corresponding theoretical simulation results from the forward GPS multipath simulator show variations of GPS multipath observables. As for the in-situ measurements, virtual bistatic radar is employed to simplify the analysis. Within the GPS-IR spatial resolution, one SNOTEL site (ID 958 and one corresponding PBO (plate boundary observatory GPS site (AB33 are used for analysis. In 2011, two representative days (frozen soil on Doy of Year (DOY 318 and thawed soil on DOY 322 show the SNR changes of phase and amplitude. The GPS site and the corresponding SNOTEL site in four different years are analyzed for comparisons. When the soil freeze/thaw process occurred and no confounding snow depth and soil moisture effects existed, it exhibited a good absolute correlation (|R| = 0.72 in 2009, |R| = 0.902 in 2012, |R| = 0.646 in 2013, and |R| = 0.7017 in 2014 with the average detrended SNR data. Our theoretical simulation and experimental results demonstrate that GPS-IR has potential for monitoring the bare soil temperature during the soil freeze–thaw process, while more test works should be done in the future. GNSS-R polarimetry is also discussed as an option for detection. More retrieval work about elevation and polarization combinations are the focus of future development.

  19. Tracking the career development of scientists in low- and middle-income countries trained through TDR's research capacity strengthening programmes: Learning from monitoring and impact evaluation.

    Science.gov (United States)

    Halpaap, Béatrice; Vahedi, Mahnaz; Certain, Edith; Alvarado, Tini; Saint Martin, Caroline; Merle, Corinne; Mihut, Michael; Launois, Pascal

    2017-12-01

    The Special Programme for Research and Training in Tropical Diseases (TDR) co-sponsored by UNICEF, UNDP, World Bank and WHO has been supporting research capacity strengthening in low- and middle-income countries for over 40 years. In order to assess and continuously optimize its capacity strengthening approaches, an evaluation of the influence of TDR training grants on research career development was undertaken. The assessment was part of a larger evaluation conducted by the European Science Foundation. A comprehensive survey questionnaire was developed and sent to a group of 117 trainees supported by TDR who had completed their degree (masters or PhD) between 2000 and 2012; of these, seventy seven (77) responded. Most of the respondents (80%) rated TDR support as a very important factor that influenced their professional career achievements. The "brain drain" phenomenon towards high-income countries was particularly low amongst TDR grantees: the rate of return to their region of origin upon completion of their degree was 96%. A vast majority of respondents are still working in research (89%), with 81% of respondents having participated in multidisciplinary research activities; women engaged in multidisciplinary collaboration to a higher extent than men. However, only a minority of all have engaged in intersectoral collaboration, an aspect that would require further study. The post-degree career choices made by the respondents were strongly influenced by academic considerations. At the time of the survey, 92% of all respondents hold full-time positions, mainly in the public sector. Almost 25% of the respondents reported that they had influenced policy and practice changes. Some of the challenges and opportunities faced by trainees at various stages of their research career have been identified. Modalities to overcome these will require further investigation. The survey evidenced how TDR's research capacity grant programmes made a difference on researchers' career

  20. Tracking the career development of scientists in low- and middle-income countries trained through TDR's research capacity strengthening programmes: Learning from monitoring and impact evaluation.

    Directory of Open Access Journals (Sweden)

    Béatrice Halpaap

    2017-12-01

    Full Text Available The Special Programme for Research and Training in Tropical Diseases (TDR co-sponsored by UNICEF, UNDP, World Bank and WHO has been supporting research capacity strengthening in low- and middle-income countries for over 40 years. In order to assess and continuously optimize its capacity strengthening approaches, an evaluation of the influence of TDR training grants on research career development was undertaken. The assessment was part of a larger evaluation conducted by the European Science Foundation. A comprehensive survey questionnaire was developed and sent to a group of 117 trainees supported by TDR who had completed their degree (masters or PhD between 2000 and 2012; of these, seventy seven (77 responded. Most of the respondents (80% rated TDR support as a very important factor that influenced their professional career achievements. The "brain drain" phenomenon towards high-income countries was particularly low amongst TDR grantees: the rate of return to their region of origin upon completion of their degree was 96%. A vast majority of respondents are still working in research (89%, with 81% of respondents having participated in multidisciplinary research activities; women engaged in multidisciplinary collaboration to a higher extent than men. However, only a minority of all have engaged in intersectoral collaboration, an aspect that would require further study. The post-degree career choices made by the respondents were strongly influenced by academic considerations. At the time of the survey, 92% of all respondents hold full-time positions, mainly in the public sector. Almost 25% of the respondents reported that they had influenced policy and practice changes. Some of the challenges and opportunities faced by trainees at various stages of their research career have been identified. Modalities to overcome these will require further investigation. The survey evidenced how TDR's research capacity grant programmes made a difference on

  1. An Integrated Multimodal Sensor for the On-site Monitoring of the Water Content and Nutrient Concentration of Soil by Measuring the Phase and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Masato FUTAGAWA

    2012-03-01

    Full Text Available We have fabricated a new multimodal sensor chip which is capable of simultaneous on-site measurements of the water content and nutrient concentration. Until now, in agriculture, water content sensors, such as TDR sensors, have been unable to provide accurate measurements, since these sensors are affected by the nutrient concentration in the soil solution. Therefore, tensiometers have generally been used. However, these are large-scale sensors and are not suitable for the precise measurements required in agriculture. Our proposed sensors are the world’s first to enable independent measurements of the water content and nutrient concentration.

  2. Potential use of carbon-11 labeled thymidine (TdR) for studying the effect of therapy on prostatic adenocarcinoma in vivo

    International Nuclear Information System (INIS)

    Conti, P.S.; Kleinert, E.L.; Schma, B.; Herr, H.W.; Whitmore, W.F. Jr.

    1984-01-01

    Alterations in tumor growth, such as those which occur during therapeutic manipulation, may be followed by measuring variations in radiolabeled TdR uptake. In order to study such parameters in vivo using external imaging techniques, the authors have synthesized TdR labeled with cyclotron produced carbon-11, a short-lived (T1/2=20.4 min) positron-emitting radionuclide. The Copenhagen rat bearing the transplantable Dunning R3327G prostatic adenocarcinoma can be used as a model for poorly differentiated carcinoma of the prostate in humans. The tissue distribution of C-14 TdR was studied in untreated tumor rats and in tumor rats receiving a combination of difluoromethyl ornithine and methylglyoxal-bis-guanylhydrazone, effective inhibitors of polyamine biosynthesis. The tissue distribution at 45 min post-injection (5 rats/group) was determined by calculating the relative concentration (RC) of radioactivity in blood and tissue samples (RC=dpm found per gm tissue/dpm injected per gm animal mass). The mean RC in untreated tumor was 2.55 +- 0.46, compared to 0.85 +- 0.12 in treated tumor. Tumor/blood, tumor/muscle and tumor/prostate ratios were 3.07, 7.08, and 6.89 in untreated tumor, and 1.23, 3.04, and 2,93 in treated tumor. The differences in RC for the untreated and treated tumors suggest that external imaging with C-11 TdR may be useful for monitoring the effects of therapy on tumors in vivo

  3. Optical Fiber Sensor with Distributed Parameters Based on Optical Fiber Reflectometry

    Directory of Open Access Journals (Sweden)

    Branislav Korenko

    2011-01-01

    Full Text Available His paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources.

  4. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres

    Science.gov (United States)

    Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu

    2009-11-01

    Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.

  5. Application of imaging spectroscopic reflectometry for characterization of gold reduction from organometallic compound by means of plasma jet technology

    Energy Technology Data Exchange (ETDEWEB)

    Vodák, Jiří, E-mail: jiri.vodak@yahoo.com [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); Nečas, David [RG Plasma Technologies, CEITEC Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Pavliňák, David [Department of Physical Electronics, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Macak, Jan M [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nám. Čs. Legií 565, 530 02 Pardubice (Czech Republic); Řičica, Tomáš; Jambor, Roman [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice (Czech Republic); Ohlídal, Miloslav [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); Institute of Physics, Faculty of Mining and Geology, VŠB – Technical University of Ostrava (Czech Republic)

    2017-02-28

    Highlights: • Metallic gold is reduced from an organometallic compound layer using a plasma jet. • Imaging spectroscopic reflectometry is used to locate areas with metallic gold. • The results are completed with XPS and optical microscopy observations. - Abstract: This work presents a new application of imaging spectroscopic reflectometry to determine a distribution of metallic gold in a layer of an organogold precursor which was treated by a plasma jet. Gold layers were prepared by spin coating from a solution of the precursor containing a small amount of polyvinylpyrrolidone on a microscopy glass, then they were vacuum dried. A difference between reflectivity of metallic gold and the precursor was utilized by imaging spectroscopic reflectometry to create a map of metallic gold distribution using a newly developed model of the studied sample. The basic principle of the imaging spectroscopic reflectometry is also shown together with the data acquisition principles. XPS measurements and microscopy observations were made to complete the imaging spectroscopic reflectometry results. It is proved that the imaging spectroscopic reflectometry represents a new method for quantitative evaluation of local reduction of metallic components from metaloorganic compounds.

  6. High spatial and temporal resolution interrogation of fully distributed chirped fiber Bragg grating sensors

    OpenAIRE

    Ahmad, Eamonn J.; Wang, Chao; Feng, Dejun; Yan, Zhijun; Zhang, Lin

    2017-01-01

    A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are...

  7. Application of time–frequency wavelet analysis in the reflectometry of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Astaf’ev, S. B., E-mail: bard@crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Shchedrin, B. M. [Moscow State University, Faculty of Computational Mathematics and Cybernetics (Russian Federation); Yanusova, L. G. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    The application of time–frequency wavelet analysis for solving the reflectometry inverse problem is considered. It is shown that a simultaneous transform of specular intensity curve, depending on the grazing angle and spatial frequency, allows one to determine not only the thickness but also the alteration order of individual regions (layers) with characteristic behavior of electron density. This information makes it possible to reconstruct the electron density profile in the film cross section as a whole (i.e., to solve the inverse reflectometry problem). The application of the time–frequency transform is illustrated by examples of reconstructing (based on X-ray reflectivity data) the layer alternation order in models of two-layer films with inverted arrangement of layers and a four-layer film on a solid substrate.

  8. Wavelet-transform-based time–frequency domain reflectometry for reduction of blind spot

    International Nuclear Information System (INIS)

    Lee, Sin Ho; Park, Jin Bae; Choi, Yoon Ho

    2012-01-01

    In this paper, wavelet-transform-based time–frequency domain reflectometry (WTFDR) is proposed to reduce the blind spot in reflectometry. TFDR has a blind spot problem when the time delay between the reference signal and the reflected signal is short enough compared with the time duration of the reference signal. To solve the blind spot problem, the wavelet transform (WT) is used because the WT has linearity. Using the characteristics of the WT, the overlapped reference signal at the measured signal can be separated and the blind spot is reduced by obtaining the difference of the wavelet coefficients for the reference and reflected signals. In the proposed method, the complex wavelet is utilized as a mother wavelet because the reference signal in WTFDR has a complex form. Finally, the computer simulations and the real experiments are carried out to confirm the effectiveness and accuracy of the proposed method. (paper)

  9. Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor

    Science.gov (United States)

    Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.

    2018-03-01

    The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.

  10. Estimation of sea level variations with GPS/GLONASS-reflectometry technique

    Science.gov (United States)

    Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.

    2017-11-01

    In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.

  11. Reflectometry and transport in thermonuclear plasmas in the Joint European Torus

    International Nuclear Information System (INIS)

    Sips, A.C.C.

    1991-01-01

    The subjects of this thesis are the study of microwave reflectometry as a method to measure electron density profiles, and the study of particle and energy transport in thermonuclear plasmas. In the transport studies data of a 12-channel reflectometer system are used to analyze the propagation of electron density perturbations in the plasma. The measurements described in this thesis are performed in the plasmas in the Joint European Torus (JET). The main points of study described are based on microwave reflectometry, the principles of which are given. Two modes of operation of a reflectometer are described. Firstly, electro-magnetic waves with constant frequencies may be launched into the plasma to measure variations in the electron density profile. Secondly, the absolute density profile can be measured with a reflectometer, when the source frequencies are swept. (author). 56 refs.; 41 figs.; 5 tabs

  12. Observation of E×B Flow Velocity Profile Change Using Doppler Reflectometry in HL-2A

    Institute of Scientific and Technical Information of China (English)

    XIAO Wei-Wen; ZOU Xiao-Lan; DING Xuan-Tong; DONG Jia-Qi; LIU Ze-Tian; SONG Shao-Dong; GAO Ya-Dong; YAO Liang-Hua; FENG Bei-Bin; SONG Xian-Ming; CHEN Cheng-Yuan; SUN Hong-Juan; LI Yong-Gao; YANG Qing-Wei; YAN Long-Wen; LIU Yi; DUAN Xu-Ru; PAN Chuan-Hong; LIU Yong

    2009-01-01

    A broadband,O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A.The main feature of the Doppler reflectometry is its capability to be tuned to any selected frequency in total waveband from 26-40 GHz.This property enables us to probe several plasma layers within a short time interval during a discharge,permitting the characterization of the radial distribution of plasma fluctuations.The system allows us to extract important information about the velocity change layer,namely its spatial localization.In purely Ohmic discharge a change of the E×B flow velocity profiles has been observed in the region for 28 < r < 30cm if only the line average density exceeds 2.2×1019 m-3.The density gradient change is measured in the same region,too.

  13. Microwave Imaging Reflectometry for the Measurement of Turbulent Fluctuations in Tokamaks

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2004-01-01

    This article describes a numerical study of microwave reflectometry for the measurement of turbulent fluctuations in tokamak-like plasmas with a cylindrical geometry. Similarly to what was found previously in plane-stratified plasmas, the results indicate that the characteristics of density fluctuations cannot be uniquely determined from the reflected waves if the latter are allowed to propagate freely to the point of detection, as in standard reflectometry. Again, we find that if the amplitude of fluctuations is below a threshold that is set by the spectrum of poloidal wave numbers, the local characteristics of density fluctuations can be obtained from the phase of reflected waves when these are collected with a wide aperture antenna, and an image of the cutoff is formed onto an array of phase-sensitive detectors

  14. First density profile measurements using frequency modulation of the continuous wave reflectometry on JETa)

    Science.gov (United States)

    Meneses, L.; Cupido, L.; Sirinelli, A.; Manso, M. E.; Jet-Efds Contributors

    2008-10-01

    We present the main design options and implementation of an X-mode reflectometer developed and successfully installed at JET using an innovative approach. It aims to prove the viability of measuring density profiles with high spatial and temporal resolution using broadband reflectometry operating in long and complex transmission lines. It probes the plasma with magnetic fields between 2.4 and 3.0 T using the V band [~(0-1.4)×1019 m-3]. The first experimental results show the high sensitivity of the diagnostic when measuring changes in the plasma density profile occurring ITER relevant regimes, such as ELMy H-modes. The successful demonstration of this concept motivated the upgrade of the JET frequency modulation of the continuous wave (FMCW) reflectometry diagnostic, to probe both the edge and core. This new system is essential to prove the viability of using the FMCW reflectometry technique to probe the plasma in next step devices, such as ITER, since they share the same waveguide complexity.

  15. Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry.

    Science.gov (United States)

    Dong, Junliang; Locquet, Alexandre; Melis, Marcello; Citrin, D S

    2017-11-08

    The process by which art paintings are produced typically involves the successive applications of preparatory and paint layers to a canvas or other support; however, there is an absence of nondestructive modalities to provide a global mapping of the stratigraphy, information that is crucial for evaluation of its authenticity and attribution, for insights into historical or artist-specific techniques, as well as for conservation. We demonstrate sparsity-based terahertz reflectometry can be applied to extract a detailed 3D mapping of the layer structure of the 17th century easel painting Madonna in Preghiera by the workshop of Giovanni Battista Salvi da Sassoferrato, in which the structure of the canvas support, the ground, imprimatura, underpainting, pictorial, and varnish layers are identified quantitatively. In addition, a hitherto unidentified restoration of the varnish has been found. Our approach unlocks the full promise of terahertz reflectometry to provide a global and detailed account of an easel painting's stratigraphy by exploiting the sparse deconvolution, without which terahertz reflectometry in the past has only provided a meager tool for the characterization of paintings with paint-layer thicknesses smaller than 50 μm. The proposed modality can also be employed across a broad range of applications in nondestructive testing and biomedical imaging.

  16. Neutron reflectometry studies of aluminum–saline water interface under hydrostatic pressure

    International Nuclear Information System (INIS)

    Junghans, A.; Chellappa, R.; Wang, P.; Majewski, J.; Luciano, G.; Marcelli, R.; Proietti, E.

    2015-01-01

    Highlights: • We investigated corrosion of aluminum via neutron reflectometry. • The hypothesis of an effect on corrosion due to hydrostatic pressure is confirmed. • The speed of corrosion is lower in the early stage compared to results found in the literature. • Nature of the corrosion compounds is investigated. - Abstract: The structural stability of Al layers in contact with 3.5 wt.% NaCl water solution was investigated at a temperature of 25 °C and hydrostatic pressures from 1 to 600 atm using neutron reflectometry. A pressure–temperature (P–T) Neutron Reflectometry (NR) cell developed at Los Alamos National Laboratory (LANL) was used to understand the behavior of thin (∼900 Å) aluminum layers in contact with saline liquid. Experimental results suggest that in the preliminary stages of corrosion the influence of pressure accelerates the mechanism of interactions of the oxide film with Cl − and H 2 O with lower speed compared to results found in the literature

  17. Impact of health research capacity strengthening in low- and middle-income countries: the case of WHO/TDR programmes.

    Science.gov (United States)

    Minja, Happiness; Nsanzabana, Christian; Maure, Christine; Hoffmann, Axel; Rumisha, Susan; Ogundahunsi, Olumide; Zicker, Fabio; Tanner, Marcel; Launois, Pascal

    2011-10-01

    Measuring the impact of capacity strengthening support is a priority for the international development community. Several frameworks exist for monitoring and evaluating funding results and modalities. Based on its long history of support, we report on the impact of individual and institutional capacity strengthening programmes conducted by the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) and on the factors that influenced the outcome of its Research Capacity Strengthening (RCS) activities. A mix of qualitative and quantitative methods (questionnaires and in-depth interviews) was applied to a selected group of 128 individual and 20 institutional capacity development grant recipients that completed their training/projects between 2000 and 2008. A semi-structured interview was also conducted on site with scientists from four institutions. Most of the grantees, both individual and institutional, reported beneficial results from the grant. However, glaring inequities stemming from gender imbalances and a language bias towards English were identified. The study showed that skills improvement through training contributed to better formulation of research proposals, but not necessarily to improved project implementation or communication of results. Appreciation of the institutional grants' impact varied among recipient countries. The least developed countries saw the programmes as essential for supporting basic infrastructure and activities. Advanced developing countries perceived the research grants as complementary to available resources, and particularly suitable for junior researchers who were not yet able to compete for major international grants. The study highlights the need for a more equitable process to improve the effectiveness of health research capacity strengthening activities. Support should be tailored to the existing research capacity in disease endemic countries and should focus on strengthening

  18. Impact of health research capacity strengthening in low- and middle-income countries: the case of WHO/TDR programmes.

    Directory of Open Access Journals (Sweden)

    Happiness Minja

    2011-10-01

    Full Text Available BACKGROUND: Measuring the impact of capacity strengthening support is a priority for the international development community. Several frameworks exist for monitoring and evaluating funding results and modalities. Based on its long history of support, we report on the impact of individual and institutional capacity strengthening programmes conducted by the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR and on the factors that influenced the outcome of its Research Capacity Strengthening (RCS activities. METHODOLOGY AND PRINCIPAL FINDINGS: A mix of qualitative and quantitative methods (questionnaires and in-depth interviews was applied to a selected group of 128 individual and 20 institutional capacity development grant recipients that completed their training/projects between 2000 and 2008. A semi-structured interview was also conducted on site with scientists from four institutions. Most of the grantees, both individual and institutional, reported beneficial results from the grant. However, glaring inequities stemming from gender imbalances and a language bias towards English were identified. The study showed that skills improvement through training contributed to better formulation of research proposals, but not necessarily to improved project implementation or communication of results. Appreciation of the institutional grants' impact varied among recipient countries. The least developed countries saw the programmes as essential for supporting basic infrastructure and activities. Advanced developing countries perceived the research grants as complementary to available resources, and particularly suitable for junior researchers who were not yet able to compete for major international grants. CONCLUSION: The study highlights the need for a more equitable process to improve the effectiveness of health research capacity strengthening activities. Support should be tailored to the existing research

  19. Assessment of soil water use by grassland by frequency domain reflectometry in the humid area of Spain

    Science.gov (United States)

    Mestas Valero, R. M.; Báez Bernal, D.; García Pomar, M. I.; Paz González, A.

    2009-04-01

    Frequency domain reflectometry (FDR) is becoming increasingly used for indirect water content determination in soils. In Galica, located in NW Spain, the humid region of this country, annual precipitation exceeds evapotranspiration. However, the yearly distribution of rainfall is irregular, so that supplementary irrigation during the dry warm summer is required often. This study aims to evaluate soil water use by grasslands and soil water regime patterns during the warm season from soil moisture measured at successive depths using FDR. The study sity is located at the experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo, latitude 43°14' N and longitude 08°15' W. Soil moisture was monitored at six experimental plots from July to October 2008 two times per week using a portable FDR sensor. Measurements were made from 10 to 160 cm depth at 10 cm intervals. Moreover one of the plots was equipped with a continuous recording FDR-EnviroSCAN probe. Crop potential evapotranspiration (ETc) was estimated according to the of FAO version of the Penman-Monteith equation and the meteorological information required to apply this method was provided by a station located in the place experimental field. Cumulative rainfall along the study period was 195 mm, which is above the long-term mean and cumulative potential evapotranspiration was 264.7 mm. Using the water balance method the total value of actual evapotranspiration was estimated at 205.2 mm. Analysis of soil moisture content profiles allowed a description of soil water regime and main soil water withdrawal patterns under grassland. In general, grassland roots extracted most soil water from the 0-40 cm depth. In contrast, moisture content at the bottom of the profile was close to saturation, even the driest weeks of the study period. Continuous monitoring of soil water content allowed a more detailed characterization of dry and wet periods during the study season. The study data set may be useful

  20. Snow measurement Using P-Band Signals of Opportunity Reflectometry

    Science.gov (United States)

    Shah, R.; Yueh, S. H.; Xu, X.; Elder, K.

    2017-12-01

    Snow water storage in land is a critical parameter of the water cycle. In this study, we develop methods for estimating reflectance from bistatic scattering of digital communication Signals of Opportunity (SoOp) across the available microwave spectrum from VHF to Ka band and show results from proof-of-concept experiments at the Fraser Experimental Forest, Colorado to acquire measurements to relate the SoOp phase and reflectivity to a snow-covered soil surface. The forward modeling of this scenario will be presented and multiple sensitivities were conducted. Available SoOp receiver data along with a network of in situ sensor measurements collected since January 2016 will be used to validate theoretical modeling results. In the winter season of 2016 and 2017, we conducted a field experiment using VHF/UHF-band illuminating sources to detect SWE and surface reflectivity. The amplitude of the reflectivity showed sensitivity to the wetness of snow pack and ground reflectivity while the phase showed sensitivity to SWE. This use of this concept can be helpful to measure the snow water storage in land globally.

  1. Urethral pressure reflectometry during intra-abdominal pressure increase—an improved technique to characterize the urethral closure function in continent and stress urinary incontinent women

    DEFF Research Database (Denmark)

    Saaby, Marie-Louise; Klarskov, Niels; Lose, Gunnar

    2013-01-01

    to assess the urethral closure function by urethral pressure reflectometry (UPR) during intra-abdominal pressure-increase in SUI and continent women.......to assess the urethral closure function by urethral pressure reflectometry (UPR) during intra-abdominal pressure-increase in SUI and continent women....

