WorldWideScience

Sample records for reducing volcano risk

  1. Global Volcano Mortality Risks and Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Volcano Mortality Risks and Distribution is a 2.5 minute grid representing global volcano mortality risks. The data set was constructed using historical...

  2. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  3. Reducing volcanic risk on Fogo Volcano, Cape Verde, through a participatory approach: which outcome?

    Science.gov (United States)

    Texier-Teixeira, P.; Chouraqui, F.; Perrillat-Collomb, A.; Lavigne, F.; Cadag, J. R.; Grancher, D.

    2014-09-01

    This research paper presents the outcomes of Work Package 5 (socio-economical vulnerability assessment and community-based disaster risk reduction) of the MIAVITA (MItigate and Assess risk from Volcanic Impact on Terrain and human Activities) research programme conducted on Fogo Volcano, Cape Verde. The study lasted for almost 3 years (May 2010 to January 2012), of which most of the time was spent in the village of Chã das Caldeiras, situated within the 9 km wide caldera of the volcano inside Fogo Natural Park. The objectives of the programme included assessment of the vulnerability of the community at risk in terms of livelihoods, access to resources, and power relations between the local people and the different public and private institutions. These are important factors that need to be investigated in order to understand the root causes of vulnerability of the local people. This case study shows that the voluntary exposure of people to volcanic threats is linked to daily access to sources of livelihood, especially agriculture and tourism. This is despite the perception of people of the risk to their lives and properties. In order to counter the factors of vulnerability, the study also aimed to identify and enhance local capacities. To achieve such an objective, a participatory three-dimensional mapping (P3DM) activity was conducted to facilitate the dialogue between the local people and the different stakeholders as well as to prepare plans and measures to reduce volcanic risk. The P3DM was a half success considering that it has not yet led to an operational plan which takes into account the local capacities. The main reasons included (1) the non-participatory aspect of the project at the beginning which should have identified priorities for people and let them lead the project to ensure the sustainability of (2) deep conflicts within the community which complicated the focus group discussions around the 3-D map, and the difficulties in involving more

  4. Reducing volcanic risk on Fogo Volcano, Cape-Verde, through a participatory approach: which out coming?

    Science.gov (United States)

    Texier-Teixeira, P.; Chouraqui, F.; Perrillat-Collomb, A.; Lavigne, F.; Cadag, J. R.; Grancher, D.

    2013-11-01

    This research paper presents the outcomes of the Work Package 5 (Socio-economical Vulnerability Assessment and Community-Based Disaster Risk Reduction) of the MIAVITA Research Program (MItigate and Assess risk from Volcanic Impact on Terrain and human Activities) conducted in Fogo Volcano, Cape-Verde. The study lasted for almost 3 yr (May 2010-January 2012) of which most of the time was spent in the village of Chã das Caldeiras, situated within the 9 km-wide caldera of the volcano inside the Fogo Natural Park. The objectives of the program included assessment of the vulnerability of the community at risk in terms of livelihoods, access to resources, and power relations between the local people and the different public and private institutions. These are important factors that need to be investigated in order to understand the root causes of vulnerability of the local people. This case study shows that the voluntary exposure of people at volcanic threats is linked with daily access to sources of livelihood specially agriculture and tourism. This is despite the perception of people of the risk on their lives and properties. In order to counter the factors of vulnerability, the study also aimed to identify and enhance local capacities. To achieve such objective, a Participatory 3-Dimensional Mapping (P3DM) activity was conducted to facilitate the dialogue between the local people and the different stakeholders as well as to prepare plans and measures to reduce volcanic risk. The P3DM was a half success considering that it has not yet led to an operational plan which takes into account the local capacities. The main reasons included (1) the non-participative aspect of the project at the beginning which should have identified priorities for people and let them lead the project to ensure the sustainability (2) deep conflicts within the community which complicated the focus group discussions around the 3-D map, and the difficulties to involve more marginalized people

  5. Advances in volcano monitoring and risk reduction in Latin America

    Science.gov (United States)

    McCausland, W. A.; White, R. A.; Lockhart, A. B.; Marso, J. N.; Assitance Program, V. D.; Volcano Observatories, L. A.

    2014-12-01

    We describe results of cooperative work that advanced volcanic monitoring and risk reduction. The USGS-USAID Volcano Disaster Assistance Program (VDAP) was initiated in 1986 after disastrous lahars during the 1985 eruption of Nevado del Ruiz dramatizedthe need to advance international capabilities in volcanic monitoring, eruption forecasting and hazard communication. For the past 28 years, VDAP has worked with our partners to improve observatories, strengthen monitoring networks, and train observatory personnel. We highlight a few of the many accomplishments by Latin American volcano observatories. Advances in monitoring, assessment and communication, and lessons learned from the lahars of the 1985 Nevado del Ruiz eruption and the 1994 Paez earthquake enabled the Servicio Geológico Colombiano to issue timely, life-saving warnings for 3 large syn-eruptive lahars at Nevado del Huila in 2007 and 2008. In Chile, the 2008 eruption of Chaitén prompted SERNAGEOMIN to complete a national volcanic vulnerability assessment that led to a major increase in volcano monitoring. Throughout Latin America improved seismic networks now telemeter data to observatories where the decades-long background rates and types of seismicity have been characterized at over 50 volcanoes. Standardization of the Earthworm data acquisition system has enabled data sharing across international boundaries, of paramount importance during both regional tectonic earthquakes and during volcanic crises when vulnerabilities cross international borders. Sharing of seismic forecasting methods led to the formation of the international organization of Latin American Volcano Seismologists (LAVAS). LAVAS courses and other VDAP training sessions have led to international sharing of methods to forecast eruptions through recognition of precursors and to reduce vulnerabilities from all volcano hazards (flows, falls, surges, gas) through hazard assessment, mapping and modeling. Satellite remote sensing data

  6. Knowledge Sharing and Collaboration in Volcanic Risk Mitigation at Galeras Volcano, Colombia: A Participative Workshop to Reduce Volcanic Risk

    Science.gov (United States)

    Sheridan, M. F.; Cordoba, G. A.

    2009-12-01

    Galeras has been in nearly constant activity during modern historic times (roughly the past 500 years). Approximately 10,000 people live within an area designated as the highest-hazard and nearly 400,000 people are within areas of potential harmful effects. A wide variety of stakeholders are affected by the hazards, including: farmers, indigenous villagers, and people in urban environments. Hazards assessment and volcano monitoring are the responsibility of the Colombian Geological Survey (INGEOMINAS), whereas decisions regarding mitigation and response procedures are the responsibility of various governmental offices and the national emergency system (SNPAD). According to the current plan, when the risk level rises to a high level the people in the highest risk zone are required to evacuate. The volcano currently is in a very active, but fluctuating, condition and a future large eruption in a medium time frame (years to decades) is possible. There is a growing level of discomfort among many of the affected groups, including indigenous communities, farmers, and urban dwellers, related to the risk assessment. The general opinion prior to July 2009 was quite polarized as the decision makers saw the people of the region as poorly prepared to understand this hazard, whereas the population felt that their views were not being heard. The result was that the people in the hazardous areas decided not to evacuate, even during the current period of explosive activity. To resolve this situation the University of Nariño (Colombia) and the State University of New York at Buffalo organized a workshop named "Knowledge, Sharing and Collaboration in Volcanic Risk Mitigation at Galeras Volcano, Colombia" that was held in Pasto (Colombia), between 6 and 11 July, 2009. The general objective of this workshop was to analyze the existing hazard maps and safety plans for Galeras and form a bridge connecting scientists, decision makers, and other stake holders to promote a better

  7. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    Science.gov (United States)

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  8. Update of the volcanic risk map of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez Cornu, F. J.; Marquez-Azua, B.

    2010-12-01

    The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-Plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano thanks to the low population density and low socio-economic activities at the time The current volcanic activity has triggered ballistic projections, pyroclastic and ash flows, and lahars, all have exceeded the maps limits established in 1999. Vulnerable elements within these areas have gradually changed due to the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano. On the slopes of the northwest side, new blue agave Tequilana weber and avocado orchard crops have emerged along with important production of greenhouse tomato, alfalfa and fruit (citrus) crops that will eventually be processed and dried for exportation to the United States and Europe. Also, in addition to the above, large expanses of corn and sugar cane have been planted on the slopes of the volcano since the nineteenth century. The increased agricultural activity has had a direct impact in the reduction of the available forest land area. Coinciding with this increased activity, the 0.8% growth population during the period of 2000 - 2005, - due to the construction of the Guadalajara-Colima highway-, also increased this impact. The growth in vulnerability changed the level of risk with respect to the one identified in the year 1999 (Suarez, 2000), thus motivating us to perform an update to the risk map at 1:25,000 using vector models of the INEGI, SPOT images of different dates, and fieldwork done in order

  9. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    avocado orchards and fruits like blueberries, raspberries, and blackberries within the radius of 15 km from the crater. The population dynamics in the Colima volcano area had a population of 552,954 inhabitants in 2010, and a growth at an annual rate of 1.6 percent of the total population. 60 percent of the populations live in 105 towns with a population less than 250 inhabitants. Also, the region showed an increase in vulnerability for the development of economic activities, supported by the highway, railway, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. With the use of geospatial information quantify the vulnerability, together with the hazard maps and exposure, enabled us to build the following volcanic risk maps: a) Exclusion areas and moderate hazard for explosive events (ballistic) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The geospatial database, a GIS mapping and current volcano monitoring, are the basis of the Operational Plan Colima Volcano. Civil Protection by the state of Jalisco and the updating of urban development plans of municipalities converge on the volcano. These instruments of land planning will help reduce volcanic risk in the region.

  10. Volcanoes: observations and impact

    Science.gov (United States)

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  11. Volcano warning systems: Chapter 67

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Ewert, John W.

    2015-01-01

    Messages conveying volcano alert level such as Watches and Warnings are designed to provide people with risk information before, during, and after eruptions. Information is communicated to people from volcano observatories and emergency management agencies and from informal sources and social and environmental cues. Any individual or agency can be both a message sender and a recipient and multiple messages received from multiple sources is the norm in a volcanic crisis. Significant challenges to developing effective warning systems for volcanic hazards stem from the great diversity in unrest, eruption, and post-eruption processes and the rapidly advancing digital technologies that people use to seek real-time risk information. Challenges also involve the need to invest resources before unrest to help people develop shared mental models of important risk factors. Two populations of people are the target of volcano notifications–ground- and aviation-based populations, and volcano warning systems must address both distinctly different populations.

  12. Risk management of El Chichón and Tacaná Volcanoes: Lessons learned from past volcanic crises: Chapter 8

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2015-01-01

    Before 1985, Mexico lacked civil-protection agencies with a mission to prevent and respond to natural and human-caused disasters; thus, the government was unprepared for the sudden eruption of El Chichón Volcano in March–April 1982, which produced the deadliest volcanic disaster in the country’s recorded history (~2,000 fatalities). With the sobering lessons of El Chichón still fresh, scientists and governmental officials had a higher awareness of possible disastrous outcome when Tacaná Volcano began to exhibit unrest in late 1985. Seismic and geochemical studies were quickly initiated to monitor activity. At the same time, scientists worked actively with officials of the Federal and local agencies to develop the “Plan Operativo” (Operational Plan)—expressly designed to effectively communicate hazards information and reduce confusion and panic among the affected population. Even though the volcano-monitoring data obtained during the Tacaná crisis were limited, when used in conjunction with protocols of the Operational Plan, they proved useful in mitigating risk and easing public anxiety. While comprehensive monitoring is not yet available, both El Chichón and Tacaná volcanoes are currently monitored—seismically and geochemically—within the scientific and economic resources available. Numerous post-eruption studies have generated new insights into the volcanic systems that have been factored into subsequent volcano monitoring and hazards assessments. The State of Chiapas is now much better positioned to deal with any future unrest or eruptive activity at El Chichón or Tacaná, both of which at the moment are quiescent as of 2014. Perhaps more importantly, the protocols first tested in 1986 at Tacaná have served as the basis for the development of risk-management practices for hazards from other active and potentially active volcanoes in Mexico. These practices have been most notably employed since 1994 at Volcán Popocatépetl since a major

  13. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  14. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    Science.gov (United States)

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  15. El Chichón's "surprise" eruption in 1982: lessons for reducing volcano risk

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    During one week (28 March–4 April 1982), three powerful explosive eruptions (VEI 5) of El Chichón Volcano caused the worst volcanic disaster in Mexico's recorded history. Pyroclastic flows and surges obliterated nine villages, killing about 2,000 people, and ashfalls downwind posed socio–economic hardships for many thousands of inhabitants of the States of Chiapas and Tabasco. The unexpected and vigorous eruption of 28 caused a hasty, confused evacuation of most villagers in the area. Activity was greatly diminished the next five days, and then the most powerful and lethal eruptions occurred 3–4 April—tragically, after many evacuees were allowed by authorities to return home.

  16. Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk

    Science.gov (United States)

    de Bélizal, Edouard; Lavigne, Franck; Hadmoko, Danang Sri; Degeai, Jean-Philippe; Dipayana, Gilang Aria; Mutaqin, Bachtiar Wahyu; Marfai, Muh Aris; Coquet, Marie; Mauff, Baptiste Le; Robin, Anne-Kyria; Vidal, Céline; Cholik, Noer; Aisyah, Nurnaning

    2013-07-01

    The 2010 VEI 4 eruption of Merapi volcano deposited roughly ten times the volume of pyroclastic materials of the 1994 and 2006 eruptions, and is recognized as one of the most intense eruption since 1872. However, as the eruptive phase is now over, another threat endangers local communities: rain-triggered lahars. Previous papers on lahars at Merapi presented lahar-related risk following small-scale dome-collapse PDCs. Thus the aim of this study is to provide new insights on lahar-related risk following a large scale VEI 4 eruption. The paper highlights the high number of events (240) during the 2010-2011 rainy season (October 2010-May 2011). The frequency of the 2010-2011 lahars is also the most important ever recorded at Merapi. Lahars occurred in almost all drainages located under the active cone, with runout distances exceeding 15 km. The geomorphic impacts of lahars on the distal slope of the volcano are then explained as they directly threaten houses and infrastructures: creation of large corridors, avulsions, riverbank erosion and riverbed downcutting are detailed through local scale examples. Related damage is also studied: 860 houses damaged, 14 sabo-dams and 21 bridges destroyed. Sedimentological characteristics of volcaniclastic sediments in lahar corridors are presented, with emphasis on the resource in building material that they represent for local communities. Risk studies should not forget that thousands of people are exposing themselves to lahar hazard when they quarry volcaniclastic sediment on lahar corridors. Finally, the efficient community-based crisis management is explained, and shows how local people organize themselves to manage the risk: 3 fatalities were reported, although lahars reached densely populated areas. To summarize, this study provides an update of lahar risk issues at Merapi, with emphasis on the distal slope of the volcano where lahars had not occurred for 40 years, and where lahar corridors were rapidly formed.

  17. The Volcanic Hazards Assessment Support System for the Online Hazard Assessment and Risk Mitigation of Quaternary Volcanoes in the World

    Directory of Open Access Journals (Sweden)

    Shinji Takarada

    2017-12-01

    Full Text Available Volcanic hazards assessment tools are essential for risk mitigation of volcanic activities. A number of offline volcanic hazard assessment tools have been provided, but in most cases, they require relatively complex installation procedure and usage. This situation causes limited usage of volcanic hazard assessment tools among volcanologists and volcanic hazards communities. In addition, volcanic eruption chronology and detailed database of each volcano in the world are essential key information for volcanic hazard assessment, but most of them are isolated and not connected to and with each other. The Volcanic Hazard Assessment Support System aims to implement a user-friendly, WebGIS-based, open-access online system for potential hazards assessment and risk-mitigation of Quaternary volcanoes in the world. The users can get up-to-date information such as eruption chronology and geophysical monitoring data of a specific volcano using the direct link system to major volcano databases on the system. Currently, the system provides 3 simple, powerful and notable deterministic modeling simulation codes of volcanic processes, such as Energy Cone, Titan2D and Tephra2. The system provides deterministic tools because probabilistic assessment tools are normally much more computationally demanding. By using the volcano hazard assessment system, the area that would be affected by volcanic eruptions in any location near the volcano can be estimated using numerical simulations. The system is being implemented using the ASTER Global DEM covering 2790 Quaternary volcanoes in the world. The system can be used to evaluate volcanic hazards and move this toward risk-potential by overlaying the estimated distribution of volcanic gravity flows or tephra falls on major roads, houses and evacuation areas using the GIS-enabled systems. The system is developed for all users in the world who need volcanic hazards assessment tools.

  18. Risk perception at a persistently active volcano: warnings and trust at Popocatépetl volcano in Mexico, 2012-2014

    Science.gov (United States)

    Donovan, Amy; Ayala, Irasema Alcántara; Eiser, J. R.; Sparks, R. S. J.

    2018-05-01

    This paper presents data from an online survey carried out in Mexico from 2012 to 2014. The survey focussed on the risk to Mexico City from Popocatépetl, an active volcano 60 km from the city. During the time period, volcanic activity was variable, and the alert level changed accordingly. The survey showed that people surveyed at the higher alert level were generally more concerned about the volcano. Since these people were measured separately from those who responded at the lower alert level and yet self-reported on the same scale as more concerned, this provides a useful indicator that the raised alert level may be associated with higher risk perception, and that alert level systems act as boundary objects in the translation of scientific information. In general, trust in various groups was most strongly explained by the perceived knowledge of the groups, followed by their perceived motivation (whether or not they are viewed as working in society's interest), with accuracy a tertiary concern. Some respondents were anxious about false alarms—these people also tended to be concerned about scientific accuracy while those who favoured precaution tended to be more trusting. The perceived effectiveness of warning and evacuation plans was also a significant predictor for trust in official groups. In general, the results suggest that there are important links between trust, warning plans and the perceived motivation of particular groups as well as between trust and perceived knowledge.

  19. Earthquake and volcano hazard notices: An economic evaluation of changes in risk perceptions

    Science.gov (United States)

    Bernknopf, R.L.; Brookshire, D.S.; Thayer, M.A.

    1990-01-01

    Earthquake and volcano hazard notices were issued for the Mammoth Lakes, California area by the U.S. Geological Survey under the authority granted by the Disaster Relief Act of 1974. The effects on investment, recretion visitation, and risk perceptionsare explored. The hazard notices did not affect recreation visitation, although investment was affected. A perceived loss in the market value of homes was documented. Risk perceptions were altered for property owners. Communication of the probability of an event over time would enhance hazard notices as a policy instrument and would mitigate unnecessary market perturbations. ?? 1990.

  20. Volcano hazards in the San Salvador region, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the country’s capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquerón, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local

  1. The Powell Volcano Remote Sensing Working Group Overview

    Science.gov (United States)

    Reath, K.; Pritchard, M. E.; Poland, M. P.; Wessels, R. L.; Biggs, J.; Carn, S. A.; Griswold, J. P.; Ogburn, S. E.; Wright, R.; Lundgren, P.; Andrews, B. J.; Wauthier, C.; Lopez, T.; Vaughan, R. G.; Rumpf, M. E.; Webley, P. W.; Loughlin, S.; Meyer, F. J.; Pavolonis, M. J.

    2017-12-01

    Hazards from volcanic eruptions pose risks to the lives and livelihood of local populations, with potential global impacts to businesses, agriculture, and air travel. The 2015 Global Assessment of Risk report notes that 800 million people are estimated to live within 100 km of 1400 subaerial volcanoes identified as having eruption potential. However, only 55% of these volcanoes have any type of ground-based monitoring. The only methods currently available to monitor these unmonitored volcanoes are space-based systems that provide a global view. However, with the explosion of data techniques and sensors currently available, taking full advantage of these resources can be challenging. The USGS Powell Center Volcano Remote Sensing Working Group is working with many partners to optimize satellite resources for global detection of volcanic unrest and assessment of potential eruption hazards. In this presentation we will describe our efforts to: 1) work with space agencies to target acquisitions from the international constellation of satellites to collect the right types of data at volcanoes with forecasting potential; 2) collaborate with the scientific community to develop databases of remotely acquired observations of volcanic thermal, degassing, and deformation signals to facilitate change detection and assess how these changes are (or are not) related to eruption; and 3) improve usage of satellite observations by end users at volcano observatories that report to their respective governments. Currently, the group has developed time series plots for 48 Latin American volcanoes that incorporate variations in thermal, degassing, and deformation readings over time. These are compared against eruption timing and ground-based data provided by the Smithsonian Institute Global Volcanism Program. Distinct patterns in unrest and eruption are observed at different volcanoes, illustrating the difficulty in developing generalizations, but highlighting the power of remote sensing

  2. A repeatable seismic source for tomography at volcanoes

    Directory of Open Access Journals (Sweden)

    A. Ratdomopurbo

    1999-06-01

    Full Text Available One major problem associated with the interpretation of seismic signals on active volcanoes is the lack of knowledge about the internal structure of the volcano. Assuming a 1D or a homogeneous instead of a 3D velocity structure leads to an erroneous localization of seismic events. In order to derive a high resolution 3D velocity model ofMt. Merapi (Java a seismic tomography experiment using active sources is planned as a part of the MERAPI (Mechanism Evaluation, Risk Assessment and Prediction Improvement project. During a pre-site survey in August 1996 we tested a seismic source consisting of a 2.5 l airgun shot in water basins that were constructed in different flanks of the volcano. This special source, which in our case can be fired every two minutes, produces a repeatable, identical source signal. Using this source the number of receiver locations is not limited by the number of seismometers. The seismometers can be moved to various receiver locations while the source reproduces the same source signal. Additionally, at each receiver location we are able to record the identical source signal several times so that the disadvantage of the lower energy compared to an explosion source can be reduced by skipping disturbed signals and stacking several recordings.

  3. Geoheritage value of the UNESCO site at Leon Viejo and Momotombo volcano, Nicaragua

    Science.gov (United States)

    van Wyk de Vries, Benjamin; Navarro, Martha; Espinoza, Eveling; Delgado, Hugo

    2017-04-01

    The Momotombo volcano has a special place in the history of Nicaragua. It is perfectly visible from the Capital, Managua, and from the major city of Leon. The old capital "Leon Viejo", founded in 1524 was abandoned in 1610, after a series of earthquakes and some major eruptions from Momotombo. The site was subsequently covered by Momotombo ash. A major geothermal power plant stands at the base of the volcano. Momotombo had been dormant for a hundred years, but had maintained high fumarole temperatures (900°C), indicating magma had been close to the surface for decades. In recent years, seismic activity has increased around the volcano. In December 2015, after a short ash eruption phase the volcano erupted lava, then a string of Vulcanian explosions. The volcano is now in a phase of small Vulcanian explosions and degassing. The Leon Viejo World Heritage site is at risk to mainly ash fall from the volcano, but the abandonment of the old city was primarily due to earthquakes. Additional risks come from high rainfall during hurricanes. There is an obvious link between the cultural site (inscribed under UNESCO cultural criteria) and the geological environment. First, the reactivation of Momotombo volcano makes it more important to revise the hazard of the site. At the same time, Leon Viejo can provide a portal for outreach related to the volcano and for geological risk in general. To maximise this, we provide a geosite inventory of the main features of Momotombo, and it's environs, that can be used as the first base for such studies. The volcano was visited by many adventure tourists before the 2015/2016 eruption, but is out of bounds at present. Alternative routes, around the volcano could be made, to adapt to the new situation and to show to visitors more of the geodiversity of this fascinating volcano-tectonic and cultural area.

  4. Perception of Lava Flow Hazards and Risk at Mauna Loa and Hualalai Volcanoes, Kona, Hawaii

    Science.gov (United States)

    Gregg, C. E.; Houghton, B. F.; Johnston, D. M.; Paton, D.; Swanson, D. A.

    2001-12-01

    The island of Hawaii is composed of five sub-aerially exposed volcanoes, three of which have been active since 1801 (Kilauea, Mauna Loa, Hualalai). Hawaii has the fastest population growth in the state and the local economy in the Kona districts (i.e., western portion of the island) is driven by tourism. Kona is directly vulnerable to future lava flows from Mauna Loa and Hualalai volcanoes, as well as indirectly from the effects of lava flows elsewhere that may sever the few roads that connect Kona to other vital areas on the island. A number of factors such as steep slopes, high volume eruptions, and high effusion rates, combine to mean that lava flows from Hualalai and Mauna Loa can be fast-moving and hence unusually hazardous. The proximity of lifelines and structures to potential eruptive sources exacerbates societies' risk to future lava flows. Approximately \\$2.3 billion has been invested on the flanks of Mauna Loa since its last eruption in 1984 (Trusdell 1995). An equivalent figure has not yet been determined for Hualalai, but an international airport, several large resort complexes, and Kailua-Kona, the second largest town on the island, are down-slope and within 15km of potential eruptive Hualalai vents. Public and perhaps official understanding of specific lava flow hazards and the perceptions of risk from renewed volcanism at each volcano are proportional to the time lapsed since the most recent eruption that impacted Kona, rather than a quantitative assessment of risk that takes into account recent growth patterns. Lava flows from Mauna Loa and Hualalai last directly impacted upon Kona during the notorious 1950 and circa 1801 eruptions, respectively. Various non-profit organizations; local, state and federal government entities; and academic institutions have disseminated natural hazard information in Kona but despite the intuitive appeal that increased hazard understanding and risk perception results in increased hazard adjustment adoption, this

  5. Should We Stay Or Should We Go Now? Hazard Warnings, Risk Perception, and Evacuation Decisions at Pacaya Volcano, Guatemala During the 2010 Eruption.

    Science.gov (United States)

    Lechner, H. N.; Rouleau, M.

    2017-12-01

    Pacaya volcano, in Guatemala, presents considerable risk to nearby communities and in May 2010, the volcano experienced its largest eruption in more than a decade. The eruption damaged or destroyed hundreds of homes, injured scores of people with one fatality, and prompted the evacuation of approximately 2000 people from several communities. During this eruption crisis, people living within at-risk communities were presented with the choice to evacuate or remain in the hazard zone. Many chose not to leave. Using quantitative methodologies, this research investigates evacuation decisions through causal relationships between hazard warnings, evacuation orders, risk perception, evacuation intention and behavior, and attempts to understand why some people chose to stay in harm's-way. In October 2016, we conducted a door-to-door survey administered to 172 households in eight communities within 5 km of the active vent. Participants were asked to rank factors that influenced their decision to evacuate or not, their level of trust in emergency management agencies, and the intention to evacuate during a future crisis. Initial analysis suggests that many people have confidence in emergency management agencies and information from volcano scientists; however, during the 2010 eruption, warning messages and evacuation orders were based on previous eruption patterns and tephra distribution and therefore disseminated differentially to at-risk communities. This likely delayed evacuation decisions by households in the communities that were most affected by the eruption. The data also suggest that while many households perceive evacuation as the most effective protective action, the perceived risk to one's home and property may play a more important role in the decision making process. We will discuss these results as well as communication strategies between agencies and communities, and how to better facilitate more effective and successful evacuations during future eruption crises

  6. Measurements of radon and chemical elements: Popocatepetl volcano

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V.; Armienta, M.A.; Valdes, C.; Mena, M.; Seidel, J.L.; Monnin, M.

    2002-01-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  7. Natural hazards and risk reduction in Hawai'i: Chapter 10 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Kauahikaua, James P.; Tilling, Robert I.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Significant progress has been made over the past century in understanding, characterizing, and communicating the societal risks posed by volcanic, earthquake, and tsunami hazards in Hawai‘i. The work of the Hawaiian Volcano Observatory (HVO), with a century-long commitment to serving the public with credible hazards information, contributed substantially to this global progress. Thomas A. Jaggar, Jr., HVO’s founder, advocated that a scientific approach to understanding these hazards would result in strategies to mitigate their damaging effects. The resultant hazard-reduction methods range from prediction of eruptions and tsunamis, thereby providing early warnings for timely evacuation (if needed), to diversion of lava flows away from high-value infrastructure, such as hospitals. In addition to long-term volcano monitoring and multifaceted studies to better understand eruptive and seismic phenomena, HVO has continually and effectively communicated—through its publications, Web site, and public education/outreach programs—hazards information to emergency-management authorities, news media, and the public.

  8. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  9. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  10. Soil radon response around an active volcano

    International Nuclear Information System (INIS)

    Segovia, N.; Valdes, C.; Pena, P.; Mena, M.; Tamez, E.

    2001-01-01

    Soil radon behavior related to the volcanic eruptive period 1997-1999 of Popocatepetl volcano has been studied as a function of the volcanic activity. Since the volcano is located 60 km from Mexico City, the risk associated with an explosive eruptive phase is high and an intense surveillance program has been implemented. Previous studies in this particular volcano showed soil radon pulses preceding the initial phase of the eruption. The radon survey was performed with LR-115 track detectors at a shallow depth and the effect of the soil moisture during the rainy season has been observed on the detectors response. In the present state of the volcanic activity the soil radon behavior has shown more stability than in previous eruptive stages

  11. Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan

    Science.gov (United States)

    Yamamoto, Takahiro; Kudo, Takashi; Isizuka, Osamu

    2018-04-01

    Long-term evaluations of hazard and risk related to volcanoes rely on extrapolations from volcano histories, including the uniformity of their eruption rates. We calculated volumetric magma eruption rates, compiled from quantitative eruption histories of 29 Japanese Quaternary volcanoes, and analyzed them with respect to durations spanning 101-105 years. Calculated eruption rates vary greatly (101-10-4 km3 dense-rock equivalent/1000 years) between individual volcanoes. Although large basaltic stratovolcanoes tend to have high eruption rates and relatively constant repose intervals, these cases are not representative of the various types of volcanoes in Japan. At many Japanese volcanoes, eruption rates are not constant through time, but increase, decrease, or fluctuate. Therefore, it is important to predict whether eruption rates will increase or decrease for long-term risk assessment. Several temporal co-variations of eruption rate and magmatic evolution suggest that there are connections between them. In some cases, magma supply rates increased in response to changing magma-generation processes. On the other hand, stable plumbing systems without marked changes in magma composition show decreasing eruption rates through time.[Figure not available: see fulltext.

  12. K-Ar ages of the Hiruzen volcano group and the Daisen volcano

    International Nuclear Information System (INIS)

    Tsukui, Masashi; Nishido, Hirotsugu; Nagao, Keisuke.

    1985-01-01

    Seventeen volcanic rocks of the Hiruzen volcano group and the Daisen volcano, in southwest Japan, were dated by the K-Ar method to clarify the age of volcanic activity in this region and the evolution of these composite volcanoes. The eruption ages of the Hiruzen volcano group were revealed to be about 0.9 Ma to 0.5 Ma, those of the Daisen volcano to be about 1 Ma to very recent. These results are consistent with geological and paleomagnetic data of previous workers. Effusion of lavas in the area was especially vigorous at 0.5+-0.1 Ma. It was generally considered that the Hiruzen volcano group had erupted during latest Pliocene to early Quaternary and it is older than the Daisen volcano, mainly from their topographic features. However, their overlapping eruption ages and petrographical similarities of the lavas of the Hiruzen volcano group and the Daisen volcano suggest that they may be included in the Daisen volcano in a broad sense. The aphyric andesite, whose eruption age had been correlated to Wakurayama andesite (6.34+-0.19 Ma) in Matsue city and thought to be the basement of the Daisen volcano, was dated to be 0.46+-0.04 Ma. It indicates that petrographically similar aphyric andesite erupted sporadically at different time and space in the San'in district. (author)

  13. Efficient inversion of volcano deformation based on finite element models : An application to Kilauea volcano, Hawaii

    Science.gov (United States)

    Charco, María; González, Pablo J.; Galán del Sastre, Pedro

    2017-04-01

    The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.

  14. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  15. Visions of Volcanoes

    Directory of Open Access Journals (Sweden)

    David M. Pyle

    2017-12-01

    Full Text Available The long nineteenth century marked an important transition in the understanding of the nature of combustion and fire, and of volcanoes and the interior of the earth. It was also a period when dramatic eruptions of Vesuvius lit up the night skies of Naples, providing ample opportunities for travellers, natural philosophers, and early geologists to get up close to the glowing lavas of an active volcano. This article explores written and visual representations of volcanoes and volcanic activity during the period, with the particular perspective of writers from the non-volcanic regions of northern Europe. I explore how the language of ‘fire’ was used in both first-hand and fictionalized accounts of peoples’ interactions with volcanoes and experiences of volcanic phenomena, and see how the routine or implicit linkage of ‘fire’ with ‘combustion’ as an explanation for the deep forces at play within and beneath volcanoes slowly changed as the formal scientific study of volcanoes developed. I show how Vesuvius was used as a ‘model’ volcano in science and literature and how, later, following devastating eruptions in Indonesia and the Caribbean, volcanoes took on a new dimension as contemporary agents of death and destruction.

  16. Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan.

    Science.gov (United States)

    Liu, Chia-Chuan; Maity, Jyoti Prakash; Jean, Jiin-Shuh; Sracek, Ondra; Kar, Sandeep; Li, Zhaohui; Bundschuh, Jochen; Chen, Chien-Yen; Lu, Hsueh-Yu

    2011-01-01

    Fluid and mud samples collected from Hsiaokunshui (HKS), Wushanting (WST), Yenshuikeng (YSK), Kunshuiping (KSP), Liyushan (LYS), and Sinyangnyuhu (SYNH) mud volcanoes of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. The relationship between the release of arsenic (As) and activities of sulfate-reducing bacteria has been assessed to understand relevant geochemical processes in the mud volcanoes. Arsenic (0.02-0.06 mg/L) and humic substances (4.13 × 10(-4) to 1.64 × 10(-3) mM) in the fluids of mud volcanoes showed a positive correlation (r = 0.99, p volcano. Arsenic and iron in mud sediments formed two separate groups i) high As, but low Fe in HKS, WST, and SYNH; and ii) low As, but high Fe in the YSK, KSP, and LYS mud volcanoes. The Eh(S.H.E.) values of the mud volcano liquids were characterized by mild to strongly reducing conditions. The HKS, SYNH, and WST mud volcanoes (near the Chishan Fault) belongs to strong reducing environment (-33 to -116 mV), whereas the LYS, YSK, and KSP mud volcanoes located near the coastal plain are under mild reducing environment (-11 to 172 mV). At low Eh values mud volcanoes, saturation index (SI) values of poorly crystalline phases such as amorphous ferric hydroxide indicate understaturation, whereas saturation is reached in relatively high Eh(S.H.E.) values mud volcanoes. Arsenic contents in sediments are low, presumably due to its release to fluids (As/Fe ratio in YSK, KSP, and LYS sediment: 4.86 × 10(-4)-6.20 × 10(-4)). At low Eh(S.H.E.) values (mild to strong reducing environment), arsenic may co-precipitate with sulfides as a consequence of sulfate reduction (As/Fe ratios in WST, HKS, and SYNH sediments: 0.42-0.69).

  17. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrún; Gudmundsson, Magnús T.; Vogfjörd, Kristin; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Pagneux, Emmanuel; Barsotti, Sara; Karlsdóttir, Sigrún; Bergsveinsson, Sölvi; Oddsdóttir, Thorarna

    2017-04-01

    The Catalogue of Icelandic Volcanoes (CIV) is a newly developed open-access web resource (http://icelandicvolcanoes.is) intended to serve as an official source of information about volcanoes in Iceland for the public and decision makers. CIV contains text and graphic information on all 32 active volcanic systems in Iceland, as well as real-time data from monitoring systems in a format that enables non-specialists to understand the volcanic activity status. The CIV data portal contains scientific data on all eruptions since Eyjafjallajökull 2010 and is an unprecedented endeavour in making volcanological data open and easy to access. CIV forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the European Union funded effort FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. The supersite concept implies integration of space and ground based observations for improved monitoring and evaluation of volcanic hazards, and open data policy. This work is a collaboration of the Icelandic Meteorological Office, the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere.

  18. Effects of Volcanoes on the Natural Environment

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2005-01-01

    The primary focus of this project has been on the development of techniques to study the thermal and gas output of volcanoes, and to explore our options for the collection of vegetation and soil data to enable us to assess the impact of this volcanic activity on the environment. We originally selected several volcanoes that have persistent gas emissions and/or magma production. The investigation took an integrated look at the environmental effects of a volcano. Through their persistent activity, basaltic volcanoes such as Kilauea (Hawaii) and Masaya (Nicaragua) contribute significant amounts of sulfur dioxide and other gases to the lower atmosphere. Although primarily local rather than regional in its impact, the continuous nature of these eruptions means that they can have a major impact on the troposphere for years to decades. Since mid-1986, Kilauea has emitted about 2,000 tonnes of sulfur dioxide per day, while between 1995 and 2000 Masaya has emotted about 1,000 to 1,500 tonnes per day (Duffel1 et al., 2001; Delmelle et al., 2002; Sutton and Elias, 2002). These emissions have a significant effect on the local environment. The volcanic smog ("vog" ) that is produced affects the health of local residents, impacts the local ecology via acid rain deposition and the generation of acidic soils, and is a concern to local air traffic due to reduced visibility. Much of the work that was conducted under this NASA project was focused on the development of field validation techniques of volcano degassing and thermal output that could then be correlated with satellite observations. In this way, we strove to develop methods by which not only our study volcanoes, but also volcanoes in general worldwide (Wright and Flynn, 2004; Wright et al., 2004). Thus volcanoes could be routinely monitored for their effects on the environment. The selected volcanoes were: Kilauea (Hawaii; 19.425 N, 155.292 W); Masaya (Nicaragua; 11.984 N, 86.161 W); and Pods (Costa Rica; 10.2OoN, 84.233 W).

  19. Earth Girl Volcano: An Interactive Game for Disaster Preparedness

    Science.gov (United States)

    Kerlow, Isaac

    2017-04-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards. Earth Girl is a friendly character that kids can easily connect with and she helps players understand how to best minimize volcanic risk. Our previous award-winning game, Earth Girl Tsunami, has seen success on social media, and is available as a free app for both Android and iOS tables and large phones in seven languages: Indonesian, Thai, Tamil, Japanese, Chinese, Spanish, French and English. This is the first public viewing of the Earth Girl Volcano new game prototype.

  20. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  1. Waiting for a catastrophe from the eruption of Vesuvius or Phlegraean Fields volcanoes from the lack of autoregulation of the territories at risk

    Science.gov (United States)

    Dobran, F.

    2017-12-01

    Vesuvius and Phlegraean Fields volcanoes in the Bay of Naples produce large-scale eruptions with periods that range from centuries and several millennia for the former and tens of thousands of years for the latter. The city of Naples with one million inhabitants is situated between these volcanoes and is surrounded with another two million people. The eruptions of Vesuvius have during the past 2000 years destroyed many local communities and Naples is built on the Phlegraean Fields eruption deposits of 15,000 years ago. The Vesuvius Observatory monitors these volcanoes for seismicity, ground deformation, and gas emissions, and was an independent entity until 15 years ago when it passed under the control of the central government in Rome. The Observatory lost its ability to work directly with local authorities to make rapid decisions in case of volcanic emergencies and the central decision-making process risks to produce catastrophic consequences that are much worse than those from Katrina. As in the Katrina situation, the central authority risk management strategy is flawed because it is politicized and lacks the knowledge of the territory at risk for taking timely decisions. In the Neapolitan area there are many actors with different interests and without an effective collaboration between volunteers, businesses, social, cultural and professional groups there is an excessive likelihood that an emergency decision will end in tragedy. The evacuation plans for Neapolitan volcanoes call for relocating more than two million people and the key issues are who will give the evacuation order, on what basis, and when, because by waiting for too long can produce a catastrophe and by reacting too early can drain the national treasury and cause significant social and political consequences. To avoid this dilemma is to replace massive evacuation or deportation plans of geologists with a risk reduction strategy that produces an autoregulation of the territory that is resilient

  2. United States-Chile binational exchange for volcanic risk reduction, 2015—Activities and benefits

    Science.gov (United States)

    Pierson, Thomas C.; Mangan, Margaret T.; Lara Pulgar, Luis E.; Ramos Amigo, Álvaro

    2017-07-25

    In 2015, representatives from the United States and Chile exchanged visits to discuss and share their expertise and experiences dealing with volcano hazards. Communities in both countries are at risk from various volcano hazards. Risks to lives and property posed by these hazards are a function not only of the type and size of future eruptions but also of distances from volcanoes, structural integrity of volcanic edifices, landscape changes imposed by recent past eruptions, exposure of people and resources to harm, and any mitigative measures taken (or not taken) to reduce risk. Thus, effective risk-reduction efforts require the knowledge and consideration of many factors, and firsthand experience with past volcano crises provides a tremendous advantage for this work. However, most scientists monitoring volcanoes and most officials delegated with the responsibility for emergency response and management in volcanic areas have little or no firsthand experience with eruptions or volcano hazards. The reality is that eruptions are infrequent in most regions, and individual volcanoes may have dormant periods lasting hundreds to thousands of years. Knowledge may be lacking about how to best plan for and manage future volcanic crises, and much can be learned from the sharing of insights and experiences among counterpart specialists who have had direct, recent, or different experiences in dealing with restless volcanoes and threatened populations. The sharing of information and best practices can help all volcano scientists and officials to better prepare for future eruptions or noneruptive volcano hazards, such as large volcanic mudflows (lahars), which could affect their communities.

  3. The human impact of volcanoes: a historical review of events 1900-2009 and systematic literature review.

    Science.gov (United States)

    Doocy, Shannon; Daniels, Amy; Dooling, Shayna; Gorokhovich, Yuri

    2013-04-16

    Introduction. More than 500 million people live within the potential exposure range of a volcano. The risk of catastrophic losses in future eruptions is significant given population growth, proximities of major cities to volcanoes, and the possibility of larger eruptions. The objectives of this review are to describe the impact of volcanoes on the human population, in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters. Methods. Data on the impact of volcanoes were compiled using two methods, a historical review of volcano events from 1900 to 2009 from multiple databases and a systematic literature review of publications ending in October 2012. Analysis included descriptive statistics and bivariate tests for associations between volcano mortality and characteristics using STATA 11. Findings. There were a total of 91,789 deaths (range: 81,703-102,372), 14,068 injuries (range 11,541-17,922), and 4.72 million people affected by volcanic events between 1900 and 2008. Inconsistent reporting suggests this is an underestimate, particularly in terms of numbers injured and affected. The primary causes of mortality in recent volcanic eruptions were ash asphyxiation, thermal injuries from pyroclastic flow, and trauma. Mortality was concentrated with the ten deadliest eruptions accounting for more than 80% of deaths; 84% of fatalities occurred in four locations (the Island of Martinique (France), Colombia, Indonesia, and Guatemala). Conclusions. Changes in land use practices and population growth provide a background for increasing risk; in conjunction with increasing urbanization in at risk areas, this poses a challenge for future volcano preparedness and mitigation efforts.

