WorldWideScience

Sample records for reflection wave optics

  1. Epoxy-based broadband anti-reflection coating for millimeter-wave optics

    OpenAIRE

    Rosen, Darin; Suzuki, Aritoki; Keating, Brian; Krantz, William; Lee, Adrian T.; Quealy, Erin; Richards, Paul L.; Siritanasak, Praween; Walker, William

    2013-01-01

    We have developed epoxy-based, broadband anti-reflection coatings for millimeter-wave astrophysics experiments with cryogenic optics. By using multiple-layer coatings where each layer steps in dielectric constant, we achieved low reflection over a wide bandwidth. We suppressed the reflection from an alumina disk to 10% over fractional bandwidths of 92% and 104% using two-layer and three-layer coatings, respectively. The dielectric constants of epoxies were tuned between 2.06 and 7.44 by mixin...

  2. Process monitoring using optical ultrasonic wave detection

    International Nuclear Information System (INIS)

    Telschow, K.L.; Walter, J.B.; Garcia, G.V.; Kunerth, D.C.

    1989-01-01

    Optical ultrasonic wave detection techniques are being developed for process monitoring. An important limitation on optical techniques is that the material surface, in materials processing applications, is usually not a specular reflector and in many cases is totally diffusely reflecting. This severely degrades the light collected by the detection optics, greatly reducing the intensity and randomly scattering the phase of the reflected light. A confocal Fabry-Perot interferometer, which is sensitive to the Doppler frequency shift resulting from the surface motion and not to the phase of the collected light, is well suited to detecting ultrasonic waves in diffusely reflecting materials. This paper describes the application of this detector to the real-time monitoring of the sintering of ceramic materials. 8 refs., 5 figs

  3. Reflection and transmission of normally incident full-vector X waves on planar interfaces

    KAUST Repository

    Salem, Mohamed

    2011-12-23

    The reflection and transmission of full-vector X waves normally incident on planar half-spaces and slabs are studied. For this purpose, X waves are expanded in terms of weighted vector Bessel beams; this new decomposition and reconstruction method offers a more lucid and intuitive interpretation of the physical phenomena observed upon the reflection or transmission of X waves when compared to the conventional plane-wave decomposition technique. Using the Bessel beam expansion approach, we have characterized changes in the field shape and the intensity distribution of the transmitted and reflected full-vector X waves. We have also identified a novel longitudinal shift, which is observed when a full-vector X wave is transmitted through a dielectric slab under frustrated total reflection condition. The results of our studies presented here are valuable in understanding the behavior of full-vector X waves when they are utilized in practical applications in electromagnetics, optics, and photonics, such as trap and tweezer setups, optical lithography, and immaterial probing. © 2011 Optical Society of America.

  4. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  5. Geometrical aspects in optical wave-packet dynamics.

    Science.gov (United States)

    Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto

    2006-12-01

    We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.

  6. Observation of three dimensional optical rogue waves through obstacles

    International Nuclear Information System (INIS)

    Leonetti, Marco; Conti, Claudio

    2015-01-01

    We observe three-dimensional rogue waves in the speckle distribution of a spatially modulated optical beam. Light is transmitted beyond a partially reflecting obstacle generating optical rogue waves at a controlled position in the shadow of the barrier. When the barrier transmits only 0.07% of the input laser power, we observe the mostly localized event. These results demonstrate that an optimum amount of spatial non-homogeneity maximizes the probability of a gigantic event while the technique we exploit enables to control light behind a fully reflective wall

  7. Beam splitter phase shifts: Wave optics approach

    Science.gov (United States)

    Agnesi, Antonio; Degiorgio, Vittorio

    2017-10-01

    We investigate the phase relationships between transmitted and reflected waves in a lossless beam splitter having a multilayer structure, using the matrix approach as outlined in classical optics books. Contrarily to the case of the quantum optics formalism generally employed to describe beam splitters, these matrices are not unitary. In this note we point out the existence of general relations among the elements of the transfer matrix that describes the multilayer beam splitter. Such relations, which are independent of the detailed structure of the beam splitter, fix the phase shifts between reflected and transmitted waves. It is instructive to see how the results obtained by Zeilinger by using spinor algebra and Pauli matrices can be easily derived from our general relations.

  8. Evanescent waves in optics an introduction to plasmonics

    CERN Document Server

    Bertolotti, Mario; M Guzman, Angela

    2017-01-01

    This monograph provides an introductory discussion of evanescent waves and plasmons, describes their properties and uses, and shows how they are fundamental when operating with nanoscale optics. Far field optics is not suitable for the design, description, and operation of devices at this nanometre scale. Instead one must work with models based on near-field optics and surface evanescent waves. The new discipline of plasmonics has grown to encompass the generation and application of plasmons both as a travelling excitation in a nanostructure and as a stationary enhancement of the electrical field near metal nanosurfaces. The book begins with a brief review of the basic concepts of electromagnetism, then introduces evanescent waves through reflection and refraction, and shows how they appear in diffraction problems, before discussing the role that they play in optical waveguides and sensors. The application of evanescent waves in super-resolution devices is briefly presented, before plasmons are introduced. Th...

  9. New nonlinear optical effect: self-reflection phenomenon due to exciton-biexciton-light interaction in semiconductors

    Science.gov (United States)

    Khadzhi, P. I.; Lyakhomskaya, K. D.; Nadkin, L. Y.; Markov, D. A.

    2002-05-01

    The characteristic peculiarities of the self-reflection of a strong electromagnetic wave in a system of coherent excitons and biexcitons due to the exciton-photon interaction and optical exciton-biexciton conversion in semiconductors were investigated as one of the manifestations of nonlinear optical Stark-effect. It was found that a monotonously decreasing standing wave with an exponential decreasing spatial tail is formed in the semiconductor. Under the action of the field of a strong pulse, an optically homogeneous medium is converted, into the medium with distributed feedback. The appearance of the spatially separated narrow pears of the reflective index, extinction and reflection coefficients is predicted.

  10. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    Science.gov (United States)

    Pipino, Andrew Charles Rule

    1999-11-16

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  11. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    Science.gov (United States)

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  12. Prediction of the limit of detection of an optical resonant reflection biosensor.

    Science.gov (United States)

    Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong

    2007-07-09

    A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.

  13. Wave reflections from breakwaters

    OpenAIRE

    Dickson, William S.

    1994-01-01

    A new method is presented for estimating the reflection of a random, multi-directional sea from a coastal structure. The technique is applicable to an array of wave gauges of arbitrary geometry deployed seaward of the reflector. An expansion for small oblique wave incidence angles is used to derive an approximate relationship between measured array cross-spectra and a small number of parameters that describe the incident wave properties and the reflectivity of the structure. Model tests with ...

  14. Acousto-optic control of internal acoustic reflection in tellurium dioxide crystal in case of strong elastic energy walkoff [Invited].

    Science.gov (United States)

    Voloshinov, Vitaly; Polikarpova, Nataliya; Ivanova, Polina; Khorkin, Vladimir

    2018-04-01

    Peculiar cases of acoustic wave propagation and reflection may be observed in strongly anisotropic acousto-optical crystals. A tellurium dioxide crystal serves as a prime example of such media, since it possesses record indexes of acoustic anisotropy. We studied one of the unusual scenarios of acoustic incidence and reflection from a free crystal-vacuum boundary in paratellurite. The directions of the acoustic waves in the (001) plane of the crystal were determined, and their basic characteristics were calculated. The carried-out acousto-optic experiment at the wavelength of light 532 nm and the acoustic frequency 73 MHz confirmed the theoretical predictions. The effects examined in the paper include the acoustic wave propagation with the record walkoff angle 74°. We also observed the incidence of the wave on the boundary at the angle exceeding 90°. Finally, we registered the close-to-back reflection of acoustic energy following the incidence. One of the stunning aspects is the distribution of energy between the incident and the back-reflected wave. The unusual features of the acoustic wave reflections pointed out in the paper are valuable for their possible applications in acousto-optic devices.

  15. Wave-optical evaluation of interference fringes and wavefront phase in a hard-x-ray beam totally reflected by mirror optics.

    Science.gov (United States)

    Yamauchi, Kazuto; Yamamura, Kazuya; Mimura, Hidekazu; Sano, Yasuhisa; Saito, Akira; Endo, Katsuyoshi; Souvorov, Alexei; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Mori, Yuzo

    2005-11-10

    The intensity flatness and wavefront shape in a coherent hard-x-ray beam totally reflected by flat mirrors that have surface bumps modeled by Gaussian functions were investigated by use of a wave-optical simulation code. Simulated results revealed the necessity for peak-to-valley height accuracy of better than 1 nm at a lateral resolution near 0.1 mm to remove high-contrast interference fringes and appreciable wavefront phase errors. Three mirrors that had different surface qualities were tested at the 1 km-long beam line at the SPring-8/Japan Synchrotron Radiation Research Institute. Interference fringes faded when the surface figure was corrected below the subnanometer level to a spatial resolution close to 0.1 mm, as indicated by the simulated results.

  16. Theory of reflection reflection and transmission of electromagnetic, particle and acoustic waves

    CERN Document Server

    Lekner, John

    2016-01-01

    This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods,  reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle...

  17. NONLINEAR OPTICAL PHENOMENA: Self-reflection in a system of excitons and biexcitons in semiconductors

    Science.gov (United States)

    Khadzhi, P. I.; Lyakhomskaya, K. D.

    1999-10-01

    The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted.

  18. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  19. Terahertz wave reflective sensing and imaging

    Science.gov (United States)

    Zhong, Hua

    Sensing and imaging technologies using terahertz (THz) radiation have found diverse applications as they approach maturity. Since the burgeoning of this technique in the 1990's, many THz sensing and imaging investigations have been designed and conducted in transmission geometry, which provides sufficient phase and amplitude contrast for the study of the spectral properties of targets in the THz domain. Driven by rising expectations that THz technology will be a potential candidate in the next generation of security screening, remote sensing, biomedical imaging and non-destructive testing (NDT), most THz sensing and imaging modalities are being extended to reflection geometry, which offers unique and adaptive solutions, and multi-dimensional information in many real scenarios. This thesis takes an application-focused approach to the advancement of THz wave reflective sensing and imaging systems: The absorption signature of the explosive material hexahydro-1,3,5-trinitro-1,3,5triazine (RDX) is measured at 30 m---the longest standoff distance so far attained by THz time-domain spectroscopy (THz-TDS). The standoff distance sensing ability of THz-TDS is investigated along with discussions specifying the influences of a variety of factors such as propagation distance, water vapor absorption and collection efficiency. Highly directional THz radiation from four-wave mixing in laser-induced air plasmas is first observed and measured, which provides a potential solution for the atmospheric absorption effect in standoff THz sensing. The simulations of the beam profiles also illuminate the underlying physics behind the interaction of the optical beam with the plasma. THz wave reflective spectroscopic focal-plane imaging is realized the first time. Absorption features of some explosives and related compounds (ERCs) and biochemical materials are identified by using adaptive feature extraction method. Good classification results using multiple pattern recognition methods are

  20. Reflective optics

    CERN Document Server

    Korsch, Dietrich

    1991-01-01

    This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unc

  1. Metasurface-based anti-reflection coatings at optical frequencies

    Science.gov (United States)

    Monti, Alessio; Alù, Andrea; Toscano, Alessandro; Bilotti, Filiberto

    2018-05-01

    In this manuscript, we propose a metasurface approach for the reduction of electromagnetic reflection from an arbitrary air‑dielectric interface. The proposed technique exploits the exotic optical response of plasmonic nanoparticles to achieve complete cancellation of the field reflected by a dielectric substrate by means of destructive interference. Differently from other, earlier anti-reflection approaches based on nanoparticles, our design scheme is supported by a simple transmission-line formulation that allows a closed-form characterization of the anti-reflection performance of a nanoparticle array. Furthermore, since the working principle of the proposed devices relies on an average effect that does not critically depend on the array geometry, our approach enables low-cost production and easy scalability to large sizes. Our theoretical considerations are supported by full-wave simulations confirming the effectiveness of this design principle.

  2. Modeling Transmission and Reflection Mueller Matrices of Dielectric Half-Wave Plates

    Science.gov (United States)

    Salatino, Maria; de Bernardis, Paolo; Masi, Silvia

    2017-02-01

    We present a simple analytical model describing multiple reflections in dielectric and optically active waveplates, for both normal and slant incidence, including absorption. We compute from first principles the transmission and reflection Mueller matrices of the waveplate. The model is used to simulate the performance of a Stokes polarimeter for mm-waves, in the framework of current attempts to precisely measure the linear polarization of the Cosmic Microwave Background (CMB). We study the spectral response of these optical devices, taking into account band and angle averaging effects and confirm the presence of a much richer spectral dependence than in an ideal phase retarder. We also present the matrix elements for the reflection matrix, which is useful to estimate systematic effects in some polarimeter configurations. The formulas we have derived can be used to quickly simulate the performance of future CMB polarimeters.

  3. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    Science.gov (United States)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  4. Conversion of optical wave polarizations in 1D finite anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Ouchani, N.; Nougaoui, N.; Daoudi, A.; Bria, D.

    2006-07-01

    We show that by using one dimensional anisotropic photonic structures, it is possible to realize optical wave polarization conversion by transmission or by reflection. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice constituted by anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are discussed in relation with the dispersion curves of the finite structure embedded between two isotropic substrates. Both transmission and reflection coefficients are calculated in the framework of Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as function of frequency ω , and wave vector k parallel ( parallel to the interface) and the orientations of the principal axes of the layers constituting the SL. Moreover, this structure exhibits a coupling between S and P waves that does not exist in SL composed only of isotropic materials. Specific applications of these results are given for a superlattice consisting of alternating biaxial anisotropic layers NaNO 2 /SbSi sandwiched between two identical semi-infinite isotropic media. (author)

  5. Wave-equation reflection traveltime inversion

    KAUST Repository

    Zhang, Sanzong

    2011-01-01

    The main difficulty with iterative waveform inversion using a gradient optimization method is that it tends to get stuck in local minima associated within the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. No travel-time picking is needed and no high-frequency approximation is assumed. The mathematical derivation and the numerical examples are presented to partly demonstrate its efficiency and robustness. © 2011 Society of Exploration Geophysicists.

  6. DISPELLING ILLUSIONS OF REFLECTION: A NEW ANALYSIS OF THE 2007 MAY 19 CORONAL 'WAVE' EVENT

    International Nuclear Information System (INIS)

    Attrill, Gemma D. R.

    2010-01-01

    A new analysis of the 2007 May 19 coronal wave-coronal mass ejection-dimmings event is offered employing base difference extreme-ultraviolet (EUV) images. Previous work analyzing the coronal wave associated with this event concluded strongly in favor of purely an MHD wave interpretation for the expanding bright front. This conclusion was based to a significant extent on the identification of multiple reflections of the coronal wave front. The analysis presented here shows that the previously identified 'reflections' are actually optical illusions and result from a misinterpretation of the running difference EUV data. The results of this new multiwavelength analysis indicate that two coronal wave fronts actually developed during the eruption. This new analysis has implications for our understanding of diffuse coronal waves and questions the validity of the analysis and conclusions reached in previous studies.

  7. Precise optical observation of 0.5-GPa shock waves in condensed materials

    Science.gov (United States)

    Nagayama, Kunihito; Mori, Yasuhito

    1999-06-01

    Precision optical observation method was developed to study impact-generated high-pressure shock waves in condensed materials. The present method makes it possible to sensitively detect the shock waves of the relatively low shock stress around 0.5 GPa. The principle of the present method is based on the use of total internal reflection by triangular prisms placed on the free surface of a target assembly. When a plane shock wave arrives at the free surface, the light reflected from the prisms extinguishes instantaneously. The reason is that the total internal reflection changes to the reflection depending on micron roughness of the free surface after the shock arrival. The shock arrival at the bottom face of the prisms can be detected here by two kinds of methods, i.e., a photographic method and a gauge method. The photographic method is an inclined prism method of using a high-speed streak camera. The shock velocity and the shock tilt angle can be estimated accurately from an obtained streak photograph. While in the gauge method, an in-material PVDF stress gauge is combined with an optical prism-pin. The PVDF gauge records electrically the stress profile behind the shockwave front, and the Hugoniot data can be precisely measured by combining the prism pin with the PVDF gauge.

  8. Wave Reflection Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Larsen, Brian Juul

    The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...

  9. Born reflection kernel analysis and wave-equation reflection traveltime inversion in elastic media

    KAUST Repository

    Wang, Tengfei

    2017-08-17

    Elastic reflection waveform inversion (ERWI) utilize the reflections to update the low and intermediate wavenumbers in the deeper part of model. However, ERWI suffers from the cycle-skipping problem due to the objective function of waveform residual. Since traveltime information relates to the background model more linearly, we use the traveltime residuals as objective function to update background velocity model using wave equation reflected traveltime inversion (WERTI). The reflection kernel analysis shows that mode decomposition can suppress the artifacts in gradient calculation. We design a two-step inversion strategy, in which PP reflections are firstly used to invert P wave velocity (Vp), followed by S wave velocity (Vs) inversion with PS reflections. P/S separation of multi-component seismograms and spatial wave mode decomposition can reduce the nonlinearity of inversion effectively by selecting suitable P or S wave subsets for hierarchical inversion. Numerical example of Sigsbee2A model validates the effectiveness of the algorithms and strategies for elastic WERTI (E-WERTI).

  10. The general optics structure of millimeter-wave imaging diagnostic on TOKAMAK

    International Nuclear Information System (INIS)

    Zhu, Y.; Xie, J.; Liu, W.D.; Luo, C.; Zhao, Z.; Chen, D.; Domier, C.W.; Luhmann, N.C. Jr.; Chen, M.; Hu, X.

    2016-01-01

    Advanced imaging optics techniques have significantly improved the performance of millimeter-wave imaging diagnostics, such as Electron Cyclotron Emission imaging and Microwave Imaging of Reflectometry. The fundamental functions of millimeter-wave imaging optics are focusing, collecting the emission or reflected microwave signal from the target area in the plasma and focusing the emitted (reflected) signal on the detector array. The location of the observation area can be changed using the focus lens. Another important function of the imaging optics is zooming. The size of the observation area in poloidal direction can be adjusted by the zoom lenses and the poloidal spatial resolution is determined by the level of zoom. The field curvature adjustment lenses are employed to adjust the shape of the image plane in the poloidal direction to reduce crosstalk between neighboring channels. The incident angle on each channel is controlled using the specific surface type of the front-side lenses to increase the signal-to-noise ratio. All functions are decoupled with the minimum number of lenses. Successful applications are given

  11. Optical Rogue Waves: Theory and Experiments

    Science.gov (United States)

    Taki, M.; Mussot, A.; Kudlinski, A.; Louvergneaux, E.; Kolobov, M.

    2010-05-01

    In the ocean, giant waves (also called killer waves, freak or rogue waves) are extremely rare and strong events. They are not well understood yet and the conditions which favour their emergence are unclear. Very recently, it was shown that the governing equations [1] as well as the statistical properties of an optical pulse propagating inside an optical fibre [2] mimic very well these gigantic surface waves in the ocean. Here we generate both experimentally and numerically optical rogue waves in a photonic crystal fiber (microstructured fiber) with continuous wave (CW) pumps. This is relevant for establishing an analogy with rogue waves in an open ocean. After recalling fundamental rogue waves [3] known as Akhmediev breathers that are solutions of pure nonlinear Schrödinger (NLS) equation, we analytically demonstrate that a generalized NLS equation, which governs the propagation of light in the fiber, exhibits convective modulationnal instability [4]. The latter provides one of the main explanations of the optical rogue wave extreme sensitivity to noisy initial conditions at the linear stage of their formation [5]. In the highly nonlinear regime, we provide the evidence that optical rogue waves result from soliton collisions leading to the rapid appearance/disappearance of a powerful optical pulse [6]. REFERENCES [1] C. Kharif, E. Pelinovsky, and A. Slunyaev, "Rogue Waves in the ocean", Springer Berlin Heidelberg, 2009 [2] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves" Nature 450, 1054-1058, (2008). [3] N. Akhmediev, A. Ankiewicz, and M. Taki, "Waves that appear from nowhere and disappear without a trace", Phys. Lett. A 373, 675 (2009). [4] A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, Delage, and M. Taki, "Optical fiber systems are convectively unstable", Phys. Rev. Lett. 101, 113904 (2008). [5] M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, "Third-order dispersion for generating optical rogue solitons

  12. Ray splitting in the reflection and refraction of surface acoustic waves in anisotropic solids.

    Science.gov (United States)

    Every, A G; Maznev, A A

    2010-05-01

    This paper examines the conditions for, and provides examples of, ray splitting in the reflection and refraction of surface acoustic waves (SAW) in elastically anisotropic solids at straight obstacles such as edges, surface breaking cracks, and interfaces between different solids. The concern here is not with the partial scattering of an incident SAW's energy into bulk waves, but with the occurrence of more than one SAW ray in the reflected and/or transmitted wave fields, by analogy with birefringence in optics and mode conversion of bulk elastic waves at interfaces. SAW ray splitting is dependent on the SAW slowness curve possessing concave regions, which within the constraint of wave vector conservation parallel to the obstacle allows multiple outgoing SAW modes for certain directions of incidence and orientation of obstacle. The existence of pseudo-SAW for a given surface provides a further channel for ray splitting. This paper discusses some typical material configurations for which SAW ray splitting occurs. An example is provided of mode conversion entailing backward reflection or negative refraction. Experimental demonstration of ray splitting in the reflection of a laser generated SAW in GaAs(111) is provided. The calculation of SAW mode conversion amplitudes lies outside the scope of this paper.

  13. Probing near-normally propagating bulk acoustic waves using pseudo-reflection geometry Brillouin spectroscopy

    Science.gov (United States)

    Parsons, L. C.; Andrews, G. T.

    2012-09-01

    Pseudo-reflection geometry Brillouin spectroscopy can be used to probe acoustic wave dispersion approximately along the surface normal of a material system while avoiding the difficulties associated with specularly reflected light encountered in an ideal reflection configuration. As an example of its application, we show analytically that it can be used to determine both the refractive index and bulk acoustic mode velocities of optically-isotropic non-metallic materials and confirm the utility of the approach via a series of experiments on fused quartz, gallium phosphide, water, and porous silicon films.

  14. Physics of reflective optics for the soft gamma-ray photon energy range

    DEFF Research Database (Denmark)

    Fernández-Perea, Mónica; Descalle, Marie-Anne; Soufli, Regina

    2013-01-01

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disag...

  15. Crystals with an Open Wave-Vector Surface: Peculiarities of Reflection and Possibilities of Designing Flat Lenses

    International Nuclear Information System (INIS)

    Eritsyan, O. S.; Lalayan, A. A.; Arakelyan, O. M.; Papoyan, A. A.; Kostanyan, R. B.

    2010-01-01

    The frequency dependence of the reflection coefficient of MgF 2 crystal in the frequency range of 200-800 cm -1 at different orientations of the optical axis has been investigated. The experimental data are compared with the calculation results. This comparison confirms that the wave vectors for the extraordinary wave have an open surface. This makes it possible to focus a divergent beam refracted at a flat boundary ori- ented perpendicularly to the optical crystal axis. The focusing effect of a plane-parallel MgF 2 crystal plate is calculated.

  16. CFD Analysis of Water Solitary Wave Reflection

    Directory of Open Access Journals (Sweden)

    K. Smida

    2011-12-01

    Full Text Available A new numerical wave generation method is used to investigate the head-on collision of two solitary waves. The reflection at vertical wall of a solitary wave is also presented. The originality of this model, based on the Navier-Stokes equations, is the specification of an internal inlet velocity, defined as a source line within the computational domain for the generation of these non linear waves. This model was successfully implemented in the PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series code. The collision of two counter-propagating solitary waves is similar to the interaction of a soliton with a vertical wall. This wave generation method allows the saving of considerable time for this collision process since the counter-propagating wave is generated directly without reflection at vertical wall. For the collision of two solitary waves, numerical results show that the run-up phenomenon can be well explained, the solution of the maximum wave run-up is almost equal to experimental measurement. The simulated wave profiles during the collision are in good agreement with experimental results. For the reflection at vertical wall, the spatial profiles of the wave at fixed instants show that this problem is equivalent to the collision process.

  17. A wave optics approach to the theory of the Michelson-Morley experiment

    Science.gov (United States)

    Smid, Thomas

    2017-11-01

    A consistent classical wave optics approach to the theory of the Michelson-Morley experiment shows that the original theory as applied by Michelson and Morley and others does not calculate the optical paths of the two beams correctly, primarily because of incorrectly assuming a right angle reflection in the instrument’s reference frame for the transverse beam, but also because of the incorrect assumption of aberration for the wave fronts. The theory presented in this work proves the expected variation of the phase difference when rotating the interferometer to be more than twice as large and also strongly asymmetrical around the zero line.

  18. Guided-Wave Optical Biosensors

    Science.gov (United States)

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  19. Continuous wave terahertz reflection imaging of human colorectal tissue

    Science.gov (United States)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2013-03-01

    Continuous wave terahertz (THz) imaging has the potential to offer a safe, non-ionizing, and nondestructive medical imaging modality for delineating colorectal cancer. Fresh excisions of normal colon tissue were obtained from surgeries performed at the University of Massachusetts Medical School, Worcester. Reflection measurements of thick sections of colorectal tissues, mounted in an aluminum sample holder, were obtained for both fresh and formalin fixed tissues. The two-dimensional reflection images were acquired by using an optically pumped far-infrared molecular gas laser operating at 584 GHz with liquid Helium cooled silicon bolometer detector. Using polarizers in the experiment both co-polarized and cross-polarized remittance form the samples was collected. Analysis of the images showed the importance of understanding the effects of formalin fixation while determining reflectance level of tissue response. The resulting co- and cross-polarized images of both normal and formalin fixed tissues showed uniform terahertz response over the entire sample area. Initial measurements indicated a co-polarized reflectance of 16%, and a cross-polarized reflectance of 0.55% from fresh excisions of normal colonic tissues.

  20. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  1. Optical detection of radio waves through a nanomechanical transducer

    DEFF Research Database (Denmark)

    Bagci, Tolga; Simonsen, A; Schmid, Silvan

    2013-01-01

    Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and microwave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of quantum states. Efficient upconversion of rf-signals...... to an optical carrier would allow transmitting them via optical fibers instead of copper wires dramatically reducing losses, and give access to the mature toolbox of quantum optical techniques, routinely enabling quantum-limited signal detection. Research in the field of cavity optomechanics [1, 2] has shown...... reflected off its metallized surface. The circuit acts as an antenna; the voltage signals it induces are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude below that of standard optical modulators...

  2. Arterial wave reflection decreases gradually from supine to upright

    DEFF Research Database (Denmark)

    van den Bogaard, Bas; Westerhof, Berend E; Best, Hendrik

    2011-01-01

    BACKGROUND. An increase in total peripheral resistance (TPR) usually increases arterial wave reflection. During passive head-up tilt (HUT), however, arterial wave reflection decreases with increasing TPR. This study addressed whether arterial wave reflection gradually decreases during HUT. METHODS....... In 10 healthy volunteers (22-39 years, nine males), we recorded finger arterial pressures in supine position (0°), and 30°and 70°degrees HUT and active standing (90°). Aortic pressure was constructed from the finger pressure signal and hemodynamics were calculated. Arterial wave reflection...... from 0.9 dyn s/cm(5) at 0? to 1.2, 1.4 and 1.4 dyn s/cm(5) at 30°, 70° and 90° (p wave reflection...

  3. Wave Reflection in 3D Conditions

    DEFF Research Database (Denmark)

    Zanuttigh, Barbara; Andersen, Thomas Lykke

    2010-01-01

    Based on recent experiments carried out in wave basin on breakwaters with armour layer of rocks and cubes, this paper examines the dependence of the reflection coefficient on wave directional spreading and obliquity. Results suggest that long-crested and short-crested waves give similar reflectio...

  4. Elementary wave optics

    CERN Document Server

    Webb, Robert H

    2005-01-01

    This undergraduate textbook presents thorough coverage of the standard topics of classical optics and optical instrument design; it also offers significant details regarding the concepts of modern optics. Its survey of the mathematical tools of optics grants students insights into the physical principles of quantum mechanics.Two principal concepts occur throughout: a treatment of scattering from real scatterers (leading to Huygens' principles, diffraction theory, the index of refraction, and related topics); and the difference between coherent and noncoherent wave phenomena. Examinations of su

  5. Multi-component optical solitary waves

    DEFF Research Database (Denmark)

    Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.

    2000-01-01

    We discuss several novel types of multi-component (temporal and spatial) envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for highperformance computer networks......, multi-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons due to quasi-phase-matching in Fibonacci optical superlattices. (C) 2000 Elsevier Science B.V. All rights reserved....

  6. Elastic Wave-equation Reflection Traveltime Inversion Using Dynamic Warping and Wave Mode Decomposition

    KAUST Repository

    Wang, T.

    2017-05-26

    Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive and linearly related to the low-wavenumber model perturbation. Therefore, building initial P and S wave velocity models for EFWI by using elastic wave-equation reflections traveltime inversion (WERTI) would be effective and robust, especially for the deeper part. In order to distinguish the reflection travletimes of P or S-waves in elastic media, we decompose the surface multicomponent data into vector P- and S-wave seismogram. We utilize the dynamic image warping to extract the reflected P- or S-wave traveltimes. The P-wave velocity are first inverted using P-wave traveltime followed by the S-wave velocity inversion with S-wave traveltime, during which the wave mode decomposition is applied to the gradients calculation. Synthetic example on the Sigbee2A model proves the validity of our method for recovering the long wavelength components of the model.

  7. Reflective analogue optical link operating issues

    CERN Document Server

    Batten, Jeremy

    1996-01-01

    The proposed readout of analogue data from CMS tracker will use an optical fibre link. The choice of transmitter/receiver technology, however, has been the subject of intense research and development by the RD23 collaboration. One solution uses passive devices, multi-quantum well modulators, at the detector front end, and continuous wave driving lasers at the readout back end. This system has been tested at Imperial College. We report on the following: problems of noise associated with multimoded behaviour of a degraded laser; measurements of laser wavelength dependence on both drive current and temperature; and modulator reflectance dependence on laser wavelength. We extrapolate the findings to system issues, highlighting the degree of temperature control required of the driving laser.

  8. Music decreases aortic stiffness and wave reflections.

    Science.gov (United States)

    Vlachopoulos, Charalambos; Aggelakas, Angelos; Ioakeimidis, Nikolaos; Xaplanteris, Panagiotis; Terentes-Printzios, Dimitrios; Abdelrasoul, Mahmoud; Lazaros, George; Tousoulis, Dimitris

    2015-05-01

    Music has been related to cardiovascular health and used as adjunct therapy in patients with cardiovascular disease. Aortic stiffness and wave reflections are predictors of cardiovascular risk. We investigated the short-term effect of classical and rock music on arterial stiffness and wave reflections. Twenty healthy individuals (22.5±2.5 years) were studied on three different occasions and listened to a 30-min music track compilation (classical, rock, or no music for the sham procedure). Both classical and rock music resulted in a decrease of carotid-femoral pulse wave velocity (PWV) immediately after the end of music listening (all pclassical or rock music in a more sustained way (nadir by 6.0% and 5.8%, respectively, at time zero post-music listening, all pmusic preference was taken into consideration, both classical and rock music had a more potent effect on PWV in classical aficionados (by 0.20 m/s, p=0.003 and 0.13 m/s, p=0.015, respectively), whereas there was no effect in rock aficionados (all p=NS). Regarding wave reflections, classical music led to a more potent response in classical aficionados (AIx decrease by 9.45%), whereas rock led to a more potent response to rock aficionados (by 10.7%, all pMusic, both classical and rock, decreases aortic stiffness and wave reflections. Effect on aortic stiffness lasts for as long as music is listened to, while classical music has a sustained effect on wave reflections. These findings may have important implications, extending the spectrum of lifestyle modifications that can ameliorate arterial function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Guided-wave acousto-optics interactions, devices, and applications

    CERN Document Server

    1990-01-01

    The field of integrated- or guided-wave optics has experienced significant and continuous growth since its inception in the late 1960s. There has been a considerable increase in research and development activity in this field worldwide and some significant advances in the realization of working in­ tegrated optic devices and modules have been made in recent years. In fact, there have already been some commercial manufacturing and technical ap­ plications of such devices and modules. The guided-wave-acoustooptics involving Bragg interactions between guided optical waves and surface acoustic waves is one of the areas of in­ tegrated-optics that has reached some degree of scientific and technological maturity. This topical volume is devoted to an in-depth treatment of this emerging branch of science and technology. Presented in this volume are concise treatments on bulk-wave acoustooptics, guided-wave optics, and surface acoustic waves, and detailed studies of guided-wave acoustooptic Bragg diffraction in thr...

  10. Nano-structured Fabry–Pérot resonators in neutron optics and tunneling of neutron wave-particles

    International Nuclear Information System (INIS)

    Maaza, M.; Hamidi, D.

    2012-01-01

    Correlated to the quantum mechanics wave-particle duality, the optical analogy between electromagnetic waves and cold neutrons manifests itself through several interference phenomena particularly the so called Frustrated Total Reflection i.e., the tunneling process in Fabry–Pérot nano-structured cavities. Prominent resonant situations offered by this configuration allow the attainment of numerous fundamental investigations and surface-interface studies as well as to devise new kinds of neutron optics devices. This review contribution reports such possibilities in addition to the recently observed peculiar Goos–Hänchen longitudinal shift of neutron wave-particles which was predicted by Sir Isaac Newton as early as 1730.

  11. General method for eliminating wave reflection in 2D photonic crystal waveguides by introducing extra scatterers based on interference cancellation of waves

    Science.gov (United States)

    Huang, Hao; Ouyang, Zhengbiao

    2018-01-01

    We propose a general method for eliminating the reflection of waves in 2 dimensional photonic crystal waveguides (2D-PCWs), a kind of 2D material, by introducing extra scatterers inside the 2D-PCWs. The intrinsic reflection in 2D-PCWs is compensated by the backward-scattered waves from these scatterers, so that the overall reflection is greatly reduced and the insertion loss is improved accordingly. We first present the basic theory for the compensation method. Then, as a demonstration, we give four examples of extremely-low-reflection and high-transmission 90°bent 2D-PCWs created according to the method proposed. In the four examples, it is demonstrated by plane-wave expansion method and finite-difference time-domain method that the 90°bent 2D-PCWs can have high transmission ratio greater than 90% in a wide range of operating frequency, and the highest transmission ratio can be greater than 99.95% with a return loss higher than 43 dB, better than that in other typical 90°bent 2D-PCWs. With our method, the bent 2D-PCWs can be optimized to obtain high transmission ratio at different operating wavelengths. As a further application of this method, a waveguide-based optical bridge for light crossing is presented, showing an optimum return loss of 46.85 dB, transmission ratio of 99.95%, and isolation rates greater than 41.77 dB. The method proposed provides also a useful way for improving conventional waveguides made of cables, fibers, or metal walls in the optical, infrared, terahertz, and microwave bands.

  12. Properties of backward electromagnetic waves and negative reflection in ferrite films

    International Nuclear Information System (INIS)

    Vashkovsky, Anatolii V; Lock, Edwin H

    2006-01-01

    For a backward electromagnetic wave (magnetostatic wave) in a ferrite film, reflection from a perfect mirror formed by the straight edge of the film is investigated experimentally and theoretically. It is found that when the incident wave is collinear (the group velocity vector and the wave vector have opposite directions), negative reflection occurs at any angle of incidence, i.e., the incident and reflected beams are on the same side of the normal to the boundary. It is discovered that a noncollinear backward wave is nonreciprocal in the sense that its energy can be localized both near the surface and in the middle of the film. This property, previously observed only for surface magnetostatic waves, provides both the efficiency of generating and receiving the wave and the possibility of observing the reflected beam. A situation is realized where wave reflection results in two reflected beams. The properties of backward electromagnetic waves propagating in ferrite films are briefly analyzed. (methodological notes)

  13. Gravitational wave sources: reflections and echoes

    Science.gov (United States)

    Price, Richard H.; Khanna, Gaurav

    2017-11-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes.

  14. Gravitational wave sources: reflections and echoes

    International Nuclear Information System (INIS)

    Price, Richard H; Khanna, Gaurav

    2017-01-01

    The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes. (paper)

  15. On geometric optics and surface waves for light scattering by spheres

    International Nuclear Information System (INIS)

    Liou, K.N.; Takano, Y.; Yang, P.

    2010-01-01

    A geometric optics approach including surface wave contributions has been developed for homogeneous and concentrically coated spheres. In this approach, a ray-by-ray tracing program was used for efficient computation of the extinction and absorption cross sections. The present geometric-optics surface-wave (GOS) theory for light scattering by spheres considers the surface wave contribution along the edge of a particle as a perturbation term to the geometric-optics core that includes Fresnel reflection-refraction and Fraunhofer diffraction. Accuracies of the GOS approach for spheres have been assessed through comparison with the results determined from the exact Lorenz-Mie (LM) theory in terms of the extinction efficiency, single-scattering albedo, and asymmetry factor in the size-wavelength ratio domain. In this quest, we have selected a range of real and imaginary refractive indices representative of water/ice and aerosol species and demonstrated close agreement between the results computed by GOS and LM. This provides the foundation to conduct physically reliable light absorption and scattering computations based on the GOS approach for aerosol aggregates associated with internal and external mixing states employing spheres as building blocks.

  16. Optical detection of radio waves through a nanomechanical transducer

    DEFF Research Database (Denmark)

    Bagci, T.; Simonsen, A.; Schmid, Silvan

    2014-01-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would...... strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity....... The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane...

  17. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    Science.gov (United States)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases

  18. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    Science.gov (United States)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  19. Integration of LCoS-SLM and LabVIEW based software to simulate fundamental optics, wave optics, and Fourier optics

    Science.gov (United States)

    Lyu, Bo-Han; Wang, Chen; Tsai, Chun-Wei

    2017-08-01

    Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon - Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.

  20. The high resolution shear wave seismic reflection technique

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1991-04-01

    This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions

  1. Physical optics

    International Nuclear Information System (INIS)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-01

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  2. Physical optics

    Energy Technology Data Exchange (ETDEWEB)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-15

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  3. All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod

    Science.gov (United States)

    Xu, Feng; Guillet, Yannick; Ravaine, Serge; Audoin, Bertrand

    2018-04-01

    A single gold nanorod dropped on the surface of a silica substrate is used as a transient optoacoustic source of gigahertz hypersounds. We demonstrate the all-optical detection of the as-generated acoustic wave front propagating in the silica substrate. For this purpose, time-resolved femtosecond pump-probe experiments are performed in a reflection configuration. The fundamental breathing mode of the nanorod is detected at 23 GHz by interferometry, and the longitudinal acoustic wave radiated in the silica substrate is detected by time-resolved Brillouin scattering. By tuning the optical probe wavelength from 750 to 900 nm, hypersounds with wavelengths of 260-315 nm are detected in the silica substrate, with corresponding acoustic frequencies in the range of 19-23 GHz. To confirm the origin of these hypersounds, we theoretically analyze the influence of the acoustic excitation spectrum on the temporal envelope of the transient reflectivity. This analysis proves that the acoustic wave detected in the silica substrate results from the excitation of the breathing mode of the nanorod. These results pave the way for performing local in-depth elastic nanoscopy.

  4. An analytical solution for stationary distribution of photon density in traveling-wave and reflective SOAs

    International Nuclear Information System (INIS)

    Totović, A R; Crnjanski, J V; Krstić, M M; Gvozdić, D M

    2014-01-01

    In this paper, we analyze two semiconductor optical amplifier (SOA) structures, traveling-wave and reflective, with the active region made of the bulk material. The model is based on the stationary traveling-wave equations for forward and backward propagating photon densities of the signal and the amplified spontaneous emission, along with the stationary carrier rate equation. We start by introducing linear approximation of the carrier density spatial distribution, which enables us to find solutions for the photon densities in a closed analytical form. An analytical approach ensures a low computational resource occupation and an easy analysis of the parameters influencing the SOA’s response. The comparison of the analytical and numerical results shows high agreement for a wide range of the input optical powers and bias currents. (paper)

  5. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    International Nuclear Information System (INIS)

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-01-01

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  6. Comparing Different Approaches to Visualizing Light Waves: An Experimental Study on Teaching Wave Optics

    Science.gov (United States)

    Mešic, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-01-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented…

  7. Nonlinear reflection of shock shear waves in soft elastic media.

    Science.gov (United States)

    Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël

    2010-02-01

    For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.

  8. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    International Nuclear Information System (INIS)

    Karzova, M.; Yuldashev, P.; Khokhlova, V.; Ollivier, S.; Blanc-Benon, Ph.

    2015-01-01

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime

  9. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    Energy Technology Data Exchange (ETDEWEB)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Yuldashev, P.; Khokhlova, V. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Ollivier, S.; Blanc-Benon, Ph. [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France)

    2015-10-28

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime.

  10. Freezing optical rogue waves by Zeno dynamics

    Science.gov (United States)

    Bayındır, Cihan; Ozaydin, Fatih

    2018-04-01

    We investigate the Zeno dynamics of the optical rogue waves. Considering their usage in modeling rogue wave dynamics, we analyze the Zeno dynamics of the Akhmediev breathers, Peregrine and Akhmediev-Peregrine soliton solutions of the nonlinear Schrödinger equation. We show that frequent measurements of the wave inhibits its movement in the observation domain for each of these solutions. We analyze the spectra of the rogue waves under Zeno dynamics. We also analyze the effect of observation frequency on the rogue wave profile and on the probability of lingering of the wave in the observation domain. Our results can find potential applications in optics including nonlinear phenomena.