  2. A new approach based on transfer matrix formalism to characterize porous silicon layers by reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Pirasteh, P. [RESO Laboratory (EA 3380), ENIB, CS 73862, 29238 Brest Cedex 3 (France); Optronics Laboratory, ENSSAT, UMR 6082, BP 80518, 6 rue de Kerampont, 22305 Lannion Cedex (France); Boucher, Y.G. [RESO Laboratory (EA 3380), ENIB, CS 73862, 29238 Brest Cedex 3 (France); Charrier, J.; Dumeige, Y. [Optronics Laboratory, ENSSAT, UMR 6082, BP 80518, 6 rue de Kerampont, 22305 Lannion Cedex (France)

    2007-07-01

    We use reflectometry coupled to transfer matrix formalism in order to investigate the comparative effect of surface (localized) and volume (distributed) losses inside a porous silicon monolayer. Both are modeled as fictive absorption. Surface losses are described as a Dirac-like singularity of permittivity localized at an interface whereas volume losses are described trough the imaginary part of the porous silicon complex permittivity. A good agreement with experimental data is determined by this formalism. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Upgrade of the COMPASS tokamak microwave reflectometry system with I/Q modulation and detection.

    Czech Academy of Sciences Publication Activity Database

    Zajac, Jaromír; Bogár, Ondrej; Varavin, Mykyta; Žáček, František; Hron, Martin; Pánek, Radomír; Nanobashvili, S.; Silva, A.

    2017-01-01

    Roč. 123, November (2017), s. 911-914 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] R&D Projects: GA ČR(CZ) GA14-35260S Institutional support: RVO:61389021 Keywords : Microwave reflectometry * Heterodyne detection * I/Q modulator * COMPASS tokamak Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379617303101

  4. In-service communication channel sensing based on reflectometry for TWDM-PON systems

    Science.gov (United States)

    Iida, Daisuke; Kuwano, Shigeru; Terada, Jun

    2014-05-01

    Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.

  5. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.; Varela, P. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2016-11-15

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  6. Optics System Design of Microwave Imaging Reflectometry for the EAST Tokamak

    International Nuclear Information System (INIS)

    Zhu Yilun; Zhao Zhenling; Tong Li; Chen Dongxu; Xie Jinlin; Liu Wandong

    2016-01-01

    A front-end optics system has been developed for the EAST microwave imaging reflectometry for 2D density fluctuation measurement. Via the transmitter optics system, a combination of eight transmitter beams with independent frequencies is employed to illuminate wide poloidal regions on eight distinct cutoff layers. The receiver optics collect the reflected wavefront and project them onto the vertical detector array with 12 antennas. Utilizing optimized Field Curvature adjustment lenses in the receiver optics, the front-end optics system provides a flexible and perfect matching between the image plane and a specified cutoff layer in the plasma, which ensures the correct data interpretation of density fluctuation measurement. (paper)

  7. GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Cardellach, Estel; Bandeiras, Jorge

    2016-01-01

    GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus...... of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans...

  8. The application of neutron reflectometry and atomic force microscopy in the study of corrosion inhibitor films

    International Nuclear Information System (INIS)

    John, Douglas; Blom, Annabelle; Bailey, Stuart; Nelson, Andrew; Schulz, Jamie; De Marco, Roland; Kinsella, Brian

    2006-01-01

    Corrosion inhibitor molecules function by adsorbing to a steel surface and thus prevent oxidation of the metal. The interfacial structures formed by a range of corrosion inhibitor molecules have been investigated by in situ measurements based on atomic force microscopy and neutron reflectometry. Inhibitors investigated include molecules cetyl pyridinium chloride (CPC), dodecyl pyridinium chloride (DPC), 1-hydroxyethyl-2-oleic imidazoline (OHEI) and cetyl dimethyl benzyl ammonium chloride (CDMBAC). This has shown that the inhibitor molecules adsorb onto a surface in micellar structures. Corrosion measurements confirmed that maximum inhibition efficiency coincides with the solution critical micelle concentration

  9. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  10. Applicability of X-ray reflectometry to studies of polymer solar cell degradation

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Gevorgyan, Suren; Schleputz, C.M.

    2008-01-01

    Although degradation of polymer solar cells is widely acknowledged, the cause, physical or chemical, has not been identified. The purpose of this work is to determine the applicability of X-ray reflectometry for in situ observation of physical degradation mechanisms. We find that the rough...... interfaces of the polymer solar cell constituent layers seriously obstruct the sensitivity of the technique, rendering it impossible to elucidate changes in the layer/interface structure at the sub-nanometer level. (c) 2008 Elsevier B.V. All rights reserved....

  11. Characterization of X-UV multilayers by grazing incidence X-ray reflectometry

    International Nuclear Information System (INIS)

    Nevot, L.; Pardo, B.; Corno, J.

    1988-01-01

    The performance of multilayers at the X-UV wavelengths depends upon the structural and geometrical imperfections of the deposited materials. These two respective contributions are not easily separated when only one Bragg peak is recorded, as is usually the case in the X-UV range, so a prediction of the performance at other wavelengths appears rather doubtful. We show how grazing incidence X-ray reflectometry (using Cu Kα 1 radiation) allows the precise evaluation of both interfacial roughnesses and thickness errors, as well as their variations through the stacks. As examples, we analyse three (W/C) multilayers with periods between 3 to 6 nm and up to 40 layers

  12. Water penetration mechanisms in nuclear glasses by X-ray and neutron reflectometry

    International Nuclear Information System (INIS)

    Rebiscoul, D.; Rieutord, F.; Ne, F.; Frugier, P.; Gin, S.; Cubitt, R.

    2007-01-01

    To determine the water diffusion at the early stage of the alteration, X-ray and neutron reflectometry have been performed on altered simplified glasses and the SON68 glass (an inactive R7T7-type French nuclear glass). For the first experiment, the simplified and SON68 glasses were altered at pH 3 and pH 6 and characterized by X-ray reflectometry as a function of the alteration duration. The evolutions of the electron density profile obtained from the reflectivity curves simulations have allowed the determination of the layers compositions. At the beginning of the alteration and for pH 3, the altered surface layer is constituted of a dealkalized zone. Upon alteration progress, the water diffuses inside the layer and hydrolyzes the Si-O-B bonds. For the second experiment, glasses were altered in D 2 O (pD 3) and analyzed in D 2 O saturated cell. After a D 2 O/H 2 O substitution, the samples were characterized one more time in H 2 O saturated cell. The evolution of the scattering length density shows that in the first stage of the alteration, the layer is constituted of two parts: a dealkalized glass and a dealkalized and boron depleted glass where water has diffused. According to the glass composition and after few hours of alteration, this dealkalized glass part can disappear. (authors)

  13. Reflectometry observations of density fluctuations in Wendelstein VII-AS stellarator

    International Nuclear Information System (INIS)

    Sanchez, J.; Hartfuss, H.J.; Anabitarte, E.; Navarro, A.P.

    1991-01-01

    In the almost shearless stellarator Wendelstein VII-AS strong correlation between the confinement properties and the rotational transform iota has been found. Reduced confinement was observed for the low order rational values 1/2 and 1/3. In their vicinity best confinement is observed. In general optimum confinement is obtained in the low shear configuration if the 'resonant' iota values can be excluded from the plasma column. The iota profile inside the plasma is affected by toroidal currents and beta effects. Although the global net current can be kept at zero level using a small OH induced current opposed to the gradient driven bootstrap current, the different currents flow at different radial positions affecting the iota profile. Tools for configuration control inside the plasma are besides OH current vertical fields and the currents driven by the NBI and most promising the ECH heating systems. In this context experimental information on the iota profile is highly needed. The localization of rational surfaces by reflectometry seems possible. Radially resolved density fluctuation measurements have been carried out by means of a simple microwave reflectometry system. The method is based on the reflection of microwave radiation in the millimeter range at the plasma cutoff layer. (orig./AH)

  14. Radial correlation length measurements on ASDEX Upgrade using correlation Doppler reflectometry

    International Nuclear Information System (INIS)

    Schirmer, J; Conway, G D; Holzhauer, E; Suttrop, W; Zohm, H

    2007-01-01

    The technique of correlation Doppler reflectometry for providing radial correlation length L r measurements is explored in this paper. Experimental L r measurements are obtained using the recently installed dual channel Doppler reflectometer system on ASDEX Upgrade. The experimental measurements agree well with theory and with L r measured on other fusion devices using different diagnostic techniques. A strong link between L r and plasma confinement could be observed. From the L- to the H-mode, an increase in the absolute value of E r shear was detected at the same plasma edge region where a decrease in L r was measured. This observation is in agreement with theoretical models which predict that an increase in the absolute shear suppresses turbulent fluctuations in the plasma, leading to a reduction in L r . Furthermore, L r decreases from the plasma core to the edge and decreases with increasing plasma triangularity δ. The experimental results have been extensively modelled using a 2-dimensional finite difference time domain code. The simulations confirm that Doppler reflectometry provides robust radial correlation lengths of the turbulence with high resolution and suggests that L r is independent of the turbulence wavenumber k p erpendicular and its fluctuation level

  15. Differential reflectometry of thin film metal oxides on copper, tungsten, molybdenum and chromium

    International Nuclear Information System (INIS)

    Urban, F.K. III; Hummel, R.E.; Verink, E.D. Jr.

    1982-01-01

    A differential reflectometry study was undertaken to investigate the characteristics of thin oxide films on metal substrates. The oxides were produced by heating pure metals of copper, tungsten, molybdenum and chromium in dry oxygen. A new 'halfpolishing' technique was applied to obtain specimens with a step in oxide thickness in order to make them suitable for differential reflectometry. It was found that oxides formed this way yielded the same differential reflectograms as by electrochemical oxidation. A mathematical model involving the interaction of light with a thin corrosion product on metal substrates was applied to generate computer calculated differential reflectograms utilizing various optical constants and thicknesses of the assumed film. Three different thickness ranges have been identified. (a) For large film thicknesses, the differential reflectograms are distinguished by a sequence of interference peaks. (b) If the product of thickness and refraction index of the films is smaller than about 40 nm, no interference peaks are present. Any experimentally observed peaks in differential reflectograms of these films are caused entirely by electron interband transitions. (c) In an intermediate thickness range, superposition of interference and interband peaks are observed. (author)

  16. Structure of ionic liquid-water mixtures at interfaces: x-ray and neutron reflectometry studies

    International Nuclear Information System (INIS)

    Lauw, Yansen; Rodopoulos, Theo; Horne, Mike; Follink, Bart; Hamilton, Bill; Knott, Robert; Nelson, Andy

    2009-01-01

    Full text: Fundamental studies on the effect of water in ionic liquids are necessary since the overall performance of ionic liquids in many industrial applications is often hampered by the presence of water.[1] Based on this understanding, the surface and interfacial structures of 1-butyl-1methylpyrrolidinium trifluoromethylsulfonylimide [C4mpyr][NTf2] ionic liquid-water mixtures were probed using x-ray and neutron reflectometry techniques. At the gas-liquid surface, a thick cation+water layer was detected next to the phase boundary, followed by an increasing presence of anion towards the bulk. The overall thickness of the surface exhibits non-monotonic trends with an increasing water content, which explains similar phenomenological trends in surface tension reported in the literature.[2] At an electrified interface, the interfacial structure of pure ionic liquids probed by neutron reflectometry shows similar trends to those predicted by a mean-field model.[3] However, the presence of water within the electrical double-layer is less obvious, although it is widely known that water reduces electrochemical window of ionic liquids. To shed light on this issue, further studies are currently in progress.

  17. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B., E-mail: bjtobias@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y. [University of California at Davis, Davis, California 95616 (United States)

    2016-11-15

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  18. First steps of ion beam mixing: study by X-ray reflectometry and neutron diffraction

    International Nuclear Information System (INIS)

    Le Boite, M.G.

    1987-12-01

    There are several processes involved in ion beam mixing: ballistic processes, chemical driving forces and radiation enhanced diffusion. Experiments usually performed on bilayers irradiated with heavy elements and characterized by Rutherford backscattering (R.B.S.), have shown that the measured mixing rate is always higher than the calculated one, taking into account ballistic effects only. Besides classical R.B.S. experiments on NiAu and NiPt bilayers irradiated with Xe, we have used another technique of characterization: X-ray reflectometry and neutron diffraction, performed on multilayers irradiated with He. The systems are NiAu, NiPt, NiPd and NiAg, which behave similarly from the ballistic point of view, but have very different heats of mixing. In these experiments, the range of deposited energy density is very low, in contrast to heavy ions irradiation: this has allowed us to reach very low diffusion coefficient, never observed before. The dependence of the diffusion coefficient on the heat of mixing is in agreement with the one theoretically calculated. For the NiAg system, which has a positive heat of mixing, the measured diffusion coefficient is smaller than the ballistic one: a decrease of the ballistic mixing rate is seen for the first time. In this work, we have shown the interest of the reflectometry techniques (X-ray and neutrons); we have used a simple model to analyze the ion beam mixing, when elementary processes are involved

  19. Reflectometry simulation as a tool to explore new schemes of characterizing the fusion plasma turbulence

    International Nuclear Information System (INIS)

    Heuraux, S; Silva, F da; Gusakov, E; Popov, A Yu; Kosolapova, N; Syisoeva, K V

    2013-01-01

    A first step towards the measurement of turbulence characteristics or transient events required for the understanding of turbulent transport is to build an interpretative model able to link the measurements of a given diagnostic to a wanted parameter of the turbulence, and simulation helps us to do that. To obtain density fluctuation parameters in fusion plasmas, microwaves can be used. However, the interpretation of the received signals requires generally sophisticated data processing to extract an exact evaluation of the wanted parameters. Simulations of electromagnetic wave propagation in turbulent plasmas permit to identify the main processes involved in probing wave-fluctuations interaction and the reflectometry signature of the expected events, which gives ideas to model them. It is shown here how simulations have permitted to exhibit the role of resonances of the probing wave induced by turbulence and to explain part of phase jumps seen during reflectometer measurements. The multi-scattering phenomena can be modelled by a photon diffusion equation which can be used to provide information on the turbulence at density fluctuations levels higher than allowed by usual methods. The reflectometry simulations show that at high level of turbulence a competition between the resonances generation mechanism, able to maintain the probing depth, and the Bragg backscattering exists. Its consequences on turbulence characterisation are discussed.

  20. X-Ray Reflectometry of DMPS Monolayers on a Water Substrate

    Science.gov (United States)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.

    2017-12-01

    The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.

  1. Electrochemical lithiation of silicon electrodes. Neutron reflectometry and secondary ion mass spectrometry investigations

    Energy Technology Data Exchange (ETDEWEB)

    Jerliu, Bujar; Doerrer, Lars; Hueger, Erwin [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). AG Mikrokinetik; Seidlhofer, Beatrix-Kamelia; Steitz, Roland [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Borchardt, Guenter; Schmidt, Harald [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). AG Mikrokinetik; Clausthaler Zentrum fuer Materialtechnik (CZM), Clausthal-Zellerfeld (Germany)

    2017-11-15

    In-situ neutron reflectometry and ex-situ secondary ion mass spectrometry in combination with electrochemical methods were used to study the lithiation of amorphous silicon electrodes. For that purpose specially designed closed three-electrode electrochemical cells with thin silicon films as the working electrode and lithium as counter and reference electrodes were used. The neutron reflectometry results obtained in-situ during galvanostatic cycling show that the incorporation, redistribution and removal of Li in amorphous silicon during a lithiation cycle can be monitored. It was possible to measure the volume modification during lithiation, which is found to be rather independent of cycle number, current density and film thickness and in good agreement with first-principles calculations as given in literature. Indications for an inhomogeneous lithiation mechanism were found by secondary ion mass spectrometry measurements. Lithium tracer diffusion experiments indicate that the diffusivities inside the lithiated region (D > 10{sup -15} m{sup 2} s{sup -1}) are considerably higher than in pure amorphous silicon as known from literature. This suggests a kinetics based explanation for the occurrence of an inhomogeneous lithiation mechanism.

  2. Layered structure analysis of multilayers by X-ray reflectometry using the Cu-Kβ line

    International Nuclear Information System (INIS)

    Usami, Katsuhisa; Ueda, Kazuhiro; Hirano, Tatsumi; Hoshiya, Hiroyuki; Narishige, Shinji.

    1997-01-01

    The suitability of X-ray reflectometry using the Cu-K β line for layered structure analysis of NiFe/Cu/NiFe/Ta layered films was studied. Structural parameters such as film thickness, density, and interface width can be determined more accurately than by Cu-K α1 X-ray reflectometry, owing to the abnormal dispersion effect. The standard deviations in determination of film thicknesses were within ±0.3% for NiFe and Ta films and ±0.03 nm for 2 nm Cu film. Those for the densities and interface widths were within ±2% and ±0.04 nm for all films, respectively. Analysis of some layered films regarding the change in Cu film thickness showed that in all these samples the density of the films most closely reflected the density of bulk material, and the interface width between the upper NiFe and Cu films increased with increasing Cu film thickness. (author)

  3. Urethral pressure reflectometry. A method for simultaneous measurements of pressure and cross-sectional area in the female urethra

    DEFF Research Database (Denmark)

    Klarskov, Niels

    2012-01-01

    A novel technique for simultaneous measurements of pressure and cross-sectional area (CA) in the female urethra, denoted Urethral Pressure Reflectometry (UPR), was devised. A very thin and highly flexible polyurethane-bag was placed in the urethra. A pump applied increasing and decreasing pressur...

  4. Validation study of two-microphone acoustic reflectometry for determination of breathing tube placement in 200 adult patients.

    Science.gov (United States)

    Raphael, David T; Benbassat, Maxim; Arnaudov, Dimiter; Bohorquez, Alex; Nasseri, Bita

    2002-12-01

    Acoustic reflectometry allows the construction of a one-dimensional image of a cavity, such as the airway or the esophagus. The reflectometric area-distance profile consists of a constant cross-sectional area segment (length of endotracheal tube), followed either by a rapid increase in the area beyond the carina (tracheal intubation) or by an immediate decrease in the area (esophageal intubation). Two hundred adult patients were induced and intubated, without restrictions on anesthetic agents or airway adjunct devices. A two-microphone acoustic reflectometer was used to determine whether the breathing tube was placed in the trachea or esophagus. A blinded reflectometer operator, seated a distance away from the patient, interpreted the acoustic area-distance profile alone to decide where the tube was placed. Capnography was used as the gold standard. Of 200 tracheal intubations confirmed by capnography, the reflectometer operator correctly identified 198 (99% correct tracheal intubation identification rate). In two patients there were false-negative results, patients with a tracheal intubation were interpreted as having an esophageal intubation. A total of 14 esophageal intubations resulted, all correctly identified by reflectometry, for a 100% esophageal intubation identification rate. Acoustic reflectometry is a rapid, noninvasive method by which to determine whether breathing tube placement is correct (tracheal) or incorrect (esophageal). Reflectometry determination of tube placement may be useful in airway emergencies, particularly in cases where visualization of the glottic area is not possible and capnography may fail, as in patients with cardiac arrest.

  5. Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Sifta Radim

    2015-03-01

    Full Text Available A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry using an extremely narrow laser and EDFAs.

  6. Neutron reflectometry

    International Nuclear Information System (INIS)

    Van Well, A.A.

    1999-01-01

    Neutron research where reflection, refraction, and interference play an essential role is generally referred to as 'neutron optics'. The neutron wavelength, the scattering length density and the magnetic properties of the material determine the critical angle for total reflection. The theoretical background of neutron reflection, experimental methods and the interpretation of reflection data are presented. (K.A.)

  7. Urethral pressure reflectometry; a novel technique for simultaneous recording of pressure and cross-sectional area

    DEFF Research Database (Denmark)

    Aagaard, Mikael; Klarskov, Niels; Sønksen, Jens

    2012-01-01

    Study Type - Diagnostic (case series) Level of Evidence 4 What's known on the subject? and What does the study add? In the 1980s and 1990s, a method for direct measurement of pressure and cross-sectional area in women and men was developed. It was successful in terms of obtaining meaningful results...... reproducible than conventional urethral pressure profilometry, when measuring incontinence in women. In 2010 it was also introduced as a new measuring technique in the anal canal. This study, adds a new and interesting technique to the field of male urodynamics. For the first time, sound waves have been used...... in several studies. But the technique, which was based on the field gradient principle, was never implemented in the clinical setting because of technical limitations. In 2005, urethral pressure reflectometry was introduced as a new technique in female urodynamics. The technique has been shown to be more...

  8. Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes

    International Nuclear Information System (INIS)

    Hao Yun-Qi; Ye Qing; Pan Zheng-Qing; Cai Hai-Wen; Qu Rong-Hui

    2014-01-01

    The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement. (general)

  9. Penetration depth of YBa2Cu3O7 measured by polarised neutron reflectometry

    International Nuclear Information System (INIS)

    Reynolds, J.M.; Nunez, V.; Boothroyd, A.T.; Bucknall, D.G.; Penfold, J.

    1998-01-01

    We have applied the technique of polarised neutron reflectometry (PNR) to investigate the magnetic field profile near the surface of YBa 2 Cu 3 O 7 films at 4.3 K. The samples comprised 700-1400 nm of c-axis oriented, single crystal YBa 2 Cu 3 O 7 deposited by laser ablation on SrTiO 3 substrates. The measurements were carried out on the CRISP reflectometer at the ISIS facility. The PNR technique measures the magnetic induction profile perpendicular to the surface, and so in our case the decay of flux in the c-direction was measured with a field applied parallel to the ab plane. We present preliminary data for the polarised and unpolarised reflectivity (orig.)

  10. Multiple wall-reflection effect in adaptive-array differential-phase reflectometry on QUEST

    International Nuclear Information System (INIS)

    Idei, H.; Fujisawa, A.; Nagashima, Y.; Onchi, T.; Hanada, K.; Zushi, H.; Mishra, K.; Hamasaki, M.; Hayashi, Y.; Yamamoto, M.K.

    2016-01-01

    A phased array antenna and Software-Defined Radio (SDR) heterodyne-detection systems have been developed for adaptive array approaches in reflectometry on the QUEST. In the QUEST device considered as a large oversized cavity, standing wave (multiple wall-reflection) effect was significantly observed with distorted amplitude and phase evolution even if the adaptive array analyses were applied. The distorted fields were analyzed by Fast Fourier Transform (FFT) in wavenumber domain to treat separately the components with and without wall reflections. The differential phase evolution was properly obtained from the distorted field evolution by the FFT procedures. A frequency derivative method has been proposed to overcome the multiple-wall reflection effect, and SDR super-heterodyned components with small frequency difference for the derivative method were correctly obtained using the FFT analysis

  11. A Tutorial on Basic Principles of Microwave Reflectometry Applied to Fluctuation Measurements in Fusion Plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.; Kramer, G.J.; Valeo, E.

    2001-01-01

    Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices

  12. Monitoring Protein Fouling on Polymeric Membranes Using Ultrasonic Frequency-Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Robin Fong

    2011-08-01

    Full Text Available Novel signal-processing protocols were used to extend the in situ sensitivity of ultrasonic frequency-domain reflectometry (UFDR for real-time monitoring of microfiltration (MF membrane fouling during protein purification. Different commercial membrane materials, with a nominal pore size of 0.2 µm, were challenged using bovine serum albumin (BSA and amylase as model proteins. Fouling induced by these proteins was observed in flat-sheet membrane filtration cells operating in a laminar cross-flow regime. The detection of membrane-associated proteins using UFDR was determined by applying rigorous statistical methodology to reflection spectra of ultrasonic signals obtained during membrane fouling. Data suggest that the total power reflected from membrane surfaces changes in response to protein fouling at concentrations as low as 14 μg/cm2, and results indicate that ultrasonic spectra can be leveraged to detect and monitor protein fouling on commercial MF membranes.