  4. Analysis of Distribution of Volcanoes around the Korean Peninsula and the Potential Effects on Korea

    Science.gov (United States)

    Choi, Eun-kyeong; Kim, Sung-wook

    2017-04-01

    Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and eruption histories of these volcanoes. Volcanic data were based on the volcano information registered with the Global Volcanism Program at the Smithsonian Institute. We created a database of 289 volcanoes around Korea, Japan, China, Taiwan, and the Kamchatka area in Russia, and then identified a high-risk group of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, types of rock at risk of eruption, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) of 4 or more. We selected 29 hazardous volcanoes, including Baekdusan, Ulleungdo, and 27 Japanese volcanoes that can cause widespread ashfall on the Korean peninsula by potentially explosive eruptions. In addition, we identified ten volcanoes that should be given the highest priority, through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes. We expect that predicting the extent of the spread of ash caused by this hazardous activity and analyzing its impact on the Korean peninsula will be help to predict volcanic ash damage as well as provide direction for hazard mitigation research. Acknowledgements This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  5. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  6. Reducing risk from lahar hazards: concepts, case studies, and roles for scientists

    Science.gov (United States)

    Pierson, Thomas C.; Wood, Nathan J.; Driedger, Carolyn L.

    2014-01-01

    Lahars are rapid flows of mud-rock slurries that can occur without warning and catastrophically impact areas more than 100 km downstream of source volcanoes. Strategies to mitigate the potential for damage or loss from lahars fall into four basic categories: (1) avoidance of lahar hazards through land-use planning; (2) modification of lahar hazards through engineered protection structures; (3) lahar warning systems to enable evacuations; and (4) effective response to and recovery from lahars when they do occur. Successful application of any of these strategies requires an accurate understanding and assessment of the hazard, an understanding of the applicability and limitations of the strategy, and thorough planning. The human and institutional components leading to successful application can be even more important: engagement of all stakeholders in hazard education and risk-reduction planning; good communication of hazard and risk information among scientists, emergency managers, elected officials, and the at-risk public during crisis and non-crisis periods; sustained response training; and adequate funding for risk-reduction efforts. This paper reviews a number of methods for lahar-hazard risk reduction, examines the limitations and tradeoffs, and provides real-world examples of their application in the U.S. Pacific Northwest and in other volcanic regions of the world. An overriding theme is that lahar-hazard risk reduction cannot be effectively accomplished without the active, impartial involvement of volcano scientists, who are willing to assume educational, interpretive, and advisory roles to work in partnership with elected officials, emergency managers, and vulnerable communities.

  7. The Hawaiian Volcano Observatory: a natural laboratory for studying basaltic volcanism: Chapter 1 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Tilling, Robert I.; Kauahikaua, James P.; Brantley, Steven R.; Neal, Christina A.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    In the beginning of the 20th century, geologist Thomas A. Jaggar, Jr., argued that, to fully understand volcanic and associated hazards, the expeditionary mode of studying eruptions only after they occurred was inadequate. Instead, he fervently advocated the use of permanent observatories to record and measure volcanic phenomena—at and below the surface—before, during, and after eruptions to obtain the basic scientific information needed to protect people and property from volcanic hazards. With the crucial early help of American volcanologist Frank Alvord Perret and the Hawaiian business community, the Hawaiian Volcano Observatory (HVO) was established in 1912, and Jaggar’s vision became reality. From its inception, HVO’s mission has centered on several goals: (1) measuring and documenting the seismic, eruptive, and geodetic processes of active Hawaiian volcanoes (principally Kīlauea and Mauna Loa); (2) geological mapping and dating of deposits to reconstruct volcanic histories, understand island evolution, and determine eruptive frequencies and volcanic hazards; (3) systematically collecting eruptive products, including gases, for laboratory analysis; and (4) widely disseminating observatory-acquired data and analysis, reports, and hazard warnings to the global scientific community, emergency-management authorities, news media, and the public. The long-term focus on these goals by HVO scientists, in collaboration with investigators from many other organizations, continues to fulfill Jaggar’s career-long vision of reducing risks from volcanic and earthquake hazards across the globe.

  8. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  9. Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico

    Science.gov (United States)

    Capra, L.; Macías, J. L.

    2000-10-01

    During the Pleistocene, intense hydrothermal alteration promoted a flank failure of the southern portion of Nevado de Toluca volcano. This event produced a debris avalanche that transformed into a cohesive debris flow (Pilcaya deposit) owing to water saturation and weakness of the altered pre-avalanche rocks. The Pilcaya debris flow traveled along a narrow tectonic depression up to a distance of 40 km and then spread over a flat plain reaching up to 55 km from the volcano summit. This transition zone corresponds with a sudden break in slope from 5 to 0.5° that caused a rapid reduction in velocity and thickening of the flow that consequently reduced its competence to transport large particles. The resulting deposit thickens from 15 to 40 m, and contains boulders up to 15 m in diameter that form hummocky morphology close to the transitional zone. Sometime after the emplacement of the Pilcaya debris flow, heavy rains and superficial drainage contributed to remobilize the upper portions of the deposit causing two secondary lahars. These debris flows called El Mogote, traveled up to 75 km from the volcano. The edifice collapse generated lahars with a total volume of 2.8 km3 that devastated an approximate area of 250 km2. The area versus volume plot for both deposits shows that the magnitude of the event is comparable to other cohesive debris flows such as the Teteltzingo lahar (Pico de Orizaba, Mexico) and the Osceola mudflow (Mount Rainier, Wa). The Pilcaya debris flow represents additional evidence of debris flow transformed from a flank failure, a potentially devastating phenomenon that could threaten distant areas from the volcano previously considered without risk.

  10. The 2008 Eruption of Chaitén Volcano, Chile and National Volcano-Monitoring Programs in the U.S. and Chile

    Science.gov (United States)

    Ewert, J. W.; Lara, L. E.; Moreno, H.

    2008-12-01

    Chaitén volcano, southern Chile, began erupting on 2 May 2008. The eruption produced 3 Plinian eruption pulses between May 2 and 8. Between Plinian phases the volcano emitted a constant column of ash to approximately 10 km, gradually diminishing to approximately 3 km by the end of June. The eruption of Chaitén was remarkable on several counts--it was the first rhyolite eruption on the planet since Novarupta (Katmai) erupted in 1912, and Chaitén had apparently lain dormant for approximately 9300 years. Though Chaitén is located in a generally sparsely populated region, the eruption had widespread impacts. More than 5000 people had to be quickly evacuated from proximal areas and aviation in southern South America was disrupted for weeks. Within 10 days secondary lahars had overrun much of the town of Chaitén complicating the prospects of the townspeople to return to their homes. Prior to the eruption onset, the nearest real-time seismic station was 300 km distant, and earthquakes were not felt by local citizens until approximately 30 hours before the eruption onset. No other signs of unrest were noted. Owing to the lack of near-field monitoring, and the nighttime eruption onset, there was initial confusion about which volcano was erupting: Chaitén or nearby Michinmahuida. Lack of monitoring systems at Chaitén meant that warning time for the public at risk was extremely short, and owing to the nature of the eruption and the physical geography of the area, it was very difficult to install monitoring instruments to track its progress after the eruption started. The lack of geophysical monitoring also means that an important data set on precursory behavior for silicic systems was not collected. With more than 120 Pleistocene to Holocene-age volcanoes within its continental territory, Chile is one of the more volcanically active countries in the world. The eruption of Chaitén has catalyzed the creation of a new program within the Servicio Nacional de Geología y

  11. Assigning a volcano alert level: negotiating uncertainty, risk, and complexity in decision-making processes

    OpenAIRE

    Carina J Fearnley

    2013-01-01

    A volcano alert level system (VALS) is used to communicate warning information from scientists to civil authorities managing volcanic hazards. This paper provides the first evaluation of how the decision-making process behind the assignation of an alert level, using forecasts of volcanic behaviour, operates in practice . Using interviews conducted from 2007 to 2009 at five USGS-managed (US Geological Survey) volcano observatories (Alaska, Cascades, Hawaii, Long Valley, and Yellowstone), two k...

  12. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  13. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    Science.gov (United States)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  14. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    (rockfall) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Colima Volcano by the State Civil & Fire Protection Unit of Jalisco, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  15. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    Science.gov (United States)

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  16. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  17. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  18. Volcanic risk

    International Nuclear Information System (INIS)

    Rancon, J.P.; Baubron, J.C.

    1995-01-01

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles' volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO 2 , H 2 O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs

  19. Digital Data for Volcano Hazards in the Mount Jefferson Region, Oregon

    Science.gov (United States)

    Schilling, S.P.; Doelger, S.; Walder, J.S.; Gardner, C.A.; Conrey, R.M.; Fisher, B.J.

    2008-01-01

    Mount Jefferson has erupted repeatedly for hundreds of thousands of years, with its last eruptive episode during the last major glaciation which culminated about 15,000 years ago. Geologic evidence shows that Mount Jefferson is capable of large explosive eruptions. The largest such eruption occurred between 35,000 and 100,000 years ago. If Mount Jefferson erupts again, areas close to the eruptive vent will be severely affected, and even areas tens of kilometers (tens of miles) downstream along river valleys or hundreds of kilometers (hundreds of miles) downwind may be at risk. Numerous small volcanoes occupy the area between Mount Jefferson and Mount Hood to the north, and between Mount Jefferson and the Three Sisters region to the south. These small volcanoes tend not to pose the far-reaching hazards associated with Mount Jefferson, but are nonetheless locally important. A concern at Mount Jefferson, but not at the smaller volcanoes, is the possibility that small-to-moderate sized landslides could occur even during periods of no volcanic activity. Such landslides may transform as they move into lahars (watery flows of rock, mud, and debris) that can inundate areas far downstream. The geographic information system (GIS) volcano hazard data layer used to produce the Mount Jefferson volcano hazard map in USGS Open-File Report 99-24 (Walder and others, 1999) is included in this data set. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain.

  20. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  1. Eruptive viscosity and volcano morphology

    International Nuclear Information System (INIS)

    Posin, S.B.; Greeley, R.

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology

  2. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  3. The recent seismicity of Teide volcano, Tenerife (Canary Islands, Spain)

    Science.gov (United States)

    D'Auria, L.; Albert, G. W.; Calvert, M. M.; Gray, A.; Vidic, C.; Barrancos, J.; Padilla, G.; García-Hernández, R.; Perez, N. M.

    2017-12-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk of the island.On 02/10/2016 a remarkable swarm of long-period events was recorded and was interpreted as the effect of a transient massive fluid discharge episode occurring within the deep hydrothermal system of Teide volcano. Actually, since Oct. 2016, the hydrothermal system of the volcano underwent a progressive pressurization, testified by the marked variation of different geochemical parameters. The most striking observation is the increase in the diffuse CO2 emission from the summit crater of Teide volcano which started increasing from a background value of about 20 tons/day and reaching a peak of 175 tons/day in Feb. 2017.The pressurization process has been accompanied by an increase in the volcano-tectonic seismicity of. Teide volcano, recorded by the Red Sísmica Canaria, managed by Instituto Volcanológico de Canarias (INVOLCAN). The network began its full operativity in Nov. 2016 and currently consists of 15 broadband seismic stations. Since Nov. 2016 the network detected more than 100 small magnitude earthquakes, located beneath Teide volcano at depths usually ranging between 5 and 15 km. On January 6th 2017 a M=2.5 earthquake was recorded in the area, being one of the strongest ever recorded since decades. Most of the events show typical features of the microseismicity of hydrothermal systems: high spatial and temporal clustering and similar waveforms of individual events which often are overlapped.We present the spatial and temporal distribution of the seismicity of Teide volcano since Nov. 2016, comparing it also with the past seismicity of the volcano. Furthermore we analyze the statistical properties of the numerous swarms recorded until now with the aid of a template

  4. An Overview of Geodetic Volcano Research in the Canary Islands

    Science.gov (United States)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  5. The Perception of Volcanic Risk in Kona Communities from Mauna Loa and Hualalai Volcanoes, Hawai`i

    Science.gov (United States)

    Gregg, C. E.; Houghton, B. F.; Johnston, D. M.; Paton, D.; Swanson, D. A.

    2002-12-01

    Hawai`i's coastal communities are becoming increasingly vulnerable to natural hazards as a consequence of increasing population and infrastructure. Volcanic hazards in Kona (i.e., western side of the island) stem primarily from Mauna Loa and Hualalai volcanoes. The former has erupted thirty-nine times since 1832. Lava flows were emplaced in Kona during six of these, but last impacted Kona in 1950. Hualalai last erupted in c. 1800. The most recent eruptions at each volcano were damaging to society, but future eruptions would exact much greater impacts. The second largest city on the island, several resort complexes, and an international airport are located within 15 km of vents. Society's proximity to potential eruptive sources, a potential for relatively fast moving lavas, and the relatively long time intervals since the last eruptions in Kona, are the stimuli for this study of risk perception. Target populations were high school students and their parents, and the greater adult public (n=462). Using this data, we discuss threat knowledge as an influence on risk perception and perceptions as a driving mechanism for preparedness. Threat knowledge and perception of risk were found to be low to moderate. On average less than two-thirds of residents were aware of the most recent eruptions that impacted Kona and a minority felt that Mauna Loa and Hualalai could erupt again. Furthermore, only about one-third were aware that lava flows could reach the coast in Kona in under three hours. Lava flows and ash fall were perceived to be among the least likely hazards to affect the respondent's community. Not unexpectedly, individual preparedness measures were found to be limited to simple tasks, while measures specific to infrequent hazard events such as volcanic eruptions and earthquakes were seldom adopted. Respondents exhibit an "unrealistic optimism bias" and infer that responsibility for community preparedness for future eruptions rests primarily with officials. Hazard

  6. Patterns in thermal emissions from the volcanoes of the Aleutian Islands

    Science.gov (United States)

    Blackett, M.; Webley, P. W.; Dehn, J.

    2012-12-01

    Using AVHRR data 1993-2011 and the Alaska Volcano Observatory's Okmok II Algorithm, the thermal emissions from all volcanoes in the Aleutian Islands were converted from temperature to power emission and examined for periodicity. The emissions were also summed to quantify the total energy released throughout the period. It was found that in the period April 1997 - January 2004 (37% of the period) the power emission from the volcanoes of the island arc declined sharply to constitute just 5.7% of the total power output for the period (138,311 MW), and this was attributable to just three volcanoes: Veniaminof (1.0%), Cleveland (1.5%) and Shishaldin (3.2%). This period of apparent reduced activity contrasts with the periods both before and after and is unrelated to the number of sensors in orbit at the time. What is also evident from the data set is that in terms of overall power emission over this period, the majority of emitted energy is largely attributable to those volcanoes which erupt with regularity (again, Veniaminof [29.7%], Cleveland [17%] and Shishaldin [11.4%]), as opposed to from the relatively few, large scale events (i.e. Reboubt [5.4%], Okmok [8.3%], Augustine [9.7%]; Pavlov [13.9%] being an exception). Sum power emission from volcanoes in the Aleutian Islands (1993-2011)

  7. Vertical Motions of Oceanic Volcanoes

    Science.gov (United States)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  8. Evolving Hazard Monitoring and Communication at San Vicente Volcano, El Salvador

    Science.gov (United States)

    Bowman, L. J.; Gierke, J. S.

    2014-12-01

    El Salvador has 20 potentially active volcanoes, four of which have erupted in the last 100 years. Since San Vicente Volcano has had no historic eruptions, monitoring is not a high priority; especially given the current eruptive crisis at San Miguel Volcano. Though probability of eruptive hazards remains low at San Vicente, it is arguably one of the most hazardous volcanoes in the country due to rainfall-induced landslides and debris-flow risk. At least 250 deaths occurred in November 2009 from landslides and debris flows triggered by Hurricane Ida. This disaster caused the Universidad de El Salvador - Facultad Multidisciplinaria Paracentral (UES-FMP, San Vicente, El Salvador) to partner with governmental and nongovernmental organizations (including the U.S. Peace Corps, U.S. Fulbright Program, Korean International Cooperation Agency, Protección Civil and the Centro de Protección para Desastres (CEPRODE)) to focus its faculty and student research toward hazard monitoring and risk studies. Newly established monitoring efforts include: measurement of surface cracks and localized rainfall by Protección Civil and local residents using crude extensometers and rain gauges; installation of six weather stations that operate within the most at-risk municipalities; seismic refraction surveys to better characterize stratigraphy and seasonal water table changes; and most recently, a USAID/NSF-funded initiative partnered with the UES-FMP to monitor seasonal hydrologic conditions related to flooding and groundwater recharge. The information from these initiatives is now used to communicate current conditions and warnings through a network of two-way radios established by CEPRODE and Protección Civil. Representatives from the multi-institutional team also communicate the data to authorities who make better-informed decisions regarding warnings and evacuations, as well as determine suitable areas for population relocation in the event of a crisis. Data will eventually be used

  9. Volcano art at Hawai`i Volcanoes National Park—A science perspective

    Science.gov (United States)

    Gaddis, Ben; Kauahikaua, James P.

    2018-03-26

    Long before landscape photography became common, artists sketched and painted scenes of faraway places for the masses. Throughout the 19th century, scientific expeditions to Hawaiʻi routinely employed artists to depict images for the people back home who had funded the exploration and for those with an interest in the newly discovered lands. In Hawaiʻi, artists portrayed the broad variety of people, plant and animal life, and landscapes, but a feature of singular interest was the volcanoes. Painters of early Hawaiian volcano landscapes created art that formed a cohesive body of work known as the “Volcano School” (Forbes, 1992). Jules Tavernier, Charles Furneaux, and D. Howard Hitchcock were probably the best known artists of this school, and their paintings can be found in galleries around the world. Their dramatic paintings were recognized as fine art but were also strong advertisements for tourists to visit Hawaiʻi. Many of these masterpieces are preserved in the Museum and Archive Collection of Hawaiʻi Volcanoes National Park, and in this report we have taken the opportunity to match the artwork with the approximate date and volcanological context of the scene.

  10. Monitoring Volcanoes by Use of Air-Dropped Sensor Packages

    Science.gov (United States)

    Kedar, Sharon; Rivellini, Tommaso; Webb, Frank; Blaes, Brent; Bracho, Caroline; Lockhart, Andrew; McGee, Ken

    2003-01-01

    already in use in the Volcano Disaster Assistance Program (VDAP), which was developed by the U.S. Geological Survey and the U.S. Office of Foreign Disaster Assistance to respond to volcanic crises around the world. The VMSs would add a greatly needed capability that would enable VDAP response teams to deploy their volcano-monitoring equipment in a more timely manner with less risk to personnel in the field.

  11. Orographic Flow over an Active Volcano

    Science.gov (United States)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  12. Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA)

    Science.gov (United States)

    Diefenbach, Angela K.; Wood, Nathan J.; Ewert, John W.

    2015-01-01

    Understanding how communities are vulnerable to lahar hazards provides critical input for effective design and implementation of volcano hazard preparedness and mitigation strategies. Past vulnerability assessments have focused largely on hazards posed by a single volcano, even though communities and officials in many parts of the world must plan for and contend with hazards associated with multiple volcanoes. To better understand community vulnerability in regions with multiple volcanic threats, we characterize and compare variations in community exposure to lahar hazards associated with five active volcanoes in Washington State, USA—Mount Baker, Glacier Peak, Mount Rainier, Mount Adams and Mount St. Helens—each having the potential to generate catastrophic lahars that could strike communities tens of kilometers downstream. We use geospatial datasets that represent various population indicators (e.g., land cover, residents, employees, tourists) along with mapped lahar-hazard boundaries at each volcano to determine the distributions of populations within communities that occupy lahar-prone areas. We estimate that Washington lahar-hazard zones collectively contain 191,555 residents, 108,719 employees, 433 public venues that attract visitors, and 354 dependent-care facilities that house individuals that will need assistance to evacuate. We find that population exposure varies considerably across the State both in type (e.g., residential, tourist, employee) and distribution of people (e.g., urban to rural). We develop composite lahar-exposure indices to identify communities most at-risk and communities throughout the State who share common issues of vulnerability to lahar-hazards. We find that although lahars are a regional hazard that will impact communities in different ways there are commonalities in community exposure across multiple volcanoes. Results will aid emergency managers, local officials, and the public in educating at-risk populations and developing

  13. Measurements of radon and chemical elements: Popocatepetl volcano; Mediciones de radon y elementos quimicos: Volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Armienta, M.A.; Valdes, C.; Mena, M. [IGFUNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Seidel, J.L.; Monnin, M. [UMR 5569 CNRS Hydrosciences, Montpellier (France)

    2002-07-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  14. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  15. Exploring Geology on the World-Wide Web--Volcanoes and Volcanism.

    Science.gov (United States)

    Schimmrich, Steven Henry; Gore, Pamela J. W.

    1996-01-01

    Focuses on sites on the World Wide Web that offer information about volcanoes. Web sites are classified into areas of Global Volcano Information, Volcanoes in Hawaii, Volcanoes in Alaska, Volcanoes in the Cascades, European and Icelandic Volcanoes, Extraterrestrial Volcanism, Volcanic Ash and Weather, and Volcano Resource Directories. Suggestions…

  16. Volcanic risk; Risque volcanique

    Energy Technology Data Exchange (ETDEWEB)

    Rancon, J.P.; Baubron, J.C.

    1995-12-31

    This project follows the previous multi-disciplinary studies carried out by the French Bureau de Recherches Geologiques et Minieres (BRGM) on the two active volcanoes of the French lesser Antilles: Mt Pelee (Martinique) and Soufriere (Guadeloupe) for which geological maps and volcanic risk studies have been achieved. The research program comprises 5 parts: the study of pyroclastic deposits from recent eruptions of the two volcanoes for a better characterization of their eruptive phenomenology and a better definition of crisis scenarios; the study of deposits and structures of active volcanoes from Central America and the study of eruptive dynamics of andesite volcanoes for a transposition to Antilles` volcanoes; the starting of a methodological multi-disciplinary research (volcanology, geography, sociology...) on the volcanic risk analysis and on the management of a future crisis; and finally, the development of geochemical survey techniques (radon, CO{sub 2}, H{sub 2}O) on active volcanoes of Costa-Rica and Europe (Fournaise, Furnas, Etna) and their application to the Soufriere. (J.S.). 9 refs., 3 figs.

  17. Volcanoes

    Science.gov (United States)

    ... rock, steam, poisonous gases, and ash reach the Earth's surface when a volcano erupts. An eruption can also cause earthquakes, mudflows and flash floods, rock falls and landslides, acid rain, fires, and even tsunamis. Volcanic gas ...

  18. Volcano-Monitoring Instrumentation in the United States, 2008

    Science.gov (United States)

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing

  19. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  20. Vulnerability mapping in kelud volcano based on village information

    Science.gov (United States)

    Hisbaron, D. R.; Wijayanti, H.; Iffani, M.; Winastuti, R.; Yudinugroho, M.

    2018-04-01

    Kelud Volcano is a basaltic andesitic stratovolcano, situated at 27 km to the east of Kediri, Indonesia. Historically, Kelud Volcano has erupted with return period of 9-75 years, had caused nearly 160,000 people living in Tulungagung, Blitar and Kediri District to be in high-risk areas. This study aims to map vulnerability towards lava flows in Kediri and Malang using detailed scale. There are four major variables, namely demography, asset, hazard, and land use variables. PGIS (Participatory Geographic Information System) is employed to collect data, while ancillary data is derived from statistics information, interpretation of high resolution satellite imagery and Unmanned Aerial Vehicles (UAVs). Data were obtained from field checks and some from high resolution satellite imagery and UAVs. The output of this research is village-based vulnerability information that becomes a valuable input for local stakeholders to improve local preparedness in areas prone to improved disaster resilience. The results indicated that the highest vulnerability to lava flood disaster in Kelud Volcano is owned by Kandangan Hamlet, Pandean Hamlet and Kacangan Hamlet, because these two hamlets are in the dominant high vulnerability position of 3 out of 4 scenarios (economic, social and equal).

  1. Unzipping of the volcano arc, Japan

    Science.gov (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  2. Profile of elementary school science teacher instruction in disaster risk reduction: case study of volcano disaster

    Science.gov (United States)

    Pujianto; Prabowo; Wasis

    2018-04-01

    This study examined the profile of science' teacher instruction in Disaster Risk Reduction (DRR), as a feature of instructional quality, on students’ learning experiences. A qualitative study was done to observe teacher activities in teaching of disaster preparedness. Science teacher and 14 students at grade 4 of SDN (elementary school) Kiyaran 2 are involved as the subject of this study. Teacher’ instruction was coded with regard to preparation, action, and evaluation using observation sheets and documentation. Data analysis results showed a positive significant effect of the readiness during preparation on learning process of disaster risk reduction and an indirect effect of teacher’ action on students’ learning experiences. There is a lack of teaching materials about volcano disaster in the elementary school. Teacher found difficulties on evaluation of student achievement in disaster preparedness. These findings highlight the importance of DRR in uphold science teachers’ education. Items of teachers’ skill in preparing of DRR may be used to offer model of concrete instruction situation during university workshop for maintain teacher education.

  3. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  4. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    Science.gov (United States)

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.

  5. Volcanic risk metrics at Mt Ruapehu, New Zealand: some background to a probabilistic eruption forecasting scheme and a cost/benefit analysis at an open conduit volcano

    Science.gov (United States)

    Jolly, Gill; Sandri, Laura; Lindsay, Jan; Scott, Brad; Sherburn, Steve; Jolly, Art; Fournier, Nico; Keys, Harry; Marzocchi, Warner

    2010-05-01

    setting up BET_EF for Mt Ruapehu we are forced to define quantitatively what the background activity is. This will result in a quantitative evaluation of what changes in long time monitored parameters may influence the probability of future eruptions. The slopes of Mt Ruapehu host the largest ski area in North Island, New Zealand. Lahars have been generated as a result of several eruptions in the last 50 years, and some of these have reached the ski runs in a very short time frame (around 90 seconds from the beginning of the eruption). In the light of these potentially hazardous lahars, we use the output probabilities provided by BET_EF in a practical and rational decision scheme recently proposed by Marzocchi and Woo (2009) based on a cost/benefit analysis (CBA). In such scheme, a C/L ratio is computed, based on the costs (C) of practical mitigation actions to reduce risk (e.g., a public warning scheme and other means of raising awareness, and a call for a temporary and/or partial closure of the ski area) and on the potential loss (L) if no mitigation action is taken and an eruption occurs causing lahars down the ski fields. By comparing the probability of eruption-driven lahars and the C/L ratio, it is possible to define the most rational mitigation actions that can be taken to reduce the risk to skiers, snowboarders and staff on skifield. As BET_EF probability of eruption changes dynamically as updated monitoring data are received, the authorities can decide, at any specific point in time, what is the best action according to the current monitoring of the volcano. In this respect, CBA represents a bridge linking scientific output (probabilities) and Decision Makers (practical mitigation actions).

  6. Reducing the risk of nuclear terrorism

    International Nuclear Information System (INIS)

    Hibbs, R.

    2005-01-01

    Full text: The March 2005 'International conference on nuclear security, global directions for the future' noted that nuclear terrorism is one of the greatest threats to society. Eminent members of a multi-national panel stated that there is no one principal activity to reduce the risk of nuclear terrorism and that a combination of activities is required. This paper seeks to identify those activities by analyzing the elements that comprise the risk of nuclear terrorism. For the purpose of the analysis, risk is the product of the probability of a terrorist attack (A p ), the success of a terrorist act (S p ) and the consequence (C) of the attack: R=A p * S p * C. The paper examines each of these three elements of risk with the objective of identifying what we are doing and what else we could be doing to reduce risk. It takes into consideration some historic catastrophes, examines how they might have been prevented or their consequences reduced, and if there are lessons that are applicable to reducing the risk of nuclear terrorism. The paper demonstrates that we have concentrated on only one of the three elements of risk and offer suggestions for diminishing the risk of nuclear terrorism by addressing all the elements. (author)

  7. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  8. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    OpenAIRE

    M. Mena; G. Cisniega; B. Lopez; M. A. Armienta; C. Valdés; P. Peña; N. Segovia

    2005-01-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration d...

  9. Reducing the risk of potential hazard in tourist activities of Mount Bromo

    Science.gov (United States)

    Meilani, R.; Muthiah, J.; Muntasib, E. K. S. H.

    2018-05-01

    Mount Bromo has been crowned as one of the most beautiful mountains in the world, having a particular landscape uniqueness. Not only volcano, Bromo also has savanna, sea of sands, and culture of Tengger tribe. Its panoramic landscape has attracted a large number of tourists, both domestic and foreign, despites the threat of eruption. To ensure tourists safety and satisfaction, the potentials hazard, both from eruption and other features should be managed carefully. The study objective was to identify and map hazard potentials and identify the existing hazard management. It was carried out in Mei – June 2017. Lava, tephra, eruption cloud, ash, earthquake, land sliding, extreme weather, slope, transportation modes (jeep, motorcycle, and horse), human, and land fire were found as potential hazards in Mount Bromo. Five locations had been identified as hazard area in the tourism areas, i.e. savanna, sea of sand, Bromo caldera and Pananjakan I trail and viewing point. Early warning system should be developed as part of hazard management in the area. Capacity building of local stakeholders and visitors would be needed to reduce risk of the hazard.

  10. Volcano-tectonic interactions at Sabancaya and other Peruvian volcanoes revealed by InSAR and seismicity

    Science.gov (United States)

    Jay, J.; Pritchard, M. E.; Aron, F.; Delgado, F.; Macedo, O.; Aguilar, V.

    2013-12-01

    An InSAR survey of all 13 Holocene volcanoes in the Andean Central Volcanic Zone of Peru reveals previously undocumented surface deformation that is occasionally accompanied by seismic activity. Our survey utilizes SAR data spanning from 1992 to the present from the ERS-1, ERS-2, and Envisat satellites, as well as selected data from the TerraSAR-X satellite. We find that the recent unrest at Sabancaya volcano (heightened seismicity since 22 February 2013 and increased fumarolic output) has been accompanied by surface deformation. We also find two distinct deformation episodes near Sabancaya that are likely associated with an earthquake swarm in February 2013 and a M6 normal fault earthquake that occurred on 17 July 2013. Preliminary modeling suggests that faulting from the observed seismic moment can account for nearly all of the observed deformation and thus we have not yet found clear evidence for recent magma intrusion. We also document an earlier episode of deformation that occurred between December 2002 and September 2003 which may be associated with a M5.3 earthquake that occurred on 13 December 2002 on the Solarpampa fault, a large EW-striking normal fault located about 25 km northwest of Sabancaya volcano. All of the deformation episodes between 2002 and 2013 are spatially distinct from the inflation seen near Sabancaya from 1992 to 1997. In addition to the activity at Sabancaya, we also observe deformation near Coropuna volcano, in the Andagua Valley, and in the region between Ticsani and Tutupaca volcanoes. InSAR images reveal surface deformation that is possibly related to an earthquake swarm near Coropuna and Sabancaya volcanoes in December 2001. We also find persistent deformation in the scoria cone and lava field along the Andagua Valley, located 40 km east of Corpuna. An earthquake swarm near Ticsani volcano in 2005 produced surface deformation centered northwest of the volcano and was accompanied by a north-south elongated subsidence signal to the

  11. Unmanned Aerial Technologies for Observations at Active Volcanoes: Advances and Prospects

    Science.gov (United States)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M.; Makel, D.; Schwandner, F. M.; Buongiorno, M. F.; Elston, J. S.

    2017-12-01

    Modern application of unmanned aerial systems' (UASs) technology allow us to conduct in situ measurements in volcanic plumes and drifting volcanic clouds that were impossible to make in the past. Thus, we are now able to explore proximal airspace near and within eruption columns and or other active vents, at very high and at very low altitudes—risk to human investigators is vastly reduced (although not eliminated). We are now on the cusp of being able to make in situ measurements and conduct sampling at altitudes of 5000-6000 meters relatively routinely. We also are developing heat tolerant electronics and sensors that will deployed on, around, and over active lava lakes and lava flows at terrestrial volcanoes, but with a view toward developing planetary applications, for instance on the surface of Venus. We report on our 2012-present systematic UAS-based observations of light gases (e.g., SO2 CO2, H2S) at Turrialba Volcano in Costa Rica, at Italian volcanic sites (e.g., Isole Vulcano; La Solfatara), and most recently at Kilauea Volcano, Hawaii in collaboration with USGS and NPS colleagues. Other deployments for Fall 2017 and Winter 2018 are in planning stages for the Salton Sea Basin and Costa Rica, which will include an airborne miniature mass spectrometer onboard several different types of UAVs. In addition, under development is the first purpose-built-for-volcanology small unmanned aircraft. We discuss strategies for acquiring airborne data from proximal ash/gas plumes during restless periods and during eruptions, from distal drifting ash/gas clouds from eruptions, and from diffuse emissions (e.g., CO2) at very low altitudes, utilizing UASs (e.g., fixed wing, multi-rotor, aerostat), especially regarding inputs for source flux reverse models. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  12. The 2014 eruptions of Pavlof Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  13. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2008-01-01

    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System(VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green–yellow–red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  14. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  15. Earth Girl Volcano: An Interactive Casual Game about Complex Volcanic Hazards

    Science.gov (United States)

    Kerlow, I.

    2017-12-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards, monitoring, and mitigation strategies. The game is deceptively simple but it provides a toolbox to address practically all volcanic hazards ranging from gas and ash fall to pyroclastic flows, lava and lahars. This presentation shows the basic dynamic to explore the area, assess the risk, choose the best-suited tools and execute a mitigation strategy within the available budget. This game is a real-time simulation of a crowd evacuation that allows players to intervene before and during the disaster.

  16. Viewing lava safely: an epidemiology of hiker injury and illness in Hawaii Volcanoes National Park.

    Science.gov (United States)

    Heggie, Travis W; Heggie, Tracey M

    2004-01-01

    To report the injuries and illnesses encountered by wilderness hikers in Hawaii Volcanoes National Park attempting to hike to active lava flows and to investigate the roles that demographics, prior hiking experience, hiking behavior, and preparedness play in hiker vulnerability to injury and illness. During an 8-week period, daily on-site exit interviews of lava hikers were conducted by a uniformed park ranger and park volunteer. Information about the hiker's home residence, wilderness hiking experience, preparedness, health status, and health problems encountered during the hike was collected from a total of 804 hikers. A high rate of injury and illness was found among the study population. Scrapes and abrasions (59%), blisters (51%), and muscle strains and sprains (47%) were the most common injuries. Dehydration (77%) and respiratory irritation (46%) were the most common illnesses. Lower extremities were the most common site of injuries, and beginning hikers were the most vulnerable to injury and illness. Many hikers were inexperienced tourists willing to disregard warning signs and enter high-risk areas. Hawaii Volcanoes National Park is one of 22 US national park units with volcanic resources. The injuries and illnesses reported by the study group identify the impact that this type of environment can have on the safety of wilderness users in areas with similar resources. Recreating in remote and severe areas has inherent risks, but the high rate of injuries and illnesses sustained by the hikers of this study can potentially be reduced through the development of more direct risk management methods.

  17. The missing link between submarine volcano and promising geothermal potential in Jinshan, Northern Taiwan

    Science.gov (United States)

    Wang, S. C.; Hutchings, L.; Chang, C. C.; Lee, C. S.

    2017-12-01

    The Tatun volcanic group (TVG) and the Keelung submarine volcano (KSV) are active volcanoes and surrounding three nuclear plant sites in north Taiwan. The famous Jinshan-Wanli hot springs locates between TVG and KSV, moreover, the geochemical anomalies of acidic boiling springs on the seacoast infer that the origin is from magmatic fluids, sea water and meteoric water mixture, strongly implying that mantle fluids ascends into the shallow crust. The evidence for a magma chamber, submarine volcano, and boiling springs have a close spatial relationship. Based on UNECE specifications to Geothermal Energy Resources (2016), the Jinshan-Wanli geothermal area could be classified as Known Geothermal Energy Source for geothermal direct use and Potential Geothermal Energy Source for conventional geothermal system. High resolution reservoir exploration and modeling in Jinshan-Wanli geothermal area is developing for drilling risk mitigation. The geothermal team of National Taiwan Ocean University and local experts are cooperating for further exploration drilling and geothermal source evaluation. Keywords: geothermal resource evaluation, Jinshan-Wanli geothermal area, submarine volcano

  18. Common processes at unique volcanoes – a volcanological conundrum

    OpenAIRE

    Katharine eCashman; Juliet eBiggs

    2014-01-01

    An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behavior over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behavior (or “personali...

  19. Design of Deformation Monitoring System for Volcano Mitigation

    Science.gov (United States)

    Islamy, M. R. F.; Salam, R. A.; Munir, M. M.; Irsyam, M.; Khairurrijal

    2016-08-01

    Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment.

  20. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  1. The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview

    Science.gov (United States)

    Puglisi, Giuseppe

    2014-05-01

    also expected. MED-SUV proposes the development and implementation of a state-of-the-art e-infrastructure for the data integration and sharing and for volcanic risk management life-cycle, from observation to people preparedness. Experiments and studies will be devoted to better understanding of the internal structures and related dynamics of the case study volcanoes, as well as to recognition of signals associated with to impending unrest or eruptive phases. Hazard quantitative assessment will benefit by the outcomes of these studies and by their integration into the cutting edge monitoring approaches, thus leading to a step-change in hazard awareness and preparedness, and leveraging the close relationship between scientists, SMEs, and end-users. The applicability of the project outcomes will be tested on the cluster of Supersite itself during a Pilot phase, as well as on other volcanic systems with similar behaviours like Piton de la Fournaise (Reunion Island) and Azores.

  2. Penguin Bank: A Loa-Trend Hawaiian Volcano

    Science.gov (United States)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes

  3. Local to global: a collaborative approach to volcanic risk assessment

    Science.gov (United States)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna

    2017-04-01

    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio

  4. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael P.

    2016-08-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and

  5. Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala.

    Science.gov (United States)

    Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.

    2003-12-01

    Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.

  6. Multiphase modelling of mud volcanoes

    Science.gov (United States)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  7. Geophysical Exploration on the Structure of Volcanoes: Two Case Histories

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, A. S.

    1974-01-01

    Geophysical methods of exploration were used to determine the internal structure of Koolau Volcano in Hawaii and of Rabaul Volcano in New Guinea. By use of gravity and seismic data the central vent or plug of Koolau Volcano was outlined. Magnetic data seem to indicate that the central plug is still above the Curie Point. If so, the amount of heat energy available is tremendous. As for Rabaul Volcano, it is located in a region characterized by numerous block faulting. The volcano is only a part of a large block that has subsided. Possible geothermal areas exist near the volcano but better potential areas may exist away from the volcano.

  8. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  9. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  10. Reducing volcanic risk; are we winning some battles but losing the war?

    Science.gov (United States)

    Tilling, R.I.

    1991-01-01

    Historically, significant advances in volcanology have been catalyzed by volcanic disasters or crises, reflecting the the simple fact that volcanoes seem to receive serious scientific and public attention only when they cause, or threaten to cause, trouble. For example, three deadly eruptions in 1902, Mount Pelee, Santa Maria, and Soufriere (St.Vincent), spurred the movement to establish permanent volcano observatories there. Profoundly impresses by the devastation cused by Mont Pelee, Thomas A. Jaggar, Jr. founded the Hawaiian Volcano Observatory (HVO) in 1912. Since then, studies conducted at HVO and new observatories have been pivotal in transforming the nascent science of volcanology into the multidisciplinary science that it is today. 

  11. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    Science.gov (United States)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  12. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  13. Risk Reducing Effect of AIS Implementation on Collision Risk

    DEFF Research Database (Denmark)

    Lützen, Marie; Friis-Hansen, Peter

    2003-01-01

    AIS (Automatic Identification System) is a transponder system developed for sea traffic purposes. The system sends and receives important ship information and other safety-related information between other ships and shore-based AIS stations. The implementation of AIS has now been initiated and......, as a result, the community will undoubtedly observe an increase in navigational safety. However, to the authors? knowledge, no study has so far rigorously quantified the risk reducing effect of using AIS as an integrated part of the navigational system. The objective of this study is to fill this gap....... The risk reducing effect of AIS is quantified by building a Bayesian network facilitating an evaluation of the effect of AIS on the navigational officer?s reaction ability in a potential, critical collision situation. The time-dependent change in the risk reducing effect on ship collisions is analysed...

  14. Geotourism and volcanoes: health hazards facing tourists at volcanic and geothermal destinations.

    Science.gov (United States)

    Heggie, Travis W

    2009-09-01

    Volcano tourism and tourism to geothermal destinations is increasingly popular. If such endeavors are to be a sustainable sector of the tourism industry, tourists must be made aware of the potential health hazards facing them in volcanic environments. With the aim of creating awareness amongst the tourism industry and practitioners of travel medicine, this paper reviews the potential influences and effects of volcanic gases such as carbon dioxide (CO(2)), hydrogen sulfide (H(2)S), sulfur dioxide (SO(2)), and hydrogen chloride/hydrochloric acid (HCl). It also reviews the negative health impacts of tephra and ash, lava flows, landslides, and mudflows. Finally, future research striving to quantify the health risks facing volcano tourists is recommended.

  15. Lahar hazards at Mombacho Volcano, Nicaragua

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Devoli, G.

    2001-01-01

    Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001

  16. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael

    2016-01-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between

  17. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  18. Design of Deformation Monitoring System for Volcano Mitigation

    International Nuclear Information System (INIS)

    Islamy, M R F; Salam, R A; Khairurrijal; Munir, M M; Irsyam, M

    2016-01-01

    Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment. (paper)

  19. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    Science.gov (United States)

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  20. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  1. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The characteristics of magma supply, storage, and transport are among the most critical parameters governing volcanic activity, yet they remain largely unconstrained because all three processes are hidden beneath the surface. Hawaiian volcanoes, particularly Kīlauea and Mauna Loa, offer excellent prospects for studying subsurface magmatic processes, owing to their accessibility and frequent eruptive and intrusive activity. In addition, the Hawaiian Volcano Observatory, founded in 1912, maintains long records of geological, geophysical, and geochemical data. As a result, Hawaiian volcanoes have served as both a model for basaltic volcanism in general and a starting point for many studies of volcanic processes.