  11. Manipulating acoustic wave reflection by a nonlinear elastic metasurface

    Science.gov (United States)

    Guo, Xinxin; Gusev, Vitalyi E.; Bertoldi, Katia; Tournat, Vincent

    2018-03-01

    The acoustic wave reflection properties of a nonlinear elastic metasurface, derived from resonant nonlinear elastic elements, are theoretically and numerically studied. The metasurface is composed of a two degree-of-freedom mass-spring system with quadratic elastic nonlinearity. The possibility of converting, during the reflection process, most of the fundamental incoming wave energy into the second harmonic wave is shown, both theoretically and numerically, by means of a proper design of the nonlinear metasurface. The theoretical results from the harmonic balance method for a monochromatic source are compared with time domain simulations for a wave packet source. This protocol allows analyzing the dynamics of the nonlinear reflection process in the metasurface as well as exploring the limits of the operating frequency bandwidth. The reported methodology can be applied to a wide variety of nonlinear metasurfaces, thus possibly extending the family of exotic nonlinear reflection processes.

  12. Arterial wave reflection and subclinical left ventricular systolic dysfunction.

    Science.gov (United States)

    Russo, Cesare; Jin, Zhezhen; Takei, Yasuyoshi; Hasegawa, Takuya; Koshaka, Shun; Palmieri, Vittorio; Elkind, Mitchell Sv; Homma, Shunichi; Sacco, Ralph L; Di Tullio, Marco R

    2011-03-01

    Increased arterial wave reflection is a predictor of cardiovascular events and has been hypothesized to be a cofactor in the pathophysiology of heart failure. Whether increased wave reflection is inversely associated with left-ventricular (LV) systolic function in individuals without heart failure is not clear. Arterial wave reflection and LV systolic function were assessed in 301 participants from the Cardiovascular Abnormalities and Brain Lesions (CABL) study using two-dimensional echocardiography and applanation tonometry of the radial artery to derive central arterial waveform by a validated transfer function. Aortic augmentation index (AIx) and wasted energy index (WEi) were used as indices of wave reflection. LV systolic function was measured by LV ejection fraction (LVEF) and tissue Doppler imaging (TDI). Mitral annulus peak systolic velocity (Sm), peak longitudinal strain and strain rate were measured. Participants with history of coronary artery disease, atrial fibrillation, LVEF less than 50% or wall motion abnormalities were excluded. Mean age of the study population was 68.3 ± 10.2 years (64.1% women, 65% hypertensive). LV systolic function by TDI was lower with increasing wave reflection, whereas LVEF was not. In multivariate analysis, TDI parameters of LV longitudinal systolic function were significantly and inversely correlated to AIx and WEi (P values from 0.05 to 0.002). In a community cohort without heart failure and with normal LVEF, an increased arterial wave reflection was associated with subclinical reduction in LV systolic function assessed by novel TDI techniques. Further studies are needed to investigate the prognostic implications of this relationship.

  13. Wave optics simulation of statistically rough surface scatter

    Science.gov (United States)

    Lanari, Ann M.; Butler, Samuel D.; Marciniak, Michael; Spencer, Mark F.

    2017-09-01

    The bidirectional reflectance distribution function (BRDF) describes optical scatter from surfaces by relating the incident irradiance to the exiting radiance over the entire hemisphere. Laboratory verification of BRDF models and experimentally populated BRDF databases are hampered by sparsity of monochromatic sources and ability to statistically control the surface features. Numerical methods are able to control surface features, have wavelength agility, and via Fourier methods of wave propagation, may be used to fill the knowledge gap. Monte-Carlo techniques, adapted from turbulence simulations, generate Gaussian distributed and correlated surfaces with an area of 1 cm2 , RMS surface height of 2.5 μm, and correlation length of 100 μm. The surface is centered inside a Kirchhoff absorbing boundary with an area of 16 cm2 to prevent wrap around aliasing in the far field. These surfaces are uniformly illuminated at normal incidence with a unit amplitude plane-wave varying in wavelength from 3 μm to 5 μm. The resultant scatter is propagated to a detector in the far field utilizing multi-step Fresnel Convolution and observed at angles from -2 μrad to 2 μrad. The far field scatter is compared to both a physical wave optics BRDF model (Modified Beckmann Kirchhoff) and two microfacet BRDF Models (Priest, and Cook-Torrance). Modified Beckmann Kirchhoff, which accounts for diffraction, is consistent with simulated scatter for multiple wavelengths for RMS surface heights greater than λ/2. The microfacet models, which assume geometric optics, are less consistent across wavelengths. Both model types over predict far field scatter width for RMS surface heights less than λ/2.

  14. Reflection of Alfven waves at an open magnetopause

    International Nuclear Information System (INIS)

    Cao, F.; Kan, J.R.

    1990-01-01

    Reflection of an Alfven wave incident on an open magnetopause form the magnetospheric side is examined. An open magnetopause, whose structure is different from the standard rotational discontinuity, is assumed to be a parameterized discontinuity with a nonzero normal field component. When an Alfven wave is incident on the open magnetopause, reflected and transmitted waves are generated. The emanating waves can be analyzed using linearized MHD conservation relations across the magnetopause, together with Snell's law. Under the assumption that the magnetic fields on the two sides of the open magnetopause are coplanar with the normal direction of the magnetopause, the governing equations are solved numerically. The results show that the electric fields of emanating Alfven waves depend mainly on the number density and the magnetic field jumps across the magnetopause. Under conditions representing the open magnetopause, it turns out that the open magnetopause behaves like a near perfect reflector. The corresponding reflection coefficient for the wave electric field can be approximated by R E = E r /E i ∼ -1 as has been deduced by Kan and Sun (1985) based on physical arguments. In other words, the solar wind flow is more or less unchanged by the loading effect of the Alfven wave incident on the magnetopause from the magnetospheric side. Therefore, under the assumptions of the model, the open magnetopause can be viewed as a constant voltage source

  15. Alfven Wave Reflection Model of Field-Aligned Currents at Mercury

    Science.gov (United States)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James

    2010-01-01

    An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.

  16. Fracture diagnostics with tube wave reflection logs

    International Nuclear Information System (INIS)

    Medlin, W.L.

    1991-01-01

    This paper reports on the Tube Wave Reflection Log (TWRL) which is acoustic logging method which provides information about the height, location and conductivity of hydraulically induced fractures behind perforated casing. The TWRL tool consists of a transmitter and closely spaced receiver. The transmitter is driven with a short, low frequency tone burst to generate long wavelength tube waves which are little attenuated in unperforated casing. They are partially reflected when they pass perforated intervals communicating with a hydraulically induced fracture. The tool listens for such reflections for 0.1 seconds following each excitation burst. As the tool is moved uphole at logging speed, the transmitter is excited at each foot of depth. VDL displays of the TWRL records provide reflection traces whose projections define the uppermost and lower-most perforations communicating with the fracture. The strength of the reflections depends on the ease of fluid flow into the fracture and thus, is an indicator of fracture conductivity

  17. Epoxy-based broadband antireflection coating for millimeter-wave optics.

    Science.gov (United States)

    Rosen, Darin; Suzuki, Aritoki; Keating, Brian; Krantz, William; Lee, Adrian T; Quealy, Erin; Richards, Paul L; Siritanasak, Praween; Walker, William

    2013-11-20

    We have developed epoxy-based, broadband antireflection coatings for millimeter-wave astrophysics experiments with cryogenic optics. By using multiple-layer coatings where each layer steps in dielectric constant, we achieved low reflection over a wide bandwidth. We suppressed the reflection from an alumina disk to 10% over fractional bandwidths of 92% and 104% using two-layer and three-layer coatings, respectively. The dielectric constants of epoxies were tuned between 2.06 and 7.44 by mixing three types of epoxy and doping with strontium titanate powder required for the high dielectric mixtures. At 140 K, the band-integrated absorption loss in the coatings was suppressed to less than 1% for the two-layer coating, and below 10% for the three-layer coating.

  18. Near-to-eye electroholography via guided-wave acousto-optics for augmented reality

    Science.gov (United States)

    Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Smalley, Daniel; Bove, V. Michael

    2017-03-01

    Near-to-eye holographic displays act to directly project wavefronts into a viewer's eye in order to recreate 3-D scenes for augmented or virtual reality applications. Recently, several solutions for near-to-eye electroholography have been proposed based on digital spatial light modulators in conjunction with supporting optics, such as holographic waveguides for light delivery; however, such schemes are limited by the inherent low space-bandwidth product available with current digital SLMs. In this paper, we depict a fully monolithic, integrated optical platform for transparent near-to-eye holographic display requiring no supporting optics. Our solution employs a guided-wave acousto-optic spatial light modulator implemented in lithium niobate in conjunction with an integrated Bragg-regime reflection volume hologram.

  19. Performing derivative and integral operations for optical waves with optical metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Cun-Li [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China); Zhao, Zhi-Gang; Li, Xiao-Lin [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); Yang, Hong-Wei, E-mail: phd_hwyang@njau.edu.cn [College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China)

    2016-12-01

    The graded refractive index waveguides can perform Fourier transform for an optical wave. According to this characteristic, simpler optical metamaterials with three waveguides are theoretically proposed, in which all of the waveguides are materials with a positive refractive index. By selecting the appropriate refractive index and structure size, the theory and simulations demonstrated that these metamaterials can perform mathematical operations for the outline of incident optical waves, including the first-order derivative, second-order derivative and the integral. - Highlights: • The derivative and integral operations of optical waves are achieved with a simpler model. • Both negative and positive refractive index boast the same functions. • The mathematical operations can be implemented only by changing the refractive index of the intermediate material. • The results will greatly expand the possible applications, including photon computers, picture processing, video displays and data storage.

  20. Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities

    International Nuclear Information System (INIS)

    Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.

    2001-01-01

    Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum

  1. Optical microphone

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    2000-01-11

    An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.

  2. Optical rogue waves and soliton turbulence in nonlinear fibre optics

    DEFF Research Database (Denmark)

    Genty, G.; Dudley, J. M.; de Sterke, C. M.

    2009-01-01

    We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....

  3. High resolution shear wave reflection surveying for hydrogeological investigations

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1992-08-01

    The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones

  4. Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit

    International Nuclear Information System (INIS)

    Hamilton, Alasdair C; Courtial, Johannes

    2009-01-01

    Volumes of sub-wavelength electromagnetic elements can act like homogeneous materials: metamaterials. In analogy, sheets of optical elements such as prisms can act ray-optically like homogeneous sheet materials. In this sense, such sheets can be considered to be metamaterials for light rays (METATOYs). METATOYs realize new and unusual transformations of the directions of transmitted light rays. We study here, in the ray-optics and scalar-wave limits, the wave-optical analog of such transformations, and we show that such an analog does not always exist. Perhaps, this is the reason why many of the ray-optical possibilities offered by METATOYs have never before been considered.

  5. Propagation-invariant waves in acoustic, optical, and radio-wave fields

    OpenAIRE

    Salo, Janne

    2003-01-01

    The physical phenomena considered in this thesis are associated with electromagnetic and acoustic waves that propagate in free space or in homogeneous media without diffraction. The concept of rotationally periodic wave propagation is introduced in the first journal article included in the thesis and it is subsequently used to analyse waves that avoid diffractive deterioration by repeatedly returning to their initial shape, possibly rotated around the optical axis. Such waves constitute an es...

  6. Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy

    Science.gov (United States)

    Weigert, Martin; Bundschuh, Sebastian T.

    2018-01-01

    Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879

  7. Simple method for measuring reflectance of optical coatings

    International Nuclear Information System (INIS)

    Wen Gui Wang; Yi Sheng Chen

    1995-01-01

    The quality of optical coatings has an important effect on the performance of optical instrument. The last few years, the requirements for super low loss dielectric mirror coatings used in low gain laser systems such as free electron laser and the ring laser etc., have given an impetus to the development of the technology of precise reflectance measurement of optical coatings. A reliable and workable technique is to measure the light intensity decay time of optical resonant cavity. This paper describes a measuring method which is dependent on direct measurement of the light intensity decay time of a resonant cavity comprised of low loss optical components. According to the evolution of a luminous flux stored inside the cavity, this method guarantees not only a quick and precise reflectance measurements of low loss highly reflecting mirror coatings but also transmittance measurements of low loss antireflection coatings and is especially effective with super los loss highly reflecting mirror. From the round-trip path length of the cavity and the speed of light, the light intensity exponential decay time of an optical cavity is easy to obtain and the cavity losses can be deduced. An optical reflectance of low loss highly mirror coatings and antireflection coatings is precisely measured as well. This is highly significant for the discrimination of the coating surface characteristics, the improvement of the performance of optical instrument and the development of high technology

  8. Sound excitation at reflection of two electromagnetic waves from dence semibounded plasma

    International Nuclear Information System (INIS)

    Livdan, D.O.; Muratov, V.I.; Shuklin, A.P.

    1988-01-01

    The problem of two electromagnetic waves reflection by semibounded plasma which is nontransparent for each of these waves is solved. The reflection coefficients are obtained for normally incident waves. It is shown that the moduli of the reflection coefficients differ from the unit and this is due to the interaction of the external raiation with the acoustic wave excited in plasma. The energy flux in plasma is calculated

  9. Optical bulk and surface waves with negative refraction

    International Nuclear Information System (INIS)

    Agranovich, V.M.; Shen, Y.R.; Baughman, R.H.; Zakhidov, A.A.

    2004-01-01

    In materials with negative refraction, the direction of wave propagation is opposite to the direction of the wave vector. Using an approach that characterizes the optical response of a medium totally by a generalized dielectric permittivity, ε-bar (ω,k-bar), we discuss the possibility of seeing negative refraction for optical waves in a number of nonmagnetic media. These include bulk waves in organic materials and in gyrotropic materials where additional exciton-polariton waves can have a negative group velocity. It is known that dispersion of surface waves can be engineered by tailoring a surface transition layer. We show how this effect can be used to obtain surface waves with negative refraction

  10. Kinetic treatment of magnetosonic wave reflection by minority gyroresonant ballistic waves in tokamak geometry

    International Nuclear Information System (INIS)

    Kaufman, A.N.; Brizard, A.J.; Cook, D.R.

    1993-01-01

    The analysis of the minority-ion gyroresonant heating process by a magnetosonic wave in a general magnetic field geometry with one ignorable spatial coordinate can be divided into several steps, each defined in terms of a precise mathematical problem to be solved. In this work, the authors focus their attention on the magnetosonic wave reflection problem in axisymmetric tokamak geometry; the conversion and absorption of the minority-ion gyroresonant ballistic waves are treated elsewhere. In contrast to their previous work, they employ a kinetic model based on the perturbation generating function S for the gyroresonant minority-ions. The bulk plasma response is represented by the perturbation magnetic vector potential A, corresponding to a shielded magnetosonic wave. The set of coupled equations for S and A can be derived from an action principle, which can also be used to derive explicit wave-action conservation laws in ray phase space. The reflection problem is solved in ray phase space by considering three separate steps. In the first step, the incident magnetosonic ray propagates towards the first linear mode conversion region, where action is transferred to the minority-ion gyroresonant ballistic waves. In the second step, the continuum of excited gyroresonant ballistic rays propagate towards the second linear mode conversion region. In the third step, the reflected magnetosonic wave field is excited by linear mode conversion from the minority gyroresonant ballistic rays

  11. Using wave intensity analysis to determine local reflection coefficient in flexible tubes.

    Science.gov (United States)

    Li, Ye; Parker, Kim H; Khir, Ashraf W

    2016-09-06

    It has been shown that reflected waves affect the shape and magnitude of the arterial pressure waveform, and that reflected waves have physiological and clinical prognostic values. In general the reflection coefficient is defined as the ratio of the energy of the reflected to the incident wave. Since pressure has the units of energy per unit volume, arterial reflection coefficient are traditionally defined as the ratio of reflected to the incident pressure. We demonstrate that this approach maybe prone to inaccuracies when applied locally. One of the main objectives of this work is to examine the possibility of using wave intensity, which has units of energy flux per unit area, to determine the reflection coefficient. We used an in vitro experimental setting with a single inlet tube joined to a second tube with different properties to form a single reflection site. The second tube was long enough to ensure that reflections from its outlet did not obscure the interactions of the initial wave. We generated an approximately half sinusoidal wave at the inlet of the tube and took measurements of pressure and flow along the tube. We calculated the reflection coefficient using wave intensity (R dI and R dI 0.5 ) and wave energy (R I and R I 0.5 ) as well as the measured pressure (R dP ) and compared these results with the reflection coefficient calculated theoretically based on the mechanical properties of the tubes. The experimental results show that the reflection coefficients determined by all the techniques we studied increased or decreased with distance from the reflection site, depending on the type of reflection. In our experiments, R dP , R dI 0.5 and R I 0.5 are the most reliable parameters to measure the mean reflection coefficient, whilst R dI and R I provide the best measure of the local reflection coefficient, closest to the reflection site. Additional work with bifurcations, tapered tubes and in vivo experiments are needed to further understand, validate the

  12. Determination Of Refractive Index And Reflectivity Of Thin Layer With Optical Absorption Method; PENENTUAN INDEKS BIAS DAN REFLEKTIVITAS LAPISAN TIPIS DENGAN METODA SERAPAN OPTIK

    Energy Technology Data Exchange (ETDEWEB)

    Hariyanto, Sigit; Budianto, Anwar; Subarkah,; Atmono, Trimarji [Yogyakarta Nuclear Research Center, National Nuclear Energy Agency, Yogyakarta (Indonesia)

    1996-04-15

    . The refractive index and reflectivity of ASi:H and Si Ox thin layer have been observed by optical absorption methods. Measurement has been done after the preparation of optical system which consists of a halogen lamp light source, monochromator, sample and light detector. The Monochromator output showed that measured halogen lamp spectrum light is between 470 nm -750 nm. The maximum voltage of halogen lamp is 220 Volt, the output light increases in intensity while the wave length increases. The inclination of intensity decrease at the wave length of 725 nm. The result of the calculation of refractive index varies in accordance with the wave length. The average refractive index of ASi:H is nf a = 1.753. The total reflectivity of air-thin layer-substrate is Rt a = 0.315. The refractive index of Si Ox sample is nf b2.182 and the total reflectivity is Rt b=O,514.

  13. Quasi-optical millimeter wave rotating TE62 mode generator

    International Nuclear Information System (INIS)

    Li Shaopu; Zhang Conghui; Wang Zhong; Guo Feng; Chen Hongbin; Hu Linlin; Pan Wenwu

    2011-01-01

    The design,measurement technique and experimental results of rotating TE 6 2 mode generator are presented. The source includes millimeter wave optical system and open coaxial wave guide system. The millimeter wave optical system consists of pyramid antenna, hyperbolical reflector, parabolic reflector and quasi parabolic reflector. The open coaxial wave guide system contains open coaxial wave guide cavity, cylinder wave guide and output antenna. It is tested by network analyser and millimeter wave near field pattern auto-test system, and the purity of rotating TE 6 2 mode at 96.4 GHz is about 97%. (authors)

  14. Linear ray and wave optics in phase space bridging ray and wave optics via the Wigner phase-space picture

    CERN Document Server

    Torre, Amalia

    2005-01-01

    Ray, wave and quantum concepts are central to diverse and seemingly incompatible models of light. Each model particularizes a specific ''manifestation'' of light, and then corresponds to adequate physical assumptions and formal approximations, whose domains of applicability are well-established. Accordingly each model comprises its own set of geometric and dynamic postulates with the pertinent mathematical means.At a basic level, the book is a complete introduction to the Wigner optics, which bridges between ray and wave optics, offering the optical phase space as the ambience and the Wigner f

  15. REFLECT: a program to integrate the wave equation through a plane stratified plasma

    International Nuclear Information System (INIS)

    Greene, J.W.

    1975-01-01

    A program was developed to integrate the wave equation through a plane stratified plasma with a general density distribution. The reflection and transmission of a plane wave are computed as a function of the angle of incidence. The polarization of the electric vector is assumed to be perpendicular to the plane of incidence. The model for absorption by classical inverse bremsstrahlung avoids the improper extrapolation of underdense formulae that are singular at the plasma critical surface. Surprisingly good agreement with the geometric-optics analysis of a linear layer was found. The system of ordinary differential equations is integrated by the variable-step, variable-order Adams method in the Lawrence Livermore Laboratory Gear package. Parametric studies of the absorption are summarized, and some possibilities for further development of the code are discussed. (auth)

  16. Non-reciprocal optical mirrors based on spatio-temporal acousto-optic modulation

    Science.gov (United States)

    Fleury, R.; Sounas, D. L.; Alù, A.

    2018-03-01

    Here, we investigate a scheme to realize free-space isolators and highly non-reciprocal mirrors with weak modulation imparted by an acoustic wave. We propose a strategy to dramatically break time-reversal symmetry by exploiting resonant interactions between a travelling acoustic wave and highly resonant Fabry-Pérot modes, inducing total reflection of an optical beam at a given angle, and no reflection at the negative angle. Different from conventional acousto-optic isolators, which are based on non-resonant frequency conversion and filtering, our proposal operates at the frequency of the optical signal by tailoring the resonant properties of the structure as well as the acoustic wave frequency and intensity, enabling 50 dB isolation with modest modulation requirements. Operation in the reflection mode allows for close-to-zero insertion loss, enabling disruptive opportunities in our ability to control and manipulate photons.

  17. Matter-wave dark solitons in optical lattices

    International Nuclear Information System (INIS)

    Louis, Pearl J Y; Ostrovskaya, Elena A; Kivshar, Yuri S

    2004-01-01

    We analyse the Floquet-Bloch spectrum of matter waves in Bose-Einstein condensates loaded into single-periodic optical lattices and double-periodic superlattices. In the framework of the Gross-Pitaevskii equation, we describe the structure and analyse the mobility properties of matter-wave dark solitons residing on backgrounds of extended nonlinear Bloch-type states. We demonstrate that interactions between dark solitons can be effectively controlled in optical superlattices

  18. Wave-optics description of self-healing mechanism in Bessel beams.

    Science.gov (United States)

    Aiello, Andrea; Agarwal, Girish S

    2014-12-15

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work, we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  19. Reflection and absorption of ion-acoustic waves in a plasma density gradient

    International Nuclear Information System (INIS)

    Ishihara, O.

    1977-01-01

    Plasma is characterized by electrical quasineutrality and the collective behavior. There exists a longitudinal low-frequency wave called an ion-acoustic wave in a plasma. One problem in the experimental study of ion-acoustic waves has been that sometimes they are observed to be reflected from discharge tube walls, and sometimes to be absorbed. Theoretical computation reveals that a velocity gradient produced by a density gradient plays a significant role in the reflection. The velocity gradient produces the subsonic-supersonic transition and long wavelength waves are reflected before reaching the transition while short wavelength waves penetrate over the transition and are absorbed in the supersonic flow plasma

  20. Self-reflection of intense electromagnetic waves in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, D P; Kumar, A; Sharma, J K [Indian Inst. of Tech., New Delhi. Dept. of Physics

    1977-10-01

    A uniform electromagnetic wave of high power density, propagating in a collisional plasma gives rise to a modification in temperature-dependent collision frequency and in turn induces a gradient in the complex refractive index of the medium. A WKB solution of the problem predicts a backward propagating wave on account of the self-induced inhomogeneity. The amplitude of the backward (i.e. reflected) wave increases with increasing power density of the wave. This is a volume nonlinear effect and is appreciable for usually employed power densities.

  1. STUDY OF REFLECTION COEFFICIENT DISTRIBUTION FOR ANTI-REFLECTION COATINGS ON SMALL-RADIUS OPTICAL PARTS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2015-03-01

    Full Text Available The paper deals with findings for the energy reflection coefficient distribution of anti- reflection coating along the surface of optical elements with a very small radius (2-12 mm. The factors influencing the magnitude of the surface area of the optical element, in which the energy reflection coefficient is constant, were detected. The main principles for theoretical models that describe the spectral characteristics of the multilayer interference coatings were used to achieve these objectives. The relative size of the enlightenment area is defined as the ratio of the radius for the optical element surface, where the reflection is less than a certain value, to its radius (ρ/r. The result of research is the following: this size is constant for a different value of the curvature radius for the optical element made of the same material. Its value is determined by the refractive index of material (nm, from which the optical element was made, and the design of antireflection coatings. For single-layer coatings this value is ρ/r = 0.5 when nm = 1.51; and ρ/r = 0.73 when nm = 1.75; for two-layer coatings ρ/r = 0.35 when nm = 1.51 and ρ/r = 0.41 when nm = 1.75. It is shown that with increasing of the material refractive index for the substrate size, the area of minimum reflection coefficient is increased. The paper considers a single-layer, two-layer, three-layer and five-layer structures of antireflection coatings. The findings give the possibility to conclude that equal thickness coverings formed on the optical element surface with a small radius make no equal reflection from the entire surface, and distribution of the layer thickness needs to be looked for, providing a uniform radiation reflection at all points of the spherical surface.

  2. Flow control for oblique shock wave reflections

    OpenAIRE

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these adverse effects and stabilize the interaction. This thesis focuses on passive flow control techniques for oblique shock wave reflections on flat plates and presents experimental results for both la...

  3. Acousto-optic interaction in polyimide coated optical fibers with flexural waves

    OpenAIRE

    ALCUSA-SÁEZ, E. P.; Díez, A.; Rivera-Pérez, E.; Margulis, W.; Norin, L.; Andrés, M. V.

    2017-01-01

    Acousto-optic coupling in polyimide-coated single-mode optical fibers using flexural elastic waves is demonstrated. The effect of the polyimide coating on the acousto-optic interaction process is analyzed in detailed. Theoretical and experimental results are in good agreement. Although the elastic attenuation is significant, we show that acousto-optic coupling can be produced with a reasonably good efficiency. To our knowledge, it is the first experimental demonstration of acousto-optic coupl...

  4. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    Science.gov (United States)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  5. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection.

    Science.gov (United States)

    Li, Zhixin; Ma, Weiguang; Fu, Xiaofang; Tan, Wei; Zhao, Gang; Dong, Lei; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2013-07-29

    A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10(-9)cm(-1)Hz(-1/2), which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C(2)H(2) transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

  6. Influence of ionization on reflection of solitary waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Jyoti,; Malik, Hitendra K.; Kumar, Ravinder; Dahiya, Raj P.

    2013-01-01

    The reflection of nonlinear solitary waves is studied in a nonuniform, magnetized plasma diffusing from an ionization source along the magnetic field lines. Contribution of the ionization term is included in the continuity equation. The behavior of solitary waves is governed by modified form of Korteweg–de Vries equation (called mKdV equation). In order to investigate the reflection of solitary waves, the mKdV equations for the right and left going waves are derived, and solved by finding new transformations coupled at the point of reflection, for obtaining the expression of reflection coefficient. Contrary to the case of usual inhomogeneous plasma, the present analysis shows that a combination of usual sech 2 structure and tanh structure (called the tail of soliton) arises due to the influence of ionization term. Interestingly, this tailing structure disappears after the reflection of the soliton and hence, the soliton is downshifted prominently

  7. High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator.

    Science.gov (United States)

    Cai, Meng-Qiang; Wang, Zhou-Xiang; Liang, Juan; Wang, Yan-Kun; Gao, Xu-Zhen; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2017-08-01

    The scheme for generating vector optical fields should have not only high efficiency but also flexibility for satisfying the requirements of various applications. However, in general, high efficiency and flexibility are not compatible. Here we present and experimentally demonstrate a solution to directly, flexibly, and efficiently generate vector vortex optical fields (VVOFs) with a reflective phase-only liquid crystal spatial light modulator (LC-SLM) based on optical birefringence of liquid crystal molecules. To generate the VVOFs, this approach needs in principle only a half-wave plate, an LC-SLM, and a quarter-wave plate. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency, making the approach very promising in some applications when higher power is need. This approach has a generation efficiency of 44.0%, which is much higher than the 1.1% of the common path interferometric approach.

  8. 10 GHz Standing-Wave Coplanar Stripline on LiNbO3 Crystal for Radio to Optical-Wave Conversion

    Science.gov (United States)

    Darwis, F.; Wijayanto, Y. N.; Setiawan, A.; Mahmudin, D.; Rahman, A. N.; Daud, P.

    2018-04-01

    Recently, X-band radar systems are used widely for surveillance and navigation applications. Especially in archipelago or maritime country, the surveillance/navigation radar systems are required to monitoring critical areas and managing marine traffic. Accurate detection and fast analysis should be improved furthermore to provide security and safety condition. Therefore, several radar systems should be installed in many places to coverage the critical areas within radar networks. The radar network can be connected using optical fibers since it has extremely low propagation loss with optical-wave to carry-out the radar-wave. One important component in the scenario is a radio to optical-wave conversion component. In this paper, we report a 10 GHz radio to optical-wave conversion component using standing-wave coplanar stripline (CPS) on LiNbO3 optical crystal as the substrate. The standing-wave CPS electrodes with narrow slot are arranged in an array structure. An optical waveguide is located close to the narrow slot. The CPS electrodes were analysed using electromagnetic analysis software for 10 GHz operational frequency. Responses for slot width and electrode length variation are reported. As results, return loss of -14.580 dB and -19.517 dB are obtained for single and array CPS electrodes respectively. Optimization of the designed radio to optical-wave conversion devices was also done.

  9. Characteristics of Wave Reflection for Vertical and Slit Caissons with Porous Structures

    Directory of Open Access Journals (Sweden)

    Tae-Hwa Jung

    2012-01-01

    Full Text Available Offshore structures are occasionally located at a relatively deep water region, the outside of breakwater. In this case, these structures may be damaged by the supposition of incident and reflected waves from a vertical breakwater. To prevent the damage, the reflected waves are controlled by installing porous structures at the face of the vertical breakwater. In this study, numerical experiments are carried out to identify the characteristics of wave reflection from the porous structures installing in front of a vertical or slit caisson.

  10. A physical model study of the travel times and reflection points of SH-waves reflected from transversely isotropic media with tilted symmetry axes

    Science.gov (United States)

    Sun, Li-Chung; Chang, Young-Fo; Chang, Chih-Hsiung; Chung, Chia-Lung

    2012-05-01

    In reflection seismology, detailed knowledge of how seismic waves propagate in anisotropic media is important for locating reservoirs accurately. The SH-wave possesses a pure mode polarization which does not convert to P- and SV-waves when reflecting from a horizontal interface, and vice versa. The simplicity of the SH-wave thus provides an easy way to view the details of SH-wave propagation in anisotropic media. In this study, we attempt to inspect the theoretical reflection moveouts of SH-waves reflected from transversely isotropic (TI) layers with tilted symmetry axes and to verify the reflection point, which could be shifted away from the common midpoint (CMP), by numerical calculations and physical modelling. In travel time-offset analyses, the moveout curves of SH-waves reflected from horizontal TI media (TIM) with different tilted angles of symmetry axes are computed by the TI modified hyperbolic equation and Fermat's principle, respectively. It turns out that both the computed moveout curves are similar and fit well to the observed physical data. The reflection points of SH-waves for a CMP gather computed by Fermat's principle show that they are close to the CMP for TIM with the vertical and horizontal symmetry axes, but they shift away from the CMP for the other tilted angles of symmetry axes. The shifts of the reflection points of the SH-waves from the CMP were verified by physical modelling.

  11. The reflection of an electromagnetic wave from the self-produced plasma

    International Nuclear Information System (INIS)

    Mirzaie, M.; Shokri, B.; Rukhadze, A. A.

    2010-01-01

    The dynamic behavior of a high power microwave beam propagating through a gaseous medium, which is ionized in the wave field is investigated. By solving the wave equation, the reflection index of the produced plasma is obtained. It is shown that the cut off condition is different from that of the steady state approximation. The reflection index is less than unity when the plasma density reaches the critical value estimated in the steady state approximation. So, the wave can still propagate through the plasma. By comparing the reflection indexes in the presence and absence of the time delay of the ionization process at different points of the medium, it is shown that it becomes unity much later in the first case. Therefore, the wave propagation takes much more time and consequently the medium is ionized much more.

  12. Reflection and transmission of full-vector X-waves normally incident on dielectric half spaces

    KAUST Repository

    Salem, Mohamed

    2011-08-01

    The reflection and transmission of full-vector X-Waves incident normally on a planar interface between two lossless dielectric half-spaces are investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of transmission and reflection is carried out via a straightforward but yet effective method: First, the X-Wave is decomposed into vector Bessel beams via the Bessel-Fourier transform. Then, the reflection and transmission coefficients of the beams are obtained in the spectral domain. Finally, the transmitted and reflected X-Waves are obtained via the inverse Bessel-Fourier transform carried out on the X-wave spectrum weighted with the corresponding coefficient. © 2011 IEEE.

  13. ASYMPTOTICAL CALCULATION OF ELECTROMAGNETIC WAVES SCATTERED FROM A DIELECTRIC COATED CYLINDRICAL SURFACE WITH PHYSICAL OPTICS APPROACH

    Directory of Open Access Journals (Sweden)

    Uğur YALÇIN

    2004-02-01

    Full Text Available In this study, quasi-optical scattering of finite source electromagnetic waves from a dielectric coated cylindrical surface is analysed with Physical Optics (PO approach. A linear electrical current source is chosen as the finite source. Reflection coefficient of the cylindrical surface is derived by using Geometrical Theory of Diffraction (GTD. Then, with the help of this coefficient, fields scattered from the surface are obtained. These field expressions are used in PO approach and surface scattering integral is determined. Evaluating this integral asymptotically, fields reflected from the surface and surface divergence coefficient are calculated. Finally, results obtained in this study are evaluated numerically and effects of the surface impedance to scattered fields are analysed. The time factor is taken as j te? in this study.

  14. Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion

    KAUST Repository

    Zhang, Sanzong

    2012-11-04

    The main difficulty with an iterative waveform inversion is that it tends to get stuck in a local minima associated with the waveform misfit function. This is because the waveform misfit function is highly non-linear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity inversion. We present numerical examples to demonstrate its efficiency in inverting seismic data for complex velocity model.

  15. Research on Retro-reflecting Modulation in Space Optical Communication System

    Science.gov (United States)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  16. Shallow Levels Characterization in Epitaxial GaAs by Acousto-Optic Reflectance Shallow Levels Characterization in Epitaxial GaAs by Acousto-Optic Reflectance

    Directory of Open Access Journals (Sweden)

    O. G. Ibarra-Manzano

    2012-02-01

    Full Text Available Optical spectra of light reflection are detected under an influence of ultrasonic wave (UWon a GaAs wafer. The differential spectrum is calculated as a difference between those taken under UW and without that influence on a sample. This acousto-optic differential reflectance(AODR spectrum contains some bands that represent the energetic levels of the shallow centers in a sample. A physical basis of this technique is related to a perturbation of local states by UW. Here, a method is developed for characterization of local states at the surfaces and interfaces in crystals and low-dimensional epitaxial structures based on microelectronics materials. A theoretical model is presented to explain AODR spectra. Also, experiments using epitaxial GaAs structures doped by Te were made. Finally, theoretical and experimental results show that acousto-optic reflectance is an effective tool for characterization of shallow trapping centers in epitaxial semiconductor structures.En este trabajo, utilizamos el espectro de la luz reflejada en una muestra de Arsenuro de Galio (GaAs bajo la influencia de una onda ultrasónica. El diferencial espectral es calculado como una diferencia entre el espectro del material obtenido bajo la influencia del ultrasonido y aquél obtenido sin dicha influencia. Este diferencial de reflectancia espectral acusto-óptico (AODR contiene algunas bandas que representan los niveles energéticos de los centros en la superficie de la muestra. Esta técnica está basada en la perturbación de los estados locales generada por el ultrasonido. Particularmente, este trabajo presenta un método para caracterizar los estados locales en la superficie y las interfaces en los cristales, así como estructuras epiteliales de baja dimensión basadas en materiales semiconductores. Para ello, se presenta un modelo teórico para explicar dicho espectro de reflectancia diferencial (AODR. También se realizaron experimentos con estructuras de GaAs epitelial

  17. Reflection and transformation of acoustic waves at the interface in superfluid 3He-A

    International Nuclear Information System (INIS)

    Kekutiya, Sh.E.; Chkhaidze, N.D.

    1997-01-01

    Reflection and transformation of acoustic waves in 3 He-A and 3 He-A 1 are considered for two cases: (1) at the boundary with a solid impermeable wall at an arbitrary angle of incidence of a wave and (2) for normal incidence of waves on the interface between a free liquid and a system of periodic plane-parallel capillaries filling the semi-space. For the first case we have calculated the reflection coefficients of the first and the second sounds and spin and spin-temperature waves as well as the coefficients of transformation of these waves into each other. It is shown that the longitudinal wave undergoes no transformation into other waves, there occurs instead its complete reflection from the solid wall. The angle of incidence at which the energy attenuation coefficient of the first sound is maximum, and the interval of angles corresponding to the attenuation and the total interval reflection of the second sound are estimated. For the second case we have obtained: the coefficients of excitation of the fourth sound and the magneto-acoustic wave by the first and the second sounds; the reflection coefficients for the first and the second sounds and the longitudinal spin wave; the coefficient of transformation of the first sound into the second one and vice versa; the coefficient of reflection of the fourth sound from the capillary system - free liquid interface; the coefficient of excitation of longitudinal spin wave in free helium by the same wave in a capillary

  18. Shot- and angle-domain wave-equation traveltime inversion of reflection data: Theory

    KAUST Repository

    Zhang, Sanzong

    2015-05-26

    The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we have developed a wave-equation method that inverts the traveltimes of reflection events, and so it is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function was a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag, which maximized the crosscorrelation amplitude, represented the reflection-traveltime residual (RTR) that was back projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions were introduced to estimate the RTR by semblance analysis and scanning. In theory, only the traveltime information was inverted and there was no need to precisely fit the amplitudes or assume a high-frequency approximation. Results with synthetic data and field records revealed the benefits and limitations of wave-equation reflection traveltime inversion.

  19. Shot- and angle-domain wave-equation traveltime inversion of reflection data: Theory

    KAUST Repository

    Zhang, Sanzong; Luo, Yi; Schuster, Gerard T.

    2015-01-01

    The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we have developed a wave-equation method that inverts the traveltimes of reflection events, and so it is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function was a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag, which maximized the crosscorrelation amplitude, represented the reflection-traveltime residual (RTR) that was back projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions were introduced to estimate the RTR by semblance analysis and scanning. In theory, only the traveltime information was inverted and there was no need to precisely fit the amplitudes or assume a high-frequency approximation. Results with synthetic data and field records revealed the benefits and limitations of wave-equation reflection traveltime inversion.

  20. Reflection of Lamb waves obliquely incident on the free edge of a plate.

    Science.gov (United States)

    Santhanam, Sridhar; Demirli, Ramazan

    2013-01-01

    The reflection of obliquely incident symmetric and anti-symmetric Lamb wave modes at the edge of a plate is studied. Both in-plane and Shear-Horizontal (SH) reflected wave modes are spawned by an obliquely incident in-plane Lamb wave mode. Energy reflection coefficients are calculated for the reflected wave modes as a function of frequency and angle of incidence. This is done by using the method of orthogonal mode decomposition and by enforcing traction free conditions at the plate edge using the method of collocation. A PZT sensor network, affixed to an Aluminum plate, is used to experimentally verify the predictions of the analysis. Experimental results provide support for the analytically determined results. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    Science.gov (United States)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  2. Variation of wave speed determined by the PU-loop with proximity to a reflection site.

    Science.gov (United States)

    Li, Ye; Borlotti, Alessandra; Parker, Kim H; Khir, Ashraf W

    2011-01-01

    Wave speed is directly related to arterial distensibility and is widely used by clinicians to assess arterial stiffness. The PU-loop method for determining wave speed is based on the water hammer equation for flow in flexible tubes and artery using the method of characteristics. This technique determines wave speed using simultaneous measurements of pressure and velocity at a single point. The method shows that during the early part of systole, the relationship between pressure and velocity is generally linear, and the initial slope of the PU-loop is proportional to wave speed. In this work, we designed an in-vitro experiment to investigate the effect of proximity to a reflection site on the wave speed determined by the PU-loop through varying the distance between the measurement and reflection sites. Measurements were made in a flexible tube with a reflection site at the distal end formed by joining the tube to another tube with a different diameter and material properties. Six different flexible tubes were used to generate both positive and negative reflection coefficients of different magnitudes. We found that the wave speed determined by the PU-loop did not change when the measurement site was far from the reflection site but did change as the distance to the reflection site decreased. The calculated wave speed increased with positive reflections and decreased with negative reflections. The magnitude of the change in wave speed at a fixed distance from the reflection site increased with increasing the value of the reflection coefficient.

  3. Reflection and diffraction of atomic de Broglie waves by evanescent laser waves. Bare-state method

    International Nuclear Information System (INIS)

    Feng, Xiaoping; Witte, N.S.; Hollenberg, C.L.; Opat, G.