  13. Progress in the development of phase-sensitive neutron reflectometry methods

    International Nuclear Information System (INIS)

    Majkrzak, C.F.; Berk, N.F.; Kienzle, P.; Perez-Salas, U.

    2009-01-01

    It has been a number of years since phase-sensitive specular neutron reflectometry (PSNR) methods employing reference layers were first introduced to help remove the ambiguity inherent in the reconstruction of scattering length density (SLD) depth profiles (Majkrzak, C. F.; Berk, N. F. Physica B 2003, 336, 27) from specular reflectivity measurements. Although a number of scientific applications of PSNR techniques have now been successfully realized (Majkrzak, C. F.; Berk, N. F.; Perez-Salas, U. A. Langmuir 2003, 19, 7796 and references therein), in certain cases practical difficulties remain. In this article, we describe possible solutions to two specific problems: (1) the need for explicit, detailed knowledge of the SLD profile of a given reference layer of finite thickness; and (2) for a reference layer of finite thickness in which only two density variations are possible, how to identify which of two mathematical solutions corresponds to the true physical structure.

  14. Progress in the development of phase-sensitive neutron reflectometry methods.

    Energy Technology Data Exchange (ETDEWEB)

    Majkrzak, C. F.; Berk, N. F.; Kienzle, P.; Perez-Salas, U. (Materials Science Division); (NIST Center for Neutron Research)

    2009-01-01

    It has been a number of years since phase-sensitive specular neutron reflectometry (PSNR) methods employing reference layers were first introduced to help remove the ambiguity inherent in the reconstruction of scattering length density (SLD) depth profiles (Majkrzak, C. F.; Berk, N. F. Physica B 2003, 336, 27) from specular reflectivity measurements. Although a number of scientific applications of PSNR techniques have now been successfully realized (Majkrzak, C. F.; Berk, N. F.; Perez-Salas, U. A. Langmuir 2003, 19, 7796 and references therein), in certain cases practical difficulties remain. In this article, we describe possible solutions to two specific problems: (1) the need for explicit, detailed knowledge of the SLD profile of a given reference layer of finite thickness; and (2) for a reference layer of finite thickness in which only two density variations are possible, how to identify which of two mathematical solutions corresponds to the true physical structure.

  15. An algorithm to remove fringe jumps and its application to microwave reflectometry

    International Nuclear Information System (INIS)

    Ejiri, A.; Kawahata, K.; Shinohara, K.

    1997-01-01

    In some plasma discharges, the phase measured by microwave reflectometry has many fringe (2π radians) jumps. A new algorithm to detect and remove fringe jumps has been developed, and applied to the data in the JIPP TII-U tokamak. Using this algorithm, quantitative properties of fringe jumps, and their effects on the analysis of phase fluctuations are investigated. It was found that the occurrence of fringe jumps obeys a Poisson process, and the time scale of jumps is distributed over a wide range. Fringe jumps affect mainly the low-frequency components of phase fluctuations. Comparison of the phase corrected by the algorithm and the phase calculated from the time smoothed signals indicates that time smoothing (or frequency filtering) is an effective way to obtain information concerning the macroscopic density profile. Fringe jump and phase runaway can be phenomenologically explained by the distribution of the complex amplitude of the reflected wave. (author)

  16. Ultrasonic Reflectometry for Monitoring the Effect of Pressure on Sludge Fouling of MF Membranes

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Kujundzic, Elmira; Greenberg, Alan

    Membrane fouling remains the key limitation for the widespread use of membrane bioreactors (MBR) for wastewater treatment. This constraint has led to an increasing number of studies that examine the influence of various operational parameters and physicochemical properties on fouling layer...... formation and characteristics. In other membrane applications real-time monitoring has proven to be useful by providing a more quantitative characterization of fouling layer formation [1]. One such technique, ultrasonic reflectometry (UR), has been successfully used to detect fouling formed by a wide range...... of the effect of pressure on the fouling layer structure. The ability of UR to detect and monitor sludge fouling was studied in a series of replicated experiments of 15, 30 and 60-min duration that used commercial microfiltration (MF) membranes at a transmembrane pressure of 15 kPa. By analyzing the peak...

  17. Two-dimensional full-wave code for reflectometry simulations in TJ-II

    International Nuclear Information System (INIS)

    Blanco, E.; Heuraux, S.; Estrada, T.; Sanchez, J.; Cupido, L.

    2004-01-01

    A two-dimensional full-wave code in the extraordinary mode has been developed to simulate reflectometry in TJ-II. The code allows us to study the measurement capabilities of the future correlation reflectometer that is being installed in TJ-II. The code uses the finite-difference-time-domain technique to solve Maxwell's equations in the presence of density fluctuations. Boundary conditions are implemented by a perfectly matched layer to simulate free propagation. To assure the stability of the code, the current equations are solved by a fourth-order Runge-Kutta method. Density fluctuation parameters such as fluctuation level, wave numbers, and correlation lengths are extrapolated from those measured at the plasma edge using Langmuir probes. In addition, realistic plasma shape, density profile, magnetic configuration, and experimental setup of TJ-II are included to determine the plasma regimes in which accurate information may be obtained

  18. DS-OCDMA Encoder/Decoder Performance Analysis Using Optical Low-Coherence Reflectometry

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Obaton, Anne-Francoise; Gallion, Philippe

    2006-08-01

    Direct-sequence optical code-division multiple-access (DS-OCDMA) encoder/decoder based on sampled fiber Bragg gratings (S-FBGs) is characterized using phase-sensitive optical low-coherence reflectometry (OLCR). The OLCR technique allows localized measurements of FBG wavelength and physical length inside one S-FBG. This paper shows how the discrepancies between specifications and measurements of the different FBGs have some impact on spectral and temporal pulse responses of the OCDMA encoder/decoder. The FBG physical lengths lower than the specified ones are shown to affect the mean optical power reflected by the OCDMA encoder/decoder. The FBG wavelengths that are detuned from each other induce some modulations of S-FBG reflectivity resulting in encoder/decoder sensitivity to laser wavelength drift of the OCDMA system. Finally, highlighted by this OLCR study, some solutions to overcome limitations in performance with the S-FBG technology are suggested.

  19. Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries

    Science.gov (United States)

    Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina

    2016-01-01

    The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172

  20. GEROS-ISS: Ocean Remote Sensing with GNSS Reflectometry from the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; Camps, Adriano

    on exploiting reflected signals of opportunity from Global Navigation Satellite Systems (GNSS) at L-band to measure key parameters of ocean surfaces. GEROS will utilize the U.S. American GPS (Global Positioning System) and pioneer the exploitation of signals from Galileo and possibly other GNSS systems (GLONASS......, QZSS, BeiDou), for reflectometry and occultation, thereby improving the accuracy as well as the spatio-temporal resolution of the derived geophysical properties. The primary mission objectives of GEROS are: (1) to measure the altimetric sea surface height of the ocean using reflected GNSS signals...... the oceanographic significance of the expected measurements and to demonstrate the usefulness of the GEROS concept. The presentation will give an overview on the current status of the GEROS experiment, review the science activities within the international GARCA study and related ESA-supported science activities....

  1. Motofit - integrating neutron reflectometry acquisition, reduction and analysis into one, easy to use, package

    International Nuclear Information System (INIS)

    Nelson, Andrew

    2010-01-01

    The efficient use of complex neutron scattering instruments is often hindered by the complex nature of their operating software. This complexity exists at each experimental step: data acquisition, reduction and analysis, with each step being as important as the previous. For example, whilst command line interfaces are powerful at automated acquisition they often reduce accessibility by novice users and sometimes reduce the efficiency for advanced users. One solution to this is the development of a graphical user interface which allows the user to operate the instrument by a simple and intuitive 'push button' approach. This approach was taken by the Motofit software package for analysis of multiple contrast reflectometry data. Here we describe the extension of this package to cover the data acquisition and reduction steps for the Platypus time-of-flight neutron reflectometer. Consequently, the complete operation of an instrument is integrated into a single, easy to use, program, leading to efficient instrument usage.

  2. 1 μs broadband frequency sweeping reflectometry for plasma density and fluctuation profile measurements

    Science.gov (United States)

    Clairet, F.; Bottereau, C.; Medvedeva, A.; Molina, D.; Conway, G. D.; Silva, A.; Stroth, U.; ASDEX Upgrade Team; Tore Supra Team; Eurofusion Mst1 Team

    2017-11-01

    Frequency swept reflectometry has reached the symbolic value of 1 μs sweeping time; this performance has been made possible, thanks to an improved control of the ramp voltage driving the frequency source. In parallel, the memory depth of the acquisition system has been upgraded and can provide up to 200 000 signals during a plasma discharge. Additional improvements regarding the trigger delay determination of the acquisition and the voltage ramp linearity required by this ultra-fast technique have been set. While this diagnostic is traditionally dedicated to the plasma electron density profile measurement, such a fast sweeping rate can provide the study of fast plasma events and turbulence with unprecedented time and radial resolution from the edge to the core. Experimental results obtained on ASDEX Upgrade plasmas are presented to demonstrate the performances of the diagnostic.

  3. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    Science.gov (United States)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  4. Multimodal ophthalmic imaging using handheld spectrally encoded coherence tomography and reflectometry (SECTR)

    Science.gov (United States)

    Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.

  5. Balanced PIN-TIA photoreceiver with integrated 3 dB fiber coupler for distributed fiber optic sensors

    Science.gov (United States)

    Datta, Shubhashish; Rajagopalan, Sruti; Lemke, Shaun; Joshi, Abhay

    2014-06-01

    We report a balanced PIN-TIA photoreceiver integrated with a 3 dB fiber coupler for distributed fiber optic sensors. This detector demonstrates -3 dB bandwidth >15 GHz and coupled conversion gain >65 V/W per photodiode through either input port of the 3 dB coupler, and can be operated at local oscillator power of +17 dBm. The combined common mode rejection of the balanced photoreceiver and the integrated 3 dB coupler is >20 dB. We also present measurement results with various optical stimuli, namely impulses, sinusoids, and pseudo-random sequences, which are relevant for time domain reflectometry, frequency domain reflectometry, and code correlation sensors, respectively.

  6. Urethral pressure reflectometry, a novel technique for simultaneous recording of pressure and cross-sectional area in the prostatic urethra

    DEFF Research Database (Denmark)

    Aagaard, Mikael; Klarskov, Niels; Sønksen, Jens

    2014-01-01

    OBJECTIVE: Urethral pressure reflectometry (UPR) was introduced in 2005, for simultaneous measurement of pressure and cross-sectional area in the female urethra. It has shown to be more reproducible than conventional pressure measurement. Recently, it has been tested in the anal canal and the pro......OBJECTIVE: Urethral pressure reflectometry (UPR) was introduced in 2005, for simultaneous measurement of pressure and cross-sectional area in the female urethra. It has shown to be more reproducible than conventional pressure measurement. Recently, it has been tested in the anal canal...... version of Prostate Symptom Score, flow rate, residual urine measurements, transrectal ultrasound, urethral pressure profilometry and visual analogue scale (Discomfort). UPR parameters measured were opening and closing pressure, opening and closing elastance and hysteresis, from the bladder neck...

  7. Nd:YAG-laser-based time-domain reflectometry measurements of the intrinsic reflection signature from PMMA fiber splices

    Science.gov (United States)

    Lawson, Christopher M.; Michael, Robert R., Jr.; Dressel, Earl M.; Harmony, David W.

    1991-12-01

    Optical time domain reflectometry (OTDR) measurements have been performed on polished polymethylmethacrylate (PMMA) plastic fiber splices. After the dominant splice reflection sources due to surface roughness, inexact index matching, and fiber core misalignment were eliminated, an intrinsic OTDR signature 3 - 8 dB above the Rayleigh backscatter floor remained with all tested fibers. This minimum splice reflectivity exhibits characteristics that are consistent with sub-surface polymer damage and can be used for detection of PMMA fiber splices.

  8. Innovative Sea Surface Monitoring with GNSS-Reflectometry aboard ISS: Overview and Recent Results from GEROS-ISS

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; Bandeiras, J.

    GEROS-ISS (GEROS hereafter) stands for GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station. It is a scientific experiment, proposed to the European Space Agency (ESA)in 2011 for installation aboard the ISS. The main focus of GEROS is the dedicated use o...... of signals from the currently available Global Navigation Satellite Systems (GNSS) for remote sensing of the System Earth with focus to Climate Change characterisation. The GEROS mission idea and the current status are briefly reviewed....

  9. Design of an O-mode frequency modulated reflectometry system for the measurement of Alborz Tokamak plasma density profile

    Energy Technology Data Exchange (ETDEWEB)

    Koohestani, Saeideh [Department of Energy Engineering and physics, Amirkabir University of Technology, Tehran, 15875-4413, Islamic Republic of Iran (Iran, Islamic Republic of); Amrollahi, Reza, E-mail: amrollahi@aut.ac.ir [Department of Energy Engineering and physics, Amirkabir University of Technology, Tehran, 15875-4413, Islamic Republic of Iran (Iran, Islamic Republic of); Moradi, Gholamreza [Department of Electrical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-12-15

    Reflectometry is a common method for plasma diagnostic, in which microwaves are launched into the plasma and reflected at the critical surfaces. Comparing the reflected microwave signals with the launched waves would give rise to the plasma density profiles. In the present study, an ordinary mode (O-mode) frequency modulation (FM) reflectometry system has been designed for the electron density profile measurement of the Alborz Tokamak plasma. This system has been considered to operate at K-band (18–26.5 GHz) frequency range and scan the frequency band between 18 to 26 GHz in 40 μS. The density profile from major radius r = 47.9–51.55 cm can be measured in Alborz Tokamak plasma. Based on the Alborz Tokamak operational conditions, the characteristic frequencies, and some dimensional limitations, all parts of reflectometer have been designed so that an appropriate efficiency with minimum attenuation, especially in transmitting/receiving system would be achieved. A dual antenna and an oversized waveguide of X-band (8–12 GHz) for transmitting and receiving purposes and a balanced detector for absolute phase determination have been utilized. The details of the Alborz Tokamak FM reflectometry components focusing on the antenna and waveguide design and mounting are described in this paper. Additionally, the procedure of plasma profile reconstruction using the system output signal is discussed. This system uses signal phase shift to determine the position of the cutoff layer.

  10. Deuterium absorption in Mg70Al30 thin films with bilayer catalysts: A comparative neutron reflectometry study

    International Nuclear Information System (INIS)

    Poirier, Eric; Harrower, Chris T.; Kalisvaart, Peter; Bird, Adam; Teichert, Anke; Wallacher, Dirk; Grimm, Nico; Steitz, Roland; Mitlin, David; Fritzsche, Helmut

    2011-01-01

    Highlights: → Mg 70 Al 30 thin films studied for hydrogen absorption using in situ neutron reflectometry. → Films with Ta/Pd, Ti/Pd and Ni/Pd bilayer catalysts systematically compared. → Measurements reveals deuterium spillover from the catalysts to the MgAl phase. → The use of Ti-Pd bilayer offers best results in terms of amount absorbed and kinetics. → Key results cross-checked with X-ray reflectometry. - Abstract: We present a neutron reflectometry study of deuterium absorption in thin films of Al-containing Mg alloys capped with a Ta/Pd, Ni/Pd and Ti/Pd-catalyst bilayer. The measurements were performed at room temperature over the 0-1 bar pressure range under quasi-equilibrium conditions. The modeling of the measurements provided a nanoscale representation of the deuterium profile in the layers at different stages of the absorption process. The absorption mechanism observed was found to involve spillover of atomic deuterium from the catalyst layer to the Mg alloy phase, followed by the deuteration of the Mg alloy. Complete deuteration of the Mg alloy occurs in a pressure range between 100 and 500 mbar, dependent on the type of bilayer catalyst. The use of a Ti/Pd bilayer catalyst yielded the best results in terms of both storage density and kinetic properties.

  11. Optical frequency-domain reflectometry using multiple wavelength-swept elements of a DFB laser array

    Science.gov (United States)

    DiLazaro, Tom; Nehmetallah, Georges

    2017-02-01

    Coherent optical frequency-domain reflectometry (C-OFDR) is a distance measurement technique with significant sensitivity and detector bandwidth advantages over normal time-of-flight methods. Although several swept-wavelength laser sources exist, many exhibit short coherence lengths, or require precision mechanical tuning components. Semiconductor distributed feedback lasers (DFBs) are advantageous as a mid-to-long range OFDR source because they exhibit a narrow linewidth and can be rapidly tuned simply via injection current. However, the sweep range of an individual DFB is thermally limited. Here, we present a novel high-resolution OFDR system that uses a compact, monolithic 12-element DFB array to create a continuous, gap-free sweep over a wide wavelength range. Wavelength registration is provided by the incorporation of a HCN gas cell and reference interferometer. The wavelength-swept spectra of the 12 DFBs are combined in post-processing to achieve a continuous total wavelength sweep of more than 40 nm (5.4 THz) in the telecommunications C-Band range.

  12. Study of plasma turbulence by ultrafast sweeping reflectometry on the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Hornung, Gregoire

    2013-01-01

    The performance of a fusion reactor is closely related to the turbulence present in the plasma. The latter is responsible for anomalous transport of heat and particles that degrades the confinement. The measure and characterization of turbulence in tokamak plasma is therefore essential to the understanding and control of this phenomenon. Among the available diagnostics, the sweeping reflectometer installed on Tore Supra allows to access the plasma density fluctuations from the edge to the centre of the plasma discharge with a fine spatial (mm) and temporal resolution (μs), that is of the order of the characteristic turbulence scales.This thesis consisted in the characterization of plasma turbulence in Tore Supra by ultrafast sweeping reflectometry measurements. Correlation analyses are used to quantify the spatial and temporal scales of turbulence as well as their radial velocity. In the first part, the characterization of turbulence properties from the reconstructed plasma density profiles is discussed, in particular through a comparative study with Langmuir probe data. Then, a parametric study is presented, highlighting the effect of collisionality on turbulence, an interpretation of which is proposed in terms of the stabilization of trapped electron turbulence in the confined plasma. Finally, it is shown how additional heating at ion cyclotron frequency produces a significant though local modification of the turbulence in the plasma near the walls, resulting in a strong increase of the structure velocity and a decrease of the correlation time. The supposed effect of rectified potentials generated by the antenna is investigated via numerical simulations. (author) [fr

  13. Studying the superconductor-ferromagnet proximity effect with polarised neutron reflectometry

    Science.gov (United States)

    Satchell, Nathan; Cooper, Joshaniel; Kinane, Christy; Witt, James; Burnell, Gavin; Langridge, Sean

    At the interface between a superconductor (S) and ferromagnet (F), an inhomogeneity can convert singlet Cooper pairs into the (spin aligned) long ranged triplet component (LRTC). The manipulation of the LRTC forms the basis of the emerging field of super-spintronics. Several theoretical works predict modification to the local magnetic state inside the S layer with the inclusion of triplet Cooper pairs, however there are now several experimental observations which disagree on both the magnitude and direction of this induced moment (see for example and). Here we report on measurements of the proximity effect using polarised neutron reflectometry, a technique sensitive to changes in the total magnetisation of a S-F heterostructure. Our results suggest that a `smoking gun' direct signature of the LRTC is below the sensitivity of our technique, we are able to study the inverse effect namely a modification to the ferromagnetism by proximity to singlet superconductivity. These observations are supported by XMCD measurements showing changes to the Fe and Co below the S layer Tc.

  14. A two-dimensional regularization algorithm for density profile evaluation from broadband reflectometry

    International Nuclear Information System (INIS)

    Nunes, F.; Varela, P.; Silva, A.; Manso, M.; Santos, J.; Nunes, I.; Serra, F.; Kurzan, B.; Suttrop, W.

    1997-01-01

    Broadband reflectometry is a current technique that uses the round-trip group delays of reflected frequency-swept waves to measure density profiles of fusion plasmas. The main factor that may limit the accuracy of the reconstructed profiles is the interference of the probing waves with the plasma density fluctuations: plasma turbulence leads to random phase variations and magneto hydrodynamic activity produces mainly strong amplitude and phase modulations. Both effects cause the decrease, and eventually loss, of signal at some frequencies. Several data processing techniques can be applied to filter and/or interpolate noisy group delay data obtained from turbulent plasmas with a single frequency sweep. Here, we propose a more powerful algorithm performing two-dimensional regularization (in space and time) of data provided by multiple consecutive frequency sweeps, which leads to density profiles with improved accuracy. The new method is described and its application to simulated data corrupted by noise and missing data is considered. It is shown that the algorithm improves the identification of slowly varying plasma density perturbations by attenuating the effect of fast fluctuations and noise contained in experimental data. First results obtained with this method in ASDEX Upgrade tokamak are presented. copyright 1997 American Institute of Physics

  15. The Impact of Inter-Modulation Components on Interferometric GNSS-Reflectometry

    Directory of Open Access Journals (Sweden)

    Weiqiang Li

    2016-12-01

    Full Text Available The interferometric Global Navigation Satellite System Reflectometry (iGNSS-R exploits the full spectrum of the transmitted GNSS signal to improve the ranging performance for sea surface height applications. The Inter-Modulation (IM component of the GNSS signals is an additional component that keeps the power envelope of the composite signals constant. This extra component has been neglected in previous studies on iGNSS-R, in both modelling and instrumentation. This letter takes the GPS L1 signal as an example to analyse the impact of the IM component on iGNSS-R ocean altimetry, including signal-to-noise ratio, the altimetric sensitivity and the final altimetric precision. Analytical results show that previous estimates of the final altimetric precision were underestimated by a factor of 1 . 5 ∼ 1 . 7 due to the negligence of the IM component, which should be taken into account in proper design of the future spaceborne iGNSS-R altimetry missions.

  16. Neutron Reflectometry Investigations of the Interaction of DNA-PAMAM Dendrimers with Model Biological Membranes

    International Nuclear Information System (INIS)

    Ainalem, M.L.; Rennie, A.R.; Campbell, Richard; Edler, Karen; Nylander, Tommy

    2009-01-01

    The systemic delivery of DNA for gene therapy requires control of DNA compaction by an agent, such a lipid, surfactant or a polymer (e.g. cationic dendrimers) as well as understanding of how this complex interacts with a biological membrane. Poly (amido amine) (PAMAM) dendrimers have been reported to be a promising synthetic gene-transfection agent. We have studied the structure of the complexes formed between DNA and PAMAM dendrimers with SANS, dynamic light scattering and cryo-TEM. Here we noted that the structure of the complex formed strongly depends on the generation of the dendrimer. The results of the adsorption of generation 2 (G2) and 4 (G4) PAMAM dendrimers to surface deposited bilayers, consisting of palmitoyl oleoyl phosphatidyl choline on silicon surface, have been studied using neutron reflectometry (NR). The NR data shows that the dendrimers are able to penetrate the bilayer. However, the complex is less able to penetrate the bilayer, but rather stays on the top of the bilayer. The dendrimers appear slightly flattened on the surface in comparison with their size in bulk as determined by light scattering. We will also report on the interfacial behavior of the DNA-PAMAM complexes at other types of studies of interfaces, important for biomedical applications, where NR has allowed us to determine the layer structure and composition. (author)

  17. Signal Based Mixing Analysis for the magnetohydrodynamic mode reconstruction from homodyne microwave reflectometry

    International Nuclear Information System (INIS)

    Ejiri, Akira; Sakakibara, Satoru; Kawahata, Kazuo.