  2. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  3. Interdisciplinary studies of eruption at Chaiten Volcano, Chile

    Science.gov (United States)

    John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara. Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli

    2010-01-01

    There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...

  4. Volcano surveillance by ACR silver fox

    Science.gov (United States)

    Patterson, M.C.L.; Mulligair, A.; Douglas, J.; Robinson, J.; Pallister, J.S.

    2005-01-01

    Recent growth in the business of unmanned air vehicles (UAVs) both in the US and abroad has improved their overall capability, resulting in a reduction in cost, greater reliability and adoption into areas where they had previously not been considered. Uses in coastal and border patrol, forestry and agriculture have recently been evaluated in an effort to expand the observed area and reduce surveillance and reconnaissance costs for information gathering. The scientific community has both contributed and benefited greatly in this development. A larger suite of light-weight miniaturized sensors now exists for a range of applications which in turn has led to an increase in the gathering of information from these autonomous vehicles. In October 2004 the first eruption of Mount St Helens since 1986 caused tremendous interest amoUg people worldwide. Volcanologists at the U.S. Geological Survey rapidly ramped up the level of monitoring using a variety of ground-based sensors deployed in the crater and on the flanks of the volcano using manned helicopters. In order to develop additional unmanned sensing methods that can be used in potentially hazardous and low visibility conditions, a UAV experiment was conducted during the ongoing eruption early in November. The Silver Fox UAV was flown over and inside the crater to perform routine observation and data gathering, thereby demonstrating a technology that could reduce physical risk to scientists and other field operatives. It was demonstrated that UAVs can be flown autonomously at an active volcano and can deliver real time data to a remote location. Although still relatively limited in extent, these initial flights provided information on volcanic activity and thermal conditions within the crater and at the new (2004) lava dome. The flights demonstrated that readily available visual and infrared video sensors mounted in a small and relatively low-cost aerial platform can provide useful data on volcanic phenomena. This was

  5. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  6. SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    Science.gov (United States)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1981-01-01

    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured.

  7. Chemical compositions of lavas from Myoko volcano group

    International Nuclear Information System (INIS)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi; Hayatsu, Kenji.

    1995-01-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  8. Chemical compositions of lavas from Myoko volcano group

    Energy Technology Data Exchange (ETDEWEB)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi [Tohoku Univ., Sendai (Japan). Faculty of Science; Hayatsu, Kenji

    1995-08-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  9. Volcano Trial Case on GEP: Systematically processing EO data

    OpenAIRE

    Baumann, Andreas Bruno Graziano

    2017-01-01

    Volcanoes can be found all over the world; on land and below water surface. Even nowadays not all volcanoes are known. About 600 erupted in geologically recent times and about 50-70 volcanoes are currently active. Volcanoes can cause earthquakes; throw out blasts and tephras; release (toxic) gases; lava can flow relatively slow down the slopes; mass movements like debris avalanches, and landslides can cause tsunamis; and fast and hot pyroclastic surge, flows, and lahars can travel fast down ...

  10. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  11. Morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  12. Iridium emissions from Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Finnegan, D.L.; Zoller, W.H.; Miller, T.M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes

  13. Iridium emissions from Hawaiian volcanoes

    Science.gov (United States)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  14. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  15. Multi-year high-frequency hydrothermal monitoring of selected high-threat Cascade Range volcanoes

    Science.gov (United States)

    Crankshaw, I. M.; Archfield, S. A.; Newman, A. C.; Bergfeld, D.; Clor, L. E.; Spicer, K. R.; Kelly, P. J.; Evans, W. C.; Ingebritsen, S. E.

    2018-05-01

    From 2009 to 2015 the U.S. Geological Survey (USGS) systematically monitored hydrothermal behavior at selected Cascade Range volcanoes in order to define baseline hydrothermal and geochemical conditions. Gas and water data were collected regularly at 25 sites on 10 of the highest-risk volcanoes in the Cascade Range. These sites include near-summit fumarole groups and springs/streams that show clear evidence of magmatic influence (high 3He/4He ratios and/or large fluxes of magmatic CO2 or heat). Site records consist mainly of hourly temperature and hydrothermal-flux data. Having established baseline conditions during a multiyear quiescent period, the USGS reduced monitoring frequency from 2015 to present. The archived monitoring data are housed at (doi:10.5066/F72N5088). These data (1) are suitable for retrospective comparison with other continuous geophysical monitoring data and (2) will provide context during future episodes of volcanic unrest, such that unrest-related variations at these thoroughly characterized sites will be more clearly recognizable. Relatively high-frequency year-round data are essential to achieve these objectives, because many of the time series reveal significant diurnal, seasonal, and inter-annual variability that would tend to mask unrest signals in the absence of baseline data. Here we characterize normal variability for each site, suggest strategies to detect future volcanic unrest, and explore deviations from background associated with recent unrest.

  16. Modeling volcano growth on the Island of Hawaii: deep-water perspectives

    Science.gov (United States)

    Lipman, Peter W.; Calvert, Andrew T.

    2013-01-01

    Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux

  17. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  18. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  19. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  20. The Merapi Interactive Project: Offering a Fancy Cross-Disciplinary Scientific Understanding of Merapi Volcano to a Wide Audience.

    Science.gov (United States)

    Morin, J.; Kerlow, I.

    2015-12-01

    The Merapi volcano is of great interest to a wide audience as it is one of the most dangerous volcanoes worldwide and a beautiful touristic spot. The scientific literature available on that volcano both in Earth and Social sciences is rich but mostly inaccessible to the public because of the scientific jargon and the restricted database access. Merapi Interactive aims at developing clear information and attractive content about Merapi for a wide audience. The project is being produced by the Art and Media Group at the Earth Observatory of Singapore, and it takes the shape of an e-book. It offers a consistent, comprehensive, and jargon-filtered synthesis of the main volcanic-risk related topics about Merapi: volcanic mechanisms, eruptive history, associated hazards and risks, the way inhabitants and scientists deal with it, and what daily life at Merapi looks like. The project provides a background to better understand volcanoes, and it points out some interactions between scientists and society. We propose two levels of interpretation: one that is understandable by 10-year old kids and above and an expert level with deeper presentations of specific topics. Thus, the Merapi Interactive project intends to provide an engaging and comprehensive interactive book that should interest kids, adults, as well as Earth Sciences undergraduates and academics. Merapi Interactive is scheduled for delivery in mid-2016.

  1. ACTIVITY AND Vp/Vs RATIO OF VOLCANO-TECTONIC SEISMIC SWARM ZONES AT NEVADO DEL RUIZ VOLCANO, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Londoño B. John Makario

    2010-06-01

    Full Text Available An analysis of the seismic activity for volcano-tectonic earthquake (VT swarms zones at Nevado del Ruiz Volcano (NRV was carried out for the interval 1985- 2002, which is the most seismic active period at NRV until now (2010. The swarm-like seismicity of NRV was frequently concentrated in very well defined clusters around the volcano. The seismic swarm zone located at the active crater was the most active during the entire time. The seismic swarm zone located to the west of the volcano suggested some relationship with the volcanic crises. It was active before and after the two eruptions occurred in November 1985 and September 1989. It is believed that this seismic activity may be used as a monitoring tool of volcanic activity. For each seismic swarm zone the Vp/Vs ratio was also calculated by grouping of earthquakes and stations. It was found that each seismic swarm zone had a distinct Vp/Vs ratio with respect to the others, except for the crater and west swarm zones, which had the same value. The average Vp/Vs ratios for the seismic swarm zones located at the active crater and to the west of the volcano are about 6-7% lower than that for the north swarm zone, and about 3% lower than that for the south swarm zone. We suggest that the reduction of the Vp/Vs ratio is due to degassing phenomena inside the central and western earthquake swarm zones, or due to the presence of microcracks inside the volcano. This supposition is in agreement with other studies of geophysics, geochemistry and drilling surveys carried out at NRV.

  2. The Evolution of Galápagos Volcanoes: An Alternative Perspective

    Directory of Open Access Journals (Sweden)

    Karen S. Harpp

    2018-05-01

    Full Text Available The older eastern Galápagos are different in almost every way from the historically active western Galápagos volcanoes. Geochemical, geologic, and geophysical data support the hypothesis that the differences are not evolutionary, but rather the eastern volcanoes grew in a different tectonic environment than the younger volcanoes. The western Galápagos volcanoes have steep upper slopes and are topped by large calderas, whereas none of the older islands has a caldera, an observation that is supported by recent gravity measurements. Most of the western volcanoes erupt evolved basalts with an exceedingly small range of Mg#, Lan/Smn, and Smn/Ybn. This is attributed to homogenization in a crustal-scale magmatic mush column, which is maintained in a thermochemical steady state, owing to high magma supply directly over the Galápagos mantle plume. In contrast, the eastern volcanoes erupt relatively primitive magmas, with a large range in Mg#, Lan/Smn, and Smn/Ybn. These differences are attributed to isolated, ephemeral magmatic plumbing systems supplied by smaller magmatic fluxes throughout their histories. Consequently, each batch of magma follows an independent course of evolution, owing to the low volume of supersolidus material beneath these volcanoes. The magmatic flux to Galápagos volcanoes negatively correlates to the distance to the Galápagos Spreading Center (GSC. When the ridge was close to the plume, most of the plume-derived magma was directed to the ridge. Currently, the active volcanoes are much farther from the GSC, thus most of the plume-derived magma erupts on the Nazca Plate and can be focused beneath the large young shields. We define an intermediate sub-province comprising Rabida, Santiago, and Pinzon volcanoes, which were most active about 1 Ma. They have all erupted dacites, rhyolites, and trachytes, similar to the dying stage of the western volcanoes, indicating that there was a relatively large volume of mush beneath them

  3. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  4. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  5. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  6. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  7. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    Science.gov (United States)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.

    2009-04-01

    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  8. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    Science.gov (United States)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  9. Radon emanometry in active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M. (CNRS, IN2P3, BP45/F63170 Aubiere (France)); Cejudo, J. (Instituto Nacional de Investigaciones Nucleares, Mexico City)

    1984-01-01

    Radon emission measurements from active volcanoes has, since 1981, been continuously measured at monitoring stations in Mexico and in Costa Rica. Counting of etched alpha tracks on cellulose nitrate LR-115 detectors give varying results at the several stations. Radon emanation at Chichon, where an explosive eruption occurred in 1982, fell down. Radon detection at the active volcano in Colima shows a pattern of very low emission. At the Costa Rica stations located at Poas, Arenal and Irazu, the radon emanation shows regularity.

  10. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  11. The Volcano Disaster Assistance Program—Helping to save lives worldwide for more than 30 years

    Science.gov (United States)

    Lowenstern, Jacob B.; Ramsey, David W.

    2017-10-20

    What do you do when a sleeping volcano roars back to life? For more than three decades, countries around the world have called upon the U.S. Geological Survey’s (USGS) Volcano Disaster Assistance Program (VDAP) to contribute expertise and equipment in times of crisis. Co-funded by the USGS and the U.S. Agency for International Development’s Office of U.S. Foreign Disaster Assistance (USAID/OFDA), VDAP has evolved and grown over the years, adding newly developed monitoring technologies, training and exchange programs, and eruption forecasting methodologies to greatly expand global capabilities that mitigate the impacts of volcanic hazards. These advances, in turn, strengthen the ability of the United States to respond to its own volcanic events.VDAP was formed in 1986 in response to the devastating volcanic mudflow triggered by an eruption of Nevado del Ruiz volcano in Colombia. The mudflow destroyed the city of Armero on the night of November 13, 1985, killing more than 25,000 people in the city and surrounding areas. Sadly, the tragedy was avoidable. Better education of the local population and clear communication between scientists and public officials could have allowed warnings to be received, understood, and acted upon prior to the disaster.VDAP strives to ensure that such a tragedy will never happen again. The program’s mission is to assist foreign partners, at their request, in volcano monitoring and empower them to take the lead in mitigating hazards at their country’s threatening volcanoes. Since 1986, team members have responded to over 70 major volcanic crises at more than 50 volcanoes and have strengthened response capacity in 12 countries. The VDAP team consists of approximately 20 geologists, geophysicists, and engineers, who are based out of the USGS Cascades Volcano Observatory in Vancouver, Washington. In 2016, VDAP was a finalist for the Samuel J. Heyman Service to America Medal for its work in improving volcano readiness and warning

  12. The diversity of mud volcanoes in the landscape of Azerbaijan

    Science.gov (United States)

    Rashidov, Tofig

    2014-05-01

    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts

  13. Relative chronology of Martian volcanoes

    International Nuclear Information System (INIS)

    Landheim, R.; Barlow, N.G.

    1991-01-01

    Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history

  14. Geophysical monitoring of the Purace volcano, Colombia

    Directory of Open Access Journals (Sweden)

    M. Arcila

    1996-06-01

    Full Text Available Located in the extreme northwestern part of the Los Coconucos volcanic chain in the Central Cordillera, the Purace is one of Colombia's most active volcanoes. Recent geological studies indicate an eruptive history of mainly explosive behavior which was marked most recently by a minor ash eruption in 1977. Techniques used to forecast the renewal of activity of volcanoes after a long period of quiescence include the monitoring of seismicity and ground deformation near the volcano. As a first approach toward the monitoring of the Purace volcano, Southwest Seismological Observatory (OSSO, located in the city of Cali, set up one seismic station in 1986. Beginning in June 1991, the seismic signals have also been transmitted to the Colombian Geological Survey (INGEOMINAS at the Volcanological and Seismological Observatory (OVS-UOP, located in the city of Popayan. Two more seismic stations were installed early in 1994 forming a minimum seismic network and a geodetic monitoring program for ground deformation studies was established and conducted by INGEOMINAS.

  15. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  16. One hundred years of volcano monitoring in Hawaii

    Science.gov (United States)

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  17. Volcanoes in the Classroom--an Explosive Learning Experience.

    Science.gov (United States)

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  18. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  19. Volcanoes of México: An Interactive CD-ROM From the Smithsonian's Global Volcanism Program

    Science.gov (United States)

    Siebert, L.; Kimberly, P.; Calvin, C.; Luhr, J. F.; Kysar, G.

    2002-12-01

    The Smithsonian Institution's Global Volcanism Program is nearing completion of an interactive CD-ROM, the Volcanoes of México. This CD is the second in a series sponsored by the U.S. Department of Energy Office of Geothermal Technologies to collate Smithsonian data on Quaternary volcanism as a resource for the geothermal community. It also has utility for those concerned with volcanic hazard and risk mitgation as well as an educational tool for those interested in Mexican volcanism. We acknowledge the significant contributions of many Mexican volcanologists to the eruption reports, data, and images contained in this CD, in particular those contributions of the Centro Nacional de Prevencion de Desastres (CENAPRED), the Colima Volcano Observatory of the University of Colima, and the Universidad Nacional Autónoma de México (UNAM). The Volcanoes of México CD has a format similar to that of an earlier Smithsonian CD, the Volcanoes of Indonesia, but also shows Pleistocene volcanic centers and additional data on geothermal sites. A clickable map of México shows both Holocene and Pleistocene volcanic centers and provides access to individual pages on 67 volcanoes ranging from Cerro Prieto in Baja California to Tacaná on the Guatemalan border. These include geographic and geologic data on individual volcanoes (as well as a brief paragraph summarizing the geologic history) along with tabular eruption chronologies, eruptive characteristics, and eruptive volumes, when known. Volcano data are accessible from both geographical and alphabetical searches. A major component of the CD is more than 400 digitized images illustrating the morphology of volcanic centers and eruption processes and deposits, providing a dramatic visual primer to the country's volcanoes. Images of specific eruptions can be directly linked to from the eruption chronology tables. The Volcanoes of México CD includes monthly reports and associated figures and tables cataloging volcanic activity in M

  20. The 'polypill' to reduce cardiovascular risk

    DEFF Research Database (Denmark)

    Patel, Vinod; Pedersen, Oluf; Morrissey, John

    2004-01-01

    This article considers data from the Steno-2 multifactorial intervention study in type 2 diabetes to which are applied the United Kingdom Prospective Diabetes Study (UKPDS) risk engine. Mathematical analyses support the use of a 'polypill' to reduce cardiovascular risk in type 2 diabetes. It is s...

  1. Benefits from reducing risk of death

    Energy Technology Data Exchange (ETDEWEB)

    Krupnick, A

    1994-07-01

    Of the categories of benefits to individuals, reductions in the risk of premature mortality are of central. concern to the public and environmental policy makers. These benefits can include those from reductions in own- risk, for example, an individual's valuation of reducing his or her own mortality risks; reductions in risk to an individual's family, friends, or co-workers (i.e., of people known to the individual); and reductions in risks to unknown individuals. The last type would be an example of altruistic value. The overall goal is to measure the welfare change from a change in the current and/or future probability of dying. The willingness to pay (WTP) reflects the amount of income taken from a person that would leave him or her indifferent to a decrease in risk, whenever it occurs. When this value is divided by the risk change, the resulting value is called the 'value of a statistical life'. Another relevant measure appearing in the literature is the value of life-years saved. A final issue concerns the type of premature mortality risks one is valuing when environmental pollution is at issue. While most effort has gone into estimating the welfare effects of a change in current probability of death of healthy workers on the job, this is more relevant for characterizing the benefits of reducing accidental death risks than death from environmental causes. Exposure to pollutants raises risks of developing cancer, chronic heart, respiratory, and other diseases that raise mortality risks in the future. Such exposure also may raise current death risks for the very old and the sick. But, surely the pollution effect that is analogous to occupational health risks-pollution exposures high enough to raise current risks of death for the healthy, prime-age person-is insignificant in the United States.

  2. Benefits from reducing risk of death

    International Nuclear Information System (INIS)

    Krupnick, A.

    1994-01-01

    Of the categories of benefits to individuals, reductions in the risk of premature mortality are of central. concern to the public and environmental policy makers. These benefits can include those from reductions in own- risk, for example, an individual's valuation of reducing his or her own mortality risks; reductions in risk to an individual's family, friends, or co-workers (i.e., of people known to the individual); and reductions in risks to unknown individuals. The last type would be an example of altruistic value. The overall goal is to measure the welfare change from a change in the current and/or future probability of dying. The willingness to pay (WTP) reflects the amount of income taken from a person that would leave him or her indifferent to a decrease in risk, whenever it occurs. When this value is divided by the risk change, the resulting value is called the 'value of a statistical life'. Another relevant measure appearing in the literature is the value of life-years saved. A final issue concerns the type of premature mortality risks one is valuing when environmental pollution is at issue. While most effort has gone into estimating the welfare effects of a change in current probability of death of healthy workers on the job, this is more relevant for characterizing the benefits of reducing accidental death risks than death from environmental causes. Exposure to pollutants raises risks of developing cancer, chronic heart, respiratory, and other diseases that raise mortality risks in the future. Such exposure also may raise current death risks for the very old and the sick. But, surely the pollution effect that is analogous to occupational health risks-pollution exposures high enough to raise current risks of death for the healthy, prime-age person-is insignificant in the United States

  3. Establishment, test and evaluation of a prototype volcano surveillance system

    Science.gov (United States)

    Ward, P. L.; Eaton, J. P.; Endo, E.; Harlow, D.; Marquez, D.; Allen, R.

    1973-01-01

    A volcano-surveillance system utilizing 23 multilevel earthquake counters and 6 biaxial borehole tiltmeters is being installed and tested on 15 volcanoes in 4 States and 4 foreign countries. The purpose of this system is to give early warning when apparently dormant volcanoes are becoming active. The data are relayed through the ERTS-Data Collection System to Menlo Park for analysis. Installation was completed in 1972 on the volcanoes St. Augustine and Iliamna in Alaska, Kilauea in Hawaii, Baker, Rainier and St. Helens in Washington, Lassen in California, and at a site near Reykjavik, Iceland. Installation continues and should be completed in April 1973 on the volcanoes Santiaguito, Fuego, Agua and Pacaya in Guatemala, Izalco in El Salvador and San Cristobal, Telica and Cerro Negro in Nicaragua.

  4. Recent Seismicity in the Ceboruco Volcano, Western Mexico

    Science.gov (United States)

    Nunez, D.; Chávez-Méndez, M. I.; Nuñez-Cornu, F. J.; Sandoval, J. M.; Rodriguez-Ayala, N. A.; Trejo-Gomez, E.

    2017-12-01

    The Ceboruco volcano is the largest (2280 m.a.s.l) of several volcanoes along the Tepic-Zacoalco rift zone in Nayarit state (Mexico). During the last 1000 years, this volcano had effusive-explosive episodes with eight eruptions providing an average of one eruption each 125 years. Since the last eruption occurred in 1870, 147 years ago, a new eruption likelihood is really high and dangerous due to nearby population centers, important roads and lifelines that traverse the volcano's slopes. This hazards indicates the importance of monitoring the seismicity associated with the Ceboruco volcano whose ongoing activity is evidenced by fumaroles and earthquakes. During 2003 and 2008, this region was registered by just one Lennartz Marslite seismograph featuring a Lennartz Le3D sensor (1 Hz) [Rodríguez Uribe et al. (2013)] where they observed that seismicity rates and stresses appear to be increasing indicating higher levels of activity within the volcano. Until July 2017, a semi-permanent network with three Taurus (Nanometrics) and one Q330 Quanterra (Kinemetrics) digitizers with Lennartz 3Dlite sensors of 1 Hz natural frequency was registering in the area. In this study, we present the most recent seismicity obtained by the semi-permanent network and a temporary network of 21 Obsidians 4X and 8X (Kinemetrics) covering an area of 16 km x 16 km with one station every 2.5-3 km recording from November 2016 to July 2017.

  5. Understanding cyclic seismicity and ground deformation patterns at volcanoes: Intriguing lessons from Tungurahua volcano, Ecuador

    Science.gov (United States)

    Neuberg, Jürgen W.; Collinson, Amy S. D.; Mothes, Patricia A.; Ruiz, Mario C.; Aguaiza, Santiago

    2018-01-01

    Cyclic seismicity and ground deformation patterns are observed on many volcanoes worldwide where seismic swarms and the tilt of the volcanic flanks provide sensitive tools to assess the state of volcanic activity. Ground deformation at active volcanoes is often interpreted as pressure changes in a magmatic reservoir, and tilt is simply translated accordingly into inflation and deflation of such a reservoir. Tilt data recorded by an instrument in the summit area of Tungurahua volcano in Ecuador, however, show an intriguing and unexpected behaviour on several occasions: prior to a Vulcanian explosion when a pressurisation of the system would be expected, the tilt signal declines significantly, hence indicating depressurisation. At the same time, seismicity increases drastically. Envisaging that such a pattern could carry the potential to forecast Vulcanian explosions on Tungurahua, we use numerical modelling and reproduce the observed tilt patterns in both space and time. We demonstrate that the tilt signal can be more easily explained as caused by shear stress due to viscous flow resistance, rather than by pressurisation of the magmatic plumbing system. In general, our numerical models prove that if magma shear viscosity and ascent rate are high enough, the resulting shear stress is sufficient to generate a tilt signal as observed on Tungurahua. Furthermore, we address the interdependence of tilt and seismicity through shear stress partitioning and suggest that a joint interpretation of tilt and seismicity can shed new light on the eruption potential of silicic volcanoes.

  6. Summary of the stakeholders workshop to develop a National Volcano Early Warning System (NVEWS)

    Science.gov (United States)

    Guffanti, Marianne; Scott, William E.; Driedger, Carolyn L.; Ewert, John W.

    2006-01-01

    The importance of investing in monitoring, mitigation, and preparedness before natural hazards occur has been amply demonstrated by recent disasters such as the Indian Ocean Tsunami in December 2004 and Hurricane Katrina in August 2005. Playing catch-up with hazardous natural phenomena such as these limits our ability to work with public officials and the public to lessen adverse impacts. With respect to volcanic activity, the starting point of effective pre-event mitigation is monitoring capability sufficient to detect and diagnose precursory unrest so that communities at risk have reliable information and sufficient time to respond to hazards with which they may be confronted. Recognizing that many potentially dangerous U.S. volcanoes have inadequate or no ground-based monitoring, the U.S Geological Survey (USGS) Volcano Hazards Program (VHP) and partners recently evaluated U.S. volcano-monitoring capabilities and published 'An Assessment of Volcanic Threat and Monitoring Capabilities in the United States: Framework for a National Volcano Early Warning System (NVEWS).' Results of the NVEWS volcanic threat and monitoring assessment are being used to guide long-term improvements to the national volcano-monitoring infrastructure operated by the USGS and affiliated groups. The NVEWS report identified the need to convene a workshop of a broad group of stakeholders--such as representatives of emergency- and land-management agencies at the Federal, State, and local levels and the aviation sector--to solicit input about implementation of NVEWS and their specific information requirements. Accordingly, an NVEWS Stakeholders Workshop was held in Portland, Oregon, on 22-23 February 2006. A summary of the workshop is presented in this document.

  7. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  8. Enhanced three-dimensional stochastic adjustment for combined volcano geodetic networks

    Science.gov (United States)

    Del Potro, R.; Muller, C.

    2009-12-01

    Volcano geodesy is unquestionably a necessary technique in studies of physical volcanology and for eruption early warning systems. However, as every volcano geodesist knows, obtaining measurements of the required resolution using traditional campaigns and techniques is time consuming and requires a large manpower. Moreover, most volcano geodetic networks worldwide use a combination of data from traditional techniques; levelling, electronic distance measurements (EDM), triangulation and Global Navigation Satellite Systems (GNSS) but, in most cases, these data are surveyed, analysed and adjusted independently. This then leaves it to the authors’ criteria to decide which technique renders the most realistic results in each case. Herein we present a way of solving the problem of inter-methodology data integration in a cost-effective manner following a methodology were all the geodetic data of a redundant, combined network (e.g. surveyed by GNSS, levelling, distance, angular data, INSAR, extensometers, etc.) is adjusted stochastically within a single three-dimensional referential frame. The adjustment methodology is based on the least mean square method and links the data with its geometrical component providing combined, precise, three-dimensional, displacement vectors, relative to external reference points as well as stochastically-quantified, benchmark-specific, uncertainty ellipsoids. Three steps in the adjustment allow identifying, and hence dismissing, flagrant measurement errors (antenna height, atmospheric effects, etc.), checking the consistency of external reference points and a final adjustment of the data. Moreover, since the statistical indicators can be obtained from expected uncertainties in the measurements of the different geodetic techniques used (i.e. independent of the measured data), it is possible to run a priori simulations of a geodetic network in order to constrain its resolution, and reduce logistics, before the network is even built. In this

  9. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    and velocity structure. The 2014-15 Bárðarbunga dyke intrusion has provided a 45 km long, distributed source of large earthquakes which are well located and provide accurate arrival time picks. Together with long-term background seismicity these provide excellent illumination of the Askja volcano from all directions. We find a pronounced low-velocity anomaly beneath the caldera at a depth of ~7 km. The anomaly is ~10% slower than the initial best fitting 1D model and has a Vp/Vs ratio higher than the surrounding crust, suggesting the presence of increased temperature or partial melt. The body is unlikely to be entirely melt as S-waves are still detected at stations directly above the anomaly. This low-velocity body is slightly deeper than the depth range suggested by InSAR and GPS studies of a deflating source beneath Askja. Beneath the main low-velocity zone a region of reduced velocities extends into the lower crust and is coincident with deep seismicity. This is suggestive of a high temperature channel into the lower crust which could be a pathway for melt rising from the mantle.

  10. Multiple Active Volcanoes in the Northeast Lau Basin

    Science.gov (United States)

    Baker, E. T.; Resing, J. A.; Lupton, J. E.; Walker, S. L.; Embley, R. W.; Rubin, K. H.; Buck, N.; de Ronde, C. E.; Arculus, R. J.

    2010-12-01

    The northeast Lau Basin occupies a complex geological area between the Tafua arc front, the E-W trending Tonga Trench, and the Northeast Lau Spreading Center. These boundaries create multiple zones of extension and thus provide abundant opportunities for magma to invade the crust. The 25-km-long chain of “Mata” volcanoes lies near the center of this area, separated from both the arc front and the spreading ridge. In 2008 we discovered hydrothermal venting on the largest and most southerly of these volcanoes, W and E Mata. In 2010 we visited the 7 smaller volcanoes that form a 15-km-long arcuate sweep to the north from W and E Mata (the “North Matas”). We also revisited W and E Mata. Over each volcano we conducted CTD tows to map plumes and collect water samples. Based on the CTD results, camera tows searched for seafloor sources on three volcanoes. The N Mata volcanoes, extending from Mata Taha (1) in the south to Mata Fitu (7) in the north, lie within a prominent gap in the shallow bathymetry along the southern border of the Tonga trench. Northward from E Mata the Mata volcanoes degrade from large symmetrical cones to smaller and blocky volcanic edifices. Summit depths range from 1165 m (W Mata) to 2670 m (Mata Nima (5)). The most active volcano in the chain is the erupting W Mata, with an intense plume that extended 250 m above the summit. Hydrothermal temperature anomalies (Δθ, corrected for hydrographic masking effects) reached ˜1.7°C, with light-scattering values as high as 2-5 ΔNTU. The 2010 surveys now show that 6 of the 7 N Mata volcanoes are also hydrothermally active. Along the N Matas, Δθ and ΔNTU signals ranged from robust to weak, but distinct oxidation-reduction potential (aka Eh) anomalies confirmed active venting in each case. The most concentrated plumes were found near Mata Ua (2) and Mata Fitu (7), with Δθ and ΔNTU maxima of 0.1-0.17°C and 0.3, respectively. Despite the variability in plume strength, however, ΔNTU/Δθ ratios

  11. Spying on volcanoes

    Science.gov (United States)

    Watson, Matthew

    2017-07-01

    Active volcanoes can be incredibly dangerous, especially to those who live nearby, but how do you get close enough to observe one in action? Matthew Watson explains how artificial drones are providing volcanologists with insights that could one day save human lives

  12. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  13. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  14. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    Science.gov (United States)

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  15. Relationship Between Perceived Risk of Falling and Adoption of Precautions to Reduce Fall Risk.

    Science.gov (United States)

    Blalock, Susan J; Gildner, Paula L; Jones, Jennifer L; Bowling, James M; Casteel, Carri H

    2016-06-01

    To better understand the relationship between perceived risk of falling and awareness and adoption of four specific precautions that older adults have taken to reduce this risk. Cross-sectional. Data were collected in in-person interviews conducted in the homes of study participants. Interviews conducted between March 2011 and September 2013 and lasted an average of 60-90 minutes. A stratified sampling strategy designed to enroll an equal number of homebound and nonhomebound participants was used. All participants (N = 164) were recruited from central North Carolina. Participants were asked about 1-year fall history, perceived risk of falling, restriction of activities because of fear of falling, awareness of four recommended fall prevention behaviors (exercise, annual medication review, bathroom grab bars, safe footwear), and current practice of these behaviors. In bivariate analyses, individuals who were aware of two behaviors recommended to reduce the risk of falling (exercise, use of safe footwear) and had adopted these behaviors perceived their risk of falling as lower than individuals who were aware of the recommended behaviors but had not adopted them. Moreover, in multivariate analyses, individuals who did not know that exercise is recommended to reduce the risk of falling perceived their risk of falling as lower than those who were aware of this recommendation and had adopted it. Individuals were least likely to be aware that medication reviews and exercise are recommended to reduce fall risk. Awareness of behaviors recommended to reduce fall risk appears necessary for adoption of these behaviors to reduce perceived risk. Fall-prevention campaigns should emphasize behaviors where awareness is low. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  16. Functional neural correlates of reduced physiological falls risk

    Directory of Open Access Journals (Sweden)

    Hsu Chun

    2011-08-01

    Full Text Available Abstract Background It is currently unclear whether the function of brain regions associated with executive cognitive processing are independently associated with reduced physiological falls risk. If these are related, it would suggest that the development of interventions targeted at improving executive neurocognitive function would be an effective new approach for reducing physiological falls risk in seniors. Methods We performed a secondary analysis of 73 community-dwelling senior women aged 65 to 75 years old who participated in a 12-month randomized controlled trial of resistance training. Functional MRI data were acquired while participants performed a modified Eriksen Flanker Task - a task of selective attention and conflict resolution. Brain volumes were obtained using MRI. Falls risk was assessed using the Physiological Profile Assessment (PPA. Results After accounting for baseline age, experimental group, baseline PPA score, and total baseline white matter brain volume, baseline activation in the left frontal orbital cortex extending towards the insula was negatively associated with reduced physiological falls risk over the 12-month period. In contrast, baseline activation in the paracingulate gyrus extending towards the anterior cingulate gyrus was positively associated with reduced physiological falls risk. Conclusions Baseline activation levels of brain regions underlying response inhibition and selective attention were independently associated with reduced physiological falls risk. This suggests that falls prevention strategies may be facilitated by incorporating intervention components - such as aerobic exercise - that are specifically designed to induce neurocognitive plasticity. Trial Registration ClinicalTrials.gov Identifier: NCT00426881

  17. Does Metformin Reduce Cancer Risks? Methodologic Considerations.

    Science.gov (United States)

    Golozar, Asieh; Liu, Shuiqing; Lin, Joeseph A; Peairs, Kimberly; Yeh, Hsin-Chieh

    2016-01-01

    The substantial burden of cancer and diabetes and the association between the two conditions has been a motivation for researchers to look for targeted strategies that can simultaneously affect both diseases and reduce their overlapping burden. In the absence of randomized clinical trials, researchers have taken advantage of the availability and richness of administrative databases and electronic medical records to investigate the effects of drugs on cancer risk among diabetic individuals. The majority of these studies suggest that metformin could potentially reduce cancer risk. However, the validity of this purported reduction in cancer risk is limited by several methodological flaws either in the study design or in the analysis. Whether metformin use decreases cancer risk relies heavily on the availability of valid data sources with complete information on confounders, accurate assessment of drug use, appropriate study design, and robust analytical techniques. The majority of the observational studies assessing the association between metformin and cancer risk suffer from methodological shortcomings and efforts to address these issues have been incomplete. Future investigations on the association between metformin and cancer risk should clearly address the methodological issues due to confounding by indication, prevalent user bias, and time-related biases. Although the proposed strategies do not guarantee a bias-free estimate for the association between metformin and cancer, they will reduce synthesis of and reporting of erroneous results.

  18. Geothermal Play-Fairway Analysis of the Tatun Volcano Group, Taiwan

    Science.gov (United States)

    Chen, Yan-Ru; Song, Sheng-Rong

    2017-04-01

    Geothermal energy is a sustainable and low-emission energy resource. It has the advantage of low-cost and withstanding nature hazards. Taiwan is located on the western Ring of Fire and characteristic of widespread hot spring and high surface heat flows, especially on the north of Taiwan. Many previous studies reveal that the Tatun Volcano Group (TVG) has great potential to develop the geothermal energy. However, investment in geothermal development has inherent risk and how to reduce the exploration risk is the most important. The exploration risk can be lowered by using the play-fairway analysis (PFA) that integrates existing data representing the composite risk segments in the region in order to define the exploration strategy. As a result, this study has adapted this logic for geothermal exploration in TVG. There are two necessary factors in geothermal energy, heat and permeability. They are the composite risk segments for geothermal play-fairway analysis. This study analyzes existing geologic, geophysical and geochemical data to construct the heat and permeability potential models. Heat potential model is based on temperature gradient, temperature of hot spring, proximity to hot spring, hydrothermal alteration zones, helium isotope ratios, and magnetics. Permeability potential model is based on fault zone, minor fault, and micro-earthquake activities. Then, these two potential models are weighted by using the Analytical Hierarchy Process (AHP) and combined to rank geothermal favorability. Uncertainty model is occurred by the quality of data and spatial accuracy of data. The goal is to combine the potential model with the uncertainty model as a risk map to find the best drilling site for geothermal exploration in TVG. Integrated results indicate where geothermal potential is the highest and provide the best information for those who want to develop the geothermal exploration in TVG.

  19. Geochemical studies on island arc volcanoes

    International Nuclear Information System (INIS)

    Notsu, Kenji

    1998-01-01

    This paper summarizes advances in three topics of geochemical studies on island arc volcanoes, which I and my colleagues have been investigating. First one is strontium isotope studies of arc volcanic rocks mainly from Japanese island arcs. We have shown that the precise spatial distribution of the 87 Sr/ 86 Sr ratio reflects natures of the subduction structure and slab-mantle interaction. Based on the 87 Sr/ 86 Sr ratio of volcanic rocks in the northern Kanto district, where two plates subduct concurrently with different directions, the existence of an aseismic portion of the Philippine Sea plate ahead of the seismic one was suggested. Second one is geochemical monitoring of active arc volcanoes. 3 He/ 4 He ratio of volcanic volatiles was shown to be a good indicator to monitor the behavior of magma: ascent and drain-back of magma result in increase and decrease in the ratio, respectively. In the case of 1986 eruptions of Izu-Oshima volcano, the ratio began to increase two months after big eruptions, reaching the maximum and decreased. Such delayed response is explained in terms of travelling time of magmatic helium from the vent area to the observation site along the underground steam flow. Third one is remote observation of volcanic gas chemistry of arc volcanoes, using an infrared absorption spectroscopy. During Unzen eruptions starting in 1990, absorption features of SO 2 and HCl of volcanic gas were detected from the observation station at 1.3 km distance. This was the first ground-based remote detection of HCl in volcanic gas. In the recent work at Aso volcano, we could identify 5 species (CO, COS, CO 2 , SO 2 and HCl) simultaneously in the volcanic plume spectra. (author)

  20. Tsunamis generated by eruptions from mount st. Augustine volcano, alaska.

    Science.gov (United States)

    Kienle, J; Kowalik, Z; Murty, T S

    1987-06-12

    During an eruption of the Alaskan volcano Mount St. Augustine in the spring of 1986, there was concern about the possibility that a tsunami might be generated by the collapse of a portion of the volcano into the shallow water of Cook Inlet. A similar edifice collapse of the volcano and ensuing sea wave occurred during an eruption in 1883. Other sea waves resulting in great loss of life and property have been generated by the eruption of coastal volcanos around the world. Although Mount St. Augustine remained intact during this eruptive cycle, a possible recurrence of the 1883 events spurred a numerical simulation of the 1883 sea wave. This simulation, which yielded a forecast of potential wave heights and travel times, was based on a method that could be applied generally to other coastal volcanos.

  1. Predicting the Timing and Location of the next Hawaiian Volcano

    Science.gov (United States)

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  2. Preliminary Evaluation of the Effects of Buried Volcanoes on Estimates of Volcano Probability for the Proposed Repository Site at Yucca Mountain, Nevada

    Science.gov (United States)

    Hill, B. E.; La Femina, P. C.; Stamatakos, J.; Connor, C. B.

    2002-12-01

    Probability models that calculate the likelihood of new volcano formation in the Yucca Mountain (YM) area depend on the timing and location of past volcanic activity. Previous spatio-temporal patterns indicated a 10-4 to 10-3 probability of volcanic disruption of the proposed radioactive waste repository site at YM during the 10,000 year post-closure performance period (Connor et al. 2000, JGR 105:1). A recent aeromagnetic survey (Blakely et al. 2000, USGS OFR 00-188), however, identified up to 20 anomalies in alluvium-filled basins, which have characteristics indicative of buried basalt (O'Leary et al. 2002, USGS OFR 02-020). Independent evaluation of these data, combined with new ground magnetic surveys, shows that these anomalies may represent at least ten additional buried basaltic volcanoes, which have not been included in previous probability calculations. This interpretation, if true, nearly doubles the number of basaltic volcanoes within 30 km [19 mi] of YM. Moreover, the magnetic signature of about half of the recognized basaltic volcanoes in the YM area cannot be readily identified in areas where bedrock also produces large amplitude magnetic anomalies, suggesting that additional volcanoes may be present but undetected in the YM area. In the absence of direct age information, we evaluate the potential effects of alternative age assumptions on spatio-temporal probability models. Interpreted burial depths of >50 m [164 ft] suggest ages >2 Ma, based on sedimentation rates typical for these alluvial basins (Stamatakos et al., 1997, J. Geol. 105). Defining volcanic events as individual points, previous probability models generally used recurrence rates of 2-5 volcanoes/million years (v/Myr). If the identified anomalies are buried volcanoes that are all >5 Ma or uniformly distributed between 2-10 Ma, calculated probabilities of future volcanic disruption at YM change by <30%. However, a uniform age distribution between 2-5 Ma for the presumed buried volcanoes

  3. Airborne VLF survey of Izu-Oshima volcano

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Yutaka; Yukutake, Takeshi

    1988-05-17

    Resistivity distribution in underground indicates anomaly in some cases due to volcanic activity, airborne VLF survey of Izu-Oshima volcano in whole area was carried out by measurement of the anomalous vertical magnetic field. The flight direction was determined with reference to both of the transmitter direction of the VLF waves and the running direction of the geologic formation. The flight altitude and the flight lines spacing were 100 m and 200 m respectively. Typical profiles of four lines of measurement were investigated. The resistivity anomalies were indicated corresponding to the position of known geologic fissure line, the lip of the caldera, the line of the craters and side volcanos. Several anomalous trends were detected by the contour drawing of the Fraser filter output. The detected results were as follow: new volcanos with the resistivity anomaly, the resistivity anomalies spread to the north-northwest from Goshinka jaya, the anomalies due to flowed lava, the anomalies by encroached water from the caldera wall, the effects from side volcanoes and so on. The resistivity anomalies by airborne VLF survey correspond to the known volcanic activities, and they are useful for elucidation of the underground volcanism. (6 figs, 4 refs)

  4. Developing effective warning systems: Ongoing research at Ruapehu volcano, New Zealand

    Science.gov (United States)

    Leonard, Graham S.; Johnston, David M.; Paton, Douglas; Christianson, Amy; Becker, Julia; Keys, Harry

    2008-05-01

    PurposeThis paper examines the unique challenges to volcanic risk management associated with having a ski area on an active volcano. Using a series of simulated eruption/lahar events at Ruapehu volcano, New Zealand, as a context, a model of risk management that integrates warning system design and technology, risk perceptions and the human response is explored. Principal resultsDespite increases in the observed audibility and comprehension of the warning message, recall of public education content, and people's awareness of volcanic risk, a persistent minority of the public continued to demonstrate only moderate awareness of the correct actions to take during a warning and failed to respond effectively. A relationship between level of staff competence and correct public response allowed the level of public response to be used to identify residual risk and additional staff training needs. The quality of staff awareness, action and decision-making has emerged as a critical factor, from detailed staff and public interviews and from exercise observations. Staff actions are especially important for mobilising correct public response at Ruapehu ski areas due to the transient nature of the visitor population. Introduction of education material and staff training strategies that included the development of emergency decision-making competencies improved knowledge of correct actions, and increased the proportion of people moving out of harm's way during blind tests. Major conclusionsWarning effectiveness is a function of more than good hazard knowledge and the generation and notification of an early warning message. For warning systems to be effective, these factors must be complemented by accurate knowledge of risk and risk management actions. By combining the Ruapehu findings with those of other warning system studies in New Zealand, and internationally, a practical five-step model for effective early warning systems is discussed. These steps must be based upon sound and

  5. Determination of concentration of radon, volatile organic compounds (VOC) and water chemistry in springs near to Popocatepetl volcano

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Lopez M, B.E.; Cisniega, G.; Valdes, C.; Armienta, M.A.; Mena, M.