    1994-01-01

    Two methods are presented for the investigation of the reflection and diffraction of atoms by gratings formed either by standing or travelling evanescent laser waves. Both methods use the bare-state rather than dressed-state picture. One method is based on the Born series, whereas the other is based on the Laplace transformation of the coupled differential equations. The two methods yield the same theoretical expressions for the reflected and diffracted atomic waves in the whole space including the interaction and the asymptotic regions. 1 ref., 1 fig

  4. Geometrical and wave optics of paraxial beams.

    Science.gov (United States)

    Meron, M; Viccaro, P J; Lin, B

    1999-06-01

    Most calculational techniques used to evaluate beam propagation are geared towards either fully coherent or fully incoherent beams. The intermediate partial-coherence regime, while in principle known for a long time, has received comparably little attention so far. The resulting shortage of adequate calculational techniques is currently being felt in the realm of x-ray optics where, with the advent of third generation synchrotron light sources, partially coherent beams become increasingly common. The purpose of this paper is to present a calculational approach which, utilizing a "variance matrix" representation of paraxial beams, allows for a straightforward evaluation of wave propagation through an optical system. Being capable of dealing with an arbitrary degree of coherence, this approach covers the whole range from wave to ray optics, in a seamless fashion.

  5. Diffractive Optics for Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Bunkowski, A; Burmeister, O; Clausnitzer, T; Kley, E-B; Tuennermann, A; Danzmann, K; Schnabel, R

    2006-01-01

    All-reflective interferometry based on nano-structured diffraction gratings offers new possibilities for gravitational wave detection. We investigate an all-reflective Fabry-Perot interferometer concept in 2nd order Littrow mount. The input-output relations for such a resonator are derived treating the grating coupler by means of a scattering matrix formalism. A low loss dielectric reflection grating has been designed and manufactured to test the properties of such a grating cavity

  6. Normal Reflection Characteristics of One-Dimensional Unsteady Flow Shock Waves on Rigid Walls from Pulse Discharge in Water

    Directory of Open Access Journals (Sweden)

    Dong Yan

    2017-01-01

    Full Text Available Strong shock waves can be generated by pulse discharge in water, and the characteristics due to the shock wave normal reflection from rigid walls have important significance to many fields, such as industrial production and defense construction. This paper investigates the effects of hydrostatic pressures and perturbation of wave source (i.e., charging voltage on normal reflection of one-dimensional unsteady flow shock waves. Basic properties of the incidence and reflection waves were analyzed theoretically and experimentally to identify the reflection mechanisms and hence the influencing factors and characteristics. The results indicated that increased perturbation (i.e., charging voltage leads to increased peak pressure and velocity of the reflected shock wave, whereas increased hydrostatic pressure obviously inhibited superposition of the reflection waves close to the rigid wall. The perturbation of wave source influence on the reflected wave was much lower than that on the incident wave, while the hydrostatic pressure obviously affected both incident and reflection waves. The reflection wave from the rigid wall in water exhibited the characteristics of a weak shock wave, and with increased hydrostatic pressure, these weak shock wave characteristics became more obvious.

  7. Cryogenic Q-factor measurement of optical substrates for optimization of gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Nawrodt, R [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Zimmer, A [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Schnabel, R [Max-Planck-Institut fuer Gravitationsphysik, Universitaet Hannover, Callinstrasse 38, D-30167 Hannover (Germany); Vodel, W [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany)

    2006-05-15

    Future generations of gravitational wave interferometers are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of end mirrors and beam splitters that occurs in the optical substrates as well as in the dielectric coatings. A possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical quality factor Q, and maximizing the eigenfrequencies of the substrate. We present experimental details of a new cryogenic apparatus that is suitable for the measurement of the temperature-dependent Q-factor of reflective, transmissive as well as nano-structured grating optics down to 5 K. In particular, the SQUID-based and the optical interferometric approaches to the measurement of the amplitude of vibrating test bodies are compared and the method of ring-down recording is described.

  8. Holograms for power-efficient excitation of optical surface waves

    Science.gov (United States)

    Ignatov, Anton I.; Merzlikin, Alexander M.

    2018-02-01

    A method for effective excitation of optical surface waves based on holography principles has been proposed. For a particular example of excitation of a plasmonic wave in a dielectric layer on metal the efficiency of proposed volume holograms in the dielectric layer has been analyzed in comparison with optimized periodic gratings in the dielectric layer. Conditions when the holograms are considerably more efficient than the gratings have been found out. In addition, holograms recorded in two iterations have been proposed and studied. Such holograms are substantially more efficient than the optimized periodic gratings for all incidence angles of an exciting Gaussian beam. The proposed method is universal: it can be extended for efficient excitation of different types of optical surface waves and optical waveguide modes.

  9. A fast method for linear waves based on geometrical optics

    NARCIS (Netherlands)

    Stolk, C.C.

    2009-01-01

    We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the

  10. Contribution to coherent atom optics - Design of multiple wave devices

    International Nuclear Information System (INIS)

    Impens, F.

    2008-03-01

    The theoretical work presented in this manuscript addresses two complementary issues in coherent atom optics. The first part addresses the perspectives offered by coherent atomic sources through the design of two experiment involving the levitation of a cold atomic sample in a periodic series of light pulses, and for which coherent atomic clouds are particularly well-suited. These systems appear as multiple wave atom interferometers. A striking feature of these experiments is that a unique system performs both the sample trapping and interrogation. To obtain a transverse confinement, a novel atomic lens is proposed, relying on the interaction between an atomic wave with a spherical light wave. The sensitivity of the sample trapping towards the gravitational acceleration and towards the pulse frequencies is exploited to perform the desired measurement. These devices constitute atomic wave resonators in momentum space, which is a novel concept in atom optics. A second part develops new theoretical tools - most of which inspired from optics - well-suited to describe the propagation of coherent atomic sources. A phase-space approach of the propagation, relying on the evolution of moments, is developed and applied to study the low-energy dynamics of Bose-Einstein condensates. The ABCD method of propagation for atomic waves is extended beyond the linear regime to account perturbatively for mean-field atomic interactions in the atom-optical aberration-less approximation. A treatment of the atom laser extraction enabling one to describe aberrations in the atomic beam, developed in collaboration with the Atom Optics group at the Institute of Optics, is exposed. Last, a quality factor suitable for the characterization of diluted matter waves in a general propagation regime has been proposed. (author)

  11. Arterial wave reflection and aortic valve calcification in an elderly community-based cohort.

    Science.gov (United States)

    Sera, Fusako; Russo, Cesare; Iwata, Shinichi; Jin, Zhezhen; Rundek, Tatjana; Elkind, Mitchell S V; Homma, Shunichi; Sacco, Ralph L; Di Tullio, Marco R

    2015-04-01

    Aortic valve calcification (AVC) without stenosis is common in the elderly, is associated with cardiovascular morbidity and mortality, and may progress to aortic valve stenosis. Arterial stiffness and pulse-wave reflection are important components of proximal aortic hemodynamics, but their relationship with AVC is not established. To investigate the relationship of arterial wave reflection and stiffness with AVC, pulse wave analysis and AVC evaluation by echocardiography were performed in 867 participants from the Cardiovascular Abnormalities and Brain Lesions study. Participants were divided into four categories on the basis of the severity and extent of AVC: (1) none or mild focal AVC, (2) mild diffuse AVC, (3) moderate to severe focal AVC, and (4) moderate to severe diffuse AVC. Central blood pressures and pulse pressure, total arterial compliance, augmentation index, and time to wave reflection were assessed using applanation tonometry. Indicators of arterial stiffness and wave reflection were significantly associated with AVC severity, except for central systolic and diastolic pressures and time to reflection. After adjustment for pertinent covariates (age, sex, race/ethnicity, and estimated glomerular filtration rate), only augmentation pressure (P = .02) and augmentation index (P = .002) were associated with the severity of AVC. Multivariate logistic regression analysis revealed that augmentation pressure (odds ratio per mm Hg, 1.14; 95% confidence interval, 1.02-1.27; P = .02) and augmentation index (odds ratio per percentage point, 1.07; 95% confidence interval, 1.01-1.13; P = .02) were associated with an increased risk for moderate to severe diffuse AVC, even when central blood pressure value was included in the same model. Arterial wave reflection is associated with AVC severity, independent of blood pressure values. Increased contribution of wave reflection to central blood pressure could be involved in the process leading to AVC. Copyright © 2015

  12. Reflective optics II; Proceedings of the Meeting, Orlando, FL, Mar. 27-29, 1989

    International Nuclear Information System (INIS)

    Korsch, D.G.

    1989-01-01

    Various papers on reflective optics are presented. Individual topics addressed include: measurement of the effect of particulate contamination on X-ray reflectivity; design optimization of astrometric reflectors; application of supersmooth optics to extrasolar planet detection; all-reflective spectrometer design of the Infrared Space Observatory; manufacturing the Keck 10-meter telescope structure and drives; advanced reflective optical systems for ground-based laboratory collimators; design of a catadioptric lens for long-range oblique aerial reconnaissance; development of a three-mirror, wide-field sensor; low-cost, lightweight, large-aperture laser transmitter/receiver; fabrication of the airborne optical adjunct mirrors; manufacturing simulation for precision optical fabrication of large mirrors; rapid optical fabrication technology for ultralightweight quartz-glass mirrors; cryogenic testing of reflective optical component and telescope systems

  13. Reflective optics II; Proceedings of the Meeting, Orlando, FL, Mar. 27-29, 1989

    Science.gov (United States)

    Korsch, Dietrich G.

    1989-10-01

    Various papers on reflective optics are presented. Individual topics addressed include: measurement of the effect of particulate contamination on X-ray reflectivity; design optimization of astrometric reflectors; application of supersmooth optics to extrasolar planet detection; all-reflective spectrometer design of the Infrared Space Observatory; manufacturing the Keck 10-meter telescope structure and drives; advanced reflective optical systems for ground-based laboratory collimators; design of a catadioptric lens for long-range oblique aerial reconnaissance; development of a three-mirror, wide-field sensor; low-cost, lightweight, large-aperture laser transmitter/receiver; fabrication of the airborne optical adjunct mirrors; manufacturing simulation for precision optical fabrication of large mirrors; rapid optical fabrication technology for ultralightweight quartz-glass mirrors; cryogenic testing of reflective optical component and telescope systems.

  14. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  15. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  16. Theory of Fiber Optical Bragg Grating: Revisited

    Science.gov (United States)

    Tai, H.

    2003-01-01

    The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.

  17. Collisions and turbulence in optical rogue wave formation

    DEFF Research Database (Denmark)

    Genty, G.; de Sterke, C.M.; Bang, Ole

    2010-01-01

    We discuss optical rogue wave generation in terms of collisions and turbulence processes. Simulations of picosecond pulse propagation in optical fibres show rogue soliton generation from either third-order dispersion or Raman scattering independently. Simulations of rogue soliton emergence...

  18. Polarization resolved imaging with a reflection near-field optical microscope

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Xiao, Mufei; Hvam, Jørn Märcher

    1999-01-01

    Using a rigorous microscopic point-dipole description of probe-sample interactions, we study imaging with a reflection scanning near-field optical microscope. Optical content, topographical artifacts, sensitivity window-i.e., the scale on which near-field optical images represent mainly optical...... configuration is preferable to the cross-linear one, since it ensures more isotropic (in the surface plane) near-field imaging of surface features. The numerical results are supported with experimental near-field images obtained by using a reflection microscope with an uncoated fiber tip....

  19. Thermal and ghost reflection modeling for a 180-deg. field-of-view long-wave infrared lens

    Science.gov (United States)

    Shi, Weimin; Couture, Michael E.

    2001-03-01

    Optics 1, Inc. has successfully designed and developed a 180 degree(s) field of view long wave infrared lens for USAF/AFRL under SBIR phase I and II funded projects in support of the multi-national Programmable Integrated Ordinance Suite (PIOS) program. In this paper, a procedure is presented on how to evaluate image degradation caused by asymmetric aerodynamic dome heating. In addition, a thermal gradient model is proposed to evaluate degradation caused by axial temperature gradient throughout the entire PIOS lens. Finally, a ghost reflection analysis is demonstrated with non-sequential model.

  20. X-ray reflectivity study of thermal capillary waves on liquid surfaces

    International Nuclear Information System (INIS)

    Ocko, B.M.; Wu, X.Z.; Sirota, E.B.; Sinha, S.K.; Deutsch, M.

    1994-01-01

    X-ray reflectivity measurements have been carried out at the liquid/vapor interface of normal alkanes. The reflectivities over a large temperature range of different chain lengths (C20 and C36) provide a critical test of the various capillary wave models. Our data are most consistent with the hybrid model which allows for a molecular size dependent cutoff q max for the capillary waves and an intrinsic interface width σ 0

  1. Self-reflection in a system of excitons and biexcitons in semiconductors

    International Nuclear Information System (INIS)

    Khadzhi, P I; Lyakhomskaya, K D

    1999-01-01

    The characteristic features of the self-reflection of a powerful electromagnetic wave in a system of coherent excitons and biexcitons in semiconductors were investigated as one of the manifestations of the nonlinear optical skin effect. It was found that a monotonically decreasing standing wave with an exponentially falling spatial tail is formed in the surface region of a semiconductor. Under the influence of the field of a powerful pulse, an optically homogeneous medium is converted into one with distributed feedback. The appearance of spatially separated narrow peaks of the refractive index, extinction coefficient, and reflection coefficient is predicted. (nonlinear optical phenomena)

  2. Counter-rotating standing spin waves: A magneto-optical illusion

    Science.gov (United States)

    Shihab, S.; Thevenard, L.; Lemaître, A.; Gourdon, C.

    2017-04-01

    We excite perpendicular standing spin waves by a laser pulse in a GaMnAsP ferromagnetic layer and detect them using time-resolved magneto-optical effects. Quite counterintuitively, we find the first two excited modes to be of opposite chirality. We show that this can only be explained by taking into account absorption and optical phase shift inside the layer. This optical illusion is particularly strong in weakly absorbing layers. These results provide a correct identification of spin waves modes, enabling a trustworthy estimation of their respective weight as well as an unambiguous determination of the spin stiffness parameter.

  3. Infrared autofluorescence, short-wave autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytomas

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-05-01

    Full Text Available AIM: To investigate the findings of infrared fundus autofluorescence (IR-AF and spectral-domain optical coherence tomography (SD-OCT in eyes with optic disc melanocytoma (ODM. METHODS: IR-AF findings and those of other ophthalmologic imaging examinations, including short-wave autofluorescence (SW-AF, fluorescein angiography (FA, fundus color photography, and SD-OCT of 8 eyes of 8 consecutive cases with ODM were assessed. RESULTS: The ODMs in all cases (100% presented similar IR-AF, SW-AF, and FA findings. On IR-AF images, ODMs showed outstanding hyper-AF with well-defined outline. On SW-AF images, the area of ODMs presented as hypo-AF. FA images revealed the leaking retinal telangiectasia on the surface of the ODMs. On SD-OCT images in 8 cases (100%, the ODMs were sloped with highly reflective surface, which were disorganized retina and optic nerve layers. In 7 cases (87.5%, peripapillary choroids were involved. The melanocytomas of 8 cases (100% presented as optically empty spaces. Vitreous seeds were found in one case (12.5%. CONCLUSION: IR-AF imaging may provide a new modality to evaluate the pathologic features of ODMs, and together with SW-AF imaging, offers a new tool to study biological characteristics associated with ODMs. SD-OCT is a valuable tool in delimitating the tumor extension and providing morphological information about the adjacent retinal tissue.

  4. A geological history of reflecting optics.

    Science.gov (United States)

    Parker, Andrew Richard

    2005-03-22

    Optical reflectors in animals are diverse and ancient. The first image-forming eye appeared around 543 million years ago. This introduced vision as a selection pressure in the evolution of animals, and consequently the evolution of adapted optical devices. The earliest known optical reflectors--diffraction gratings--are 515 Myr old. The subsequent fossil record preserves multilayer reflectors, including liquid crystals and mirrors, 'white' and 'blue' scattering structures, antireflective surfaces and the very latest addition to optical physics--photonic crystals. The aim of this article is to reveal the diversity of reflecting optics in nature, introducing the first appearance of some reflector types as they appear in the fossil record as it stands (which includes many new records) and backdating others in geological time through evolutionary analyses. This article also reveals the commercial potential for these optical devices, in terms of lessons from their nano-level designs and the possible emulation of their engineering processes--molecular self-assembly.

  5. Reflection and Transmission of Acoustic Waves through the Layer of Multifractional Bubbly Liquid

    Directory of Open Access Journals (Sweden)

    Gubaidullin Damir Anvarovich

    2018-01-01

    Full Text Available The mathematical model that determines reflection and transmission of acoustic wave through a medium containing multifractioanl bubbly liquid is presented. For the water-water with bubbles-water model the wave reflection and transmission coefficients are calculated. The influence of the bubble layer thickness on the investigated coefficients is shown. The theory compared with the experiment. It is shown that the theoretical results describe and explain well the available experimental data. It is revealed that the special dispersion and dissipative properties of the layer of bubbly liquid can significantly influence on the reflection and transmission of acoustic waves in multilayer medium

  6. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.

    Science.gov (United States)

    Fujimoto, Yuki; Huang, Jyongsu; Fukunaga, Toshiharu; Kato, Ryo; Higashino, Mari; Shinomiya, Shohei; Kitadate, Shoko; Takahara, Yutaka; Yamaya, Atsuyo; Saito, Masatoshi; Kobayashi, Makoto; Kojima, Koji; Oikawa, Taku; Nakagawa, Ken; Tsuchihara, Katsuma; Iguchi, Masaharu; Takahashi, Masakatsu; Mizuno, Shiro; Osanai, Kazuhiro; Toga, Hirohisa

    2013-10-15

    The acoustic reflection technique noninvasively measures airway cross-sectional area vs. distance functions and uses a wave tube with a constant cross-sectional area to separate incidental and reflected waves introduced into the mouth or nostril. The accuracy of estimated cross-sectional areas gets worse in the deeper distances due to the nature of marching algorithms, i.e., errors of the estimated areas in the closer distances accumulate to those in the further distances. Here we present a new technique of acoustic reflection from measuring transmitted acoustic waves in the airway with three microphones and without employing a wave tube. Using miniaturized microphones mounted on a catheter, we estimated reflection coefficients among the microphones and separated incidental and reflected waves. A model study showed that the estimated cross-sectional area vs. distance function was coincident with the conventional two-microphone method, and it did not change with altered cross-sectional areas at the microphone position, although the estimated cross-sectional areas are relative values to that at the microphone position. The pharyngeal cross-sectional areas including retropalatal and retroglossal regions and the closing site during sleep was visualized in patients with obstructive sleep apnea. The method can be applicable to larger or smaller bronchi to evaluate the airspace and function in these localized airways.

  7. Influence of multiple reflection and optical interference on the magneto-optical properties of Co-Pt alloy films investigated by using the characteristic matrix method

    International Nuclear Information System (INIS)

    Zou, Z. Q.; Lee, Y. P.; Kim, K. W.

    2000-01-01

    The magneto-optical Kerr effect (MOKE) of a multilayered system was described by using the characteristic matrix method based on the electromagnetic wave theory. In addition to the multiple reflection and the optical interference, a contribution from the plasma resonance absorption of a metallic layer can be included in the formulation. As an example, we carried out a simulation of the MOKE for Co 0.25 Pt 0.75 alloy films with and without a Pt buffer layer. It was found that the Kerr rotation and the read-out figure of merit of a film directly deposited on a glass substrate were enhanced at a thickness below 40 nm owing to the multiple reflection and the optical interference. This enhancement was more remakable at long wavelengths when light was incident on the substrate side. However, the introduction of a Pt buffer layer was not beneficial in improving the Kerr rotation and the figure of merit, although it promoted the perpendicular magnetic anisotropy of the film, as reported. The simulated results for an alloy thickness beyond the penetration depth of light agreed well with the experimental data for a prepared 'thick' alloy film

  8. Optical Reflectance Measurements for Commonly Used Reflectors

    Science.gov (United States)

    Janecek, Martin; Moses, William W.

    2008-08-01

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.

  9. Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Irina V. Soboleva

    2018-01-01

    Full Text Available The review considers the influence of Bloch surface waves on the optical and magneto-optical effects observed in photonic crystals; for example, the Goos–Hänchen effect, the Faraday effect, optical trapping and so on. Prospects for using Bloch surface waves for spatial light modulation, for controlling the polarization of light, for optical trapping and control of micro-objects are discussed.

  10. Autoresonant four-wave mixing in optical fibers

    International Nuclear Information System (INIS)

    Yaakobi, O.; Friedland, L.

    2010-01-01

    A theory of autoresonant four-wave mixing in tapered fibers is developed in application to optical parametric amplification (OPA). In autoresonance, the interacting waves (two pump waves, a signal, and an idler) stay phase-locked continuously despite variation of system parameters (spatial tapering). This spatially extended phase-locking allows complete pump depletion in the system and uniform amplification spectrum in a wide frequency band. Different aspects of autoresonant OPA are described including the automatic initial phase-locking, conditions for autoresonant transition, stability, and spatial range of the autoresonant interaction.

  11. MODELING OF REFLECTIVE PROPAGATING SLOW-MODE WAVE IN A FLARING LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Yuan, D.; Van Doorsselaere, T.; Keppens, R.; Xia, C. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium)

    2015-11-01

    Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in extreme ultraviolet images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by the synthesized Solar Dynamics Observatory/Atmospheric Imaging Assembly 131, 94 Å emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km s{sup −1} in an 80 Mm length loop with an average temperature of 9 MK. With the synthesized Doppler shift velocity and intensity maps of the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Fe xix line emission, we confirm that these reflected slow mode waves are propagating waves.

  12. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  13. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  14. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  15. Hybrid reflection type metasurface of nano-antennas designed for optical needle field generation

    Science.gov (United States)

    Wang, Shiyi; Zhan, Qiwen

    2015-03-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid optical antennas for comprehensive spatial engineering the properties of optical fields. Its capability is illustrated with an example to create a radially polarized vectorial beam for optical needle field generation. Functioning as local quarter-wave-plates (QWP), the MIM metasurface is designed to convert circularly polarized incident into local linear polarization to create an overall radial polarization with corresponding binary phases and desired normalized amplitude modulation ranged from 0.07 to 1. To obtain enough degrees of freedom, the optical-antenna layer comprises periodic arrangements of double metallic nano-bars with perpendicular placement and single nano-bars respectively for different amplitude modulation requirements. Both of the antennas enable to introduce π/2 retardation while reaching the desired modulation range both for phase and amplitude. Through adjusting the antennas' geometry and array carefully, we shift the gap-surface plasmon resonances facilitated by optical antennas to realize the manipulation of vectorial properties. Designed at 1064 nm wavelength, the particularly generated vectorial light output can be further tightly focused by a high numerical aperture objective to obtain longitudinally polarized flat-top focal field. The so-called optical needle field is a promising candidate for novel applications that transcend disciplinary boundaries. The proposed metasurface establishes a new class of compact optical components based on nano-scale structures, leading to compound functions for vectorial light generation.

  16. Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2018-02-01

    We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.

  17. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal....

  18. NONLINEAR REFLECTION PROCESS OF LINEARLY POLARIZED, BROADBAND ALFVÉN WAVES IN THE FAST SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Shoda, M.; Yokoyama, T., E-mail: shoda@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-04-01

    Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave–wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.

  19. Phase locking in backward-wave oscillators with strong end reflections

    International Nuclear Information System (INIS)

    Nusinovich, G. S.; Sinitsyn, O. V.; Rodgers, J.; Shkvarunets, A. G.; Carmel, Y.

    2007-01-01

    The theory of phase-locked oscillations in a backward-wave oscillator with strong end reflections is developed. Numerical results demonstrate that the locking bandwidth of such a device phase-locked by a prebunched electron beam can be twice the bandwidth of a resonator formed by a waveguide with strong end reflections. It is also shown that the device can operate with the efficiency exceeding 50% and that, in some cases, it can exhibit a hysteresis in the process of tuning the signal frequency. The applicability of the results obtained to the experiments with the plasma-assisted backward-wave oscillator currently underway at the University of Maryland is discussed

  20. Reflection and transmission of seismic waves under initial stress at the earth's core-mantle boundary

    Directory of Open Access Journals (Sweden)

    Sukhendu Dey

    1980-01-01

    Full Text Available In the present paper the influence of the initial stress is shown on the reflection and transmission of P waves at the core-mantle boundary. Taking a particular value of the inherent initial stress, the variations of reflection and transmission coefficients with respect to the angle of emergence are represented by graphs. These graphs when compared with those having no initial stress show that the effect of the initial stress is to produce a reflected P and S waves with numerically higher amplitudes but a transmitted P wave with smaller amplitude. A method is also indicated in this paper to calculate the actual value of the initial stress near the core-mantle boundary by measuring the amplitudes of incident and reflected P waves.

  1. Roadmap on optical rogue waves and extreme events

    Science.gov (United States)

    Akhmediev, Nail; Kibler, Bertrand; Baronio, Fabio; Belić, Milivoj; Zhong, Wei-Ping; Zhang, Yiqi; Chang, Wonkeun; Soto-Crespo, Jose M.; Vouzas, Peter; Grelu, Philippe; Lecaplain, Caroline; Hammani, K.; Rica, S.; Picozzi, A.; Tlidi, Mustapha; Panajotov, Krassimir; Mussot, Arnaud; Bendahmane, Abdelkrim; Szriftgiser, Pascal; Genty, Goery; Dudley, John; Kudlinski, Alexandre; Demircan, Ayhan; Morgner, Uwe; Amiraranashvili, Shalva; Bree, Carsten; Steinmeyer, Günter; Masoller, C.; Broderick, Neil G. R.; Runge, Antoine F. J.; Erkintalo, Miro; Residori, S.; Bortolozzo, U.; Arecchi, F. T.; Wabnitz, Stefan; Tiofack, C. G.; Coulibaly, S.; Taki, M.

    2016-06-01

    The pioneering paper ‘Optical rogue waves’ by Solli et al (2007 Nature 450 1054) started the new subfield in optics. This work launched a great deal of activity on this novel subject. As a result, the initial concept has expanded and has been enriched by new ideas. Various approaches have been suggested since then. A fresh look at the older results and new discoveries has been undertaken, stimulated by the concept of ‘optical rogue waves’. Presently, there may not by a unique view on how this new scientific term should be used and developed. There is nothing surprising when the opinion of the experts diverge in any new field of research. After all, rogue waves may appear for a multiplicity of reasons and not necessarily only in optical fibers and not only in the process of supercontinuum generation. We know by now that rogue waves may be generated by lasers, appear in wide aperture cavities, in plasmas and in a variety of other optical systems. Theorists, in turn, have suggested many other situations when rogue waves may be observed. The strict definition of a rogue wave is still an open question. For example, it has been suggested that it is defined as ‘an optical pulse whose amplitude or intensity is much higher than that of the surrounding pulses’. This definition (as suggested by a peer reviewer) is clear at the intuitive level and can be easily extended to the case of spatial beams although additional clarifications are still needed. An extended definition has been presented earlier by N Akhmediev and E Pelinovsky (2010 Eur. Phys. J. Spec. Top. 185 1-4). Discussions along these lines are always useful and all new approaches stimulate research and encourage discoveries of new phenomena. Despite the potentially existing disagreements, the scientific terms ‘optical rogue waves’ and ‘extreme events’ do exist. Therefore coordination of our efforts in either unifying the concept or in introducing alternative definitions must be continued. From

  2. Depth-of-field effects in wiggler radiation sources: Geometrical versus wave optics

    Directory of Open Access Journals (Sweden)

    Richard P. Walker

    2017-02-01

    Full Text Available A detailed analysis is carried out of the optical properties of synchrotron radiation emitted by multipole wigglers, concentrating on the effective source size and brightness and the so-called “depth of field” effects, concerning which there has been some controversy in the literature. By comparing calculations made with both geometrical optics and wave optics methods we demonstrate that the two approaches are not at variance, and that the wave optics results tend towards those of geometrical optics under well-defined conditions.

  3. Controlling the plasmonic surface waves of metallic nanowires by transformation optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yichao; Yuan, Jun; Yin, Ge; Ma, Yungui, E-mail: yungui@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058 (China); He, Sailing [State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, S-100 44 Stockholm (Sweden)

    2015-07-06

    In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.

  4. Wave-optics modeling of the optical-transport line for passive optical stochastic cooling

    Science.gov (United States)

    Andorf, M. B.; Lebedev, V. A.; Piot, P.; Ruan, J.

    2018-03-01

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream "pickup" undulator to the downstream "kicker" undulator. In this paper, we present simulation results using wave-optics calculation carried out with the SYNCHROTRON RADIATION WORKSHOP (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.

  5. Analysis of Wave Reflection from Wave Energy Converters Installed as Breakwaters in Harbour

    DEFF Research Database (Denmark)

    Zanuttigh, B.; Margheritini, Lucia; Gambles, L.

    2009-01-01

    loads on the structure, i.e. better survivability. Nevertheless these devices must comply with the requirements of harbour protection structures and thus cope with problems due to reflection of incoming waves, i.e. dangerous sea states close to harbors entrances and intensified sediment scour, which can...

  6. Transmission and total reflection of subhertz electromagnetic waves at the earth-atmosphere interface

    International Nuclear Information System (INIS)

    Shiozawa, Toshiyuki

    2010-01-01

    For the purpose of providing for a theoretical background for the study of electromagnetic fields generated by precursory effects of earthquakes, the problem of transmission and total reflection at the earth-atmosphere interface is investigated in detail for a subhertz plane electromagnetic wave incident from the earth's crust. The term ''subhertz'' means 'below 1 Hz'. First, for the special case of normal incidence, the overall power transmission coefficient at the earth-atmosphere interface is found to take a maximum value at a definite frequency f 0 which is inversely proportional to the square of the depth of a virtual hypocenter. A typical value of f 0 falls around 0.01 Hz. For oblique incidence as well, this feature of the overall power transmission coefficient is retained except in the vicinity of the critical angle of incidence for the H-wave. At the critical angle of incidence, the power flow carried by a surface wave along the interface becomes anomalously large for the H-wave. However, over a wide range of angles of incidence greater than the critical angle, the power flow carried by the E-wave exceeds that carried by the H-wave by orders of magnitude. Finally, the energy conservation relations for the incident, reflected, and transmitted waves at the earth-atmosphere interface are discussed. For an incident wave coming from the earth's crust, the interactive power between the incident and reflected waves plays a crucial role for the conservation of energy at the interface.

  7. Phase mixing of Alfvén waves in axisymmetric non-reflective magnetic plasma configurations

    Science.gov (United States)

    Petrukhin, N. S.; Ruderman, M. S.; Shurgalina, E. G.

    2018-02-01

    We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric magnetic plasma configurations. We derive the general equation describing the attenuation of the Alfvén wave amplitude. Then we applied the general theory to a particular case with the exponentially divergent magnetic field lines. The condition that the configuration is non-reflective determines the variation of the plasma density along the magnetic field lines. The density profiles exponentially decreasing with the height are not among non-reflective density profiles. However, we managed to find non-reflective profiles that fairly well approximate exponentially decreasing density. We calculate the variation of the total wave energy flux with the height for various values of shear viscosity. We found that to have a substantial amount of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven orders of magnitude in comparison with the value given by the classical plasma theory. An important result that we obtained is that the efficiency of the wave damping strongly depends on the density variation with the height. The stronger the density decrease, the weaker the wave damping is. On the basis of this result, we suggested a physical explanation of the phenomenon of the enhanced wave damping in equilibrium configurations with exponentially diverging magnetic field lines.

  8. Waves reflected by solid wall and wave interaction in vapour bubbly liquids

    International Nuclear Information System (INIS)

    Duong, N.H.; Nguyen, V.T.

    2004-01-01

    The vapour bubbly liquids are met in many natural and industrial processes, including in energy equipment. In the nuclear power plants this kind of medium appears in reactor cores (PWR, BWR and etc.), in turbine generators and in heat transfer loops. Due to some circumstances (for example, a hit caused by detonations or strong collisions) the pressure waves can appear in the bubbly liquid medium contained in those facilities. These waves propagate in the mixtures and interact with themselves and with structures. It is important that what will occur during mentioned above processes. The knowledge of this kind processes will be useful for analysing the different sorts of the processes occurred in the energy facilities where the vapor bubbly liquids are used as working or heat transfer medium, like nuclear power plants, and also useful in finding the measures for prevention of unfavourable phenomena (for example, during wave interactions maybe appear too high pressures, which could lead into damages of facilities and etc.) and safety operating the equipment. From the physical point of view, the waves in this kind of medium are interesting that owing to non-linear, dispersion and dissipation effects the wave patterns in them may be diverse and easy altered. In the paper the investigation results of the waves reflected by solid wall or structure of the moderate intensity shock waves, and the behaviour of pressure in the process of wave interaction in some mixtures of liquid with vapour bubbles (of radium ∼1 mm) are presented. (author)

  9. Reflection and transmission of ion acoustic waves from a plasma discontinuity

    International Nuclear Information System (INIS)

    Gary, S.P.; Alexeff, I.; Bloomberg, H.W.

    1975-01-01

    Transmission and reflection coefficients are calculated for an ion acoustic wave incident from the upstream direction upon a plasma discontinuity of width much less than the wavelength. In the limit of an infinitely strong discontinuity there is complete in phase reflection. (U.S.)

  10. Standing waves in fiber-optic interferometers

    NARCIS (Netherlands)

    De Haan, V.; Santbergen, R.; Tijssen, M.; Zeman, M.

    2011-01-01

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac

  11. Energy Relations for Plane Waves Reflected from Moving Media

    DEFF Research Database (Denmark)

    Daly, P.; Gruenberg, Harry

    1967-01-01

    When a plane wave is obliquely incident from vacuum on a semi-infinite moving medium, the energy flow carried by the incident wave, is in general, not carried away by the reflected and transmitted waves. This is only the case when the medium velocity is parallel to its vacuum interface. Otherwise...... there is a net inflow or outflow of electromagnetic energy, which can be accounted for by the change of stored energy in the system, and the work done by the mechanical forces acting on the medium. A detailed energy balance is drawn up for two different media moving normal to their vacuum interfaces: (a...

  12. Midinfrared optical rogue waves in soft glass photonic crystal fiber

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Steffensen, Henrik; Ebendorff-Heidepriem, Heike

    2011-01-01

    We investigate numerically the formation of extreme events or rogue waves in soft glass tellurite fibers and demonstrate that optical loss drastically diminishes shot-to-shot fluctuations characteristic of picosecond pumped supercontinuum (SC). When loss is neglected these fluctuations include...... distributions. Our results thus implicitly show that rogue waves will not occur in any SC spectrum that is limited by loss, such as commercial silica fiber based SC sources. © 2011 Optical Society of America....

  13. Quantitative Estimation of Transmitted and Reflected Lamb Waves at Discontinuity

    International Nuclear Information System (INIS)

    Lim, Hyung Jin; Sohn, Hoon

    2010-01-01

    For the application of Lamb wave to structural health monitoring(SHM), understanding its physical characteristic and interaction between Lamb wave and defect of the host structure is an important issue. In this study, reflected, transmitted and mode converted Lamb waves at discontinuity of a plate structure were simulated and the amplitude ratios are calculated theoretically using Modal decomposition method. The predicted results were verified comparing with finite element method(FEM) and experimental results simulating attached PZTs. The result shows that the theoretical prediction is close to the FEM and the experimental verification. Moreover, quantitative estimation method was suggested using amplitude ratio of Lamb wave at discontinuity

  14. Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses

    Science.gov (United States)

    Penyazkov, O.; Skilandz, A.

    2018-03-01

    To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.

  15. Wave-Optics Modeling of the Optical-Transport Line for Passive Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, M. B. [NICADD, DeKalb; Lebedev, V. A. [Fermilab; Piot, P. [Fermilab; Ruan, J. [Fermilab

    2018-03-01

    Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsytem critical to the OSC scheme is the focusing optics used to image radiation from the upstream "pickup" undulator to the downstream "kicker" undulator. In this paper, we present simulation results using wave-optics calculation carried out with the {\\sc Synchrotron Radiation Workshop} (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.

  16. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    Science.gov (United States)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  17. Optical wave microphone measurements of laser ablation of copper in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Mitsugi, Fumiaki, E-mail: mitsugi@cs.kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Ikegami, Tomoaki [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Nakamiya, Toshiyuki; Sonoda, Yoshito [Graduate School of Industrial Engineering, Tokai University, 9-1-1 Toroku, Kumamoto 862-8652 (Japan)

    2013-11-29

    Laser ablation plasma in a supercritical fluid has attracted much attention recently due to its usefulness in forming nanoparticles. Observation of the dynamic behavior of the supercritical fluid after laser irradiation of a solid is necessary for real-time monitoring and control of laser ablation. In this study, we utilized an optical wave microphone to monitor pulsed laser irradiation of a solid in a supercritical fluid. The optical wave microphone works based on Fraunhofer diffraction of phase modulation of light by changes in refractive index. We hereby report on our measurements for pulsed laser irradiation of a Cu target in supercritical carbon dioxide using an optical wave microphone. Photothermal acoustic waves which generated after single pulsed laser irradiation of a Cu target were detectable in supercritical carbon dioxide. The speed of sound around the critical point of supercritical carbon dioxide was clearly slower than that in gas. The optical wave microphone detected a signal during laser ablation of Cu in supercritical carbon dioxide that was caused by shockwave degeneration. - Highlights: • Photothermal acoustic wave in supercritical fluid was observed. • Sound speed around the critical point was slower than that in gas. • Optical wave microphone detected degeneration of a shockwave. • Ablation threshold of a solid in supercritical fluid can be estimated. • Generation of the second shockwave in supercritical phase was suggested.

  18. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion.

    Science.gov (United States)

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).

  19. Thermal noise from optical coatings in gravitational wave detectors.

    Science.gov (United States)

    Harry, Gregory M; Armandula, Helena; Black, Eric; Crooks, D R M; Cagnoli, Gianpietro; Hough, Jim; Murray, Peter; Reid, Stuart; Rowan, Sheila; Sneddon, Peter; Fejer, Martin M; Route, Roger; Penn, Steven D

    2006-03-01

    Gravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now.

  20. Simulation and Optimization of Surface Acoustic Wave Devises

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2007-01-01

    In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model...... in effective refractive index introduced in the Mach-Zehnder interferometer arms by the stresses from the surface acoustic wave is calculated. It is shown that the effective refractive index of the fundamental optical mode increases at a surface acoustic wave crest and decreases at a trough. The height...... of a piezoelectric, inhomogeneous material and reflections from the boundaries are avoided by applying perfectly matched layers. The optical modes in the waveguides are modeled by the time-harmonic wave equation for the magnetic field. The two models are coupled using the stress-optical relation and the change...

  1. Optimal reflection-free complex absorbing potentials for quantum propagation of wave packets

    International Nuclear Information System (INIS)

    Shemer, Oded; Brisker, Daria; Moiseyev, Nimrod

    2005-01-01

    The conditions for optimal reflection-free complex-absorbing potentials (CAPs) are discussed. It is shown that the CAPs as derived from the smooth-exterior-scaling transformation of the Hamiltonian [J. Phys. B 31, 1431 (1998)] serve as optimal reflection-free CAPs (RF CAPs) in wave-packet propagation calculations of open systems. The initial wave packet, Φ(t=0), can be located in the interaction region (as in half collision experiments) where the CAPs have vanished or in the asymptote where V CAP ≠0. As we show, the optimal CAPs can be introduced also in the region where the physical potential has not vanished. The unavoided reflections due to the use of a finite number of grid points (or basis functions) are discussed. A simple way to reduce the 'edge-grid' reflection effect is described

  2. Dynamic ultraslow optical-matter wave analog of an event horizon.

    Science.gov (United States)

    Zhu, C J; Deng, L; Hagley, E W; Ge, Mo-Lin

    2014-08-29

    We investigate theoretically the effects of a dynamically increasing medium index on optical-wave propagation in a rubidium condensate. A long pulsed pump laser coupling a D2 line transition produces a rapidly growing internally generated field. This results in a significant optical self-focusing effect and creates a dynamically growing medium index anomaly that propagates ultraslowly with the internally generated field. When a fast probe pulse injected after a delay catches up with the dynamically increasing index anomaly, it is forced to slow down and is prohibited from crossing the anomaly, thereby realizing an ultraslow optical-matter wave analog of a dynamic white-hole event horizon.

  3. Imaging the dorsal hippocampus: light reflectance relationships to electroencephalographic patterns during sleep

    DEFF Research Database (Denmark)

    Rector, D M; Poe, G R; Kristensen, Morten Pilgaard

    1995-01-01

    We assessed the correspondence of 660 nm light reflectance changes from the dorsal hippocampus with slow wave electroencephalographic (EEG) activity during quiet sleep (QS) and rapid eye movement (REM) sleep in four cats. An optic probe, attached to a charge-coupled-device (CCD) video camera...... as EEG changes. Dividing the image into 10 subregions revealed that reflectance changes at the rhythmical slow wave activity band (RSA, 4-6 Hz) persisted in localized regions during QS and REM sleep, but regional changes showed considerable wave-by-wave independence between areas and from slow wave...

  4. A simple system for 160GHz optical terahertz wave generation and data modulation

    Science.gov (United States)

    Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin

    2018-01-01

    A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.