    1995-03-01

    A new method 'Signal Based Mixing Analysis', to extract the components which are coherent to a certain reference signal from a noisy signal, has been developed. The method is applied to homodyne microwave reflectometry to reconstruct the radial structure of a magnetohydrodynamic (MHD) mode in heliotron/torsatron Compact Helical System (CHS) [K. Matsuoka et al. Plasma Phys. Control. Nuclear Fusion Research 1988 Vol. 2, IAEA, Vienna 411 (1989)]. In CHS plasmas, MHD fluctuations measured with magnetic probes show bursts, in which the amplitude and frequency quasi-periodically vary. The signal based mixing analysis uses a set of functions which have the same amplitude and the harmonic frequency as those of the magnetic fluctuations. The product (mixing) of the signal of reflectometer and the functions yields the amplitude and phase of the coherent components. When the plasma density gradually increases, the measuring position moves radially outward. Thus, the radial structure of MHD modes can be obtained by this method. The analysis indicates several peaks and nodes inside the resonance surface of the MHD mode. In addition, the structure does not propagate radially during a burst. (author)

  18. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    Science.gov (United States)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  19. Urethral pressure reflectometry in women with pelvic organ prolapse: a study of reproducibility.

    Science.gov (United States)

    Khayyami, Yasmine; Lose, Gunnar; Klarskov, Niels

    2017-05-01

    The mechanism of continence in women with pelvic organ prolapse (POP) before and after surgery remains unknown. Urethral pressure reflectometry (UPR) separates women with stress urinary incontinence (SUI) from continent women by measuring urethral opening pressure at an abdominal pressure of 50 cmH 2 O (P O-Abd 50 ). UPR can help identify women with POP at risk of postoperative de novo SUI. The aim of this study was to investigate the reproducibility of UPR in women with POP. Women with anterior or posterior vaginal wall prolapse were recruited for this prospective, observational study from our outpatient clinic. The women were examined with UPR on two occasions. Measurements were done at rest, and during squeezing and straining. Statistical analyses were performed using SAS 9.4. A Bland-Altman analysis with limits of agreement and coefficients of variation was used to determine the level of agreement between measurements. Paired t tests were used to estimate the difference; a two-tailed P value of rest or during squeezing or in the values of P O-Abd 50 . P O-Abd 50 showed limits of agreement of 15.3 cmH 2 O and a coefficient of variation of 9.9 %. UPR was found to be a highly reproducible method in women with POP. UPR may be used in future studies to help reveal urodynamic features predictive of postoperative de novo SUI in women with POP.

  20. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature

    Science.gov (United States)

    Arends, A. A.; Germain, T. M.; Owens, J. F.; Putnam, S. A.

    2018-05-01

    A coupled reflectometer-interferometer apparatus is described for thin-film thickness and curvature characterization in the three-phase contact line region of evaporating fluids. Validation reflectometry studies are provided for Au, Ge, and Si substrates and thin-film coatings of SiO2 and hydrogel/Ti/SiO2. For interferometry, liquid/air and solid/air interferences are studied, where the solid/air samples consisted of glass/air/glass wedges, cylindrical lenses, and molded polydimethylsiloxane lenses. The liquid/air studies are based on steady-state evaporation experiments of water and isooctane on Si and SiO2/Ti/SiO2 wafers. The liquid thin-films facilitate characterization of both (i) the nano-scale thickness of the absorbed fluid layer and (ii) the macro-scale liquid meniscus thickness, curvature, and curvature gradient profiles. For our validation studies with commercial lenses, the apparatus is shown to measure thickness profiles within 4.1%-10.8% error.

  1. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    Science.gov (United States)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  2. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    Science.gov (United States)

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  3. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    Science.gov (United States)

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0 ), high-frequency limiting static permittivity (ε ∞ ), average relaxation time (τ 0 ), and thermodynamic parameters such as free energy (∆F τ ), enthalpy (∆H τ ), and entropy of activation (∆S τ ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  4. X mode reflectometry for edge density profile measurements on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Bottereau, C.; Chareau, J.M.; Paume, M.; Sabot, R.

    1999-01-01

    X mode heterodyne reflectometry associated with fast sweep capabilities demonstrates very precise measurement on Tore Supra and a high sensitivity (∼10 17 m -3 ) to density variations. Very good agreement with Thomson scattering measurement is observed. Fluctuations of the radial positions of the profile are no more than ± 0.5 cm. However, edge magnetic field ripple can be a concern since it is not easy to stand precisely for the wave trajectory into the plasma and for the toroidal position of the cutoff layer; nevertheless if the error can be estimated to be less than than 3 cm in the position of the whole profile, addition work is needed combining 3-D ray tracing and different antenna systems. Additional LH heating generates an ECE noise in the same frequency range of the reflectometer and is detected. This emission throughout the plasma is fortunately stopped by the upper X mode cutoff and is also reabsorbed by the electron cyclotron resonance. But at the very edge, due to a misalignment of the antenna to the plasma magnetic field and the low optical thickness of the plasma, the first cutoff frequency, i.e. the profile initialization, may be determined less precisely. (authors)

  5. Edge density X-mode reflectometry of RF-heated plasmas on ASDEX

    International Nuclear Information System (INIS)

    Schubert, R.

    1991-09-01

    In the present work microwave reflectometry is extended to the outermost part of tokamak plasmas (n e ≅ 10 11 to 1.5x10 13 cm -3 ), which is subject to strong electron density fluctuations. The perturbations of electron density profile measurements by these fluctuations, which lead to strong modulations in intensity and phase of the reflected signal is analysed in detail. By increasing the frequency of the interference fringes to values between 800 kHz and 2.4 MHz it is possible to make reliable profile measurements even in the region of very strong fluctuations. Measurements in the low density region are only possible with reasonable errors in the X-mode (Eperpendicular toB), as only the cut-off frequency of this mode, in contrast to that of the O-mode (EparallelB), takes a finite value (f ce ) for n e ->O. Taking advantage of this property, a method is presented to calibrate the measurements on the first reflection, which occurs directly in front of the microwave antennas (1-4 mm from the opening) thus giving a high precision even in the outermost part of the plasma close to the microwave antennas. For the calculation of the electron density profile a new and numerically stable algorithm has been developed. Measurements in connection with Lower Hybrid have been made with a set of 2 reflectometer antennas installed in ASDEX. (orig./AH)

  6. Analytical investigation of a novel interrogation approach of fiber Bragg grating sensors using Optical Frequency Domain Reflectometry

    Science.gov (United States)

    Yüksel, Kivilcim; Pala, Deniz

    2016-06-01

    This work presents a novel approach in interrogating Polarization Dependent Loss (PDL) of cascaded identical FBGs using Optical Frequency Domain Reflectometer (OFDR). The fundamentals of both polarisation properties of uniform FBGs and polarisation-sensitive OFDR are explained and the benefits of this novel approach in measuring transversal load are discussed. The numerical programs computing the spectral evolution of PDL of the FBGs in the array as a function of grating parameters (grating length and birefringence) are presented. Our simulation results show an excellent agreement with the previously reported simulation (and experimental) results in the literature obtained on a single FBG by using classical state-of-the-art measurement techniques. As an envisaged application, the proposed system shows the feasibility of measuring the residual stresses during manufacturing process of composite materials which is not straightforward by amplitude spectrum measurements and/or considering only the axial strains.

  7. Study on Relationship between Dielectric Constant and Water Content of Rock-Soil Mixture by Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Daosheng Ling

    2016-01-01

    Full Text Available It is important to test water content of rock-soil mixtures efficiently and accurately to ensure both the quality control of compaction and assessment of the geotechnical engineering properties. To overcome time and energy wastage and probe insertion problems when using the traditional calibration method, a TDR coaxial test tube calibration arrangement using an upward infiltration method was designed. This arrangement was then used to study the influence of dry density, pore fluid conductivity, and soil/rock ratio on the relationship between water content and the dielectric constant of rock-soil mixtures. The results show that the empirical calibration equation forms for rock-soil mixtures can be the same as for soil materials. The effect of dry density on the calibration equation has the most significance and the influence of pore fluid conductivity can be ignored. The impact of variation of the soil/rock ratio can be neutralized by considering the effect of dry density in the calibration equation for the same kind of soil and rock. The empirical equations proposed by Zhao et al. show a good accuracy for rock-soil mixtures, indicating that the TDR method can be used to test gravimetric water content conveniently and efficiently without calibration in the field.

  8. Special instrumentation developed for FARO and KROTOS FCI experiments: High temperature ultrasonic sensor and dynamic level sensor

    International Nuclear Information System (INIS)

    Huhtiniemi, I.; Jorzik, E.; Anselmi, M.

    1998-01-01

    Development and application of special instrumentation for FARO and KROTOS fuel-coolant interaction experiments at JRC-Ispra are described. A temperature sensor based on ultrasonic techniques is described with the discussion on the improvements in sensor fabrication technique and design. The sensor can be used to measure temperatures in the range from 1800 deg C to 3100 deg C with an accuracy of ± 50 deg C. The design allows local temperature measurements in multiple zones along the sensor element. This sensor has been used successfully in a number of FARO experiments where temperature distributions in molten corium pools have been measured. It will be also used in the future Phebus FP tests. Furthermore, a water level meter sensor based on the time domain reflectometry technique is described. This high speed sensor allows monitoring of liquid level under very demanding ambient conditions, as e.g. 5MPa, 550 K in FARO. This sensor has been successfully applied in a number of FARO and KROTOS tests where the water level rise caused by a molten corium and Al 2 O 3 pours have been measured. (author)

  9. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  10. Electromagnetic signal penetration in a planetary soil simulant: Estimated attenuation rates using GPR and TDR in volcanic deposits on Mount Etna

    Science.gov (United States)

    Lauro, S. E.; Mattei, E.; Cosciotti, B.; Di Paolo, F.; Arcone, S. A.; Viccaro, M.; Pettinelli, E.

    2017-07-01

    Ground-penetrating radar (GPR) is a well-established geophysical terrestrial exploration method and has recently become one of the most promising for planetary subsurface exploration. Several future landing vehicles like EXOMARS, 2020 NASA ROVER, and Chang'e-4, to mention a few, will host GPR. A GPR survey has been conducted on volcanic deposits on Mount Etna (Italy), considered a good analogue for Martian and Lunar volcanic terrains, to test a novel methodology for subsoil dielectric properties estimation. The stratigraphy of the volcanic deposits was investigated using 500 MHz and 1 GHz antennas in two different configurations: transverse electric and transverse magnetic. Sloping discontinuities have been used to estimate the loss tangents of the upper layer of such deposits by applying the amplitude-decay and frequency shift methods and approximating the GPR transmitted signal by Gaussian and Ricker wavelets. The loss tangent values, estimated using these two methodologies, were compared and validated with those retrieved from time domain reflectometry measurements acquired along the radar profiles. The results show that the proposed analysis, together with typical GPR methods for the estimation of the real part of permittivity, can be successfully used to characterize the electrical properties of planetary subsurface and to define some constraints on its lithology of the subsurface.

  11. Comparison of time domain reflectometry, capacitance methods and neutron scattering in soil moisture measurements

    International Nuclear Information System (INIS)

    Khorasani, A.; Mousavi Shalmani, M. A.; Piervali Bieranvand, N.

    2011-01-01

    An accurate, precise, fast and ease as well as the ability for measurements in depth are the characteristics that are desirable in measuring soil moisture methods. To compare methods (time domain reflectometry and capacitance) with neutron scattering for soil water monitoring, an experiment was carried out in a randomized complete block design (Split Split plot) on tomato with three replications on the experimental field of International Atomic Energy Agency (Seibersdorf-Austria). The treatment instruments for the soil moisture monitoring (main factor) consist of neutron gauge, Diviner 2000, time domain reflectometer and an EnviroScan and different irrigation systems (first sub factor) consist of trickle and furrow irrigations and different depths of soil (second sub factor) consist of 0-20, 20-40 and 40-60 cm. The results showed that for the neutron gauge and time domain reflectometer the amount of soil moisture in both of trickle and furrow irrigations were the same, but the significant differences were recorded in Diviner 2000 and EnviroScan measurements. The results of this study showed that the neutron gauge is an acceptable and reliable means with the modern technology, with a precision of ±2 mm in 450 mm soil water to a depth of 1.5 meter and can be considered as the most practical method for measuring soil moisture profiles and irrigation planning program. The time domain reflectometer method in most mineral soils, without the need for calibration, with an accuracy ±0.01m 3 m -3 has a good performance in soil moisture and electrical conductivity measurements. The Diviner 2000 and EnviroScan are not well suitable for the above conditions for several reasons such as much higher soil moisture and a large error measurement and also its sensitivity to the soil gap and to the small change in the soil moisture in comparison with the neutron gauge and the time domain reflectometer methods.

  12. GNSS reflectometry aboard the International Space Station: phase-altimetry simulation to detect ocean topography anomalies

    Science.gov (United States)

    Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens

    2016-04-01

    An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.

  13. The hydrogen epoch of reionization array dish III: measuring chromaticity of prototype element with reflectometry

    Science.gov (United States)

    Patra, Nipanjana; Parsons, Aaron R.; DeBoer, David R.; Thyagarajan, Nithyanandan; Ewall-Wice, Aaron; Hsyu, Gilbert; Leung, Tsz Kuk; Day, Cherie K.; de Lera Acedo, Eloy; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; Dillon, Joshua S.; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lebedeva, Anna; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Williams, Peter K. G.; Zheng, Haoxuan

    2018-04-01

    Spectral structures due to the instrument response is the current limiting factor for the experiments attempting to detect the redshifted 21 cm signal from the Epoch of Reionization (EoR). Recent advances in the delay spectrum methodology for measuring the redshifted 21 cm EoR power spectrum brought new attention to the impact of an antenna's frequency response on the viability of making this challenging measurement. The delay spectrum methodology provides a somewhat straightforward relationship between the time-domain response of an instrument that can be directly measured and the power spectrum modes accessible to a 21 cm EoR experiment. In this paper, we derive the explicit relationship between antenna reflection coefficient ( S 11) measurements made by a Vector Network Analyzer (VNA) and the extent of additional foreground contaminations in delay space. In the light of this mathematical framework, we examine the chromaticity of a prototype antenna element that will constitute the Hydrogen Epoch of Reionization Array (HERA) between 100 and 200 MHz. These reflectometry measurements exhibit additional structures relative to electromagnetic simulations, but we find that even without any further design improvement, such an antenna element will support measuring spatial k modes with line-of-sight components of k ∥ > 0.2 h Mpc- 1. We also find that when combined with the powerful inverse covariance weighting method used in optimal quadratic estimation of redshifted 21 cm power spectra the HERA prototype elements can successfully measure the power spectrum at spatial modes as low as k ∥ > 0.1 h Mpc- 1. This work represents a major step toward understanding the HERA antenna element and highlights a straightforward method for characterizing instrument response for future experiments designed to detect the 21 cm EoR power spectrum.

  14. Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables

    Science.gov (United States)

    Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.

    2018-04-01

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  15. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    Science.gov (United States)

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Frequency Domain Reflectometry NDE for Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.; Hartman, Trenton S.

    2017-02-16

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  17. Neutron-reflectometry study of alcohol adsorption on various DLC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, M., E-mail: mitjan.kalin@tint.fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia); Simič, R. [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia); Hirayama, T. [Department of Mechanical Engineering, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394 (Japan); Geue, T.; Korelis, P. [Paul Scherrer Institute, 5232 Villigen – PSI (Switzerland)

    2014-01-01

    Diamond-like carbon (DLC) coatings are notable for their excellent tribological properties. Our understanding of the lubrication of DLC coatings has improved drastically over the past decade. However, only a few details are known about the properties of the adsorbed layers on DLC, which crucially affect their tribological properties under lubricated conditions. In this work we used neutron reflectometry to determine the thickness and the density of adsorbed layers of alcohol molecules on several different types of DLC coatings, i.e., non-hydrogenated (a-C) and hydrogenated, of which both non-doped (a-C:H) and doped (a-C:H:F and a-C:H:Si) coatings were used. The results showed that a 0.9-nm-thick and relatively dense (≈45%) layer of alcohol adsorbed on the a-C coating. In contrast, no adsorption layer was found on the a-C:H, confirming the important role of hydrogen, which predominantly acts as a dangling-bond passivation source and affects the reactivity and tribochemistry of DLC coatings. The incorporation of F into a DLC coating also did not cause an increase in the adsorption ability with respect to alcohol molecules. On the contrary, the incorporation of Si increased the reactivity of the DLC coating so that a 1.3-nm-thick alcohol layer with a 35% bulk density was detected on the surface. We also discuss the very good agreement of the current results with the surface energy of selected coatings found in these experiments.

  18. Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas

    Science.gov (United States)

    Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.

    2018-02-01

    Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.

  19. Crystalisation of aqueous ferrofluids at the free liquid interface investigated by specular and off-specular x-ray reflectometry

    Science.gov (United States)

    Gapon, I. V.; Petrenko, V. I.; Soltwedel, O.; Khaydukov, Yu N.; Kubovcikova, M.; Kopcansky, P.; Bulavin, L. A.; Avdeev, M. V.

    2018-03-01

    Structural organization of nanoparticles from aqueous ferrofluids on free liquid surface was studied by X-ray reflectometry. The observed layered structure at interface is associated with the evaporation of the solvent. By orienting an external magnetic during evaporation of the aqueos ferrofluids their structural organization can be manipulated. For a magnetic field applied perpendicular to the surface a more pronounced ordering along the surface normal is observed as in the case of a parallel field. Independent on the orientation of the magantic field a ∼ 20 μm thick surface layer of depleted nanoparticle concentration is found at the interface.

  20. Application of off-specular polarized neutron reflectometry to measurements on an array of mesoscopic ferromagnetic disks

    International Nuclear Information System (INIS)

    Temst, K.; Van Bael, M. J.; Fritzsche, H.

    2001-01-01

    Using off-specular polarized neutron reflectometry with neutron spin analysis, we determined the magnetic properties of a large array of in-plane magnetized ferromagnetic Co disks. Resonant peaks are clearly observed in the off-specular reflectivity, due to the lateral periodicity of the disk array. Using polarized neutrons, the intensity of the resonant peak in the off-specular reflectivity is studied as a function of the magnetic field applied in the sample plane. Spin analysis of the reflected neutrons reveals the magnetization reversal and saturation within the disks. copyright 2001 American Institute of Physics

  1. Detection of local birefringence in embedded fiber Bragg grating caused by concentrated transverse load using optical frequency domain reflectometry

    Science.gov (United States)

    Wada, D.; Murayama, H.; Igawa, H.

    2014-05-01

    We investigate the capability of local birefringence detection in an embedded fiber Bragg grating (FBG) using optical frequency domain reflectometry. We embed an FBG into carbon fiber reinforced plastic specimen, and conduct 3-point bending test. The cross-sectional stresses are applied to the FBG at the loading location in addition to the non-uniform longitudinal strain distribution over the length of the FBG. The local birefringence due to the cross-sectional stresses was successfully detected while the non-uniform longitudinal strain distribution was accurately measured.

  2. Soil-embedded optical fiber sensing cable interrogated by Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) for embedded cavity detection and sinkhole warning system

    International Nuclear Information System (INIS)

    Lanticq, V; Bourgeois, E; Delepine-Lesoille, S; Magnien, P; Dieleman, L; Vinceslas, G; Sang, A

    2009-01-01

    A soil-embedded optical fiber sensing cable is evaluated for an embedded cavity detection and sinkhole warning system in railway tunnels. Tests were performed on a decametric structure equipped with an embedded 110 m long fiber optic cable. Both Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) sensing techniques were used for cable interrogation, yielding results that were in good qualitative agreement with finite-element calculations. Theoretical and experimental comparison enabled physical interpretation of the influence of ground properties, and the analysis of embedded cavity size and position. A 5 mm embedded cavity located 2 m away from the sensing cable was detected. The commercially available sensing cable remained intact after soil collapse. Specificities of each technique are analyzed in view of the application requirements. For tunnel monitoring, the OFDR technique was determined to be more viable than the B-OTDR due to higher spatial resolution, resulting in better detection and size determination of the embedded cavities. Conclusions of this investigation gave outlines for future field use of distributed strain-sensing methods under railways and more precisely enabled designing a warning system suited to the Ebersviller tunnel specificities

  3. Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry

    Science.gov (United States)

    Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team

    2017-02-01

    In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.

  4. Separation and correlation of structural and magnetic roughness in a Ni thin film by polarized off-specular neutron reflectometry.

    Science.gov (United States)

    Singh, Surendra; Basu, Saibal

    2009-02-04

    Diffuse (off-specular) neutron and x-ray reflectometry has been used extensively for the determination of interface morphology in solids and liquids. For neutrons, a novel possibility is off-specular reflectometry with polarized neutrons to determine the morphology of a magnetic interface. There have been few such attempts due to the lower brilliance of neutron sources, though magnetic interaction of neutrons with atomic magnetic moments is much easier to comprehend and easily tractable theoretically. We have obtained a simple and physically meaningful expression, under the Born approximation, for analyzing polarized diffuse (off-specular) neutron reflectivity (PDNR) data. For the first time PDNR data from a Ni film have been analyzed and separate chemical and magnetic morphologies have been quantified. Also specular polarized neutron reflectivity measurements have been carried out to measure the magnetic moment density profile of the Ni film. The fit to PDNR data results in a longer correlation length for in-plane magnetic roughness than for chemical (structural) roughness. The magnetic interface is smoother than the chemical interface.

  5. Coastal Application of Altimetric Measurement using Wideband Signals of Opportunity Reflectometry

    Science.gov (United States)

    Shah, R.; Garrison, J. L.; Li, Z.; Ho, S. C.

    2017-12-01

    The majority of the world's population live in coastal regions, making this region subject to growing stress from resource exploitation, marine operations, and other human activities. The coastal ocean is also a highly dynamic region driven by the interfaces between land, sea, and air. Understanding the evolution over short temporal and small spatial scales of the coastal ocean environment is a complex and long-standing challenge. Over the last decade, it has been well established that submesoscale processes are highly energetic and have a temporal scale of hours at a 10-km of spatial scale. These processes fundamentally impact ocean dynamics, biological processes, trace gas mixing and transport. Satellite altimeters, which have played a significant role in mapping the variability of the Earth's open ocean, have known limitations in coastal areas resulting from land contamination and rapid variations due to tides and atmospheric effects. This study will evaluate the potential application of an emerging remote sensing technology (Signals of Opportunity Reflectometry: SoOp-R) to the problem of resolving submesoscale processes in the coastal regions, with spatial scales on the order of 10 km and temporal scales on the order of 1 day. SoOp-R reutilizes existing powerful communication satellite transmissions as illumination sources in a bistatic radar configuration. A number of direct broadcast satellites (DBS), currently operating in geostationary orbit, occupy very large bandwidth (400-500 MHz) spectral allocations in the Ku- and Ka- bands. Theoretically, sea surface height (SSH) can be estimated by measuring the reflected path delay of these signals with very high precision (on the order of 4-5 cm) due to the large bandwidth and high signal- to-noise ratio. SoOp-R instruments are passive, requiring only low-power receivers which could be launched on constellations of small satellites. The distribution of altimetry measurements, combined with the off-nadir geometry

  6. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  7. Medida de la evapotranspiración real en coberturas vegetales semiáridas (Cuenca de Mula, Murcia), según las varicaciones de humedad del suelo medidas mediante el procedimiento (TDR)

    OpenAIRE

    Belmonte Serrato, Francisco; Romero Díaz, María Asunción

    2006-01-01

    En este trabajo se presenta un método de medida directa de la Evapotranspiración Real (ETR) bajo distintas coberturas vegetales, basado en las diferencias de humedad en el suelo medidas mediante el procedimiento TDR, en un intervalo temporal de 15 días y su comparación con los valores calculados mediante el método de Thornthwaite, que usa la temperatura media como parámetro fundamental. Los resultados demuestran la validez del método utilizado, habiendo obtenido valores de E...