    2004-01-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs is analysed as a function of the 2002-2003 volcanic activity. Soil radon indicated fluctuations related both the meteorological parameters and sporadic explosive events. Groundwater radon showed essentially differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed stability along the monitoring period indicating also differences between springs. No anthropogenic pollution from volatile organic compounds was observed. (Author)

  6. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Directory of Open Access Journals (Sweden)

    Riad Hosein

    2014-10-01

    Full Text Available Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i Digity; (ii Piparo and (iii Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  7. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M.

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region. PMID:25370529

  8. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-10-13

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  9. Geomorphological classification of post-caldera volcanoes in the Buyan-Bratan caldera, North Bali, Indonesia

    Science.gov (United States)

    Okuno, Mitsuru; Harijoko, Agung; Wayan Warmada, I.; Watanabe, Koichiro; Nakamura, Toshio; Taguchi, Sachihiro; Kobayashi, Tetsuo

    2017-12-01

    A landform of the post-caldera volcanoes (Lesung, Tapak, Sengayang, Pohen, and Adeng) in the Buyan-Bratan caldera on the island of Bali, Indonesia can be classified by topographic interpretation. The Tapak volcano has three craters, aligned from north to south. Lava effused from the central crater has flowed downward to the northwest, separating the Tamblingan and Buyan Lakes. This lava also covers the tip of the lava flow from the Lesung volcano. Therefore, it is a product of the latest post-caldera volcano eruption. The Lesung volcano also has two craters, with a gully developing on the pyroclastic cone from the northern slope to the western slope. Lava from the south crater has flowed down the western flank, beyond the caldera rim. Lava distributed on the eastern side from the south also surrounds the Sengayang volcano. The Adeng volcano is surrounded by debris avalanche deposits from the Pohen volcano. Based on these topographic relationships, Sengayang volcano appears to be the oldest of the post-caldera volcanoes, followed by the Adeng, Pohen, Lesung, and Tapak volcanoes. Coarse-grained scoria falls around this area are intercalated with two foreign tephras: the Samalas tephra (1257 A.D.) from Lombok Island and the Penelokan tephra (ca. 5.5 kBP) from the Batur caldera. The source of these scoria falls is estimated to be either the Tapak or Lesung volcano, implying that at least two volcanoes have erupted during the Holocene period.

  10. Geothermal Exploration of Newberry Volcano, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  11. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  12. Improving hazard communication through collaborative participatory workshops: challenges and opportunities experienced at Turrialba volcano, Costa Rica

    Science.gov (United States)

    van Manen, S. M.; Avard, G.; Martinez, M.; de Moor, M. J.

    2014-12-01

    Communication is key to disaster risk management before, during and after a hazardous event occurs. In this study we used a participatory design approach to increase disaster preparedness levels around Turrialba volcano (Costa Rica) in collaboration with local communities. We organised five participatory workshops in communities around Turrialba volcano, 2 in February 2014 and a further 3 in May 2014. A total of 101 people attended and participants included the general public, decision makers and relevant government employees. The main finding of the workshops was that people want more information, specifically regarding 1) the activity level at the volcano and 2) how to prepare. In addition, the source of information was identified as an important factor in communication, with credibility and integrity being key. This outcome highlights a communication gap between the communities at risk and the institutions monitoring the volcano, who publish their scientific results monthly. This strong and explicitly expressed desire for more information should be acknowledged and responded to. However, this gives rise to the challenge of how to communicate: how to change the delivery and/or content of the messages already disseminated for greater effectiveness. In our experience, participatory workshops provide a successful mechanism for effective communication. However, critically evaluating the workshops reveals a number of challenges and opportunities, with the former arising from human, cultural and resource factors, specifically the need to develop people's capacity to participate, whereas the latter is predominantly represented by participant empowerment. As disasters are mostly felt at individual, household and community levels, improving communication, not at but with these stakeholders, is an important component of a comprehensive disaster resilience strategy. This work provides an initial insight into the potential value of participatory design approaches for

  13. A Versatile Time-Lapse Camera System Developed by the Hawaiian Volcano Observatory for Use at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Orr, Tim R.; Hoblitt, Richard P.

    2008-01-01

    Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.

  14. Reducing cancer risk in rural communities through supermarket interventions.

    Science.gov (United States)

    McCool, Barent N; Lyford, Conrad P; Hensarling, Natalie; Pence, Barbara; McCool, Audrey C; Thapa, Janani; Belasco, Eric; Carter, Tyra M

    2013-09-01

    Cancer risk is high, and prevention efforts are often minimal in rural communities. Feasible means of encouraging lifestyles that will reduce cancer risk for residents of rural communities are needed. This project developed and tested a model that could be feasibly adopted by rural communities to reduce cancer risk. This model focuses on incorporating multi-faceted cancer risk education in the local supermarket. As the supermarket functions both as the primary food source and an information source in small rural communities, the supermarket focus encourages the development of a community environment supportive of lifestyles that should reduce residents' risk for cancer. The actions taken to implement the model and the challenges that communities would have in implementing the model are identified.

  15. 2004 Deformation of Okmok Volcano,Alaska, USA

    Science.gov (United States)

    Fournier, T. J.; Freymueller, J. T.

    2004-12-01

    Okmok Volcano is a basaltic shield volcano with a 10km diameter caldera located on Umnak Island in the Aleutian Arc, Alaska. Okmok has had frequent effusive eruptions, the latest in 1997. In 2002 the Alaska Volcano Observatory installed a seismic network and three continuous GPS stations. Two stations are located in the caldera and one is located at the base of the volcano at Fort Glenn. Because of instrumentation problems the GPS network was not fully operational until August 2003. A fourth GPS site, located on the south flank of the volcano, came online in September 2004. The three continuous GPS instruments captured a rapid inflation event at Okmok Volcano spanning 6 months from March to August 2004. The instruments give a wonderful time-series of the episode but poor spatial coverage. Modeling the deformation is accomplished by supplementing the continuous data with campaign surveys conducted in the summers of 2002, 2003 and 2004. Displacements between the 2002 and 2003 campaigns show a large inflation event between those time periods. The continuous and campaign data suggest that deformation at Okmok is characterized by short-lived rapid inflation interspersed with periods of moderate inflation. Velocities during the 2004 event reached a maximum of 31cm/yr in the vertical direction and 15cm/yr eastward at the station OKCD, compared with the pre-inflation velocities of 4cm/yr in the vertical and 2.5cm/yr southeastward. Using a Mogi point source model both prior to and during the inflation gives a source location in the center of the caldera and a depth of about 3km. The source strength rate is three times larger during the inflation event than the period preceding it. Based on the full time series of campaign and continuous GPS data, it appears that the variation in inflation rate results from changes in the magma supply rate and not from changes in the depth of the source.

  16. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    Science.gov (United States)

    Puglisi, Giuseppe

    2015-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of people on both the continent and adjacent islands. Furthermore, eruptions of "European" volcanoes in overseas territories, such as in the West Indies, an in the Indian and Pacific oceans, can have a much broader impacts, outside Europe. Volcano Observatories (VO), which undertake volcano monitoring under governmental mandate and Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.) manage networks on European volcanoes consisting of thousands of stations or sites where volcanological parameters are either continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), including prototype deployment. VOs and VRIs also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), near-real time analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres; all providing high-quality information on the current status of European volcanoes and the geodynamic background of the surrounding areas. This large and high-quality deployment of monitoring systems, focused on a specific geophysical target (volcanoes), together with the wide volcanological phenomena of European volcanoes (which cover all the known volcano types) represent a unique opportunity to fundamentally improve the knowledge base of volcano behaviour. The existing arrangement of national infrastructures (i.e. VO and VRI) appears to be too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort planned in the framework of the EPOS-PP proposal is focused on the creation of services aimed at providing an improved and more efficient access to the volcanological facilities

  17. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  18. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  19. Large-N in Volcano Settings: Volcanosri

    Science.gov (United States)

    Lees, J. M.; Song, W.; Xing, G.; Vick, S.; Phillips, D.

    2014-12-01

    We seek a paradigm shift in the approach we take on volcano monitoring where the compromise from high fidelity to large numbers of sensors is used to increase coverage and resolution. Accessibility, danger and the risk of equipment loss requires that we develop systems that are independent and inexpensive. Furthermore, rather than simply record data on hard disk for later analysis we desire a system that will work autonomously, capitalizing on wireless technology and in field network analysis. To this end we are currently producing a low cost seismic array which will incorporate, at the very basic level, seismological tools for first cut analysis of a volcano in crises mode. At the advanced end we expect to perform tomographic inversions in the network in near real time. Geophone (4 Hz) sensors connected to a low cost recording system will be installed on an active volcano where triggering earthquake location and velocity analysis will take place independent of human interaction. Stations are designed to be inexpensive and possibly disposable. In one of the first implementations the seismic nodes consist of an Arduino Due processor board with an attached Seismic Shield. The Arduino Due processor board contains an Atmel SAM3X8E ARM Cortex-M3 CPU. This 32 bit 84 MHz processor can filter and perform coarse seismic event detection on a 1600 sample signal in fewer than 200 milliseconds. The Seismic Shield contains a GPS module, 900 MHz high power mesh network radio, SD card, seismic amplifier, and 24 bit ADC. External sensors can be attached to either this 24-bit ADC or to the internal multichannel 12 bit ADC contained on the Arduino Due processor board. This allows the node to support attachment of multiple sensors. By utilizing a high-speed 32 bit processor complex signal processing tasks can be performed simultaneously on multiple sensors. Using a 10 W solar panel, second system being developed can run autonomously and collect data on 3 channels at 100Hz for 6 months

  20. Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan

    Science.gov (United States)

    Lin, Cheng-Horng

    2017-07-01

    Periodical seismicity during eruptions has been observed at several volcanoes, such as Mount St. Helens and Soufrière Hills. Movement of magma is often considered one of the most important factors in its generation. Without any magma movement, drumbeat-like (or heartbeat-like) periodical seismicity was detected twice beneath one of the strongest fumarole sites (Dayoukeng) among the Tatun volcano group in northern Taiwan in 2015. Both incidences of drumbeat-like seismicity were respectively started after felt earthquakes in Taiwan, and then persisted for 1-2 d afterward with repetition intervals of ∼18 min between any two adjacent events. The phenomena suggest both drumbeat-like (heartbeat-like) seismicity sequences were likely triggered by dynamic waves generated by the two felt earthquakes. Thus, rather than any involvement of magma, a simplified pumping system within a degassing conduit is proposed to explain the generation of drumbeat-like seismicity. The collapsed rocks within the conduit act as a piston, which was repeatedly lifted up by ascending gas from a deeper reservoir and dropped down when the ascending gas was escaping later. These phenomena show that the degassing process is still very strong in the Tatun volcano group in Taiwan, even though it has been dormant for about several thousand years.

  1. Update of map the volcanic hazard in the Ceboruco volcano, Nayarit, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Camarena-Garcia, M. A.; Nunez-Cornu, F. J.

    2012-12-01

    (Hibiscus sabdariffa). Recently it has established tomato and green pepper crops in greenhouses. The regional commercial activities are concentrated in the localities of Ixtlán, Jala and Ahuacatlán. The updated hazard maps are: a) Hazard map of pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Ceboruco Volcano by the State Civil & Fire Protection Unit of Nayarit, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  2. Comparison with Offshore and Onshore Mud Volcanoes in the Southwestern Taiwan

    Science.gov (United States)

    Chen, Y. H.; Su, C. C.; Chen, T. T.; Liu, C. S.; Paull, C. K.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Hsu, H. H.

    2017-12-01

    The offshore area southwest (SW) of Taiwan is on the convergent boundary between the Eurasian and Philippine Sea plates. The plate convergence manifests in this unique geological setting as a fold-and-thrust-belt. Multi-channel seismic profiles, and bathymetry and gravity anomaly data collected from Taiwan offshore to the SW show the presence of a large amount of mud volcanoes and diapirs with NE-SW orientations. In the absence of comprehensive sampling and detailed geochemistry data from submarine mud volcanoes, the relation between onshore and offshore mud volcanoes remains ambiguous. During two MBARI and IONTU joint cruises conducted in 2017 we collected high-resolution multibeam bathymetry data (1-m-resolution) and chirp sub-bottom profiles with an autonomous underwater vehicle (AUV) from submarine Mud Volcano III (MV3), and obtained precisely located samples and video observations with a remotely operated vehicle (ROV). MV3 is an active submarine mud volcano at 465 m water depth offshore SW Taiwan. This cone-shape mud volcano is almost 780 m wide, 150 m high, with 8° slopes, and a 30 m wide mound on the top. Several linear features are observed in the southwest of the mound, and these features are interpreted as a series of marks caused by rolling rocks that erupted from the top of MV3. We collected three rocks and push cores from MV3 and its top with the ROV, in order to compare their chemical and mineralogical composition to that of samples collected from mud volcanoes along the Chishan fault. The surface and X-radiography imaging, 210Pb chronology, grain size and X-ray diffractometer analyses were conducted to compare geochemical and sedimentary properties of offshore and onshore mud volcanoes. The results indicate that the offshore and onshore mud volcanoes have similar characteristics. We suggest that offshore and onshore mud volcanoes of SW Taiwan are no different in the source of their materials and their mechanism of creation and evolution.

  3. Nutritional strategies to reduce falls risk in older people.

    Science.gov (United States)

    Nash, Louise; Bergin, Nick

    2018-03-23

    A literature review found an association between increased falls risk and malnutrition, sarcopenia, vitamin D deficiency and dehydration. Strategies to identify, prevent and treat these conditions can help to reduce falls risk in at-risk groups such as frail, older people. Nurses can reduce falls risk in older people by raising awareness of risk factors and embedding nutritional strategies in local falls reduction strategies. ©2018 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  4. Inventory of gas flux measurements from volcanoes of the global Network for Observation of Volcanic and Atmospheric Change (NOVAC)

    Science.gov (United States)

    Galle, B.; Arellano, S.; Norman, P.; Conde, V.

    2012-04-01

    NOVAC, the Network for Observation of Volcanic and Atmospheric Change, was initiated in 2005 as a 5-year-long project financed by the European Union. Its main purpose is to create a global network for the monitoring and research of volcanic atmospheric plumes and related geophysical phenomena by using state-of-the-art spectroscopic remote sensing technology. Up to 2012, 64 instruments have been installed at 24 volcanoes in 13 countries of Latin America, Italy, Democratic Republic of Congo, Reunion, Iceland, and Philippines, and efforts are being done to expand the network to other active volcanic zones. NOVAC has been a pioneer initiative in the community of volcanologists and embraces the objectives of the Word Organization of Volcano Observatories (WOVO) and the Global Earth Observation System of Systems (GEOSS). In this contribution, we present the results of the measurements of SO2 gas fluxes carried out within NOVAC, which for some volcanoes represent a record of more than 7 years of continuous monitoring. The network comprises some of the most strongly degassing volcanoes in the world, covering a broad range of tectonic settings, levels of unrest, and potential risk. We show a global perspective of the output of volcanic gas from the covered regions, specific trends of degassing for a few selected volcanoes, and the significance of the database for further studies in volcanology and other geosciences.

  5. Does retirement reduce the risk of myocardial infarction?

    DEFF Research Database (Denmark)

    Olesen, Kasper; Rugulies, Reiner; Rod, Naja Hulvej

    2014-01-01

    BACKGROUND: Recent studies have suggested that retirement may have beneficial effects on health outcomes. In this study we examined whether the risk of myocardial infarction (MI) was reduced following retirement in a Danish population sample. METHODS: Participants were 617 511 Danish workers, born...... of 1.11 (95% confidence interval: 1.06, 1.16) when comparing retirees with active workers of the same age. CONCLUSIONS: This study does not support the hypothesis that retirement reduces risk of MI. On the contrary, we find that retirement is associated with a modestly increased risk of MI....

  6. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    Science.gov (United States)

    Thelen, Weston A.

    2014-01-01

    The seismic network operated by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) is the main source of authoritative data for reporting earthquakes in the State of Hawaii, including those that occur on the State’s six active volcanoes (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, Haleakalā, Lō‘ihi). Of these volcanoes, Kīlauea and Mauna Loa are considered “very high threat” in a report on the rationale for a National Volcanic Early Warning System (NVEWS) (Ewert and others, 2005). This seismic instrumentation plan assesses the current state of HVO’s seismic network with respect to the State’s active volcanoes and calculates the number of stations that are needed to upgrade the current network to provide a seismic early warning capability for forecasting volcanic activity. Further, the report provides proposed priorities for upgrading the seismic network and a cost assessment for both the installation costs and maintenance costs of the improved network that are required to fully realize the potential of the early warning system.

  7. Tracking the movement of Hawaiian volcanoes; Global Positioning System (GPS) measurement

    Science.gov (United States)

    Dvorak, J.J.

    1992-01-01

    Most, if not all, volcanic eruptions are preceded by surface movements near the volcano. These ground movements are the response of the shallow crust to the accumulation of the magma or the buildup of magma pressure within a subterranean reservoir beneath the volcano. As the magma reservoir expands, the summit and the flanks of the volcano rise and spread apart. Measurements made at many volcanoes show that slow ground movement may precede an eruption by as many as several years. Sudden increases in the rate of ground movement often precede an eruption by a few hours or days.

  8. Seismic Activity at Vailulu'u, Samoa's Youngest Volcano

    Science.gov (United States)

    Konter, J.; Staudigel, H.; Hart, S.

    2002-12-01

    Submarine volcanic systems, as a product of the Earth's mantle, play an essential role in the Earth's heat budget and in the interaction between the solid Earth and the hydrosphere and biosphere. Their eruptive and intrusive activity exerts an important control on these hydrothermal systems. In March 2000, we deployed an array of five ocean bottom hydrophones (OBH) on the summit region (625-995 m water depth) of Vailulu'u Volcano (14°12.9'S;169°03.5'W); this volcano represents the active end of the Samoan hotspot chain and is one of only a few well-studied intra-plate submarine volcanoes. We monitored seismic activity for up to 12 months at low sample rate (25 Hz), and for shorter times at a higher sample rate (125 Hz). We have begun to catalogue and locate a variety of acoustic events from this network. Ambient ocean noise was filtered out by a 4th-order Butterworth bandpass filter (2.3 - 10 Hz). We distinguish small local earthquakes from teleseismic activity, mostly identified by T- (acoustic) waves, by comparison with a nearby GSN station (AFI). Most of the detected events are T-phases from teleseismic earthquakes, characterized by their emergent coda and high frequency content (up to 30 Hz); the latter distinguishes them from low frequency emergent signals associated with the volcano (e.g. tremor). A second type of event is characterized by impulsive arrivals, with coda lasting a few seconds. The differences in arrival times between stations on the volcano are too small for these events to be T-waves; they are very likely to be local events, since the GSN station in Western Samoa (AFI) shows no arrivals close in time to these events. Preliminary locations show that these small events occur approximately once per day and are located within the volcano (the 95% confidence ellipse is similar to the size of the volcano, due to the small size of the OBH network). Several events are located relatively close to each other (within a km radius) just NW of the crater.

  9. Geomorphological insights on human-volcano interactions and use of volcanic materials in pre-Hispanic cultures of Costa Rica through the Holocene

    Science.gov (United States)

    Ruiz, Paulo; Mana, Sara; Gutiérrez, Amalia; Alarcón, Gerardo; Garro, José; Soto, Gerardo J.

    2018-02-01

    Critical Zones in tropical environments, especially near active volcanoes, are rich in resources such as water, food and construction materials. In Central America, people have lived near volcanic centers for thousands of years and learned to take advantage of these resources. Understanding how pre-Hispanic societies lived in this type of Critical Zones and interacted with volcanoes, provides us with insights on how to reduce the negative impact derived from volcanic activity in modern cities. In this multidisciplinary approach we focus on two case studies in Costa Rica near Poás and Turrialba volcanoes, which are currently active, in order to obtain a comprehensive view of human-volcano interactions through time. We use a methodology based on historical accounts, geological and archaeological fieldwork, geomorphological characterization based on remote sensing techniques and past (pre-Hispanic), and present land use analysis. The northern Poás region represents a case of a poorly developed pre-Hispanic society, which subsisted mainly on hunting and gathering activities, had no permanent settlements and was probably affected by the activity of the Hule and Río Cuarto maars. In spite of their vulnerability and lack of infrastructure, they used geomorphology to their advantage, achieving natural protection. Conversely, the Guayabo National Monument near Turrialba Volcano represents a cultural peak in pre-Hispanic societies in Costa Rica. Archaeological remains and structures at this site indicate that this society had a good understanding of physical and geological processes and was therefore able to take advantage of natural resources for water and food supply, construction, and protection as well as hazard prevention and mitigation. The use of new technologies, some accessible and low-cost such as Google Earth and others with restricted access and higher costs such as LiDAR, allowed us to complete a rapid and efficient characterization of land use and

  10. Density Imaging of Puy de Dôme Volcano with Atmospheric Muons in French Massif Central as a Case Study for Volcano Muography

    Science.gov (United States)

    Carloganu, Cristina; Le Ménédeu, Eve

    2016-04-01

    High energy atmospheric muons have high penetration power that renders them appropriate for geophysical studies. Provided the topography is known, the measurement of the muon flux transmittance leads in an univoque way to 2D density mapping (so called radiographic images) revealing spatial and possibly also temporal variations. Obviously, several radiographic images could be combined into 3D tomographies, though the inverse 3D problem is generally ill-posed. The muography has a high potential for imaging remotely (from kilometers away) and with high resolution (better than 100 mrad2) volcanoes. The experimental and methodological task is however not straightforward since atmospheric muons have non trivial spectra that fall rapidly with muon energy. As shown in [Ambrosino 2015] successfully imaging km-scale volcanoes remotely requires state-of-the art, high-resolution and large-scale muon detectors. This contribution presents the geophysical motivation for muon imaging as well as the first quantitative density radiographies of Puy de Dôme volcano obtained by the TOMUVOL collaboration using a highly segmented muon telescope based on Glass Resistive Plate Chambers. In parallel with the muographic studies, the volcano was imaged through standard geophysical methods (gravimetry, electrical resistivity) [Portal 2013] allowing in depth comparisons of the different methods. Ambrosino, F., et al. (2015), Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB011969 A. Portal et al (2013) , "Inner structure of the Puy de Dme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging)", Geosci. Instrum. Method. Data Syst., 2, 47-54, 2013

  11. The unrest of S. Miguel volcano (El Salvador, CA): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, A.; Hernandez, D.; Gutiérrez, E.; Handal, L.; Polío, C.; Rapisarda, S.; Scarlato, P.

    2015-10-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of S. Miguel, erupted suddenly with explosive force, forming a more than 9 km high column and projecting ballistic projectiles as far as 3 km away. Pyroclastic Density Currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multi-parametric mobile network comprising seismic, geodetic and geochemical sensors, designed to cover all the volcano flanks from the lowest to the highest possible altitudes, and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were co-located into multi-parametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  12. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Science.gov (United States)

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  13. False Color Image of Volcano Sapas Mons

    Science.gov (United States)

    1991-01-01

    This false-color image shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio (8 degrees north latitude and 188 degrees east longitude). The area shown is approximately 650 kilometers (404 miles) on a side. Sapas Mons measures about 400 kilometers (248 miles) across and 1.5 kilometers (0.9 mile) high. Its flanks show numerous overlapping lava flows. The dark flows on the lower right are thought to be smoother than the brighter ones near the central part of the volcano. Many of the flows appear to have been erupted along the flanks of the volcano rather than from the summit. This type of flank eruption is common on large volcanoes on Earth, such as the Hawaiian volcanoes. The summit area has two flat-topped mesas, whose smooth tops give a relatively dark appearance in the radar image. Also seen near the summit are groups of pits, some as large as one kilometer (0.6 mile) across. These are thought to have formed when underground chambers of magma were drained through other subsurface tubes and lead to a collapse at the surface. A 20 kilometer-diameter (12-mile diameter) impact crater northeast of the volcano is partially buried by the lava flows. Little was known about Atla Regio prior to Magellan. The new data, acquired in February 1991, show the region to be composed of at least five large volcanoes such as Sapas Mons, which are commonly linked by complex systems of fractures or rift zones. If comparable to similar features on Earth, Atla Regio probably formed when large volumes of molten rock upwelled from areas within the interior of Venus known as'hot spots.' Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day

  14. Continuous monitoring of volcanoes with borehole strainmeters

    Science.gov (United States)

    Linde, Alan T.; Sacks, Selwyn

    Monitoring of volcanoes using various physical techniques has the potential to provide important information about the shape, size and location of the underlying magma bodies. Volcanoes erupt when the pressure in a magma chamber some kilometers below the surface overcomes the strength of the intervening rock, resulting in detectable deformations of the surrounding crust. Seismic activity may accompany and precede eruptions and, from the patterns of earthquake locations, inferences may be made about the location of magma and its movement. Ground deformation near volcanoes provides more direct evidence on these, but continuous monitoring of such deformation is necessary for all the important aspects of an eruption to be recorded. Sacks-Evertson borehole strainmeters have recorded strain changes associated with eruptions of Hekla, Iceland and Izu-Oshima, Japan. Those data have made possible well-constrained models of the geometry of the magma reservoirs and of the changes in their geometry during the eruption. The Hekla eruption produced clear changes in strain at the nearest instrument (15 km from the volcano) starting about 30 minutes before the surface breakout. The borehole instrument on Oshima showed an unequivocal increase in the amplitude of the solid earth tides beginning some years before the eruption. Deformational changes, detected by a borehole strainmeter and a very long baseline tiltmeter, and corresponding to the remote triggered seismicity at Long Valley, California in the several days immediately following the Landers earthquake are indicative of pressure changes in the magma body under Long Valley, raising the question of whether such transients are of more general importance in the eruption process. We extrapolate the experience with borehole strainmeters to estimate what could be learned from an installation of a small network of such instruments on Mauna Loa. Since the process of conduit formation from the magma sources in Mauna Loa and other

  15. SmallWorld Behavior of the Worldwide Active Volcanoes Network: Preliminary Results

    Science.gov (United States)

    Spata, A.; Bonforte, A.; Nunnari, G.; Puglisi, G.

    2009-12-01

    We propose a preliminary complex networks based approach in order to model and characterize volcanoes activity correlation observed on a planetary scale over the last two thousand years. Worldwide volcanic activity is in fact related to the general plate tectonics that locally drives the faults activity, that in turn controls the magma upraise beneath the volcanoes. To find correlations among different volcanoes could indicate a common underlying mechanism driving their activity and could help us interpreting the deeper common dynamics controlling their unrest. All the first evidences found testing the procedure, suggest the suitability of this analysis to investigate global volcanism related to plate tectonics. The first correlations found, in fact, indicate that an underlying common large-scale dynamics seems to drive volcanic activity at least around the Pacific plate, where it collides and subduces beneath American, Eurasian and Australian plates. From this still preliminary analysis, also more complex relationships among volcanoes lying on different tectonic margins have been found, suggesting some more complex interrelationships between different plates. The understanding of eventually detected correlations could be also used to further implement warning systems, relating the unrest probabilities of a specific volcano also to the ongoing activity to the correlated ones. Our preliminary results suggest that, as for other many physical and biological systems, an underlying organizing principle of planetary volcanoes activity might exist and it could be a small-world principle. In fact we found that, from a topological perspective, volcanoes correlations are characterized by the typical features of small-world network: a high clustering coefficient and a low characteristic path length. These features confirm that global volcanoes activity is characterized by both short and long-range correlations. We stress here the fact that numerical simulation carried out in

  16. Breast cancer after bilateral risk-reducing mastectomy

    DEFF Research Database (Denmark)

    Skytte, A-B; Crüger, Dorthe Gylling; Gerster, M

    2011-01-01

    This study aims to evaluate the incidence of breast cancer after risk-reducing mastectomy (RRM) in healthy BRCA mutation carriers. This study is a long-term follow-up of 307 BRCA mutation carriers of whom 96 chose RRM. None of the study participants had a previous history of breast or ovarian...... cancer nor had they undergone RRM or risk-reducing bilateral salpingo-oophorectomy (BSO) prior to the time of BRCA testing. The annual incidence of post-mastectomy breast cancer was 0.8% compared with 1.7% in the non-operated group. Implications of these findings in relation to genetic counseling...

  17. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    Directory of Open Access Journals (Sweden)

    M. Mena

    2005-06-01

    Full Text Available Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed also stability along the monitoring period. No anthropogenic pollution from Volatile Organic Compounds (VOCs was observed. An overview of the soil radon behaviour as a function of the volcanic activity in the period 1994-2002 is also discussed.

  18. Volcano Geodesy: Recent developments and future challenges

    Science.gov (United States)

    Fernandez, Jose F.; Pepe, Antonio; Poland, Michael; Sigmundsson, Freysteinn

    2017-01-01

    Ascent of magma through Earth's crust is normally associated with, among other effects, ground deformation and gravity changes. Geodesy is thus a valuable tool for monitoring and hazards assessment during volcanic unrest, and it provides valuable data for exploring the geometry and volume of magma plumbing systems. Recent decades have seen an explosion in the quality and quantity of volcano geodetic data. New datasets (some made possible by regional and global scientific initiatives), as well as new analysis methods and modeling practices, have resulted in important changes to our understanding of the geodetic characteristics of active volcanism and magmatic processes, from the scale of individual eruptive vents to global compilations of volcano deformation. Here, we describe some of the recent developments in volcano geodesy, both in terms of data and interpretive tools, and discuss the role of international initiatives in meeting future challenges for the field.

  19. Mechanism of the 1996-97 non-eruptive volcano-tectonic earthquake swarm at Iliamna Volcano, Alaska

    Science.gov (United States)

    Roman, D.C.; Power, J.A.

    2011-01-01

    A significant number of volcano-tectonic(VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption.These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust.Real-time assessment of the likelihood that a VTswarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996-June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations,we aim to test the hypothesis that the 1996-97 swarm represented a shallow intrusion, or "failed" eruption.Observations of the 1996-97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption. ?? 2011 Springer-Verlag.

  20. Mauna Kea volcano's ongoing 18-year swarm

    Science.gov (United States)

    Wech, A.; Thelen, W. A.

    2017-12-01

    Mauna Kea is a large postshield-stage volcano that forms the highest peak on Hawaii Island. The 4,205-meter high volcano erupted most recently between 6,000 and 4,500 years ago and exhibits relatively low rates of seismicity, which are mostly tectonic in origin resulting from lithospheric flexure under the weight of the volcano. Here we identify deep repeating earthquakes occurring beneath the summit of Mauna Kea. These earthquakes, which are not part of the Hawaiian Volcano Observatory's regional network catalog, were initially detected through a systematic search for coherent seismicity using envelope cross-correlation, and subsequent analysis revealed the presence of a long-term, ongoing swarm. The events have energy concentrated at 2-7 Hz, and can be seen in filtered waveforms dating back to the earliest continuous data from a single station archived at IRIS from November 1999. We use a single-station (3 component) match-filter analysis to create a catalog of the repeating earthquakes for the past 18 years. Using two templates created through phase-weighted stacking of thousands of sta/lta-triggers, we find hundreds of thousands of M1.3-1.6 earthquakes repeating every 7-12 minutes throughout this entire time period, with many smaller events occurring in between. The earthquakes occur at 28-31 km depth directly beneath the summit within a conspicuous gap in seismicity surrounding the flanks of the volcano. Magnitudes and periodicity are remarkably stable long-term, but do exhibit slight variability and occasionally display higher variability on shorter time scales. Network geometry precludes obtaining a reliable focal mechanism, but we interpret the frequency content and hypocenters to infer a volcanic source distinct from the regional tectonic seismicity responding to the load of the island. In this model, the earthquakes may result from the slow, persistent degassing of a relic magma chamber at depth.

  1. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    Science.gov (United States)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  2. Breastfeeding Reduces Childhood Obesity Risks.

    Science.gov (United States)

    Wang, Liang; Collins, Candice; Ratliff, Melanie; Xie, Bin; Wang, Youfa

    2017-06-01

    The present study examined the effects of breastfeeding and its duration on the development of childhood obesity from 24 months through grade 6. U.S. longitudinal data collected from 1234 children were analyzed using logistic regression models and generalized estimating equation (GEE). Child height and weight were measured six times at ages of 24 months, 36 months, 54 months, grade 1, grade 3, and grade 6. During the early 1990s, prevalence of breastfeeding was low in the United States, 60% and 48% at 1 and 6 months, respectively. Nonsmoking, white, married mothers with both parents in the household, and with income above the poverty line, were more likely to breastfeed at 1 month of age of their babies. Obesity rate of the children increased with age from 24 months to grade 6. Logistic regression showed that breastfeeding at month 1 was associated with 53% (odds ratio [OR]: 0.47, 95% confidence interval [CI]: 0.30-0.73) and 47% (OR: 0.53, 95% CI: 0.36-0.78) decreased risks for childhood obesity at grades 1 and 6, respectively. GEE analysis showed that breastfeeding at 1 month reduced risk for childhood obesity by 36% (95% CI: 0.47-0.88) from ages 24 months through grade 6. Regarding breastfeeding duration, more than 6 months (vs. never) was associated with a decreased risk for childhood obesity by 42% (OR: 0.58, 95% CI: 0.36-0.94). Breastfeeding at 1 month and more than 6 months reduced the risk of childhood obesity. Rate of breastfeeding was low in the United States in the 1990s, which may have had long-term implications on children.

  3. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes

    Science.gov (United States)

    Fischer, T.

    2001-05-01

    Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and

  4. Geologic Mapping of the Olympus Mons Volcano, Mars

    Science.gov (United States)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  5. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica

    Science.gov (United States)

    Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.

    2011-01-01

    Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.

  6. Hazard Map of the Poás Volcano

    Directory of Open Access Journals (Sweden)

    Gustavo Barrantes Castillo

    2015-07-01

    Full Text Available The Poás volcano presents a series of hazards to the lives and activities of the communities in its surroundings; these hazards include ash fall, volcanic gases, ballistic projection, pyroclastic flows, lahars and lava flows. In the study described in this article, risks were zoned and integrated to form combined hazard maps for later use in territorial planning processes. With respect to methodology, the study was based on a heuristic approximation, which was supported with cartographic, geomorphological, and historical impact criteria to achieve a suitable product in terms of scale and ease of interpretation. These maps present greater detail and integration than other works and cartographies of volcanic hazards in Costa Rica.

  7. Anatomy of a volcano

    NARCIS (Netherlands)

    Hooper, A.; Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “We

  8. Tephra compositions from Late Quaternary volcanoes around the Antarctic Peninsula

    Science.gov (United States)

    Kraus, S.

    2009-12-01

    Crustal extension and rifting processes opened the Bransfield Strait between the South Shetland Islands and the Antarctic Peninsula during the last 4 Ma. Similar processes on the Peninsula's eastern side are responsible for volcanism along Larsen Rift. There are at least 11 volcanic centers with known or suspected Late Pleistocene / Holocene explosive activity (Fig. 1). Fieldwork was carried out on the islands Deception, Penguin, Bridgeman and Paulet, moreover at Melville Peak (King George Is.) and Rezen Peak (Livingston Is.). Of special importance is the second ever reported visit and sampling at Sail Rock, and the work on never before visited outcrops on the northern slopes and at the summit of Cape Purvis volcano (Fig. 1). The new bulk tephra ICP-MS geochemical data provide a reliable framework to distinguish the individual volcanic centers from each other. According to their Mg-number, Melville Peak and Penguin Island represent the most primitive magma source. Nb/Y ratios higher than 0.67 in combination with elevated Th/Yb and Ta/Yb ratios and strongly enriched LREE seem to be diagnostic to distinguish the volcanoes located along the Larsen Rift from those associated with Bransfield Rift. Sr/Y ratios discriminate between the individual Larsen Rift volcanoes, Paulet Island showing considerably higher values than Cape Purvis volcano. Along Bransfield Rift, Bridgeman Island and Melville Peak have notably lower Nb/Y and much higher Th/Nb than Deception Island, Penguin Island and Sail Rock. The latter displays almost double the Th/Yb ratio as compared to Deception Island, and also much higher LREE enrichment but extraordinarily low Ba/Th, discriminating it from Penguin Island. Such extremely low Ba/Th ratios are also typical for Melville Peak, but for none of the other volcanoes. Penguin Island has almost double the Ba/Th and Sr/Y ratios higher than any other investigated volcano. Whereas the volcanoes located in the northern part of Bransfield Strait have Zr

  9. A model of diffuse degassing at three subduction-related volcanoes

    Science.gov (United States)

    Williams-Jones, Glyn; Stix, John; Heiligmann, Martin; Charland, Anne; Sherwood Lollar, Barbara; Arner, N.; Garzón, Gustavo V.; Barquero, Jorge; Fernandez, Erik

    Radon, CO2 and δ13C in soil gas were measured at three active subduction-related stratovolcanoes (Arenal and Poás, Costa Rica; Galeras, Colombia). In general, Rn, CO2 and δ13C values are higher on the lower flanks of the volcanoes, except near fumaroles in the active craters. The upper flanks of these volcanoes have low Rn concentrations and light δ13C values. These observations suggest that diffuse degassing of magmatic gas on the upper flanks of these volcanoes is negligible and that more magmatic degassing occurs on the lower flanks where major faults and greater fracturing in the older lavas can channel magmatic gases to the surface. These results are in contrast to findings for Mount Etna where a broad halo of magmatic CO2 has been postulated to exist over much of the edifice. Differences in radon levels among the three volcanoes studied here may result from differences in age, the degree of fracturing and faulting, regional structures or the level of hydrothermal activity. Volcanoes, such as those studied here, act as plugs in the continental crust, focusing magmatic degassing towards crater fumaroles, faults and the fractured lower flanks.

  10. Design of smart sensing components for volcano monitoring

    Science.gov (United States)

    Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.

    2009-01-01

    In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.

  11. Postshield stage transitional volcanism on Mahukona Volcano, Hawaii

    Science.gov (United States)

    Clague, D.A.; Calvert, A.T.

    2009-01-01

    Age spectra from 40Ar/39Ar incremental heating experiments yield ages of 298??25 ka and 310??31 ka for transitional composition lavas from two cones on submarine Mahukona Volcano, Hawaii. These ages are younger than the inferred end of the tholeiitic shield stage and indicate that the volcano had entered the postshield alkalic stage before going extinct. Previously reported elevated helium isotopic ratios of lavas from one of these cones were incorrectly interpreted to indicate eruption during a preshield alkalic stage. Consequently, high helium isotopic ratios are a poor indicator of eruptive stage, as they occur in preshield, shield, and postshield stage lavas. Loihi Seamount and Kilauea are the only known Hawaiian volcanoes where the volume of preshield alkalic stage lavas can be estimated. ?? Springer-Verlag 2008.

  12. Flank tectonics of Martian volcanoes

    International Nuclear Information System (INIS)

    Thomas, P.J.; Squyres, S.W.; Carr, M.H.

    1990-01-01

    On the flanks of Olympus Mons is a series of terraces, concentrically distributed around the caldera. Their morphology and location suggest that they could be thrust faults caused by compressional failure of the cone. In an attempt to understand the mechanism of faulting and the possible influences of the interior structure of Olympus Mons, the authors have constructed a numerical model for elastic stresses within a Martian volcano. In the absence of internal pressurization, the middle slopes of the cone are subjected to compressional stress, appropriate to the formation of thrust faults. These stresses for Olympus Mons are ∼250 MPa. If a vacant magma chamber is contained within the cone, the region of maximum compressional stress is extended toward the base of the cone. If the magma chamber is pressurized, extensional stresses occur at the summit and on the upper slopes of the cone. For a filled but unpressurized magma chamber, the observed positions of the faults agree well with the calculated region of high compressional stress. Three other volcanoes on Mars, Ascraeus Mons, Arsia Mons, and Pavonis Mons, possess similar terraces. Extending the analysis to other Martian volcanoes, they find that only these three and Olympus Mons have flank stresses that exceed the compressional failure strength of basalt, lending support to the view that the terraces on all four are thrust faults

  13. Reducing cardiovascular risk : protecting the kidney

    NARCIS (Netherlands)

    Dobre, Daniela; Lambers Heerspink, Hiddo J.; de Zeeuw, Dick

    2009-01-01

    Progressive decline of renal function in chronic kidney disease (CKD), measured by a reduced glomerular filtration rate or albuminuria, is linked to an increased risk of cardiovascular (CV) disease. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs), most

  14. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter.

    Science.gov (United States)

    Liu, Chia-Chuan; Kar, Sandeep; Jean, Jiin-Shuh; Wang, Chung-Ho; Lee, Yao-Chang; Sracek, Ondra; Li, Zhaohui; Bundschuh, Jochen; Yang, Huai-Jen; Chen, Chien-Yen

    2013-11-15

    The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ(18)O-rich fluids may be associated with silicate and carbonate mineral released through water-rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of organic matter among the mud volcanoes being examined. Because arsenate concentration in the mud fluids was found to be independent from geochemical factors, it was considered that organic matter may induce arsenic mobilization through an adsorption/desorption mechanism with humic substances under reducing conditions. Organic matter therefore plays a significant role in the mobility of arsenic in mud volcanoes. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Using near-real-time monitoring data from Pu'u 'Ō'ō vent at Kīlauea Volcano for training and educational purposes

    Science.gov (United States)

    Teasdale, Rachel; Kraft, Katrien van der Hoeven; Poland, Michael P.