  5. Linking optical and infrared observations with gravitational wave sources through transient variability

    International Nuclear Information System (INIS)

    Stubbs, C W

    2008-01-01

    Optical and infrared observations have thus far detected more celestial cataclysms than have been seen in gravity waves (GW). This argues that we should search for gravity wave signatures that correspond to transient variables seen at optical wavelengths, at precisely known positions. There is an unknown time delay between the optical and gravitational transient, but knowing the source location precisely specifies the corresponding time delays across the gravitational antenna network as a function of the GW-to-optical arrival time difference. Optical searches should detect virtually all supernovae that are plausible gravitational radiation sources. The transient optical signature expected from merging compact objects is not as well understood, but there are good reasons to expect detectable transient optical/IR emission from most of these sources as well. The next generation of deep wide-field surveys (for example PanSTARRS and LSST) will be sensitive to subtle optical variability, but we need to fill the 'blind spots' that exist in the galactic plane, and for optically bright transient sources. In particular, a galactic plane variability survey at λ∼ 2 μm seems worthwhile. Science would benefit from closer coordination between the various optical survey projects and the gravity wave community

  6. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    Energy Technology Data Exchange (ETDEWEB)

    Tadesse, Semere A. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Li, Huan; Liu, Qiyu; Li, Mo, E-mail: moli@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Our system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.

  7. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber a...

  8. Field test investigation of high sensitivity fiber optic seismic geophone

    Science.gov (United States)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  9. Sound waves and dynamics of superfluid Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Zhang Aixia; Xue Jukui

    2009-01-01

    The sound waves, the stability of Bloch waves, the Bloch oscillation, and the self-trapping phenomenon in interacting two-component Fermi gases throughout the BEC-BCS crossover in one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) optical lattices are discussed in detail. Within the hydrodynamical theory and by using the perturbative and tight-binding approximation, sound speed in both weak and tight 1D, 2D, 3D optical lattices, and the criteria for occurrences of instability of Bloch waves and self-trapping of Fermi gases along the whole BEC-BCS crossover in tight 1D, 2D, 3D optical lattices are obtained analytically. The results show that the sound speed, the criteria for occurrences of instability of Bloch waves and self-trapping, and the destruction of Bloch oscillation are modified dramatically by the lattice parameters (lattice dimension and lattice strength), the atom density or atom number, and the atom interaction.

  10. Evidence of Boundary Reflection of Kelvin and First-Mode Rossby Waves from Topex/Poseidon Sea Level Data

    Science.gov (United States)

    Boulanger, Jean-Philippe; Fu, Lee-Lueng

    1996-01-01

    The TOPEX/POSEIDON sea level data lead to new opportunities to investigate some theoretical mechanisms suggested to be involved in the El Nino-Southern Oscillation phenomenon in the tropical Pacific ocean. In particular, we are interested in studying the western boundary reflection, a process crucial for the delayed action oscillator theory, by using the TOPEX/POSEIDON data from November 1992 to May 1995. We first projected the sea level data onto Kelvin and first-mode Ross waves. Then we estimated the contribution of wind forcing to these waves by using a single baroclinic mode simple wave model forced by the ERS-1 wind data. Wave propagation was clearly observed with amplitudes well explained by the wind forcing in the ocean interior. Evidence of wave reflection was detected at both the western and eastern boundaries of the tropical Pacific ocean. At the eastern boundary, Kelvin waves were seen to reflect as first-mode Rossby waves during the entire period. The reflection efficiency (in terms of wave amplitude) of the South American coasts was estimated to be 80% of that of an infinite meridional wall. At the western boundary, reflection was observed in April-August 1993, in January-June 1994, and, later, in December 1994 to February 1995. Although the general roles of these reflection events in the variability observed in the equatorial Pacific ocean are not clear, the data suggest that the reflections in January-June 1994 have played a role in the onset of the warm conditions observed in late 1994 to early 1995. Indeed, during the January-June 1994 period, as strong downwelling first-mode Rossby waves reflected into downwelling Kelvin waves, easterly wind and cold sea surface temperature anomalies located near the date line weakened and eventually reversed in June-July 1994. The presence of the warm anomalies near the date line then favored convection and westerly wind anomalies that triggered strong downwelling Kelvin waves propagating throughout the basin

  11. An evaluation of directional analysis techniques for multidirectional, partially reflected waves .1. numerical investigations

    DEFF Research Database (Denmark)

    Ilic, C; Chadwick, A; Helm-Petersen, Jacob

    2000-01-01

    , non-phased locked methods are more appropriate. In this paper, the accuracy of two non-phased locked methods of directional analysis, the maximum likelihood method (MLM) and the Bayesian directional method (BDM) have been quantitatively evaluated using numerical simulations for the case...... of multidirectional waves with partial reflections. It is shown that the results are influenced by the ratio of distance from the reflector (L) to the length of the time series (S) used in the spectral analysis. Both methods are found to be capable of determining the incident and reflective wave fields when US > 0......Recent studies of advanced directional analysis techniques have mainly centred on incident wave fields. In the study of coastal structures, however, partially reflective wave fields are commonly present. In the near structure field, phase locked methods can be successfully applied. In the far field...

  12. Transient reflection and transmission of E polarized electromagnetic waves at boundary surface between air and moving isotropic plasma

    International Nuclear Information System (INIS)

    Saito, Yukimasa

    1977-01-01

    The transient reflection and transmission waves of E polarized electromagnetic waves coming into the boundary surface between air and moving isotropic plasma were theoretically investigated. By using the Laplace transformation in the moving system, the formulae of Lorentz and inverse Lorentz transformations concerning electromagnetic field were transformed, thus the transient reflection and transmission waves were obtained. These waves were normalized with the angular frequency of the incident waves, and the variation of the wave form was obtained. Examples of the numerical calculation of reflected waves are shown for the plasma moving in parallel to the boundary surface. (Kato, T.)

  13. Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion

    International Nuclear Information System (INIS)

    Wabnitz, Stefan

    2013-01-01

    In analogy with ocean waves running up towards the beach, shoaling of pre-chirped optical pulses may occur in the normal group-velocity dispersion regime of optical fibers. We present exact Riemann wave solutions of the optical shallow water equations and show that they agree remarkably well with the numerical solutions of the nonlinear Schrödinger equation, at least up to the point where a vertical pulse front develops. We also reveal that extreme wave events or optical tsunamis may be generated in dispersion tapered fibers in the presence of higher-order dispersion. (paper)

  14. Nonlinear self-reflection of intense ultra-wideband femtosecond pulses in optical fiber

    Science.gov (United States)

    Konev, Leonid S.; Shpolyanskiy, Yuri A.

    2013-05-01

    We simulated propagation of few-cycle femtosecond pulses in fused silica fiber based on the set of first-order equations for forward and backward waves that generalizes widely used equation of unidirectional approximation. Appearance of a weak reflected field in conditions default to the unidirectional approach is observed numerically. It arises from nonmatched initial field distribution with the nonlinear medium response. Besides additional field propagating forward along with the input pulse is revealed. The analytical solution of a simplified set of equations valid over distances of a few wavelengths confirms generation of reflected and forward-propagating parts of the backward wave. It allowed us to find matched conditions when the reflected field is eliminated and estimate the amplitude of backward wave via medium properties. The amplitude has the order of the nonlinear contribution to the refractive index divided by the linear refractive index. It is small for the fused silica so the conclusions obtained in the unidirectional approach are valid. The backward wave should be proportionally higher in media with stronger nonlinear response. We did not observe in simulations additional self-reflection not related to non-matched boundary conditions.

  15. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics.

    Science.gov (United States)

    El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  16. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics

    Science.gov (United States)

    El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.

    2018-01-01

    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  17. Dispersive shock waves in nonlinear and atomic optics

    Directory of Open Access Journals (Sweden)

    Kamchatnov Anatoly

    2017-01-01

    Full Text Available A brief review is given of dispersive shock waves observed in nonlinear optics and dynamics of Bose-Einstein condensates. The theory of dispersive shock waves is developed on the basis of Whitham modulation theory for various situations taking place in these two fields. In particular, the full classification is established for types of wave structures evolving from initial discontinuities for propagation of long light pulses in fibers with account of steepening effect and for dynamics of the polarization mode in two-component Bose-Einstein condensates.

  18. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation

    KAUST Repository

    Liu, Yang; Sen, Mrinal K.

    2010-01-01

    We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.

  19. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation

    KAUST Repository

    Liu, Yang

    2010-03-01

    We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.

  20. Experimental demonstration of a variable reflectivity signal recycled Michelson interferometer for gravitational wave detection

    International Nuclear Information System (INIS)

    De Vine, G.; Shaddock, D.; McClelland, D.

    2002-01-01

    Full text: One technique of improving the sensitivity of interferometric gravitational wave detectors is to implement a signal mirror. This involves placing a mirror at the output of the Michelson interferometer. The gravitational wave signal is then 'recycled' back into the interferometer where it can coherently add with the gravitational wave signal still being produced. The frequency of the improved sensitivity is dependent on the position of the signal mirror, while the peak height and bandwidth are dependent on the reflectivity of the signal mirror. This is because the signal mirror forms a cavity with the Michelson interferometer and this cavity has a resonant frequency dependent on its length and a bandwidth dependent on its finesse, which are a function of signal mirror position and reflectivity, respectively. Due to the varying and/or unknown nature of the gravitational wave frequencies and wave-forms, it is desirable to be able to control both the peak frequency and bandwidth of the detector. The peak frequency can be easily adjusted by altering the signal mirror position. The bandwidth, however, is fixed with the signal mirror reflectivity. In a long base-line gravitational wave detector it is impractical to swap the signal mirror with one of different reflectivity for a number of reasons, for example, the detector's high vacuum would have to be broken, realignment performed and locking re-acquired. This is addressed by the proposal of two different forms of variable reflectivity signal mirror (VRSM): a Fabry-Perot cavity and a Michelson interferometer. These are analysed and the reasons for choosing to investigate the Michelson VRSM are given. The reasons include the potential for easier control and the smooth variation in reflectivity with arm length difference. The experiment is discussed and the results of the first demonstration of variable reflectivity signal recycling are presented in the form of frequency responses obtained by injecting a second

  1. Generalized laws of reflection and refraction from transformation optics

    OpenAIRE

    Xu, Yadong; Yao, Kan; Chen, Huanyang

    2012-01-01

    Based on transformation optics, we introduce another set of generalized laws of reflection and refraction (differs from that of [Science 334, 333 (2011)]), through which a transformation media slab is derived as a meta-surface, producing anomalous reflection and refraction for all polarizations of incident light.

  2. Generation of neutron standing waves at total reflection of polarized neutrons

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.; Kozhevnikov, S.V.; Radu, F.; Kruijs, R.; Rekveldt, M.Th.

    1999-01-01

    The regime of neutron standing waves at reflection of polarized thermal neutrons from the structure glass/Cu (1000 A Angstrom)/Ti (2000 A Angstrom)/Co (60 A Angstrom)/Ti (300 A Angstrom) in a magnetic field directed at an angle to the sample plane is realized. The intensity of neutrons with a particular spin projection on the external magnetic field direction appears to be a periodic function of the neutron wavelength and the glancing angle of the reflected beam. It is shown that the neutron standing wave regime can be a very sensitive method for the determination of changes in the spatial position of magnetic noncollinear layers. (author)

  3. Flexible manipulation of terahertz wave reflection using polarization insensitive coding metasurfaces.

    Science.gov (United States)

    Jiu-Sheng, Li; Ze-Jiang, Zhao; Jian-Quan, Yao

    2017-11-27

    In order to extend to 3-bit encoding, we propose notched-wheel structures as polarization insensitive coding metasurfaces to control terahertz wave reflection and suppress backward scattering. By using a coding sequence of "00110011…" along x-axis direction and 16 × 16 random coding sequence, we investigate the polarization insensitive properties of the coding metasurfaces. By designing the coding sequences of the basic coding elements, the terahertz wave reflection can be flexibly manipulated. Additionally, radar cross section (RCS) reduction in the backward direction is less than -10dB in a wide band. The present approach can offer application for novel terahertz manipulation devices.

  4. Iterative calculation of reflected and transmitted acoustic waves at a rough interface

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; van den Berg, P.M.; Thijssen, J.M.

    A rigorous iterative technique is described for calculating the acoustic wave reflection and transmission at an irregular interface between two different media. The method is based upon a plane-wave expansion technique in which the acoustic field equations and the radiation condition are satisfied

  5. Optical rogue waves generation in a nonlinear metamaterial

    Science.gov (United States)

    Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin

    2014-11-01

    We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.

  6. Dirac equation and optical wave propagation in one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Gabriel [Catedras CONACYT, Universidad Autonoma de San Luis Potosi (Mexico); Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Universidad Autonoma de San Luis Potosi (Mexico)

    2018-02-15

    We show that the propagation of transverse electric (TE) polarized waves in one-dimensional inhomogeneous settings can be written in the form of the Dirac equation in one space dimension with a Lorentz scalar potential, and consequently perform photonic simulations of the Dirac equation in optical structures. In particular, we propose how the zero energy state of the Jackiw-Rebbi model can be generated in an optical set-up by controlling the refractive index landscape, where TE-polarized waves mimic the Dirac particles and the soliton field can be tuned by adjusting the refractive index. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Optical wave microphone measurement during laser ablation of Si

    Energy Technology Data Exchange (ETDEWEB)

    Mitsugi, Fumiaki, E-mail: mitsugi@cs.kumamoto-u.ac.jp [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555 (Japan); Ide, Ryota; Ikegami, Tomoaki [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555 (Japan); Nakamiya, Toshiyuki; Sonoda, Yoshito [Graduate School of Industrial Engineering, Tokai University, 9-1-1 Toroku, Kumamoto, 862-8652 (Japan)

    2012-10-30

    Pulsed laser irradiation is used for surface treatment of a solid and ablation for particle formation in gas, liquid or supercritical phase media. When a pulsed laser is used to irradiate a solid, spatial refractive index variations (including photothermal expansion, shockwaves and particles) occur, which vary depending on the energy density of the pulsed laser. We focused on this phenomenon and applied an unique method for detection of refractive index variation using an optical wave microphone based on Fraunhofer diffraction. In this research, we analyzed the waveforms and frequencies of refractive index variations caused by pulsed laser irradiation of silicon in air and measured with an optical wave microphone.

  8. Reflective optical imaging system for extreme ultraviolet wavelengths

    Science.gov (United States)

    Viswanathan, V.K.; Newnam, B.E.

    1993-05-18

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  9. Arterial stiffness and wave reflection: sex differences and relationship with left ventricular diastolic function.

    Science.gov (United States)

    Russo, Cesare; Jin, Zhezhen; Palmieri, Vittorio; Homma, Shunichi; Rundek, Tatjana; Elkind, Mitchell S V; Sacco, Ralph L; Di Tullio, Marco R

    2012-08-01

    Increased arterial stiffness and wave reflection have been reported in heart failure with normal ejection fraction (HFNEF) and in asymptomatic left ventricular (LV) diastolic dysfunction, a precursor of HFNEF. It is unclear whether women, who have higher frequency of HFNEF, are more vulnerable than men to the deleterious effects of arterial stiffness on LV diastolic function. We investigated, in a large community-based cohort, whether sex differences exist in the relationship among arterial stiffness, wave reflection, and LV diastolic function. Arterial stiffness and wave reflection were assessed in 983 participants from the Cardiovascular Abnormalities and Brain Lesions study using applanation tonometry. The central pulse pressure/stroke volume index, total arterial compliance, pulse pressure amplification, and augmentation index were used as parameters of arterial stiffness and wave reflection. LV diastolic function was evaluated by 2-dimensional echocardiography and tissue-Doppler imaging. Arterial stiffness and wave reflection were greater in women compared with men, independent of body size and heart rate (all Pfunction in both sexes. Further adjustment for cardiovascular risk factors attenuated these relationships; however, a higher central pulse pressure/stroke volume index predicted LV diastolic dysfunction in women (odds ratio, 1.54; 95% confidence intervals, 1.03 to 2.30) and men (odds ratio, 2.09; 95% confidence interval, 1.30 to 3.39), independent of other risk factors. In conclusion, in our community-based cohort study, higher arterial stiffness was associated with worse LV diastolic function in men and women. Women's higher arterial stiffness, independent of body size, may contribute to their greater susceptibility to develop HFNEF.

  10. Additive manufacturing of reflective optics: evaluating finishing methods

    Science.gov (United States)

    Leuteritz, G.; Lachmayer, R.

    2018-02-01

    Individually shaped light distributions become more and more important in lighting technologies and thus the importance of additively manufactured reflectors increases significantly. The vast field of applications ranges from automotive lighting to medical imaging and bolsters the statement. However, the surfaces of additively manufactured reflectors suffer from insufficient optical properties even when manufactured using optimized process parameters for the Selective Laser Melting (SLM) process. Therefore post-process treatments of reflectors are necessary in order to further enhance their optical quality. This work concentrates on the effectiveness of post-process procedures for reflective optics. Based on already optimized aluminum reflectors, which are manufactured with a SLM machine, the parts are differently machined after the SLM process. Selected finishing methods like laser polishing, sputtering or sand blasting are applied and their effects quantified and compared. The post-process procedures are investigated on their impact on surface roughness and reflectance as well as geometrical precision. For each finishing method a demonstrator will be created and compared to a fully milled sample and among themselves. Ultimately, guidelines are developed in order to figure out the optimal treatment of additively manufactured reflectors regarding their optical and geometrical properties. Simulations of the light distributions will be validated with the developed demonstrators.

  11. Development of fiber optic sensors at TNO for explosion and shock wave measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Bree, J.L.M.J. van; Bouma, R.H.B.; Meer, B.J. van der; Prinse, W.C.; Scholtes, J.H.G.

    2000-01-01

    Fiber Optic sensors are found to be very suitable for explosion and shock wave measurements because they are immune to Electromagnetic Interference (EMI). In the past few years, TNO has developed a number of sensor systems for explosion and shock wave measurements in which the optical fiber is a

  12. Internal-wave reflection from uniform slopes: higher harmonics and Coriolis effects

    Directory of Open Access Journals (Sweden)

    T. Gerkema

    2006-01-01

    Full Text Available Weakly nonlinear reflection of internal waves from uniform slopes produces higher harmonics and mean fields; the expressions are here derived for constant stratification and with Coriolis effects fully included, i.e. the horizontal component of the earth rotation vector (referred to as 'non-traditional'' is taken into account. Uniformity in one of the horizontal directions is assumed. It is shown that solutions can be as readily derived with as without ; hence there is no need to make the so-called Traditional Approximation. Examples of reflecting internal-wave beams are presented for super-inertial, inertial and sub-inertial frequencies. The problem of resonant and non-resonant forcing of the second harmonic is studied for single plane waves; unlike under the Traditional Approximation, the problem of reflection from a horizontal bottom no longer forms a singular case. Non-traditional effects are favourable to resonant forcing at near-tidal rather than near-inertial frequencies, and generally increase the intensity of the second harmonic. Strong stratification tends to suppress non-traditional effects, but a near-total suppression is only attained for high values of stratification that are characteristic of the seasonal thermocline; in most parts of the ocean, non-traditional effects can therefore be expected to be important.

  13. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    Science.gov (United States)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER

  14. Full Waveform Inversion of Diving & Reflected Waves based on Scale Separation for Velocity and Impedance Imaging

    Science.gov (United States)

    Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean

    2015-04-01

    Full Waveform Inversion (FWI) is an appealing method for quantitative high-resolution subsurface imaging (Virieux et al., 2009). For crustal-scales exploration from surface seismic, FWI generally succeeds in recovering a broadband of wavenumbers in the shallow part of the targeted medium taking advantage of the broad scattering-angle provided by both reflected and diving waves. In contrast, deeper targets are often only illuminated by short-spread reflections, which favor the reconstruction of the short wavelengths at the expense of the longer ones, leading to a possible notch in the intermediate part of the wavenumber spectrum. To update the velocity macromodel from reflection data, image-domain strategies (e.g., Symes & Carazzone, 1991) aim to maximize a semblance criterion in the migrated domain. Alternatively, recent data-domain strategies (e.g., Xu et al., 2012, Ma & Hale, 2013, Brossier et al., 2014), called Reflection FWI (RFWI), inspired by Chavent et al. (1994), rely on a scale separation between the velocity macromodel and prior knowledge of the reflectivity to emphasize the transmission regime in the sensitivity kernel of the inversion. However, all these strategies focus on reflected waves only, discarding the low-wavenumber information carried out by diving waves. With the current development of very long-offset and wide-azimuth acquisitions, a significant part of the recorded energy is provided by diving waves and subcritical reflections, and high-resolution tomographic methods should take advantage of all types of waves. In this presentation, we will first review the issues of classical FWI when applied to reflected waves and how RFWI is able to retrieve the long wavelength of the model. We then propose a unified formulation of FWI (Zhou et al., 2014) to update the low wavenumbers of the velocity model by the joint inversion of diving and reflected arrivals, while the impedance model is updated thanks to reflected wave only. An alternate inversion of

  15. Reflection and absorption of ordinary waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Croci, R.

    1990-11-01

    This study treats the system of Vlasov and Maxwell equations for the Fourier transform in space and time of a plasma referred to Cartesian coordinates with the coordinate z parallel to the uniform equilibrium magnetic field with the equilibrium plasma density dependent on ηx, where η is a parameter. The k y component of the wave vector is taken equal to zero, whereas k z is different from zero. When the interaction of ordinary and extraordinary waves is neglected, the Fourier transform of the electric field of the ordinary waves obeys a homogeneous integral equation with principal part integrals, which is solved in the case of weak absorption and sufficiently small η (essentially smaller than vacuum wave vector), but without limitations on the ratio of the wavelength to the Larmor radius (the usual approximation being limited to wavelengths much smaller than the Larmor radius). The reflection and transmission coefficients and the total energy absorption are given in this approximation, whereas the energy conservation theorem for the reflection and transmission coefficients in an absorption-free plasma are derived for every value of η without explicit knowledge of the solutions. Finally, a general and compact equation for the eigenvalues which does not require complex analysis and knowledge of all solutions of the dispersion relation is given. (orig.)

  16. Reflection and transmission of normally incident full-vector X waves on planar interfaces

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    The reflection and transmission of full-vector X waves normally incident on planar half-spaces and slabs are studied. For this purpose, X waves are expanded in terms of weighted vector Bessel beams; this new decomposition and reconstruction method

  17. Plasma-wave effect on the optical properties of multilayered metallic Fibonacci superlattice

    International Nuclear Information System (INIS)

    Feng Weiguo; Liu Nianhua; Wu Xiang

    1990-06-01

    Within the hydrodynamic model of electron dynamics, the optical properties of the metallic Fibonacci superlattice have been studied for the region of p-polarized soft x-rays and extreme ultraviolet. By using the 4 x 4 transfer-matrix formalism and taking into account retardation effects, and the coupling between transverse and longitudinal waves at the metal boundaries, we have discussed the electromagnetic normal modes for the quasisuperlattice in the rational approximation. We found that the dispersion curves are mainly of two types, and similar to the reflectivities, both real part and imaginary parts of the dispersion relation pattern has a rich structure of self-similarity. With the increasing of the generation number, all the electromagnetic modes become critical. (author). 13 refs, 6 figs

  18. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    Science.gov (United States)

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...high sound velocity — makes guiding acoustic waves difficult, motivating the use of soft chalcogenide glasses and partial or complete releases (removal

  19. TURBULENCE IN THE SUB-ALFVENIC SOLAR WIND DRIVEN BY REFLECTION OF LOW-FREQUENCY ALFVEN WAVES

    International Nuclear Information System (INIS)

    Verdini, A.; Velli, M.; Buchlin, E.

    2009-01-01

    We study the formation and evolution of a turbulent spectrum of Alfven waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfvenic critical point. The background solar wind is assigned and two-dimensional shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature of the reflected waves. Close to the base, these give rise to a flatter and steeper spectrum for the outgoing and reflected waves, respectively. At higher heliocentric distance both spectra evolve toward an asymptotic Kolmogorov spectrum. The turbulent dissipation is found to account for at least half of the heating required to sustain the background imposed solar wind and its shape is found to be determined by the reflection-determined turbulent heating below 1.5 solar radii. Therefore, reflection and reflection-driven turbulence are shown to play a key role in the acceleration of the fast solar wind and origin of the turbulent spectrum found at 0.3 AU in the heliosphere.

  20. Coupled matter-wave solitons in optical lattices

    Science.gov (United States)

    Golam Ali, Sk; Talukdar, B.

    2009-06-01

    We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution

  1. Coupled matter-wave solitons in optical lattices

    International Nuclear Information System (INIS)

    Golam Ali, Sk; Talukdar, B.

    2009-01-01

    We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (V eff (NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well V eff (LOL). But these effective potentials have opposite k dependence in the sense that the depth of V eff (LOL) increases as k increases and that of V eff (NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during

  2. Reflectivity reduction of retro-reflector installed in LHD due to plasma surface interaction

    International Nuclear Information System (INIS)

    Yoshida, N.; Ohtawa, Y.; Ebihara, A.; Akiyama, T.; Tokitani, M.; Ashikawa, N.; Kawahata, K.

    2008-10-01

    Optical reflectivity of the retro-reflector installed in LHD as the first mirror was reduced seriously by plasma wall interaction. In order to understand the mechanism of the reflectivity reduction, optical and material properties of the mirror surfaces have been examined extensively. It was found that the deposited impurity layers caused the serious reduction of the reflectivity. Formation of iron oxide, bulges structure and He bubbles are the major factors for the reflectivity reduction in the wide wave length range. (author)

  3. Reflectance distribution in optimal transmittance cavities: The remains of a higher dimensional space

    International Nuclear Information System (INIS)

    Naumis, Gerardo G.; Bazan, A.; Torres, M.; Aragon, J.L.; Quintero-Torres, R.

    2008-01-01

    One of the few examples in which the physical properties of an incommensurable system reflect an underlying higher dimensionality is presented. Specifically, we show that the reflectivity distribution of an incommensurable one-dimensional cavity is given by the density of states of a tight-binding Hamiltonian in a two-dimensional triangular lattice. Such effect is due to an independent phase decoupling of the scattered waves, produced by the incommensurable nature of the system, which mimics a random noise generator. This principle can be applied to design a cavity that avoids resonant reflections for almost any incident wave. An optical analogy, by using three mirrors with incommensurable distances between them, is also presented. Such array produces a countable infinite fractal set of reflections, a phenomena which is opposite to the effect of optical invisibility

  4. Detecting strain wave propagation through quantum dots by pump-probe spectroscopy: A theoretical analysis

    International Nuclear Information System (INIS)

    Huneke, J; Kuhn, T; Axt, V M

    2010-01-01

    The influence of strain waves traveling across a quantum dot structure on its optical response is studied for two different situations: First, a strain wave is created by the optical excitation of a single quantum dot near a surface which, after reflection at the surface, reenters the dot; second, a phonon wave packet is emitted by the excitation of a nearby second dot and then travels across the quantum dot. Pump-probe type excitations are simulated for quantum dots in the strong confinement limit. We show that the optical signals allow us to monitor crossing strain waves for both structures in the real-time response as well as in the corresponding pump-probe spectra. In the time-derivative of the phase of the polarization a distinct trace reflects the instantaneous shifts of the transition energy during the passage while in the spectra pronounced oscillations reveal the passage of the strain waves.

  5. Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors

    International Nuclear Information System (INIS)

    Khalili, Farid; Danilishin, Stefan; Mueller-Ebhardt, Helge; Miao Haixing; Zhao Chunnong; Chen Yanbei

    2011-01-01

    We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described as a 'negative inertia', which cancels the positive inertia of the test masses and thus increases their response to gravitational waves. This allows us to surpass the free-mass standard quantum limit (SQL) over a broad frequency band, through signal amplification, rather than noise cancellation, which has been the case for all broadband SQL-beating schemes so far considered for gravitational-wave detectors. The merit of such signal amplification schemes lies in the fact that they are less susceptible to optical losses than noise-cancellation schemes. We show that it is feasible to demonstrate such an effect with the Gingin High Optical Power Test Facility, and it can eventually be implemented in future advanced GW detectors.

  6. Matter-Wave Solitons In Optical Superlattices

    International Nuclear Information System (INIS)

    Louis, Pearl J. Y.; Ostrovskaya, Elena A.; Kivshar, Yuri S.

    2006-01-01

    In this work we show that the properties of both bright and dark Bose-Einstein condensate (BEC) solitons trapped in optical superlattices can be controlled by changing the shape of the trapping potential whilst maintaining a constant periodicity and lattice height. Using this method we can control the properties of bright gap solitons by dispersion management. We can also control the interactions between dark lattice solitons. In addition we demonstrate a method for controlled generation of matter-wave gap solitons in stationary optical lattices by interfering two condensate wavepackets, producing a single wavepacket at a gap edge with properties similar to a gap soliton. As this wavepacket evolves, it forms a bright gap soliton

  7. Full-waveform inversion with reflected waves for 2D VTI media

    KAUST Repository

    Pattnaik, Sonali

    2016-09-06

    Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations, referred to as reflection-waveform inversion (RWI), can mitigate nonlinearity-related inversion issues. Here, we extend RWI to acoustic VTI (transversely isotropic with a vertical symmetry axis) media. To minimize trade-offs between the model parameters, we employ a new hierarchical two-stage approach that operates with the P-wave normal-moveout velocity and anisotropy coefficents ζ and η. First, is estimated using a fixed perturbation in ζ, and then we invert for η by fixing the updated perturbation in . The proposed 2D algorithm is tested on a horizontally layered VTI model.

  8. Second harmonic generation: Effects of the multiple reflections of the fundamental and the second harmonic waves on the Maker fringes

    Science.gov (United States)

    Tellier, Gildas; Boisrobert, Christian

    2007-11-01

    The Maker fringes technique is commonly used for the determination of nonlinear optical coefficients. In this article, we present a new formulation of Maker fringes in parallel-surface samples, using boundary conditions taking into account the anisotropy of the crystal, the refractive-index dispersion, and the reflections of the fundamental and the second harmonic waves inside the material. Complete expressions for the generated second harmonic intensity are given for birefringent crystals for the case of no pump depletion. A comparison between theory and experimental results is made, showing the accuracy of our theoretical expressions.

  9. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    Energy Technology Data Exchange (ETDEWEB)

    Erlangga, Mokhammad Puput [Geophysical Engineering, Institut Teknologi Bandung, Ganesha Street no.10 Basic Science B Buliding fl.2-3 Bandung, 40132, West Java Indonesia puput.erlangga@gmail.com (Indonesia)

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  10. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    Science.gov (United States)

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  11. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    International Nuclear Information System (INIS)

    Mario Agio

    2002-01-01

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser

  12. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Agio, Mario [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

  13. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part I: hypothetical boundaries

    Directory of Open Access Journals (Sweden)

    J. Soares

    1999-06-01

    Full Text Available A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.Key words. Oceanography: general (equatorial oceanography; numerical modeling · Oceanography: physical (eastern boundary currents

  14. Polarization of the interference field during reflection of electromagnetic waves from an intermedia boundary

    Science.gov (United States)

    Bulakhov, M. G.; Buyanov, Yu. I.; Yakubov, V. P.

    1996-10-01

    It has been shown that a full vector measurement of the total field allows one to uniquely distinguish the incident and reflected waves at each observation point without the use of a spatial difference based on an analysis of the polarization structure of the interference pattern which arises during reflection of electromagnetic waves from an intermedia boundary. We have investigated the stability of these procedures with respect to measurement noise by means of numerical modeling.

  15. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    Science.gov (United States)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  16. Specific Features of Destabilization of the Wave Profile During Reflection of an Intense Acoustic Beam from a Soft Boundary

    Science.gov (United States)

    Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.

    2016-05-01

    We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.

  17. On the tunneling of full-vector X-Waves through a slab under frustrated total reflection condition

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2012-01-01

    Tunneling of full-vector X-Waves through a dielectric slab under frustrated total reflection condition is investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of reflection and transmission at the dielectric interfaces is carried out analytically in a straightforward fashion using vector Bessel beam expansion. Investigation of the fields propagating away from the farther end of the slab (transmitted fields) shows an advanced (superluminal) transmission of the X-Wave peak. Additionally, a similar advanced reflection is also observed. The apparent tunneling of the peak is shown to be due to the phase shift in the fields' spectra and not to be causally related to the incident peak. © 2012 IEEE.

  18. On the tunneling of full-vector X-Waves through a slab under frustrated total reflection condition

    KAUST Repository

    Salem, Mohamed

    2012-07-01

    Tunneling of full-vector X-Waves through a dielectric slab under frustrated total reflection condition is investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of reflection and transmission at the dielectric interfaces is carried out analytically in a straightforward fashion using vector Bessel beam expansion. Investigation of the fields propagating away from the farther end of the slab (transmitted fields) shows an advanced (superluminal) transmission of the X-Wave peak. Additionally, a similar advanced reflection is also observed. The apparent tunneling of the peak is shown to be due to the phase shift in the fields\\' spectra and not to be causally related to the incident peak. © 2012 IEEE.

  19. Reflected rarefactions, double regular reflection, and mach waves in aluminum and beryllium

    International Nuclear Information System (INIS)

    Neal, T.

    1975-01-01

    A number of shock techniques which can be used to obtain high-pressure equation-of-state information between the principal Hugoniot and the principal adiabat are illustrated. A rarefaction wave in aluminum shocked to 27.7 GPa [277 kbar] is examined with radiographic techniques and the bulk sound speed is determined. The two stage compression which occurs in a double shock may be attained by colliding two shocks and observing regular reflection. A radiographic method which uses this phenomenon to measure a three-stage compression of aluminum to a density of 4.7 Mg/m 3 and beryllium to a density of 3.1 Mg/m 3 is presented. The results of a Mach reflection experiment in aluminum are found to disagree substantially with the simple three-shock model. A modified model, consistent with observations, is discussed. In all cases the Gruneisen parameter is determined. (U.S.)

  20. Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector.

    Science.gov (United States)

    Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu

    2017-09-10

    Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated

  1. Full-waveform inversion with reflected waves for 2D VTI media

    KAUST Repository

    Pattnaik, Sonali; Tsvankin, Ilya; Wang, Hui; Alkhalifah, Tariq

    2016-01-01

    Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations

  2. Scattering of ECRF waves by edge density fluctuations and blobs

    Directory of Open Access Journals (Sweden)

    Ram Abhay K.

    2015-01-01

    Full Text Available The scattering of electron cyclotron waves by density blobs embedded in the edge region of a fusion plasma is studied using a full-wave model. The full-wave theory is a generalization of the usual approach of geometric optics ray scattering by blobs. While the latter allows for only refraction of waves, the former, more general formulation, includes refraction, reflection, and diffraction of waves. Furthermore, the geometric optics, ray tracing, model is limited to blob densities that are slightly different from the background plasma density. Observations in tokamak experiments show that the fluctuating density differs from the background plasma density by 20% or more. Thus, the geometric optics model is not a physically realistic model of scattering of electron cyclotron waves by plasma blobs. The differences between the ray tracing approach and the full-wave approach to scattering are illustrated in this paper.

  3. Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance

    Science.gov (United States)

    Douven, Lucien F. A.; Lucassen, Gerald W.

    2000-06-01

    We present results on the retrieval of skin optical properties obtained by fitting of measurements of the diffuse reflectance of human skin. Reflectance spectra are simulated using an analytical model based on the diffusion approximation. This model is implemented in a simplex fit routine. The skin optical model used consists of five layers representing epidermis, capillary blood plexus, dermis, deep blood plexus and hypodermis. The optical properties of each layer are assumed homogeneously distributed. The main optical absorbers included are melanin in epidermis and blood. The experimental setup consists of a HP photospectrometer equipped with a remote fiber head. Total reflectance spectra were measured in the 400 - 820 nm wavelength range on the volar underarm of 19 volunteers under various conditions influencing the blood content and oxygenation degree. Changes in the reflectance spectra were observed. Using the fit routine changes in blood content in the capillary blood plexus and in the deep blood plexus could be quantified. These showed different influences on the total reflectance. The method can be helpful to quantitatively assess changes in skin color appearance such as occurs in the treatment of port wine stains, blanching, skin irritation and tanning.

  4. Optical bistability without the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Sharaby, Yasser A., E-mail: Yasser_Sharaby@hotmail.co [Physics Department, Faculty of Applied Sciences, Suez Canal University, Suez (Egypt); Joshi, Amitabh, E-mail: ajoshi@eiu.ed [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States); Hassan, Shoukry S., E-mail: Shoukryhassan@hotmail.co [Mathematics Department, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2010-04-26

    Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.

  5. Optical bistability without the rotating wave approximation

    International Nuclear Information System (INIS)

    Sharaby, Yasser A.; Joshi, Amitabh; Hassan, Shoukry S.

    2010-01-01

    Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.

  6. Reflection of P and SV waves at the free surface of a monoclinic ...

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging)1461 1996 Oct 15 13:05:22

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for ... Keywords. Anisotropic medium; elastic waves; monoclinic half-space; reflection coefficients. Proc. Indian Acad. Sci. ...... In contrast, for C < 0, the angle of reflec- tion is less than the angle of ...

  7. Reflection and Transmission of P-Waves in an Intermediate Layer Lying Between Two Semi-infinite Media

    Science.gov (United States)

    Singh, Pooja; Chattopadhyay, Amares; Srivastava, Akanksha; Singh, Abhishek Kumar

    2018-05-01

    With a motivation to gain physical insight of reflection as well as transmission phenomena in frozen (river/ocean) situation for example in Antarctica and other coldest place on Earth, the present article undertakes the analysis of reflection and transmission of a plane wave at the interfaces of layered structured comprised of a water layer of finite thickness sandwiched between an upper half-space constituted of ice and a lower isotropic elastic half-space, which may be useful in geophysical exploration in such conditions. A closed form expression of reflection/transmission coefficients of reflected and transmitted waves has been derived in terms of angles of incidence, propagation vector, displacement vector and elastic constants of the media. Expressions corresponding to the energy partition of various reflected and transmitted waves have also been established analytically. It has been remarkably shown that the law of conservation of energy holds good in the entire reflection and transmission phenomena for different angles of incidence. A numerical examples were performed so to graphically portray the analytical findings. Further the deduced results are validated with the pre-established classical results.

  8. Optical reflection spectroscopy of thick corrosion layers on 304 stainless steel

    International Nuclear Information System (INIS)

    Castelli, R.A.; Persans, P.D.; Strohmayer, W.; Parkinson, V.

    2007-01-01

    Corrosion resistant structural materials of both iron and nickel based alloys are used in the electric power industry for the construction of the coolant loops of both conventional and nuclear power generating stations. These materials, in the presence of high temperature (e.g. 287 o C), high pH (e.g. 10.0 at 20 o C) water with dissolved hydrogen will oxidize and form corrosion films that are double metal oxides (or spinels) of the form AB 2 O 4 . This work describes optical reflectivity techniques that have been developed to study the growth of these films in situ. The optical technique uses a dual-beam specular reflection spectrometer to measure the spectrum of reflected light in small angle (i.e. o ) scatter. The reflection spectra are then calibrated using a set of corrosion coupons with corrosion films that are well known. Results are compared with models based on multilayer reflection and Mie scattering from a particle size distribution. Surface roughness is found to be the dominant cause of reduced reflection as the films grow

  9. Particles and waves in electron optics and microscopy

    CERN Document Server

    Pozzi, Giulio

    2016-01-01

    Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contains contributions from leading authorities on the subject matter* Informs and updates all the latest developments in the field of imaging and electron physics* Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource* Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image pro...

  10. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.

    Science.gov (United States)

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-02-27

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  11. OSSIM wave-optics toolbox and its use to simulate AEOS

    Science.gov (United States)

    Smith, Carey A.; Forgham, James L.; Jones, Bruce W.; Jones, Kenneth D.

    2001-12-01

    OSSim (Optical System Simulation) is a simulation toolbox of optical and processing components. By using full wave-optics in the time-domain, OSSim simulates diffractive effects and control loop interactions missed by simpler analyses. OSSim also models the atmosphere, with user customizable turbulence strength, wind, and slew. This paper first presents 2 introductory examples: a simple 2-lens imaging system and a simple tilt-control system. Then it presents a simulation of the 3.67-meter AEOS (Advanced Electro-Optics System) telescope on Maui. The OSSim simulation agrees well with the AEOS experimental results.

  12. Optical properties of two-dimensional charge density wave materials

    Science.gov (United States)

    Sayers, Charles; Karbassi, Sara; Friedemann, Sven; da Como, Enrico

    Titanium diselenide (TiSe2) is a member of the layered transition metal dichalcogenide (TMD) materials. It exhibits unusual chiral charge ordering below 190 K after undergoing an initial phase transition to a commensurate (2 x 2 x 2) charge density wave (CDW) at 200 K which is enhanced further in the monolayer. Recently, the first evidence of chirality in a CDW system was discovered in this material by scanning tunneling microscopy and time-resolved reflectivity experiments, where separate left and right handed charge-ordered domains were found to exist within a single sample. We have prepared single crystals of 1T-TiSe2 using iodine vapour transport, and confirmed their quality by x-ray analysis and charge transport measurements. Using a combination of polarised optical spectroscopy techniques in the mid to far infrared (4 to 700 meV photon energy), we have measured an anisotropy relating to the CDW gap. We discuss the results on the basis of chiral domains with different handedness and the nature of the CDW transition.

  13. Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion

    KAUST Repository

    Zhang, Sanzong; Schuster, Gerard T.; Luo, Yi

    2012-01-01

    way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity

  14. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    Science.gov (United States)

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  15. Numerical solutions of several reflected shock-wave flow fields with nonequilibrium chemical reactions

    Science.gov (United States)

    Hanson, R. K.; Presley, L. L.; Williams, E. V.