  8. Development and application of poloidal correlation reflectometry to study turbulent structures in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Prisiazhniuk, Dmitrii

    2017-06-05

    One of the key question of high temperature plasma confinement in a magnetic field is how plasma turbulence influences the radial transport of particles and energy. A better understanding of transport processes caused by turbulence would allow to improve the plasma confinement in fusion devices. To this end a deeper understanding of the mechanisms controlling the development, saturation and stabilization of turbulence is needed. From the experimental point of view a main challenge in these investigations is the measurement of plasma parameters on both small temporal (μs) and spatial (mm) scales. In this thesis a new microwave heterodyne poloidal correlation reflectometry diagnostic has been developed and installed at the ASDEX Upgrade tokamak to investigate the cross-correlation of turbulent density fluctuations. This diagnostic yields information on fundamental turbulence parameters such as the perpendicular propagation velocity v {sub perpendicular} {sub to}, the perpendicular correlation length l {sub perpendicular} {sub to} (characteristic size of the turbulent eddies) and the decorrelation time τ{sub d} (characteristic life time of the turbulent eddies) over a wide range of plasma densities. The inclination of the turbulent eddies α in the poloidal-toroidal plane spanned by the magnetic flux surfaces of a tokamak, being a measure of the magnetic field pitch angle, can also be obtained. The turbulence investigations were performed in low confinement mode (L-mode) plasmas for a range of plasma parameters. All measurements were interpreted taking into account the transfer function of reflectometry in the Born approximation. The results are compared with theoretical predictions and simulations. In the first part of this thesis the inclination and the propagation of turbulent structures are investigated. It is shown that eddies are nearly aligned to the magnetic field line and, therefore, the magnetic field pitch angle can be measured with a precision of about 1

  9. Full distributed fiber optical sensor for intrusion detection in application to buried pipelines

    Science.gov (United States)

    Gao, Jianzhong; Jiang, Zhuangde; Zhao, Yulong; Zhu, Li; Zhao, Guoxian

    2005-11-01

    Based on the microbend effect of optical fiber, a distributed sensor for real-time continuous monitoring of intrusion in application to buried pipelines is proposed. The sensing element is a long cable with a special structure made up of an elastic polymer wire, an optical fiber, and a metal wire. The damage point is located with an embedded optical time domain reflectometry (OTDR) instrument. The intrusion types can be indicated by the amplitude of output voltage. Experimental results show that the detection system can alarm adequately under abnormal load and can locate the intrusion point within 22.4 m for distance of 3.023 km.

  10. The urethral closure function in continent and stress urinary incontinent women assessed by urethral pressure reflectometry.

    Science.gov (United States)

    Saaby, Marie-Louise

    2014-02-01

    Stress urinary incontinence (SUI) occurs when the bladder pressure exceeds the urethral pressure in connection with physical effort or exertion or when sneezing or coughing and depends both on the strength of the urethral closure function and the abdominal pressure to which it is subjected. The urethral closure function in continent women and the dysfunction causing SUI are not known in details. The currently accepted view is based on the concept of a sphincteric unit and a support system. Our incomplete knowledge relates to the complexity of the closure apparatus and to inadequate assessment methods which so far have not provided robust urodynamic diagnostic tools, severity measures, or parameters to assess outcome after intervention. Urethral Pressure Reflectometry (UPR) is a novel method that measures the urethral pressure and cross-sectional area (by use of sound waves) simultaneously. The technique involves insertion of only a small, light and flexible polyurethane bag in the urethra and therefore avoids the common artifacts encountered with conventional methods. The UPR parameters can be obtained at a specific site of the urethra, e.g. the high pressure zone, and during various circumstances, i.e. resting and squeezing. During the study period, we advanced the UPR technique to enable faster measurement (within 7 seconds by the continuous technique) which allowed assessment during increased intra-abdominal pressure induced by physical straining. We investigated the urethral closure function in continent and SUI women during resting and straining by the "fast" UPR technique. Thereby new promising urethral parameters were provided that allowed characterization of the closure function based on the permanent closure forces (primarily generated by the sphincteric unit, measured by the Po-rest) and the adjunctive closure forces (primarily generated by the support system, measured by the abdominal to urethral pressure impact ratio (APIR)). The new parameters enabled

  11. Effect of fesoterodine on urethral closure function in women with stress urinary incontinence assessed by urethral pressure reflectometry

    DEFF Research Database (Denmark)

    Klarskov, Niels; Darekar, Amanda; Scholfield, David

    2014-01-01

    INTRODUCTION AND HYPOTHESIS: The aim was to evaluate, using urethral pressure reflectometry (UPR), the effect of fesoterodine on urethral function in women with stress urinary incontinence (SUI). METHODS: Women aged 18 to 65 years were eligible for this randomised, double-blind, placebo...... significant differences were seen between fesoterodine 4 mg or fesoterodine 8 mg and placebo in opening urethral pressure (primary endpoint) or other UPR endpoints. No statistically significant differences were seen between either fesoterodine dose and placebo in the change from baseline in the bladder diary...... variables (total urinary incontinence, SUI, or urgency urinary incontinence episodes per 24 h). Adverse events were reported by 8 participants taking fesoterodine 4 mg, 17 taking fesoterodine 8 mg, and 8 taking placebo. CONCLUSIONS: Fesoterodine did not affect urethral pressure or significantly decrease...

  12. Non-invasive, MRI-compatible fibreoptic device for functional near-IR reflectometry of human brain

    International Nuclear Information System (INIS)

    Sorvoja, H.S.S.; Myllylae, T S; Myllylae, Risto A; Kirillin, M Yu; Sergeeva, Ekaterina A; Elseoud, A A; Nikkinen, J; Tervonen, O; Kiviniemi, V

    2011-01-01

    A non-invasive device for measuring blood oxygen variations in human brain is designed, implemented, and tested for MRI compatibility. The device is based on principles of near-IR reflectometry; power LEDs serve as sources of probing radiation delivered to patient skin surface through optical fibres. Numerical Monte Carlo simulations of probing radiation propagation in a multilayer brain model are performed to evaluate signal levels at different source - detector separations at three operation wavelengths and an additional wavelength of 915 nm. It is shown that the device can be applied for brain activity studies using power LEDs operating at 830 and 915 nm, while employment of wavelength of 660 nm requires an increased probing power. Employment of the wavelength of 592 nm in the current configuration is unreasonable. (application of lasers and laser-optical methods in life sciences)

  13. Investigating the effects of smoothness of interfaces on stability of probing nano-scale thin films by neutron reflectometry

    Directory of Open Access Journals (Sweden)

    S.S. Jahromi

    2012-03-01

    Full Text Available Most of the reflectometry methods which are used for determining the phase of complex reflection coefficient such as Reference Method and Variation of Surroundings medium are based on solving the Schrödinger equation using a discontinuous and step-like scattering optical potential. However, during the deposition process for making a real sample the two adjacent layers are mixed together and the interface would not be discontinuous and sharp. The smearing of adjacent layers at the interface (smoothness of interface, would affect the the reflectivity, phase of reflection coefficient and reconstruction of the scattering length density (SLD of the sample. In this paper, we have investigated the stability of Reference Method in the presence of smooth interfaces. The smoothness of interfaces is considered by using a continuous function scattering potential. We have also proposed a method to achieve the most reliable output result while retrieving the SLD of the sample.

  14. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems.

    Science.gov (United States)

    Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang

    2018-02-20

    We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.

  15. Modification of ordinary-mode reflectometry system to detect lower-hybrid waves in Alcator C-Moda)

    Science.gov (United States)

    Baek, S. G.; Shiraiwa, S.; Parker, R. R.; Dominguez, A.; Kramer, G. J.; Marmar, E. S.

    2012-10-01

    Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closed flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.

  16. Ordinary mode reflectometry. Modification of the scattering and cut-off responses due to the shape of localized density fluctuations

    International Nuclear Information System (INIS)

    Fanack, C.; Boucher, I.; Heuraux, S.; Leclert, G.; Clairet, F.; Zou, X.L.

    1996-01-01

    Ordinary wave reflectometry in a plasma containing a localized density perturbation is studied with a 1-D model. The phase response is studied as a function of the wavenumber and position of the perturbation. It is shown that it strongly depends upon the perturbation shape and size. For a small perturbation wavenumber, the response is due to the oscillation of the cut-off layer. For larger wavenumbers, two regimes are found: for a broad perturbation, the phase response is an image of the perturbation itself; for a narrow perturbation, it is rather an image of the Fourier transform. For tokamak plasmas it turns out that, for the fluctuation spectra usually observed, the phase response comes primarily from those fluctuations that are localized at the cut-off. Results of a 2-D numerical model show that geometry effects are negligible for the scattering by radial fluctuations. (author)

  17. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built

  18. Review of state of the art methods for measuring water in landfills

    International Nuclear Information System (INIS)

    Imhoff, Paul T.; Reinhart, Debra R.; Englund, Marja; Guerin, Roger; Gawande, Nitin; Han, Byunghyun; Jonnalagadda, Sreeram; Townsend, Timothy G.; Yazdani, Ramin

    2007-01-01

    In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field

  19. Distributed perfluorinated POF strain sensor using OTDR and OFDR techniques

    Science.gov (United States)

    Liehr, Sascha; Wendt, Mario; Krebber, Katerina

    2009-10-01

    This paper presents the latest advances in distributed strain sensing using perfluorinated (PF) polymer optical fibers (POF). Compared to previously introduced PMMA POF strain sensors, PF POF have the advantage of lower loss and therefore extended measurement length of more than 500 m at increased spatial resolution of 10 cm. It is shown that PF POF can measure strain distributed up to 100 %. The characteristic backscatter signature of this fiber type provides additional evaluation possibilities. We show that, by applying a cross-correlation algorithm to the backscatter signal, the distributed length change can be measured along the fiber. We also present, to our knowledge for the first time, incoherent Optical Frequency Domain Reflectometry (OFDR) in POF to measure distributed reflections and loss along the fiber. The OFDR technique proves superior to existing OTDR techniques in measurement speed, resolution and potential instrument costs.

  20. Sensors, Volume 4, Thermal Sensors

    Science.gov (United States)

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  1. Deuterium absorption in Mg{sub 70}Al{sub 30} thin films with bilayer catalysts: A comparative neutron reflectometry study

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Eric [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Harrower, Chris T.; Kalisvaart, Peter [Chemical and Materials Engineering, University of Alberta and National Research Council Canada/National Institute for Nanotechnology, Edmonton, AB, T6G 2M9 (Canada); Bird, Adam [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Teichert, Anke [Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Instituut voor Kern-en Stralingsfysica and INPAC, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Laboratorium voor Vaste-Stoffysica en Magnetisme and INPAC, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wallacher, Dirk; Grimm, Nico; Steitz, Roland [Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Mitlin, David [Chemical and Materials Engineering, University of Alberta and National Research Council Canada/National Institute for Nanotechnology, Edmonton, AB, T6G 2M9 (Canada); Fritzsche, Helmut, E-mail: Helmut.Fritzsche@nrc-cnrc.gc.ca [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada)

    2011-05-05

    Highlights: > Mg{sub 70}Al{sub 30} thin films studied for hydrogen absorption using in situ neutron reflectometry. > Films with Ta/Pd, Ti/Pd and Ni/Pd bilayer catalysts systematically compared. > Measurements reveals deuterium spillover from the catalysts to the MgAl phase. > The use of Ti-Pd bilayer offers best results in terms of amount absorbed and kinetics. > Key results cross-checked with X-ray reflectometry. - Abstract: We present a neutron reflectometry study of deuterium absorption in thin films of Al-containing Mg alloys capped with a Ta/Pd, Ni/Pd and Ti/Pd-catalyst bilayer. The measurements were performed at room temperature over the 0-1 bar pressure range under quasi-equilibrium conditions. The modeling of the measurements provided a nanoscale representation of the deuterium profile in the layers at different stages of the absorption process. The absorption mechanism observed was found to involve spillover of atomic deuterium from the catalyst layer to the Mg alloy phase, followed by the deuteration of the Mg alloy. Complete deuteration of the Mg alloy occurs in a pressure range between 100 and 500 mbar, dependent on the type of bilayer catalyst. The use of a Ti/Pd bilayer catalyst yielded the best results in terms of both storage density and kinetic properties.

  2. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  3. Gas Sensor

    KAUST Repository

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  4. Sensor web

    Science.gov (United States)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  5. Chemical sensors

    International Nuclear Information System (INIS)

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  6. Health monitoring of unmanned aerial vehicle based on optical fiber sensor array

    Science.gov (United States)

    Luo, Yuxiang; Shen, Jingshi; Shao, Fei; Guo, Chunhui; Yang, Ning; Zhang, Jiande

    2017-10-01

    The unmanned aerial vehicle (UAV) in flight needs to face the complicated environment, especially to withstand harsh weather conditions, such as the temperature and pressure. Compared with conventional sensors, fiber Bragg grating (FBG) sensor has the advantages of small size, light weight, high reliability, high precision, anti-electromagnetic interference, long lift-span, moistureproof and good resistance to causticity. It's easy to be embedded in composite structural components of UAVs. In the paper, over 1000 FBG sensors distribute regularly on a wide range of UAVs body, combining wavelength division multiplexing (WDM), time division multiplexing (TDM) and multichannel parallel architecture. WDM has the advantage of high spatial resolution. TDM has the advantage of large capacity and wide range. It is worthful to constitute a sensor network by different technologies. For the signal demodulation of FBG sensor array, WDM works by means of wavelength scanning light sources and F-P etalon. TDM adopts the technology of optical time-domain reflectometry. In order to demodulate efficiently, the most proper sensor multiplex number with some reflectivity is given by the curves fitting. Due to the regular array arrangement of FBG sensors on the UAVs, we can acquire the health state of UAVs in the form of 3D visualization. It is helpful to master the information of health status rapidly and give a real-time health evaluation.

  7. Measurement of plasma current in Tokamaks using an optical fibre reflectometry technique

    Directory of Open Access Journals (Sweden)

    Wuilpart Marc

    2018-01-01

    Full Text Available An optical time-domain reflectometer sensitive to the polarization of light is proposed for the measurement of plasma current in the Tore Supra fusion reactor. The measurement principle relies on the Faraday effect i.e. on the generation of a circular birefringence along an optical fiber subject to an axial magnetic field. The circular birefringence induces a polarization rotation that can be mapped along the fiber thanks to an opticaltime domain reflectometer followed by an linear polarizer. A proper fitting of the measurement trace then allows determining the applied plasma current. The sensor has been experimentally validated on the Tore Supra tokamak fusion reactor for a plasma current range going from 0.6 to 1.5 MA. A maximum error of 13.50% has been observed for the lowest current.

  8. First Spaceborne GNSS-Reflectometry Observations of Hurricanes From the UK TechDemoSat-1 Mission

    Science.gov (United States)

    Foti, Giuseppe; Gommenginger, Christine; Srokosz, Meric

    2017-12-01

    We present the first examples of Global Navigation Satellite Systems-Reflectometry (GNSS-R) observations of hurricanes using spaceborne data from the UK TechDemoSat-1 (TDS-1) mission. We confirm that GNSS-R signals can detect ocean condition changes in very high near-surface ocean wind associated with hurricanes. TDS-1 GNSS-R reflections were collocated with International Best Track Archive for Climate Stewardship (IBTrACS) hurricane data, MetOp ASCAT A/B scatterometer winds, and two reanalysis products. Clear variations of GNSS-R reflected power (σ0) are observed as reflections travel through hurricanes, in some cases up to and through the eye wall. The GNSS-R reflected power is tentatively inverted to estimate wind speed using the TDS-1 baseline wind retrieval algorithm developed for low to moderate winds. Despite this, TDS-1 GNSS-R winds through the hurricanes show closer agreement with IBTrACS estimates than winds provided by scatterometers and reanalyses. GNSS-R wind profiles show realistic spatial patterns and sharp gradients that are consistent with expected structures around the eye of tropical cyclones.

  9. Multiple resolution chirp reflectometry for fault localization and diagnosis in a high voltage cable in automotive electronics

    Science.gov (United States)

    Chang, Seung Jin; Lee, Chun Ku; Shin, Yong-June; Park, Jin Bae

    2016-12-01

    A multiple chirp reflectometry system with a fault estimation process is proposed to obtain multiple resolution and to measure the degree of fault in a target cable. A multiple resolution algorithm has the ability to localize faults, regardless of fault location. The time delay information, which is derived from the normalized cross-correlation between the incident signal and bandpass filtered reflected signals, is converted to a fault location and cable length. The in-phase and quadrature components are obtained by lowpass filtering of the mixed signal of the incident signal and the reflected signal. Based on in-phase and quadrature components, the reflection coefficient is estimated by the proposed fault estimation process including the mixing and filtering procedure. Also, the measurement uncertainty for this experiment is analyzed according to the Guide to the Expression of Uncertainty in Measurement. To verify the performance of the proposed method, we conduct comparative experiments to detect and measure faults under different conditions. Considering the installation environment of the high voltage cable used in an actual vehicle, target cable length and fault position are designed. To simulate the degree of fault, the variety of termination impedance (10 Ω , 30 Ω , 50 Ω , and 1 \\text{k} Ω ) are used and estimated by the proposed method in this experiment. The proposed method demonstrates advantages in that it has multiple resolution to overcome the blind spot problem, and can assess the state of the fault.

  10. Determination of manganese interdiffusion parameters in CoFe/IrMn bilayers by X-ray reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Pablo Forlam Ribeiro; Andrade, Leandro Hostalacio Freire; Fernandez-Outon, Luis Eugenio; Macedo, Waldemar Augusto de Almeida, E-mail: pfrb@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Interfacial diffusion is expected to have strong influence on the exchange bias coupling in ferromagnetic/antiferromagnetic bilayers, basic structures for spintronic devices [1]. In this work, X-ray reflectometry (XRR) in combination with the Fick's second law [2] was applied to determine manganese interdiffusion parameters in CoFe/IrMn exchange-biased bilayers prepared by magnetron sputtering. The layer thickness and the interfacial roughness of the samples were obtained by fitting the reflectivity curves and the values confirmed by transmission electron microscopy. The manganese diffusion coefficient at the interfaces is in the range of 10{sup -22} m{sup 2}/s, and the activation energy for the interfacial diffusion of manganese is in the order of a few tens of kJ/mol, based on the values of interfacial roughness for different annealing temperatures. References: [1] L. E. Fernandez-Outon, M. S. Araujo Filho, R. E. Araujo, J. D. Ardisson, and W. A. A. Macedo. J. Appl. Phys. 113, 17D704 (2013). [2] J. Y. Wang, A. Zalar, Y.H. Zhao, E.J. Mittemeijer. Thin Solid Films. 433, 92 (2003). (author)

  11. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath

    2012-01-01

    Highlights: ► Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. ► Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. ► Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni–Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  12. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Basu, Saibal; Singh, Surendra [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Roy, Sumalay; Dev, Bhupendra Nath [Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. Black-Right-Pointing-Pointer Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. Black-Right-Pointing-Pointer Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  13. Nanostructure of polymer monolayer and polyelectrolyte brush at air/water interface by X-ray and neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Hideki; Mouri, Emiko; Matsumoto, Kozo [Kyoto Univ., Dept. of Polymer Chemistry, Kyoto (Japan)

    2003-03-01

    The nanostructure of amphiphilic diblock copolymer monolayer on water was directly investigated by in situ X-ray and neutron reflectivity techniques. The diblock copolymer consists of polysilacyclobutane, which is very flexible, as a hydrophobic block and polymethacrylic acid, an anionic polymer, as a hydrophilic block. The polymers with shorter hydrophilic segment formed a very smooth and uniform monolayer with hydrophobic layer on water and dense hydrophilic layer under the water. But the longer hydrophilic segment polymer formed three-layered monolayer with polyelectrolyte brush in addition to hydrophobic and dense hydrophilic layers. The dense hydrophilic layer is thought to be formed to avoid a contact between hydrophobic polymer layer and water. Its role is something like a 'carpet'. An additional interesting information is that the thickness of the 'carpet layer' is almost 15A, independent the surface pressure and hydrophilic polymer length. Highly quantitative information was obtained about the nanostructure of polymer brush under water by neutron reflectometry with the aid of contrast variation technique. X-ray and neutron reflectivity is a very powerful technique to investigate the nanostructure of surface and interfaces, which is important not only for surface nanotechnology but also industrial and medical applications. (author)

  14. Size effect in the spin glass magnetization of thin AuFe films as studied by polarized neutron reflectometry.

    Science.gov (United States)

    Saoudi, M; Fritzsche, H; Nieuwenhuys, G J; Hesselberth, M B S

    2008-02-08

    We used polarized neutron reflectometry to determine the temperature dependence of the magnetization of thin AuFe films with 3% Fe concentration. We performed the measurements in a large magnetic field of 6 T in a temperature range from 295 to 2 K. For the films in the thickness range from 500 to 20 nm we observed a Brillouin-type behavior from 295 K down to 50 K and a constant magnetization of about 0.9 micro(B) per Fe atom below 30 K. However, for the 10 nm thick film we observed a Brillouin-type behavior down to 20 K and a constant magnetization of about 1.3 micro(B) per Fe atom below 20 K. These experiments are the first to show a finite-size effect in the magnetization of single spin-glass films in large magnetic fields. Furthermore, the ability to measure the deviation from the paramagnetic behavior enables us to prove the existence of the spin-glass state where other methods relying on a cusp-type behavior fail.

  15. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  16. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  17. Optischer Sensor

    OpenAIRE

    Brandenburg, A.; Hutter, F.; Edelhaeuser, R.

    1992-01-01

    WO 2010040565 A1 UPAB: 20100506 NOVELTY - The integrated optical sensor comprises a first waveguide (4), a second waveguide (5) optically coupled to the first waveguide via a directional coupler, a substrate, which carries the first and the second waveguides, a single waveguide coupled with a light source, and an output waveguide coupled with a light-sensitive element. The sensor has a functional surface in the region of the directional coupler for depositing or deposition of the substance to...

  18. Wireless sensor

    Science.gov (United States)

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.; Sepaniak, Michael J.

    2016-02-09

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  19. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor.

    Science.gov (United States)

    Liu, Weina; Sun, Haoran; Xu, Lei

    2018-05-05

    We present a microwave method for the dielectric characterization of small liquids based on a metamaterial-based sensor The proposed sensor consists of a micro-strip line and a double split-ring resonator (SRR). A large electric field is observed on the two splits of the double SRRs at the resonance frequency (1.9 GHz). The dielectric property data of the samples under test (SUTs) were obtained with two measurements. One is with the sensor loaded with the reference liquid (REF) and the other is with the sensor loaded with the SUTs. Additionally, the principle of extracting permittivity from measured changes of resonance characteristics changes of the sensor loaded with REF and SUTs is given. Some measurements were carried out at 1.9 GHz, and the calculated results of methanol⁻water mixtures with different molar fractions agree well with the time-domain reflectometry method. Moreover, the proposed sensor is compact and highly sensitive for use of sub-wavelength resonance. In comparison with literature data, relative errors are less than 3% for the real parts and 2% for the imaginary parts of complex permittivity.