    2015-01-01

    approach will help improve effective communications between volcano experts and non-experts during times of crisis, thereby reducing the potential for confusion and misinterpretation of data.

  16. Measuring Gases Using Drones at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Stix, J.; Alan, A., Jr.; Corrales, E.; D'Arcy, F.; de Moor, M. J.; Diaz, J. A.

    2016-12-01

    We are currently developing a series of drones and associated instrumentation to study Turrialba volcano in Costa Rica. This volcano has shown increasing activity during the last 20 years, and the volcano is currently in a state of heightened unrest as exemplified by recent explosive activity in May-August 2016. The eruptive activity has made the summit area inaccessible to normal gas monitoring activities, prompting development of new techniques to measure gas compositions. We have been using two drones, a DJI Spreading Wings S1000 octocopter and a Turbo Ace Matrix-i quadcopter, to airlift a series of instruments to measure volcanic gases in the plume of the volcano. These instruments comprise optical and electrochemical sensors to measure CO2, SO2, and H2S concentrations which are considered the most significant species to help forecast explosive eruptions and determine the relative proportions of magmatic and hydrothermal components in the volcanic gas. Additionally, cameras and sensors to measure air temperature, relative humidity, atmospheric pressure, and GPS location are included in the package to provide meteorological and geo-referenced information to complement the concentration data and provide a better picture of the volcano from a remote location. The integrated payloads weigh 1-2 kg, which can typically be flown by the drones in 10-20 minutes at altitudes of 2000-4000 meters. Preliminary tests at Turrialba in May 2016 have been very encouraging, and we are in the process of refining both the drones and the instrumentation packages for future flights. Our broader goals are to map gases in detail with the drones in order to make flux measurements of each species, and to apply this approach at other volcanoes.

  17. Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy

    2010-01-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  18. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador)

    Science.gov (United States)

    Salerno, Giuseppe G.; Granieri, Domenico; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni B.; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael; Papale, Paolo

    2016-04-01

    San Miguel volcano, also known as Chaparrastique, is a basaltic volcano along the Central American Volcanic Arc (CAVA). Volcanism is induced by the convergence of the Cocos Plate underneath the Caribbean Plate, along a 1200-km arc, extending from Guatemala to Costa Rica and parallel to the Central American Trench. The volcano is located in the eastern part of El Salvador, in proximity to the large communities of San Miguel, San Rafael Oriente, and San Jorge. Approximately 70,000 residents, mostly farmers, live around the crater and the city of San Miguel, the second largest city of El Salvador, ten km from the summit, has a population of ~180,000 inhabitants. The Pan-American and Coastal highways cross the north and south flanks of the volcano.San Miguel volcano has produced modest eruptions, with at least 28 VEI 1-2 events between 1699 and 1967 (datafrom Smithsonian Institution http://www.volcano.si.edu/volcano.cfm?vn=343100). It is characterized by visible milddegassing from a summit vent and fumarole field, and by intermittent lava flows and Strombolian activity. Since the last vigorous fire fountaining of 1976, San Miguel has only experienced small steam explosions and gas emissions, minor ash fall and rock avalanches. On 29 December 2013 the volcano erupted producing an eruption that has been classified as VEI 2. While eruptions tend to be low-VEI, the presence of major routes and the dense population in the surrounding of the volcano increases the risk that weak explosions with gas and/or ash emission may pose. In this study, we present the first inventory of SO2, CO2, HCl, and HF emission rates on San Miguel volcano, and an analysis of the hazard from volcanogenic SO2 discharged before, during, and after the December 2013 eruption. SO2 was chosen as it is amongst the most critical volcanogenic pollutants, which may cause acute and chronicle disease to humans. Data were gathered by the geochemical monitoring network managed by the Ministerio de Medio Ambiente

  19. Nature's refineries — Metals and metalloids in arc volcanoes

    Science.gov (United States)

    Henley, R.W.; Berger, Byron R.

    2013-01-01

    along with cadmium are strongly fractionated along the way, eventually venting their excess along with SO2, CO2, and other components of the carrier gas, into the atmosphere. These elements, many of which are toxic, may also be dispersed by mixing with groundwater in the permeable crust below volcanoes and generate potential health risks due to Hg, As, and Se contamination of drinking water resources.

  20. Sutter Buttes-the lone volcano in California's Great Valley

    Science.gov (United States)

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  1. Some Recent USF Studies at Volcanoes in Central America

    Science.gov (United States)

    McNutt, S. R.

    2014-12-01

    Scientists at the University of South Florida (USF) have been working in Central America for several decades. Efforts have focused on Physical Volcanology in Nicaragua, GPS in Costa Rica, and assessment of Geothermal projects in El Salvador, amongst others. Two years ago a Seismology Lab was established at USF. Personnel now include three Professors, a Post-Doc, and 4 graduate students. Seismic and GPS networks were installed at Telica Volcano, Nicaragua, in 2010 by Roman, LaFemina and colleagues. Data are recorded on site and recovered several times per year at this persistently restless volcano, which has rates of 5 to 1400 low frequency seismic events per day (Rodgers et al., submitted). Proposals have been submitted to install instruments on other Nicaraguan volcanoes, including seismometers, GPS, infrasound, and lightning sensors. This suite of instruments has proven to be very effective to study a range of volcanic processes. The proposals have not been successful to date (some are pending), and alternative funding sources are being explored. One interesting scientific issue is the presence of strong seasonal effects, specifically a pronounced rainy season and dry season and possible interaction between shallow volcanic processes and surface waters. We are also pursuing a variety of studies that are complementary to the instrumental efforts. One such study is examining volcanic earthquake swarms, with the focus to date on identifying diagnostics. One clear pattern is that peak rates often occur early in swarms, whereas the largest M event occurs late. Additional evidence suggests that the seismic source size grows systematically, especially for events with similar waveforms (families). Recognition of such patterns, linked to processes, may help to improve monitoring and better take advantage of instrumental data to reduce vulnerability from eruptions.

  2. Comparative features of volcanoes on Solar system bodies

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    The bark of many cosmic bodies is in motion because of the displacement of tectonic plates on magma. Pouring molten magma through cracks in the cortex is called a volcanic eruption. There are two main types of volcanoes: basaltic, appearing where a new material of tectonic plates is formed, and andesitic, which located in the places of destruction of these plates.The third type of volcanoes is cryovolcanoes, or ice volcanoes. This type of volcano ejects matter in the form of ice volcanic melts or steam from water, ammonia, methane. After the eruption, the cryomagma at a low temperature condenses to a solid phase. Cryovolcanoes can be formed on such objects as Pluto, Ceres, Titan, Enceladus, Europe, Triton, etc. Potential sources of energy for melting ice in the production of cryovolcanoes are tidal friction and/or radioactive decay. Semi-transparent deposits of frozen materials that can create a subsurface greenhouse effect, with the possibility of accumulating the required heat with subsequent explosive eruption, are another way to start the cryovolcano action. This type of eruption is observed on Mars and Triton. The first and second types of eruptions (basaltic and andesitic) are characteristic of terrestrial planets (Mercury, Venus, Mars) and for some satellites of the planets of the Solar system.

  3. Alteration, slope-classified alteration, and potential lahar inundation maps of volcanoes for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Volcano Archive

    Science.gov (United States)

    Mars, John C.; Hubbard, Bernard E.; Pieri, David; Linick, Justin

    2015-01-01

    This study identifies areas prone to lahars from hydrothermally altered volcanic edifices on a global scale, using visible and near infrared (VNIR) and short wavelength infrared (SWIR) reflectance data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and digital elevation data from the ASTER Global Digital Elevation Model (GDEM) dataset. This is the first study to create a global database of hydrothermally altered volcanoes showing quantitatively compiled alteration maps and potentially affected drainages, as well as drainage-specific maps illustrating modeled lahars and their potential inundation zones. We (1) identified and prioritized 720 volcanoes based on population density surrounding the volcanoes using the Smithsonian Institution Global Volcanism Program database (GVP) and LandScan™ digital population dataset; (2) validated ASTER hydrothermal alteration mapping techniques using Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) and ASTER data for Mount Shasta, California, and Pico de Orizaba (Citlaltépetl), Mexico; (3) mapped and slope-classified hydrothermal alteration using ASTER VNIR-SWIR reflectance data on 100 of the most densely populated volcanoes; (4) delineated drainages using ASTER GDEM data that show potential flow paths of possible lahars for the 100 mapped volcanoes; (5) produced potential alteration-related lahar inundation maps using the LAHARZ GIS code for Iztaccíhuatl, Mexico, and Mount Hood and Mount Shasta in the United States that illustrate areas likely to be affected based on DEM-derived volume estimates of hydrothermally altered rocks and the ~2x uncertainty factor inherent within a statistically-based lahar model; and (6) saved all image and vector data for 3D and 2D display in Google Earth™, ArcGIS® and other graphics display programs. In addition, these data are available from the ASTER Volcano Archive (AVA) for distribution (available at http://ava.jpl.nasa.gov/recent_alteration_zones.php).

  4. Mineralogical and geochemical study of mud volcanoes in north ...

    African Journals Online (AJOL)

    The gulf of Cadiz is one of the most interesting areas to study mud volcanoes and structures related to cold fluid seeps since their discovery in 1999. In this study, we present results from gravity cores collected from Ginsburg and Meknes mud volcanoes and from circular structure located in the gulf of Cadiz (North Atlantic ...

  5. The origin of the Hawaiian Volcano Observatory

    International Nuclear Information System (INIS)

    Dvorak, John

    2011-01-01

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  6. Galactic Super-volcano in Action

    Science.gov (United States)

    2010-08-01

    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  7. Field-trip guide to the geologic highlights of Newberry Volcano, Oregon

    Science.gov (United States)

    Jensen, Robert A.; Donnelly-Nolan, Julie M.

    2017-08-09

    Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes

  8. Validation and Analysis of SRTM and VCL Data Over Tropical Volcanoes

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2004-01-01

    The focus of our investigation was on the application of digital topographic data in conducting first-order volcanological and structural studies of tropical volcanoes, focusing on the Java, the Philippines and the Galapagos Islands. Kilauea volcano, Hawaii, served as our test site for SRTM data validation. Volcanoes in humid tropical environments are frequently cloud covered, typically densely vegetated and erode rapidly, so that it was expected that new insights into the styles of eruption of these volcanoes could be obtained from analysis of topographic data. For instance, in certain parts of the world, such as Indonesia, even the regional structural context of volcanic centers is poorly known, and the distribution of volcanic products (e.g., lava flows, pyroclastic flows, and lahars) are not well mapped. SRTM and Vegetation Canopy Lidar (VCL) data were expected to provide new information on these volcanoes. Due to the cancellation of the VCL mission, we did not conduct any lidar studies during the duration of this project. Digital elevation models (DEMs) such as those collected by SRTM provide quantitative information about the time-integrated typical activity on a volcano and allow an assessment of the spatial and temporal contributions of various constructional and destructional processes to each volcano's present morphology. For basaltic volcanoes, P_c?w!m-d and Garbed (2000) have shown that gradual slopes (less than 5 deg.) occur where lava and tephra pond within calderas or in the saddles between adjacent volcanoes, as well as where lava deltas coalesce to form coastal plains. Vent concentration zones (axes of rift zones) have slopes ranging from 10 deg. to 12 deg. Differential vertical growth rates between vent concentration zones and adjacent mostly-lava flanks produce steep constructional slopes up to 40". The steepest slopes (locally approaching 90 deg.) are produced by fluvial erosion, caldera collapse, faulting, and catastrophic avalanches, all of

  9. Business risks, functions, methods of assessment and ways to reduce risk

    Directory of Open Access Journals (Sweden)

    A.V. Mihalchuk

    2015-06-01

    Full Text Available For successful existence in a market economy entrepreneur have to take bold actions, and this increases the risk. The article describes the concept of entrepreneurship and business risk, positive and negative aspects of functions of risk in business. Therefore, it is necessary to assess the risk properly and be able to manage it to achieve the most effective results in the market. In market conditions the problem of assessing and accounting market becomes independent theoretical and practical significance as an important component of the theory and practice of management. Risk - a key element of business activities. Development of risk situations can lead to both the occurrence of adverse effects (losses, lost profits, and positive results for a company in the form of increased profit. This article describes: the concept of entrepreneurship, risk and business risks, characteristic of positive and negative aspects of risk functions in business, methods of assessment and risk reduction, shows formulae and examples you can use to assess risk in an enterprise. Analyzing already established methods of risk assessment a number of rules were proposed in order to reduce business risk.

  10. Volcanoes and climate: Krakatoa's signature persists in the ocean.

    Science.gov (United States)

    Gleckler, P J; Wigley, T M L; Santer, B D; Gregory, J M; Achutarao, K; Taylor, K E

    2006-02-09

    We have analysed a suite of 12 state-of-the-art climate models and show that ocean warming and sea-level rise in the twentieth century were substantially reduced by the colossal eruption in 1883 of the volcano Krakatoa in the Sunda strait, Indonesia. Volcanically induced cooling of the ocean surface penetrated into deeper layers, where it persisted for decades after the event. This remarkable effect on oceanic thermal structure is longer lasting than has previously been suspected and is sufficient to offset a large fraction of ocean warming and sea-level rise caused by anthropogenic influences.

  11. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    Science.gov (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  12. Detection, Source Location, and Analysis of Volcano Infrasound

    Science.gov (United States)

    McKee, Kathleen F.

    The study of volcano infrasound focuses on low frequency sound from volcanoes, how volcanic processes produce it, and the path it travels from the source to our receivers. In this dissertation we focus on detecting, locating, and analyzing infrasound from a number of different volcanoes using a variety of analysis techniques. These works will help inform future volcano monitoring using infrasound with respect to infrasonic source location, signal characterization, volatile flux estimation, and back-azimuth to source determination. Source location is an important component of the study of volcano infrasound and in its application to volcano monitoring. Semblance is a forward grid search technique and common source location method in infrasound studies as well as seismology. We evaluated the effectiveness of semblance in the presence of significant topographic features for explosions of Sakurajima Volcano, Japan, while taking into account temperature and wind variations. We show that topographic obstacles at Sakurajima cause a semblance source location offset of 360-420 m to the northeast of the actual source location. In addition, we found despite the consistent offset in source location semblance can still be a useful tool for determining periods of volcanic activity. Infrasonic signal characterization follows signal detection and source location in volcano monitoring in that it informs us of the type of volcanic activity detected. In large volcanic eruptions the lowermost portion of the eruption column is momentum-driven and termed the volcanic jet or gas-thrust zone. This turbulent fluid-flow perturbs the atmosphere and produces a sound similar to that of jet and rocket engines, known as jet noise. We deployed an array of infrasound sensors near an accessible, less hazardous, fumarolic jet at Aso Volcano, Japan as an analogue to large, violent volcanic eruption jets. We recorded volcanic jet noise at 57.6° from vertical, a recording angle not normally feasible

  13. The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, Alessandro; Hernandez, Douglas Antonio; Gutiérrez, Eduardo; Handal, Louis; Polío, Cecilia; Rapisarda, Salvatore; Scarlato, Piergiorgio

    2016-08-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of San Miguel, erupted suddenly with explosive force, forming a column more than 9 km high and projecting ballistic projectiles as far as 3 km away. Pyroclastic density currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force, made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales, was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multiparametric mobile network comprising seismic, geodetic and geochemical sensors (designed to cover all the volcano flanks from the lowest to the highest possible altitudes) and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were colocated into multiparametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  14. Air-cooled volcanoes ? New insights on convective airflow process within Miyakejima and Piton de la Fournaise volcanoes

    Science.gov (United States)

    Antoine, R.; Geshi, N.; Kurita, K.; Aoki, Y.; Ichihara, M.; Staudacher, T.; Bachelery, P.

    2012-04-01

    Subsurface airflow in the unsaturated zone of the soil has been extensively investigated in a variety of disciplines such as mining, nuclear waste or agriculture science. In volcanology, the recent discovery of subsurface airflow close to the terminal cone of Piton de La Fournaise volcano (La Réunion Island, France) provides for the first time insights into the convective behavior of air within the unsaturated layer [1]. The characteristics of the aerothermal system, its occurrence in other volcanoes, its ability to transport heat during quiescent periods and the perturbation of this system before eruptions are the key questions we want to address following this discovery. In this study, we present observations of subsurface convective airflow within opened fractures located at the summit of Miyakejima and Piton de la Fournaise volcanoes from anemometric and temperature data. Two anemometers and thermocouples were placed at the surface and at the center of the fracture at two-meter depth during a diurnal cycle. Six thermocouples also measured the temperature at 1 meter-depth, on a profile set perpendicularly to the fracture. Finally, a thermal camera was used to make punctual measurements of the surface temperature of the fracture. At Miyakejima, two surveys were realized in winter 2010 and summer 2011. During the winter, mild air exit was detected from the fracture with a central vertical velocity of 20 to 50 cm/s. The temperature of the site was constant during the diurnal cycle (~ 22°C), leading to a maximum temperature contrast of 15°C between the fracture and the atmosphere just before sunrise. During summer, a different hydrodynamic behavior was observed: Air inflow was detected during the whole diurnal cycle with a mean velocity of 20 cm/s. The temperature of the fracture followed the temperature of the atmosphere at 2 meters-depth. In the case of Piton de la Fournaise volcano, the same convective behavior was observed at two different fractures during

  15. Periodontal disease with treatment reduces subsequent cancer risks.

    Science.gov (United States)

    Hwang, Ing-Ming; Sun, Li-Min; Lin, Cheng-Li; Lee, Chun-Feng; Kao, Chia-Hung

    2014-10-01

    The aim of our study was to evaluate the relationship between routine treatment of periodontal disease (PD) and the subsequent risks for cancers in Taiwan. Study participants were selected from the Taiwan National Health Insurance (NHI) system database. The PD with a routine treatment cohort contained 38 902 patients. For each treatment cohort participant, two age- and sex-matched comparison (control) cohort participants were randomly selected. Cox's proportional hazards regression analysis was used to estimate the effects of PD with treatment on the subsequent risk of cancer. The overall risk of developing cancer was significantly lower in the treatment cohort than in the patients without treatment (adjusted Hazard ratio = 0.72, 95% confidence interval = 0.68-0.76). The risks of developing most gastrointestinal tract, lung, gynecological and brain malignancies were significantly lower in the treatment cohort than in the comparison cohort. In contrast, the risks of prostate and thyroid cancers were significantly higher in the treatment cohort than in the comparison cohort. Our findings suggest that PD with treatment is associated with a significantly reduced overall risk of cancer and reduced risks of certain types of cancers. © The Author 2014. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Taking the pulse of Mars via dating of a plume-fed volcano.

    Science.gov (United States)

    Cohen, Benjamin E; Mark, Darren F; Cassata, William S; Lee, Martin R; Tomkinson, Tim; Smith, Caroline L

    2017-10-03

    Mars hosts the solar system's largest volcanoes. Although their size and impact crater density indicate continued activity over billions of years, their formation rates are poorly understood. Here we quantify the growth rate of a Martian volcano by 40 Ar/ 39 Ar and cosmogenic exposure dating of six nakhlites, meteorites that were ejected from Mars by a single impact event at 10.7 ± 0.8 Ma (2σ). We find that the nakhlites sample a layered volcanic sequence with at least four discrete eruptive events spanning 93 ± 12 Ma (1416 ± 7 Ma to 1322 ± 10 Ma (2σ)). A non-radiogenic trapped 40 Ar/ 36 Ar value of 1511 ± 74 (2σ) provides a precise and robust constraint for the mid-Amazonian Martian atmosphere. Our data show that the nakhlite-source volcano grew at a rate of ca. 0.4-0.7 m Ma -1 -three orders of magnitude slower than comparable volcanoes on Earth, and necessitating that Mars was far more volcanically active earlier in its history.Mars hosts the solar system's largest volcanoes, but their formation rates remain poorly constrained. Here, the authors have measured the crystallization and ejection ages of meteorites from a Martian volcano and find that its growth rate was much slower than analogous volcanoes on Earth.

  17. Alaska - Russian Far East connection in volcano research and monitoring

    Science.gov (United States)

    Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.

    2012-12-01

    The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program

  18. Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar

    2016-04-01

    Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been

  19. Chaparrastique (San Mighel) Volcano Eruptions since Dec. 29th, 2013, El Salvador

    Science.gov (United States)

    Martinez-Hackert, B.; Bajo, J. V.; Escobar, D.; Gutierrez, E.

    2015-12-01

    The December 29th, 2013 eruption of Chaparrastique (San Miguel) volcano in El Salvador came as a surprise and was the first of several small eruptions in the past two years. They came after many years of preceeding earthquake swarms and significant degassing. Being the second volcano to erupt in El Salvador in less than ten years, it caused grave concern for the population of the country. Although they were not large eruptions (VEI 2), the materials were widespread and caused deposits of volcanic tephra as far at the capital San Salvador and closed the airports in the vecinity for a couple of days. This is a summary of the research, mitigation and services that were done days after the first eruption on December 29, 2013 and the follwing months. In conjunction with the team of the Direccion General del Observatorio Ambiental from the Ministerio de Medio Ambiente y Recursos Naturales possible first response strategies were discussed and decided to obtain results that could be quickly put in place to mitigate and decide on actions such as evacuations or relocations of people living in volcano related high-risk hazard areas. Collection of samples, mapping and measurements of the volcanic tephra in the field together with Digital Globe and areal photography after the event, allowed identification of four different volcanic products that can be correlated to the opening of the vent and ending in the eruption of juvenile materials of basaltic to trachybasaltic composition, and the production of a lahar hazard map based on LaharZ.

  20. A porous flow model for the geometrical form of volcanoes - Critical comments

    Science.gov (United States)

    Wadge, G.; Francis, P.

    1982-01-01

    A critical evaluation is presented of the assumptions on which the mathematical model for the geometrical form of a volcano arising from the flow of magma in a porous medium of Lacey et al. (1981) is based. The lack of evidence for an equipotential surface or its equivalent in volcanoes prior to eruption is pointed out, and the preference of volcanic eruptions for low ground is attributed to the local stress field produced by topographic loading rather than a rising magma table. Other difficulties with the model involve the neglect of the surface flow of lava under gravity away from the vent, and the use of the Dupuit approximation for unconfined flow and the assumption of essentially horizontal magma flow. Comparisons of model predictions with the shapes of actual volcanoes reveal the model not to fit lava shield volcanoes, for which the cone represents the solidification of small lava flows, and to provide a poor fit to composite central volcanoes.

  1. The efficiency of asset management strategies to reduce urban flood risk.

    Science.gov (United States)

    ten Veldhuis, J A E; Clemens, F H L R

    2011-01-01

    In this study, three asset management strategies were compared with respect to their efficiency to reduce flood risk. Data from call centres at two municipalities were used to quantify urban flood risks associated with three causes of urban flooding: gully pot blockage, sewer pipe blockage and sewer overloading. The efficiency of three flood reduction strategies was assessed based on their effect on the causes contributing to flood risk. The sensitivity of the results to uncertainty in the data source, citizens' calls, was analysed through incorporation of uncertainty ranges taken from customer complaint literature. Based on the available data it could be shown that increasing gully pot blockage is the most efficient action to reduce flood risk, given data uncertainty. If differences between cause incidences are large, as in the presented case study, call data are sufficient to decide how flood risk can be most efficiently reduced. According to the results of this analysis, enlargement of sewer pipes is not an efficient strategy to reduce flood risk, because flood risk associated with sewer overloading is small compared to other failure mechanisms.

  2. Investigation of the Dashigil mud volcano (Azerbaijan) using beryllium-10

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J., E-mail: kjkim@kigam.re.kr [Korea Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Baskaran, M.; Jweda, J. [Department of Geology, Wayne State University, Detroit, MI 48202 (United States); Feyzullayev, A.A.; Aliyev, C. [Geology Institute of the Azerbaijan National Academy of Sciences (ANAS), Baku, AZ 1143 (Azerbaijan); Matsuzaki, H. [MALT, University of Tokyo, Tokyo (Japan); Jull, A.J.T. [NSF Arizona AMS Lab, University of Arizona, AZ 85721 (United States)

    2013-01-15

    We collected and analyzed five sediments from three mud volcano (MV) vents and six suspended and bottom sediment samples from the adjoining river near the Dashgil mud volcano in Azerbaijan for {sup 10}Be. These three MV are found among the 190 onshore and >150 offshore MV in this region which correspond to the western flank of the South Caspian depression. These MVs overlie the faulted and petroleum-bearing anticlines. The {sup 10}Be concentrations and {sup 10}Be/{sup 9}Be ratios are comparable to the values reported for mud volcanoes in Trinidad Island. It appears that the stable Be concentrations in Azerbaijan rivers are not perturbed by anthropogenic effects and are comparable to the much older sediments (mud volcano samples). The {sup 10}Be and {sup 9}Be concentrations in our river sediments are compared to the global data set and show that the {sup 10}Be values found for Kura River are among the lowest of any river for which data exist. We attribute this low {sup 10}Be concentration to the nature of surface minerals which are affected by the residual hydrocarbon compounds that occur commonly in the study area in particular and Azerbaijan at large. The concentrations of {sup 40}K and U-Th-series radionuclides ({sup 234}Th, {sup 210}Pb, {sup 226}Ra, and {sup 228}Ra) indicate overall homogeneity of the mud volcano samples from the three different sites. Based on the {sup 10}Be concentrations of the mud volcano samples, the age of the mud sediments could be at least as old as 4 myr.

  3. Evaluation of Earthquake-Induced Effects on Neighbouring Faults and Volcanoes: Application to the 2016 Pedernales Earthquake

    Science.gov (United States)

    Bejar, M.; Alvarez Gomez, J. A.; Staller, A.; Luna, M. P.; Perez Lopez, R.; Monserrat, O.; Chunga, K.; Herrera, G.; Jordá, L.; Lima, A.; Martínez-Díaz, J. J.

    2017-12-01

    It has long been recognized that earthquakes change the stress in the upper crust around the fault rupture and can influence the short-term behaviour of neighbouring faults and volcanoes. Rapid estimates of these stress changes can provide the authorities managing the post-disaster situation with a useful tool to identify and monitor potential threads and to update the estimates of seismic and volcanic hazard in a region. Space geodesy is now routinely used following an earthquake to image the displacement of the ground and estimate the rupture geometry and the distribution of slip. Using the obtained source model, it is possible to evaluate the remaining moment deficit and to infer the stress changes on nearby faults and volcanoes produced by the earthquake, which can be used to identify which faults and volcanoes are brought closer to failure or activation. Although these procedures are commonly used today, the transference of these results to the authorities managing the post-disaster situation is not straightforward and thus its usefulness is reduced in practice. Here we propose a methodology to evaluate the potential influence of an earthquake on nearby faults and volcanoes and create easy-to-understand maps for decision-making support after an earthquake. We apply this methodology to the Mw 7.8, 2016 Ecuador earthquake. Using Sentinel-1 SAR and continuous GPS data, we measure the coseismic ground deformation and estimate the distribution of slip. Then we use this model to evaluate the moment deficit on the subduction interface and changes of stress on the surrounding faults and volcanoes. The results are compared with the seismic and volcanic events that have occurred after the earthquake. We discuss potential and limits of the methodology and the lessons learnt from discussion with local authorities.

  4. Sensibility analysis of VORIS lava-flow simulations: application to Nyamulagira volcano, Democratic Republic of Congo

    Science.gov (United States)

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-03-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga area in the Democratic Republic of Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than two years, and produced lava flows sometimes reaching distances of over 20 km from the volcano, thereby affecting very large areas and having a serious impact on the region of Virunga. In order to identify a useful tool for lava flow hazard assessment at the Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling lava flow propagation. We tested different Digital Elevation Models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to analyze the sensibility of the input parameters of VORIS 2.0.1 in simulation of recent historical lava-flow for which the pre-eruption topography is known. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested. In practice, these results will be used by GVO to calibrate VORIS model for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  5. Long-term changes in explosive and effusive behaviour at andesitic arc volcanoes: Chronostratigraphy of the Centre Hills Volcano, Montserrat

    Science.gov (United States)

    Coussens, Maya; Cassidy, Michael; Watt, Sebastian F. L.; Jutzeler, Martin; Talling, Peter J.; Barfod, Dan; Gernon, Thomas M.; Taylor, Rex; Hatter, Stuart J.; Palmer, Martin R.; Montserrat Volcano Observatory

    2017-03-01

    Volcanism on Montserrat (Lesser Antilles arc) has migrated southwards since the formation of the Silver Hills 2.5 Ma, and has formed three successively active volcanic centres. The Centre Hills volcano was the focus of volcanism from 1-0.4 Ma, before activity commenced at the currently active Soufrière Hills volcano. The history of activity at these two volcanoes provides an opportunity to investigate the pattern of volcano behaviour on an andesitic arc island over the lifetime of individual volcanoes. Here, we describe the pyroclastic stratigraphy of subaerial exposures around central Montserrat; identifying 11 thick (> 1 m) pumiceous units derived from sustained explosive eruptions of Centre Hills from 0.8-0.4 Ma. Over 10 other, less well- exposed pumiceous units have also been identified. The pumice-rich units are interbedded with andesite lava breccias derived from effusive, dome-forming eruptions of Centre Hills. The stratigraphy indicates that large (up to magnitude 5) explosive eruptions occurred throughout the history of Centre Hills, alongside effusive activity. This behaviour at Centre Hills contrasts with Soufrière Hills, where deposits from sustained explosive eruptions are much less common and restricted to early stages of activity at the volcano, from 175-130 ka. Subsequent eruptions at Soufriere Hills have been dominated by andesitic effusive eruptions. The bulk composition, petrography and mineral chemistry of volcanic rocks from Centre Hills and Soufrière Hills are similar throughout the history of both volcanoes, except for occasional, transient departures to different magma compositions, which mark shifts in vent location or dominant eruption style. For example, the final recorded eruption of Centre Hills, before the initiation of activity at Soufrière Hills, was more silicic than any other identified eruption on Montserrat; and the basaltic South Soufrière Hills episode marked the transition to the current stage of predominantly effusive

  6. Cyclic Activity of Mud Volcanoes: Evidences from Trinidad (SE Caribbean)

    Science.gov (United States)

    Deville, E.

    2007-12-01

    Fluid and solid transfer in mud volcanoes show different phases of activity, including catastrophic events followed by periods of relative quiescence characterized by moderate activity. This can be notably shown by historical data onshore Trinidad. Several authors have evoked a possible link between the frequencies of eruption of some mud volcanoes and seismic activity, but in Trinidad there is no direct correlation between mud eruptions and seisms. It appears that each eruptive mud volcano has its own period of catastrophic activity, and this period is highly variable from one volcano to another. The frequency of activity of mud volcanoes seems essentially controlled by local pressure regime within the sedimentary pile. At the most, a seism can, in some cases, activate an eruption close to its term. The dynamics of expulsion of the mud volcanoes during the quiescence phases has been studied notably from temperature measurements within the mud conduits. The mud temperature is concurrently controlled by, either, the gas flux (endothermic gas depressurizing induces a cooling effect), or by the mud flux (mud is a vector for convective heat transfer). Complex temperature distribution was observed in large conduits and pools. Indeed, especially in the bigger pools, the temperature distribution characterizes convective cells with an upward displacement of mud above the deep outlet, and ring-shaped rolls associated with the burial of the mud on the flanks of the pools. In simple, tube-like shaped, narrow conduits, the temperature is more regular, but we observed different types of profiles, with either downward increasing or decreasing temperatures. If the upward flow of mud would be regular, we should expect increasing temperatures and progressively decreasing gradient with depth within the conduits. However, the variable measured profiles from one place to another, as well as time-variable measured temperatures within the conduits and especially, at the base of the

  7. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    Science.gov (United States)

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    Science.gov (United States)

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-02

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  9. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica

    Directory of Open Access Journals (Sweden)

    Luis Miguel Peci

    2014-01-01

    Full Text Available This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARMTM processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (DebianTM as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS described has been deployed on the active Deception Island (Antarctica volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  10. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  11. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  12. Volcanology and volcano sedimentology of Sahand region

    International Nuclear Information System (INIS)

    Moine Vaziri, H.; Amine Sobhani, E.

    1977-01-01

    There was no volcano in Precambrian and Mesozoic eras in Iran, but in most place of Iran during the next eras volcanic rocks with green series and Dacites were seen. By the recent survey in Sahand mountain in NW of Iran volcanography, determination of rocks and the age of layers were estimated. The deposits of Precambrian as sediment rocks are also seen in the same area. All of volcanic periods in this place were studied; their extrusive rocks, their petrography and the result of their analytical chemistry were discussed. Finally volcano sedimentology of Sahand mountain were described

  13. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  14. Evaluating shielding effectiveness for reducing space radiation cancer risks

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2006-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDFs are used in significance tests for evaluating the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDFs. Competing mortality risks and functional correlations in radiation quality factor uncertainties are included in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the upper value of 95% confidence interval (CI) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions ( 180d) or Mars missions, GCR risks may exceed radiation risk limits that are based on acceptable levels of risk. For example, the upper 95% CI exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection

  15. Volcano-ice interaction as a microbial habitat on Earth and Mars.

    Science.gov (United States)

    Cousins, Claire R; Crawford, Ian A

    2011-09-01

    Volcano-ice interaction has been a widespread geological process on Earth that continues to occur to the present day. The interaction between volcanic activity and ice can generate substantial quantities of liquid water, together with steep thermal and geochemical gradients typical of hydrothermal systems. Environments available for microbial colonization within glaciovolcanic systems are wide-ranging and include the basaltic lava edifice, subglacial caldera meltwater lakes, glacier caves, and subsurface hydrothermal systems. There is widespread evidence of putative volcano-ice interaction on Mars throughout its history and at a range of latitudes. Therefore, it is possible that life on Mars may have exploited these habitats, much in the same way as has been observed on Earth. The sedimentary and mineralogical deposits resulting from volcano-ice interaction have the potential to preserve evidence of any indigenous microbial populations. These include jökulhlaup (subglacial outflow) sedimentary deposits, hydrothermal mineral deposits, basaltic lava flows, and subglacial lacustrine deposits. Here, we briefly review the evidence for volcano-ice interactions on Mars and discuss the geomicrobiology of volcano-ice habitats on Earth. In addition, we explore the potential for the detection of these environments on Mars and any biosignatures these deposits may contain.

  16. Rifts of deeply eroded Hawaiian basaltic shields: A structural analog for large Martian volcanoes

    Science.gov (United States)

    Knight, Michael D.; Walker, G. P. L.; Mouginis-Mark, P. J.; Rowland, Scott K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars.

  17. Rifts of deeply eroded Hawaiian basaltic shields: a structural analog for large Martian volcanoes

    International Nuclear Information System (INIS)

    Knight, M.D.; Walker, G.P.L.; Mouginis-Mark, P.J.; Rowland, S.K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars

  18. Magma paths at Piton de la Fournaise Volcano

    OpenAIRE

    Michon , Laurent; Ferrazzini , Valérie; Di Muro , Andrea

    2016-01-01

    International audience; Several patterns of magma paths have been proposed since the 1980s for Piton de la Fournaise volcano. Given the significant differences, which are presented here, we propose a reappraisal of the magma intrusion paths using a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the scoria cones. At the edifice scale, the magma propagates along two N120 trending rift zones. They are wide, linear, spotted by small to large scoria cones and r...

  19. Overview of gas flux measurements from volcanoes of the global Network for Observation of Volcanic and Atmospheric Change (NOVAC)

    Science.gov (United States)

    Galle, Bo; Arellano, Santiago; Conde, Vladimir

    2015-04-01

    NOVAC, the Network for Observation of Volcanic and Atmospheric Change, was initiated in 2005 as a 5-years-long project financed by the European Union. Its main purpose is to create a global network for the study of volcanic atmospheric plumes and related geophysical phenomena by using state-of-the-art spectroscopic remote sensing technology. Up to 2014, 67 instruments have been installed at 25 volcanoes in 13 countries of Latin America, Italy, Democratic Republic of Congo, Reunion, Iceland, and Philippines, and efforts are being done to expand the network to other active volcanic zones. NOVAC has been a pioneer initiative in the community of volcanologists and embraces the objectives of the Word Organization of Volcano Observatories (WOVO) and the Global Earth Observation System of Systems (GEOSS). In this contribution, we present the results of the measurements of SO2 gas fluxes carried out within NOVAC, which for some volcanoes represent a record of more than 8 years of semi-continuous monitoring. The network comprises some of the most strongly degassing volcanoes in the world, covering a broad range of tectonic settings, levels of unrest, and potential risk. Examples of correlations with seismicity and other geophysical phenomena, environmental impact studies and comparisons with previous global estimates will be discussed as well as the significance of the database for further studies in volcanology and other geosciences.

  20. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chia-Chuan; Kar, Sandeep [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Jean, Jiin-Shuh, E-mail: jiinshuh@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Wang, Chung-Ho [Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan (China); Lee, Yao-Chang [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Sracek, Ondra [OPV s.r.o. (Groundwater Protection Ltd.), Bělohorská 31, 169 00 Praha 6 (Czech Republic); Department of Geology, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Li, Zhaohui [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Department of Geosciences, University of Wisconsin – Parkside, Kenosha, WI 53144 (United States); Bundschuh, Jochen [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Faculty of Engineering and Surveying and National Centre for Engineering in Agriculture, The University of Southern Queensland, Toowoomba (Australia); Yang, Huai-Jen [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Chen, Chien-Yen [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan (China)

    2013-11-15

    organic matter among the mud volcanoes being examined. Because arsenate concentration in the mud fluids was found to be independent from geochemical factors, it was considered that organic matter may induce arsenic mobilization through an adsorption/desorption mechanism with humic substances under reducing conditions. Organic matter therefore plays a significant role in the mobility of arsenic in mud volcanoes.

  1. Fuego Volcano eruption (Guatemala, 1974): evidence of a tertiary fragmentation?

    International Nuclear Information System (INIS)

    Brenes-Andre, Jose

    2014-01-01

    Values for mode and dispersion calculated from SFT were analyzed using the SFT (Sequential Fragmentation/Transport) model to Fuego Volcano eruption (Guatemala, 1974). Analysis results have showed that the ideas initially proposed for Irazu, can be applied to Fuego Volcano. Experimental evidence was found corroborating the existence of tertiary fragmentations. (author) [es

  2. Using Google Earth to Study the Basic Characteristics of Volcanoes

    Science.gov (United States)

    Schipper, Stacia; Mattox, Stephen

    2010-01-01

    Landforms, natural hazards, and the change in the Earth over time are common material in state and national standards. Volcanoes exemplify these standards and readily capture the interest and imagination of students. With a minimum of training, students can recognize erupted materials and types of volcanoes; in turn, students can relate these…

  3. Internet-accessible, near-real-time volcano monitoring data for geoscience education: the Volcanoes Exploration Project—Pu`u `O`o

    Science.gov (United States)

    Poland, M. P.; Teasdale, R.; Kraft, K.

    2010-12-01

    Internet-accessible real- and near-real-time Earth science datasets are an important resource for geoscience education, but relatively few comprehensive datasets are available, and background information to aid interpretation is often lacking. In response to this need, the U.S. Geological Survey’s (USGS) Hawaiian Volcano Observatory, in collaboration with the National Aeronautics and Space Administration and the University of Hawai‘i, Mānoa, established the Volcanoes Exploration Project: Pu‘u ‘O‘o (VEPP). The VEPP Web site provides access, in near-real time, to geodetic, seismic, and geologic data from the Pu‘u ‘O‘o eruptive vent on Kilauea Volcano, Hawai‘i. On the VEPP Web site, a time series query tool provides a means of interacting with continuous geophysical data. In addition, results from episodic kinematic GPS campaigns and lava flow field maps are posted as data are collected, and archived Webcam images from Pu‘u ‘O‘o crater are available as a tool for examining visual changes in volcanic activity over time. A variety of background information on volcano surveillance and the history of the 1983-present Pu‘u ‘O‘o-Kupaianaha eruption puts the available monitoring data in context. The primary goal of the VEPP Web site is to take advantage of high visibility monitoring data that are seldom suitably well-organized to constitute an established educational resource. In doing so, the VEPP project provides a geoscience education resource that demonstrates the dynamic nature of volcanoes and promotes excitement about the process of scientific discovery through hands-on learning. To support use of the VEPP Web site, a week-long workshop was held at Kilauea Volcano in July 2010, which included 25 participants from the United States and Canada. The participants represented a diverse cross-section of higher learning, from community colleges to research universities, and included faculty who teach both large introductory non-major classes

  4. Vulnerability of settlements around Mt. Cameroon volcano, Cameroon

    Science.gov (United States)

    Zogning, Appolinaire; Spinetti, Claudia; Ngouanet, Chretien; Tchoudam, David; Kouokam, Emmanuel; Thierry, Pierre; Bignami, Christian; Fabrizia Buongiorno, Maria; Ilaria Pannaccione Apa, Maria

    2010-05-01

    Located at the bottom of the Gulf of Guinea, Cameroon is exposed to a large variety of natural hazards, including volcanism. Most of the hazard are concentrated around the active volcano Mt. Cameroon which combines effusive and explosive types of activity. The threatened stakes are numerous and different exposed: people, settlements, industrial plantations, petrol refinery and many other factories and infrastructures. Until 2005, no risk management plans has been available. In 2006, the French Embassy in Cameroon, within the framework of a financial convention between Cameroon and France, put in place the GRINP (Management of Natural Risks and Civil Protection) project whose objective was to reinforce the capacity of Cameroon's civil protection department and thus, contribute to the improvement of the security of the population faced with catastrophes. The objective was to realize a Risk Prevention Plan at a local council scale, and taking into consideration the specific natural risks of each zone. The general objective of the RPP was to clearly draw land use maps for risks zones, showing the overlay of stakes with risk of different intensities. In 2008 European Commission funded the Mia-Vita project (Mitigating and Assessing Volcanic Impacts on Terrain and human Activities). The aim of the project is to improve the crisis management capabilities based on monitoring and early warning systems and secure communications; reduction of people's vulnerability and development of recovering capabilities after an event occurs for both local communities and ecological systems. Keyword: natural hazards, Mt. Cameroon, vulnerability, risk prevention plan

  5. Three-dimensional P-wave velocity structure derived from local earthquakes at the Katmai group of volcanoes, Alaska

    Science.gov (United States)

    Jolly, A.D.; Moran, S.C.; McNutt, S.R.; Stone, D.B.