    1972-01-01

    The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.

  16. Demonstration and optimisation of an ultrafast all-optical AND logic gate using four-wave mixing in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Razaghi, M; Nosratpour, A; Das, N K

    2013-01-01

    We have proposed an all-optical AND logic gate based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) integrated with an optical filter. In the scheme proposed, the preferred logical function can be performed without using a continuous-wave (cw) signal. The modified nonlinear Schroedinger equation (MNLSE) is used for the modelling wave propagation in a SOA. The MNLSE takes into account all nonlinear effects relevant to pico- and sub-picosecond pulse durations and is solved by the finite-difference beam-propagation method (FD-BPM). Based on the simulation results, the optimal output signal with a 40-fJ energy can be obtained at a bit rate of 50 Gb s -1 . In the simulations, besides the nonlinearities included in the model, the pattern effect of the signals propagating in the SOA medium and the effect of the input signal bit rate are extensively investigated to optimise the system performance. (optical logic elements)

  17. Reflection and transmission of full-vector X-waves normally incident on dielectric half spaces

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    polarization components, which are derived from the scalar X-Wave solution. The analysis of transmission and reflection is carried out via a straightforward but yet effective method: First, the X-Wave is decomposed into vector Bessel beams via the Bessel-Fourier

  18. Calculating the reduced scattering coefficient of turbid media from a single optical reflectance signal

    Science.gov (United States)

    Johns, Maureen; Liu, Hanli

    2003-07-01

    When light interacts with tissue, it can be absorbed, scattered or reflected. Such quantitative information can be used to characterize the optical properties of tissue, differentiate tissue types in vivo, and identify normal versus diseased tissue. The purpose of this research is to develop an algorithm that determines the reduced scattering coefficient (μs") of tissues from a single optical reflectance spectrum with a small source-detector separation. The basic relationship between μs" and optical reflectance was developed using Monte Carlo simulations. This produced an analytical equation containing μs" as a function of reflectance. To experimentally validate this relationship, a 1.3-mm diameter fiber optic probe containing two 400-micron diameter fibers was used to deliver light to and collect light from Intralipid solutions of various concentrations. Simultaneous measurements from optical reflectance and an ISS oximeter were performed to validate the calculated μs" values determined by the reflectance measurement against the 'gold standard" ISS readings. The calculated μs" values deviate from the expected values by approximately -/+ 5% with Intralipid concentrations between 0.5 - 2.5%. The scattering properties within this concentration range are similar to those of in vivo tissues. Additional calculations are performed to determine the scattering properties of rat brain tissues and to discuss accuracy of the algorithm for measured samples with a broad range of the absorption coefficient (μa).

  19. Diffuse Reflectance Spectroscopy of Human Skin Using a Commercial Fiber Optic Spectrometer

    International Nuclear Information System (INIS)

    Atencio, J. A. Delgado; Rodriguez, M. Cunill; Montiel, S. Vazquez y; Castro, Jorge; Rodriguez, A. Cornejo; Gutierrez, J. L.; Martinez, F.; Gutierrez, B.; Orozco, E.

    2008-01-01

    Diffuse reflectance spectroscopy is a reliable and easy to implement technique in human tissue characterization. In this work we evaluate the performance of the commercial USB4000 miniature fiber optic spectrometer in the in-vivo measurement of the diffuse reflectance spectra of different healthy skin sites and lesions in a population of 54 volunteers. Results show, that this spectrometer reproduces well the typical signatures of skin spectra over the 400-1000 nm region. Remarkable spectral differences exist between lesions and normal surrounding skin. A diffusion-based model was used to simulate reflectance spectra collected by the optical probe of the system

  20. One step linear reconstruction method for continuous wave diffuse optical tomography

    Science.gov (United States)

    Ukhrowiyah, N.; Yasin, M.

    2017-09-01

    The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.

  1. Numerical simulation methods for wave propagation through optical waveguides

    International Nuclear Information System (INIS)

    Sharma, A.

    1993-01-01

    The simulation of the field propagation through waveguides requires numerical solutions of the Helmholtz equation. For this purpose a method based on the principle of orthogonal collocation was recently developed. The method is also applicable to nonlinear pulse propagation through optical fibers. Some of the salient features of this method and its application to both linear and nonlinear wave propagation through optical waveguides are discussed in this report. 51 refs, 8 figs, 2 tabs

  2. Thin transparent film characterization by photothermal reflectance (abstract)

    Science.gov (United States)

    Li Voti, R.; Wright, O. B.; Matsuda, O.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.

    2003-01-01

    Photothermal reflectance methods have been intensively applied to the nondestructive testing of opaque thin films [D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, London, 1996); C. Bento and D. P. Almond, Meas. Sci. Technol. 6, 1022 (1995); J. Opsal, A. Rosencwaig, and D. Willenborg, Appl. Opt. 22, 3169 (1983)]. The basic principle is based on thermal wave interferometry: the opaque specimen is illuminated by a laser beam, periodically chopped at the frequency f, so as to generate a plane thermal wave in the surface region. This wave propagates in the film, approaches the rear interface (film-bulk), is partially reflected back, reaches the front surface, is again partially reflected back and so on, giving rise to thermal wave interference. A consequence of this interference is that the surface temperature may be enhanced (constructive interference) or reduced (destructive interference) by simply scanning the frequency f (that is, the thermal diffusion length μ=√D/πf ), so as to observe damped oscillations as a function of f; in practice only the first oscillation may be clearly resolved and used to measure either the film thickness d or the film thermal diffusivity D, and this situation occurs when μ≈d. In general, photothermal reflectance does not measure directly the surface temperature variation, but rather a directly related signal determined by the thermo-optic coefficients and the sample geometry; for detection it is common to monitor the optical reflectivity variation of a probe beam normally incident on the sample. If the thin film is partially transparent to the probe, the theory becomes more difficult [O. Matsuda and O. B. Wright, J. Opt. Soc. Am. B (in press)] and one should consider the probe beam multiple reflections in the thin film. The probe modulation is optically inhomogeneous due to the temperature-induced changes in refractive index. Although in the past the complexity of the analysis has impeded

  3. Reflection of ion acoustic waves by the plasma sheath

    International Nuclear Information System (INIS)

    Ibrahim, I.; Kuehl, H.H.

    1984-01-01

    The reflection coefficient R for linear monochromatic ion acoustic waves incident on the transonic layer and sheath from the plasma interior is calculated. The treatment differs from previous analyses in that (1) the exact zero-order ion density and velocity profiles for a planar, bounded plasma are used, and the zero-order charge separation is not neglected, and (2) the first-order quantities near the transonic layer are considered in detail, including first-order charge separation, whereby it is found that no coupling to the beam modes exists, and that the functional form of the first-order solution is completely determined. It is shown that the upper bound for Vertical BarRVertical Bar is (1)/(3) . The largest reflection occurs for frequencies which are small compared with the ionization frequency, and generally decreases with increasing frequency. By Fourier superposition, the reflection of a pulse is computed. For a narrow incident pulse, the reflected pulse is greatly distorted and is small compared with the incident pulse. For a broad pulse, the reflected pulse is similar in shape to the incident pulse, and has a magnitude which is approximately (1)/(3) of the incident pulse

  4. Reflection of a shock wave from a thermally accommodating wall - Molecular simulation.

    Science.gov (United States)

    Deiwert, G. S.

    1973-01-01

    Reflection of a plane shock wave from a wall has been simulated on a microscopic scale using a direct simulation Monte Carlo technique of the type developed by Bird. A monatomic gas model representing argon was used to describe the fluid medium and a simple one-parameter accommodation coefficient model was used to describe the gas-surface interaction. The influence of surface accommodation was studied parametrically by varying the accommodation coefficient from zero to one. Results are presented showing the temporal variations of flow field density, and mass, momentum, and energy fluxes to the wall during the shock wave reflection process. The energy flux was used to determine the wall temperature history. Comparisons with experiment are found to be satisfactory where data are available.

  5. Fiber optic evanescent wave biosensor

    Science.gov (United States)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  6. Detecting high-frequency gravitational waves with optically levitated sensors.

    Science.gov (United States)

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  7. Optical rectification, circular photogalvanic effect, and five-wave mixing in optically active liquids

    Science.gov (United States)

    Koroteev, Nikolai I.

    1996-05-01

    A phenomenological analysis is carried out of novel nonlinear optical processes taking place in macroscopically noncentrosymmetric isotropic solutions of chiral (lift-ring mirror asymmetric) macromolecules, which are the primary elements of living organisms and their metabolic products. Among the most interesting and potentially useful for spectroscopic purposes are: optical rectification/photogalvanic effects consisting in electrostatic field/direct electrical current generation in such liquids under irradiation with the intense circularly polarized laser beam and the five-wave mixing phase-matched process of BioCARS to selectively record, background-free, vibrational spectra of chiral molecules.

  8. Algorithm of extraction optics properties from the measurement of spatially resolved diffuse reflectance

    International Nuclear Information System (INIS)

    Cunill Rodriguez, Margarita; Delgado Atencio, Jose Alberto; Castro Ramos, Jorge; Vazquez y Montiel, Sergio

    2009-01-01

    There are several methods to obtain the optical parameters of biological tissues from the measurement of spatially resolved diffuse reflectance. One of them is well-known as Video Reflectometry in which a camera CCD is used as detection and recording system of the lateral distribution of diffuse reflectance Rd(r) when an infinitely narrow light beam impinges on the tissue. In this paper, we present an algorithm that we have developed for the calibration and application of an experimental set-up of Video Reflectometry destined to extract the optical properties of models of biological tissues with optical properties similar to the human skin. The results of evaluation of the accuracy of the algorithm for optical parameters extraction is shown for a set of proofs reflectance curves with known values of these parameters. In the generation of these curves the simulation of measurement errors was also considered. The results show that it is possible to extract the optical properties with an accuracy error of less than 1% for all the proofs curves. (Author)

  9. Photonic synthesis of continuous‐wave millimeter‐wave signals using a passively mode‐locked laser diode and selective optical filtering

    DEFF Research Database (Denmark)

    Acedo, P.; Carpintero, G.; Criado, A.R.

    2012-01-01

    We report a photonic synthesis scheme for continuous wave millimeter‐wave signal generation using a single passively mode‐locked laser diode (PMLLD), optical filtering and photomixing in a fast photodiode.The phase noise of the photonically synthesized signals is evaluated and inherits...

  10. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Beye, M., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ochmann, M.; Huse, N. [Institute for Nanostructure and Solid State Physics, University of Hamburg, Jungiusstr. 11, 20355 Hamburg, Germany and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg (Germany); Ross, M.; Khalil, M. [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States); Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Föhlisch, A. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany)

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  11. Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.

    1997-02-01

    Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.

  12. Development of evanescent wave absorbance-based fibre-optic ...

    Indian Academy of Sciences (India)

    potential human health risk and may lead to death in young children and adults ... tive measures for disease outbreak are necessary, because of the recent biothreat, ... optical fibres in chemical sensing and biosensing are reviewed in detail in [12–19]. ... systematic development of these evanescent wave absorbance-based ...

  13. Black-hole quasinormal resonances: Wave analysis versus a geometric-optics approximation

    International Nuclear Information System (INIS)

    Hod, Shahar

    2009-01-01

    It has long been known that null unstable geodesics are related to the characteristic modes of black holes--the so-called quasinormal resonances. The basic idea is to interpret the free oscillations of a black hole in the eikonal limit in terms of null particles trapped at the unstable circular orbit and slowly leaking out. The real part of the complex quasinormal resonances is related to the angular velocity at the unstable null geodesic. The imaginary part of the resonances is related to the instability time scale (or the inverse Lyapunov exponent) of the orbit. While this geometric-optics description of the black-hole quasinormal resonances in terms of perturbed null rays is very appealing and intuitive, it is still highly important to verify the validity of this approach by directly analyzing the Teukolsky wave equation which governs the dynamics of perturbation waves in the black-hole spacetime. This is the main goal of the present paper. We first use the geometric-optics technique of perturbing a bundle of unstable null rays to calculate the resonances of near-extremal Kerr black holes in the eikonal approximation. We then directly solve the Teukolsky wave equation (supplemented by the appropriate physical boundary conditions) and show that the resultant quasinormal spectrum obtained directly from the wave analysis is in accord with the spectrum obtained from the geometric-optics approximation of perturbed null rays.

  14. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  15. Continuous-wave terahertz light from optical parametric oscillators

    International Nuclear Information System (INIS)

    Sowade, Rosita

    2010-12-01

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  16. A universal matter-wave interferometer with optical gratings

    International Nuclear Information System (INIS)

    Haslinger, P.

    2013-01-01

    Quantum mechanics was initially developed to describe microscopic processes but scientists quickly came to far-reaching predictions, such as the wave-particle dualism of matter [1,2] or the entanglement of particles [3,4], which often contradict our classical intuition. However, not even a single experiment could falsify any theoretical prediction of quantum mechanics. Today it is the most tested theory in physics. The question of the range and limits of its validity arises. To which extend can systems be macroscopic, complex and massive while retaining their quantum features? Is there a spatial and temporal restriction to the separation of wave functions? Which decoherence mechanisms force systems at macroscopic scales to appear classical? During my thesis I focused theoretically as well as experimentally on matter-wave interferometry with atoms, molecules and molecular clusters. During my 3 month exchange stay in the group of Prof. Müller at the University of California at Berkeley we have carried out an experiment to show the largest space-time area interferometer at that time [5]. Here, matter waves of caesium atoms have been coherently split and recombined up to 8.8 mm and for 500 ms. Key to run this experiment was to compensate for earth´s rotation. Without this compensation the Coriolis force would have prevented the split matter-waves from a precise recombination. The main subject of my thesis at the University of Vienna was the experimental realization of the (first) all Optical Time-domain Ionizing Matter-wave (OTIMA) interferometer [6,7]. It consists of three pulsed nanosecond standing light waves which act on the particles with a well-defined timing sequence. Interference in the time-domain is independent of the particles’ velocities and of their de Broglie wavelengths. This has been demonstrated earlier for atoms by addressing laser light to certain atomic levels [8]. In contrast to that, the OTIMA interferometer uses optical ionization gratings [9

  17. Viscoelasticity evaluation of rubber by surface reflection of supersonic wave.

    Science.gov (United States)

    Omata, Nobuaki; Suga, Takahiro; Furusawa, Hirokazu; Urabe, Shinichi; Kondo, Takeru; Ni, Qing-Qing

    2006-12-22

    The main characteristic of rubber is a viscoelasticity. So it is important to research the characteristic of the viscoelasticity of the high frequency band for the friction between a rubber material and the hard one with roughness, for instance, the tire and the road. As for the measurement of the viscoelasticity of rubber, DMA (dynamic mechanical analysis) is general. However, some problems are pointed out to the measurement of the high frequency band by DMA. Then, we evaluated the viscoelasticity characteristic by the supersonic wave measurement. However, attenuation of rubber is large, and when the viscoelasticity is measured by the supersonic wave therefore, it is inconvenient and limited in a past method by means of bottom reflection. In this report, we tried the viscoelasticity evaluation by the method of using complex surface reflection coefficient and we compared with the friction coefficient under wide-range friction velocity. As a result, some relationships had been found for two properties. We report the result that character of viscoelasticity of rubber was comparable to friction coefficient.

  18. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    Science.gov (United States)

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  19. Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring.

    Science.gov (United States)

    Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco

    2017-07-13

    A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios.

  20. Generalized dispersive wave emission in nonlinear fiber optics.

    Science.gov (United States)

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  1. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    Science.gov (United States)

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  2. Reflections on 35 years with Applied Optics: outgoing editorial.

    Science.gov (United States)

    Mait, Joseph N

    2014-10-20

    Applied Optics' Editor-in-Chief, Joseph N. Mait reflects on his experience as a reader, author, reviewer and eventual editor of the journal. Dr. Mait also introduces the incoming Editor-in-Chief, Ronald G. Driggers and acknowledges outgoing Division Editor, T.-C. Poon.

  3. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  4. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    KAUST Repository

    Xu, Yanlong

    2015-01-21

    We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.

  5. Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    KAUST Repository

    Hanson, Ronald K.; Pang, Genny A.; Chakraborty, Sreyashi; Ren, Wei; Wang, Shengkai; Davidson, David Frank

    2013-01-01

    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we

  6. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.

    Science.gov (United States)

    van Beijnum, Frerik; Rétif, Chris; Smiet, Chris B; Liu, Haitao; Lalanne, Philippe; van Exter, Martin P

    2012-12-20

    A metal film perforated by a regular array of subwavelength holes shows unexpectedly large transmission at particular wavelengths, a phenomenon known as the extraordinary optical transmission (EOT) of metal hole arrays. EOT was first attributed to surface plasmon polaritons, stimulating a renewed interest in plasmonics and metallic surfaces with subwavelength features. Experiments soon revealed that the field diffracted at a hole or slit is not a surface plasmon polariton mode alone. Further theoretical analysis predicted that the extra contribution, from quasi-cylindrical waves, also affects EOT. Here we report the experimental demonstration of the relative importance of surface plasmon polaritons and quasi-cylindrical waves in EOT by considering hole arrays of different hole densities. From the measured transmission spectra, we determine microscopic scattering parameters which allow us to show that quasi-cylindrical waves affect EOT only for high densities, when the hole spacing is roughly one wavelength. Apart from providing a deeper understanding of EOT, the determination of microscopic scattering parameters from the measurement of macroscopic optical properties paves the way to novel design strategies.

  7. Exploiting total internal reflection geometry for efficient optical modulation of terahertz light

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    2016-10-01

    Full Text Available Efficient methods to modulate terahertz (THz light are essential for realizing rapid THz imaging and communication applications. Here we report a novel THz modulator which utilizes the evanescent wave in a total internal reflection setup coupled with a conductive interface to enhance the attenuation efficiency of THz light. This approach makes it possible to achieve close to 100% modulation with a small interface conductivity of 12 mS. The frequency dependence of this technique is linked to the optical properties of the materials: a material with close to frequency independent conductivity that is also controllable will result in an achromatic modulation response, and the device performance can be optimized further by tuning the internal reflection angle. In this work, we focus on applying the technique in the terahertz frequency range. Using an LED array with a pump intensity of 475 mW/cm2 to produce carriers in a silicon wafer, we have achieved a modulation depth of up to 99.9% in a broad frequency range of 0.1 THz–0.8 THz. The required pumping power for the generation of the required free carriers is low because the sheet conductivity needed is far less than required for traditional transmission techniques. Consequently, the device can be modulated by an LED making it a very practical, low cost, and scalable solution for THz modulation.

  8. SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma

    International Nuclear Information System (INIS)

    Yang Hongwei; Nanjing Agricultural Univ., Nanjing; Chen Rushan; Zhang Yun

    2006-01-01

    The dielectric property of dispersive media is written as rational polynomial function, the relation between D and E is derived in time domain. It is named shift operator FDTD (SO-FDTD) method. The high accuracy and efficiency of this method is confirmed by computing the reflection coefficients of electromagnetic waves by a collisional plasma slab. The reflection coefficients between plasma and the atmosphere or vacuum can be calculated by using the SO-FDTD method. The result is that the reflection coefficients are affected by plasma thickness, electron numerical density, the distributing orderliness of electron density, and incidence wave frequency. (authors)

  9. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with a spatially modulated nonlinearity

    OpenAIRE

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices. By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite number of exact soliton solutions in terms of the Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite bandgap of the optical-lattice-induced spectrum. Starting from the exact solutions, we employ the relaxation met...

  10. Optical properties (bidirectional reflectance distribution function) of shot fabric

    NARCIS (Netherlands)

    Lu, Rong; Koenderink, Jan J.; Kappers, Astrid M L

    2000-01-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical

  11. Groundwater exploration in a Quaternary sediment body by shear-wave reflection seismics

    Science.gov (United States)

    Pirrung, M.; Polom, U.; Krawczyk, C. M.

    2008-12-01

    The detailed investigation of a shallow aquifer structure is the prerequisite for choosing a proper well location for groundwater exploration drilling for human drinking water supply and subsequent managing of the aquifer system. In the case of shallow aquifers of some 10 m in depth, this task is still a challenge for high-resolution geophysical methods, especially in populated areas. In areas of paved surfaces, shallow shear-wave reflection seismics is advantageous compared to conventional P-wave seismic methods. The sediment body of the Alfbach valley within the Vulkaneifel region in Germany, partly covered by the village Gillenfeld, was estimated to have a maximum thickness of nearly 60 m. It lies on top of a complicated basement structure, constituted by an incorporated lava flow near the basement. For the positioning of new well locations, a combination of a SH-wave land streamer receiver system and a small, wheelbarrow-mounted SH-wave source was used for the seismic investigations. This equipment can be easily applied also in residential areas without notable trouble for the inhabitants. The results of the 2.5D profiling show a clear image of the sediment body down to the bedrock with high resolution. Along a 1 km seismic profile, the sediment thickness varies between 20 to more than 60 m in the centre of the valley. The reflection behaviour from the bedrock surface corroborates the hypothesis of a basement structure with distinct topography, including strong dipping events from the flanks of the valley and strong diffractions from subsurface discontinuities. The reflection seismic imaging leads to an estimation of the former shape of the valley and a reconstruction of the flow conditions at the beginning of the sedimentation process.

  12. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties.

    Science.gov (United States)

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi

    2011-02-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.

  13. Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    KAUST Repository

    Hanson, Ronald K.

    2013-09-01

    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we demonstrate that this strategy eliminates the possibility of non-localized (remote) ignition in shock tubes. Furthermore, we show that this same strategy can also effectively eliminate or minimize pressure changes due to combustion heat release, thereby enabling quantitative modeling of the kinetics throughout the combustion event using a simple assumption of specified pressure and enthalpy. We measure temperature and OH radical time-histories during ethylene-oxygen combustion behind reflected shock waves in a constrained reaction volume and verify that the results can be accurately modeled using a detailed mechanism and a specified pressure and enthalpy constraint. © 2013 The Combustion Institute.

  14. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    Science.gov (United States)

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.

  15. Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saarakkala, Simo; Wang Shuzhe; Huang Yanping; Zheng Yongping [Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong (China)], E-mail: simo.saarakkala@uku.fi, E-mail: ypzheng@ieee.org

    2009-11-21

    Optical coherence tomography (OCT) is a promising new technique for characterizing the structural changes of articular cartilage in osteoarthritis (OA). The calculation of quantitative parameters from the OCT signal is an important step to develop OCT as an effective diagnostic technique. In this study, two novel parameters for the quantification of optical surface reflection and surface roughness from OCT measurements are introduced: optical surface reflection coefficient (ORC), describing the amount of a ratio of the optical reflection from cartilage surface with respect to that from a reference material, and OCT roughness index (ORI) indicating the smoothness of the cartilage surface. The sensitivity of ORC and ORI to detect changes in bovine articular cartilage samples after enzymatic degradations of collagen and proteoglycans using collagenase and trypsin enzymes, respectively, was tested in vitro. A significant decrease (p < 0.001) in ORC as well as a significant increase (p < 0.001) in ORI was observed after collagenase digestion. After trypsin digestion, no significant changes in ORC or ORI were observed. To conclude, the new parameters introduced were demonstrated to be feasible and sensitive to detect typical OA-like degenerative changes in the collagen network. From the clinical point of view, the quantification of OCT measurements is of great interest since OCT probes have been already miniaturized and applied in patient studies during arthroscopy or open knee surgery in vivo. Further studies are still necessary to demonstrate the clinical capability of the introduced parameters for naturally occurring early OA changes in the cartilage.

  16. Determining integral density distribution in the mach reflection of shock waves

    Science.gov (United States)

    Shevchenko, A. M.; Golubev, M. P.; Pavlov, A. A.; Pavlov, Al. A.; Khotyanovsky, D. V.; Shmakov, A. S.

    2017-05-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  17. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  18. Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation

    Science.gov (United States)

    Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.

    2017-09-01

    Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can

  19. Imaging of propagation dynamics of optically-excited spin waves in a garnet film

    International Nuclear Information System (INIS)

    Hashimoto, Yusuke; Saitoh, Eiji

    2016-01-01

    We demonstrate the direct imaging of the propagation dynamics of the optically-excited spin waves in a garnet film observed with an all-optical pump-and-probe magneto-optical imaging technique having sub-pico second time-resolution, sub-micrometer spatial resolution, and milli-degrees of accuracy in the rotation angle of the light polarization. (author)

  20. Nonlinear optics principles and applications

    CERN Document Server

    Li, Chunfei

    2017-01-01

    This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...

  1. Identification method of non-reflective faults based on index distribution of optical fibers.

    Science.gov (United States)

    Lee, Wonkyoung; Myong, Seung Il; Lee, Jyung Chan; Lee, Sangsoo

    2014-01-13

    This paper investigates an identification method of non-reflective faults based on index distribution of optical fibers. The method identifies not only reflective faults but also non-reflective faults caused by tilted fiber-cut, lateral connector-misalignment, fiber-bend, and temperature variation. We analyze the reason why wavelength dependence of the fiber-bend is opposite to that of the lateral connector-misalignment, and the effect of loss due to temperature variation on OTDR waveforms through simulation and experimental results. This method can be realized by only upgrade of fault-analysis software without the hardware change, it is, therefore, competitive and cost-effective in passive optical networks.

  2. Accuracy of Alcon WaveLight® EX500 optical pachymetry during LASIK

    Directory of Open Access Journals (Sweden)

    Mifflin MD

    2017-08-01

    Full Text Available Mark D Mifflin,1 Xavier M Mortensen,1 Brent S Betts,1 Cole Gross,2 Brian Zaugg1 1Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, Salt Lake City, UT, 2University of Nevada School of Medicine, Reno, NV, USA Purpose: To study the accuracy and reliability of optical pachymetry using the Alcon WaveLight EX500 during laser-assisted in situ keratomileusis (LASIK. Materials and methods: This was a retrospective chart review of 90 eyes from 45 patients who had undergone LASIK (mean age 35.2±8.2 years; 19 males, 26 females. The WaveLight FS200 femtosecond laser was programmed to cut LASIK flaps at a desired depth of 120 µm. Optical low-coherence reflectometry (WaveLight EX500 was used to measure central corneal thickness prior to lifting the flap, and the residual stromal bed immediately after excimer ablation. Flap thickness (FT was calculated using simple subtraction. Optical coherence tomography (OCT was used to measure central corneal thickness, flap thickness, and residual stromal bed in the postoperative period and the results compared to intraoperative measurements. Results: Mean programmed FS200 FT was 119 µm. Mean FT using EX500 optical pachymetry was 109 µm. The difference between FS200- programmed and EX500-measured FT was 9 µm (P<0.001. There was also a significant difference between the EX500 and OCT FT (109 µm vs 119 µm, respectively; P<0.001. Conclusion: FT values calculated using intraoperative EX500 optical pachymetry were significantly lower than programmed FS200 values or OCT measurements. Keywords: flap thickness, optical coherence tomography, femtosecond laser

  3. Reflection and refraction of elastic waves at a corrugated interface in a bi-material transversely isotropic full-space

    International Nuclear Information System (INIS)

    Shad-Manamen, N.; Eskandari-Ghadi, M.

    2008-01-01

    The existing theory for wave propagation through a soil layer are not compatible with the real soil layers because in the theory the layers are flat and the sub-layers are parallel, while in real the soil layers are not flat and they may not be parallel. Thus, wave propagations through a corrugated interface are so important. In this paper, a two dimensional SH-wave propagation through a corrugated interface between two linear transversely isotropic half-spaces is assessed. In order to do this, Lord Rayleigh's method is accepted to express the non-flat surface by a Fourier series. In this way, the amplitude of the reflected and transmitted waves is analytically determined in terms of the incident SH-wave amplitude. It is shown that except for the regular reflected and refracted waves, some irregular reflected and refracted waves are exist, and the amplitudes of these waves vary in terms of the angle and frequency of incident wave, equation of surface, and the material properties of the domains. The numerical computations for some cases of different amplitude/wave-length ratio of the interface are done. This work is an extension of Asano's paper (1960) for a more complicated interface, where more non-zero coefficients are considered in expressing the equation of surface in the form of Fourier series. The analytical results for some simpler case of isotropic domain are collapsed on Asano's results (1960). In addition, the numerical evaluation is in good agreement with Asano's.

  4. Electro-optic polymeric reflection modulator based on plasmonic metamaterial

    Science.gov (United States)

    Abbas, A.; Swillam, M.

    2018-02-01

    A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.

  5. A design procedure for an acoustic mirror providing dual reflection of longitudinal and shear waves in Solidly Mounted BAW Resonators (SMRs)

    NARCIS (Netherlands)

    Jose, Sumy; Jansman, Andreas; Hueting, Raymond Josephus Engelbart

    The quality factor of the traditional Solidly Mounted Resonator (SMR) is limited by substrate losses, as the traditionally employed acoustic mirror reflects longitudinal waves but not shear waves. Modern mirrors do reflect both waves, but design rules for such mirrors have not been published so far.

  6. Wave Reflection and Loss Characteristics of an Emerged Quarter Circle Breakwater with Varying Seaside Perforations

    Science.gov (United States)

    Binumol, S.; Rao, Subba; Hegde, Arkal Vittal

    2017-09-01

    Breakwaters are one of the most important harbour structures constructed to withstand and dissipate the dynamic energy due to the action of the waves. Due to fast growing need of the universe and advances in technology different types of breakwaters are being developed. Quarter circle breakwater is a new type of breakwater emerged from semi circular breakwater and the first model was developed in Peoples Republic of China (2006). Quarter circle breakwater with perforations posses merits of caisson as well as perforated breakwaters such as low weight, requires less materials, suited for poor soil conditions, easily transported, handled and placed at the site, aesthetically pleasing, cost effective, eco-friendly and stable. Therefore it is necessary to carry out detailed studies on hydrodynamic characteristics to investigate the suitability and applicability of various types of quarter circle breakwaters. The present study investigates the wave reflection and loss characteristics of an emerged seaside perforated quarter circle breakwater of radius 55 cm and with varying ratios of spacing to diameter of perforations, for different water depths and wave conditions. The tests were conducted in the two-dimensional monochromatic wave flume available in Marine Structures laboratory of Department of Applied Mechanics and Hydraulics of National Institute of Technology, Surathkal, Karnataka, India. The results were plotted as non-dimensional graphs and it was observed that the reflection coefficient increases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth. For a constant water depth, wave reflection increases with increase in ratio of spacing to diameter of perforations. It was also found that the loss coefficient decreases with increase in wave steepness for all values of ratio of height of breakwater structure to water depth, and ratio of spacing to diameter of perforations.

  7. Observation of neutron standing waves at total reflection by precision gamma spectroscopy

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Gundorin, N.A.; Nikitenko, Yu.V.; Popov, Yu.P.; Cser, L.

    1998-01-01

    Total reflection of polarized neutrons from the layered structure glass/Fe (1000 A Angstrom)/Gd (50 A Angstrom) is investigated by registering neutrons and gamma-quanta from thermal neutron capture. The polarization ratio of gamma counts of neutron beams polarized in and opposite the direction of the magnetic field is measured. The polarization ratio is larger than unity for the neutron wavelengths λ 2.2 A Angstrom. Such behaviour of the wavelength dependence of the gamma-quanta polarization ratio points to the fact that over the surface of the Fe Layer a neutron standing wave caused by the interference of the incident neutron wave and the wave refracted from the magnetized Fe layer is formed

  8. Novel optical solitary waves and modulation instability analysis for the coupled nonlinear Schrödinger equation in monomode step-index optical fibers

    Science.gov (United States)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    This paper addresses the coupled nonlinear Schrödinger equation (CNLSE) in monomode step-index in optical fibers which describes the nonlinear modulations of two monochromatic waves, whose group velocities are almost equal. A class of dark, bright, dark-bright and dark-singular optical solitary wave solutions of the model are constructed using the complex envelope function ansatz. Singular solitary waves are also retrieved as bye products of the in integration scheme. This naturally lead to some constraint conditions placed on the solitary wave parameters which must hold for the solitary waves to exist. The modulation instability (MI) analysis of the model is studied based on the standard linear-stability analysis. Numerical simulation and physical interpretations of the obtained results are demonstrated. It is hoped that the results reported in this paper can enrich the nonlinear dynamical behaviors of the CNLSE.

  9. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper

    1999-01-01

    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  10. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan

    2017-01-01

    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  11. Resonating rays in ion-ion scattering from an optical potential

    International Nuclear Information System (INIS)

    Farhan, A.R.; Stoyanov, B.J.; Nagl, A.; Uberall, H.; de Llano, M.

    1986-01-01

    The amplitude of ion-ion scattering, described, e.g., by an optical potential, separates into a ''surface-wave'' part (which, as shown before, may give rise to resonances) and a ''geometrical-ray'' part. The amplitude as alternately expressed here by the Wentzel-Kramers-Brillouin approximation resolves into an externally reflected ''barrier wave'' and into ''internal'' or ''penetrating rays'' that undergo an internal reflection together with possible additional multiple reflections. Our numerical calculations show that resonances also occur in the penetrating rays, which take place when a characteristic equation is satisfied. The geometrical meaning of the latter is determined by the optical path length of penetration being an integer multiple of π, plus a 1/2π caustic phase jump, and an extra phase shift due to barrier penetration

  12. Development of pneumatic actuator with low-wave reflection characteristics

    Science.gov (United States)

    Chang, H.; Tsung, T. T.; Jwo, C. S.; Chiang, J. C.

    2010-08-01

    This study aims at the development of a less reflective electromagnetic pneumatic actuator often used in the anechoic chamber. Because a pneumatic actuator on the market is not appropriate for use in such a chamber and a metallic one has high dielectric constant which generates reflective electromagnetic waves to influence test parameters in the chamber. The newly developed pneumatic actuator is made from low dielectric constant plastics with less reflective of electromagnetic. A turbine-type air motor is used to develop the pneumatic actuator and a employ Prony tester is used to run the brake horsepower test for the performance test of pneumatic actuator. Test results indicate that the pneumatic actuator in the minimal starting flow is 17 l/min, and it generates a brake horsepower of 48 mW; in the maximum flow is 26 l/min, it generates a brake horsepower of 108 mW. Therefore, it works with a torque between 0.24 N-m and 0.55 N-m, and such a torque will be sufficient to drive the target button.

  13. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks.

    Science.gov (United States)

    Wu, Jiaye; Yang, Xiangbo

    2017-10-30

    In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.

  14. Acute resistance exercise using free weights on aortic wave reflection characteristics.

    Science.gov (United States)

    Tai, Yu Lun; Gerhart, Hayden; Mayo, Xián; Kingsley, J Derek

    2018-01-01

    Aortic wave reflection characteristics such as the augmentation index (AIx), wasted left ventricular pressure energy (ΔE w ) and aortic haemodynamics, such as aortic systolic blood pressure (ASBP), strongly predict cardiovascular events. The effects of acute resistance exercise (ARE) using free-weight exercises on these characteristics are unknown. Therefore, we sought to determine the effects of acute free-weight resistance exercise on aortic wave reflection characteristics and aortic haemodynamics in resistance-trained individuals. Fifteen young, healthy resistance-trained (9 ± 3 years) individuals performed two randomized sessions consisting of an acute bout of free-weight resistance exercise (ARE) or a quiet control (CON). The ARE consisted of three sets of 10 repetitions at 75% one repetition maximum for squat, bench press and deadlift. In CON, the participants rested in the supine position for 30 min. Measurements were made at baseline before sessions and 10 min after sessions. A two-way ANOVA was used to compare the effects of condition across time. There were no significant interactions for aortic or brachial blood pressures. Compared to rest, there were significant increases in augmentation pressure (rest: 5·7 ± 3·0 mmHg; recovery: 10·4 ± 5·7 mmHg, P = 0·002), AIx (rest: 116·8 ± 4·2%; recovery: 123·2 ± 8·4%, P = 0·002), AIx normalized at 75 bpm (rest: 5·2 ± 7·6%; recovery: 27·3 ± 13·2%, Pfree-weight exercises may have no effect on aortic and brachial blood pressure but may significantly alter aortic wave reflection characteristics. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. Grazing incidence infrared reflectivity of La1.85Sr0.15CuO4 and NbN

    NARCIS (Netherlands)

    Somal, HS; Feenstra, BJ; Schutzmann, J; Kim, JH; Barber, ZH; Duijn, VHM; Hien, NT; Menovsky, AA; Palumbo, M; vanderMarel, D

    1996-01-01

    Infrared reflectivity measurements, using p-polarized light at a grazing angle of incidence, show an increased sensitivity to the optical conductivity of highly reflecting superconducting materials. We demonstrate that when this measurement technique is applied to the conventional s-wave

  16. SH-wave reflection seismic and VSP as tools for the investigation of sinkhole areas in Germany

    Science.gov (United States)

    Wadas, Sonja; Tschache, Saskia; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes can lead to damage of buildings and infrastructure and they can cause life-threatening situations, if they occur in urban areas. The process behind this phenomenon is called subrosion. Subrosion is the underground leaching of soluble rocks, e.g. anhydrite and gypsum, due to the contact with ground- and meteoric water. Depending on the leached material, and especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. For a better understanding of the subrosion processes a detailed characterization of the resulting structures is necessary. In Germany sinkholes are a problem in many areas. In northern Germany salt and in central and southern Germany sulfate and carbonate deposits are affected by subrosion. The study areas described here are located in Thuringia in central Germany and the underground is characterized by soluble Permian deposits. The occurrence of 20 to 50 sinkholes is reported per year. Two regions, Bad Frankenhausen and Schmalkalden, are investigated, showing a leaning church tower and a sinkhole of 30 m diameter and 20 m depth, respectively. In Bad Frankenhausen four P-wave and 16 SH-wave reflection seismic profiles were carried out, supplemented by three zero-offset VSPs. In Schmalkalden five SH-wave reflection seismic profiles and one zero-offset VSP were acquired. The 2-D seismic sections, in particular the SH-wave profiles, showed known and unknown near-surface faults in the vicinity of sinkholes and depressions. For imaging the near-surface ( 2,5, probably indicating unstable areas due to subrosion. We conclude, that SH-wave reflection seismic offer an important tool for the imaging and characterization of near-surface subrosion structures and the identification of unstable zones, especially in combination with P-wave reflection seismic and zero-offset VSP with P- and S-waves. Presumably there is a connection between the presence of large

  17. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Canute I.; Campbell, Jason P.; Ryan, Jason T.; Gundlach, David; Cheung, Kin. P., E-mail: Kin.Cheung@NIST.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Liu, Changze [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); Institute of Microelectronics, Peking University, Beijing 100871 (China); Southwick, Richard G. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8120 (United States); IBM Research, Albany, NY 12205 (United States); Oates, Anthony S. [Taiwan Semiconductor Manufacturing Corporation, Hsinchu 30844, Taiwan (China); Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2016-06-15

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger’s equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.

  18. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    Science.gov (United States)

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  19. Determination of the effective transverse coherence of the neutron wave packet as employed in reflectivity investigations of condensed-matter structures. II. Analysis of elastic scattering using energy-gated wave packets with an application to neutron reflection from ruled gratings

    Science.gov (United States)

    Berk, N. F.

    2014-03-01

    We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.

  20. Reflection-type electromagnetically induced transparency analogue in terahertz metamaterials

    International Nuclear Information System (INIS)

    Ding Chun-Feng; Zhang Ya-Ting; Yao Jian-Quan; Xu De-Gang; Zhang Gui-Zhong; Sun Chong-Ling

    2014-01-01

    A reflection-type electromagnetically induced transparency (EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum (THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. An interferometric and numerical study of pseudo-stationary oblique-shock-wave reflections in sulfur hexafluoride (SF6)

    Science.gov (United States)

    Hu, T. C. J.; Glass, I. I.

    Results are reported from experimental and analytical investigations of real-gas effects in the propagation of shock waves through SF6, a gas with 15 vibrational degrees of freedom. Shock waves with speeds ranging from Mach 1.25-8 were directed toward sharp steel wedges in a hypervelocity shock tube. Mach-Zehnder interferometry was used to obtain shock shape and geometry, isopycnic and density field data. Frozen-gas and equilibrium-gas (EQM) analyses modeling were performed for comparisons with experimental data, which depicted four types of reflection and transitions among them. Transition boundaries were best predicted with EQM treatment. A new criterion was derived for transition between single-Mach and complex-Mach reflection. Regular reflection continued past the boundary line defined by the transition criterion because of boundary layer growth produced on the wedge surface by passage of the shock wave.

  2. Universal spin-momentum locked optical forces

    Energy Technology Data Exchange (ETDEWEB)

    Kalhor, Farid [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Jacob, Zubin, E-mail: zjacob@purdue.edu [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Birck Nanotechnology Center, Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.

  3. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  4. Proposed frustrated-total-reflection acoustic sensing method

    International Nuclear Information System (INIS)

    Hull, J.R.