  20. Development of a flexible Doppler reflectometry system and its application to turbulence characterization in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Troester, Carolin Helma

    2008-04-15

    An essential challenge in present fusion plasma research is the study of plasma turbulence. The turbulence behavior is investigated experimentally on the ASDEX Upgrade tokamak using Doppler reflectometry, a diagnostic technique sensitive to density fluctuations at a specific wavenumber k {sub perpendicular} {sub to}. This microwave radar diagnostic utilizes localized Bragg backscattering of the launched beam (k{sub 0}) by the density fluctuations at the plasma cutoff layer. The incident angle {theta} selects the probed k {sub perpendicular} {sub to} via the Bragg condition k {sub perpendicular} {sub to} {approx} 2k{sub 0}sin{theta}. The measured Doppler shifted frequency spectrum allows the determination of the perpendicular plasma rotation velocity, u {sub perpendicular} {sub to} =v{sub E} {sub x} {sub B}+v{sub turb}, directly from the Doppler frequency shift(f{sub D} = u {sub perpendicular} {sub to} k {sub perpendicular} {sub to} /2{pi}), and the turbulence amplitude from the backscattered power level. This thesis work presents a survey of u {sub perpendicular} {sub to} radial profiles and k {sub perpendicular} {sub to} spectrum measurements for a variety of plasma conditions obtained by scanning the antenna tilt angle. This was achieved by extending the existing V-band Doppler reflectometry system (50 - 75 GHz) with a new W-band system (75 - 110 GHz), which was especially designed for measuring the k {sub perpendicular} {sub to} spectrum and additionally expands the radial coverage into the plasma core region. It consists of a remote steerable antenna with an adjustable line of sight allowing for dynamic wavenumber selection up to 25 cm {sup -1} and a reflectometer with a 'phase locked loop' stabilized transmitter allowing for the precise determination of the instrument response function. The proper system functionality was demonstrated by laboratory testing and benckmarking against the V-band system. The new profile measurements obtained show a

  1. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  2. Chemical denaturation of globular proteins at the air/water interface: an x-ray and neutron reflectometry study

    International Nuclear Information System (INIS)

    Perriman, A.W.; Henderson, M.J.; White, J.W.

    2003-01-01

    Full text: X-ray and neutron reflectometry has been used to probe the equilibrium surface structure of hen egg white lysozyme (lysozyme) and bovine β -lactoglobulin (β -lactoglobulin) under denaturing conditions at the air-water interface. This was achieved by performing experiments on 10 mg mL -1 protein solutions containing increasing concentrations of the chemical denaturant guanidinium hydrochloride (G.HCl). For solutions containing no G.HCl, the surface structure of the proteins was represented by a two-layer model with total thicknesses of 48 Angstroms and 38 Angstroms for lysozyme and β -lactoglobulin, respectively. The total volume of a single protein molecule and the associated water molecules was evaluated to be approximately 45 (0.3) nm 3 for lysozyme, and 60 (0.3) nm 3 for β-lactoglobulin. The thickness dimensions and the total volumes compared favourably with the crystal dimensions of 45 x 30 x 30 Angstroms (40.5 nm 3 ),1 and 36 x 36 x 36 Angstroms (47 nm 3 ) 2 for lysozyme and β -lactoglobulin, respectively. This comparison suggests that when no denaturant was present, the structures of lysozyme and β -lactoglobulin were near to their native conformations at the air-water interface. The response to the presence of the chemical denaturant was different for each protein. The surface layer of β-lactoglobulin expanded at very low concentrations (0.2 mol dm -3 ) of G.HCl. In contrast, the lysozyme layer contracted. At higher concentrations, unfolding of both the proteins led to the formation of a third diffuse layer. In general, lysozyme appeared to be less responsive to the chemical denaturant, which is most likely a result of the higher disulfide content of lysozyme. A protocol allowing quantitative thermodynamic analysis of the contribution from the air-water interface to the chemical denaturation of a protein was developed

  3. Simulation of space-borne tsunami detection using GNSS-Reflectometry applied to tsunamis in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    R. Stosius

    2010-06-01

    Full Text Available Within the German-Indonesian Tsunami Early Warning System project GITEWS (Rudloff et al., 2009, a feasibility study on a future tsunami detection system from space has been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R is an innovative way of using reflected GNSS signals for remote sensing, e.g. sea surface altimetry. In contrast to conventional satellite radar altimetry, multiple height measurements within a wide field of view can be made simultaneously. With a dedicated Low Earth Orbit (LEO constellation of satellites equipped with GNSS-R, densely spaced sea surface height measurements could be established to detect tsunamis. This simulation study compares the Walker and the meshed comb constellation with respect to their global reflection point distribution. The detection performance of various LEO constellation scenarios with GPS, GLONASS and Galileo as signal sources is investigated. The study concentrates on the detection performance for six historic tsunami events in the Indian Ocean generated by earthquakes of different magnitudes, as well as on different constellation types and orbit parameters. The GNSS-R carrier phase is compared with the PARIS or code altimetry approach. The study shows that Walker constellations have a much better reflection point distribution compared to the meshed comb constellation. Considering simulation assumptions and assuming technical feasibility it can be demonstrated that strong tsunamis with magnitudes (M ≥8.5 can be detected with certainty from any orbit altitude within 15–25 min by a 48/8 or 81/9 Walker constellation if tsunami waves of 20 cm or higher can be detected by space-borne GNSS-R. The carrier phase approach outperforms the PARIS altimetry approach especially at low orbit altitudes and for a low number of LEO satellites.

  4. Radiation sensor

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1977-01-01

    Radiation sensor and thermocouple, respectively, which can be used for reactor in-core instrumentation. The radiation sensor consists of an inconel conductor wire and rhodium emitter wire, the thermocouple of two intertwined alumel or chromel wires. Both are arranged in the center of a metal tube relative to which they are separated by an insulator made of SiO 2 fibers. This insulator is first introduced as a loose fabric between the radiation sensor and the thermocouple, respectively, and the metal tube and then compacted to a density of 35-73% of pure SiO 2 by drawing the tube. There is no need for soldering or welding. The insulation resistivity at room temperature ist between 10 14 and 10 15 ohms. (ORU) [de

  5. Water Sensors

    Science.gov (United States)

    1992-01-01

    Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.

  6. The usage of ceramics in the manufacture of the lining of temperature sensors for the oil industry; Utilizacao de ceramica para encapsulamento de sensores de temperatura na industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, R.O.; Yadava, Y.P.; Sanguinetti Ferreira, R.A., E-mail: rebeka.oliveira@yahoo.com.br, E-mail: yadava@ufpe.br, E-mail: ricardo.sanguinetti@pq.cnpq.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Engenharia Mecanica

    2014-07-01

    In the oil production, many types of sensors are used in order to monitor some important parameters such as temperature, pressure and flow. These sensors are subjected to harsh operating conditions. Therefore they must present an inert and stable behavior in these conditions. The temperature sensors that are more suited to the oil industry are the Temperature Detectors by Resistance (TDR), because they have high accuracy and wide temperature range. Usually these devices are built with metals as detectors of temperature by encapsulated resistance in inert ceramics. The main objective of this research is to produce new ceramics of a Ca{sub 2}AlZrO{sub 5,5} cubic complex perovskite structure for the encapsulation of temperature sensors. The stoichiometric amounts of the constituent chemicals, with a high degree of purity, are homogenized, through a solid state reaction in a high energy ball mill. They are then compacted by uniaxial pressing and calcined at 1200°C for 24 hours. Soon after, the tablet is crushed giving place to a ceramic powder and the analysis of X-ray diffraction is performed. According to the sintering behavior of the ceramic powder, the microstructure and the homogeneity are studied by the Scanning Electron Microscopy. The results are presented in terms of the potential of this ceramic for applications as components of temperature sensors. (author)

  7. Practical Use Technique of Sensor

    International Nuclear Information System (INIS)

    Hwang, Gyu Seop

    1985-11-01

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  8. Practical Use Technique of Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyu Seop

    1985-11-15

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  9. Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry

    Science.gov (United States)

    Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.

    2018-02-01

    To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.

  10. The usage of ceramics in the manufacture of the lining of temperature sensors for the oil industry

    International Nuclear Information System (INIS)

    Domingues, R.O.; Yadava, Y.P.; Sanguinetti Ferreira, R.A.

    2014-01-01

    In the oil production, many types of sensors are used in order to monitor some important parameters such as temperature, pressure and flow. These sensors are subjected to harsh operating conditions. Therefore they must present an inert and stable behavior in these conditions. The temperature sensors that are more suited to the oil industry are the Temperature Detectors by Resistance (TDR), because they have high accuracy and wide temperature range. Usually these devices are built with metals as detectors of temperature by encapsulated resistance in inert ceramics. The main objective of this research is to produce new ceramics of a Ca_2AlZrO_5_,_5 cubic complex perovskite structure for the encapsulation of temperature sensors. The stoichiometric amounts of the constituent chemicals, with a high degree of purity, are homogenized, through a solid state reaction in a high energy ball mill. They are then compacted by uniaxial pressing and calcined at 1200°C for 24 hours. Soon after, the tablet is crushed giving place to a ceramic powder and the analysis of X-ray diffraction is performed. According to the sintering behavior of the ceramic powder, the microstructure and the homogeneity are studied by the Scanning Electron Microscopy. The results are presented in terms of the potential of this ceramic for applications as components of temperature sensors. (author)

  11. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  12. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder

  13. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  14. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    International Nuclear Information System (INIS)

    Halbert, Candice E.; Ankner, John Francis; Kent, Michael S.; Jaclyn, Murton K.; Browning, Jim; Cheng, Gang; Liu, Zelin; Majewski, Jaroslaw; Supratim, Datta; Michael, Jablin; Bulent, Akgun; Alan, Esker; Simmons, Blake

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 C and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ∼ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due

  15. Using a novel spectroscopic reflectometer to optimize a radiation-hardened submicron silicon-on-sapphire CMOS process; Utilisation d'une nouvelle reflectometrie spectroscopique pour optimiser un procede de fabrication CMOS/SOS durci aux radiations

    Energy Technology Data Exchange (ETDEWEB)

    Do, N.T.; Zawaideh, E.; Vu, T.Q.; Warren, G.; Mead, D. [Raytheon Systems company, Microelectronics Div., Newport Beach, California (United States); Li, G.P.; Tsai, C.S. [California Univ., School of Engineering, Newport Beach, CA (United States)

    1999-07-01

    A radiation-hardened sub-micron silicon-on-sapphire CMOS process is monitored and optimized using a novel optical technique based on spectroscopic reflectometry. Quantitative measurements of the crystal quality, surface roughness, and device radiation hardness show excellent correlation between this technique and the Atomic Force Microscopy. (authors)

  16. Determination of preferential molecular orientation in porphyrin-fullerene dyad ZnDHD6ee monolayers by the X-ray standing-wave method and X-ray reflectometry

    NARCIS (Netherlands)

    Seregin, A. Y.; D' Yakova, Y. A.; Yakunin, S. N.; Makhotkin, I. A.; Alekseev, A. S.; Klechkovskaya, V. V.; Tereschenko, E. Y.; Tkachenko, N. V.; Lemmetyinen, H.; Feigin, L. A.; Kovalchuk, M. V.

    2013-01-01

    Monolayers of porphyrin-fullerene dyad molecules with zinc atoms incorporated into the porphyrin ring (ZnDHD6ee) on the surface of aqueous subphase and on Si substrates have been investigated by the X-ray standing-wave method and X-ray reflectometry. The experiments have been performed under

  17. Radiation distribution sensor with optical fibers for high radiation fields

    International Nuclear Information System (INIS)

    Takada, Eiji; Kimura, Atsushi; Hosono, Yoneichi; Takahashi, Hiroyuki; Nakazawa, Masaharu

    1999-01-01

    Radiation distribution sensors with their feasibilities have been described in earlier works. However, due to large radiation induced transmission losses in optical fibers, especially in the visible wavelength region, it has been difficult to apply these techniques to high radiation fields. In this study, we proposed a new concept of optical fiber based radiation distribution measurements with near infrared (IR) emission. Near IR scintillators were attached to the ends of optical fibers, where the fibers were bundled and connected to an N-MOS line sensor or a cooled CCD camera. From the measurements of each area density, the radiation levels at the positions of the scintillators can be known. The linearity between the gamma dose rate at each scintillator and the registered counts has been examined. For correcting the radiation induced loss effects, we applied the Optical Time Domain Reflectometry technique to measure the loss distribution and from the results, a possibility for correction of the loss effect has been demonstrated. The applicable dose rate range was evaluated to be from 0.1 to 10 3 Gy/h. This system can be a promising tool as a flexible dose rate distribution monitor in radiation facilities like nuclear plants and accelerator facilities. (author)

  18. Semiconductor sensors

    International Nuclear Information System (INIS)

    Hartmann, Frank

    2011-01-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  19. Water extraction and implications on soil moisture sensor placement in the root zone of banana

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva

    Full Text Available ABSTRACT: The knowledge on spatial and temporal variations of soil water storage in the root zone of crops is essential to guide the studies to determine soil water balance, verify the effective zone of water extraction in the soil and indicate the correct region for the management of water, fertilizers and pesticides. The objectives of this study were: (i to indicate the zones of highest root activity for banana in different development stages; (ii to determine, inside the zone of highest root activity, the adequate position for the installation of soil moisture sensors. A 5.0 m3 drainage lysimeter was installed in the center of an experimental area of 320 m2. Water extraction was quantified inside the lysimeter using a 72 TDR probe. The concept of time stability was applied to indicate the position for sensor installation within the limits of effective water extraction. There are two patterns of water extraction distribution during the development of banana and the point of installation of sensors for irrigation management inside the zone of highest root activity is not constant along the crop development.

  20. Load sensor

    OpenAIRE

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder forming 30-60% by volume of the composite, and wherein the PZT powder forms 40-50% by volume of the composite.

  1. Image Sensor

    OpenAIRE

    Jerram, Paul; Stefanov, Konstantin

    2017-01-01

    An image sensor of the type for providing charge multiplication by impact ionisation has plurality of multiplication elements. Each element is arranged to receive charge from photosensitive elements of an image area and each element comprises a sequence of electrodes to move charge along a transport path. Each of the electrodes has an edge defining a boundary with a first electrode, a maximum width across the charge transport path and a leading edge that defines a boundary with a second elect...

  2. Optischer Sensor

    OpenAIRE

    Brandenburg, A.; Fischer, A.

    1995-01-01

    An optical sensor (1) comprising an integrated optical arrangement has a waveguide (4) and at least one defraction grating (5) arranged in this waveguide. Light can launched into the waveguide via the defraction grating. In the reflection area of defraction grating, part of the light is dispersed through the waveguide at the beam angle for which the launch conditions and thus the defraction in the waveguide are fulfilled, so that, at this angle, a dark line (14) occurs whose position is evalu...

  3. Gas sensor

    International Nuclear Information System (INIS)

    Dorogan, V.; Korotchenkov, Gh.; Vieru, T.; Prodan, I.

    2003-01-01

    The invention relates to the gas sensors on base of metal-oxide films (SnO, InO), which may be used for enviromental control, in the fireextinguishing systema etc. The gas includes an insulating substrate, an active layer, a resistive layer with ohmic contacts. The resistive layer has two or more regions with dofferent resistances , and on the active layer are two or more pairs of ohmic contacts

  4. Reflectometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Krumrey, Michael; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-01-01

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO 2 , Si, and MgF 2 are presented. (HSI)

  5. Casing Pipe Damage Detection with Optical Fiber Sensors: A Case Study in Oil Well Constructions

    Directory of Open Access Journals (Sweden)

    Zhi Zhou

    2010-01-01

    Full Text Available Casing pipes in oil well constructions may suddenly buckle inward as their inside and outside hydrostatic pressure difference increases. For the safety of construction workers and the steady development of oil industries, it is critically important to measure the stress state of a casing pipe. This study develops a rugged, real-time monitoring, and warning system that combines the distributed Brillouin Scattering Time Domain Reflectometry (BOTDR and the discrete fiber Bragg grating (FBG measurement. The BOTDR optical fiber sensors were embedded with no optical fiber splice joints in a fiber-reinforced polymer (FRP rebar and the FBG sensors were wrapped in epoxy resins and glass clothes, both installed during the segmental construction of casing pipes. In situ tests indicate that the proposed sensing system and installation technique can survive the downhole driving process of casing pipes, withstand a harsh service environment, and remain intact with the casing pipes for compatible strain measurements. The relative error of the measured strains between the distributed and discrete sensors is less than 12%. The FBG sensors successfully measured the maximum horizontal principal stress with a relative error of 6.7% in comparison with a cross multipole array acoustic instrument.

  6. Intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.

    1978-07-01

    Intrusion detection sensors are an integral part of most physical security systems. Under the sponsorship of the U.S. Department of Energy, Office of Safeguards and Security, Sandia Laboratories has conducted a survey of available intrusion detection sensors and has tested a number of different sensors. An overview of these sensors is provided. This overview includes (1) the operating principles of each type of sensor, (2) unique sensor characteristics, (3) desired sensor improvements which must be considered in planning an intrusion detection system, and (4) the site characteristics which affect the performance of both exterior and interior sensors. Techniques which have been developed to evaluate various intrusion detection sensors are also discussed

  7. Detection of 2-mm-long strained section in silica fiber using slope-assisted Brillouin optical correlation-domain reflectometry

    Science.gov (United States)

    Lee, Heeyoung; Mizuno, Yosuke; Nakamura, Kentaro

    2018-02-01

    Slope-assisted Brillouin optical correlation-domain reflectometry is a single-end-access distributed Brillouin sensing technique with high spatial resolution and high-speed operation. We have recently discovered its unique feature, that is, strained or heated sections even shorter than nominal resolution can be detected, but its detailed characterization has not been carried out. Here, after experimentally characterizing this “beyond-nominal-resolution” effect, we show its usefulness by demonstrating the detection of a 2-mm-long strained section along a silica fiber. We also demonstrate the detection of a 5-mm-long heated section along a polymer optical fiber. The lengths of these detected sections are smaller than those of the other demonstrations reported so far.

  8. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B4C multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Panzner, Tobias; Schlemper, Christoph; Morawe, Christian; Pietsch, Ullrich

    2009-12-10

    Soft-x-ray Bragg reflection from two Ru/B4C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 -{delta} + i{beta} close to the boron K edge ({approx}188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B4C and various boron oxides.

  9. Design and realization of a sputter deposition system for the in situ- and in operando-use in polarized neutron reflectometry experiments

    Science.gov (United States)

    Schmehl, Andreas; Mairoser, Thomas; Herrnberger, Alexander; Stephanos, Cyril; Meir, Stefan; Förg, Benjamin; Wiedemann, Birgit; Böni, Peter; Mannhart, Jochen; Kreuzpaintner, Wolfgang

    2018-03-01

    We report on the realization of a sputter deposition system for the in situ- and in operando-use in polarized neutron reflectometry experiments. Starting with the scientific requirements, which define the general design considerations, the external limitations and boundaries imposed by the available space at a neutron beamline and by the neutron and vacuum compatibility of the used materials, are assessed. The relevant aspects are then accounted for in the realization of our highly mobile deposition system, which was designed with a focus on a quick and simple installation and removability at the beamline. Apart from the general design, the in-vacuum components, the auxiliary equipment and the remote control via a computer, as well as relevant safety aspects are presented in detail.

  10. Study of a high spatial resolution {sup 10}B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, F; Buffet, J C; Clergeau, J F; Cuccaro, S; Guérard, B; Khaplanov, A; Manna, Q La; Rigal, J M; Esch, P Van, E-mail: piscitelli@ill.fr [Institut Laue-Langevin (ILL), 6, Jules Horowitz, 38042, Grenoble (France)

    2014-03-01

    Although for large area detectors it is crucial to find an alternative to detect thermal neutrons because of the {sup 3}He shortage, this is not the case for small area detectors. Neutron scattering science is still growing its instruments' power and the neutron flux a detector must tolerate is increasing. For small area detectors the main effort is to expand the detectors' performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which wants to increase the spatial resolution of {sup 3}He-based detectors for high flux applications. We developed a high spatial resolution prototype suitable for neutron reflectometry instruments. It exploits solid {sup 10}B-films employed in a proportional gas chamber. Two prototypes have been constructed at ILL and the results obtained on our monochromatic test beam line are presented here.

  11. The effect of single oral doses of duloxetine, reboxetine, and midodrine on the urethral pressure in healthy female subjects, using urethral pressure reflectometry

    DEFF Research Database (Denmark)

    Klarskov, Niels; Cerneus, Dirk; Sawyer, William

    2018-01-01

    AIMS: To evaluate the effect on urethral pressure of reference drugs known to reduce stress urinary incontinence symptoms by different effect size and mechanisms of action on urethral musculature under four test conditions in healthy female subjects using urethral pressure reflectometry. METHODS......: Healthy females aged 18-55 years were recruited by advertising for this phase 1, single site, placebo-controlled, randomized, four-period, crossover study. The interventions were single oral doses of 10 mg Midodrine, 80 mg Duloxetine, 12 mg Reboxetine, and placebo. The endpoints were the opening urethral...... pressure measured in each period at four time points (predose and 2, 5.5, and 9 h after dosing). RESULTS: Twenty-nine females were enrolled; 25 randomized and 24 completed the study. The opening urethral pressure was higher in all measurements with filled bladder compared with empty bladder, and during...

  12. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  13. Formation of solid thorium monoxide at near-ambient conditions as observed by neutron reflectometry and interpreted by screened hybrid functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    He, Heming [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Majewski, Jaroslaw, E-mail: jarek@lanl.gov [MPA/CINT/Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Chemical Engineering, University of California Davis, Davis, CA 95616 (United States); Allred, David D., E-mail: dda@byu.edu [Department of Physics and Astronomy, Brigham Young University Provo, UT 84602 (United States); Wang, Peng [MPA/CINT/Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wen, Xiaodong [Theoretical Division, Los Alamos National Laboratory Los Alamos, NM 87545 (United States); Rector, Kirk D. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2017-04-15

    Oxidation of a ∼1000 Å sputter-deposited thorium thin film at 150 °C in 100 ppm of flowing oxygen in argon produces the long-sought solid form of thorium monoxide. Changes in the scattering length density (SLD) distribution in the film over the 700-min experiment measured by in-situ, dynamic neutron reflectometry (NR) shows the densities, compositions and thickness of the various thorium oxides layers formed. Screened, hybrid density-functional theory calculations of potential thorium oxides aid interpretation, providing atomic-level picture and energetics for understanding oxygen migration. NR provided evidence of the formation of substoichiometric thorium oxide, ThO{sub y} (y < 1) at the interface between the unreacted thorium metal and its dioxide overcoat which grows inward, consuming the thorium at a rate of 2.1 Å/min while y increases until reaching 1:1 oxygen-to-thorium. Its presence indicates that kinetically-favored solid-phase ThO can be preferentially generated as a majority phase under the thermodynamically-favored ThO{sub 2} top layer at conditions close to ambient. - Highlights: •The long-sought solid form of thorium monoxide forms as thin-film thorium oxidizes. •Density-functional calculations suggest that ThO forms for kinetic reasons. •A pathway to producing ThO as a majority phase for future studies is now open. •Dynamic, in-situ neutron reflectometry is valuable for studying oxidation. •At low oxygen content in the lattice octahedral sites are preferred.

  14. Sensors for Entertainment.

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-07-15

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  15. Sensors for Entertainment

    OpenAIRE

    Fabrizio Lamberti; Andrea Sanna; Jon Rokne

    2016-01-01

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on ?Sensors for Entertainment?, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  16. Wireless sensor platform

    Science.gov (United States)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  17. VT Data - TDR Overlay District 20130305, Dover

    Data.gov (United States)

    Vermont Center for Geographic Information — This file, along with two others, was created to produce a new, official zoning map series for the Town of Dover, Vermont in 2007. This file represents the Transfer...

  18. Results of Recent DOE Research on Development of Cable Condition Monitoring and Aging Management Technologies

    International Nuclear Information System (INIS)

    Campbell, C.J.; McConkey, J.B.; Hashemian, H.M.; Sexton, C.D.; Cummins, D.S.