    2007-01-01

    The three-dimensional P-wave velocity structure beneath the Katmai group of volcanoes is determined by inversion of more than 10,000 rays from over 1000 earthquakes recorded on a local 18 station short-period network between September 1996 and May 2001. The inversion is well constrained from sea level to about 6??km below sea level and encompasses all of the Katmai volcanoes; Martin, Mageik, Trident, Griggs, Novarupta, Snowy, and Katmai caldera. The inversion reduced the average RMS travel-time error from 0.22??s for locations from the standard one-dimensional model to 0.13??s for the best three-dimensional model. The final model, from the 6th inversion step, reveals a prominent low velocity zone (3.6-5.0??km/s) centered at Katmai Pass and extending from Mageik to Trident volcanoes. The anomaly has values about 20-25% slower than velocities outboard of the region (5.0-6.5??km/s). Moderately low velocities (4.5-6.0??km/s) are observed along the volcanic axis between Martin and Katmai Caldera. Griggs volcano, located about 10??km behind (northwest of) the volcanic axis, has unremarkable velocities (5.0-5.7??km/s) compared to non-volcanic regions. The highest velocities are observed between Snowy and Griggs volcanoes (5.5-6.5??km/s). Relocated hypocenters for the best 3-D model are shifted significantly relative to the standard model with clusters of seismicity at Martin volcano shifting systematically deeper by about 1??km to depths of 0 to 4??km below sea level. Hypocenters for the Katmai Caldera are more tightly clustered, relocating beneath the 1912 scarp walls. The relocated hypocenters allow us to compare spatial frequency-size distributions (b-values) using one-dimensional and three-dimensional models. We find that the distribution of b is significantly changed for Martin volcano, which was characterized by variable values (0.8 < b < 2.0) with standard locations and more uniform values (0.8 < b < 1.2) after relocation. Other seismic clusters at Mageik (1.2 < b

  6. Risk-reducing mastectomy for the prevention of primary breast cancer.

    Science.gov (United States)

    Carbine, Nora E; Lostumbo, Liz; Wallace, Judi; Ko, Henry

    2018-04-05

    Recent progress in understanding the genetic basis of breast cancer and widely publicized reports of celebrities undergoing risk-reducing mastectomy (RRM) have increased interest in RRM as a method of preventing breast cancer. This is an update of a Cochrane Review first published in 2004 and previously updated in 2006 and 2010. (i) To determine whether risk-reducing mastectomy reduces death rates from any cause in women who have never had breast cancer and in women who have a history of breast cancer in one breast, and (ii) to examine the effect of risk-reducing mastectomy on other endpoints, including breast cancer incidence, breast cancer mortality, disease-free survival, physical morbidity, and psychosocial outcomes. For this Review update, we searched Cochrane Breast Cancer's Specialized Register, MEDLINE, Embase and the WHO International Clinical Trials Registry Platform (ICTRP) on 9 July 2016. We included studies in English. Participants included women at risk for breast cancer in at least one breast. Interventions included all types of mastectomy performed for the purpose of preventing breast cancer. At least two review authors independently abstracted data from each report. We summarized data descriptively; quantitative meta-analysis was not feasible due to heterogeneity of study designs and insufficient reporting. We analyzed data separately for bilateral risk-reducing mastectomy (BRRM) and contralateral risk-reducing mastectomy (CRRM). Four review authors assessed the methodological quality to determine whether or not the methods used sufficiently minimized selection bias, performance bias, detection bias, and attrition bias. All 61 included studies were observational studies with some methodological limitations; randomized trials were absent. The studies presented data on 15,077 women with a wide range of risk factors for breast cancer, who underwent RRM.Twenty-one BRRM studies looking at the incidence of breast cancer or disease-specific mortality, or

  7. The Dilemmas of Risk-Sensitive Development on a Small Volcanic Island

    Directory of Open Access Journals (Sweden)

    Emily Wilkinson

    2016-06-01

    Full Text Available In the Small Islands Developing State (SIDS of St Vincent and the Grenadines in the Caribbean, the most destructive disasters in terms of human casualties have been the multiple eruptions of La Soufrière volcano situated in the north of St Vincent. Despite this major threat, people continue to live close to the volcano and national development plans do not include risk reduction measures for volcanic hazards. This paper examines the development options in volcanic SIDS and presents a number of conundrums for disaster risk management on the island of St Vincent. Improvements in monitoring of volcanic hazards and ongoing programmes to enhance communications systems and encourage community preparedness planning have increased awareness of the risks associated with volcanic hazards, yet this has not translated into more risk-informed development planning decisions. The current physical development plan in fact promotes investment in infrastructure in settlements located within the zone designated very high-hazard. However, this is not an anomaly or an irrational decision: severe space constraints in SIDS, as well as other historical social and economic factors, limit growth and options for low-risk development. Greater attention needs to be placed on developing measures to reduce risk, particularly from low-intensity hazards like ash, limiting where possible exposure to volcanic hazards and building the resilience of communities living in high-risk areas. This requires planning for both short- and longer-term impacts from renewed activity. Volcanic SIDS face multiple hazards because of their geography and topography, so development plans should identify these interconnected risks and options for their reduction, alongside measures aimed at improving personal preparedness plans so communities can learn to live with risk.

  8. A generic model for the shallow velocity structure of volcanoes

    Science.gov (United States)

    Lesage, Philippe; Heap, Michael J.; Kushnir, Alexandra

    2018-05-01

    The knowledge of the structure of volcanoes and of the physical properties of volcanic rocks is of paramount importance to the understanding of volcanic processes and the interpretation of monitoring observations. However, the determination of these structures by geophysical methods suffers limitations including a lack of resolution and poor precision. Laboratory experiments provide complementary information on the physical properties of volcanic materials and their behavior as a function of several parameters including pressure and temperature. Nevertheless combined studies and comparisons of field-based geophysical and laboratory-based physical approaches remain scant in the literature. Here, we present a meta-analysis which compares 44 seismic velocity models of the shallow structure of eleven volcanoes, laboratory velocity measurements on about one hundred rock samples from five volcanoes, and seismic well-logs from deep boreholes at two volcanoes. The comparison of these measurements confirms the strong variability of P- and S-wave velocities, which reflects the diversity of volcanic materials. The values obtained from laboratory experiments are systematically larger than those provided by seismic models. This discrepancy mainly results from scaling problems due to the difference between the sampled volumes. The averages of the seismic models are characterized by very low velocities at the surface and a strong velocity increase at shallow depth. By adjusting analytical functions to these averages, we define a generic model that can describe the variations in P- and S-wave velocities in the first 500 m of andesitic and basaltic volcanoes. This model can be used for volcanoes where no structural information is available. The model can also account for site time correction in hypocenter determination as well as for site and path effects that are commonly observed in volcanic structures.

  9. [Strategies for reducing risks in smoking: opportunity or threat].

    Science.gov (United States)

    Córdoba, Rodrigo; Nerín, Isabel

    2009-12-01

    The smoking control policies recommended by the World Health Organisation have achieved a slight decrease in smoking prevalence in the developed countries, although associated mortality is still very high. The use of tobacco products other than cigarettes and even medicinal nicotine (known as nicotine replacement therapy (NRT)) has been proposed as a risk reduction strategy. Among the tobacco products with less individual risk than cigarettes would be any type of tobacco without smoke (smokeless) with a low content in nitrosamines and modified cigarettes; both forms included under the PREP (Potentially Reduced Exposure Products) concept. The idea would be to promote these products among those who cannot quit smoking or wish to reduce their risk without giving up nicotine intake. The possible effects of risk reduction strategies, including PREP, on the decreased prevalence and morbidity and mortality are reviewed, and the possible implications that this measure could have in our country are analysed. Tobacco control measures in Spain are recent and still insufficient. Therefore, the current priority in Spain is the development of policies of control that have shown to more than effective. The marketing and advertising of new tobacco products, even with reduced potential risk, seems more a serious threat than an opportunity for the development of smoking control policies.

  10. Source Signature of Sr Isotopes in Fluids Emitting From Mud volcanoes in Taiwan

    Science.gov (United States)

    Chung, C.; You, C.; Chao, H.

    2003-12-01

    Located at the boundary between the Philippine Sea Plate and the Asia Continental Plate, abundance of mud volcanoes were erupted on land in Taiwan. According to their occurrences and associated tectonic settings, these mud volcanoes were classified into four groupies. The group (I) mud volcanoes are located in the western coastal plane, whereas group (II) and (III) are situated near the Kutinkung anticline axis and the Chishan fault respectively. The group (IV) mud volcanoes are discovered at the Coastal Range. Although there are numerous studies focused on morphology, possible fluid migration paths and sources are poorly understood. We have collected and analyzed major ions and Sr isotopic ratios in fluids separated from various mud volcanoes in Taiwan. Chemical contents of these fluids were measured by IC and the emitted gasses were analyzed by GC. The Sr concentrations in these fluids were determined using AA and the isotopic compositions were analyzed by TIMS. The dominated ions in fluids are Na and Cl which account for 98% of dissolved materials. All fluids show similar Na/Cl ratios(0.7-0.8), slightly higher than seawater but each group has unique Sr isotopic signature. Waters expelled from group I mud volcanoes featured with low salinity and high Sr isotopic ratios ranged from 0.71150 to 0.71175. Groups II and III were outcroped in the Kutinkung formation but show distinctive chemical compositions. Group II fluids have four times Cl concentrations(358-522mM) compared with those of group III(85-162mM). The latter fluids appear to be more radiogenic(0.71012- 0.71075) indicating possible influence due to water-rock interactions. Low 87Sr/86Sr(0.70692-0.70939) is typical characteristic of mud volcano fluids in group IV where large Mg and K depletion were discovered, suggesting effects due to sediment diagenetic processes. The chemical compositions of mud volcano associated gasses show similar distribution pattern. The major gas constituents in mud volcano zones

  11. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes.

    Science.gov (United States)

    Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto

    2012-06-01

    Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 μgC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems.

  12. Pyroclastic sulphur eruption at Poas Volcano, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Thorpe, R.S.; Brown, G.C.; Glasscock, J.

    1980-01-01

    The recent Voyager missions to Jupiter have highlighted the role of sulphur in volcanic processes on io. Although fumarolic sulphur and SO/sub 2/ gas are almost universal in terrestrial active volcanoes, and rare instances of sulphur lava flows have been reported, sulphur in a pyroclastic form has only been described from Poas Volcano, Costa Rica. Here we amplify the original descriptions by Bennett and Raccichini and describe a recent eruption of pyroclastic sulphur scoria and ejected blocks that are characterised by miniature sulphur stalactites and stalagmites.

  13. Reducing the Risk of Methadone Overdose

    Centers for Disease Control (CDC) Podcasts

    2012-07-03

    This podcast is based on the July 2012 CDC Vital Signs report. Approximately 14 people die every day of overdoses related to methadone. Listen to learn how to reduce your risk of an overdose.  Created: 7/3/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 7/3/2012.

  14. Communication in reducing facility siting risk

    International Nuclear Information System (INIS)

    Bisconti, A.S.

    1992-01-01

    Today, social considerations are as important as technical ones in siting new nuclear facilities. Siting any industrial facility has become extremely difficult in this era of not in my backyard (NIMBY). Even if NIMBY does not arise locally, well-organized national opposition groups can be counted on to step in to fan the flames, especially when the industrial facility has to do with anything nuclear. It is now generally recognized that the greatest risk of failure for new nuclear facilities is not technical but social. Applying lessons gained from past experience and social science research can help reduce that risk. From these lessons, six principles for public interaction and communication stand out: (1) create goodwill now; (2) involve the community early; (3) establish the need; (4) communicate controls, not risk; (5) avoid jargon; (6) understand your public

  15. Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study

    Science.gov (United States)

    Schipper, C. Ian; Moussallam, Yves; Curtis, Aaron; Peters, Nial; Barnie, Talfan; Bani, Philipson; Jost, H. J.; Hamilton, Doug; Aiuppa, Alessandro; Tamburello, Giancarlo; Giudice, Gaetano

    2017-08-01

    Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth's interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate; and δ18O in the H2O + CO2 system ranging from +12.2‰ to +20.7‰ (VSMOW), suggesting significant contributions from altered slab pore water and carbonate. The hydrothermal plume at Tacora has lower δ13CCO2 of -3.2‰ and δ18OH2O+CO2 of +7.0‰, reflecting various scrubbing, kinetic fractionation, and contamination processes. We show the isotopic characterization of volcanic gases in the field to be a practical complement to traditional sampling methods, with the potential to remove sampling bias that is a risk when only a few samples from accessible fumaroles are used to characterize a given volcano's volatile output. Our results indicate that there is a previously unrecognized, relatively heavy isotopic signature to bulk volcanic gas plumes in the Central Andes, which can be attributed to a strong influence from components of the subducting slab, but may also reflect some local crustal contamination. The techniques we describe open new avenues for quantifying the roles that subduction zones and arc volcanoes play in the global carbon cycle.

  16. The added value of time-variable microgravimetry to the understanding of how volcanoes work

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael; Greco, Filippo; Diament, Michel

    2017-01-01

    During the past few decades, time-variable volcano gravimetry has shown great potential for imaging subsurface processes at active volcanoes (including some processes that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide information regarding processes such as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, time-variable volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravimetry at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of time-variable gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of time-variable volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of time-variable volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.

  17. SAR interferometry applications on active volcanoes. State of the art and perspectives for volcano monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, G.; Coltelli, M. [Istituto Nazionale di Geofisica e Vulcanologia, Catania (Italy)

    2001-02-01

    In this paper the application of the Synthetic Aperture Radar Interferometry (INSAR) on volcanology is analysed. Since it is not a real novelty among the different applications of INSAR in Earth Observation activities, at the beginning of this paper it is analysed the state of the art of the researches in this field. During the discussion, the point of view of volcanologists is favoured because it is considered that the first applications were often badly aimed. Consequently, the initial INSAR performances in volcanology were overrated with respect to the real capabilities of this technique. This fact lead to discover some unexpected limitations in INSAR usage in volcano monitoring, but, at the same time, spurred on scientists to overcome these drawbacks. The results achieved recently allow to better apply SAR to volcanology; in the paper a possible operative work-plan aimed at introducing INSAR in the volcano monitoring system is presented.

  18. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  19. Electrical structure of Newberry Volcano, Oregon

    Science.gov (United States)

    Fitterman, D.V.; Stanley, W.D.; Bisdorf, R.J.

    1988-01-01

    From the interpretation of magnetotelluric, transient electromagnetic, and Schlumberger resistivity soundings, the electrical structure of Newberry Volcano in central Oregon is found to consist of four units. From the surface downward, the geoelectrical units are 1) very resistive, young, unaltered volcanic rock, (2) a conductive layer of older volcanic material composed of altered tuffs, 3) a thick resistive layer thought to be in part intrusive rocks, and 4) a lower-crustal conductor. This model is similar to the regional geoelectrical structure found throughout the Cascade Range. Inside the caldera, the conductive second layer corresponds to the steep temperature gradient and alteration minerals observed in the USGS Newberry 2 test-hole. Drill hole information on the south and north flanks of the volcano (test holes GEO N-1 and GEO N-3, respectively) indicates that outside the caldera the conductor is due to alteration minerals (primarily smectite) and not high-temperature pore fluids. On the flanks of Newberry the conductor is generally deeper than inside the caldera, and it deepens with distance from the summit. A notable exception to this pattern is seen just west of the caldera rim, where the conductive zone is shallower than at other flank locations. The volcano sits atop a rise in the resistive layer, interpreted to be due to intrusive rocks. -from Authors

  20. Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.

    2007-01-01

    INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

  1. Deep structure and origin of active volcanoes in China

    Directory of Open Access Journals (Sweden)

    Dapeng Zhao

    2010-10-01

    Full Text Available We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi are caused by hot upwelling in the big mantle wedge (BMW above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate. The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab–plume interactions.

  2. Puffers and Chuggers: Statistical Curiosities in Volcano World

    Science.gov (United States)

    Lees, J. M.

    2002-12-01

    Several on-going, low level volcanic explosions exhibit background phenomena commonly known as puffing, or in some cases chugging. Recently these events have been scrutinized because of the initiation of infrasonic monitoring, whereas earlier the events may have gone undetected. The activity associated with a puffer at a volcanic vent is generally small in magnitude and is often not observed audibly. The low frequency signals are readily observed on sensitive acoustic instrumentation and they provide a new dimension for our understanding of volcanic processes at volcanoes like Stromboli and Etna that have constant puffing signals. At other volcanoes, like Karymsky volcano in Kamchatka and Sangay Volcano in Ecuador, chugging signals associated with Strombolian style eruptions also provides new insights into the physics of the conduit systems. Here we present a statistical method of event detection, and event cluster association. When multiple vents work in unison it may be difficult to separate out chugging and puffing signals between spatially separated vents. The cluster analysis automatically differentiates between the vents based on waveform characteristics in the acoustic and seismic wavefields. Data examples from May, 2001, at Stromboli and Etna, show extensive periods of puffing (1-5 second frequency) superimposed on a background of vigorous, small-scale explosive activity. At Karymsky and Sangay non-linear, dynamic models explain the fluid flow through vents which gives rise to chugging. Furthermore, the frequency of chugging events appears to be associated with the intensity of lava flows and eruption rate.

  3. A surety engineering framework to reduce cognitive systems risks.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); Peercy, David Eugene; Caldera, Eva O. (University of New Mexico, Albuquerque, NM); Shaneyfelt, Wendy L.

    2008-12-01

    Cognitive science research investigates the advancement of human cognition and neuroscience capabilities. Addressing risks associated with these advancements can counter potential program failures, legal and ethical issues, constraints to scientific research, and product vulnerabilities. Survey results, focus group discussions, cognitive science experts, and surety researchers concur technical risks exist that could impact cognitive science research in areas such as medicine, privacy, human enhancement, law and policy, military applications, and national security (SAND2006-6895). This SAND report documents a surety engineering framework and a process for identifying cognitive system technical, ethical, legal and societal risks and applying appropriate surety methods to reduce such risks. The framework consists of several models: Specification, Design, Evaluation, Risk, and Maturity. Two detailed case studies are included to illustrate the use of the process and framework. Several Appendices provide detailed information on existing cognitive system architectures; ethical, legal, and societal risk research; surety methods and technologies; and educing information research with a case study vignette. The process and framework provide a model for how cognitive systems research and full-scale product development can apply surety engineering to reduce perceived and actual risks.

  4. Conditions of deep magma chamber beneath Fuji volcano estimated from high- P experiments

    Science.gov (United States)

    Asano, K.; Takahashi, E.; Hamada, M.; Ushioda, M.; Suzuki, T.

    2012-12-01

    Fuji volcano, the largest in volume and eruption rate in Japan, is located at the center of Honshu, where North America, Eurasia and Philippine Sea plates meets. Because of the significance of Fuji volcano both in tectonic settings and potential volcanic hazard (particularly after the M9 earthquake in 2011), precise knowledge on its magma feeding system is essentially important. Composition of magma erupted from Fuji volcano in the last 100ky is predominantly basalt (SiO2=50-52wt%, FeO/MgO=1.5-3.0). Total lack of silica-rich magma (basaltic andesite and andesite) which are always present in other nearby volcanoes (e.g., Hakone, Izu-Oshima, see Fig.1) is an important petrologic feature of Fuji volcano. Purpose of this study is to constrain the depth of magma chamber of Fuji volcano and explain its silica-nonenrichment trend. High pressure melting experiments were carried out using two IHPVs at the Magma Factory, Tokyo Institute of Technology (SMC-5000 and SMC-8600, Tomiya et al., 2010). Basalt scoria Tr-1 which represents the final ejecta of Hoei eruption in AD1707, was adopted as a starting material. At 4kbar, temperature conditions were 1050, 1100 and 1150C, and H2O contents were 1.3, 2.7 and 4.7 wt.%, respectively. At 7kbar, temperature conditions were 1075, 1100 and 1125C, and H2O contents were 1.0, 1.1, 3.6 and 6.3wt.%, respectively. The fO2 was controlled at NNO buffer. At 4kbar, crystallization sequence at 3 wt% H2O is magnetite, plagioclase, clinopyroxene and finally orthopyroxene. At 7 kbar, and ~3 wt% H2O, the three minerals (opx, cpx, pl) appears simultaneously near the liquidus. Compositional trend of melt at 4 kbar and 7 kbar are shown with arrows in Fig.1. Because of the dominant crystallization of silica-rich opx at 7 kbar, composition of melt stays in the range SiO2=50-52wt% as predicted by Fujii (2007). Absence of silica-rich rocks in Fuji volcano may be explained by the tectonic setting of the volcano. Because Fuji volcano locates on the plate

  5. Volcanic hazard map for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua

    Science.gov (United States)

    Asahina, T.; Navarro, M.; Strauch, W.

    2007-05-01

    A volcano hazard study was conducted for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua, based on geological and volcanological field investigations, air photo analyses, and numerical eruption simulation. These volcanoes are among the most active volcanoes of the country. This study was realized 2004-2006 through technical cooperation of Japan International Cooperation Agency (JICA) with INETER, upon the request of the Government of Nicaragua. The resulting volcanic hazard map on 1:50,000 scale displays the hazards of lava flow, pyroclastic flows, lahars, tephra fall, volcanic bombs for an area of 1,300 square kilometers. The map and corresponding GIS coverage was handed out to Central, Departmental and Municipal authorities for their use and is included in a National GIS on Georisks developed and maintained by INETER.

  6. Deep Drilling into a Mantle Plume Volcano: The Hawaii Scientific Drilling Project

    Directory of Open Access Journals (Sweden)

    Donald M. Thomas

    2009-03-01

    Full Text Available Oceanic volcanoes formed by mantle plumes, such as those of Hawaii and Iceland, strongly influence our views about the deep Earth (Morgan, 1971; Sleep, 2006. These volcanoes are the principal geochemical probe into the deep mantle, a testing ground for understanding mantle convection, plate tectonics and volcanism, and an archive of information on Earth’s magnetic field and lithospheredynamics. Study of the petrology, geochemistry, and structure of oceanic volcanoes has contributed immensely to our present understanding of deep Earth processes, but virtually all of this study has been concentrated on rocks available at the surface. In favorable circumstances, surface exposures penetrate to a depth of a few hundred meters, which is a small fraction of the 10- to 15-kilometer height of Hawaiian volcanoes above the depressed seafloor (Moore, 1987; Watts, 2001.

  7. Volcano-hydrothermal energy research at white Island, New Zealand

    International Nuclear Information System (INIS)

    Allis, R.G.

    1994-01-01

    This paper presents the White Island (New Zealand) volcano-hydrothermal research project by the N.Z. DSIR and the Geological Survey of Japan, which is investigating the coupling between magmatic and geothermal systems. The first phase of this investigation is a geophysical survey of the crater floor of the andesite volcano, White Island during 1991/1992, to be followed by drilling from the crater floor into the hydrothermal system. (TEC). 4 figs., 8 refs

  8. Geochemical signatures of tephras from Quaternary Antarctic Peninsula volcanoes

    OpenAIRE

    Kraus,Stefan; Kurbatov,Andrei; Yates,Martin

    2013-01-01

    In the northern Antarctic Peninsula area, at least 12 Late Plelstocene-Holocene volcanic centers could be potential sources of tephra layers in the region. We present unique geochemical fingerprints for ten of these volcanoes using major, trace, rare earth element, and isotope data from 95 samples of tephra and other eruption products. The volcanoes have predominantly basaltic and basaltic andesitic compositions. The Nb/Y ratio proves useful to distinguish between volcanic centers located on ...

  9. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    Science.gov (United States)

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    , 1999, 2000, 2001; Hildreth and Fierstein, 2000), only half of which had been named previously—the four stratovolcanoes Mounts Katmai, Mageik, Martin, and Griggs; the cone cluster called Trident Volcano; Snowy Mountain; and the three lava domes Novarupta, Mount Cerberus, and Falling Mountain. The most recent eruptions were from Trident Volcano (1953–74), but there have been at least eight other, probably larger, explosive events from the volcanoes of this area in the past 10,000 years. This report summarizes what has been learned about the volcanic histories and styles of eruption of all these volcanoes. Many large earthquakes occurred before and during the 1912 eruption, and the cluster of Katmai volcanoes remains seismically active. Because we expect an increase in seismicity before eruptions, seismic monitoring efforts to detect volcanic unrest and procedures for eruption notification and dissemination of information are included in this report. Most at risk from future eruptions of the Katmai volcanic cluster are (1) air-traffic corridors of the North Pacific, including those approaching Anchorage, one of the Pacific’s busiest international airports, (2) several regional airports and military air bases, (3) fisheries and navigation on the Naknek Lake system and Shelikof Strait, (4) pristine wildlife habitat, particularly that of the Alaskan brown bear, and (5) tourist facilities in and near Katmai National Park.

  10. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes.

    Science.gov (United States)

    Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul

    2008-01-24

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes.

  11. Data assimilation strategies for volcano geodesy

    Science.gov (United States)

    Zhan, Yan; Gregg, Patricia M.

    2017-09-01

    Ground deformation observed using near-real time geodetic methods, such as InSAR and GPS, can provide critical information about the evolution of a magma chamber prior to volcanic eruption. Rapid advancement in numerical modeling capabilities has resulted in a number of finite element models targeted at better understanding the connection between surface uplift associated with magma chamber pressurization and the potential for volcanic eruption. Robust model-data fusion techniques are necessary to take full advantage of the numerical models and the volcano monitoring observations currently available. In this study, we develop a 3D data assimilation framework using the Ensemble Kalman Filter (EnKF) approach in order to combine geodetic observations of surface deformation with geodynamic models to investigate volcanic unrest. The EnKF sequential assimilation method utilizes disparate data sets as they become available to update geodynamic models of magma reservoir evolution. While the EnKF has been widely applied in hydrologic and climate modeling, the adaptation for volcano monitoring is in its initial stages. As such, our investigation focuses on conducting a series of sensitivity tests to optimize the EnKF for volcano applications and on developing specific strategies for assimilation of geodetic data. Our numerical experiments illustrate that the EnKF is able to adapt well to the spatial limitations posed by GPS data and the temporal limitations of InSAR, and that specific strategies can be adopted to enhance EnKF performance to improve model forecasts. Specifically, our numerical experiments indicate that: (1) incorporating additional iterations of the EnKF analysis step is more efficient than increasing the number of ensemble members; (2) the accuracy of the EnKF results are not affected by initial parameter assumptions; (3) GPS observations near the center of uplift improve the quality of model forecasts; (4) occasionally shifting continuous GPS stations to

  12. A geochemical study on mud volcanoes in the Junggar Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Ryoichi, E-mail: ryo-nakada@hiroshima-u.ac.jp [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tsunogai, Urumu [Division of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810 (Japan); Zheng Guodong [Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, 382 West Donggang Road, Lanzhou 730000 (China); Shimizu, Hiroshi [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hattori, Keiko H. [Department of Earth Science, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)

    2011-07-15

    Highlights: > Gases released from Xinjiang mud volcanoes are dominated by thermogenic origin. > Secondary microbial activities occurring closer to the surface dramatically changed the {delta}{sup 13}C{sub CO2}. > The water-rock interaction occurred at deeper level than gas and petroleum reservoir. - Abstract: A comprehensive study was performed to characterize, for the first time, the mud, water, and gases released from onshore mud volcanoes located in the southern margin of the Junggar Basin, northwestern China. Chemical compositions of mud, along with the geology of the basin, suggest that a source of the mud is Mesozoic or Cenozoic shale. Oxygen and H isotope compositions of the released water suggest a local meteoric origin. Combined with the positive Eu anomalies of the water, a large {sup 18}O shift of the water suggests extensive interaction with rocks. Gases discharged from the mud volcanoes are predominantly thermogenic hydrocarbons, and the high {delta}{sup 13}C values (>+20 per mille VPDB) for CO{sub 2} gases and dissolved carbonate in muddy water suggest secondary methanogenesis with CO{sub 2} reduction after oil biodegradation. The enrichments of Eu and {sup 18}O in water and the low thermal gradient of the area suggest that the water-rock interactions possibly occur deeper than 3670 {+-} 200 m. On the other hand, considering the relationship to the petroleum reservoir around the mud volcanoes, the depth of the gases can be derived from about 3600 m, a depth that is greater than that generally estimated for reservoirs whose gas is characterized by {sup 13}C-enriched CO{sub 2}. Oil biodegradation with CO{sub 2} reduction likely occurs at a shallower depth along the seepage system of the mud volcano. The results contribute to the worldwide data set of gas genesis in mud volcanoes. Moreover, they further support the concept that most terrestrial mud volcanoes release thermogenic gas produced in very deep sediments and may be early indicators of oil

  13. Reducing the Risks for Contrast-Induced Nephropathy

    International Nuclear Information System (INIS)

    Stacul, Fulvio

    2005-01-01

    Contrast-induced nephropathy (CIN) is one of the most serious adverse events associated with the use of contrast media (CM). Patients who develop this complication can have increased morbidity, higher rates of mortality, lengthy hospital stays, and poor long-term outcomes. Although CIN cannot be eliminated, the chances of developing this condition can be reduced by using appropriate prevention strategies. An important first step to reduce the chance of CIN is to identify risk factors associated with this condition. Patients with a previously elevated serum creatinine level, especially when secondary to diabetic nephropathy, are at great risk for developing CIN. Other patient-related risk factors include concurrent use of nephrotoxic medications, dehydration, congestive heart failure, age greater than 70 years, and probably the presence of diabetes mellitus even if serum creatinine is normal. Adequate hydration is widely accepted as an important prophylactic measure for preventing CIN, but the optimal hydration regimen is still debatable. The risk of CIN increases with greater doses of CM, as well as with the type of CM used. A high-osmolar CM poses a greater risk of CIN than does a low-osmolar CM and, as recent but limited data suggest, the use of an iso-osmolar CM is less nephrotoxic than a low-osmolar CM in patients with renal impairment following intra-arterial procedures, although this finding needs to be verified in future clinical studies. Pharmacologic agents such as calcium channel blockers, dopamine, atrial natriuretic peptide, fenoldopam, prostaglandin E1, and endothelin receptor antagonist have not been proven effective against CIN development. Controversies still exist on the possible effectiveness of theophylline and N-acetylcysteine. Simple strategies for the prevention of CIN in at-risk patients are reviewed and unproven interventions are discussed

  14. A Volcano Exploration Project Pu`u `O`o (VEPP) Exercise: Is Kilauea in Volcanic Unrest? (Invited)

    Science.gov (United States)

    Schwartz, S. Y.

    2010-12-01

    Volcanic activity captures the interest and imagination of students at all stages in their education. Analysis of real data collected on active volcanoes can further serve to engage students in higher-level inquiry into the complicated physical processes associated with volcanic eruptions. This exercise takes advantage of both student fascination with volcanoes and the recognized benefits of incorporating real, internet-accessible data to achieve its goals of enabling students to: 1) navigate a scientific website; 2) describe the physical events that produce volcano monitoring data; 3) identify patterns in geophysical time-series and distinguish anomalies preceding and synchronous with eruptive events; 4) compare and contrast geophysical time series and 5) integrate diverse data sets to assess the eruptive state of Kilauea volcano. All data come from the VEPP website (vepp.wr.usgs.gov) which provides background information on the historic activity and volcano monitoring methods as well as near-real time volcano monitoring data from the Pu`u `O`o eruptive vent on Kilauea Volcano. This exercise, designed for geology majors, has students initially work individually to acquire basic skills with volcano monitoring data interpretation and then together in a jigsaw activity to unravel the events leading up to and culminating in the July 2007 volcanic episode. Based on patterns established prior to the July 2007 event, students examine real-time volcano monitoring data to evaluate the present activity level of Kilauea volcano. This exercise will be used for the first time in an upper division Geologic Hazards class in fall 2010 and lessons learned including an exercise assessment will be presented.

  15. An interdisciplinary approach to volcanic risk reduction under conditions of uncertainty: a case study of Tristan da Cunha

    Science.gov (United States)

    Hicks, A.; Barclay, J.; Simmons, P.; Loughlin, S.

    2014-07-01

    The uncertainty brought about by intermittent volcanic activity is fairly common at volcanoes worldwide. While better knowledge of any one volcano's behavioural characteristics has the potential to reduce this uncertainty, the subsequent reduction of risk from volcanic threats is only realised if that knowledge is pertinent to stakeholders and effectively communicated to inform good decision making. Success requires integration of methods, skills and expertise across disciplinary boundaries. This research project develops and trials a novel interdisciplinary approach to volcanic risk reduction on the remote volcanic island of Tristan da Cunha (South Atlantic). For the first time, volcanological techniques, probabilistic decision support and social scientific methods were integrated in a single study. New data were produced that (1) established no spatio-temporal pattern to recent volcanic activity; (2) quantified the high degree of scientific uncertainty around future eruptive scenarios; (3) analysed the physical vulnerability of the community as a consequence of their geographical isolation and exposure to volcanic hazards; (4) evaluated social and cultural influences on vulnerability and resilience; and (5) evaluated the effectiveness of a scenario planning approach, both as a method for integrating the different strands of the research and as a way of enabling on-island decision makers to take ownership of risk identification and management, and capacity building within their community. The paper provides empirical evidence of the value of an innovative interdisciplinary framework for reducing volcanic risk. It also provides evidence for the strength that comes from integrating social and physical sciences with the development of effective, tailored engagement and communication strategies in volcanic risk reduction.

  16. Reducing the harms associated with risk assessments

    International Nuclear Information System (INIS)

    Montague, Peter

    2004-01-01

    Risk assessments are the intellectual products of dedicated public health and environmental professionals. Like many other products, risk assessments carry with them the potential for both good and harm. This paper briefly examines some of the harms to which risk assessments have contributed, and then suggests that the legal 'duty to warn' doctrine offers a logical and practical way to reduce some of these harms. The paper suggests concepts that could be incorporated into warnings accompanying every formal risk assessment as routine 'boiler plate' addenda, just as other potentially harmful products, such as lawn mowers and cook stoves, are accompanied by warnings. Finally, the paper briefly examines the 'Code of Ethics and Standards of Practice for Environmental Professionals' (promulgated by the National Association of Environmental Professionals) and shows that the suggested warnings are consistent with recommended practices for environmental professionals

  17. Large teleseismic P-wave residuals observed at the Alban Hills volcano, Central Italy

    Directory of Open Access Journals (Sweden)

    H. Mahadeva Iyer

    1994-06-01

    Full Text Available We collected teleseismic waveforms from a digital microseismic network deployed by the Istituto Nazionale di Geofisica (ING in collaboration with the U.S. Geological Survey (USGS, on the Alban Hills Quaternary volcano during the 1989-1990 seismic swann. About 50 events were recorded by the network, 30 of them by at least 4 stations. We analysed the data in order to image crustal heterogeneities beneath the volcano. The results show large delay time residuals up to - 1 second for stations located on the volcano with respect to station CP9 of the National Seismic Network located about 20 km to the east, on the Apennines. This suggests that the whole area overlies a broad low-velocity region. Although the ray coverage is not very dense, we model the gross seismic structure beneath the volcano by inverting the teleseismic relative residuals with the ACH technique. The main features detected by tbc inversion are a low-velocity zone beneath the southwestern fiank of tbc volcano, and a high-velocity region beneath the center. The depth extension of these anomalous zones ranges between 5 and 16 km. The correspondence between the low-velocity region and the most recent activity of the volcano (- 0.027 Ma leads us to infer the presence of a still hot magmatic body in the crust beneath the southwestern side of the volcano, whereas the central part overlies the older and colder high-velocity volcanic roots related to the previous central activity (0.7 to 0.3 Ma.

  18. Numerical tsunami hazard assessment of the submarine volcano Kick 'em Jenny in high resolution are

    Science.gov (United States)

    Dondin, Frédéric; Dorville, Jean-Francois Marc; Robertson, Richard E. A.

    2016-04-01

    Landslide-generated tsunami are infrequent phenomena that can be potentially highly hazardous for population located in the near-field domain of the source. The Lesser Antilles volcanic arc is a curved 800 km chain of volcanic islands. At least 53 flank collapse episodes have been recognized along the arc. Several of these collapses have been associated with underwater voluminous deposits (volume > 1 km3). Due to their momentum these events were likely capable of generating regional tsunami. However no clear field evidence of tsunami associated with these voluminous events have been reported but the occurrence of such an episode nowadays would certainly have catastrophic consequences. Kick 'em Jenny (KeJ) is the only active submarine volcano of the Lesser Antilles Arc (LAA), with a current edifice volume estimated to 1.5 km3. It is the southernmost edifice of the LAA with recognized associated volcanic landslide deposits. The volcano appears to have undergone three episodes of flank failure. Numerical simulations of one of these episodes associated with a collapse volume of ca. 4.4 km3 and considering a single pulse collapse revealed that this episode would have produced a regional tsunami with amplitude of 30 m. In the present study we applied a detailed hazard assessment on KeJ submarine volcano (KeJ) form its collapse to its waves impact on high resolution coastal area of selected island of the LAA in order to highlight needs to improve alert system and risk mitigation. We present the assessment process of tsunami hazard related to shoreline surface elevation (i.e. run-up) and flood dynamic (i.e. duration, height, speed...) at the coast of LAA island in the case of a potential flank collapse scenario at KeJ. After quantification of potential initial volumes of collapse material using relative slope instability analysis (RSIA, VolcanoFit 2.0 & SSAP 4.5) based on seven geomechanical models, the tsunami source have been simulate by St-Venant equations-based code

  19. Earthquakes and Volcanic Processes at San Miguel Volcano, El Salvador, Determined from a Small, Temporary Seismic Network

    Science.gov (United States)

    Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.

    2008-12-01

    The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.

  20. Mitigating flood exposure: Reducing disaster risk and trauma signature.

    Science.gov (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city's worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods . We applied the "trauma signature analysis" (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results . Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion . In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation.

  1. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    Science.gov (United States)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  2. Forecasting deflation, intrusion and eruption at inflating volcanoes

    Science.gov (United States)

    Blake, Stephen; Cortés, Joaquín A.

    2018-01-01

    A principal goal of volcanology is to successfully forecast the start of volcanic eruptions. This paper introduces a general forecasting method, which relies on a stream of monitoring data and a statistical description of a given threshold criterion for an eruption to start. Specifically we investigate the timing of intrusive and eruptive events at inflating volcanoes. The gradual inflation of the ground surface is a well-known phenomenon at many volcanoes and is attributable to pressurised magma accumulating within a shallow chamber. Inflation usually culminates in a rapid deflation event caused by magma escaping from the chamber to produce a shallow intrusion and, in some cases, a volcanic eruption. We show that the ground elevation during 15 inflation periods at Krafla volcano, Iceland, increased with time towards a limiting value by following a decaying exponential with characteristic timescale τ. The available data for Krafla, Kilauea and Mauna Loa volcanoes show that the duration of inflation (t*) is approximately equal to τ. The distribution of t* / τ values follows a log-logistic distribution in which the central 60% of the data lie between 0.99 deflation event starting during a specified time interval to be estimated. The time window in which there is a specified probability of deflation starting can also be forecast, and forecasts can be updated after each new deformation measurement. The method provides stronger forecasts than one based on the distribution of repose times alone and is transferable to other types of monitoring data and/or other patterns of pre-eruptive unrest.

  3. What Happened to Our Volcano?

    Science.gov (United States)

    Mangiante, Elaine Silva

    2006-01-01

    In this article, the author presents an investigative approach to "understanding Earth changes." The author states that students were familiar with earthquakes and volcanoes in other regions of the world but never considered how the land beneath their feet had experienced changes over time. Here, their geology unit helped them understand…

  4. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  5. EUROPEAN VOLCANOES' NIGHT: building a link between general public and volcanologists in a relaxed and welcoming setting

    Science.gov (United States)

    Calvo, David; González-Cárdenas, María E.; Baldrich, Laura; Solana, Carmen; Nave, Rosella; Calvari, Sonia; Harangi, Szabolcs; Chouraqui, Floriane; Dionis, Samara; Silva, Sonia V.; Forjaz, Victor H.; D'Auria, Luca; Pérez, Nemesio M.

    2017-04-01

    European Volcanoes' Night (www.volcanoesnight.com) is a "volcanic eruption" of art, culture, music, gastronomy, school activities, geotourism, exhibitions and scientific debates. The event aims to bring together members of the general public with scientists who work on the study of volcanoes, in order to meet and ask questions in a relaxed and welcoming setting. It is open to both locals and tourists who appreciate the beauty and power of this natural phenomena. This celebration gives attendees, and in particular young people, the opportunity to meet researchers in a relaxed and festive setting, which will feature many activities and which will be used to highlight the attractiveness of a career research on one of the most attractive natural phenomena; volcanoes. The 2016 European Volcanoes' Night was held at 16 different municipalities of Spain, France, Hungary, Italy, Portugal, United Kingdom and Cape Verde on September 30, 2016, coinciding with the celebration of "European Researchers' Night" held annually throughout Europe and neighbouring countries the last Friday of September. The spirit of the European VolcanoeśNight fits perfectly in the aim of the ERN, trying to close the gap between the scientific community and the rest of the society. In this case, volcanoes are the driving force of this event, celebrating the singularity of living on volcanoes, and how these affect our daily lives, our culture and our heritage. European VolcanoeśNight also celebrates volcano science, with avantgarde talks and presentations on different volcanic topics and becomes a meeting point for children discovering volcanoes as a pastime or a leisure topic, making this event a must for tourists and locals wherever has been held. At the end of 2016 European VolcanoeśNight, almost 150 activities were performed for thousands of spectators, a big success that confirms something as crucial as science as a communication issue, and as a tool to strengthen the ties between researchers

  6. Geologic field-trip guide to Mount Shasta Volcano, northern California

    Science.gov (United States)

    Christiansen, Robert L.; Calvert, Andrew T.; Grove, Timothy L.