    1981-01-01

    Modulation of electromagnetic energy transmission through a frustrated-total-reflection device by pressure-induced changes in the index of refraction is proposed for use as an acoustic detector. Maximum sensitivity occurs for angles of incidence near the critical angle. The minimum detectable pressure in air is limited by Brownian noise. Acoustic propagation losses and diffraction of the optical beam by the acoustic signal limit the minimum acoustic wavelength to lengths of the order of the spatial extent of the optical beam. The response time of the method is fast enough to follow individual acoustic waves

  5. Wave study of compound eyes for efficient infrared detection

    Science.gov (United States)

    Kilinc, Takiyettin Oytun; Hayran, Zeki; Kocer, Hasan; Kurt, Hamza

    2017-08-01

    Improving sensitivity in the infrared spectrum is a challenging task. Detecting infrared light over a wide bandwidth and at low power consumption is very important. Novel solutions can be acquired by mimicking biological eyes such as compound eye with many individual lenses inspired from the nature. The nature provides many ingenious approaches of sensing and detecting the surrounding environment. Even though compound eye consists of small optical units, it can detect wide-angle electromagnetic waves and it has high transmission and low reflection loss. Insects have eyes that are superior compared to human eyes (single-aperture eyes) in terms of compactness, robustness, wider field of view, higher sensitivity of light intensity and being cheap vision systems. All these desired properties are accompanied by an important drawback: lower spatial resolution. The first step to investigate the feasibility of bio-inspired optics in photodetectors is to perform light interaction with the optical system that gather light and detect it. The most common method used in natural vision systems is the ray analysis. Light wave characteristics are not taken into consideration in such analyses, such as the amount of energy at the focal point or photoreceptor site, the losses caused by reflection at the interfaces and absorption cannot be investigated. In this study, we present a bio-inspired optical detection system investigated by wave analysis. We numerically model the wave analysis based on Maxwell equations from the viewpoint of efficient light detection and revealing the light propagation after intercepting the first interface of the eye towards the photoreceptor site.

  6. Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    Using cross-hatched, patterned semiconductor surfaces and round 20-nm-thick gold pads on semiconductor wafers, we investigate the imaging characteristics of a reflection near-field optical microscope with an uncoated fibre tip for different polarization configurations and light wavelengths....... Is is shown that cross-polarized detection allows one to effectively suppress far-field components in the detected signal and to realise imaging of optical contrast on the sub-wavelength scale. The sensitivity window of our microscope, i.e. the scale on which near-field optical images represent mainly optical...

  7. Optical negative refraction by four-wave mixing in thin metallic nanostructures.

    Science.gov (United States)

    Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang

    2011-10-30

    The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.

  8. An investigation of the structure of plasma produced by reflected shock waves

    International Nuclear Information System (INIS)

    Phillips, M.G.R.; Pugatschew, A.A.

    1979-05-01

    Space and time resolved measurements of electron density and temperature have been made in the reflected-shock plasma produced by a Mach 20 incident shock wave propagating in argon at an initial pressure of 1.5 Torr. The peak electron density was found to decrease away from the reflecting wall in such a way that the plasma was fairly uniform at all times. Close to the reflecting wall (0.2 cm away) the measured peak electron density was close to (i.e. about 20% lower than) the predicted equilibrium value but further away (1.0 cm) it was lower by a factor 4. Possible reasons for this discrepancy are discussed. Calculations of reflected-shock plasma structure based on incident shock structure are only partially supported by available experimental evidence

  9. Optimization of plasma mirror reflectivity and optical quality using double laser pulses

    International Nuclear Information System (INIS)

    Scott, G G; Clarke, R J; Green, J S; Heathcote, R I; Neely, D; Bagnoud, V; Brabetz, C; Zielbauer, B; Powell, H W; McKenna, P; Arber, T D

    2015-01-01

    We measure a record 96 ±2.5% specularly reflected energy fraction from an interaction with a plasma mirror (PM) surface preionized by a controlled prepulse and find that the optical quality is dependent on the inter pulse time delay. Simulations show that the main pulse reflected energy is a strong function of plasma density scale length, which increases with the time delay and reaches a peak reflectivity for a scale length of 0.3 μm, which is achieved here for a pulse separation time of 3 ps. It is found that the incident laser quasi near field intensity distribution leads to nonuniformities in this plasma expansion and consequent critical surface position distribution. The PM optical quality is found to be governed by the resultant perturbations in the critical surface position, which become larger with inter pulse time delay. (paper)

  10. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    Science.gov (United States)

    Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  11. Coherent transport of matter waves in disordered optical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Robert

    2007-07-01

    The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)

  12. Coherent transport of matter waves in disordered optical potentials

    International Nuclear Information System (INIS)

    Kuhn, Robert

    2007-01-01

    The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)

  13. Derivation of a regional active-optical reflectance sensor corn algorithm

    Science.gov (United States)

    Active-optical reflectance sensor (AORS) algorithms developed for in-season corn (Zea mays L.) N management have traditionally been derived using sub-regional scale information. However, studies have shown these previously developed AORS algorithms are not consistently accurate when used on a region...

  14. A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dayu; Liang, Peipei; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian, E-mail: jsun@fudan.edu.cn

    2013-01-01

    The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated. - Highlights: ► Spatial confinement and optical emission enhancement of carbon plume were studied. ► Ablation-generated shockwave propagating in air was reflected by a block disk. ► The effects of reflected shockwave on the emission enhancement were confirmed. ► The reflect shockwave confined the carbon plume and enhanced the plume emission.

  15. A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements

    International Nuclear Information System (INIS)

    Ding, Dayu; Liang, Peipei; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian

    2013-01-01

    The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated. - Highlights: ► Spatial confinement and optical emission enhancement of carbon plume were studied. ► Ablation-generated shockwave propagating in air was reflected by a block disk. ► The effects of reflected shockwave on the emission enhancement were confirmed. ► The reflect shockwave confined the carbon plume and enhanced the plume emission

  16. Giant enhancement of reflectance due to the interplay between surface confined wave modes and nonlinear gain in dielectric media.

    Science.gov (United States)

    Kim, Sangbum; Kim, Kihong

    2017-12-11

    We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.

  17. Improving the acousto-optical interaction in a Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole

    2009-01-01

    of a piezoelectric, inhomogeneous material, and reflections from the boundaries are avoided by applying perfectly matched layers. The optical modes in the waveguides are modeled by time-harmonic wave equations for the magnetic field. The two models are coupled using stress-optical relations and the change...

  18. Scaling properties of optical reflectance from quasi-periodic superlattices

    International Nuclear Information System (INIS)

    Wu Xiang; Yao Hesheng; Feng Weiguo

    1991-08-01

    The scaling properties of the optical reflectance from two types of quasi-periodic metal-insulator superlattices, one with the structure of Cantor bars and the other with the structure of Cantorian-Fibonaccian train, have been studied for the region of s-polarized soft x-rays and extreme ultraviolet. By using the hydrodynamic model of electron dynamics and transfer-matrix method, and be taking into account retardation effects, we have presented the formalism of the reflectivity for the superlattices. From our numerical results, we found that the reflection spectra of the quasi-superlattices have a rich structure of self-similarity. The interesting scaling indices, which are related to the fractal dimensions, of the spectra are also discussed for the two kinds of the quasi-superlattices. (author). 10 refs, 7 figs

  19. The effective reflection of a pulse sequence from a four-wave mirror with thermal nonlinearity under parametric feedback

    Science.gov (United States)

    Barashkov, M. S.; Bel'Diugin, I. M.; Zolotarev, M. V.; Kruzhilin, Iu. I.; Krymskii, M. I.

    1989-04-01

    A four-wave mirror with thermal nonlinearity has been experimentally realized with the interaction of corunning waves under parametric feedback with a nonreciprocal element. The effective reflection of a sequence of pulses with duration of about 300 ns from a neodymium-glass laser with maximal reflection coefficients greater than 30 has been demonstrated. The quality of the radiation reflected from the mirror is studied. A significant reduction in the steady-state lasing threshold has been shown with thermal nonlinearity at small angles of the interacting beam convergence, compared to the case of counterrunning convergence.

  20. Millimeter-wave generation and characterization of a GaAs FET by optical mixing

    Science.gov (United States)

    Ni, David C.; Fetterman, Harold R.; Chew, Wilbert

    1990-01-01

    Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.

  1. Spatial confinement of acoustic and optical waves in stubbed slab structure as optomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changsheng, E-mail: lcs135@163.com; Huang, Dan; Guo, Jierong

    2015-02-20

    We theoretically demonstrate that acoustic waves and optical waves can be spatially confined in the same micro-cavity by specially designed stubbed slab structure. The proposed structure presents both phononic and photonic band gaps from finite element calculation. The creation of cavity mode inside the band gap region provides strong localization of phonon and photon in the defect region. The practical parameters to inject cavity and work experimentally at telecommunication range are discussed. This structure can be precisely fabricated, hold promises to enhance acousto-optical interactions and design new applications as optomechanical resonator. - Highlights: • A resonator simultaneously supports acoustic and optical modes. • Strong spatial confinement and slow group velocity. • Potential to work as active optomechanical resonator.

  2. Impact of wave propagation delay on latency in optical communication systems

    Science.gov (United States)

    Kawanishi, Tetsuya; Kanno, Atsushi; Yoshida, Yuki; Kitayama, Ken-ichi

    2012-12-01

    Latency is an important figure to describe performance of transmission systems for particular applications, such as data transfer for earthquake early warning, transaction for financial businesses, interactive services such as online games, etc. Latency consists of delay due to signal processing at nodes and transmitters, and of signal propagation delay due to propagation of electromagnetic waves. The lower limit of the latency in transmission systems using conventional single mode fibers (SMFs) depends on wave propagation speed in the SMFs which is slower than c. Photonic crystal fibers, holly fibers and large core fibers can have low effective refractive indices, and can transfer light faster than in SMFs. In free-space optical systems, signals propagate with the speed c, so that the latency could be smaller than in optical fibers. For example, LEO satellites would transmit data faster than optical submarine cables, when the transmission distance is longer than a few thousand kilometers. This paper will discuss combination of various transmission media to reduce negative impact of the latency, as well as applications of low-latency systems.

  3. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces.

    Science.gov (United States)

    Hyde, M W; Schmidt, J D; Havrilla, M J

    2009-11-23

    A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.

  4. Frequency modulation at a moving material interface and a conservation law for wave number. [acoustic wave reflection and transmission

    Science.gov (United States)

    Kleinstein, G. G.; Gunzburger, M. D.

    1976-01-01

    An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.

  5. Post-exercise effects on aortic wave reflection derived from wave separation analysis in young- to middle-aged pre-hypertensives and hypertensives.

    Science.gov (United States)

    Millen, Aletta M E; Woodiwiss, Angela J; Norton, Gavin R

    2016-07-01

    Decreases in brachial blood pressure (BP) may occur for several hours following a bout of exercise. Although aortic backward waves predict cardiovascular damage independent of brachial BP, whether decreases in aortic backward waves also occur post-exercise in young-to-middle-aged hypertensives, the extent to which these changes exceed brachial BP changes, and the best method of identifying these changes is uncertain. We examined aortic function at baseline and 15-min post-exercise in 20 pre-hypertensive or hypertensive men and women (age 45 ± 7 years). Central aortic pressure, forward (Pf) and backward (Pb) wave pressures, the reflection index (RI) and augmentation pressure (AP) and index (AIx) were determined using applanation tonometry, and SphygmoCor software. Decreases in central aortic (p exercise. In addition, decreases in post-exercise (baseline versus post-exercise) Pb (19 ± 4 vs 13 ± 3 mm Hg p aged pre-hypertensive and hypertensive individuals, aortic backward waves decrease post-exercise; this change is not reflected in brachial BP measurements and is poorly indexed by measures of pressure augmentation.

  6. FDTD analysis of reflection of electromagnetic wave from a conductive plane covered with inhomogeneous time-varying plasma

    International Nuclear Information System (INIS)

    Liu Shaobin; Mo Jinjun; Yuan Naichang

    2003-01-01

    A finite-difference time-domain (FDTD) algorithm is applied to study the electro-magnetic reflection of conduction plane covered with inhomogeneous time-varying plasma, homogeneous plasma and inhomogeneous plasma. The collisions frequency of plasma is a function of electron density and plasma temperature. The number density profile follows a parabolic function. A discussion on the effect of various plasma parameters on the reflection coefficient is presented. Under the one-dimensional case, transient electromagnetic propagation through various plasmas has been obtained, and the reflection coefficients of EM wave through various plasma are calculated under different conditions. The results illustrate that a plasma cloaking system can successfully absorb the incident EM wave

  7. Reversible unidirectional reflection and absorption of PT-symmetry structure under electro-optical modulation

    Science.gov (United States)

    Fang, Yun-tuan; Zhang, Yi-chi; Xia, Jing

    2018-06-01

    In order to obtain tunable unidirectional device, we assumed an ideal periodic layered Parity-Time (PT) symmetry structure inserted by doped LiNbO3 (LN) interlayers. LN is a typical electro-optical material of which the refractive index depends on the external electric field. In our work, we theoretically investigate the modulation effect of the external electric field on the transmittance and reflectance of the structure through numerical method. Through selected structural parameters, the one-way enhanced reflection and high absorption (above 0.9) behaviors are found. Within a special frequency band (not a single frequency), our theoretical model performs enhanced reflection in one incidence direction and high absorption in the other direction. Furthermore, the directions of enhanced reflection and absorption can be reversed through reversing the direction of applied electric field. Such structure with reversible properties has the potential in designing new optical devices.

  8. Multi-sample immunoassay inside optical fiber capillary enabled by evanescent wave detection

    Directory of Open Access Journals (Sweden)

    Chun-Wei Wang

    2016-03-01

    Full Text Available A novel evanescent wave-based (EW microfluidic capillary fiber-optic biosensor (MCFOB has been developed using capillaries as a transducer embedded in a multichannel device to enhance the collection efficiency of the fluorescence signal. The capillary serves dual roles as a waveguide and a container, enabling more straightforward, consistent, and compact biosensor packaging compared to conventional optical fiber biosensors and microfluidic systems. In order to detect multiple samples in one device, the biosensor incorporates a polydimethysiloxane (PDMS multi-channel device, which also serves as cladding for the biosensor. In addition, this biosensor only consumes 10 μl of a sample and does not require hydrofluoric acid etching in the fabrication process. The orientation for signal collection is optimized by comparing the lateral and normal signal directions for detected glyceraldehyde 3-phosphate dehydrogenase (GAPDH. C-reactive protein (CRP is used to validate the MCFOB, and the limit of detection (LOD for CRP in the MCFOB is 1.94 ng/ml (74 pM. Moreover, the real-time measurement is demonstrated to verify that the evanescent wave is the only exciting light source in the MCFOB, which gives the potential for real-time measurement applications. Keywords: C-reactive protein, Capillary, Fiber-optic, Microfluidic, Evanescent wave, Immunoassay

  9. REFLECTION OF PROPAGATING SLOW MAGNETO-ACOUSTIC WAVES IN HOT CORONAL LOOPS: MULTI-INSTRUMENT OBSERVATIONS AND NUMERICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Banerjee, Dipankar; Pant, Vaibhav [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Yuan, Ding; Fang, Xia; Doorsselaere, Tom Van, E-mail: sudip@iiap.res.in, E-mail: xia.fang@wis.kuleuven.be [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, bus 2400, 3001, Leuven (Belgium)

    2016-09-10

    Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory /Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence. The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.

  10. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity

  11. Shot- and angle-domain wave-equation traveltime inversion of reflection data: Synthetic and field data examples

    KAUST Repository

    Zhang, Sanzong

    2015-05-26

    Full-waveform inversion requires the accurate simulation of the dynamics and kinematics of wave propagation. This is difficult in practice because the amplitudes cannot be precisely reproduced for seismic waves in the earth. Wave-equation reflection traveltime tomography (WT) is proposed to avoid this problem by directly inverting the reflection-traveltime residuals without the use of the high-frequency approximation. We inverted synthetic traces and recorded seismic data for the velocity model by WT. Our results demonstrated that the wave-equation solution overcame the high-frequency approximation of ray-based tomography, was largely insensitive to the accurate modeling of amplitudes, and mitigated problems with ambiguous event identification. The synthetic examples illustrated the effectiveness of the WT method in providing a highly resolved estimate of the velocity model. A real data example from the Gulf of Mexico demonstrated these benefits of WT, but also found the limitations in traveltime residual estimation for complex models.

  12. Experimental Demonstration of the Fermi-Pasta-Ulam Recurrence in a Modulationally Unstable Optical Wave

    International Nuclear Information System (INIS)

    Van Simaeys, G.; Emplit, Ph.; Haelterman, M.

    2001-01-01

    Through a detailed spectral analysis of the propagation of square-shaped laser pulses in optical fibers, we provide the experimental demonstration of the Fermi-Pasta-Ulam recurrence phenomenon in modulationally unstable optical waves ruled by the nonlinear Schroedinger equation

  13. Reflectance diffuse optical tomography. Its application to human brain mapping

    International Nuclear Information System (INIS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-01-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases. (author)

  14. Tunable error-free optical frequency conversion of a 4ps optical short pulse over 25 nm by four-wave mixing in a polarisation-maintaining optical fibre

    Science.gov (United States)

    Morioka, T.; Kawanishi, S.; Saruwatari, M.

    1994-05-01

    Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.

  15. Omnidirectional piezo-optical ring sensor for enhanced guided wave structural health monitoring

    International Nuclear Information System (INIS)

    Giurgiutiu, Victor; Roman, Catalin; Lin, Bin; Frankforter, Erik

    2015-01-01

    This paper presents a novel method for the detection of ultrasonic waves from acoustic emission events using piezoelectric wafer ac3tive sensors (PWAS) and optical fiber Bragg grating (FBG) sensing combined with mechanical resonance amplification principles. The method is best suited for detecting the out-of-plane motion of the AE wave with preference for a certain frequency that can be adjusted by design. Several issues are discussed: (a) study the mode shapes of the sensors under different resonance frequencies in order to understand the behavior of the ring in a frequency band of interest; (b) comparison of analytical results and mode shapes with FEM predictions; (c) choice of the final piezo-optical ring sensor shape; (d) testing of the piezo-optical ring sensor prototype; (e) discussion of the ring-sensor test results in comparison with conventional results from PWAS and FBG sensors mounted directly on the test structure. The paper ends with summary, conclusions, and suggestions for further work. (paper)

  16. Optical and x-ray alignment approaches for off-plane reflection gratings

    Science.gov (United States)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  17. The optical constants and spectral specular reflectivity of highly oriented pyrolytic graphite (HOPG)

    International Nuclear Information System (INIS)

    Havstad, M.A.; Schildbach, M.A.; McLean, W. II.

    1993-08-01

    Measurements of the specular reflectivity and the optical constants of highly ordered pyrolytic graphite (HOPG) have been made using two independent optical systems. The first measures reflectance (at 1.06 μm and 293 K) by comparing the intensity of a laser beam before and after reflecting off the sample. The second determines the complex index of raft-action (from 0.55 to 8.45 μm, with sample temperatures of 293, 480, 900 and 1300 K) by ellipsometry. Agreement between the two methods is good. Moderate reflectivities are observed over the full spectral range of measurement: the spectral directional-hemispherical reflectivity at normal incidence varies from 0.41 at 0.55 μm to 0.74 at 8.45 μm. The components of the complex index of refraction increase smoothly with wavelength. The index of refraction increases from 3.10 at 0.55 μm to 7.84 at 8.45 μm. The extinction coefficient varies from 2.01 to 6.66 over the same range

  18. Bio-Optics and Bio-Inspired Optical Materials.

    Science.gov (United States)

    Tadepalli, Sirimuvva; Slocik, Joseph M; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2017-10-25

    Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.

  19. Correlations and fluctuations in reflection coefficients for coherent wave propagation in disordered scattering media

    International Nuclear Information System (INIS)

    Wang, L.; Feng, S.

    1989-01-01

    The relation between the reflection coefficients and the Green's function for a coherent wave propagation in a disordered elastic-scattering medium is derived. The sum rule of the reflection and transmission coefficients corresponding to probability conservation is shown rigorously for an arbitrary scattering potential. The correlation function of the reflection coefficients is then calculated by using a Feynman-diagrammatic approach in the weak-localized multiple-scattering regime (L much-gt l much-gt λ). The result is in agreement with recent experiments on the so-called ''memory effect'' in reflection coefficients. A more general condition under which the memory effect can occur is derived. Differences between the the correlation functions for reflection and that for transmission are discussed

  20. The adaptation of methods in multilayer optics for the calculation of specular neutron reflection

    International Nuclear Information System (INIS)

    Penfold, J.

    1988-10-01

    The adaptation of standard methods in multilayer optics to the calculation of specular neutron reflection is described. Their application is illustrated with examples which include a glass optical flat and a deuterated Langmuir-Blodgett film. (author)

  1. Optical single sideband modulation radio over fiber system by using a fiber-Bragg-grating-based acousto-optic filter

    Science.gov (United States)

    Gao, Song; Pei, Li; Li, Zhuoxuan; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2013-03-01

    An optical single sideband (OSSB) modulation radio over a fiber system, by using an acousto-optic filter (AOF), is proposed and demonstrated. In the AOF, a uniform fiber Bragg grating is etched and modulated by an axially propagating acoustic wave. Due to the acousto-optic superlattice modulation, two secondary reflection peaks, centered on the primary reflection peak, are generated. In the scheme, an optical double-sideband signal passes though the AOF to realize OSSB modulation. Because the reflect depth of the primary peak is much deeper than those of the secondary peaks, the carrier experiences higher attenuation than the upper sideband, which means the carrier-to-sideband ratio (CSR) can be optimized at the same time. We demonstrate this scheme via simulations, and successfully reduce the CSR from 9.73 to 2.9 dB. As a result, the receiving sensitivity improved from -23.43 to -31.18 dBm at BER of 10-9 with 30 km long SMF.

  2. Analytical computation of reflection and transmission coefficients for love waves

    International Nuclear Information System (INIS)

    Romanelli, F.; Vaccari, F.

    1995-09-01

    The computation of the transmission and reflection coefficients is an important step in the construction, if modal summation technique is used, of synthetic seismograms for 2-D or 3-D media. These coupling coefficients for Love waves at a vertical discontinuity are computed analytically. Numerical test for realistic structures show how the energy carried by an incoming mode is redistributed on the various modes existing on both sides of the vertical interface. (author). 15 refs, 8 figs

  3. A gyrokinetic calculation of transmission and reflection of the fast wave in the ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Dendy, R.O.

    1993-01-01

    A full-wave equation has been obtained from the gyrokinetic theory for the fast wave traversing a minority cyclotron resonance [Phys. Fluids B 4, 493 (1992)] with the aid of the fast wave approximation [Phys. Fluids 31, 1614 (1988)]. This theory describes the transmission, reflection, and absorption of the fast wave for arbitrary values of the parallel wave number. For oblique propagation the absorption is due to both ion cyclotron damping by minority ions and mode conversion to the ion Bernstein wave. The results for a 3 He minority in a D plasma indicate that for perpendicular propagation and minority temperatures of a few keV the power lost by the fast wave is all mode converted whereas for minority temperatures ∼100 keV∼30% of the incident power is dissipated by the minority ions due to the gyrokinetic correction. The gyrokinetic correction also results in a significant reduction in the reflection coefficient for low field side incidence when k zLB approx-lt 1 and the minority and hybrid resonances overlap

  4. Evanescent Wave Fiber Optic Biosensor for Salmonella Detection in Food

    Directory of Open Access Journals (Sweden)

    Arun K. Bhunia

    2009-07-01

    Full Text Available Salmonella enterica is a major food-borne pathogen of world-wide concern. Sensitive and rapid detection methods to assess product safety before retail distribution are highly desirable. Since Salmonella is most commonly associated with poultry products, an evanescent wave fiber-optic assay was developed to detect Salmonella in shell egg and chicken breast and data were compared with a time-resolved fluorescence (TRF assay. Anti-Salmonella polyclonal antibody was immobilized onto the surface of an optical fiber using biotin-avidin interactions to capture Salmonella. Alexa Fluor 647-conjugated antibody (MAb 2F-11 was used as the reporter. Detection occurred when an evanescent wave from a laser (635 nm excited the Alexa Fluor and the fluorescence was measured by a laser-spectrofluorometer at 710 nm. The biosensor was specific for Salmonella and the limit of detection was established to be 103 cfu/mL in pure culture and 104 cfu/mL with egg and chicken breast samples when spiked with 102 cfu/mL after 2–6 h of enrichment. The results indicate that the performance of the fiber-optic sensor is comparable to TRF, and can be completed in less than 8 h, providing an alternative to the current detection methods.

  5. Reflection of electromagnetic wave from the boundary of the piezoelectric half-space with cubic symmetry

    Science.gov (United States)

    Berberyan, A. Kh; Garakov, V. G.

    2018-04-01

    A large number of works have been devoted to investigation of the influence of the piezoelectric properties of a material on the propagation of elastic waves [1–3]. Herewith, the quasi-static piezoelasticity model was mainly used. In the problem of an electromagnetic wave reflection from an elastic medium with piezoelectric properties, it is necessary to consider hyperbolic equations [4].

  6. Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension.

    Science.gov (United States)

    Castelain, V; Hervé, P; Lecarpentier, Y; Duroux, P; Simonneau, G; Chemla, D

    2001-03-15

    The purpose of this time-domain study was to compare pulmonary artery (PA) pulse pressure and wave reflection in chronic pulmonary thromboembolism (CPTE) and primary pulmonary hypertension (PPH). Pulmonary artery pressure waveform analysis provides a simple and accurate estimation of right ventricular afterload in the time-domain. Chronic pulmonary thromboembolism and PPH are both responsible for severe pulmonary hypertension. Chronic pulmonary thromboembolism and PPH predominantly involve proximal and distal arteries, respectively, and may lead to differences in PA pressure waveform. High-fidelity PA pressure was recorded in 14 patients (7 men/7 women, 46 +/- 14 years) with CPTE (n = 7) and PPH (n = 7). We measured thermodilution cardiac output, mean PA pressure (MPAP), PA pulse pressure (PAPP = systolic - diastolic PAP) and normalized PAPP (nPAPP = PPAP/MPAP). Wave reflection was quantified by measuring Ti, that is, the time between pressure upstroke and the systolic inflection point (Pi), deltaP, that is, the systolic PAP minus Pi difference, and the augmentation index (deltaP/PPAP). At baseline, CPTE and PPH had similar cardiac index (2.4 +/- 0.4 vs. 2.5 +/- 0.5 l/min/m2), mean PAP (59 +/- 9 vs. 59 +/- 10 mm Hg), PPAP (57 +/- 13 vs. 53 +/- 13 mm Hg) and nPPAP (0.97 +/- 0.16 vs. 0.89 +/- 0.13). Chronic pulmonary thromboembolism had shorter Ti (90 +/- 17 vs. 126 +/- 16 ms, p PPAP (0.26 +/- 0.01 vs. 0.09 +/- 0.07, p < 0.01). Our study indicated that: 1) CPTE and PPH with severe pulmonary hypertension had similar PA pulse pressure, and 2) wave reflection is elevated in both groups, and CPTE had increased and anticipated wave reflection as compared with PPH, thus suggesting differences in the pulsatile component of right ventricular afterload.

  7. Numerical analysis on the absorption, reflection and transmission of radar waves by a uniform magnetized plasma slab

    International Nuclear Information System (INIS)

    Tang Deli; Sun Aiping; Qiu Xiaoming

    2002-01-01

    The absorption, reflection, and transmission of radar waves by a uniform and magnetized plasma slab are studied. The effect of various plasma parameters and different values of magnetic field intensity on the absorbed, reflected and transmitted power are discussed. The calculated results show that the effects of magnetic field on the absorbed power as well as the frequency band of resonant absorption are very significant. More than 90% of radar wave power can be absorbed and the resonant absorption band is about 2G Hz

  8. Construction and use of an optical semi-automatic titrator employing the technique of reflectance photometry

    International Nuclear Information System (INIS)

    Hwang, Hoon

    2001-01-01

    An optical semi-automatic titrator was constructed employing the technique of the reflectance spectrometry and was tested for the determination of the end points of the acid-base, precipitation, and EDTA titrations. And since the current optical semi-automatic titrator built on the principle of the reflectance spectrometry could be successfully used even for the determination of the end of the end point in the precipitation titration where the solid particles are formed during the titration process, it was found to be feasible that a completely automated optical titrator would be designed and built based on the current findings

  9. White coat hypertension is more risky than prehypertension: important role of arterial wave reflections.

    Science.gov (United States)

    Sung, Shih-Hsien; Cheng, Hao-Min; Wang, Kang-Ling; Yu, Wen-Chung; Chuang, Shao-Yuan; Ting, Chih-Tai; Lakatta, Edward G; Yin, Frank C P; Chou, Pesus; Chen, Chen-Huan

    2013-06-01

    Arterial aging may link cardiovascular risk to white coat hypertension (WCH). The aims of the present study were to investigate the role of arterial aging in the white coat effect, defined as the difference between office and 24-hour ambulatory systolic blood pressures, and to compare WCH with prehypertension (PH) with respect to target organ damage and long-term cardiovascular mortality. A total of 1257 never-been-treated volunteer subjects from a community-based survey were studied. WCH and PH were defined by office and 24-hour ambulatory blood pressures. Left ventricular mass index, carotid intima-media thickness, estimated glomerular filtration rate, carotid-femoral pulse wave velocity, carotid augmentation index, amplitude of the reflection pressure wave, and 15-year cardiovascular mortality were determined. Subjects with WCH were significantly older and had greater body mass index, blood pressure values, intima-media thickness, carotid-femoral pulse wave velocity, augmentation index, amplitude of the backward pressure wave, and a lower estimated glomerular filtration rate than PH. Amplitude of the backward pressure wave was the most important independent correlate of the white coat effect in multivariate analysis (model r(2)=0.451; partial r(2)/model r(2)=90.5%). WCH had significantly greater cardiovascular mortality than PH (hazard ratio, 2.94; 95% confidence interval, 1.09-7.91), after accounting for age, sex, body mass index, smoking, fasting plasma glucose, and total cholesterol/high-density lipoprotein-cholesterol ratio. Further adjustment of the model for amplitude of the backward pressure wave eliminated the statistical significance of the WCH effect. In conclusion, the white coat effect is mainly caused by arterial aging. WCH carries higher risk for cardiovascular mortality than PH, probably via enhanced wave reflections that accompany arterial aging.

  10. High-gain thompson-scattering X-ray free-electron laser by time-synchronic laterally tilted optical wave

    Science.gov (United States)

    Chang, Chao; Tang, Chuanxiang; Wu, Juhao

    2017-05-09

    An improved optical undulator for use in connection with free electron radiation sources is provided. A tilt is introduced between phase fronts of an optical pulse and the pulse front. Two such pulses in a counter-propagating geometry overlap to create a standing wave pattern. A line focus is used to increase the intensity of this standing wave pattern. An electron beam is aligned with the line focus. The relative angle between pulse front and phase fronts is adjusted such that there is a velocity match between the electron beam and the overlapping optical pulses along the line focus. This allows one to provide a long interaction length using short and intense optical pulses, thereby greatly increasing the radiation output from the electron beam as it passes through this optical undulator.

  11. A Tutorial on Optical Feeding of Millimeter-Wave Phased Array Antennas for Communication Applications

    Directory of Open Access Journals (Sweden)

    Ivan Aldaya

    2015-01-01

    Full Text Available Given the interference avoidance capacity, high gain, and dynamical reconfigurability, phased array antennas (PAAs have emerged as a key enabling technology for future broadband mobile applications. This is especially important at millimeter-wave (mm-wave frequencies, where the high power consumption and significant path loss impose serious range constraints. However, at mm-wave frequencies the phase and amplitude control of the feeding currents of the PAA elements is not a trivial issue because electrical beamforming requires bulky devices and exhibits relatively narrow bandwidth. In order to overcome these limitations, different optical beamforming architectures have been presented. In this paper we review the basic principles of phased arrays and identify the main challenges, that is, integration of high-speed photodetectors with antenna elements and the efficient optical control of both amplitude and phase of the feeding current. After presenting the most important solutions found in the literature, we analyze the impact of the different noise sources on the PAA performance, giving some guidelines for the design of optically fed PAAs.

  12. Modelling the performance of interferometric gravitational-wave detectors with realistically imperfect optics

    Science.gov (United States)

    Bochner, Brett

    1998-12-01

    The LIGO project is part of a world-wide effort to detect the influx of Gravitational Waves upon the earth from astrophysical sources, via their interaction with laser beams in interferometric detectors that are designed for extraordinarily high sensitivity. Central to the successful performance of LIGO detectors is the quality of their optical components, and the efficient optimization of interferometer configuration parameters. To predict LIGO performance with optics possessing realistic imperfections, we have developed a numerical simulation program to compute the steady-state electric fields of a complete, coupled-cavity LIGO interferometer. The program can model a wide variety of deformations, including laser beam mismatch and/or misalignment, finite mirror size, mirror tilts, curvature distortions, mirror surface roughness, and substrate inhomogeneities. Important interferometer parameters are automatically optimized during program execution to achieve the best possible sensitivity for each new set of perturbed mirrors. This thesis includes investigations of two interferometer designs: the initial LIGO system, and an advanced LIGO configuration called Dual Recycling. For Initial-LIGO simulations, the program models carrier and sideband frequency beams to compute the explicit shot-noise-limited gravitational wave sensitivity of the interferometer. It is demonstrated that optics of exceptional quality (root-mean-square deformations of less than ~1 nm in the central mirror regions) are necessary to meet Initial-LIGO performance requirements, but that they can be feasibly met. It is also shown that improvements in mirror quality can substantially increase LIGO's sensitivity to selected astrophysical sources. For Dual Recycling, the program models gravitational- wave-induced sidebands over a range of frequencies to demonstrate that the tuned and narrow-banded signal responses predicted for this configuration can be achieved with imperfect optics. Dual Recycling

  13. Dimensional crossover in Bragg scattering from an optical lattice

    International Nuclear Information System (INIS)

    Slama, S.; Cube, C. von; Ludewig, A.; Kohler, M.; Zimmermann, C.; Courteille, Ph.W.

    2005-01-01

    We study Bragg scattering at one-dimensional (1D) optical lattices. Cold atoms are confined by the optical dipole force at the antinodes of a standing wave generated inside a laser-driven high-finesse cavity. The atoms arrange themselves into a chain of pancake-shaped layers located at the antinodes of the standing wave. Laser light incident on this chain is partially Bragg reflected. We observe an angular dependence of this Bragg reflection which is different from what is known from crystalline solids. In solids, the scattering layers can be taken to be infinitely spread (three-dimensional limit). This is not generally true for an optical lattice consistent of a 1D linear chain of pointlike scattering sites. By an explicit structure factor calculation, we derive a generalized Bragg condition, which is valid in the intermediate regime. This enables us to determine the aspect ratio of the atomic lattice from the angular dependance of the Bragg scattered light

  14. Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    We report an optically pumped green perovskite vertical-cavity surface-emitter operating in continuous-wave (CW) with a power density threshold of ~89 kW/cm2. The device has an active region of CH3NH3PbBr3 embedded in a dielectric microcavity; this feat was achieved with a combination of optimal spectral alignment of the optical cavity modes with the perovskite optical gain, an adequate Q-factor of the microcavity, adequate thermal stability, and improved material quality with a smooth, passivated, and annealed thin active layer. Our results signify a way towards efficient CW perovskite emitter operation and electrical injection using low-cost fabrication methods for addressing monolithic optoelectronic integration and lasing in the green gap.

  15. Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiangping Chen

    2015-05-01

    Full Text Available In this study, we developed a reflective localized surface plasmon resonance (LSPR optical fiber sensor, based on silver nanoparticles (Ag NPs. To enhance the sensitivity of the LSPR optical sensor, two key parameters were optimized, the length of the sensing area and the coating time of the Ag NPs. A sensing length of 1.5 cm and a 1-h coating time proved to be suitable conditions to produce highly sensitive sensors for biosensing. The optimized sensor has a high refractive index sensitivity of 387 nm/RIU, which is much higher than that of other reported individual silver nanoparticles in solutions. Moreover, the sensor was further modified with antigen to act as a biosensor. Distinctive wavelength shifts were found after each surface modification step. In addition, the reflective LSPR optical fiber sensor has high reproducibility and stability.

  16. Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams

    Science.gov (United States)

    Fleming, A.; Folsom, C.; Jensen, C.; Ban, H.

    2016-12-01

    A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.

  17. Analysis of Wave Reflection from Structures with Berms Through an Extensive Database and 2DV Numerical Modelling

    DEFF Research Database (Denmark)

    Zanuttigh, Barbara; van der Meer, Jentsje W.; Andersen, Thomas Lykke

    2009-01-01

    This paper analyses wave reflection from permeable structures with a berm, including reshaping cases. Data are obtained from recent wave flume experiments and from 2DV numerical simulations performed with the COBRAS-UC code. The objectives of this research were to identify the proper representation...

  18. Theoretical comparison of light scattering and guided wave coupling in multilayer coated optical components with random interface roughness

    International Nuclear Information System (INIS)

    Elson, J.M.

    1995-01-01

    In this work, we use first-order perturbation theory to calculate and then compare the (1) angular distribution of incident light scattered from a multilayer-coated optical component and (2) the angular distribution of incident light coupled into guided waves supported by the multilayer component. The incident beam is assumed to be a monochromatic plane wave and the scattering/coupling is assumed to be caused by roughness at the interfaces of the optical component. Numerical results show that for high quality (low root mean square roughness) optical components, comparison of the relative amounts of incident energy (1) scattered out of the specular beam and (2) coupled into guided waves are comparable. It follows that the guided wave energy will further contribute to the scattered field via radiative decay or be converted to heat. Thus, this work can help provide an estimation of when guided wave coupling can occur along with the expected magnitude. (orig.)

  19. Wave optics modeling of real-time holographic wavefront compensation systems using OSSim

    Science.gov (United States)

    Carbon, Margarita A.; Guthals, Dennis M.; Logan, Jerry D.

    2005-08-01

    OSSim (Optical System Simulation) is a wave-optics, time-domain simulation toolbox with both optical and data processing components developed for adaptive optics (AO) systems. Diffractive wavefront control elements have recently been added that accurately model optically and electrically addressed spatial light modulators as real time holographic (RTH) devices in diffractive wavefront control systems. The developed RTH toolbox has found multiple applications for a variety of Boeing programs in solving problems of AO system analysis and design. Several complex diffractive wavefront control systems have been modeled for compensation of static and dynamic aberrations such as imperfect segmented primary mirrors and atmospheric and boundary layer turbulence. The results of OSSim simulations of RTH wavefront compensation show very good agreement with available experimental data.

  20. Magnetospherically reflected chorus waves revealed by ray tracing with CLUSTER data

    Directory of Open Access Journals (Sweden)

    M. Parrot

    Full Text Available This paper is related to the propagation characteristics of a chorus emission recorded simultaneously by the 4 satellites of the CLUSTER mission on 29 October 2001 between 01:00 and 05:00 UT. During this day, the spacecraft (SC 1, 2, and 4 are relatively close to each other but SC3 has been delayed by half an hour. We use the data recorded aboard CLUSTER by the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. Dedicated software processes this spectral matrix in order to determine the wave normal directions relative to the Earth’s magnetic field. This calculation is done for the 4 satellites at different times and different frequencies and allows us to check the directions of these waves. Measurements around the magnetic equator show that the parallel component of the Poynting vector changes its sign when the satellites cross the equator region. It indicates that the chorus waves propagate away from this region which is considered as the source area of these emissions. This is valid for the most intense waves observed on the magnetic and electric power spectrograms. But it is also observed on SC1, SC2, and SC4 that lower intensity waves propagate toward the equator simultaneously with the SC3 intense chorus waves propagating away from the equator. Both waves are at the same frequency. Using the wave normal directions of these waves, a ray tracing study shows that the waves observed by SC1, SC2, and SC4 cross the equatorial plane at the same location as the waves observed by SC3. SC3 which is 30 minutes late observes the waves that originate first from the equator; meanwhile, SC1, SC2, and SC4 observe the same waves that have suffered a Lower Hybrid Resonance (LHR reflection at low altitudes (based on the ray tracing analysis and now return to the equator at a different location with a lower intensity. Similar phenomenon is observed when all SC are on the other side

  1. Magnetospherically reflected chorus waves revealed by ray tracing with CLUSTER data

    Directory of Open Access Journals (Sweden)

    M. Parrot

    2003-05-01

    Full Text Available This paper is related to the propagation characteristics of a chorus emission recorded simultaneously by the 4 satellites of the CLUSTER mission on 29 October 2001 between 01:00 and 05:00 UT. During this day, the spacecraft (SC 1, 2, and 4 are relatively close to each other but SC3 has been delayed by half an hour. We use the data recorded aboard CLUSTER by the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. Dedicated software processes this spectral matrix in order to determine the wave normal directions relative to the Earth’s magnetic field. This calculation is done for the 4 satellites at different times and different frequencies and allows us to check the directions of these waves. Measurements around the magnetic equator show that the parallel component of the Poynting vector changes its sign when the satellites cross the equator region. It indicates that the chorus waves propagate away from this region which is considered as the source area of these emissions. This is valid for the most intense waves observed on the magnetic and electric power spectrograms. But it is also observed on SC1, SC2, and SC4 that lower intensity waves propagate toward the equator simultaneously with the SC3 intense chorus waves propagating away from the equator. Both waves are at the same frequency. Using the wave normal directions of these waves, a ray tracing study shows that the waves observed by SC1, SC2, and SC4 cross the equatorial plane at the same location as the waves observed by SC3. SC3 which is 30 minutes late observes the waves that originate first from the equator; meanwhile, SC1, SC2, and SC4 observe the same waves that have suffered a Lower Hybrid Resonance (LHR reflection at low altitudes (based on the ray tracing analysis and now return to the equator at a different location with a lower intensity. Similar phenomenon is observed when all SC are on the other side

  2. The effects of scattering on the relative LPI performance of optical and mm-wave systems

    Science.gov (United States)

    Oetting, John; Hampton, Jerry

    1988-01-01

    Previous results comparing the LPI performance of optical and millimeter-wave satellite systems is extended to include the effects of scattering on optical LPI performance. The LPI figure of merit used to compare the two media is the circular equivalent vulnerability radius (CEVR). The CEVR is calculated for typical optical and spread spectrum millimeter-wave systems, and the LPI performance tradeoffs available with each medium are compared. Attention is given to the possibility that light will be scattered into the interceptor's FOV and thereby enable detection in geometries in which interception of the main beam is impossible. The effects of daytime vs. nighttime operation of the optical LPI system are also considered. Some illustrative results for the case of a ground-to-space uplink to a low earth orbit satellite are presented, along with some conclusions and unresolved issues for further study.