    2012-01-01

    Analysis and Measurement Services (AMS) Corporation has been conducting two research projects focused on understanding cable aging and developing cable condition monitoring technologies for nuclear power plants. The goal of the first project is to correlate cable faults with testing techniques that can identify and locate the faults whether they are in the cable, conductor, or the insulation. This project involves laboratory experiments using low and medium voltage cable types typically installed in nuclear power plants. The second project is focused on development of an integrated cable condition monitoring system for nuclear facilities. This system integrates a number of cable testing and cable condition monitoring techniques, such as the time domain reflectometry (TDR), frequency domain reflectometry (FDR), inductance, capacitance, resistance (LCR), reverse TDR (RTDR), current-to-voltage (IV) for testing of nuclear instrumentation sensors, insulation resistance (IR) and other techniques. The purpose of the project is to combine all proven technologies into one system to detect and pinpoint problems in cable circuits as well as cable insulation, shield, or jacket material. (author)

  19. A modular optical sensor

    Science.gov (United States)

    Conklin, John Albert

    This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also

  20. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    International Nuclear Information System (INIS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-01-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center

  1. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures-A Case Study.

    Science.gov (United States)

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2018-03-26

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive.

  2. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures—A Case Study

    Science.gov (United States)

    Villalba, Sergi

    2018-01-01

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive. PMID:29587449

  3. Integrated cryogenic sensors

    International Nuclear Information System (INIS)

    Juanarena, D.B.; Rao, M.G.

    1991-01-01

    Integrated cryogenic pressure-temperature, level-temperature, and flow-temperature sensors have several advantages over the conventional single parameter sensors. Such integrated sensors were not available until recently. Pressure Systems, Inc. (PSI) of Hampton, Virginia, has introduced precalibrated precision cryogenic pressure sensors at the Los Angeles Cryogenic Engineering Conference in 1989. Recently, PSI has successfully completed the development of integrated pressure-temperature and level-temperature sensors for use in the temperature range 1.5-375K. In this paper, performance characteristics of these integrated sensors are presented. Further, the effects of irradiation and magnetic fields on these integrated sensors are also reviewed

  4. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  5. Application Of FA Sensor 2

    International Nuclear Information System (INIS)

    Park, Seon Ho

    1993-03-01

    This book introduces FA sensor from basic to making system, which includes light sensor like photo diode and photo transistor, photo electricity sensor, CCD type image sensor, MOS type image sensor, color sensor, cds cell, and optical fiber scope. It also deals with direct election position sensor such as proximity switch, differential motion, linear scale of photo electricity type, and magnet scale, rotary sensor with summary of rotary encoder, rotary encoder types and applications, flow sensor, and sensing technology.

  6. Sensors an introductory course

    CERN Document Server

    Kalantar-zadeh, Kourosh

    2013-01-01

    Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed. This book: Provides a comprehensive representation of the most common sensors and can be used as a reference in relevant fields Presents learning materials in a concise and easy to understand manner Includes examples of how sensors are incorporated in real life measurements Contains detailed figures and schematics to assist in understanding the sensor performance Sensors: An Introductory Course is ideal for university stu...

  7. Coupled wave sensor technology

    International Nuclear Information System (INIS)

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided

  8. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  9. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    International Nuclear Information System (INIS)

    Lizana, A; Foldyna, M; Garcia-Caurel, E; Stchakovsky, M; Georges, B; Nicolas, D

    2013-01-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV–visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV–NIR reflectometer. We used the variance–covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer. (paper)

  10. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    Science.gov (United States)

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates. © 2011 American Chemical Society

  11. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    Science.gov (United States)

    Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.

    2013-03-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.

  12. Estimation of Sea Level variations with GPS/GLONASS-Reflectometry Technique: Case Study at Stationary Oceanographic Platform in the Black Sea

    Science.gov (United States)

    Kurbatov, G. A.; Padokhin, A. M.

    2017-12-01

    In the present work we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSS-receiver, which are based on the multipath propagation effects (interference pattern in SNR of GNSS signals at small elevation angles) caused by the reflection of navigational signals from the sea surface. The measurements were carried out in the coastal zone of Black Sea at the Stationary Oceanographic Platform during one-week campaign in the summer 2017. GPS/GLONASS signals at two working frequencies of both systems were used to study sea level variations which almost doubled the amount of observations compared to GPS-only tide gauge. Moreover all the measurements were conducted with 4-antenna GNSS receiver providing the opportunity for different orientations of antennas including zenith and nadir looking ones as well as two horizontally oriented ones at different azimuths. As the reference we used data from co-located wire wave gauge which showed good correspondence of both datasets. Though tidal effects are not so pronounced for the Black Sea, the described experimental setup allowed to study the effects of sea surface roughness, driven by meteorological conditions (e.g. wind waves), as well as antenna directivity pattern effects on the observed interference patterns of GPS/GLONASS L1/L2 signals (relation of the main spectral peak to the noise power) and the quality of sea level estimations.

  13. Chemical and valence reconstruction at the surface of SmB6 revealed by means of resonant soft x-ray reflectometry

    Science.gov (United States)

    Zabolotnyy, V. B.; Fürsich, K.; Green, R. J.; Lutz, P.; Treiber, K.; Min, Chul-Hee; Dukhnenko, A. V.; Shitsevalova, N. Y.; Filipov, V. B.; Kang, B. Y.; Cho, B. K.; Sutarto, R.; He, Feizhou; Reinert, F.; Inosov, D. S.; Hinkov, V.

    2018-05-01

    Samarium hexaboride (SmB6), a Kondo insulator with mixed valence, has recently attracted much attention as a possible host for correlated topological surface states. Here, we use a combination of x-ray absorption and reflectometry techniques, backed up with a theoretical model for the resonant M4 ,5 absorption edge of Sm and photoemission data, to establish laterally averaged chemical and valence depth profiles at the surface of SmB6. We show that upon cleaving, the highly polar (001) surface of SmB6 undergoes substantial chemical and valence reconstruction, resulting in boron termination and a Sm3 + dominated subsurface region. Whereas at room temperature, the reconstruction occurs on a timescale of less than 2 h, it takes about 24 h below 50 K. The boron termination is eventually established, irrespective of the initial termination. Our findings reconcile earlier depth resolved photoemission and scanning tunneling spectroscopy studies performed at different temperatures and are important for better control of surface states in this system.

  14. 2-μm optical time domain reflectometry measurements from novel Al-, Ge-, CaAlSi- doped and standard single-mode fibers

    Science.gov (United States)

    Rodriguez-Novelo, J. C.; Sanchez-Nieves, J. A.; Sierra-Calderon, A.; Sanchez-Lara, R.; Alvarez-Chavez, J. A.

    2017-08-01

    The development of novel Al-, Ge- doped and un-doped standard single mode fibers for future optical communication at 2μm requires the integration of, among other pieces of equipment, an optical time domain reflectometry (OTDR) technique for precise spectral attenuation characterization, including the well-known cut-back method. The integration of a state of the art OTDR at 2μm could provide valuable attenuation information from the aforementioned novel fibers. The proposed setup consists of a 1.7 mW, 1960nm pump source, a 30 dB gain Thulium doped fibre amplifier at 2μm, an 0.8mm focal length lens with a 0.5 NA, a 30 MHz acusto-optic modulator, a 3.1 focal length lens with a 0.68NA, an optical circulator at 2μm, an InGaAs photodetector for 1.2 nm-2.6 nm range, a voltage amplifier and an oscilloscope. The propagated pulse rate is 50 KHz, with 500 ns, 200 ns, 100 ns and 50 ns pulse widths. Attenuation versus novel fibers types for lengths ranging from 400- to 1000- meter samples were obtained using the proposed setup.

  15. Reproducibility of the measurement of central corneal thickness in healthy subjects obtained with the optical low coherence reflectometry pachymeter and comparison with the ultrasonic pachymetry.

    Science.gov (United States)

    Garza-Leon, Manuel; Plancarte-Lozano, Eduardo; Valle-Penella, Agustín Del; Guzmán-Martínez, María de Lourdes; Villarreal-González, Andrés

    2018-01-01

    Corneal pachymetry is widely used for refractive surgery and follow up in keratoconus, accurate measurement is essential for a safe surgery. To assess intraobserver reliability of central corneal thickness (CCT) measurements using optical low-coherence reflectometry (OLCR) technology and its agreement with ultrasonic pachymeter (US). Randomized and prospective comparative evaluation of diagnostic technology. One randomly healthy eye of subjects was scanned three times with both devices. Intraobserver within-subject standard deviation (Sw), coefficient of variation (CVw) and intraclass correlation coefficient (ICC) were obtained for reliability analysis; for study agreement, data were analyzed using the paired-sample t test and the Bland-Altman LoA method. The mean of three scans of each equipment was used to assess the LoA. The study enrolled 30 eyes of 30 subjects with average age of 28.70 ± 8.06 years. For repeatability, the Sw were 3.41 and 5.96 µ, the intraobserver CVw was 2 and 4% and ICC 0.991 and 0.988, for OLCR and US respectively. The mean CCT difference between OLCR and US was 8.90 ± 9.03 µ (95% confidence interval: 5.52-2.27 µ), and the LoA was 35.40 µ. OLCR technology provided reliable intraobserver CCT measurements. Both pachymetry measurements may be used interchangeably with minimum calibration adjustment. Copyright: © 2018 Permanyer.

  16. A systematic neutron reflectometry study on hydrogen absorption in thin Mg{sub 1-x}Al{sub x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H.; Poirier, E., E-mail: helmut.fritzsche@nrc.gc.ca [National Research Council Canada, Canadian Neutron Beam Centre, Chalk River, ON (Canada); Haagsma, J.; Ophus, C.; Luber, E.; Harrower, C.; Mitlin, D. [Univ. of Alberta, and National Research Council Canada, Chemical and Materials Engineering, Edmonton, AB (Canada)

    2010-10-15

    In this article, we show how neutron reflectometry (NR) can provide deep insight into the absorption and desorption properties of commercially promising hydrogen storage materials. NR benefits from the large negative scattering length of hydrogen atoms, which changes the reflectivity curve substantially, so that NR can determine not only the total amount of stored hydrogen but also the hydrogen distribution along the film normal, with nanometer resolution. To use NR, the samples must have smooth surfaces, and the film thickness should range between 10 and 200 nm. We performed a systematic study on thin Mg{sub 1-x}Al{sub x} alloy films (x = 0.2, 0.3, 0.4, 0.67) capped with a Pd catalyst layer. Our NR experiments showed that Mg{sub 0.7}Al{sub 0.3} is the optimum alloy composition with the highest amount of stored hydrogen and the lowest desorption temperature. All the thin films expand by about 20% because of hydrogen absorption, and the hydrogen is stored only in the MgAl layer with no hydrogen content in the Pd layer. (author)

  17. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    . These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...... also describe the design and implementation of the COUGAR sensor database system....

  18. The Calibration and Use of Capacitance Sensors to Monitor Stem Water Content in Trees.

    Science.gov (United States)

    Matheny, Ashley M; Garrity, Steven R; Bohrer, Gil

    2017-12-27

    Water transport and storage through the soil-plant-atmosphere continuum is critical to the terrestrial water cycle, and has become a major research focus area. Biomass capacitance plays an integral role in the avoidance of hydraulic impairment to transpiration. However, high temporal resolution measurements of dynamic changes in the hydraulic capacitance of large trees are rare. Here, we present procedures for the calibration and use of capacitance sensors, typically used to monitor soil water content, to measure the volumetric water content in trees in the field. Frequency domain reflectometry-style observations are sensitive to the density of the media being studied. Therefore, it is necessary to perform species-specific calibrations to convert from the sensor-reported values of dielectric permittivity to volumetric water content. Calibration is performed on a harvested branch or stem cut into segments that are dried or re-hydrated to produce a full range of water contents used to generate a best-fit regression with sensor observations. Sensors are inserted into calibration segments or installed in trees after pre-drilling holes to a tolerance fit using a fabricated template to ensure proper drill alignment. Special care is taken to ensure that sensor tines make good contact with the surrounding media, while allowing them to be inserted without excessive force. Volumetric water content dynamics observed via the presented methodology align with sap flow measurements recorded using thermal dissipation techniques and environmental forcing data. Biomass water content data can be used to observe the onset of water stress, drought response and recovery, and has the potential to be applied to the calibration and evaluation of new plant-level hydrodynamics models, as well as to the partitioning of remotely sensed moisture products into above- and belowground components.

  19. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong; Kavaldzhiev, Mincho; Kosel, Jü rgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency

  20. Air Sensor Toolbox

    Science.gov (United States)

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  1. Invisible magnetic sensors

    Science.gov (United States)

    Mach-Batlle, Rosa; Navau, Carles; Sanchez, Alvaro

    2018-04-01

    Sensing magnetic fields is essential in many applications in biomedicine, transportation, or smart cities. The distortion magnetic sensors create in response to the field they are detecting may hinder their use, for example, in applications requiring dense packaging of sensors or accurately shaped field distributions. For sensing electromagnetic waves, cloaking shells that reduce the scattering of sensors have been introduced. However, the problem of making a magnetic sensor undetectable remains unsolved. Here, we present a general strategy on how to make a sensor magnetically invisible while keeping its ability to sense. The sensor is rendered undetectable by surrounding it with a spherical shell having a tailored magnetic permeability. Our method can be applied to arbitrary shaped magnetic sensors in arbitrary magnetic fields. The invisibility can be made exact when the sensor is spherical and the probed field is uniform. A metasurface composed of superconducting pieces is presented as a practical realization of the ideal invisibility shell.

  2. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  3. Sensor Substrate Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Novel substrates, such as aerogels and porous, low density ceramics may increase the sensitivities of chemical reaction-based sensors for toxic vapors. These sensors...

  4. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  5. Focus on image sensors

    NARCIS (Netherlands)

    Jos Gunsing; Daniël Telgen; Johan van Althuis; Jaap van de Loosdrecht; Mark Stappers; Peter Klijn

    2013-01-01

    Robots need sensors to operate properly. Using a single image sensor, various aspects of a robot operating in its environment can be measured or monitored. Over the past few years, image sensors have improved a lot: frame rate and resolution have increased, while prices have fallen. As a result,

  6. Multi-Sensor Architectures

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki; Khan, M. Z.

    2012-01-01

    The use of multiple sensors typically requires the fusion of data from different type of sensors. The combined use of such a data has the potential to give an efficient, high quality and reliable estimation. Input data from different sensors allows the introduction of target attributes (target ty...

  7. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow

  8. Sensors for Entertainment

    Directory of Open Access Journals (Sweden)

    Fabrizio Lamberti

    2016-07-01

    Full Text Available Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  9. Electric field sensor studies

    International Nuclear Information System (INIS)

    Griffith, R.D.; Parks, S.

    1977-01-01

    Above-ground intrusion sensors are reviewed briefly. Buried wire sensors are next considered; feasibility studies were conducted. A triangular system of an overhead transmitter wire exciting two buried sensor wires was developed and tested. It failed sometimes to detect a man making a broad jump. A differential receiver was developed to solve this problem

  10. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  11. Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives

    Science.gov (United States)

    Ripamonti, Giancarlo; Lacaita, Andrea L.

    1993-03-01

    The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.

  12. Hydrostatic force sensor

    International Nuclear Information System (INIS)

    Evans, M.S.; Stoughton, R.S.; Kazerooni, H.

    1994-08-01

    This paper presents a theoretical and experimental investigation of a new kind of force sensor which detects forces by measuring an induced pressure change in a material of large Poisson's ratio. In this investigation we develop mathematical expressions for the sensor's sensitivity and bandwidth, and show that its sensitivity can be much larger and its bandwidth is usually smaller than those of existing strain-gage-type sensors. This force sensor is well-suited for measuring large but slowly varying forces. It can be installed in a space smaller than that required by existing sensors

  13. Multifuctional integrated sensors (MFISES).

    Energy Technology Data Exchange (ETDEWEB)

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  14. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kevin P. [Univ. of Pittsburgh, PA (United States)

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest

  15. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  16. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  17. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  18. Characterization of weakly absorbing thin films by multiple linear regression analysis of absolute unwrapped phase in angle-resolved spectral reflectometry.

    Science.gov (United States)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-30

    The simultaneous determination of t, n(λ), and κ(λ) of thin films can be a tough task for the high correlation of fit parameters. The strong assumptions about the type of dispersion relation are commonly used as a consequence to alleviate correlation concerns by reducing the free parameters before the nonlinear regression analysis. Here we present an angle-resolved spectral reflectometry for the simultaneous determination of weakly absorbing thin film parameters, where a reflectance interferogram is recorded in both angular and spectral domains in a single-shot measurement for the point of the sample being illuminated. The variations of the phase recovered from the interferogram as functions of t, n, and κ reveals that the unwrapped phase is monotonically related to t, n, and κ, thereby allowing the problem of correlation to be alleviated by multiple linear regression. After removing the 2π ambiguity of the unwrapped phase, the merit function based on the absolute unwrapped phase performs a 3D data cube with variables of t, n and κ at each wavelength. The unique solution of t, n, and κ can then be directly determined from the extremum of the 3D data cube at each wavelength with no need of dispersion relation. A sample of GaN thin film grown on a polished sapphire substrate is tested. The experimental data of t and [n(λ), κ(λ)] are confirmed by the scanning electron microscopy and the comparison with the results of other related works, respectively. The consistency of the results shows the proposed method provides a useful tool for the determination of the thickness and optical constants of weakly absorbing thin films.

  19. Urethral pressure reflectometry during intra-abdominal pressure increase-an improved technique to characterize the urethral closure function in continent and stress urinary incontinent women.

    Science.gov (United States)

    Saaby, Marie-Louise; Klarskov, Niels; Lose, Gunnar

    2013-11-01

    to assess the urethral closure function by urethral pressure reflectometry (UPR) during intra-abdominal pressure-increase in SUI and continent women. Twenty-five urodynamically proven SUI women and eight continent volunteer women were assessed by ICIQ-SF, pad-weighing test, incontinence diary, and UPR. UPR was conducted during resting and increased intra-abdominal pressure (P(Abd)) by straining. Related values of P(Abd) and urethral opening pressure (P(o)) were plotted into an abdomino-urethral pressuregram. Linear regression of the values was conducted, and the slope of the line ("APIR") and the intercept with the y-axis found. By the equation of the line, Po was calculated for various values of P(Abd), for example, 50 cm H2O (P(o-Abd 50)). The resting P(o) (P(o-rest)) and APIR, respectively, significantly differed in SUI and continent women but could not separate the two groups. The urethral closure equation (UCE) based on P(o-rest) and APIR provided a more detailed characterization of a woman's closure function based on the permanent closure forces (primarily generated by the urethral sphincteric unit) and the adjunctive closure forces (primarily generated by the support system). P(o-Abd 50) and UCE, respectively, which express the combined permanent and adjunctive closure forces and estimate the efficiency of the closure function, separated SUI and continent women and were highly significantly negatively correlated with ICIQ-SF, pad test, and the number of incontinence episodes. New parameters for characterization of the urethral closure function and possible dysfunctions and its efficiency were provided. P(o-Abd 50) and UCE may be used as diagnostic tests and severity measures. © 2013 Wiley Periodicals, Inc.

  20. A systematic neutron reflectometry study on hydrogen absorption in thin Mg{sub 1-x}Al{sub x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H.; Poirier, E. [National Research Council of Canada, Chalk River, ON (Canada). Canadian Neutron Beam Centre; Haagsma, J.; Ophus, C.; Luber, E.; Harrower, C.T.; Mitlin, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; National Research Council of Canada, Edmonton, AB (Canada). National Inst. for Nanotechnology

    2010-10-15

    Various methods for storing hydrogen have been examined in an effort to find ways to store hydrogen in increasingly smaller volumes with decreasing weight of the whole hydrogen storage system. Metal hydrides, in which hydrogen is chemically bound to a metal atom, are considered to be very promising candidates for hydrogen storage because they have high gravimetric and volumetric storage capacities. This study investigated the effect of different magnesium (Mg) and aluminium (Al) ratios on the absorption and desorption properties of thin films. Neutron reflectometry (NR) was used in this study to better understand the absorption and desorption properties of commercially promising hydrogen storage materials. The large negative scattering length of hydrogen atoms changes the reflectivity curve substantially, so that NR can determine the total amount of stored hydrogen as well as the hydrogen distribution along the film normal, with nanometer resolution. In order to use NR, the samples must have smooth surfaces, and the film thickness should range between 10 and 200 nm. Thin Mg{sub 1-x}Al{sub x} alloy films (x = 0.2, 0.3, 0.4, 0.67) capped with a palladium (Pd) catalyst layer were used in this study. The NR experiments revealed that Mg{sub 0.7}Al{sub 0.3} is the optimum composition for this binary alloy system, with the highest amount of stored hydrogen and the lowest desorption temperature. All the thin films expanded by approximately 20 percent due to hydrogen absorption. The hydrogen was stored only in the MgAl layer without any hydrogen in the Pd layer. It was concluded that NR can be used to effectively determine the hydrogen profile in thin MgAl films. 29 refs., 5 figs.

  1. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  2. Signal to Noise Ratio (SNR Enhancement Comparison of Impulse-, Coding- and Novel Linear-Frequency-Chirp-Based Optical Time Domain Reflectometry (OTDR for Passive Optical Network (PON Monitoring Based on Unique Combinations of Wavelength Selective Mirrors

    Directory of Open Access Journals (Sweden)

    Christopher M. Bentz

    2014-03-01

    Full Text Available We compare optical time domain reflectometry (OTDR techniques based on conventional single impulse, coding and linear frequency chirps concerning their signal to noise ratio (SNR enhancements by measurements in a passive optical network (PON with a maximum one-way attenuation of 36.6 dB. A total of six subscribers, each represented by a unique mirror pair with narrow reflection bandwidths, are installed within a distance of 14 m. The spatial resolution of the OTDR set-up is 3.0 m.

  3. An improved sensor for precision detection of in situ stem water content using a frequency domain fringing capacitor.

    Science.gov (United States)

    Zhou, Haiyang; Sun, Yurui; Tyree, Melvin T; Sheng, Wenyi; Cheng, Qiang; Xue, Xuzhang; Schumann, Henrik; Schulze Lammers, Peter

    2015-04-01

    One role of stems is that of water storage. The water content of stems increases and decreases as xylem water potential increases and decreases, respectively. Hence, a nondestructive method to measure stem water content (StWC) = (volume of water) : (volume of stem), could be useful in monitoring the drought stress status of plants. We introduce a frequency domain inner fringing capacitor-sensor for measuring StWC which operates at 100 MHz frequency. The capacitor-sensor consists of two wave guides (5-mm-wide braided metal) that snugly fit around the surface of a stem with a spacing of 4-5 mm between guides. Laboratory measurements on analog stems reveals that the DC signal output responds linearly to the relative dielectric constant of the analog stem, is most sensitive to water content between the waveguides to a depth of c. 3 mm from the stem surface, and calibrations based on the gravimetric water loss of excised stems of plants revealed a resolution in StWC of < ± 0.001 v/ v. The sensor performed very well on whole plants with a 100-fold increased resolution compared with previous frequency domain and time domain reflectometry methods and, hence, may be very useful for future research requiring nondestructive measurements of whole plants. © European Union 2014. New Phytologist © 2014 New Phytologist Trust.

  4. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Limb, Scott J. [Palo Alto Research Center, Palo Alto, CA (United States)

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  5. Performance of a Distributed Simultaneous Strain and Temperature Sensor Based on a Fabry-Perot Laser Diode and a Dual-Stage FBG Optical Demultiplexer

    Directory of Open Access Journals (Sweden)

    Shinwon Kang

    2013-11-01

    Full Text Available A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD and a dual-stage fiber Bragg grating (FBG optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR. By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  6. Performance of a distributed simultaneous strain and temperature sensor based on a Fabry-Perot laser diode and a dual-stage FBG optical demultiplexer.