    2017-08-18

    The southern part of the Cascades Arc formed in two distinct, extended periods of activity: “High Cascades” volcanoes erupted during about the past 6 million years and were built on a wider platform of Tertiary volcanoes and shallow plutons as old as about 30 Ma, generally called the “Western Cascades.” For the most part, the Shasta segment (for example, Hildreth, 2007; segment 4 of Guffanti and Weaver, 1988) of the arc forms a distinct, fairly narrow axis of short-lived small- to moderate-sized High Cascades volcanoes that erupted lavas, mainly of basaltic-andesite or low-silica-andesite compositions. Western Cascades rocks crop out only sparsely in the Shasta segment; almost all of the following descriptions are of High Cascades features except for a few unusual localities where older, Western Cascades rocks are exposed to view along the route of the field trip.The High Cascades arc axis in this segment of the arc is mainly a relatively narrow band of either monogenetic or short-lived shield volcanoes. The belt generally averages about 15 km wide and traverses the length of the Shasta segment, roughly 100 km between about the Klamath River drainage on the north, near the Oregon-California border, and the McCloud River drainage on the south (fig. 1). Superposed across this axis are two major long-lived stratovolcanoes and the large rear-arc Medicine Lake volcano. One of the stratovolcanoes, the Rainbow Mountain volcano of about 1.5–0.8 Ma, straddles the arc near the midpoint of the Shasta segment. The other, Mount Shasta itself, which ranges from about 700 ka to 0 ka, lies distinctly west of the High Cascades axis. It is notable that Mount Shasta and Medicine Lake volcanoes, although volcanologically and petrologically quite different, span about the same range of ages and bracket the High Cascades axis on the west and east, respectively.The field trip begins near the southern end of the Shasta segment, where the Lassen Volcanic Center field trip leaves

  7. Geophysical Observations Supporting Research of Magmatic Processes at Icelandic Volcanoes

    Science.gov (United States)

    Vogfjörd, Kristín. S.; Hjaltadóttir, Sigurlaug; Roberts, Matthew J.

    2010-05-01

    Magmatic processes at volcanoes on the boundary between the European and North American plates in Iceland are observed with in-situ multidisciplinary geophysical networks owned by different national, European or American universities and research institutions, but through collaboration mostly operated by the Icelandic Meteorological Office. The terrestrial observations are augmented by space-based interferometric synthetic aperture radar (InSAR) images of the volcanoes and their surrounding surface. Together this infrastructure can monitor magma movements in several volcanoes from the base of the crust up to the surface. The national seismic network is sensitive enough to detect small scale seismicity deep in the crust under some of the voclanoes. High resolution mapping of this seismicity and its temporal progression has been used to delineate the track of the magma as it migrates upwards in the crust, either to form an intrusion at shallow levels or to reach the surface in an eruption. Broadband recording has also enabled capturing low frequency signals emanating from magmatic movements. In two volcanoes, Eyjafjallajökull and Katla, just east of the South Iceland Seismic Zone (SISZ), seismicity just above the crust-mantle boundary has revealed magma intruding into the crust from the mantle below. As the magma moves to shallower levels, the deformation of the Earth‘s surface is captured by geodetic systems, such as continuous GPS networks, (InSAR) images of the surface and -- even more sensitive to the deformation -- strain meters placed in boreholes around 200 m below the Earth‘s surface. Analysis of these signals can reveal the size and shape of the magma as well as the temporal evolution. At near-by Hekla volcano flanking the SISZ to the north, where only 50% of events are of M>1 compared to 86% of earthquakes in Eyjafjallajökull, the sensitivity of the seismic network is insufficient to detect the smallest seismicity and so the volcano appears less

  8. Potential ash impact from Antarctic volcanoes: Insights from Deception Island's most recent eruption.

    Science.gov (United States)

    Geyer, A; Marti, A; Giralt, S; Folch, A

    2017-11-28

    Ash emitted during explosive volcanic eruptions may disperse over vast areas of the globe posing a threat to human health and infrastructures and causing significant disruption to air traffic. In Antarctica, at least five volcanoes have reported historic activity. However, no attention has been paid to the potential socio-economic and environmental consequences of an ash-forming eruption occurring at high southern latitudes. This work shows how ash from Antarctic volcanoes may pose a higher threat than previously believed. As a case study, we evaluate the potential impacts of ash for a given eruption scenario from Deception Island, one of the most active volcanoes in Antarctica. Numerical simulations using the novel MMB-MONARCH-ASH model demonstrate that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. Results obtained recall the need for performing proper hazard assessment on Antarctic volcanoes, and are crucial for understanding the patterns of ash distribution at high southern latitudes with strong implications for tephrostratigraphy, which is pivotal to synchronize palaeoclimatic records.

  9. Reducing risks, protecting people. A harmonized approach

    International Nuclear Information System (INIS)

    Foster, R.B.

    2000-01-01

    Risk training, education and communication usually refer to the responsibilities of those who generate risk (e.g. operators of nuclear power plants) towards those who are exposed to the risk (e.g. employees working in the plants and those living in the vicinity). In this context training, education and communication are intended to transfer information from risk professionals to a largely uninformed audience, with a view to improving standards or providing reassurance. However, with the growth of media such as the Internet those to whom such training, education and communication have traditionally been directed are now much better informed. In addition, increasing prosperity affects expectations and prompts questions, not only about the adequacy of the control measures intended to address specific hazards, but also about whether the hazardous activity is justified at all. Within the UK (and Europe) this is very evident for nuclear power, other applications of ionizing radiation, and in other areas such as genetically modified food. In consequence regulators of hazardous activities face considerable new challenges. Of course, regulators still have to formulate standards, communicate them to those responsible for risk reduction and see that the necessary controls are in place. But in addition regulators also have to be able to answer questions such as: - why is this hazardous activity (e.g. a nuclear power plant) allowed at all? - what level of risk is unacceptable? - is the approach to risk reduction sufficiently precautionary? - why shouldn't the risk be reduced further? - why are the risks from certain activities (e.g. those from ionizing radiation) controlled to much lower levels than those from other work activities? - how are decisions made, what criteria are applied and how are the stake holders involves? All this does not make life easy for regulators! The full paper will describe how the Health and Safety Executive (HSE) has responded to these challenges by

  10. Managing Risk, Reducing Vulnerability and Enhancing Productivity ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Risk, Reducing Vulnerability and Enhancing Productivity under a Changing Climate. The countries of the Greater Horn of Africa are particularly vulnerable to drought, exacerbated by widespread poverty and dependence on rainfed agriculture. Even with normal rainfall, the region does not produce enough food to ...

  11. On the use of UAVs at active volcanoes: a case study from Volcan de Fuego, Guatemala

    Science.gov (United States)

    Watson, M.; Chigna, G.; Wood, K.; Richardson, T.; Liu, E.; Schellenberg, B.; Thomas, H.; Naismith, A.

    2017-12-01

    Volcan de Fuego, Guatemala, is one of Central America's most active systems. More than one hundred thousand people live within ten kilometres of the summit, many of them in profound poverty. Both the summit region and the volcano's steep sided valleys present significant access challenges, mostly associated with unacceptably high risk. Unmanned aerial vehicles (UAVs) offer the opportunity to observe, map and quantify emissions of tephra, gas, lava and heat flux and, using structure from motion algorithms, model dynamic topography. During recent campaigns, the team have completed observations of changes in the summit morphology immediately prior a paroxysmal eruption, mapped the key drainage systems after the fifth of May 2017 eruption and sampled the plume for tephra and gases using a range of onboard instruments. I will present the group's findings within a broader context of hazard mitigation and physical volcanology, and discuss the future of UAVs in volcano monitoring and research.

  12. Reducing Risk for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  13. Reducing Risk for the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Beck, John M. II; Heydt, Harold J.; Opare, Emmanuel O.; Oswald, Kyle B.

    2010-01-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  14. Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions

    Science.gov (United States)

    Dmitrieva, Ksenia; Hotovec-Ellis, Alicia J.; Prejean, Stephanie G.; Dunham, Eric M.

    2013-01-01

    Seismic unrest, indicative of subsurface magma transport and pressure changes within fluid-filled cracks and conduits, often precedes volcanic eruptions. An intriguing form of volcano seismicity is harmonic tremor, that is, sustained vibrations in the range of 0.5–5 Hz. Many source processes can generate harmonic tremor. Harmonic tremor in the 2009 eruption of Redoubt Volcano, Alaska, has been linked to repeating earthquakes of magnitudes around 0.5–1.5 that occur a few kilometres beneath the vent. Before many explosions in that eruption, these small earthquakes occurred in such rapid succession—up to 30 events per second—that distinct seismic wave arrivals blurred into continuous, high-frequency tremor. Tremor abruptly ceased about 30 s before the explosions. Here we introduce a frictional-faulting model to evaluate the credibility and implications of this tremor mechanism. We find that the fault stressing rates rise to values ten orders of magnitude higher than in typical tectonic settings. At that point, inertial effects stabilize fault sliding and the earthquakes cease. Our model of the Redoubt Volcano observations implies that the onset of volcanic explosions is preceded by active deformation and extreme stressing within a localized region of the volcano conduit, at a depth of several kilometres.

  15. Cataloging tremor at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Thelen, W. A.; Wech, A.

    2013-12-01

    Tremor is a ubiquitous seismic feature on Kilauea volcano, which emanates from at least three distinct sources. At depth, intermittent tremor and earthquakes thought to be associated with the underlying plumbing system of Kilauea (Aki and Koyanagi, 1981) occurs approximately 40 km below and 40 km SW of the summit. At the summit of the volcano, nearly continuous tremor is recorded close to a persistently degassing lava lake, which has been present since 2008. Much of this tremor is correlated with spattering at the lake surface, but tremor also occurs in the absence of spattering, and was observed at the summit of the volcano prior to the appearance of the lava lake, predominately in association with inflation/deflation events. The third known source of tremor is in the area of Pu`u `O`o, a vent that has been active since 1983. The exact source location and depth is poorly constrained for each of these sources. Consistently tracking the occurrence and location of tremor in these areas through time will improve our understanding of the plumbing geometry beneath Kilauea volcano and help identify precursory patterns in tremor leading to changes in eruptive activity. The continuous and emergent nature of tremor precludes the use of traditional earthquake techniques for automatic detection and location of seismicity. We implement the method of Wech and Creager (2008) to both detect and localize tremor seismicity in the three regions described above. The technique uses an envelope cross-correlation method in 5-minute windows that maximizes tremor signal coherency among seismic stations. The catalog is currently being built in near-realtime, with plans to extend the analysis to the past as time and continuous data availability permits. This automated detection and localization method has relatively poor depth constraints due to the construction of the envelope function. Nevertheless, the epicenters distinguish activity among the different source regions and serve as

  16. The deep structure of Axial Volcano

    Science.gov (United States)

    West, Michael Edwin

    The subsurface structure of Axial Volcano, near the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain in the northeast Pacific, is imaged from an active source seismic experiment. At a depth of 2.25 to 3.5 km beneath Axial lies an 8 km x 12 km region of very low seismic velocities that can only be explained by the presence of magma. In the center of this magma storage chamber at 2--3.5 km below sea floor, the crust is at least 10--20% melt. At depths of 4--5 km there is evidence of additional low concentrations of magma (a few percent) over a larger area. In total, 5--11 km3 of magma are stored in the mid-crust beneath Axial. This is more melt than has been positively identified under any basaltic volcano on Earth. It is also far more than the 0.1--0.2 km3 emplaced during the 1998 eruption. The implied residence time in the magma reservoir of a few hundred to a few thousand years agrees with geochemical trends which suggest prolonged storage and mixing of magmas. The large volume of melt bolsters previous observations that Axial provides much of the material to create crust along its 50 km rift zones. A high velocity ring-shaped feature sits above the magma chamber just outside the caldera walls. This feature is believed to be the result of repeated dike injections from the magma body to the surface during the construction of the volcanic edifice. A rapid change in crustal thickness from 8 to 11 km within 15 km of the caldera implies focused delivery of melt from the mantle. The high flux of magma suggests that melting occurs deeper in the mantle than along the nearby ridge. Melt supply to the volcano is not connected to any plumbing system associated with the adjacent segments of the Juan de Fuca Ridge. This suggests that, despite Axial's proximity to the ridge, the Cobb hot spot currently drives the supply of melt to the volcano.

  17. Volcano-ice interactions on Mars

    International Nuclear Information System (INIS)

    Allen, C.C.

    1979-01-01

    Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar compostion. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick

  18. Moessbauer Spectroscopy study of Quimsachata Volcano materials

    International Nuclear Information System (INIS)

    Dominguez, A.G.B.

    1988-01-01

    It has been studied volcanic lava from Quimsachata Volcano in Pem. Moessbauer Spectroscopy, X-ray diffraction, electronic and optical microscopy allowed the identification of different mineralogical phases. (A.C.AS.) [pt

  19. Geochemical and Geophysical Signatures of Poas Volcano, Costa Rica

    Science.gov (United States)

    Martinez, M.; van Bergen, M.; Fernandez, E.; Takano, B.; Barboza, V.; Saenz, W.

    2007-05-01

    Among many research fields in volcanology, prediction of eruptions is the most important from the hazard- mitigation point of view. Most geophysicists have sought for the best physical parameters for this objective: various kinds of wave signals and geodesic data are two of such parameters. Being able to be remotely monitored gives them advantage over many other practical methods for volcano monitoring. On the other hand, increasing volcanic activity is always accompanied by mass transfer. The most swiftly-moving materials are volcanic gases which are the target geochemists have intensively studied although monitoring gases is rather tedious and limited for active volcanoes hosting crater lakes. A Japanese group lead by Bokuichiro Takano has recently developed an indirect method for monitoring gas injection into volcanic crater lakes. Polythionates are formed when SO2 and H2S are injected into the lake from subaqueous fumaroles. Such polythionates consist of chains of 4 to 6 sulphur atoms, the terminal ones of which are bonded with three oxygen atoms. The general formula for these anions is SxO62- (x= 4 to 6). Important to note is that SO2 input into the lake also depends upon the plumbing system of the volcanoes: conduits, cracks and hydrothermal reservoirs beneath the lake that usually differ from volcano to volcano. Despite such site-specific characters some general statements can be made on the behaviour of these chemical species. For example, at low volcanic activity S6O62- predominates while S4O62- and S5O62- become predominant with increasing SO2 that increases with volcanic activity. At higher SO2 input and high temperature polythionates disappear in the lake through interaction with aqueous SO2 (sulfitolysis). Thus, the ratios of the three polythionates or their absence serve as an indicator for various stages of volcanic activity. Monitoring polythionates is an independent method that can be compared with results from geophysical methods. However, it

  20. Climbing in the high volcanoes of central Mexico

    Science.gov (United States)

    Secor, R. J.

    1984-01-01

    A chain of volcanoes extends across central Mexico along the 19th parallel, a line just south of Mexico City. The westernmost of these peaks is Nevado de Colima at 4,636 feet above sea level. A subsidiary summit of Nevado de Colima is Volcan de Colima, locally called Fuego (fire) it still emits sulphurous fumes and an occasional plume of smoke since its disastrous eruption in 1941. Parictuin, now dormant, was born in the fall of 1943 when a cornfield suddenly erupted. Within 18 months, the cone grew more than 1,700 feet. Nevado de Toluca is a 15,433-foot volcanic peak south of the city of Toluca. Just southeast of Mexico City are two high volcanoes that are permanently covered by snow: Iztaccihuatl (17,342 fet) and Popocatepetl (17,887 feet) Further east is the third highest mountain in North America: 18,700-foot Citlateptl, or El Pico de Orizaba. North of these high peaks are two volcanoes, 14, 436-foot La Malinche and Cofre de Perote at 14,048 feet. This range of mountains is known variously as the Cordillera de Anahuac, the Sierra Volcanica Transversal, or the Cordillera Neovolcanica. 

  1. Characteristics and petrology of the effusive-explosive activity of Colima volcano, in the years 2015-2017

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez-Cornu, F. J.; Arreola-Ochoa, L. C.; Suarez, G. B. V.; Carrillo-Gonzalez, D. A.

    2017-12-01

    The Colima volcano, during the years 2015-2017, presented an important effusive and explosive activity, which began in January 2015 with the growth of a dome that was destroyed by explosions, forming pyroclastic flows reaching distances of up to 2 km by the north and south flanks of the volcano. In May a new dome was extruded, forming three thick lava flows along the northern and southern slopes; the extruded volume was approximately 6 million cubic meters, with a rate in 52 days of 1.3 m3/sec. On July 11 merapi flows were formed it flowed through by the ravines of Montegrande and San Antonio, on the south and southwest flank, reaching distances of 10.4 km. The following days the activity had decreased substantially, leaving a crater of 60 m of depth and 270 m of diameter. In February 2016, a small dome occupied the central part of the main crater, and it was until September that an episode of volcanic tremor began, that was associated with its rapid growth, which in 48 hours filled the crater and formed a lava flow that descended by the south slope. By October 2, 2.3 million m3 of lava were extruded, which caused a deflation of the dome. In October 7, the volcano emitted a great amount of gases and steam of water that formed an acid rain that affected forests and crops of the south and southwest slope, causing losses by 1 million dollars. In November, a series of explosions occurred that destroyed two thirds of the dome. In January 2017, the explosive activity increased and again destroyed the dome. Five events were recorded that reached between 3 km and 4 km of height on the top of the volcano, the dispersion of the ash generally went to the northeast, reaching distances of up to 200 km. Currently the volcano is sustaining reduced seismic and fumarole activity. In 2005, 2015 and 2017, the geochemical analysis of major elements such as SiO2 from the ash emitted by the volcano showed an increase from 54.51% to 60.05% and 60.24%, respectively, which was associated

  2. Glacier melting during lava dome growth at Nevado de Toluca volcano (Mexico): Evidences of a major threat before main eruptive phases at ice-caped volcanoes

    Science.gov (United States)

    Capra, L.; Roverato, M.; Groppelli, G.; Caballero, L.; Sulpizio, R.; Norini, G.

    2015-03-01

    Nevado de Toluca volcano is one of the largest stratovolcanoes in the Trans-Mexican Volcanic Belt. During Late Pleistocene its activity was characterized by large dome growth and subsequent collapse emplacing large block and ash flow deposits, intercalated by Plinian eruptions. Morphological and paleoclimate studies at Nevado de Toluca and the surrounding area evidenced that the volcano was affected by extensive glaciation during Late Pleistocene and Holocene. During the older recognized glacial period (27-60 ka, MIS 3), the glacier was disturbed by the intense magmatic and hydrothermal activity related to two dome extrusion episodes (at 37 ka and 28 ka). Glacier reconstruction indicates maximum ice thickness of 90 m along main valleys, as at the Cano ravines, the major glacial valley on the northern slope of the volcano. Along this ravine, both 37 and 28 ka block-and-ash deposits are exposed, and they directly overlay a fluviatile sequence, up to 40 m-thick, which 14C ages clearly indicate that their emplacement occurred just before the dome collapsed. These evidences point to a clear interaction between the growing dome and its hydrothermal system with the glacier. During dome growth, a large amount of melting water was released along major glacial valleys forming thick fluvioglacial sequences that were subsequently covered by the block-and-ash flow deposits generated by the collapse of the growing dome. Even though this scenario is no longer possible at the Nevado de Toluca volcano, the data presented here indicate that special attention should be paid to the possible inundation areas from fluviatile/lahar activity prior to the main magmatic eruption at ice-capped volcanoes.

  3. Are terrestrial plumes from motionless plates analogues to Martian plumes feeding the giant shield volcanoes?

    Science.gov (United States)

    Meyzen, Christine; Massironi, Matteo; Pozzobon, Riccardo; Dal Zilio, Luca

    2014-05-01

    The near "one-plate" planet evolution of Mars has led to the edification of long-lasting giant shied volcanoes. Unlike the Earth, Mars would have been a transient convecting planet, where plate tectonic would have possibly acted only during the first hundreds of million years of its history. On Earth, where plate tectonic is active, most of them are regenerated and recycled through convection. However, the Nubian and Antarctic plates could be considered as poorly mobile surfaces of various thicknesses that are acting as conductive lids on top of Earth's deeper convective system. In these environments, volcanoes do not show any linear age progression at least for the last 30 Ma, but constitute the sites of persistent, focused long-term magmatic activity, rather than a chain of volcanoes as observed in fast-moving plate plume environments. Here, the near stationary absolute plate motion probably exerts a primary control on volcanic processes, and more specifically, on the melting ones. The residual depleted mantle, that is left behind by the melting processes, cannot be swept away from the melting locus. Over time, the thickening of this near-stationary depleted layer progressively forces the termination of melting to higher depths, reducing the melt production rate. Such a process gradually leads both to decreasing efficient melt extraction and increasing mantle lithospheric-melt interactions. The accumulation of this refractory material also causes long-term fluctuations of the volcanic activity, in generating long periods of quiescence. The presence of this residual mantle keel induces over time a lateral flow deflection, which translates into a shift of future melting sites around it. This process gives rise to the horseshoe-like shape of some volcanic islands on slow-moving plates (e.g. Cape Verde, Crozet). Finally, the pronounced topographic swells/bulges observed in this environments may also be supported both by large scale mantle upwelling and their residual

  4. Acid-reducing vagotomy is associated with reduced risk of subsequent ischemic heart disease in complicated peptic ulcer

    Science.gov (United States)

    Wu, Shih-Chi; Fang, Chu-Wen; Chen, William Tzu-Liang; Muo, Chih-Hsin

    2016-01-01

    Abstract Persistent exacerbation of a peptic ulcer may lead to a complicated peptic ulcer (perforation or/and bleeding). The management of complicated peptic ulcers has shifted from acid-reducing vagotomy, drainage, and gastrectomy to simple local suture or non-operative (endoscopic/angiographic) hemostasis. We were interested in the long-term effects of this trend change. In this study, complicated peptic ulcer patients who received acid-reducing vagotomy were compared with those who received simple suture/hemostasis to determine the risk of ischemic heart disease (IHD). This retrospective cohort study analyzed 335,680 peptic ulcer patients recorded from 2000 to 2006 versus 335,680 age-, sex-, comorbidity-, and index-year matched comparisons. Patients with Helicobacter pylori (HP) infection were excluded. In order to identify the effect of vagus nerve severance, patients who received gastrectomy or antrectomy were also excluded. The incidence of IHD in both cohorts, and in the complicated peptic ulcer patients who received acid-reducing vagotomy versus those who received simple suture or hemostasis was evaluated. The overall incidence of IHD was higher in patients with peptic ulcer than those without peptic ulcer (17.00 vs 12.06 per 1000 person-years), with an adjusted hazard ratio (aHR) of 1.46 based on multivariable Cox proportional hazards regression analysis controlling for age, sex, Charlson's comorbidity index, and death (competing risk). While comparing peptic ulcer patients with acid-reducing vagotomy to those with simple suture/hemostasis or those without surgical treatment, the aHR (0.58) was the lowest in the acid-reducing vagotomy group. Patients with peptic ulcer have an elevated risk of IHD. However, complicated peptic ulcer patients who received acid-reducing vagotomy were associated with reduced risk of developing IHD. PMID:27977613

  5. Disaster Risks Reduction for Extreme Natural Hazards

    Science.gov (United States)

    Plag, H.; Jules-Plag, S.

    2013-12-01

    Mega disasters associated with extreme natural hazards have the potential to escalate the global sustainability crisis and put us close to the boundaries of the safe operating space for humanity. Floods and droughts are major threats that potentially could reach planetary extent, particularly through secondary economic and social impacts. Earthquakes and tsunamis frequently cause disasters that eventually could exceed the immediate coping capacity of the global economy, particularly since we have built mega cities in hazardous areas that are now ready to be harvested by natural hazards. Unfortunately, the more we learn to cope with the relatively frequent hazards (50 to 100 years events), the less we are worried about the low-probability, high-impact events (a few hundred and more years events). As a consequence, threats from the 500 years flood, drought, volcano eruption are not appropriately accounted for in disaster risk reduction (DRR) discussions. Extreme geohazards have occurred regularly throughout the past, but mostly did not cause major disasters because exposure of human assets to hazards was much lower in the past. The most extreme events that occurred during the last 2,000 years would today cause unparalleled damage on a global scale and could worsen the sustainability crisis. Simulation of these extreme hazards under present conditions can help to assess the disaster risk. Recent extreme earthquakes have illustrated the destruction they can inflict, both directly and indirectly through tsunamis. Large volcano eruptions have the potential to impact climate, anthropogenic infrastructure and resource supplies on global scale. During the last 2,000 years several large volcano eruptions occurred, which under today's conditions are associated with extreme disaster risk. The comparison of earthquakes and volcano eruptions indicates that large volcano eruptions are the low-probability geohazards with potentially the highest impact on our civilization

  6. Arenal-type pyroclastic flows: A probabilistic event tree risk analysis

    Science.gov (United States)

    Meloy, Anthony F.

    2006-09-01

    A quantitative hazard-specific scenario-modelling risk analysis is performed at Arenal volcano, Costa Rica for the newly recognised Arenal-type pyroclastic flow (ATPF) phenomenon using an event tree framework. These flows are generated by the sudden depressurisation and fragmentation of an active basaltic andesite lava pool as a result of a partial collapse of the crater wall. The deposits of this type of flow include angular blocks and juvenile clasts, which are rarely found in other types of pyroclastic flow. An event tree analysis (ETA) is a useful tool and framework in which to analyse and graphically present the probabilities of the occurrence of many possible events in a complex system. Four event trees are created in the analysis, three of which are extended to investigate the varying individual risk faced by three generic representatives of the surrounding community: a resident, a worker, and a tourist. The raw numerical risk estimates determined by the ETA are converted into a set of linguistic expressions (i.e. VERY HIGH, HIGH, MODERATE etc.) using an established risk classification scale. Three individually tailored semi-quantitative risk maps are then created from a set of risk conversion tables to show how the risk varies for each individual in different areas around the volcano. In some cases, by relocating from the north to the south, the level of risk can be reduced by up to three classes. While the individual risk maps may be broadly applicable, and therefore of interest to the general community, the risk maps and associated probability values generated in the ETA are intended to be used by trained professionals and government agencies to evaluate the risk and effectively manage the long-term development of infrastructure and habitation. With the addition of fresh monitoring data, the combination of both long- and short-term event trees would provide a comprehensive and consistent method of risk analysis (both during and pre-crisis), and as such

  7. Magmatically Greedy Reararc Volcanoes of the N. Tofua Segment of the Tonga Arc

    Science.gov (United States)

    Rubin, K. H.; Embley, R. W.; Arculus, R. J.; Lupton, J. E.

    2013-12-01

    Volcanism along the northernmost Tofua Arc is enigmatic because edifices of the arc's volcanic front are mostly, magmatically relatively anemic, despite the very high convergence rate of the Pacific Plate with this section of Tonga Arc. However, just westward of the arc front, in terrain generally thought of as part of the adjacent NE Lau Backarc Basin, lie a series of very active volcanoes and volcanic features, including the large submarine caldera Niuatahi (aka volcano 'O'), a large composite dacite lava flow terrain not obviously associated with any particular volcanic edifice, and the Mata volcano group, a series of 9 small elongate volcanoes in an extensional basin at the extreme NE corner of the Lau Basin. These three volcanic terrains do not sit on arc-perpendicular cross chains. Collectively, these volcanic features appear to be receiving a large proportion of the magma flux from the sub-Tonga/Lau mantle wedge, in effect 'stealing' this magma flux from the arc front. A second occurrence of such magma 'capture' from the arc front occurs in an area just to the south, on southernmost portion of the Fonualei Spreading Center. Erupted compositions at these 'magmatically greedy' volcanoes are consistent with high slab-derived fluid input into the wedge (particularly trace element abundances and volatile contents, e.g., see Lupton abstract this session). It is unclear how long-lived a feature this is, but the very presence of such hyperactive and areally-dispersed volcanism behind the arc front implies these volcanoes are not in fact part of any focused spreading/rifting in the Lau Backarc Basin, and should be thought of as 'reararc volcanoes'. Possible tectonic factors contributing to this unusually productive reararc environment are the high rate of convergence, the cold slab, the highly disorganized extension in the adjacent backarc, and the tear in the subducting plate just north of the Tofua Arc.

  8. Remote Triggering of Microearthquakes in the Piton de la Fournaise and Changbaishan Volcanoes

    Science.gov (United States)

    Li, C.; Liu, G.; Peng, Z.; Brenguier, F.; Dufek, J.

    2015-12-01

    Large earthquakes are capable of triggering seismic, aseismic and hydrological responses at long-range distances. In particular, recent studies have shown that microearthquakes are mostly triggered in volcanic/geothermal regions. However, it is still not clear how widespread the phenomenon is, and whether there are any causal links between large earthquakes and subsequent volcanic unrest/eruptions. In this study we conduct a systematic search for remotely triggered activity at the Piton de la Fournaise (PdlF) and Changbaishan (CBS) volcanoes. The PdlF is a shield volcano located on the east-southern part of the Reunion Island in Indian Ocean. It is one of the most active volcanoes around the world. The CBS volcano is an intraplate stratovolcano on the border between China and North Korea, and it was active with a major eruption around 1100 years ago and has been since dormant from AD 1903, however, it showed signals of unrest recently. We choose these regions because they are well instrumented and spatially close to recent large earthquakes, such as the 2004/12/26 Mw9.1 Sumatra, 2011/03/11 Mw9.0 Tohoku, and the 2012/04/11 Mw8.6 Indian Ocean Earthquakes. By examining continuous waveforms a few hours before and after many earthquakes since 2000, we find many cases of remote triggering around the CBS volcano. In comparison, we only identify a few cases of remotely triggered seismicity around the PdlF volcano, including the 2004 Sumatra earthquake. Notably, the 2012 Indian Ocean earthquake and its M8.2 aftershock did not trigger any clear increase of seismicity, at least during their surface waves. Our next step is to apply a waveform matching method to automatically detect volcano-seismicity in both regions, and then use them to better understand potential interactions between large earthquakes and volcanic activities.

  9. Catalogue of satellite photography of the active volcanoes of the world

    Science.gov (United States)

    Heiken, G.

    1976-01-01

    A catalogue is presented of active volcanoes as viewed from Earth-orbiting satellites. The listing was prepared of photographs, which have been screened for quality, selected from the earth resources technology satellite (ERTS) and Skylab, Apollo and Gemini spacecraft. There is photography of nearly every active volcano in the world; the photographs are particularly useful for regional studies of volcanic fields.

  10. The 2000 AD eruption of Copahue Volcano, Southern Andes

    OpenAIRE

    Naranjo, José Antonio; Polanco, Edmundo

    2004-01-01

    Although all historic eruptions of the Copahue volcano (37°45'S-71°10.2'W, 3,001 m a.s.l.) have been of low magnitude, the largest (VEI=2) and longest eruptive cycle occurred from July to October 2000. Phreatic phases characterized the main events as a former acid crater lake was blown up. Low altitude columns were deviated by low altitude winds in variable directions, but slightly predominant to the NNE. The presence of the El Agrio caldera depression to the east of Copahue volcano may have ...

  11. A new idea: The possibilities of offshore geothermal system in Indonesia marine volcanoes

    Science.gov (United States)

    Rahat Prabowo, Teguh; Fauziyyah, Fithriyani; Suryantini; Bronto, Sutikno

    2017-12-01

    High temperature geothermal systems in Indonesia are commonly associated with volcanic systems. It is believed that volcanoes are acting as the heat source for a geothermal system. Right now, most of the operating geothermal fields in the world are assosiating with volcanic settings which known as the conventional geothermal system. Volcanoes are created in active tectonic zone such as collision zone and MOR (mid oceanic ridge). The later is the one which formed the marine volcanoes on the sea floor. The advances of today’s technology in geothermal energy has created many ideas regarding a new kind of geothermal system, including the ideas of developing the utilization of marine volcanoes. These marine volcanoes are predicted to be hotter than the land system due to the shorter distance to the magma chamber. Seamounts like NEC, Banua Wuhu, and Kawio Barat in Indonesia Sea are good spots to be studied. Methods such as remote sensing using NOAA images, sonar, and MAPR are commonly used, eventhough these would be more accurate with more detailed techniques. This has become the challenge for all geothermal scientists to overcome for a better study result.

  12. Matrix Approach of Seismic Wave Imaging: Application to Erebus Volcano

    Science.gov (United States)

    Blondel, T.; Chaput, J.; Derode, A.; Campillo, M.; Aubry, A.

    2017-12-01

    This work aims at extending to seismic imaging a matrix approach of wave propagation in heterogeneous media, previously developed in acoustics and optics. More specifically, we will apply this approach to the imaging of the Erebus volcano in Antarctica. Volcanoes are actually among the most challenging media to explore seismically in light of highly localized and abrupt variations in density and wave velocity, extreme topography, extensive fractures, and the presence of magma. In this strongly scattering regime, conventional imaging methods suffer from the multiple scattering of waves. Our approach experimentally relies on the measurement of a reflection matrix associated with an array of geophones located at the surface of the volcano. Although these sensors are purely passive, a set of Green's functions can be measured between all pairs of geophones from ice-quake coda cross-correlations (1-10 Hz) and forms the reflection matrix. A set of matrix operations can then be applied for imaging purposes. First, the reflection matrix is projected, at each time of flight, in the ballistic focal plane by applying adaptive focusing at emission and reception. It yields a response matrix associated with an array of virtual geophones located at the ballistic depth. This basis allows us to get rid of most of the multiple scattering contribution by applying a confocal filter to seismic data. Iterative time reversal is then applied to detect and image the strongest scatterers. Mathematically, it consists in performing a singular value decomposition of the reflection matrix. The presence of a potential target is assessed from a statistical analysis of the singular values, while the corresponding eigenvectors yield the corresponding target images. When stacked, the results obtained at each depth give a three-dimensional image of the volcano. While conventional imaging methods lead to a speckle image with no connection to the actual medium's reflectivity, our method enables to

  13. Crust-Mantle Interactions at Pico de Orizaba (Citlaltepetl) Volcano, Mexico.

    Science.gov (United States)

    Schaaf, P.; Carrasco, G.

    2006-12-01

    Pico de Orizaba (Citlaltepetl) volcano constitutes the easternmost and highest stratovolcano of the subduction- related Plio-Quaternary Trans-Mexican Volcanic Belt (TMVB). The volcano can be divided into three main constructional stages. Its activity started during the mid-Pleistocene. The present cone was built on the remnants of the ancestral buildings by eruption of amphibole-two pyroxene dacitic lava flows, the most recent of which was erupted in the seventeenth century. The volcano is surrounded to the SW by monogenetic Quaternary cindercones and maars. All representative units were sampled in this work for geochemical and isotopic purposes, including a small quartzitic xenolith found in the basaltic monogenetic suite. Volcanic products of the stratocone are quite heterogeneous and range from calc-alkaline basaltic andesites to dome rhyolites, also displayed by a wide range of SiO2 and MgO (72.6-53.2 and 7.0-0.3 wt. %, respectively). In comparison to other TMVB stratovolcanoes (e.g., Colima, Nevado de Toluca), Pico de Orizaba shows similar 87Sr/86Sr ratios (0.7037-0.7048) but considerably more evolved Nd-Pb isotopic ratios (eNd: -1.8 to + 1.4; 206Pb/204Pb: 18.61-18.78). Elevated LILE concentrations and depleted HFSE witness the importance of slab- derived aqueous fluids and metasomatic reactions between the subducting lithosphere and overlying mantle wedge. On the other hand, Pico de Orizaba volcano shows additionally high crustal contributions of a source with depleted Sr and enriched Nd and Pb isotopic signatures, best explained by considerable assimilation of the local Grenvillian basement in magma generation processes. In contrast to Popocatépetl volcano with a high-level magma reservoir emplacement (7-8 km) and obvious interaction with the carbonate-dominated shallow basement rocks (e.g. elevated 87Sr/86Sr ratios and CO2 in gas plumes), this effect cannot be observed at Pico de Orizaba volcano, although a regional Cretaceous limestone basement is also

  14. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  15. Determining the stress field in active volcanoes using focal mechanisms

    Directory of Open Access Journals (Sweden)

    Bruno Massa

    2016-11-01

    Full Text Available Stress inversion of seismological datasets became an essential tool to retrieve the stress field of active tectonics and volcanic areas. In particular, in volcanic areas, it is able to put constrains on volcano-tectonics and in general in a better understanding of the volcano dynamics. During the last decades, a wide range of stress inversion techniques has been proposed, some of them specifically conceived to manage seismological datasets. A modern technique of stress inversion, the BRTM, has been applied to seismological datasets available at three different regions of active volcanism: Mt. Somma-Vesuvius (197 Fault Plane Solutions, FPSs, Campi Flegrei (217 FPSs and Long Valley Caldera (38,000 FPSs. The key role of stress inversion techniques in the analysis of the volcano dynamics has been critically discussed. A particular emphasis was devoted to performances of the BRTM applied to volcanic areas.

  16. Interdisciplinary Studies of Eruption at Chaitén Volcano, Chile

    Science.gov (United States)

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Lara, Luis; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie

    2010-10-01

    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000­year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer­diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  17. Stratigraphic architecture of hydromagmatic volcanoes that have undergone vent migration: a review of Korean case studies

    Science.gov (United States)

    Sohn, Y.

    2011-12-01

    Recent studies show that the architecture of hydromagmatic volcanoes is far more complex than formerly expected. A number of external factors, such as paleohydrology and tectonics, in addition to magmatic processes are thought to play a role in controlling the overall characteristics and architecture of these volcanoes. One of the main consequences of these controls is the migration of the active vent during eruption. Case studies of hydromagmatic volcanoes in Korea show that those volcanoes that have undergone vent migration are characterized by superposition or juxtaposition of multiple rim deposits of partial tuff rings and/or tuff cones that have contrasting lithofacies characteristics, bed attitudes, and paleoflow directions. Various causes of vent migration are inferred from these volcanoes. Large-scale collapse of fragile substrate is interpreted to have caused vent migration in the Early Pleistocene volcanoes of Jeju Island, which were built upon still unconsolidated continental shelf sediments. Late Pleistocene to Holocene volcanoes, which were built upon a stack of rigid, shield-forming lava flows, lack features due to large-scale substrate collapse and have generally simple and circular morphologies either of a tuff ring or of a tuff cone. However, ~600 m shift of the eruptive center is inferred from one of these volcanoes (Ilchulbong tuff cone). The vent migration in this volcano is interpreted to have occurred because the eruption was sourced by multiple magma batches with significant eruptive pauses in between. The Yangpori diatreme in a Miocene terrestrial half-graben basin in SE Korea is interpreted to be a subsurface equivalent of a hydromagmatic volcano that has undergone vent migration. The vent migration here is inferred to have had both vertical and lateral components and have been caused by an abrupt tectonic activity near the basin margin. In all these cases, rimbeds or diatreme fills derived from different source vents are bounded by either

  18. Volcano geodesy: Challenges and opportunities for the 21st century

    Science.gov (United States)

    Dzurisin, D.

    2000-01-01

    Intrusions of magma beneath volcanoes deform the surrounding rock and, if the intrusion is large enough, the overlying ground surface. Numerical models generally agree that, for most eruptions, subsurface volume changes are sufficient to produce measurable deformation at the surface. Studying this deformation can help to determine the location, volume, and shape of a subsurface magma body and thus to anticipate the onset and course of an eruption. This approach has been successfully applied at many restless volcanoes, especially basaltic shields and silicic calderas, using various geodetic techniques and sensors. However, its success at many intermediate-composition strato-volcanoes has been limited by generally long repose intervals, steep terrain, and structural influences that complicate the history and shape of surface deformation. These factors have made it difficult to adequately characterize deformation in space and time at many of the world's dangerous volcanoes. Recent technological advances promise to make this task easier by enabling the acquisition of geodetic data of high spatial and temporal resolution from Earth-orbiting satellites. Synthetic aperture radar interferometry (InSAR) can image ground deformation over large areas at metre-scale resolution over time-scales of a month to a few years. Global Positioning System (GPS) stations can provide continuous information on three-dimensional ground displacements at a network of key sites -information that is especially important during volcanic crises. By using InSAR to determine the shape of the displacement field and GPS to monitor temporal changes at key sites, scientists have a much better chance to capture geodetic signals that have so far been elusive at many volcanoes. This approach has the potential to provide longer-term warnings of impending volcanic activity than is possible with other monitoring techniques.

  19. The MU-RAY detector for muon radiography of volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Anastasio, A. [INFN-Napoli (Italy); Ambrosino, F. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Basta, D. [INFN-Napoli (Italy); Bonechi, L. [Università degli Studi di Firenze, Firenze (Italy); INFN-Firenze (Italy); Brianzi, M. [Università degli Studi di Firenze, Firenze (Italy); Bross, A. [Fermilab (United States); Callier, S. [LAL, Orsay (France); Caputo, A. [INGV Osservatorio Vesuviano, Napoli (Italy); Ciaranfi, R. [INFN-Firenze (Italy); Cimmino, L. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); D' Alessandro, R. [Università degli Studi di Firenze, Firenze (Italy); INFN-Firenze (Italy); D' Auria, L. [INGV Osservatorio Vesuviano, Napoli (Italy); La Taille, C. de [LAL, Orsay (France); Energico, S. [CNR- SPIN, Napoli (Italy); INFN-Napoli (Italy); Garufi, F. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Giudicepietro, F. [INGV Osservatorio Vesuviano, Napoli (Italy); Lauria, A. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Macedonio, G.; Martini, M. [INGV Osservatorio Vesuviano, Napoli (Italy); Masone, V. [Università Federico II, Napoli (Italy); and others

    2013-12-21

    The MU-RAY detector has been designed to perform muon radiography of volcanoes. The possible use on the field introduces several constraints. First the electric power consumption must be reduced to the minimum, so that the detector can be solar-powered. Moreover it must be robust and transportable, for what concerns the front-end electronics and data acquisition. A 1 m{sup 2} prototype has been constructed and is taking data at Mt. Vesuvius. The detector consists of modules of 32 scintillator bars with wave length shifting fibers and silicon photomultiplier read-out. A dedicated front-end electronics has been developed, based on the SPIROC ASIC. An introduction to muon radiography principles, the MU-RAY detector description and results obtained in laboratory will be presented.

  20. Of volcanoes, saints, trash, and frogs

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    , at the same time as political elections and economic hardship. During one year of ethnographic fieldwork volcanoes, saints, trash and frogs were among the nonhuman entities referred to in conversations and engaged with when responding to the changes that trouble the world and everyday life of Arequipans...

  1. InSAR observations of active volcanoes in Latin America

    Science.gov (United States)

    Morales Rivera, A. M.; Chaussard, E.; Amelung, F.