  3. Reflected ray retrieval from radio occultation data using radio holographic filtering of wave fields in ray space

    Science.gov (United States)

    Gorbunov, Michael E.; Cardellach, Estel; Lauritsen, Kent B.

    2018-03-01

    Linear and non-linear representations of wave fields constitute the basis of modern algorithms for analysis of radio occultation (RO) data. Linear representations are implemented by Fourier Integral Operators, which allow for high-resolution retrieval of bending angles. Non-linear representations include Wigner Distribution Function (WDF), which equals the pseudo-density of energy in the ray space. Representations allow for filtering wave fields by suppressing some areas of the ray space and mapping the field back from the transformed space to the initial one. We apply this technique to the retrieval of reflected rays from RO observations. The use of reflected rays may increase the accuracy of the retrieval of the atmospheric refractivity. Reflected rays can be identified by the visual inspection of WDF or spectrogram plots. Numerous examples from COSMIC data indicate that reflections are mostly observed over oceans or snow, in particular over Antarctica. We introduce the reflection index that characterizes the relative intensity of the reflected ray with respect to the direct ray. The index allows for the automatic identification of events with reflections. We use the radio holographic estimate of the errors of the retrieved bending angle profiles of reflected rays. A comparison of indices evaluated for a large base of events including the visual identification of reflections indicated a good agreement with our definition of reflection index.

  4. Reflected ray retrieval from radio occultation data using radio holographic filtering of wave fields in ray space

    Directory of Open Access Journals (Sweden)

    M. E. Gorbunov

    2018-03-01

    Full Text Available Linear and non-linear representations of wave fields constitute the basis of modern algorithms for analysis of radio occultation (RO data. Linear representations are implemented by Fourier Integral Operators, which allow for high-resolution retrieval of bending angles. Non-linear representations include Wigner Distribution Function (WDF, which equals the pseudo-density of energy in the ray space. Representations allow for filtering wave fields by suppressing some areas of the ray space and mapping the field back from the transformed space to the initial one. We apply this technique to the retrieval of reflected rays from RO observations. The use of reflected rays may increase the accuracy of the retrieval of the atmospheric refractivity. Reflected rays can be identified by the visual inspection of WDF or spectrogram plots. Numerous examples from COSMIC data indicate that reflections are mostly observed over oceans or snow, in particular over Antarctica. We introduce the reflection index that characterizes the relative intensity of the reflected ray with respect to the direct ray. The index allows for the automatic identification of events with reflections. We use the radio holographic estimate of the errors of the retrieved bending angle profiles of reflected rays. A comparison of indices evaluated for a large base of events including the visual identification of reflections indicated a good agreement with our definition of reflection index.

  5. ALFVEN WAVE REFLECTION AND TURBULENT HEATING IN THE SOLAR WIND FROM 1 SOLAR RADIUS TO 1 AU: AN ANALYTICAL TREATMENT

    International Nuclear Information System (INIS)

    Chandran, Benjamin D. G.; Hollweg, Joseph V.

    2009-01-01

    We study the propagation, reflection, and turbulent dissipation of Alfven waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfven critical point-that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfven-wave reflection and turbulent heating into fluid models of the solar wind.

  6. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    International Nuclear Information System (INIS)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-01-01

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility

  7. Measurement and modelization of silica opal reflection properties: Optical determination of the silica index

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Frigerio, Jean-Marc; Coolen, Laurent; Schwob, Catherine; Nga, Pham Thu; Gallas, Bruno; Maître, Agnès

    2012-10-01

    Self-assembled artificial opals (in particular silica opals) constitute a model system to study the optical properties of three-dimensional photonic crystals. The silica optical index is a key parameter to correctly describe an opal but is difficult to measure at the submicrometer scale and usually treated as a free parameter. Here, we propose a method to extract the silica index from the opal reflection spectra and we validate it by comparison with two independent methods based on infrared measurements. We show that this index gives a correct description of the opal reflection spectra, either by a band structure or by a Bragg approximation. In particular, we are able to provide explanations in quantitative agreement with the measurements for two features : the observation of a second reflection peak in specular direction, and the quasicollapse of the p-polarized main reflection peak at a typical angle of 54∘.

  8. Frequency modulation and compression of optical pulses in an optical fibre with a travelling refractive-index wave

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskii, I O; Lapin, V A; Sementsov, D I [Ulyanovsk State University, Ulyanovsk (Russian Federation)

    2016-01-31

    We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)

  9. Polarization ray tracing in anisotropic optically active media. II. Theory and physics

    International Nuclear Information System (INIS)

    McClain, S.C.; Hillman, L.W.; Chipman, R.A.

    1993-01-01

    Refraction, reflection, and amplitude relations are derived that apply to polarization ray tracing in anisotropic, optically active media such as quartz. The constitutive relations for quartz are discussed. The refractive indices and polarization states associated with the two modes of propagation are derived as a function of wave direction. A procedure for refracting at any uniaxial or optically active interface is derived that computes both the ray direction and the wave direction. A method for computing the optical path length is given, and Fresnel transmission and ref lection equations are derived from boundary conditions on the electromagnetic fields. These ray-tracing formulas apply to uniaxial, optically active media and therefore encompass uniaxial, non-optically active materials and isotropic, optically active materials

  10. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects

    OpenAIRE

    David P. Roy; Zhongbin Li; Hankui K. Zhang

    2017-01-01

    Optical wavelength satellite data have directional reflectance effects over non-Lambertian surfaces, described by the bidirectional reflectance distribution function (BRDF). The Sentinel-2 multi-spectral instrument (MSI) acquires data over a 20.6° field of view that have been shown to have non-negligible BRDF effects in the visible, near-infrared, and short wave infrared bands. MSI red-edge BRDF effects have not been investigated. In this study, they are quantified by an examination of 6.6 mi...

  11. Experiment for 3-component S-wave reflection survey. Part 3; Sanseibun S ha hanshaho no kiso jikken. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kano, N; Yamaguchi, K; Yokota, T; Kiguchi, T [Geological Survey of Japan, Tsukuba (Japan)

    1996-10-01

    Anisotropy has been investigated using S-wave as a technique for detecting fractures. In this study, fundamental experiments were carried out with slightly changing the measuring conditions at a place where anisotropy was expected. This paper describes the fundamental data acquisition of anisotropy analysis using S-wave, and a part of the results. The experiments were conducted on the agricultural road in Yamadera district, Matsuyama-machi, Yamagata Prefecture. Two flat unpaved roads meeting at right angles were used as traverse lines. In this place, several reflection surfaces were certainly detected by P-wave, and anisotropy of S-wave was confirmed from the velocity of refracted wave of S-wave. Data were processed for individual traverse lines meeting at right angles. Firstly, signal sweeping, correlation, and vertical superposition were made. Six kinds of data were prepared, i.e., three-component receiving records of data at 0{degree} of generating direction and three-component receiving records of data at 90{degree} of generating direction. Records of T-component at 0{degree} and R-component at 90{degree} were used for processing of the seismic reflection method. These records would be considered to be data of SH-wave and SV-wave, respectively. 4 figs.

  12. 320-to-40-Gb/s optical demultiplexing using four-wave mixing in a quantum-dot soa

    NARCIS (Netherlands)

    Matsuura, M.; Gomez-Agis, F.; Calabretta, N.; Raz, O.; Dorren, H.J.S.

    2012-01-01

    We report, for the first time, the optical demultiplexing of a 320-Gb/s intensity-modulated signal using four-wave mixing in a quantum-dot semiconductor optical amplifier. Error-free operations were successfully achieved for all the 40-Gb/s channels extracted by the optical demultiplexer.

  13. [Mechanisms of primary reception of electromagnetic waves of optical range].

    Science.gov (United States)

    Huliar, S O; Lymans'kyĭ, Iu P

    2003-01-01

    An existence of separate functional system of regulation of electromagnetic balance of organism has been substantiated and a working conception of light therapy has been formulated. As a basis, there is a possibility to use the acupuncture points for input of biologically necessary electromagnetic waves into the system of their conductors in a body that might be considered as a transport facility for energy of the polarized electromagnetic waves. Zones-recipients are organs having an electromagnetic disbalance due to excess of biologically inadequate radiation and being the targets for peroxide oxidation. Foremost, a body has the neurohormonal and immune regulatory systems. Electromagnetic stimulation or modification of functions of the zones-recipients determines the achievement of therapeutic and useful effects, and their combination with local reparative processes allows to attain a clinical goal. We represent own and literary experimental data about the development of physiological responses (analgesia) to BIOPTRON-light exposure on the acupuncture points or biologically active zones. We show the experimental facts in support of a hypothesis that a living organism can perceive an action of the electromagnetic fields of optical range not only via the visual system, but also through the off-nerve receptors (specific energy-sensitive proteins detecting critical changes of energy in cells and functioning as the "sensory" cell systems), as well as via the acupuncture points. It confirms an important role of the electromagnetic waves of optical range in providing normal vital functions of living organisms. A current approach to BIOPTRON light therapy (by polarized polychromatic coherent low energy light) consists in combined (local and system) exposure of the electromagnetic waves within the biologically necessary range.

  14. Polarization ray tracing in anisotropic optically active media. I. Algorithms

    International Nuclear Information System (INIS)

    McClain, S.C.; Hillman, L.W.; Chipman, R.A.

    1993-01-01

    Procedures for performing polarization ray tracing through birefringent media are presented in a form compatible with the standard methods of geometrical ray tracing. The birefringent materials treated include the following: anisotropic optically active materials such as quartz, non-optically active uniaxial materials such as calcite, and isotropic optically active materials such as mercury sulfide and organic liquids. Refraction and reflection algorithms are presented that compute both ray directions and wave directions. Methods for computing polarization modes, refractive indices, optical path lengths, and Fresnel transmission and reflection coefficients are also specified. A numerical example of these algorithms is given for analyzing the field of view of a quartz rotator. 37 refs., 3 figs

  15. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal

    2017-05-08

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  16. Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength

    KAUST Repository

    Alias, Mohd Sharizal; Liu, Zhixiong; Alatawi, Abdullah; Ng, Tien Khee; Wu, Tao; Ooi, Boon S.

    2017-01-01

    We demonstrate the lasing of a perovskite vertical-cavity surface-emitting laser at green wavelengths, which operates under continuous-wave optical pumping at room-temperature by embedding hybrid perovskite between dielectric mirrors deposited at low-temperature.

  17. CONTRIBUTION OF VELOCITY VORTICES AND FAST SHOCK REFLECTION AND REFRACTION TO THE FORMATION OF EUV WAVES IN SOLAR ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Ning [School of Tourism and Geography, Yunnan Normal University, Kunming, Yunnan 650031 (China); Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2015-06-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.

  18. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    Science.gov (United States)

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-09-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  19. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    International Nuclear Information System (INIS)

    Zhang Jiefang; Meng Jianping; Wu Lei; Li Yishen; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  20. Full-field transmission-type angle-deviation optical microscope with reflectivity-height transformation.

    Science.gov (United States)

    Chiu, Ming-Hung; Tan, Chen-Tai; Tsai, Ming-Hung; Yang, Ya-Hsin

    2015-10-01

    This full-field transmission-type three-dimensional (3D) optical microscope is constructed based on the angle deviation method (ADM) and the algorithm of reflectivity-height transformation (RHT). The surface height is proportional to the deviation angle of light passing through the object. The angle deviation and surface height can be measured based on the reflectivity closed to the critical angle using a parallelogram prism and two CCDs.

  1. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    Science.gov (United States)

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  2. Reflective Optics for Microdiffraction

    International Nuclear Information System (INIS)

    Ice, G.E.

    2007-01-01

    Nondispersive optics are essential for emerging microdiffraction and nanobeam research. Here we describe extensions to traditional Kirkpatrick Baez optics required to develop nondispersive microdiffraction and nanoprobe optics with 1-10 nm spatial resolution

  3. Use of analyte-modulated modal power distribution in multimode optical fibers for simultaneous single-wavelength evanescent-wave refractometry and spectrometry.

    Science.gov (United States)

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1999-11-01

    A new method is described for the simultaneous determination of absorbance and refractive index of a sample medium. The method is based on measurement of the analyte-modulated modal power distribution (MPD) in a multimode waveguide. In turn, the MPD is quantified by the far-field spatial pattern and intensity of light, i.e., the Fraunhofer diffraction pattern (registered on a CCD camera), that emerges from a multimode optical fiber. Operationally, light that is sent down the fiber interacts with the surrounding analyte-containing medium by means of the evanescent wave at the fiber boundary. The light flux in the propagating beam and the internal reflection angles within the fiber are both affected by optical absorption connected with the analyte and by the refractive index of the analyte-containing medium. In turn, these angles are reflected in the angular divergence of the beam as it leaves the fiber. As a result, the Fraunhofer diffraction pattern of that beam yields two parameters that can, together, be used to deduce refractive index and absorbance. This MPD based detection offers important advantages over traditional evanescent-wave detection strategies which rely on recording only the total transmitted optical power or its lost fraction. First, simultaneous determination of sample refractive index and absorbance is possible at a single probe wavelength. Second, the sensitivity of refractometric and absorption measurements can be controlled simply, either by adjusting the distance between the end face of the fiber and the CCD detector or by monitoring selected modal groups at the fiber output. As a demonstration of these capabilities, several weakly absorbing solutions were examined, with refractive indices in the range from 1.3330 to 1.4553 and with absorption coefficients in the range 0-16 cm-1. The new detection strategy is likely to be important in applications in which sample coloration varies and when it is necessary to compensate for variations in the

  4. Reflective all-sky thermal infrared cloud imager.

    Science.gov (United States)

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  5. Modelling the optical response of human retinal photoreceptors to plane wave illumination with the finite integration technique

    Science.gov (United States)

    Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.

    2009-02-01

    The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).

  6. Focusing optical waves with a rotationally symmetric sharp-edge aperture

    Science.gov (United States)

    Hu, Yanwen; Fu, Shenhe; Li, Zhen; Yin, Hao; Zhou, Jianying; Chen, Zhenqiang

    2018-04-01

    While there has been various kinds of patterned structures proposed for wave focusing, these patterned structures usually involve complicated lithographic techniques since the element size of the patterned structures should be precisely controlled in microscale or even nanoscale. Here we propose a new and straightforward method for focusing an optical plane wave in free space with a rotationally symmetric sharp-edge aperture. The focusing phenomenon of wave is realized by superposition of a portion of the higher-order symmetric plane waves generated from the sharp edges of the apertures, in contrast to previously focusing techniques which usually depend on a curved phase. We demonstrate both experimentally and theoretically the focusing effect with a series of apertures having different rotational symmetry, and find that the intensity of the hotspots could be controlled by the symmetric strength of the sharp-edge apertures. The presented results would advance the conventional wisdom that light would diffract in all directions and become expanding when it propagates through an aperture. The proposed method is easy to be processed, and might open potential applications in interferometry, image, and superresolution.

  7. Electro-optically Induced and Manipulated Terahertz Waves from Fe-doped InGaAs Surfaces

    Science.gov (United States)

    Hatem, O.

    2018-03-01

    We demonstrate the presence of dual simultaneous nonlinear mechanisms: field-induced optical rectification (FIOR) and field-induced surge current (FISC) for the generation of terahertz (THz) pulses from p-type and n-type Fe:In0.53Ga0.47As surfaces upon excitation with femtosecond laser pulses centered at 800 nm wavelength. Experimental investigations of the dependence of the generated THz waves on the incident angular optical polarization, optical irradiance, and the direction and magnitude of applied electric DC fields give confirming results to the proposed THz generation mechanisms. Applying external DC electric fields in the plane of the incident optical field shows efficient capability in manipulating the direction and phase of the generated THz waves, and controlling the refractive index of Fe:In0.53Ga0.47As material in the THz range, in addition to enhancing the emitted THz power up to two orders of magnitude. The fast and reliable response of Fe:In0.53Ga0.47As to the changes in the direction and magnitude of the optical and electrical fields suggests its use in amplitude and phase modulators, and ultrafast optoelectronic systems.

  8. BRIEF COMMUNICATIONS: Strong reflection of a series of pulses from a four-wave mirror with thermal nonlinearity under parametric feedback conditions

    Science.gov (United States)

    Barashkov, M. S.; Bel'dyugin, Igor'M.; Zolotarev, M. V.; Kruzhilin, Yu I.; Krymskiĭ, M. I.; Oshkin, S. P.; Starkov, G. S.; Umnov, A. F.; Kharchenko, M. A.

    1989-04-01

    A four-wave mirror exhibiting a thermal nonlinearity was used in a study of the interaction of concurrent waves under parametric feedback conditions in the presence of a nonreciprocal element. Strong reflection of a series of pulses of ~ 300 ns duration from a neodymium glass laser was demonstrated: the maximum reflection coefficient was in excess of 30. An analysis was made of the quality of the radiation reflected from this four-mirror parametric feedback system. A considerable reduction was observed in the steady-state threshold for the operation of this mirror with a thermal nonlinearity when the angles of convergence of the interacting beams were small compared with the case of head-on collision of the waves.

  9. Reflectivity of stimulated back scattering in a homogeneous-slab medium in the case of negligible pump-wave damping

    International Nuclear Information System (INIS)

    Cho, G.S.; Cho, B.H.

    1981-01-01

    As to the backscatter instability which is one of nonlinear three-wave resonant interactions, the reflectivity(r) in the case of homogeneous-slab medium is calculated, assuming all the three wavepackets negligible damping caused by medium. The expression has turned out such that r = tanh 2 KAsub(p)L, where K, Asub(p), and L are the constant coupling coefficient, the constant pump-wave amplitude, and the thickness of the medium engaged in the interaction each. When this result is interpreted in terms of the stimulated Brillouin back-scattering in a so-called underdense plasma in controlled fusion, we find the reflectivity twice as large as that by others in the limit of large pump-wave damping, and unfitting to former experiments in the independence on the incident laser-light intensity. We see the incompatibility rise chiefly from neglecting the damping of pump-wave in the plasma. In contrast to the former results by others in the limit of large pump-wave damping, our result might be regarded as that for cases of negligible pump-wave damping, in general stimulated back-scattering phenomena. (author)

  10. Dynamic optical routing and simultaneous generation of millimeter-wave signals for in-building access network

    NARCIS (Netherlands)

    Zou, S.; Okonkwo, C.M.; Cao, Z.; Tran, N.C.; Tangdiongga, E.; Koonen, A.M.J.

    2012-01-01

    Two-stage optical routing using SOA and integrated micro-ring resonator, and remote generation of millimeter-wave signals by optical frequency multiplication is demonstrated for inbuilding network. Both 150Mb/s 64-QAM and 802.11a WLAN signal at 38GHz are transmitted.

  11. Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave

    International Nuclear Information System (INIS)

    Maestre, H; Torregrosa, A J; Capmany, J

    2013-01-01

    In this letter we present an intracavity pumped continuous wave (CW) doubly resonant optical parametric oscillator (OPO) based on Cr 3+ :LiCaAlF 6 (Cr:LiCAF) as the material generating the OPO pump wave and periodically poled stoichiometric lithium tantalate (PPSLT) as the nonlinear material. The OPO pump wave is spectrally narrowed and tuned by means of an external cavity, thus allowing self-injection locking of the OPO pump wavelength. When operated near degeneracy, the constructed OPO enables a fast tuning of the parametrically generated wavelengths in response to small perturbations of the phase-matching condition. The Cr:LiCAF emission band is especially well suited to provide dual-wavelength oscillation in the optical communications 1550 nm band as a result of the parametric oscillation in PPSLT. (letter)

  12. An Optical Fiber Read Out Method for a Reflective Microcantilever Biosensor

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2013-03-01

    Full Text Available An effective optical read out approach based on fiber reflective is presented to detect bends of a biomaterial microcantilever. The microcantilever was fabricated on single crystalline SOI wafer using a series of side definitions and backside wet/dry etchings. A Cr/Au layer with 30 nm Cr and 50 nm Au layer was deposited for the immobilized of bimolecular on the cantilever surface and for reflecting the light back into the fiber, the different light intensities means different bimolecular concentrations. The noncoherent light source is a super luminescent LED. Gradient index lens as a collimator and 50:50 optical coupler and signal modefiber was used to transmit light. Two PINFETs were used to convert the reflecting the light intensities and the light sources into electronic signals, two ADCs convert the signal into digital signals, a MPU was used to eliminate the fluctuation of the light source error. The method can has got high sensitivity is 6507.59 mV/um. Though the experiment, the cantilever biosensor can detect glucose, measurement results clearly demonstrate that the output voltage induced by the microcantilevers bending is proportional to the glucose concentrations and the sensitivity is up to 0.1V/mM, which is enough for glucose real-time trace detection.

  13. Demonstration of optical rogue waves using a laser diode emitting at 980  nm and a fiber Bragg grating.

    Science.gov (United States)

    Lee, Min Won; Baladi, Fadwa; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A

    2016-10-01

    Rogue waves are observed for the first time, to the best of our knowledge, in a 980 nm laser diode subject to filtered optical feedback via a fiber Bragg grating. By counting the number of rogue waves in a fixed time window, a rogue wave map is established experimentally as a function of both the optical feedback ratio and the laser current. The comparison with low frequency fluctuations (LFFs) reveals that the rogue waves observed in our system are, in fact, LFF jump-ups.

  14. Advances in one-dimensional wave mechanics. Towards a unified classical view

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhuangqi [Shanghai Jiao Tong Univ., (China). Dept. of Physics and Astronomy; Yin, Cheng [Hohai Univ., Changzhou, Jiangsu (China). College of IoT Engineering

    2014-06-01

    Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.

  15. Advances in one-dimensional wave mechanics. Towards a unified classical view

    International Nuclear Information System (INIS)

    Cao, Zhuangqi; Yin, Cheng

    2014-01-01

    Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.

  16. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  17. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  18. Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy

    Science.gov (United States)

    Belau, Markus; Ninck, Markus; Hering, Gernot; Spinelli, Lorenzo; Contini, Davide; Torricelli, Alessandro; Gisler, Thomas

    2010-09-01

    We introduce a method for noninvasively measuring muscle contraction in vivo, based on near-infrared diffusing-wave spectroscopy (DWS). The method exploits the information about time-dependent shear motions within the contracting muscle that are contained in the temporal autocorrelation function g(1)(τ,t) of the multiply scattered light field measured as a function of lag time, τ, and time after stimulus, t. The analysis of g(1)(τ,t) measured on the human M. biceps brachii during repetitive electrical stimulation, using optical properties measured with time-resolved reflectance spectroscopy, shows that the tissue dynamics giving rise to the speckle fluctuations can be described by a combination of diffusion and shearing. The evolution of the tissue Cauchy strain e(t) shows a strong correlation with the force, indicating that a significant part of the shear observed with DWS is due to muscle contraction. The evolution of the DWS decay time shows quantitative differences between the M. biceps brachii and the M. gastrocnemius, suggesting that DWS allows to discriminate contraction of fast- and slow-twitch muscle fibers.

  19. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  20. The X-ray reflectivity of the AXAF VETA-I optics

    Science.gov (United States)

    Kellogg, E.; Chartas, G.; Graessle, D.; Hughes, J. P.; Van Speybroeck, L.; Zhao, Ping; Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.

    1993-01-01

    The study measures the X-ray reflectivity of the AXAF VETA-I optic and compares it with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. A synchrotron reflectivity measurement with a high-energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample is also reported. Evidence is found for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror, perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 and 10 percent. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff.

  1. Quasi-optical reflective polarimeter for wide millimeter-wave band

    Science.gov (United States)

    Shinnaga, Hiroko; Tsuboi, Masato; Kasuga, Takashi

    1998-11-01

    We constructed a new reflective-type polarimeter system at 35 - 250 GHz for the 45 m telescope at Nobeyama Radio Observatory (NRO). Using the system, we can measure both linear polarization and circular polarization for our needs. The new system has two key points. First is that we can tune the center frequency of the polarimeter in the available frequency range, second is that insertion loss is low (0.15 plus or minus 0.03 dB at 86 GHz). These characteristics extended achievable scientific aims. In this paper, we present the design and the performance of the system. Using the system, we measured linear polarizations of some astronomical objects at 86 GHz, with SiO (nu) equals 0,1 and 2 at J equals 2 - 1 and 29SiO (nu) equals 0 J equals 2 - 1 simultaneously. As a result, the observation revealed SiO (nu) equals 0 J equals 2 - 1 of VY Canis Majoris is highly linearly polarized, the degree of linear polarization is up to 64%, in spite of SiO J equals 2 - 1 (nu) equals 1 is not highly linearly polarized. The highly linearly polarized feature is a strong evidence that 28SiO J equals 2 - 1 transition at the ground vibrational state originate through maser action. This is the first detection of the cosmic maser emission of SiO (nu) equals 0 J equals 2 - 1 transition.

  2. Propagation of Torsional Alfvén Waves from the Photosphere to the Corona: Reflection, Transmission, and Heating in Expanding Flux Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Ballester, José Luis, E-mail: roberto.soler@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2017-05-01

    It has been proposed that Alfvén waves play an important role in the energy propagation through the solar atmospheric plasma and its heating. Here we theoretically investigate the propagation of torsional Alfvén waves in magnetic flux tubes expanding from the photosphere up to the low corona and explore the reflection, transmission, and dissipation of wave energy. We use a realistic variation of the plasma properties and the magnetic field strength with height. Dissipation by ion–neutral collisions in the chromosphere is included using a multifluid partially ionized plasma model. Considering the stationary state, we assume that the waves are driven below the photosphere and propagate to the corona, while they are partially reflected and damped in the chromosphere and transition region. The results reveal the existence of three different propagation regimes depending on the wave frequency: low frequencies are reflected back to the photosphere, intermediate frequencies are transmitted to the corona, and high frequencies are completely damped in the chromosphere. The frequency of maximum transmissivity depends on the magnetic field expansion rate and the atmospheric model, but is typically in the range of 0.04–0.3 Hz. Magnetic field expansion favors the transmission of waves to the corona and lowers the reflectivity of the chromosphere and transition region compared to the case with a straight field. As a consequence, the chromospheric heating due to ion–neutral dissipation systematically decreases when the expansion rate of the magnetic flux tube increases.

  3. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Directory of Open Access Journals (Sweden)

    Lena Simone Fohrmann

    2017-09-01

    Full Text Available Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  4. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Science.gov (United States)

    Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred

    2017-09-01

    Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  5. Gen-2 Hand-Held Optical Imager towards Cancer Imaging: Reflectance and Transillumination Phantom Studies

    Directory of Open Access Journals (Sweden)

    Anuradha Godavarty

    2012-02-01

    Full Text Available Hand-held near-infrared (NIR optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2 hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s allows for reflectance imaging (as in ultrasound and transillumination or compressed imaging (as in X-ray mammography. Phantom studies were performed to demonstrate two-dimensional (2D target detection via reflectance and transillumination imaging at various target depths (1–5 cm deep and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  6. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    Science.gov (United States)

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-05

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  7. Reflective coating optimization for interferometric detectors of gravitational waves.

    Science.gov (United States)

    Principe, Maria

    2015-05-04

    Brownian fluctuations in the highly reflective test-mass coatings are the dominant noise source, in a frequency band from a few tens to a few hundreds Hz, for Earth-bound detectors of Gravitational Waves. Minimizing such noise is mandatory to increase the visibility distance of these instruments, and eventually reach their quantum-limited sensitivity. Several strategies exist to achieve this goal. Layer thickness and material properties optimization have been proposed and effectively implemented, and are reviewed in this paper, together with other, so far less well developed, options. The former is the simplest option, yielding a sensible noise reduction with limited technological challenges; the latter is more technologically demanding, but is needed for future (cryogenic) detectors.

  8. Confinement effects of shock waves on laser-induced plasma from a graphite target

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Feiling; Liang, Peipei; Yang, Xu; Cai, Hua; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian, E-mail: jsun@fudan.edu.cn [Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2015-06-15

    The spatial confinement effects of shock waves on the laser-induced plasma (LIP) from a graphite target in air were studied by probe beam deflection (PBD) measurements and optical emission spectroscopy (OES). A clear relationship between the confinement of the LIP by the shock wave and the effects on the LIP emission was observed, and the underlying mechanisms are discussed. PBD monitoring revealed that the laser-ablation induced shock wave could be well analogized to the shock wave generated by a point explosion and would be reflected by a block. OES measurements indicated that the optical emission of the LIP exhibited significant variations with the block placement. A first enhancement and then a fast decay of CN molecular emission as well as a suppression of carbon atomic emission were observed in the presence of the block. The results revealed that the reflected shock wave spatially confined the expansion of the LIP and compressed the LIP after encountering it, pushing back the species of the LIP and changing the density of the LIP species including luminous carbon atoms and CN molecules. It is suggested that the change of the LIP emission is attributed to the density variation of the LIP species due to the compression of the LIP and the reactions occurring in the plasma.

  9. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method.

    Science.gov (United States)

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-11-14

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This "open-shielded" device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities.

  10. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    Science.gov (United States)

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  11. Optical manifestation of magnetoexcitons in near-surface quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Desirena, B.; Perez-Rodriguez, F

    2003-05-15

    The optical response of excitons in quantum wells, close to the sample boundary and under the action of a strong magnetic field perpendicular to their plane, is investigated theoretically. Solving the system of coupled equations for the coherent electron-hole interband amplitude and the electromagnetic field, reflectivity spectra for such nanostructures are calculated. The effect of the interaction of magnetoexcitons with the sample surface on the resonance structure of reflectivity spectra is analyzed. These optical spectra are also affected by the phase change of the electromagnetic wave as it propagates in the cap layer, overlying the quantum well.

  12. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface

    Energy Technology Data Exchange (ETDEWEB)

    Chabchoub, A., E-mail: achabchoub@swin.edu.au [Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Kibler, B.; Finot, C.; Millot, G. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université de Bourgogne, 21078 Dijon (France); Onorato, M. [Dipartimento di Fisica, Università degli Studi di Torino, Torino 10125 (Italy); Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Torino, Torino 10125 (Italy); Dudley, J.M. [Institut FEMTO-ST, UMR 6174 CNRS- Université de Franche-Comté, 25030 Besançon (France); Babanin, A.V. [Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2015-10-15

    The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.

  13. Metamaterials, from electromagnetic waves to water waves, bending waves and beyond

    KAUST Repository

    Dupont, G.

    2015-08-04

    We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.

  14. Far-infrared /FIR/ optical black bidirectional reflectance distribution function /BRDF/

    Science.gov (United States)

    Smith, S. M.

    1981-01-01

    A nonspecular reflectometer and its operation at far-infrared wavelengths are described. Large differences in nonspecular reflectance were found to exist between different optically black coatings. Normal incidence bidirectional reflectance distribution function /BRDF) measurements at wavelengths between 12 and 316 microns of three black coatings show that their mean BRDFs increase with wavelength. The specularity of two of these coatings also showed a strong wavelength dependence, while the specularity of one coating seemed independent of wavelength. The BRDF of one coating depended on the angle of incidence at 12 and 38 microns, but not at 316 microns. Beyond 200 microns, it was found necessary to correct the measurements for the beam spread of the instrument.

  15. FINOSEIS: A new approach to offshore-building foundation soil analysis using high resolution reflection seismic and Scholte-wave dispersion analysis

    Science.gov (United States)

    Wilken, Dennis; Wölz, Susanne; Müller, Christof; Rabbel, Wolfgang

    2009-05-01

    As part of the FINOSEIS project we present the development of new seismic acquisition and inversion concepts for offshore-building foundation soil analysis. FINOSEIS is a subproject of the FINO3 project, which is aimed at the construction of an offshore research platform based in 28 m water depth, hosting eight research projects dealing with offshore wind energy topics. Our investigations focus on the determination of seismic parameters and structural information of the building plot of FINO3. We infer the shear-wave velocity structure by exploiting the dispersive properties of Scholte-waves and use high resolution 2.5D reflection seismic acquisition to determine seismic stratigraphy in three dimensions. Our work is motivated regarding possible hazards to offshore foundations such as wind parks and the FINO3 platform itself, e.g. permanent mechanical load by wind- and wave-forces possibly leading to an impairment of the soil. We conducted a pre-investigation of the site of the future platform in order to help finding a suitable foundation soil by improving common site investigation methods. In May 2006 we did a survey covering an area of 2 km square employing high resolution 2.5D reflection seismic. Along three 2 km airgun profiles Scholte-waves were recorded with Ocean-Bottom-Seismometers. Spectral analysis of these led to pseudo-2D shear-wave velocity models along the profiles. The reflection seismic area is characterized by glacial stratigraphy and diffractions documented within the penetration range of 30 m. With respect to the topography of the identified horizons as well as to the distribution of diffracting objects, a suitable foundation area for the platform was suggested. The results of the Scholte-wave experiment provide valuable information for further inversion models as well as for the dimensioning of further measurements. We also implemented an inversion strategy using the particle swarm optimization method. The inverted layers of shear-wave velocity

  16. Traveling-wave photodetector

    Science.gov (United States)

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  17. Formation of the reflected and refracted s-polarized electromagnetic waves in the Fresnel problem for the boundary vacuum-metamaterial from the viewpoint of molecular optics

    Science.gov (United States)

    Averbukh, B. B.; Averbukh, I. B.

    2016-11-01

    The refraction of a plane s-polarized electromagnetic wave on the vacuum-metamaterial interface is considered. Point particles with electric and magnetic dipole polarizabilities are scattering elements of a medium. The medium consists of plane-parallel monolayers of electric or magnetic dipoles or Huygens elements influencing one another. Dipole fields are completely taken into account. The fields inside the medium and the reflected fields are calculated. The extinction theorem is analyzed in detail. The mechanism of rotation of the magnetic field vector during refraction is elucidated. A reason for the absence of the fourth wave propagating from the medium toward the boundary in the conventionally employed boundary conditions is elucidated. It is shown that, under certain conditions, this medium can behave as possessing a unity refractive index or zero refractive index at a preset frequency. In the case of a metamaterial layer of finite thickness shows the output region of the existence of backward waves outside metamaterial layer. It is shown that the refraction of the field in a homogeneous medium after the dielectric corresponds to Fermat's principle, and the interference nature of Fermat's principle is justified.

  18. Exploiting Optical Contrasts for Cervical Precancer Diagnosis via Diffuse Reflectance Spectroscopy

    Science.gov (United States)

    Chang, Vivide Tuan-Chyan

    Among women worldwide, cervical cancer is the third most common cancer with an incidence rate of 15.3 per 100,000 and a mortality rate of 7.8 per 100,000 women. This is largely attributed to the lack of infrastructure and resources in the developing countries to support the organized screening and diagnostic programs that are available to women in developed nations. Hence, there is a critical global need for a screening and diagnostic paradigm that is effective in low-resource settings. Various strategies are described to design an optical spectroscopic sensor capable of collecting reliable diffuse reflectance data to extract quantitative optical contrasts for cervical cancer screening and diagnosis. A scalable Monte Carlo based optical toolbox can be used to extract absorption and scattering contrasts from diffuse reflectance acquired in the cervix in vivo. [Total Hb] was shown to increase significantly in high-grade cervical intraepithelial neoplasia (CIN 2+), clinically the most important tissue grade to identify, compared to normal and low-grade intraepithelial neoplasia (CIN 1). Scattering was not significantly decreased in CIN 2+ versus normal and CIN 1, but was significantly decreased in CIN relative to normal cervical tissues. Immunohistochemistry via anti-CD34, which stains the endothelial cells that line blood vessels, was used to validate the observed absorption contrast. The concomitant increase in microvessel density and [total Hb] suggests that both are reactive to angiogenic forces from up-regulated expression of VEGF in CIN 2+. Masson's trichrome stain was used to assess collagen density changes associated with dysplastic transformation of the cervix, hypothesized as the dominant source of decreased scattering observed. Due to mismatch in optical and histological sampling, as well as the small sample size, collagen density and scattering did not change in a similar fashion with tissue grade. Dysplasia may also induce changes in cross-linking of

  19. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study

    NARCIS (Netherlands)

    Rezaei, N.; Isabella, O.; Vroon, Z.; Zeman, M.

    2018-01-01

    A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless

  20. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer : A 3-D optical study

    NARCIS (Netherlands)

    Rezaei, N.; Isabella, O.; Vroon, Zeger; Zeman, M.

    2018-01-01

    A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless

  1. Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices

    International Nuclear Information System (INIS)

    Luz, H. L. F. da; Gammal, A.; Abdullaev, F. Kh.; Salerno, M.; Tomio, Lauro

    2010-01-01

    The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.

  2. Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices

    Science.gov (United States)

    da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro

    2010-10-01

    The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.

  3. Mutual transformation of light waves by reflection holograms in photorefractive crystals of the 4-bar 3m symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Naunyka, V. N.; Shepelevich, V. V., E-mail: vasshep@inbox.ru [Mozyr State Pedagogical University (Belarus)

    2011-05-15

    The mutual transformation of light waves in the case of their simultaneous diffraction from a bulk reflection phase hologram, which was formed in a cubic photorefractive crystal of the 4-bar 3m symmetry class, has been studied. The indicator surfaces of the polarization-optimized values of the relative intensity of the object wave, which make it possible to determine the amplification of this wave for any crystal cut, are constructed. The linear polarization azimuths at which the energy exchange between the light waves reaches a maximum are found numerically for crystals of different cuts.

  4. Four-wave mixing and phase conjugation in plasmas

    International Nuclear Information System (INIS)

    Federici, J.F.

    1989-01-01

    Nonlinear optical effects such as Stimulated Brillouin Scattering, Stimulated Raman Scattering, self-focusing, wave-mixing, parametric mixing, etc., have a long history in plasma physics. Recently, four-wave mixing in plasmas and its applications to phase conjugation has been extensively studied. Although four-wave mixing (FWM), using various nonlinear mediums, has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate FWM for wavelengths longer than 10μm. Plasmas as phase conjugate mirrors have received considerable attention since they become more efficient at longer wavelengths (far-infrared to microwave). The purpose of this thesis is to study various fundamental issues which concern the suitability of plasmas for four-wave mixing and phase conjugation. The major contributions of this thesis are the identification and study of thermal and ionization nonlinearities as potential four-wave mixing and phase conjugation mechanisms and the study of the affect of density inhomogeneities on the FWM process. Using a fluid description for the plasma, this thesis demonstrates that collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. The prospect of using a novel ionization nonlinearity in weakly ionized plasmas for wave-mixing and phase conjugation is discussed. The ionization nonlinearity arises from localized heating of the plasma by the beat-wave. Wherever, the local temperature is increased, a plasma density grating is produced due to increased electron-impact ionization. Numerical estimates of the phase conjugate reflectivity indicate reflectivities in the range of 10 -4 -10 -3 are possible in a weakly ionized steady-state gas discharge plasma

  5. Ray and wave optics of integrable and stochastic systems

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1979-07-01

    The generalization of WKB methods to more than one dimension is discussed in terms of the integrability or non-integrability of the geometrical optics (ray Hamiltonian) system derived in the short-wave approximation. In the two-dimensional case the ray trajectories are either regular or stochastic, and the qualitative differences between these types of motion are manifested in the characteristics of the spectra and eigenfunctions. These are examined for a model system which may be integrable or stochastic, depending on a single parameter

  6. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    Science.gov (United States)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  7. Ultrasonic standing wave preparation of a liquid cell for glucose measurements in urine by midinfrared spectroscopy and potential application to smart toilets.