    Science.gov (United States)

    Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon

    2013-11-12

    A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  7. Compliant Tactile Sensors

    Science.gov (United States)

    Torres-Jara, Eduardo R.

    2011-01-01

    Tactile sensors are currently being designed to sense interactions with human hands or pen-like interfaces. They are generally embedded in screens, keyboards, mousepads, and pushbuttons. However, they are not well fitted to sense interactions with all kinds of objects. A novel sensor was originally designed to investigate robotics manipulation where not only the contact with an object needs to be detected, but also where the object needs to be held and manipulated. This tactile sensor has been designed with features that allow it to sense a large variety of objects in human environments. The sensor is capable of detecting forces coming from any direction. As a result, this sensor delivers a force vector with three components. In contrast to most of the tactile sensors that are flat, this one sticks out from the surface so that it is likely to come in contact with objects. The sensor conforms to the object with which it interacts. This augments the contact's surface, consequently reducing the stress applied to the object. This feature makes the sensor ideal for grabbing objects and other applications that require compliance with objects. The operational range of the sensor allows it to operate well with objects found in peoples' daily life. The fabrication of this sensor is simple and inexpensive because of its compact mechanical configuration and reduced electronics. These features are convenient for mass production of individual sensors as well as dense arrays. The biologically inspired tactile sensor is sensitive to both normal and lateral forces, providing better feedback to the host robot about the object to be grabbed. It has a high sensitivity, enabling its use in manipulation fingers, which typically have low mechanical impedance in order to be very compliant. The construction of the sensor is simple, using inexpensive technologies like silicon rubber molding and standard stock electronics.

  8. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  9. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  10. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  11. The Ringcore Fluxgate Sensor

    DEFF Research Database (Denmark)

    Brauer, Peter

    1997-01-01

    A model describing the fundamental working principle of the "ringcore fluxgate sensor" is derived. The model is solely based on geometrical and measurable magnetic properties of the sensor and from this a number of fluxgate phenomenon can be described and estimated. The sensitivity of ringcore...... fluxgate sensors is measured for a large variety of geometries and is for all measurements found to fall between two limits obtained by the fluxgate model. The model is used to explain the zero field odd harmonic output of the fluxgate sensor, called the "feedthrough". By assuming a non ideal sensor...... with spatially distributed magnetization, the model predicts feedthrough signals which exactly reflects the measured signals. The non-linearities in a feedback compensated ringcore fluxgate sensors, called the "transverse field effect", can also be explained by the model. Measurements on stress annealed...

  12. Cryogenic microsize Hall sensors

    International Nuclear Information System (INIS)

    Kvitkovic, J.; Polak, M.

    1993-01-01

    Hall sensors have a variety of applications in magnetic field measurements. The active area of the Hall sensor does not play an important role in measuring of homogeneous magnetic field. Actually Hall sensors are widely used to measure profiles of magnetic fields produced by magnetization currents in samples of HTC superconductors, as well as of LTC ones. Similar techniques are used to measure magnetization of both HTC and LTC superconductors. In these cases Hall sensor operates in highly inhomogeneous magnetic fields. Because of that, Hall sensors with very small active area are required. We developed and tested Hall sensors with active area 100 μm x 100 μm - type M and 50 μm x 50 μm - type V. Here we report on the most imporant parameters of these units, as well as on their properties as differential magnetometer. (orig.)

  13. Clementine sensor suite

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  14. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong

    2015-03-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors\\'s magnetic field and frequency responses and their dependence on the sensors\\'s deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor\\'s large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications.

  15. Working Group Report: Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  16. Contact stress sensor

    Science.gov (United States)

    Kotovsky, Jack [Oakland, CA

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  17. Transient multivariable sensor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  18. Networked Sensor Arrays

    International Nuclear Information System (INIS)

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  19. Bioinspired Sensor Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2011-10-01

    Full Text Available This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field.

  20. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  1. Perimeter intrusion sensors

    International Nuclear Information System (INIS)

    Eaton, M.J.

    1977-01-01

    To obtain an effective perimeter intrusion detection system requires careful sensor selection, procurement, and installation. The selection process involves a thorough understanding of the unique site features and how these features affect the performance of each type of sensor. It is necessary to develop procurement specifications to establish acceptable sensor performance limits. Careful explanation and inspection of critical installation dimensions is required during on-site construction. The implementation of these activities at a particular site is discussed

  2. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  3. Dynamic Sensor Networks

    National Research Council Canada - National Science Library

    Schott, Brian

    2004-01-01

    ...: Declarative Languages and Execution Environment includes topographical soldier interface and a sensor network simulation environment for algorithm development, deployment planning, and operational support. Finally, Task 3...

  4. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  5. Smart and Intelligent Sensors

    Science.gov (United States)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  6. Microfabricated Formaldehyde Gas Sensors

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2009-11-01

    Full Text Available Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation.

  7. Complexation between carrageenan and methylene blue for sensor design

    Science.gov (United States)

    Ling, Yew Pei; Heng, Lee Yook

    2013-11-01

    Theoretical studies on the methylene blue (MB)-carrageenans complexation at solution and solid states have been carried out via ultraviolet spectrophotoscopy and reflectometry methods. The equilibrium constant (Ka) of the MBcarrageenans complexation follows the order of Iota > Lambda > Kappa carrageenans, which indicated Iota-carrageenan forms a stable complex. MB-carrageenan complexation reaction showed decrease in Ka value from 210.71 ppm-1 to 114.57 ppm-1 when the reaction temperature increased from 298 K to 323 K. Le Chatelier's principle and mass action law explained that the MB-carrageenan complexation was an exothermic reaction (ΔH=-18.54 kJmol-1) that release heat. Thus MB-carrageenan complex was less stable at high temperature and tend to dissociate into free MB and carrageenan molecules. It was also supported by the van't Hoff equation. The reaction is a spontaneous process (ΔG=-13.23 kJmol-1) where the randomness of the molecules reduced (ΔS=-17.83 Jmol-1K-1) due to complexation. Besides, linear regression of the concentration and absorption of the MB-carrageenan reaction obeys the Beer Lambert law, which elucidated that the complexation process was not affected by any concentration dependent factors such as aggregation and self-quenching. Moreover, linear Benesi Hilderbrend plot revealed that the interaction between MB and carrageenan was a reversible and stoichiometric reaction with 1:1 ratio. However, the molar extinction coefficient (ɛ) and molar adsorption coefficient (μa) of the MB-carrageenan complex were lower compared to free MB, described that the complex was less adsorptive. The sensor constructed based on these theoretical investigations showed response behavior that was similar with solution test as both have attraction for carrageenans in the sequence of Iota-, Lambda-, Kappa- carrageenans. Likewise, carrageenan sensor was more selective towards Iota-carrageenan than to Lambda- and Kappa-carrageenans, and no response observed when

  8. Microelectronic temperature sensor; silicon temperature sensor

    International Nuclear Information System (INIS)

    Beitner, M.; Kanert, W.; Reichert, H.

    1982-01-01

    The goal of this work was to develop a silicon temperature sensor with a sensitivity and a reliability as high and a tolerance as small as possible, for use in measurement and control. By employing the principle of spreading-resistance, using silicon doped by neutron transmutation, and trimming of the single wafer tolerances of resistance less than +- 5% can be obtained; overstress tests yielded a long-term stability better than 0.2%. Some applications show the advantageous use of this sensor. (orig.) [de

  9. Medical Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Andersen, Jacob

    researchers have been developing power-efficient security mechanisms for sensor networks. However, most of this work ignores the special usability demands from the clinical use-scenarios: set-up must be fast, and key pre-distribution is problematic if disposable sensors are discarded after being used for only...

  10. Sensors in Education

    NARCIS (Netherlands)

    Van Rosmalen, Peter; Schneider, Jan; Börner, Dirk

    2014-01-01

    Sensors rapidly become available both for personal as well as scientific use. A wide range of applications exists for personal use e.g. safety in and around the house, sport, fitness and health. In this workshop we will explore how sensors are (can be) used in education. We start with an

  11. Nanophotonic Image Sensors.

    Science.gov (United States)

    Chen, Qin; Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R S

    2016-09-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial-based THz image sensors, filter-free nanowire image sensors and nanostructured-based multispectral image sensors. This novel combination of cutting edge photonics research and well-developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sensor technology foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Jørgensen, Birte Holst; Rasmussen, Birgitte

    2001-01-01

    heavily impacted by new sensor technology. It also appears that new sensor technology will affect food processing and the environment sector. Some impact is made on sectors such as agriculture, chemical engineering, domestic and otherappliances, security and defence, transport, and energy. Less impact...

  13. ALC Rooftop Sensor System

    Science.gov (United States)

    2017-10-31

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an... Interior view of the new sensor box ...................................................... 3 Fig. 4 Interior of original sensor box...7 Fig. 10 Interior of fiber patch panel .................................................................. 7 Fig. 11

  14. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  15. Magnetic sensor device

    NARCIS (Netherlands)

    2009-01-01

    The present invention provides a sensor device and a method for detg. the presence and/or amt. of target moieties in a sample fluid, the target moieties being labeled with magnetic or magnetizable objects. The sensor device comprises a magnetic field generating means adapted for applying a retention

  16. Aggregating Linked Sensor Data

    NARCIS (Netherlands)

    Stasch, Christoph; Schade, Sven; Llaves, Alejandro; Janowicz, K.; Bröring, Arne; Taylor, Kerry; Ayyagari, Arun; De Roure, David

    2011-01-01

    Sensor observations are usually oered in relation to a specific purpose, e.g., for reporting fine dust emissions, following strict procedures, and spatio-temporal scales. Consequently, the huge amount of data gathered by today's public and private sensor networks is most often not reused outside of

  17. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...

  18. Multifunctional optical sensor

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a multifunctional optical sensor, having at least 2 areas which independently react to different input parameters, the sensor comprising a substrate and a polymeric layer comprising polymerized liquid crystal monomers having an ordered morphology, wherein the color, the

  19. Sensor Alerting Capability

    Science.gov (United States)

    Henriksson, Jakob; Bermudez, Luis; Satapathy, Goutam

    2013-04-01

    There is a large amount of sensor data generated today by various sensors, from in-situ buoys to mobile underwater gliders. Providing sensor data to the users through standardized services, language and data model is the promise of OGC's Sensor Web Enablement (SWE) initiative. As the amount of data grows it is becoming difficult for data providers, planners and managers to ensure reliability of data and services and to monitor critical data changes. Intelligent Automation Inc. (IAI) is developing a net-centric alerting capability to address these issues. The capability is built on Sensor Observation Services (SOSs), which is used to collect and monitor sensor data. The alerts can be configured at the service level and at the sensor data level. For example it can alert for irregular data delivery events or a geo-temporal statistic of sensor data crossing a preset threshold. The capability provides multiple delivery mechanisms and protocols, including traditional techniques such as email and RSS. With this capability decision makers can monitor their assets and data streams, correct failures or be alerted about a coming phenomena.

  20. Electrocatalytic glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, U; Luft, G; Mund, K; Preidel, W; Richter, G J

    1983-01-01

    An artificial pancreas consists of an insulin depot, a dosage unit and a glucose sensor. The measurement of the actual glucose concentration in blood is still an unsolved problem. Two methods are described for an electrocatalytic glucose sensor. Under the interfering action of amino acids and urea in-vitro measurements show an error of between 10% and 20%.

  1. Pressure Measurement Sensor

    Science.gov (United States)

    1997-01-01

    FFPI Industries Inc. is the manufacturer of fiber-optic sensors that furnish accurate pressure measurements in internal combustion chambers. Such an assessment can help reduce pollution emitted by these engines. A chief component in the sensor owes its seven year- long development to Lewis Research Center funding to embed optical fibers and sensors in metal parts. NASA support to Texas A&M University played a critical role in developing this fiber optic technology and led to the formation of FFPI Industries and the production of fiber sensor products. The simple, rugged design of the sensor offers the potential for mass production at low cost. Widespread application of the new technology is forseen, from natural gas transmission, oil refining and electrical power generation to rail transport and the petrochemical paper product industry.

  2. An electrokinetic pressure sensor

    International Nuclear Information System (INIS)

    Kim, Dong-Kwon; Kim, Sung Jin; Kim, Duckjong

    2008-01-01

    A new concept for a micro pressure sensor is demonstrated. The pressure difference between the inlet and the outlet of glass nanochannels is obtained by measuring the electrokinetically generated electric potential. To demonstrate the proposed concept, experimental investigations are performed for 100 nm wide nanochannels with sodium chloride solutions having various concentrations. The proposed pressure sensor is able to measure the pressure difference within a 10% deviation from linearity. The sensitivity of the electrokinetic pressure sensor with 10 −5 M sodium chloride solution is 18.5 µV Pa −1 , which is one order of magnitude higher than that of typical diaphragm-based pressure sensors. A numerical model is presented for investigating the effects of the concentration and the channel width on the sensitivity of the electrokinetic pressure sensor. Numerical results show that the sensitivity increases as the concentration decreases and the channel width increases

  3. 2-Sensor Problem

    Directory of Open Access Journals (Sweden)

    Michael Segal

    2004-11-01

    Full Text Available Abstract: Ad-hoc networks of sensor nodes are in general semi-permanently deployed. However, the topology of such networks continuously changes over time, due to the power of some sensors wearing out to new sensors being inserted into the network, or even due to designers moving sensors around during a network re-design phase (for example, in response to a change in the requirements of the network. In this paper, we address the problem of covering a given path by a limited number of sensors — in our case to two, and show its relation to the well-studied matrix multiplication problem.

  4. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  5. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  6. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  7. Nanowire sensor, sensor array, and method for making the same

    Science.gov (United States)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  8. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2015-04-01

    Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  9. Handheld Broadband Electromagnetic UXO Sensor

    National Research Council Canada - National Science Library

    Won, I. J; San Filipo, William A; Marqusee, Jeffrey; Andrews, Anne; Robitaille, George; Fairbanks, Jeffrey; Overbay, Larry

    2005-01-01

    The broadband electromagnetic sensor improvement and demonstration undertaken in this project took the prototype GEM-3 and evolved it into an operational sensor with increased bandwidth and dynamic...

  10. Roadmap on optical sensors.

    Science.gov (United States)

    Ferreira, Mário F S; Castro-Camus, Enrique; Ottaway, David J; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M; Pellegrino, Paul M; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  11. Roadmap on optical sensors

    Science.gov (United States)

    Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  12. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  13. Advanced Magnetoimpedance Sensors

    KAUST Repository

    Li, Bodong

    2015-02-01

    This thesis is concerned with the advanced topics of thin film magnetoimpedance (MI) sensors. The author proposes and develops novel MI sensors that target on the challenges arising from emerging applications such as flexible electronics, passive wireless sensing, etc. In the study of flexible MI sensor, the investigated sensors of NiFe/Cu/NiFe tri-layersare fabricated on three flexible substrates having different surface roughness: Kapton, standard and premiumphotopaper. Sensitivity versus substrate roughness analysis is carried out for the selection of optimal substrate material. The high magnetic sensing performance is achieved by using Kapton substrate. Stress simulation, incorporated with the theory of magnetostriction effect, reveals the material composition of Ni/Fe being as a key factor of the stress dependent MI effect for the flexible MI sensors. In the development of MI-SAW device for passive wireless magnetic field sensing, NiFe/Cu/NiFe tri-layersand interdigital transducers(IDT) are designed and fabricated on a single piece of LiNbO3substrate, providing a high degree of integration and the advantage of standard microfabrication. The double-electrodeIDT has been utilized and proven to have an optimal sensing performance in comparison to the bi-directional IDT design. The optimized high frequency performance of the thin film MI sensor results in a MI-SAW passive wireless magnetic sensor with high magnetic sensitivity comparing to the MI microwire approach. Benefiting from the high degree of integration of the MI thin film element, in the following study, two additional sensing elements are integrated to the SAW device to have a multifunctional passive wireless sensor with extended temperature and humidity sensing capabilities. Analytical models havebeen developed to eliminate the crossovers of different sensing signals through additional reference IDTs, resulting in a multifunctional passive wireless sensor with the capability of detecting all three

  14. Micro Coriolis mass flow sensor with integrated resistive pressure sensors

    NARCIS (Netherlands)

    Groenesteijn, Jarno; Alveringh, Dennis; Schut, Thomas; Wiegerink, Remco J.; Sparreboom, Wouter; Lötters, Joost Conrad

    2017-01-01

    We report on novel resistive pressure sensors, integrated on-chip at the inlet- and outlet-channels of a micro Coriolis mass flow sensor. The pressure sensors can be used to measure the pressure drop over the Coriolis sensor which can be used to compensate pressure-dependent behaviour that might

  15. Resistive pressure sensors integrated with a Coriolis mass flow sensor

    NARCIS (Netherlands)

    Alveringh, Dennis; Schut, Thomas; Wiegerink, Remco J.; Sparreboom, Wouter; Lötters, Joost Conrad

    2017-01-01

    We report on a novel resistive pressure sensor that is completely integrated with a Coriolis mass flow sensor on one chip, without the need for extra fabrication steps or different materials. Two pressure sensors are placed in-line with the Coriolis sensor without requiring any changes to the fluid

  16. Consistent sensor, relay, and link selection in wireless sensor networks

    NARCIS (Netherlands)

    Arroyo Valles, M.D.R.; Simonetto, A.; Leus, G.J.T.

    2017-01-01

    In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting sensors, relays and links in a wireless sensor network where the active sensors need

  17. Urodynamic pressure sensor

    Science.gov (United States)

    Moore, Thomas

    1991-01-01

    A transducer system was developed for measuring the closing pressure profile along the female urethra, which provides up to five sensors within the functional length of the urethra. This new development is an improvement over an earlier measurement method that has a smaller sensor area and was unable to respond to transient events. Three sensors were constructed; one of them was subjected to approximately eight hours of use in a clinical setting during which 576 data points were obtained. The complete instrument system, including the signal conditioning electronics, data acquisition unit, and the computer with its display and printer is described and illustrated.

  18. Electrocatalytic cermet sensor

    Science.gov (United States)

    Shoemaker, Erika L.; Vogt, Michael C.

    1998-01-01

    A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.

  19. Sensors in Education

    OpenAIRE

    Van Rosmalen, Peter; Schneider, Jan; Börner, Dirk

    2014-01-01

    Sensors rapidly become available both for personal as well as scientific use. A wide range of applications exists for personal use e.g. safety in and around the house, sport, fitness and health. In this workshop we will explore how sensors are (can be) used in education. We start with an introduction on sensors and their use, discuss the FP7 project METALOGUE (www.metalogue.eu), a Multi-perspective Multi-modal Dialogue system, and close with a hands-on and a discussion of the design of the Pr...

  20. Characterization of Pixel Sensors

    CERN Document Server

    Oliveira, Felipe Ferraz

    2017-01-01

    It was commissioned at CERN ATLAS pixel group a fluorescence setup for characterization of pixel sensors. The idea is to measure the energies of different targets to calibrate your sensor. It was measured four matrices (80, 95, 98 and 106) of the Investigator1 sensor with different deep PW using copper, iron and titanium as target materials. The matrix 80 has a higher gain (0.065 ± 0.002) and matrix 106 has a better energy resolution (0.05 ± 0.04). The noise of the setup is around 3.6 mV .

  1. RADIOACTIVE MATERIALS SENSORS

    International Nuclear Information System (INIS)

    Mayo, Robert M.; Stephens, Daniel L.

    2009-01-01

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  2. Wireless passive radiation sensor

    Science.gov (United States)

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  3. Professional Android Sensor Programming

    CERN Document Server

    Milette, Greg

    2012-01-01

    Learn to build human-interactive Android apps, starting with device sensors This book shows Android developers how to exploit the rich set of device sensors—locational, physical (temperature, pressure, light, acceleration, etc.), cameras, microphones, and speech recognition—in order to build fully human-interactive Android applications. Whether providing hands-free directions or checking your blood pressure, Professional Android Sensor Programming shows how to turn possibility into reality. The authors provide techniques that bridge the gap between accessing sensors and putting the

  4. Surfactant Sensors in Biotechnology; Part 1 – Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Milan Sak-Bosnar

    2004-01-01

    Full Text Available An overview on electrochemical surfactant sensors is given with special attention to papers published since 1993. The importance of surfactants in modern biotechnology is stressed out. Electrochemical sensors are usually divided according to the measured physical quantity to potentiometric, amperometric, conductometric and impedimetric surfactant sensors. The last ones are very few. Potentiometric surfactant sensors are the most numerous due to their simplicity and versatility. They can be used either as end-point titration sensors or as direct EMF measurement sensors, in batch or flow-through mode. Some amperometric surfactant sensors are true biosensors that use microorganisms or living cells.

  5. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  6. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed

    2015-10-21

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor\\'s high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  7. Downhole pressure sensor

    Science.gov (United States)

    Berdahl, C. M.

    1980-01-01

    Sensor remains accurate in spite of varying temperatures. Very accurate, sensitive, and stable downhole pressure measurements are needed for vaiety of reservoir engineering applications, such as deep petroleum reservoirs, especially gas reservoirs, and in areas of high geothermal gradient.

  8. Reconfigurable Sensor Monitoring System

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.

  9. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas; Zhao, Guoqing

    2014-01-01

    fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured

  10. Magnetic Nanocomposite Cilia Sensors

    KAUST Repository

    Alfadhel, Ahmed

    2016-01-01

    Recent progress in the development of artificial skin concepts is a result of the increased demand for providing environment perception such as touch and flow sensing to robots, prosthetics and surgical tools. Tactile sensors are the essential

  11. Parachute Cord Tension Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — To design and fabricate a light weight (few oz), very small (~2 inch length) parachute cord tension sensor demonstrator device.A major challenge for the CPAS (The...

  12. Modular sensor network node

    Science.gov (United States)

    Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  13. Uncooled tunneling infrared sensor

    Science.gov (United States)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  14. Graphene Chemical Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop graphene based miniaturized chemical sensors that will be able to detect gaseous and volatile molecules with high sensitivity, good reproducibility and wide...

  15. Graphene Chemical Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop graphene based miniaturized chemical sensors that will be able to detect gaseous and volatile molecules with high sensitivity, good reproducibility and wide...

  16. Wearable Optical Sensors

    KAUST Repository

    Ballard, Zachary S.; Ozcan, Aydogan

    2017-01-01

    The market for wearable sensors is predicted to grow to $5.5 billion by 2025, impacting global health in unprecedented ways. Optics and photonics will play a key role in the future of these wearable technologies, enabling highly sensitive

  17. Microsoft Kinect Sensor Evaluation

    Science.gov (United States)

    Billie, Glennoah

    2011-01-01

    My summer project evaluates the Kinect game sensor input/output and its suitability to perform as part of a human interface for a spacecraft application. The primary objective is to evaluate, understand, and communicate the Kinect system's ability to sense and track fine (human) position and motion. The project will analyze the performance characteristics and capabilities of this game system hardware and its applicability for gross and fine motion tracking. The software development kit for the Kinect was also investigated and some experimentation has begun to understand its development environment. To better understand the software development of the Kinect game sensor, research in hacking communities has brought a better understanding of the potential for a wide range of personal computer (PC) application development. The project also entails the disassembly of the Kinect game sensor. This analysis would involve disassembling a sensor, photographing it, and identifying components and describing its operation.

  18. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  19. GAINT magnetoimpedance sensors

    Czech Academy of Sciences Publication Activity Database

    Hauser, H.; Kraus, Luděk; Ripka, P.

    xx, - (2001), s. 28-32 ISSN 1094-6969 Institutional research plan: CEZ:AV0Z1010914 Keywords : wireless sensor * distant measurement of magnetic fields Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Thermal microphotonic sensor and sensor array

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM; Shaw, Michael J [Tijeras, NM; Nielson, Gregory N [Albuquerque, NM; Lentine, Anthony L [Albuquerque, NM

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.