    Science.gov (United States)

    Yamamoto, Naoyuki; Kawashima, Natsumi; Kitazaki, Tomoya; Mori, Keita; Kang, Hanyue; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2018-05-01

    Smart toilets could be used to monitor different components of urine in daily life for early detection of lifestyle-related diseases and prompt provision of treatment. For analysis of biological samples such as urine by midinfrared spectroscopy, thin-film samples like liquid cells are needed because of the strong absorption of midinfrared light by water. Conventional liquid cells or fixed cells are prepared based on the liquid membrane method and solution technique, but these are not quantitative and are difficult to set up and clean. We generated an ultrasonic standing wave reflection plane in a sample and produced an ultrasonic liquid cell. In this cell, the thickness of the optical path length was adjustable, as in the conventional method. The reflection plane could be generated at an arbitrary depth and internal reflected light could be detected by changing the frequency of the ultrasonic wave. We could generate refractive index boundaries using the density difference created by the ultrasonic standing wave. Creation of the reflection plane in the sample was confirmed by optical coherence tomography. Using the proposed method and midinfrared spectroscopy, we discriminated between normal urine samples spiked with glucose at different concentrations and obtained a high correlation coefficient. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. An optical nanoantenna made of plasmonic chain resonators

    International Nuclear Information System (INIS)

    Lester, Marcelo; Skigin, Diana C

    2011-01-01

    We propose a novel structure that behaves like an optical antenna and converts evanescent waves into propagating waves. The system comprises metallic subwavelength cylinders distributed in a dual-period array. It is illuminated by an evanescent wave generated by total internal reflection in a close interface. For particular wavelengths, the system exhibits resonances and the inhomogeneous wave is converted into propagating waves that radiate to the far field. This effect can be controlled by varying the geometrical parameters of the structure, such as the period and the inclination angle. Therefore, the transmitted intensity can be sent to a predesigned direction. This structure could be used in highly sensitive detection devices, among other applications

  9. Geometrical Reasoning in Wave Situations: The Case of Light Diffraction and Coherent Illumination Optical Imaging

    Science.gov (United States)

    Maurines, Laurence

    2010-01-01

    This particular study is part of a research programme on the difficulties encountered by students when learning about wave phenomena in a three-dimensional medium in the absence or presence of obstacles. It focuses on how students reason in situations in which wave optics need to be used: diffraction of light by an aperture, imaging in the…

  10. Localization of Matter Waves in Two-Dimensional Disordered Optical Potentials

    International Nuclear Information System (INIS)

    Kuhn, R.C.; Miniatura, C.; Delande, D.; Sigwarth, O.; Mueller, C.A.

    2005-01-01

    We consider ultracold atoms in 2D disordered optical potentials and calculate microscopic quantities characterizing matter wave quantum transport in the noninteracting regime. We derive the diffusion constant as a function of all relevant microscopic parameters and show that coherent multiple scattering induces significant weak localization effects. In particular, we find that even the strong localization regime is accessible with current experimental techniques and calculate the corresponding localization length

  11. Dynamical control of matter-wave splitting using time-dependent optical lattices

    DEFF Research Database (Denmark)

    Park, Sung Jong; Andersen, Henrik Kjær; Mai, Sune

    2012-01-01

    We report on measurements of splitting Bose-Einstein condensates (BEC) by using a time-dependent optical lattice potential. First, we demonstrate the division of a BEC into a set of equally populated components by means of time-dependent control of Landau-Zener tunneling in a vertical lattice....... Finally, a combination of multiple Bragg reflections and Landau-Zener tunneling allows for the generation of macroscopic arrays of condensates with potential applications in atom optics and atom interferometry....

  12. Development of a theory of the spectral reflectance of minerals, part 3

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Roach, L. H.; Smith, E. M.; Vonthuena, P. C.

    1972-01-01

    Significant refinements were made in the theory of the diffuse reflectance of particulate media. The theory predicts the opposite trends of reflectance with particle size in regions of the spectrum in which the particles are semi-transparent and those in which they are opaque. Enhanced absorption caused by wave-optical effects of small surface asperities and edges was used to improve the theory. The same mechanism remedies the theory to account for the data in spectral regions of anomalous dispersion.

  13. Optical properties of armchair (7, 7) single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Gharbavi, K.; Badehian, H.

    2015-01-01

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations

  14. Self-pumped optical phase conjugation and light oscillation in Fe doped KNbO 3

    Science.gov (United States)

    Medrano, C.; Ingold, M.; Günter, P.

    1990-07-01

    We report different experiments on self-pumped phase conjugation in iron doped KNbO 3 crystals at room temperature. Self-pumped phase conjugate reflectivities of a linear cavity, an external ring mirror and a configuration where no external optical elements are required have been measured. Using the passive ring resonator a reflectivity of 30% of a self-pumped phase conjugate mirror has been measured at room temperature. In the configuration requiring no external optical elements besides the KNbO 3 crystal a reflectivity of 12% has been measured. In degenerate four-wave mixing phase conjugate reflectivities of up to 270% have been observed in the diffusion recording mode.

  15. How to detect the gravitationally induced phase shift of electromagnetic waves by optical-fiber interferometry

    International Nuclear Information System (INIS)

    Tanaka, K.

    1983-01-01

    Attention is called to a laboratory experiment of an optical-fiber interferometer which can show the gravitationally induced phase shift of optical waves. A phase shift of approx.10 -6 rad is anticipated for the Earth's gravitational potential difference of 1 m when a He-Ne laser and two multiple-turn optical-fiber loops of length 5 km are used. The phase shift can be varied by rotating the loops about an axis parallel to the Earth's surface. This order of phase shifts can be detected by current optical-fiber interferometric techniques

  16. Primary and Reflected Compaction Waves in a Foam Rod Due to an Axial Impact by a Small Mass

    Directory of Open Access Journals (Sweden)

    D. Karagiozova

    Full Text Available AbstractThe propagation of compaction waves in a stationary foam block subjected to an impact by a small mass is studied in order to examine the mechanism of compaction within the primary and reflected stress waves. The analysis is focused on aluminium strain rate insensitive foam that exhibits strain hardening under quasistatic compression. A theoretical approach is applied using a uniaxial model of compaction in which the compacted strains, being functions of the velocity variation, are not predefined but are obtained as a part of the solution. The present approach allows one to obtain the strain histories and strain distributions within the primary compaction wave as well as within the reflected wave, which propagates in a media with non-uniform density increasing monotonically in the direction of loading. FE simulations considering aluminium based foam Cymat with density 411.5 kg/m3 are carried out in order to verify the proposed theoretical model. A comparison between the impact velocity attenuation predicted by the present model and classical Rigid Perfectly-Plastic Locking material model for cellular materials is discussed.

  17. Speckle reduction in optical coherence tomography images based on wave atoms

    Science.gov (United States)

    Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping

    2014-01-01

    Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507

  18. Influence of wavelength-dependent-loss on dispersive wave in nonlinear optical fibers.

    Science.gov (United States)

    Herrera, Rodrigo Acuna

    2012-11-01

    In this work, we study numerically the influence of wavelength-dependent loss on the generation of dispersive waves (DWs) in nonlinear fiber. This kind of loss can be obtained, for instance, by the acousto-optic effect in fiber optics. We show that this loss lowers DW frequency in an opposite way that the Raman effect does. Also, we see that the Raman effect does not change the DW frequency too much when wavelength-dependent loss is included. Finally, we show that the DW frequency is not practically affected by fiber length.

  19. Inherent optical properties and remote sensing reflectance of Pomeranian lakes (Poland

    Directory of Open Access Journals (Sweden)

    Dariusz Ficek

    2012-11-01

    Full Text Available This paper describes the results of comprehensive empirical studies of theinherent optical properties (IOPs, the remote sensing reflectance Rrs(λ andthe contents of the principal optically active components (OAC i.e. coloureddissolved organic matter (CDOM, suspended particulate matter (SPM andchlorophyll a, in the waters of 15 lakes in Polish Pomerania in 2007-2010.It presents numerous spectra of the total absorption a(λ andscattering b(λ ≈ bp(λ of light in the visibleband (400-700 nm for surface waters, and separately, spectra of absorptionby CDOM aCDOM(λ and spectra of the mass-specificcoefficients of absorption ap*(SPM(λ and scatteringbp*(SPM(λ by SPM. The properties of these lake waters are highly diverse, but all of them can beclassified as Case 2 waters (according to the optical classification by Morel& Prieur 1977 and they all have a relatively high OAC content. The lakeswere conventionally divided into three types: Type I lakes have the lowestOAC concentrations (chlorophyll concentration Ca = (8.76 ± 7.4 mg m-3 and CDOM absorption coefficientsaCDOM(440 = (0.57 ± 0.22 m-1 (i.e. mean and standarddeviation, and optical properties (including spectra of Rrs(λresembling those of Baltic waters. Type II waters have exceptionally highcontents of CDOM (aCDOM(440 = (15.37 ± 1.54 m-1,and hence appear brown in daylight and have very low reflectancesRrs(λ (of the order of 0.001 sr-1. Type III waters arehighly eutrophic and contain large amounts of suspended matter, includingphytoplankton ((CSPM = (47.0 ± 39.4 g m-3,Ca = (86.6 ± 61.5 mg m-3; aCDOM(440 = (2.77 ± 0.86 m-1. Hence the reflectances Rrs(λof these type of waters are on average one order of magnitude higher thanthose of the other natural waters, reaching maximum values of 0.03 sr-1in λ bands 560-580 nm and 690-720 nm (see Ficek et al. 2011. Thearticle provides a number of empirical formulas approximating therelationships between the properties of these lake waters.

  20. Optical phase locking of two infrared continuous wave lasers separated by 100 THz

    Czech Academy of Sciences Publication Activity Database

    Chiodo, N.; Du-Burck, F.; Hrabina, Jan; Lours, M.; Chea, E.; Acef, O.

    2014-01-01

    Roč. 39, č. 10 (2014), s. 2936-2939 ISSN 0146-9592 R&D Projects: GA ČR GPP102/11/P820; GA MŠk ED0017/01/01; GA MŠk EE2.4.31.0016; GA MŠk(CZ) LO1212; GA MŠk(CZ) 7AMB14FR040 Institutional support: RVO:68081731 Keywords : Continuous wave lasers * Frequency allocation * Harmonic generation * Laser optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.292, year: 2014

  1. Measurement of splanchnic photoplethysmographic signals using a new reflectance fiber optic sensor

    Science.gov (United States)

    Hickey, Michelle; Samuels, Neal; Randive, Nilesh; Langford, Richard M.; Kyriacou, Panayiotis A.

    2010-03-01

    Splanchnic organs are particularly vulnerable to hypoperfusion. Currently, there is no technique that allows for the continuous estimation of splanchnic blood oxygen saturation (SpO2). As a preliminary to developing a suitable splanchnic SpO2 sensor, a new reflectance fiber optic photoplethysmographic (PPG) sensor and processing system are developed. An experimental procedure to examine the effect of fiber source detector separation distance on acquired PPG signals is carried out before finalizing the sensor design. PPG signals are acquired from four volunteers for separation distances of 1 to 8 mm. The separation range of 3 to 6 mm provides the best quality PPG signals with large amplitudes and the highest signal-to-noise ratios (SNRs). Preliminary calculation of SpO2 shows that distances of 3 and 4 mm provide the most realistic values. Therefore, it is suggested that the separation distance in the design of a fiber optic reflectance pulse oximeter be in the range of 3 to 4 mm. Preliminary PPG signals from various splanchnic organs and the periphery are obtained from six anaesthetized patients. The normalized amplitudes of the splanchnic PPGs are, on average, approximately the same as those obtained simultaneously from the periphery. These observations suggest that fiber optic pulse oximetry may be a valid monitoring technique for splanchnic organs.

  2. Comparison of cloud optical depth and cloud mask applying BRDF model-based background surface reflectance

    Science.gov (United States)

    Kim, H. W.; Yeom, J. M.; Woo, S. H.

    2017-12-01

    Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With

  3. Incidence of cavitation in the fragmentation process of extracorporeal shock wave lithotriptors

    Science.gov (United States)

    Rink, K.; Delacrétaz, G.; Pittomvils, G.; Boving, R.; Lafaut, J. P.

    1994-05-01

    The fragmentation mechanism occurring in extracorporeal shock wave lithotripsy (ESWL) is investigated using a fiber optic stress sensing technique. With our technique, we demonstrate that cavitation is a major cause of fragmentation in ESWL procedures. When a target is placed in the operating area of the lithotriptor, two shock waves are detected. The first detected shock wave corresponds to the incoming shock wave generated by the lithotriptor. The second shock wave, detected some hundreds of microseconds later, is generated in situ. It results from the collapse of a cavitation bubble, formed by the reflection of the incoming shock wave at the target boundary. This cavitation induced shock wave generates the largest stress in the target area according to our stress sensing measurements.

  4. Reflected Sunlight Reduction and Characterization for a Deep-Space Optical Receiver Antenna (DSORA)

    Science.gov (United States)

    Clymer, B. D.

    1990-01-01

    A baffle system for the elimination of first-order specular and diffuse reflection of sunlight from the sunshade of a deep-space optical receiver telescope is presented. This baffle system consists of rings of 0.5cm blades spaced 2.5 cm apart on the walls of GO hexagonal sunshade tubes that combine to form the telescope sunshade. The shadow cast by the blades, walls, and rims of the tubes prevent all first-order reflections of direct sunlight from reaching the primary mirror of the telescope. A reflection model of the sunshade without baffles is also presented for comparison. Since manufacturers of absorbing surfaces do not measure data near grazing incidence, the reflection properties at anticipated angles of incidence must be characterized. A description of reflection from matte surfaces in term of bidirectional reflection distribution function (BRDF) is presented along with a discussion of measuring BRDF near grazing incidence.

  5. Improved algorithm for estimating optical properties of food and biological materials using spatially-resolved diffuse reflectance

    Science.gov (United States)

    In this research, the inverse algorithm for estimating optical properties of food and biological materials from spatially-resolved diffuse reflectance was optimized in terms of data smoothing, normalization and spatial region of reflectance profile for curve fitting. Monte Carlo simulation was used ...

  6. Optical Reflection Spectroscopy of GEO Objects

    Science.gov (United States)

    Seitzer, Patrick; Cardona, Tammaso; Lederer, Susan M.; Cowardin, Heather; Abercromby, Kira J.; Barker, Edwin S.; Bedard, Donald

    2013-01-01

    We report on optical reflection spectroscopy of geosynchronous (GEO) objects in the US Space Surveillance Network (SSN) catalog. These observations were obtained using imaging spectrographs on the 6.5-m Magellan telescopes at the Las Campanas Observatory in Chile. Our goal is to determine the composition of these objects by comparing these spectral observations with ground-based laboratory measurements of spacecraft materials. The observations are all low resolution (1 nm after smoothing) obtained through a 5 arcsecond wide slit and using a grism as the dispersing element. The spectral range covered was from 450 nm to 800 nm. All spectra were flux calibrated using observations of standard stars with the exact same instrumental setup. An effort was made to obtain all observations within a limited range of topocentric phase angle, although the solar incident angle is unknown due to the lack of any knowledge of the attitude of the observed surface at the time of observation.

  7. Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films

    International Nuclear Information System (INIS)

    Tracy, C.E.; Benson, D.K.; Haberman, D.P.; Hishmeh, G.A.; Ciszek, P.A.

    1998-01-01

    Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal

  8. On the imaginary part of the S-wave pion-nucleus optical potential

    International Nuclear Information System (INIS)

    Germond, J.F.; Lombard, R.J.

    1991-01-01

    The contribution of pion absorption to the imaginary part of the S-wave pion-nucleus optical potential is calculated with Slater determinantal antisymmetrized nuclear wave funtions, taking fully into accout the spin and isospin degrees of freedom. The potential obtained has an explicit dependence on the proton and neutron nuclear densities whose coefficients are directly related to the two-nucleon absorption coupling constants. The values of these coefficients extracted from mesic atoms data are in good agreement with those deduced from exclusive pion absorption experiments in 3 He, but larger than the predictions of the pion rescattering model. (orig.)

  9. Open-Ended Waveguide Measurement and Numerical Simulation of the Reflectivity of Petri Dish Supported Skin Cell Monolayers in the mm-wave Range

    Science.gov (United States)

    Beneduci, Amerigo; Chidichimo, Giuseppe

    2012-05-01

    Open-ended waveguide reflectometry is a promising tool for permittivity and other material properties calculation at mm-waves (30-300 GHz). Measurement of the reflection coefficient does not require sample manipulation, allowing in vivo and in vitro non destructive studies on cells. Here we used this technique for measuring the power reflection coefficient (reflectivity) of water and Petri dish supported human skin melanoma and keratinocyte cell cultures, in the 53-72 GHz frequency range. The dependence of the reflectivity on polystyrene or glass thickness of the Petri base plate and on the cell layer thickness was analyzed. Permittivity data were then easily retrieved by using a plane wave-dominant mode approach for formulating the reflectivity at the aperture of the flange-mounted open-ended rectangular waveguide probe. Limits and validity of such an approximate approach were analyzed and compared with full-wave near field formulations for which magnitude and phase of the reflection coefficient must be measured and solved using complicated systems of integral equations and extensive numerical calculation. Finally, Petri dish reflectivity measured by the open-ended waveguide method was compared with that numerically simulated under far-field exposure conditions used in a large number of in vitro studies. Such an analysis showed that, under certain conditions, open-ended reflectivity values approach the far field ones.

  10. Inner core boundary topography explored with reflected and diffracted P waves

    Science.gov (United States)

    deSilva, Susini; Cormier, Vernon F.; Zheng, Yingcai

    2018-03-01

    The existence of topography of the inner core boundary (ICB) can affect the amplitude, phase, and coda of body waves incident on the inner core. By applying pseudospectral and boundary element methods to synthesize compressional waves interacting with the ICB, these effects are predicted and compared with waveform observations in pre-critical, critical, post-critical, and diffraction ranges of the PKiKP wave reflected from the ICB. These data sample overlapping regions of the inner core beneath the circum-Pacific belt and the Eurasian, North American, and Australian continents, but exclude large areas beneath the Pacific and Indian Oceans and the poles. In the pre-critical range, PKiKP waveforms require an upper bound of 2 km at 1-20 km wavelength for any ICB topography. Higher topography sharply reduces PKiKP amplitude and produces time-extended coda not observed in PKiKP waveforms. The existence of topography of this scale smooths over minima and zeros in the pre-critical ICB reflection coefficient predicted from standard earth models. In the range surrounding critical incidence (108-130 °), this upper bound of topography does not strongly affect the amplitude and waveform behavior of PKIKP + PKiKP at 1.5 Hz, which is relatively insensitive to 10-20 km wavelength topography height approaching 5 km. These data, however, have a strong overlap in the regions of the ICB sampled by pre-critical PKiKP that require a 2 km upper bound to topography height. In the diffracted range (>152°), topography as high as 5 km attenuates the peak amplitudes of PKIKP and PKPCdiff by similar amounts, leaving the PKPCdiff/PKIKP amplitude ratio unchanged from that predicted by a smooth ICB. The observed decay of PKPCdiff into the inner core shadow and the PKIKP-PKPCdiff differential travel time are consistent with a flattening of the outer core P velocity gradient near the ICB and iron enrichment at the bottom of the outer core.

  11. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography.

    Science.gov (United States)

    Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing

    2011-04-11

    Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America

  12. Acute effects of interval versus continuous endurance training on pulse wave reflection in healthy young men.

    Science.gov (United States)

    Hanssen, Henner; Nussbaumer, Monique; Moor, Christoph; Cordes, Mareike; Schindler, Christian; Schmidt-Trucksäss, Arno

    2015-02-01

    Our aim was to investigate the acute and 24-hour (h) effects of high-intensity interval training (HIIT) and moderate continuous training (MCT) on arterial pulse wave reflection, an established marker of arterial stiffness and cardiovascular risk. In a randomized cross-over design, 21 young healthy male participants performed a HIIT or a MCT on separate visits. Before and 5 (t5), 20 (t20), 35 (t35), and 50 (t50) minutes after the acute exercise bouts, the crude augmentation index (AIx) and the AIx at a set heart rate (AIx@75) were analysed by applanation tonometry. Starting 1 h post-exercise, both indices were captured over 24-h with an oscillometric monitoring device. AIx did not change significantly after MCT but declined progressively after HIIT, reaching significantly lower values compared to MCT at t35 (P = 0.045) and t50 (P = 0.008). AIx@75 increased after both acute exercise types but was higher after HIIT at t5 (P HIIT (P = 0.007) but not after MCT (P = 0.813). Exercise intensity affects pulse wave reflection, with different time courses for AIx and AIx@75 post-exercise. Although initially higher after HIIT, AIx@75 declines in the 24-h recovery period indicating more favourable effects on pulse wave reflection compared to MCT. This may result in substantial positive chronic training effects on arterial stiffness in health and cardiovascular disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Optical imaging through turbid media with a degenerate four wave mixing correlation time gate

    International Nuclear Information System (INIS)

    Sappey, A.D.

    1994-01-01

    A novel method for detection of ballistic light and rejection of unwanted diffusive light to image structures inside highly scattering media is demonstrated. Degenerate four wave mixing (DFWM) of a doubled YAG laser in Rhodamine 6G is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore lost memory of the structures inside the scattering medium. We present preliminary results that determine the nature of the DFWM grating, confirm the coherence time of the laser, prove the phase-conjugate nature of the signal beam, and determine the dependence of the signal (reflectivity) on dye concentration and laser intensity. Finally, we have obtained images of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye. These imaging experiments demonstrate the utility of DFWM for imaging through turbid media. Based on our results, the use of DFWM as an ultrafast time gate for the detection of ballistic light in optical mammography appears to hold great promise for improving the current state of the art

  14. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment.

    Science.gov (United States)

    Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning

    2018-03-19

    Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.

  15. Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound : comparison between plane-wave and element-by-element synthetic backpropagation approach

    NARCIS (Netherlands)

    Kuniyil Ajith Singh, M.; Jaeger, M.; Frenz, M.; Steenbergen, Wiendelt

    2017-01-01

    Reflection artifacts caused by acoustic inhomogeneities constitute a major problem in epi-mode biomedical photoacoustic imaging. Photoacoustic transients from the skin and superficial optical absorbers traverse into the tissue and reflect off echogenic structures to generate reflection artifacts.

  16. Optical observations of Magnetosphere-Ionosphere coupling: Inter-hemispheric electron reflections within pulsating aurora

    Science.gov (United States)

    Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II

    2017-12-01

    Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.

  17. Pump depletion effects in thermal degenerate four-wave mixing

    International Nuclear Information System (INIS)

    Guha, S.; Chen, W.

    1987-01-01

    Characteristics such as a large magnitude of nonlinearity, fast response, broadband operation, and easy availability make absorbing liquids attractive candidates for performing phase conjugation of optical beams by degenerate four-wave mixing. The coupled-wave equations describing the interaction of four optical fields in an absorbing medium have been solved previously for the case of no pump depletion and no self-action of any of the beams. When studying phase conjugation oscillation, however, the effect of depletion of the pump beams on the phase conjugate reflectivity must be considered. Moreover, in absorbing media the self-action effects are always present. The coupled-wave equations, including the self-action terms for all four waves involved, are derived here for the first time to the authors' knowledge. For the case of small absorption, these equations are solved analytically, and the effect of pump depletion on phase conjugate reflectivity R is determined. In the absence of the pump depletion, R is proportional to tan 2 (Ql), where Ql is a dimensionless gain parameter characterizing the nonlinear medium and the input pump power. When pump depletion and self-action are included, R does not go to infinity when Ql equals odd multiples of π2. Instead R takes on values dependent on the probe ratio q 1 , which is the ratio of the input probe irradiance to the input pump irradiance. The authors find that the maximum value for R is 1q 1 . They also find that for Ql close to odd multiples of π2, the reflectivity is significantly reduced from the value obtained by ignoring pump depletion, even for probe ratios as small as one-tenth of 1%. Experimental confirmation of this theory, using an argon-ion laser as the pump and carbon tetrachloride mixed with a dye as the absorbing medium, is in progress and is reported

  18. Observation of magnetic domains using a reflection-mode scanning near-field optical microscope

    OpenAIRE

    SHVETS, IGOR

    1997-01-01

    PUBLISHED It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of plane showed optical features in a track pattern whose appearance was determined by the position of an analyzer in front of the photomultiplier tube. These features were not apparent in t...

  19. Observation of magnetic domains using a reflection mode scanning near-field optical microscope

    OpenAIRE

    Durkam, C.; Shvets, I.V.; Lodder, J.C.

    1997-01-01

    It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of plane showed optical features in a track pattern whose appearance was determined by the position of an analyzer in front of the photomultiplier tube. These features were not apparent in the topography...

  20. Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the

  1. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection.

    Science.gov (United States)

    Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke

    2016-04-07

    In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013.

  2. Nature's optics and our understanding of light

    Science.gov (United States)

    Berry, M. V.

    2015-01-01

    Optical phenomena visible to everyone have been central to the development of, and abundantly illustrate, important concepts in science and mathematics. The phenomena considered from this viewpoint are rainbows, sparkling reflections on water, mirages, green flashes, earthlight on the moon, glories, daylight, crystals and the squint moon. And the concepts involved include refraction, caustics (focal singularities of ray optics), wave interference, numerical experiments, mathematical asymptotics, dispersion, complex angular momentum (Regge poles), polarisation singularities, Hamilton's conical intersections of eigenvalues ('Dirac points'), geometric phases and visual illusions.

  3. Scaling relations for soliton compression and dispersive-wave generation in tapered optical fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2018-01-01

    In this paper, scaling relations for soliton compression in tapered optical fibers are derived and discussed. The relations allow simple and semi-accurate estimates of the compression point and output noise level, which is useful, for example, for tunable dispersive-wave generation with an agile ...

  4. Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics

    Science.gov (United States)

    Petronio, Lorenzo; Boaga, Jacopo; Cassiani, Giorgio

    2016-05-01

    The mechanisms of the disastrous Vajont rockslide (North-Eastern Italy, October 9, 1963) have been studied in great detail over the past five decades. Nevertheless, the reconstruction of the rockslide dynamics still presents several uncertainties, including those related to the accurate estimation of the actual landslide mass. This work presents the results of a geophysical characterization of the Vajont landslide body in terms of material properties and buried geometry. Both aspects add new information to the existing dataset and will help a better understanding of the rockslide failure mechanisms and dynamics. In addition, some general considerations concerning the intricacies of landslide characterization can be drawn, with due attention to potential pitfalls. The employed techniques are: (i) high resolution P-wave reflection, (ii) high resolution SH-wave reflection, (iii) controlled source surface wave analysis. We adopted as a seismic source a vibrator both for P waves and SH waves, using vertical and horizontal geophones respectively. For the surface wave seismic survey we used a heavy drop-weight source and low frequency receivers. Despite the high noise level caused by the fractured conditions of the large rock body, a common situation in landslide studies, we managed to achieve a satisfying imaging quality of the landslide structure thanks to the large number of active channels, the short receiver interval and the test of appropriate seismic sources. The joint use of different seismic techniques help focus the investigation on the rock mass mechanical properties. Results are in good agreement with the available borehole data, the geological sections and the mechanical properties of the rockmass estimated by other studies. In general the proposed approach is likely to be applicable successfully to similar situations where scattering and other noise sources are a typical bottleneck to geophysical data acquisition on landslide bodies.

  5. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach-Zehnder Interferometer.

    Science.gov (United States)

    Lan, Chengming; Zhou, Wensong; Xie, Yawen

    2018-04-16

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range.

  6. Detection of Ultrasonic Stress Waves in Structures Using 3D Shaped Optic Fiber Based on a Mach–Zehnder Interferometer

    Science.gov (United States)

    Xie, Yawen

    2018-01-01

    This work proposes a 3D shaped optic fiber sensor for ultrasonic stress waves detection based on the principle of a Mach–Zehnder interferometer. This sensor can be used to receive acoustic emission signals in the passive damage detection methods and other types of ultrasonic signals propagating in the active damage detection methods, such as guided wave-based methods. The sensitivity of an ultrasonic fiber sensor based on the Mach–Zehnder interferometer mainly depends on the length of the sensing optical fiber; therefore, the proposed sensor achieves the maximum possible sensitivity by wrapping an optical fiber on a hollow cylinder with a base. The deformation of the optical fiber is produced by the displacement field of guided waves in the hollow cylinder. The sensor was first analyzed using the finite element method, which demonstrated its basic sensing capacity, and the simulation signals have the same characteristics in the frequency domain as the excitation signal. Subsequently, the primary investigations were conducted via a series of experiments. The sensor was used to detect guided wave signals excited by a piezoelectric wafer in an aluminum plate, and subsequently it was tested on a reinforced concrete beam, which produced acoustic emission signals via impact loading and crack extension when it was loaded to failure. The signals obtained from a piezoelectric acoustic emission sensor were used for comparison, and the results indicated that the proposed 3D fiber optic sensor can detect ultrasonic signals in the specific frequency response range. PMID:29659540

  7. Holographic Optical Elements Recorded in Silver Halide Sensitized Gelatin Emulsions. Part 2. Reflection Holographic Optical Elements

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.

    2002-03-01

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.

  8. High speed photography for studying the shock wave propagation at high Mach numbers through a reflection nozzle

    International Nuclear Information System (INIS)

    Zaytsev, S.G.; Lazareva, E.V.; Mikhailova, A.V.; Nikolaev-Kozlov, V.L.; Chebotareva, E.I.

    1979-01-01

    Propagation of intensive shock waves with a temperature of about 1 eV has been studied in a two-dimensional reflection nozzle mounted at the exit of a shock tube. The Toepler technique has been involved along with the interference scheme with a laser light source allowing the multiple-frame recording to be done. Density distribution in the nozzle as well as the wave pattern occurring at the shock propagation are presented. (author)

  9. Swept source optical coherence tomography of objects with arbitrary reflectivity profiles

    Science.gov (United States)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Swept Source optical coherence tomography (SS-OCT) has become a well established imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferogram measured in the frequency domain (k-space). Fourier inversion of the obtained interferogram typically produces a potentially overlapping conjugate mirror image, whose overlap could be avoided by restricting the object to have its highest reflectivity at its surface. However, this restriction may not be fulfilled when imaging a very thin object that is placed on a highly reflective surface, or imaging an object containing a contrast agent with high reflectivity. In this paper, we show that oversampling of the SS-OCT signal in k-space would overcome the need for such restriction on the object. Our result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  10. Reflection and transmission of electromagnetic waves in planarly stratified media

    International Nuclear Information System (INIS)

    Caviglia, G.

    1999-01-01

    Propagation of time-harmonic electromagnetic waves in planarly stratified multilayers is investigated. Each layer is allowed to be inhomogeneous and the layers are separated by interfaces. The procedure is based on the representation of the electromagnetic field in the basis of the eigenvectors of the matrix characterizing the first-order system. Hence the local reflection and transmission matrices are defined and the corresponding differential equations, in the pertinent space variable are determined. The jump conditions at interfaces are also established. The present model incorporates dissipative materials and the procedure holds without any restrictions to material symmetries. Differential equations appeared in the literature are shown to hold in particular (one-dimensional) cases or to represent homogeneous layers only

  11. Monitoring the reflection from an artificial defect in rail track using guided wave ultrasound

    Science.gov (United States)

    Loveday, Philip W.; Taylor, Rebecca M. C.; Long, Craig S.; Ramatlo, Dineo A.

    2018-04-01

    Guided wave ultrasound has the potential to detect relatively large defects in continuously welded rail track at long range. As monitoring can be performed in near real time it would be acceptable to only detect fairly large cracks provided this is achieved prior to complete rail breakage. Heavy haul rail lines are inspected periodically by conventional ultrasound and sections with even relatively small cracks are removed; therefore, no sizable defects are available to demonstrate monitoring in the presence of realistic environmental operating conditions. Instead, we glued a small mass to the rail to simulate reflection from a crack and monitored the guided wave signals as the glue joint deteriorated over time. Data was collected over a two week period on an operational heavy haul line. A piezoelectric transducer mounted under the head of the rail was used in pulse-echo mode to transmit and receive a mode of propagation with energy confined mainly in the head of the rail. The small mass was attached under the head of the rail, at a distance of 375m from the transducer, using a cyanoacrylate glue, which was not expected to remain intact for long. Pre-processing of the collected signals involved rejection of signals containing train noise, averaging, filtering and dispersion compensation. Reflections from aluminothermic welds were used to stretch and scale the signals to reduce the influence of temperature variations. Singular value decomposition and independent component analysis were then applied to the signals with the aim of separating the reflection caused by the artificial defect from the background signal. The performance of these techniques was compared for different time spans. The reflection from the artificial defect showed unanticipated fluctuations.

  12. Reflective measurement of water concentration using millimeter wave illumination

    Science.gov (United States)

    Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren

    2011-04-01

    THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.

  13. FORS, Fiber Optics Reflectance Spectroscopy con gli spettrometri miniaturizzati per l’identificazione dei pigmenti

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2014-01-01

    Full Text Available AbstractQuesto articolo riporta i risultati del test di un sistema FORS (Fiber Optics Reflectance Spectroscopy assemblato con componenti Ocean Optics. Questa ditta ha sviluppato una linea di spettrometri miniaturizzati e dal costo estremamente contenuto. Le trascurabili dimensioni e peso di questo sistema FORS lo rendono uno strumento assolutamente adatto alle indagini dell’arte in cantiere. Sono stati testati 54 pigmenti storici in polvere e stesi con gomma arabica, tempera all’uovo, olio e affresco. Il sistema è stato provato su un quadro dell’800 e su opere murali del barocco siciliano.   This paper shows the results of the testing of a FORS (Fiber Optics Reflectance Spectroscopy system assembled with Ocean Optics components and featuring a USB4000 miniaturized and low cost spectrometer. The small dimensions and little weight of this FORS system make it adapt for the specific needs of art examination in the field. 54 historical pigments have been tested both in powder and laid with gum Arabic, egg tempera, linseed oil and fresco. The FORS system was also tested on a 1800s oil painting and on 1700s Sicilian baroque murals and the results compared with multispectral imaging analysis.   

  14. Black Tea Lowers Blood Pressure and Wave Reflections in Fasted and Postprandial Conditions in Hypertensive Patients: A Randomised Study

    Directory of Open Access Journals (Sweden)

    Davide Grassi

    2015-02-01

    Full Text Available Hypertension and arterial stiffening are independent predictors of cardiovascular mortality. Flavonoids may exert some vascular protection. We investigated the effects of black tea on blood pressure (BP and wave reflections before and after fat load in hypertensives. According to a randomized, double-blind, controlled, cross-over design, 19 patients were assigned to consume black tea (129 mg flavonoids or placebo twice a day for eight days (13 day wash-out period. Digital volume pulse and BP were measured before and 1, 2, 3 and 4 h after tea consumption. Measurements were performed in a fasted state and after a fat load. Compared to placebo, reflection index and stiffness index decreased after tea consumption (p < 0.0001. Fat challenge increased wave reflection, which was counteracted by tea consumption (p < 0.0001. Black tea decreased systolic and diastolic BP (−3.2 mmHg, p < 0.005 and −2.6 mmHg, p < 0.0001; respectively and prevented BP increase after a fat load (p < 0.0001. Black tea consumption lowers wave reflections and BP in the fasting state, and during the challenging haemodynamic conditions after a fat load in hypertensives. Considering lipemia-induced impairment of arterial function may occur frequently during the day, our findings suggest regular consumption of black tea may be relevant for cardiovascular protection.

  15. Shallow shear-wave reflection seismics in the tsunami struck Krueng Aceh River Basin, Sumatra

    Directory of Open Access Journals (Sweden)

    U. Polom

    2008-01-01

    Full Text Available As part of the project "Management of Georisk" (MANGEONAD of the Federal Institute for Geosciences and Natural Resources (BGR, Hanover, high resolution shallow shear-wave reflection seismics was applied in the Indonesian province Nanggroe Aceh Darussalam, North Sumatra in cooperation with the Government of Indonesia, local counterparts, and the Leibniz Institute for Applied Geosciences, Hanover. The investigations were expected to support classification of earthquake site effects for the reconstruction of buildings and infrastructure as well as for groundwater exploration. The study focussed on the city of Banda Aceh and the surroundings of Aceh Besar. The shear-wave seismic surveys were done parallel to standard geoengineering investigations like cone penetrometer tests to support subsequent site specific statistical calibration. They were also partly supplemented by shallow p-wave seismics for the identification of (a elastic subsurface parameters and (b zones with abundance of groundwater. Evaluation of seismic site effects based on shallow reflection seismics has in fact been found to be a highly useful method in Aceh province. In particular, use of a vibratory seismic source was essential for successful application of shear-wave seismics in the city of Banda Aceh and in areas with compacted ground like on farm tracks in the surroundings, presenting mostly agricultural land use areas. We thus were able to explore the mechanical stiffness of the subsurface down to 100 m depth, occasionally even deeper, with remarkably high resolution. The results were transferred into geotechnical site classification in terms of the International Building Code (IBC, 2003. The seismic images give also insights into the history of the basin sedimentation processes of the Krueng Aceh River delta, which is relevant for the exploration of new areas for construction of safe foundations of buildings and for identification of fresh water aquifers in the tsunami

  16. Miniature chemical sensor combining molecular recognition with evanescent wave cavity ring-down spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.

    2004-01-01

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages

  17. Exact solution for the reflection and diffraction of atomic de Broglie waves by a travelling evanescent laser wave

    International Nuclear Information System (INIS)

    Witte, N.S.

    1997-01-01

    The exact solution to the problem of reflection and diffraction of atomic de Broglie waves by a travelling evanescent wave is found starting with a bare-state formulation. The solution for the wavefunctions, the tunnelling losses and the non-adiabatic losses are given exactly in terms of hyper-Bessel functions, and are valid for all detuning and Rabi frequencies, thus generalizing previous approximate methods. Furthermore we give the limiting cases of all amplitudes in the uniform semiclassical limit, which is valid in all regions including near the classical turning points, and in the large and weak coupling cases. Exact results for the zero detuning case are obtained in terms of Bessel functions. We find our uniform semiclassical limit to be closer to the exact result over the full range of parameter values than the previously reported calculations. The current knowledge of hyper-Bessel function properties is reviewed in order to apply this to the physical problems imposed

  18. Computation of the optical properties of turbid media from slope and curvature of spatially resolved reflectance curves

    International Nuclear Information System (INIS)

    Jäger, Marion; Foschum, Florian; Kienle, Alwin

    2013-01-01

    The optical properties of turbid media were calculated from the curvature at the radial distance ρ O and the slope at the radial distance ρ* of simulated spatially resolved reflectance curves (ρ O (ρ*) denotes a decrease of the spatially resolved reflectance curve of 0.75 (2.4) orders of magnitude relative to the reflectance value at 1.2 mm). We found correlations between the curvature at ρ O and the reduced scattering coefficient as well as the slope at ρ* and the absorption coefficient. For the determination of the optical properties we used these two correlations. The calculation of the reduced scattering coefficient from the curvature at ρ O is practically independent from the absorption coefficient. Knowing the reduced scattering coefficient within a certain accuracy allows the determination of the absorption coefficient from the slope at ρ*. Additionally, we investigated the performance of an artificial neural network for the determination of the optical properties using the above explained correlations. This means we used the derivatives as input data. Our artificial neural network was capable to learn the mapping between the optical properties and the derivatives. In effect, the results for the determined optical properties improved in comparison to the above explained method. Finally, the procedure was compared to an artificial neural network that was trained without using the derivatives. (note)

  19. Detection of Cadmium Ion by Evanescent Wave Based Chitosan Coated Optical Fiber Sensor

    International Nuclear Information System (INIS)

    Yulianti, I; Edy, S S; Saputra, B A; Aji, M P; Susanto; Kurdi, O

    2017-01-01

    Evanescent wave based-optical fiber sensor to detect cadmium ion is proposed. Chitosan was used by using the dip-coating method. The sensor was fabricated in U-bent shape. U-bent optical sensor at aconcentration of 2ppm and 5ppm had asensitivity of 0.2067 dBm/ppm and -0.7995 dBm/ppm, respectively. At a level of 2ppm - 5ppm, the optical sensor has a linear response with asensitivity of -0.283 dBm/ppm. The sensor takes 9.5 minutes to reach steady stateat aconcentration of 1 ppm. Atalevel of 2ppm - 5ppm, the sensor takes 5 minutes to 10.45 minutes to reach steady state. (paper)

  20. Mapping lithosphere thickness beneath the Southern Caribbean and Venezuela using body wave reflectivity and surface wave tomography

    Science.gov (United States)

    Masy, J.; Niu, F.; Levander, A.; Schmitz, M.

    2012-12-01

    The Caribbean (CAR) and South American (SA) plate boundary in Venezuela is a broad zone of diffuse deformation and faulting. GPS measurements indicate that the CAR is moving approximately 2 cm/yr respect to SA, parallel to the strike slip fault system in the east, but with an oblique convergence component in the west (Weber et al., 2001). Along the central and eastern Venezuela coast, most of the motion is accommodated by both transpression and transtension along the right lateral strike-slip San Sebastian- El Pilar fault system. The main tectonic features of the area include accretionary wedges and coastal thrust belts with their associated foreland basins (e.g. Sierra del Interior and Espino Graben). Southern of the plate boundary is located the Guayana Shield, which is part of the Amazonian Craton, and is an elevated plain consisting of Precambrian rocks. BOLIVAR (Broadband Onshore-Offshore Lithospheric Investigation of Venezuela and the Antilles Arc Region) was a multidisciplinary, international investigation to determine the evolution of the CAR-SA plate boundary (Levander et al., 2006) that included a 47 station broadband seismic array to complement the 40 station Venezuelan national array operated by FUNVISIS. The goal of this study is to map out lithosphere thickness across the region in order to understand its role for the various types of deformations observed at surface. We combined surface wave tomography and body wave reflectivity to locate the depth of the lithosphere-asthenosphere boundary (LAB). To generate a coherent 3D reflectivity volume of the study area, we used both P- and S-wave receiver-function data, as well as the ScS reverberation records of two deep earthquakes occurring in South America. We also measured Rayleigh phase velocities in the frequency range of 20-100 s using the two plane-wave method to remove multi-pathing effects (Forsyth and Li, 2005). Finite-frequency kernels were computed for a total of 63 teleseismic events to improve