    2012-12-01

    Over the last decade satellite-based interferometric synthetic aperture radar (InSAR) has developed into a well-known technique to gauge the status of active volcanoes. The InSAR technique can detect the ascent of magma to shallow levels of the volcanic plumbing system because new arriving magma pressurizes the system. This is likely associated with the inflation of the volcanic edifice and the surroundings. Although the potential of InSAR to detect magma migration is well known, the principal limitation was that only for few volcanoes frequent observations were acquired. The ALOS-1 satellite of the Japanese Aerospace Exploration Agency (JAXA) acquired a global L-band data set of 15-20 acquisitions during 2006-2011. Here we use ALOS InSAR and Small Baseline (SB) time-series methods for a ground deformation survey of Latin America with emphasis on the northern Andes. We present time-dependent ground deformation data for the volcanoes in Colombia, Ecuador and Peru and interpret the observations in terms of the dynamics of the volcanic systems.

  2. Large submarine sand-rubble flow on Kilauea volcano, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Fornari, D J [Columbia Univ., Palisades, NY; Moore, J G; Calk, L

    1979-05-01

    Papa'u seamount on the south submarine slope of Kilauea volcano is a large landslide about 19 km long, 6 km wide, and up to 1 km thick with a volume of about 39 km/sup 3/. Dredge hauls, remote camera photographs, and submersible observations indicate that it is composed primarily of unconsolidated angular glassy basalt sand with scattered basalt blocks up to 1 m in size; no lava flows were seen. Sulfur contents of basalt glass from several places on the sand-rubble flow and nearby areas are low (< 240 ppm), indicating that the clastic basaltic material was all erupted on land. The Papa'u sandrubble flow was emplaced during a single flow event fed from a large near-shore bank of clastic basaltic material which in turn was formed as lava flows from the summit area of Kilauea volcano disintegrated when they entered the sea. The current eruptive output of the volcano suggests that the material in the submarine sand-rubble flow represents about 6000 years of accumulation, and that the flow event occurred several thousand years ago.

  3. Sulfur dioxide emissions from la soufriere volcano, st. Vincent, west indies.

    Science.gov (United States)

    Hoff, R M; Gallant, A J

    1980-08-22

    During the steady-state period of activity of La Soufriere Volcano in 1979, the mass emissions of sulfur dioxide into the troposphere amounted to a mean value of 339 +/- 126 metric tons per day. This value is similar to the sulfur dioxide emissions of other Central American volcanoes but less than those measured at Mount Etna, an exceptionally strong volcanic source of sulfur dioxide.

  4. Pattern Matching for Volcano Status Assessment: what monitoring data alone can say about Mt. Etna activity

    Science.gov (United States)

    Cannavo, F.; Cannata, A.; Cassisi, C.

    2017-12-01

    The importance of assessing the ongoing status of active volcanoes is crucial not only for exposures to the local population but due to possible presence of tephra also for airline traffic. Adequately monitoring of active volcanoes, hence, plays a key role for civil protection purposes. In last decades, in order to properly monitor possible threats, continuous measuring networks have been designed and deployed on most of potentially hazardous volcanos. Nevertheless, at the present, volcano real-time surveillance is basically delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks using their experience and non-measurable information (e.g. information from the field) to infer the volcano status. In some cases, raw data are used in some models to obtain more clues on the ongoing activity. In the last decades, with the development of volcano monitoring networks, huge amount of data of different geophysical, geochemical and volcanological types have been collected and stored in large databases. Having such big data sets with many examples of volcanic activity allows us to study volcano monitoring from a machine learning perspective. Thus, exploiting opportunities offered by the abundance of volcano monitoring time-series data we can try to address the following questions: Are the monitored parameters sufficient to discriminate the volcano status? Is it possible to infer/distinguish the volcano status only from the multivariate patterns of measurements? Are all the kind of measurements in the pattern equally useful for status assessment? How accurate would be an automatic system of status inference based only on pattern recognition of data? Here we present preliminary results of the data analysis we performed on a set of data and activity covering the period 2011-2017 at Mount Etna (Italy). In the considered period, we had 52 events of lava fountaining and long periods of Strombolian activity. We

  5. Precursory earthquakes of the 1943 eruption of Paricutin volcano, Michoacan, Mexico

    Science.gov (United States)

    Yokoyama, I.; de la Cruz-Reyna, S.

    1990-12-01

    Paricutin volcano is a monogenetic volcano whose birth and growth were observed by modern volcanological techniques. At the time of its birth in 1943, the seismic activity in central Mexico was mainly recorded by the Wiechert seismographs at the Tacubaya seismic station in Mexico City about 320 km east of the volcano area. In this paper we aim to find any characteristics of precursory earthquakes of the monogenetic eruption. Though there are limits in the available information, such as imprecise location of hypocenters and lack of earthquake data with magnitudes under 3.0. The available data show that the first precursory earthquake occurred on January 7, 1943, with a magnitude of 4.4. Subsequently, 21 earthquakes ranging from 3.2 to 4.5 in magnitude occurred before the outbreak of the eruption on February 20. The (S - P) durations of the precursory earthquakes do not show any systematic changes within the observational errors. The hypocenters were rather shallow and did not migrate. The precursory earthquakes had a characteristic tectonic signature, which was retained through the whole period of activity. However, the spectra of the P-waves of the Paricutin earthquakes show minor differences from those of tectonic earthquakes. This fact helped in the identification of Paricutin earthquakes. Except for the first shock, the maximum earthquake magnitudes show an increasing tendency with time towards the outbreak. The total seismic energy released by the precursory earthquakes amounted to 2 × 10 19 ergs. Considering that statistically there is a threshold of cumulative seismic energy release (10 17-18ergs) by precursory earthquakes in polygenetic volcanoes erupting after long quiescence, the above cumulative energy is exceptionally large. This suggests that a monogenetic volcano may need much more energy to clear the way of magma passage to the earth surface than a polygenetic one. The magma ascent before the outbreak of Paricutin volcano is interpretable by a model

  6. Meta-analysis: Does garlic intake reduce risk of gastric cancer?

    Science.gov (United States)

    Kodali, R T; Eslick, Guy D

    2015-01-01

    In the past 2 decades, various epidemiological studies investigated whether garlic can positively modify the risk of gastric cancer. Garlic contains numerous sulfide compounds, including diallyl trisulfide, which have anticarcinogenic properties. We conducted a meta-analysis to determine if garlic intake reduces the risk of gastric cancer. An electronic search of MEDLINE, PubMed, and EMBASE to June 2014 was completed. There were 14 case control studies, 2 randomized controlled studies, and 1 cohort study that fulfilled our inclusion criteria. We used a random effects model to calculate pooled odds ratios (OR) and 95% confidence intervals (CIs) for risk of gastric cancer with garlic consumption. Meta-analysis of a total of 8,621 cases and 14,889 controls was conducted. Significant variability in duration of garlic intake and reference categories for amount of intake was noted. High, low, and any garlic intake were all associated with reduced risk of gastric cancer. High intake had the most significant risk reduction, OR = 0.49 (95% CI: 0.38-0.62). Heterogeneity was low (I² = 30.85, P = 0.17). A more modest risk reduction was associated with low intake, OR = 0.75 (95% CI: 0.58-0.97). Half of the studies did not separate garlic intake into high or low amounts, intake was only noted as consumption vs. non-consumption. Any amount of consumption still showed a risk reduction similar to low intake, OR = 0.77 (95% CI: 0.60-1.00). Low and any amount of consumption showed moderate heterogeneity (58% and 45%, respectively). Garlic intake appears to be associated with reduced risk of gastric cancer. Further high quality studies are required to confirm this finding and to assess the amount of garlic that needs to be consumed for protective effect.

  7. Topography and Volcanology of the Huangtsuishan Volcano Subgroup, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Ming Lai

    2010-01-01

    Full Text Available Combining the shaded relief topography model and the slope map from the Digital Terrain Model (DTM images, toporaphical map, field occurrences and petrography, the volcanic sequences of the Huangtsuishan Volcano Subgroup (HVS can be constructed. Two types of volcanic centers can be identified in this area. One is the Tachienhou volcanic dome, which may be located in the center of an older caldera. The other is the Huangtsui composite volcano, which is composed of interbedding lava flows and pyroclastic deposits with a volcanic crater named the Huangtsui pond at the summit. Eight lava plateaus radiated from Mts. Huangtsui and Tachienhou to the north and the east can be distinguished based on the DTM images. The volcanic deposits are comprised of four lithofacies, the lava flows, pyroclastic breccias, tuffs and lahars on the base of field occurrences. At least thirteen layers of lava flow, named the H1 to H13 can be recognized in the HVS and can be reconstructed and categorized into four stages. An old and large volcano erupted lava flows to form the products of stages one and two, then collapsed to form a caldera with a dome for the third stage. The latest stage of lava flow was poured out from the Huangtsui volcano, which formed a crater at the summit.

  8. Developing geophysical monitoring at Mayon volcano, a collaborative project EOS-PHIVOLCS

    Science.gov (United States)

    Hidayat, D.; Laguerta, E.; Baloloy, A.; Valerio, R.; Marcial, S. S.

    2011-12-01

    Mayon is an openly-degassed volcano, producing mostly small, frequent eruptions, most recently in Aug-Sept 2006 and Dec 2009. Mayon volcano status is level 1 with low seismicity dominated mostly local and regional tectonic earthquakes with continuous emission of SO2 from its crater. A research collaboration between Earth Observatory of Singapore-NTU and Philippine Institute of Volcanology and Seismology (PHIVOLCS) have been initiated in 2010 with effort to develop a multi-disciplinary monitoring system around Mayon includes geophysical monitoring, gas geochemical monitoring, and petrologic studies. Currently there are 4 broadband seismographs, 3 short period instruments, and 4 tiltmeters. These instruments will be telemetered to the Lignon Hill Volcano Observatory through radio and 3G broadband internet. We also make use of our self-made low-cost datalogger which has been operating since Jan 2011, performing continuous data acquisition with sampling rate of 20 minute/sample and transmitted through gsm network. First target of this monitoring system is to obtain continuous multi parameter data transmitted in real time to the observatory from different instruments. Tectonically, Mayon is located in the Oas Graben, a northwest-trending structural depression. Previous study using InSAR data, showing evidence of a left-lateral oblique slip movement of the fault North of Mayon. Understanding on what structures active deformation is occurring and how deformation signal is currently partitioned between tectonic and volcanic origin is a key for characterizing magma movement in the time of unrest. Preliminary analysis of the tangential components of tiltmeters (particularly the stations 5 and 7.5 NE from the volcano) shows gradual inflation movement over a few months period. The tangential components for tiltmeters are roughly perpendicular to the fault north of Mayon. This may suggest downward tilting of the graben in the northern side of Mayon. Another possibility is that

  9. Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala

    Science.gov (United States)

    Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.

    2007-05-01

    A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.

  10. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    Science.gov (United States)

    Trippanera, Daniele; Ruch, Joël; Acocella, Valerio; Thordarson, Thor; Urbani, Stefano

    2018-01-01

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja's calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  11. Interaction between central volcanoes and regional tectonics along divergent plate boundaries: Askja, Iceland

    KAUST Repository

    Trippanera, Daniele

    2017-12-04

    Activity within magmatic divergent plate boundaries (MDPB) focuses along both regional fissure swarms and central volcanoes. An ideal place to investigate their mutual relationship is the Askja central volcano in Iceland. Askja consists of three nested calderas (namely Kollur, Askja and Öskjuvatn) located within a hyaloclastite massif along the NNE-SSW trending Icelandic MDPB. We performed an extensive field-based structural analysis supported by a remote sensing study of tectonic and volcanic features of Askja’s calderas and of the eastern flank of the hyaloclastite massif. In the massif, volcano-tectonic structures trend N 10° E to N 40° E, but they vary around the Askja caldera being both parallel to the caldera rim and cross-cutting on the Western side. Structural trends around the Öskjuvatn caldera are typically rim parallel. Volcanic vents and dikes are preferentially distributed along the caldera ring faults; however, they follow the NNE-SSW regional structures when located outside the calderas. Our results highlight that the Askja volcano displays a balanced amount of regional (fissure-swarm related) and local (shallow-magma-chamber related) tectonic structures along with a mutual interaction among these. This is different from Krafla volcano (to the north of Askja) dominated by regional structures and Grímsvötn (to the South) dominated by local structures. Therefore, Askja represents an intermediate tectono-magmatic setting for volcanoes located in a slow divergent plate boundary. This is also likely in accordance with a northward increase in the spreading rate along the Icelandic MDPB.

  12. Magma plumbing system and seismicity of an active mid-ocean ridge volcano.

    Science.gov (United States)

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-20

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  13. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne M.

    2017-06-19

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools

  14. Volcanoes of the World: Reconfiguring a scientific database to meet new goals and expectations

    Science.gov (United States)

    Venzke, Edward; Andrews, Ben; Cottrell, Elizabeth

    2015-04-01

    The Smithsonian Global Volcanism Program's (GVP) database of Holocene volcanoes and eruptions, Volcanoes of the World (VOTW), originated in 1971, and was largely populated with content from the IAVCEI Catalog of Volcanoes of Active Volcanoes and some independent datasets. Volcanic activity reported by Smithsonian's Bulletin of the Global Volcanism Network and USGS/SI Weekly Activity Reports (and their predecessors), published research, and other varied sources has expanded the database significantly over the years. Three editions of the VOTW were published in book form, creating a catalog with new ways to display data that included regional directories, a gazetteer, and a 10,000-year chronology of eruptions. The widespread dissemination of the data in electronic media since the first GVP website in 1995 has created new challenges and opportunities for this unique collection of information. To better meet current and future goals and expectations, we have recently transitioned VOTW into a SQL Server database. This process included significant schema changes to the previous relational database, data auditing, and content review. We replaced a disparate, confusing, and changeable volcano numbering system with unique and permanent volcano numbers. We reconfigured structures for recording eruption data to allow greater flexibility in describing the complexity of observed activity, adding in the ability to distinguish episodes within eruptions (in time and space) and events (including dates) rather than characteristics that take place during an episode. We have added a reference link field in multiple tables to enable attribution of sources at finer levels of detail. We now store and connect synonyms and feature names in a more consistent manner, which will allow for morphological features to be given unique numbers and linked to specific eruptions or samples; if the designated overall volcano name is also a morphological feature, it is then also listed and described as

  15. Reducing sequence risk using trend following and the CAPE ratio

    OpenAIRE

    Clare, A.; Thomas, S.; Smith, P. N.; Seaton, J.

    2017-01-01

    The risk of experiencing bad investment outcomes at the wrong time, or sequence risk, is a poorly understood, but crucial aspect of the risk faced by investors, in particular those in the decumulation phase of their savings journey, typically over the period of retirement financed by a defined contributions pension scheme. Using US equity return data from 1872-2014 we show how this risk can be significantly reduced by applying trend-following investment strategies. We also demonstrate that kn...

  16. San Miguel Volcanic Seismic and Structure in Central America: Insight into the Physical Processes of Volcanoes

    Science.gov (United States)

    Patlan, E.; Velasco, A.; Konter, J. G.

    2010-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and - 88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. In general, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We initially locate events using automated routines and focus on analyzing local events. We then relocate each seismic event by hand-picking P-wave arrivals, and later refine these picks using waveform cross correlation. Using a double difference earthquake location algorithm (HypoDD), we identify a set of earthquakes that vertically align beneath the edifice of the volcano, suggesting that we have identified a magma conduit feeding the volcano. We also apply a double-difference earthquake tomography approach (tomoDD) to investigate the volcano’s plumbing system. Our preliminary results show the extent of the magma chamber that also aligns with some horizontal seismicity. Overall, this volcano is very active and presents a significant hazard to the region.

  17. Cities at risk: status of Italian planning system in reducing seismic and hydrogeological risks

    Directory of Open Access Journals (Sweden)

    Grazia Di Giovanni

    2016-03-01

    Full Text Available Italy and its urban systems are under high seismic and hydrogeological risks. The awareness about the role of human activities in the genesis of disasters is achieved in the scientific debate, as well as the role of urban and regional planning in reducing risks. The paper reviews the state of Italian major cities referred to hydrogeological and seismic risk by: 1 extrapolating data and maps about seismic hazard and landslide risk concerning cities with more than 50.000 inhabitants and metropolitan contexts, and 2 outlining how risk reduction is framed in Italian planning system (at national and regional levels. The analyses of available data and the review of the normative framework highlight the existing gaps in addressing risk reduction: nevertheless a wide knowledge about natural risks afflicting Italian territory and an articulated regulatory framework, the available data about risks are not exhaustive, and risk reduction policies and multidisciplinary pro-active approaches are only partially fostered and applied.

  18. Models of Hawaiian volcano growth and plume structure: Implications of results from the Hawaii Scientific Drilling Project

    OpenAIRE

    DePaolo, D. J.; Stolper, E. M.

    1996-01-01

    The shapes of typical Hawaiian volcanoes are simply parameterized, and a relationship is derived for the dependence of lava accumulation rates on volcano volume and volumetric growth rate. The dependence of lava accumulation rate on time is derived by estimating the eruption rate of a volcano as it traverses the Hawaiian plume, with the eruption rate determined from a specified radial dependence of magma generation in the plume and assuming that a volcano captures melt from a circular area ce...

  19. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    Science.gov (United States)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  20. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  1. The perception of volcanic risk in Kona communities from Mauna Loa and Hualālai volcanoes, Hawai'i

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Johnston, David M.; Paton, Douglas; Swanson, D.A.

    2004-01-01

    Volcanic hazards in Kona (i.e. the western side of the island of Hawai'i) stem primarily from Mauna Loa and Huala??lai volcanoes. The former has erupted 39 times since 1832. Lava flows were emplaced in Kona during seven of these eruptions and last impacted Kona in 1950. Huala??lai last erupted in ca. 1800. Society's proximity to potential eruptive sources and the potential for relatively fast-moving lava flows, coupled with relatively long time intervals since the last eruptions in Kona, are the underlying stimuli for this study of risk perception. Target populations were high-school students and adults ( n =462). Using these data, we discuss threat knowledge as an influence on risk perception, and perception as a driving mechanism for preparedness. Threat knowledge and perception of risk were found to be low to moderate. On average, fewer than two-thirds of the residents were aware of the most recent eruptions that impacted Kona, and a minority felt that Mauna Loa and Huala??lai could ever erupt again. Furthermore, only about one-third were aware that lava flows could reach the coast in Kona in less than 3 h. Lava flows and ash fall were perceived to be among the least likely hazards to affect the respondent's community within the next 10 years, whereas vog (volcanic smog) was ranked the most likely. Less than 18% identified volcanic hazards as amongst the most likely hazards to affect them at home, school, or work. Not surprisingly, individual preparedness measures were found on average to be limited to simple tasks of value in frequently occurring domestic emergencies, whereas measures specific to infrequent hazard events such as volcanic eruptions were seldom adopted. Furthermore, our data show that respondents exhibit an 'unrealistic optimism bias' and infer that responsibility for community preparedness for future eruptions primarily rests with officials. We infer that these respondents may be less likely to attend to hazard information, react to warnings as

  2. On the carcinogenic polycyclic aromatic hydrocarbon benzo(a)pyrene in volcano exhausts.

    Science.gov (United States)

    Ilnitsky, A P; Belitsky, G A; Shabad, L M

    1976-05-01

    The content of benzo(a)pyrene in the juvenile ashes of the volcano Tyatya (Kunashir Island, Kuriles) and in the soil, vegetation and volcanic mud collected near volcanos in Kamchatka was studied. It was concluded that volcanic activity does not play a large role in forming the background level of this carcinogen in the human environment.

  3. Reduced risk of UC in families affected by appendicitis

    DEFF Research Database (Denmark)

    Nyboe Andersen, Nynne; Gørtz, Sanne; Frisch, Morten

    2017-01-01

    OBJECTIVE: The possible aetiological link between appendicitis and UC remains unclear. In order to investigate the hereditary component of the association, we studied the risk of UC in family members of individuals with appendicitis. DESIGN: A cohort of 7.1 million individuals was established...... million person-years of follow-up between 1977 and 2011, a total of 190 004 cohort members developed appendicitis and 45 202 developed UC. Individuals having a first-degree relative with appendicitis before age 20 years had significantly reduced risk of UC (RR 0.90; 95% CI 0.86 to 0.95); this association...... was stronger in individuals with a family predisposition to UC (RR 0.66; 95% CI 0.51 to 0.83). CONCLUSIONS: Individuals with a first-degree relative diagnosed with appendicitis before age 20 years are at reduced risk of UC, particularly when there is a family predisposition to UC. Our findings question...

  4. Indirect risk effects reduce feeding efficiency of ducks during spring.

    Science.gov (United States)

    Behney, Adam C; O'Shaughnessy, Ryan; Eichholz, Michael W; Stafford, Joshua D

    2018-01-01

    Indirect risk effects of predators on prey behavior can have more of an impact on prey populations than direct consumptive effects. Predation risk can elicit more vigilance behavior in prey, reducing the amount of time available for other activities, such as foraging, which could potentially reduce foraging efficiency. Understanding the conditions associated with predation risk and the specific effects predation risk have on prey behavior is important because it has direct influences on the profitability of food items found under various conditions and states of the forager. The goals of this study were to assess how ducks perceived predation risk in various habitat types and how strongly perceived risk versus energetic demand affected foraging behavior. We manipulated food abundance in different wetland types in Illinois, USA to reduce confounding between food abundance and vegetation structure. We conducted focal-animal behavioral samples on five duck species in treatment and control plots and used generalized linear mixed-effects models to compare the effects of vegetation structure versus other factors on the intensity with which ducks fed and the duration of feeding stints. Mallards fed more intensively and, along with blue-winged teal, used longer feeding stints in open habitats, consistent with the hypothesis that limited visibility was perceived to have a greater predation risk than unlimited visibility. The species temporally nearest to nesting, wood ducks, were willing to take more risks for a greater food reward, consistent with an increase in a marginal value of energy as they approached nesting. Our results indicate that some duck species value energy differently based on the surrounding vegetation structure and density. Furthermore, increases in the marginal value of energy can be more influential than perceived risk in shaping foraging behavior patterns. Based on these findings, we conclude that the value of various food items is not solely

  5. Cigarette smoking risk-reducing beliefs: Findings from the United States Health Information National Trends Survey.

    Science.gov (United States)

    Kaufman, Annette R; Coa, Kisha I; Nguyen, Anh B

    2017-09-01

    Cigarette smoking risk-reducing beliefs are ideas that certain health promoting behaviors (e.g., exercise) may mitigate the risks associated with smoking. The objective of this study was to describe smoking risk-reducing beliefs and the belief that quitting can reduce the harmful effects of smoking among the U.S. adult population and the associations between these beliefs, current smoking status, and sociodemographics. Data were from the Health Information National Trends Survey 4 (HINTS 4) Cycles 3 and 4 (2013-2014; N=6862). Descriptive analyses were conducted to examine bivariate associations among the quit smoking belief, smoking risk-reducing beliefs, and covariates. Weighted ordinal logistic regression models examined the adjusted associations between smoking status and sociodemographics, with quit smoking belief and risk-reducing beliefs. Eighty-two percent of the population reported that quitting cigarette smoking can help reduce the harmful effects of smoking a lot: former smokers and individuals with higher educational attainment were more likely to endorse this belief than never smokers and those with lower educational attainment. Many people endorsed smoking risk-reducing beliefs about exercise (79.3%), fruits and vegetables (71.8%), vitamins (67.2%), and sleep (68.5%). Former smokers were less likely to subscribe to these beliefs than never smokers. Vulnerable populations who may be most at risk of smoking attributable morbidity and mortality were more likely to endorse risk-reducing beliefs. Future studies are needed to better understand how risk-reducing beliefs are formed and if modifying these beliefs may help to reduce cigarette smoking in the U.S. Published by Elsevier Inc.

  6. How do women at increased breast cancer risk perceive and decide between risks of cancer and risk-reducing treatments? A synthesis of qualitative research.

    Science.gov (United States)

    Fielden, Hannah G; Brown, Stephen L; Saini, Pooja; Beesley, Helen; Salmon, Peter

    2017-09-01

    Risk-reducing procedures can be offered to people at increased cancer risk, but many procedures can have iatrogenic effects. People therefore need to weigh risks associated with both cancer and the risk-reduction procedure in their decisions. By reviewing relevant literature on breast cancer (BC) risk reduction, we aimed to understand how women at relatively high risk of BC perceive their risk and how their risk perceptions influence their decisions about risk reduction. Synthesis of 15 qualitative studies obtained from systematic searches of SCOPUS, Web of Knowledge, PsychINFO, and Medline electronic databases (inception-June 2015). Women did not think about risk probabilistically. Instead, they allocated themselves to broad risk categories, typically influenced by their own or familial experiences of BC. In deciding about risk-reduction procedures, some women reported weighing the risks and benefits, but papers did not describe how they did so. For many women, however, an overriding wish to reduce intense worry about BC led them to choose aggressive risk-reducing procedures without such deliberation. Reasoning that categorisation is a fundamental aspect of risk perception, we argue that patients can be encouraged to develop more nuanced and accurate categorisations of their own risk through their interactions with clinicians. Empirically-based ethical reflection is required to determine whether and when it is appropriate to provide risk-reduction procedures to alleviate worry. © 2016 The Authors. Psycho-Oncology Published by John Wiley & Sons Ltd.

  7. The isotopic composition of postshield lavas from Mauna Kea volcano, Hawaii

    International Nuclear Information System (INIS)

    Kennedy, A.K.; Fray, F.A.; Kwon, S.T.; West, H.B.

    1991-01-01

    The postshield eruptive stage of Mauna Kea volcano, Hawaii, can be divided into an early basaltic substage, the Hamakua Volcanics, containing picrites, ankaramites, alkalic and tholeiitic basalt, and a hawaiite substage, the Laupahoehoe Volcanics, containing only hawaiites and rare mugearites. Cumulate gabbroic xenoliths in Laupahoehoe Volcanics have isotopic ratios similar to the Hamakua Volcanics, and these gabbros provide constaints on the crustal evolution of Mauna Kea lavas. Because of the small variation in 87 Sr/ 86 Sr (0.70335-0.70362), 143 Nd/ 144 Nd (0.51297-0.51308) and 206 Pb/ 204 Pb (18.306-18.440), lavas from both substages must contain relatively fixed proportions of depleted, enriched and primitive mantle components. In addition, there is Sr, Nd and Pb isotopic overlap between tholeiitic and alkalic Hamakua basalts. However, the steep 207 Pb/ 204 Pb vs. 206 Pb/ 204 Pb arrays of postshield lavas from Mauna Kea, West Maui and Haleakala volcanoes and the existence of rare samples with high 207 Pb/ 204 Pb, up to 15.548, requires an unusual component in some Hawaiian lavas. This component is unlikely to be derived from sediments or MORB lithosphere, and it may be a minor plume component. Lavas erupted during the postshield stage of Mauna Kea volcano do not define a systematic temporal trend of varying 87 Sr/ 86 Sr and 143 Nd/ 144 Nd. This result contrasts with the temporal trend defined by lavas from Haleakala Volcano and provides evidence for important differences between the origin and evolution of different Hawaiian volcanoes. However, the Laupahoehoe Volcanics trend to lower 206 Pb/ 204 Pb ratios than the Hamakua Volcanics. (orig./WL)

  8. Inside the volcano: The how and why of Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    LaFemina, Peter; Hudak, Michael; Feineman, Maureen; Geirsson, Halldor; Normandeau, Jim; Furman, Tanya

    2015-04-01

    The Thrihnukagigur volcano, located in the Brennisteinsfjöll fissure swarm on the Reykjanes Peninsula, Iceland, offers a unique exposure of the upper magmatic plumbing system of a monogenetic volcano. The volcano formed during a dike-fed strombolian eruption ~3500 BP with flow-back leaving an evacuated conduit, elongated parallel to the regional maximum horizontal stress. At least two vents were formed above the dike, as well as several small hornitos south-southwest of the main vent. In addition to the evacuated conduit, a cave exists 120 m below the vent. The cave exposes stacked lava flows and a buried cinder cone. The unconsolidated tephra of the cone is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to the vent that produced lava and tephra during the ~3500 BP fissure eruption. We present geochemical, petrologic and geologic observations, including a high-resolution three-dimensional scan of the system that indicate the dike intersected, eroded and assimilated unconsolidated tephra from the buried cinder cone, thus excavating a region along the dike, allowing for future slumping and cave formation. Two petrographically distinct populations of plagioclase phenocrysts are present in the system: a population of smaller (maximum length 1 mm) acicular phenocrysts and a population of larger (maximum length 10 mm) tabular phenocrysts that is commonly broken and displays disequilibrium sieve textures. The acicular plagioclase crystals are present in the dike and lavas while the tabular crystals are in these units and the buried tephra. An intrusion that appears not to have interacted with the tephra has only acicular plagioclase. This suggests that a magma crystallizing a single acicular population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the tabular population of phenocrysts from the cone. Petrographic thin-sections of lavas sampled near the vent show undigested fragments of tephra from

  9. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    International Nuclear Information System (INIS)

    Firmansyah, Rizky; Nugraha, Andri Dian; Kristianto

    2015-01-01

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26 th , 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4 th , 2011 and still continuously erupted until August 28 th , 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region

  10. Analysis of volcano rocks by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Dekan, J.

    2012-01-01

    In this work we have analysed the basalt rock from Mount Ba tur volcano situated on the Island of Bali in Indonesia.We compared our results with composition of basalt rocks from some other places on the Earth. (authors)

  11. Lahars at Cotopaxi and Tungurahua Volcanoes, Ecuador: Highlights from stratigraphy and observational records and related downstream hazards: Chapter 6

    Science.gov (United States)

    Mothes, Patricia A; Vallance, James W.

    2015-01-01

    Lahars are volcanic debris flows that are dubbed primary when triggered by eruptive activity or secondary when triggered by other factors such as heavy rainfall after eruptive activity has waned. Variation in time and space of the proportion of sediment to water within a lahar dictates lahar flow phase and the resultant sedimentary character of deposits. Characteristics of source material and of debris eroded and incorporated during flow downstream may strongly affect the grain-size composition of flowing lahars and their deposits. Lahars borne on the flanks of two steep-sided stratocones in Ecuador exemplify two important lahar types. Glacier-clad Cotopaxi volcano has been a producer of primary lahars that flow great distances downstream. Such primary lahars include those of both clast-rich and matrix-rich composition—some of which have flowed as far as 325 km to the Pacific Ocean. Cotopaxi's last important eruption in 1877 generated formidable syneruptive lahars comparable in size to those that buried Armero, Colombia, following the 1985 eruption of Nevado del Ruiz volcano. In contrast, ash-producing eruptive activity during the past 15 years at Tungurahua volcano has generated a continual supply of fresh volcaniclastic debris that is regularly remobilized by precipitation. Between 2000 and 2011, 886 rain-generated lahars were registered at Tungurahua. These two volcanoes pose dramatically different hazards to nearby populations. At Tungurahua, the frequency and small sizes of lahars have resulted in effective mitigation measures. At Cotopaxi 137 years have passed since the last important lahar-producing eruption, and there is now a high-risk situation for more than 100,000 people living in downstream valleys.

  12. Constructing a reference tephrochronology for Augustine Volcano, Alaska

    Science.gov (United States)

    Wallace, Kristi; Coombs, Michelle L.

    2013-01-01

    Augustine Volcano is the most historically active volcano in Alaska's populous Cook Inlet region. Past on-island work on pre-historic tephra deposits mainly focused on using tephra layers as markers to help distinguish among prevalent debris-avalanche deposits on the island (Waitt and Beget, 2009, USGS Prof Paper 1762), or as source material for petrogenetic studies. No comprehensive reference study of tephra fall from Augustine Volcano previously existed. Numerous workers have identified Holocene-age tephra layers in the region surrounding Augustine Island, but without well-characterized reference deposits, correlation back to the source volcano is difficult. The purpose of this detailed tephra study is to provide a record of eruption frequency and magnitude, as well as to elucidate physical and chemical characteristics for use as reference standards for comparison with regionally distributed Augustine tephra layers. Whole rock major- and trace-element geochemistry, deposit componentry, and field context are used to correlate tephra units on the island where deposits are coarse grained. Major-element glass geochemistry was collected for use in correlating to unknown regional tephra. Due to the small size of the volcanic island (9 by 11 km in diameter) and frequent eruptive activity, on-island exposures of tephra deposits older than a couple thousand years are sparse, and the lettered Tephras B, M, C, H, I, and G of Waitt and Beget (2009) range in age from 370-2200 yrs B.P. There are, however, a few exposures on the south side of the volcano, within about 2 km of the vent, where stratigraphic sections that extend back to the late Pleistocene glaciation include coarse pumice-fall deposits. We have linked the letter-named tephras from the coast to these higher exposures on the south side using physical and chemical characteristics of the deposits. In addition, these exposures preserve at least 5 older major post-glacial eruptions of Augustine. These ultra

  13. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    Science.gov (United States)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  14. Perceptions of hazard and risk on Santorini

    Science.gov (United States)

    Dominey-Howes, Dale; Minos-Minopoulos, Despina

    2004-10-01

    Santorini, Greece is a major explosive volcano. The Santorini volcanic complex is composed of two active volcanoes—Nea Kameni and Mt. Columbo. Holocene eruptions have generated a variety of processes and deposits and eruption mechanisms pose significant hazards of various types. It has been recognized that, for major European volcanoes, few studies have focused on the social aspects of volcanic activity and little work has been conducted on public perceptions of hazard, risk and vulnerability. Such assessments are an important element of establishing public education programmes and developing volcano disaster management plans. We investigate perceptions of volcanic hazards on Santorini. We find that most residents know that Nea Kameni is active, but only 60% know that Mt. Columbo is active. Forty percent of residents fear that negative impacts on tourism will have the greatest effect on their community. In the event of an eruption, 43% of residents would try to evacuate the island by plane/ferry. Residents aged >50 have retained a memory of the effects of the last eruption at the island, whereas younger residents have no such knowledge. We find that dignitaries and municipal officers (those responsible for planning and managing disaster response) are informed about the history, hazards and effects of the volcanoes. However, there is no "emergency plan" for the island and there is confusion between various departments (Civil Defense, Fire, Police, etc.) about the emergency decision-making process. The resident population of Santorini is at high risk from the hazards associated with a future eruption.

  15. Medical interventional procedures--reducing the radiation risks

    International Nuclear Information System (INIS)

    Cousins, C.; Sharp, C.

    2004-01-01

    Over the last 40 years, the number of percutaneous interventional procedures using radiation has increased significantly, with many secondary care clinicians using fluoroscopically guided techniques. Many procedures can deliver high radiation doses to patients and staff, with the potential to cause immediate and delayed radiation effects. The challenge for interventionists is to maximize benefit, whilst minimizing radiation risk to patients and staff. Non-radiologist clinicians are often inadequately trained in radiation safety and radiobiology. However, clinical governance and legislation now requires a more rigorous approach to protecting patients and staff. Protection can be ensured, and risks can be controlled, by appropriate design, procurement and commissioning of equipment; quality assurance; and optimal operational technique, backed by audit. Interventionists need knowledge and skills to reduce the risks. Appropriate training should include awareness of the potential for radiation injury, equipment operational parameters, doses measurement and recording methods and dose reduction techniques. Clinical governance requires informed consent, appropriate patient counselling and follow-up

  16. Medical interventional procedures--reducing the radiation risks

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, C. E-mail: claire.cousins@addenbrookes.nhs.uk; Sharp, C

    2004-06-01

    Over the last 40 years, the number of percutaneous interventional procedures using radiation has increased significantly, with many secondary care clinicians using fluoroscopically guided techniques. Many procedures can deliver high radiation doses to patients and staff, with the potential to cause immediate and delayed radiation effects. The challenge for interventionists is to maximize benefit, whilst minimizing radiation risk to patients and staff. Non-radiologist clinicians are often inadequately trained in radiation safety and radiobiology. However, clinical governance and legislation now requires a more rigorous approach to protecting patients and staff. Protection can be ensured, and risks can be controlled, by appropriate design, procurement and commissioning of equipment; quality assurance; and optimal operational technique, backed by audit. Interventionists need knowledge and skills to reduce the risks. Appropriate training should include awareness of the potential for radiation injury, equipment operational parameters, doses measurement and recording methods and dose reduction techniques. Clinical governance requires informed consent, appropriate patient counselling and follow-up.

  17. The problem about the possibility of establishing an interrelation between the activity of the sun and that of mud volcanos

    Energy Technology Data Exchange (ETDEWEB)

    Mekhtiyev, Sh.F.; Khalilov, E.N.

    1984-01-01

    Studies of the mud volcanos of Eastern Azerbaydzhan showed that periods of weakening in the mud volcano activity correspond to periods of increased solar activity and the opposite. A graph which characterizes the change in the mud volcano activity in time is built to establish the association between solar activity and the activity of the mud volcanos. Data from 300 eruptions of mud volcanos of the world were used. All the world's mud volcanos are located in zones of high seismic activity. These zones are characterized by the presence of deeply focused (subcrust) earthquakes. All the mud volcanos are located along seismic strips of the earth, which reflect zones of subduction or the Zavaritskiy Benioff zones. The mud volcanos are associated with global geodynamic processes, while their activity characterizes the activity of the subduction zones. The activity of the subduction zones rises in periods of increased solar activity. Building a rectilinear trend of the Gauss capacity showed that the activation of the world's mud volcanos is increased in time at a speed of 0.02 eruptions per year. The activation of the subduction zones also rises in time. These studies are one of the first attempts to analyze data about the eruptions of the world's mud volcanos with consideration of the new global tectonics and certain cosmic processes.

  18. Reducing health risk assigned to organic emissions from a chemical weapons incinerator.

    Science.gov (United States)

    Laman, David M; Weiler, B Douglas; Skeen, Rodney S

    2013-03-01

    Organic emissions from a chemical weapons incinerator have been characterized with an improved set of analytical methods to reduce the human health risk assigned to operations of the facility. A gas chromatography/mass selective detection method with substantially reduced detection limits has been used in conjunction with scanning electron microscopy/energy dispersive X-ray spectrometry and Fourier transform infrared microscopy to improve the speciation of semi-volatile and non-volatile organics emitted from the incinerator. The reduced detection limits have allowed a significant reduction in the assumed polycyclic aromatic hydrocarbon (PAH) and aminobiphenyl (ABP) emission rates used as inputs to the human health risk assessment for the incinerator. A mean factor of 17 decrease in assigned human health risk is realized for six common local exposure scenarios as a result of the reduced PAH and ABP detection limits.

  19. Mariana Forearc Serpentine Mud Volcanoes Harbor Novel Communities of Extremophilic Archaea

    Science.gov (United States)

    Curtis, A. C.; Moyer, C. L.

    2005-12-01

    Since the Eocene (45 Ma) the Pacific Plate has been subducting beneath the Philippine Plate in the western Pacific ocean. This process has given rise to the Mariana Islands. As a direct result of this non-accretionary subduction, the Mariana Island Arc contains a broad forearc zone of serpentinite mud volcanoes located between the island chain and the trench. Forearc faulting, due to high pressure and low temperature build-up, produce slurries of mud and rock that mix with slab derived fluids and rise in conduits. Due to dehydration of the overlying mantle, native rock is converted to serpentinite, which squeezes out at fractures along the sea floor. This results in giant mud volcanoes (~30 km diameter and ~2 km high) that form a chain between 50 and 150 km behind the trench axis. Microbial samples were collected using Jason II from seven mud volcanoes along the length of the forearc and community fingerprinting was applied to genomic DNA using terminal restriction length polymorphism (T-RFLP). The resulting data were compared with traditional clone library and sequence analysis from samples obtained from the southernmost mud volcano, South Chamorro, site 1200, holes D and E, sampled during ODP Leg 195. The dominant archaeal phylotypes found clustered into two groups within the Methanobacteria, a class of anaerobic methanogens and methylotrophs. These phylotypes were detected at three of the seven mud volcanoes sampled and comprised 61% of the archaeal clone library from 1200 E. The first group was most closely related to the order Methanobacteriales, however, these novel phylotypes had similarity values of up to 0.90 at best with some resulting at 0.48. The second novel group of phylotypes were most closely related to order Methanosarcinales, with similarity values in the range of 0.50 to 0.22, indicating a relatively weak association with known phylotypes. At 1200 D, phylotypes associated with non-thermophilic Marine Group I Crenarchaeota were detected

  20. Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series

    Science.gov (United States)

    Wang, Teng; DeGrandpre, Kimberly; Lu, Zhong; Freymueller, Jeffrey T.

    2018-02-01

    Akutan volcano is one of the most active volcanoes in the Aleutian arc. An intense swarm of volcano-tectonic earthquakes occurred across the island in 1996. Surface deformation after the 1996 earthquake sequence has been studied using Interferometric Synthetic Aperture Radar (InSAR), yet it is hard to determine the detailed temporal behavior and spatial extent of the deformation due to decorrelation and the sparse temporal sampling of SAR data. Atmospheric delay anomalies over Akutan volcano are also strong, bringing additional technical challenges. Here we present a time series InSAR analysis from 2003 to 2016 to reveal the surface deformation in more detail. Four tracks of Envisat data acquired from 2003 to 2010 and one track of TerraSAR-X data acquired from 2010 to 2016 are processed to produce high-resolution surface deformation, with a focus on studying two transient episodes of inflation in 2008 and 2014. For the TerraSAR-X data, the atmospheric delay is estimated and removed using the common-master stacking method. These derived deformation maps show a consistently uplifting area on the northeastern flank of the volcano. From the TerraSAR-X data, we quantify the velocity of the subsidence inside the caldera to be as high as 10 mm/year, and identify another subsidence area near the ground cracks created during the 1996 swarm.

  1. Emergence of Lava Dome from the Crater Lake of Kelud Volcano, East Java

    Directory of Open Access Journals (Sweden)

    Sri Hidayati

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v4i4.83Kelud Volcano (+1731 m in East Java is one of the most active and dangerous volcanoes in Indonesia. A large lake occupies the summit crater. Historical eruptions generally only lasted for a very short time, mostly no longer than a few hours. The outburst is usually accompanied by pyroclastic flows. On August 2007, the activity of the volcano was initiated by the increase of the temperature of lake water and the change of the colour from typical green to yellow. Activities of the volcano are discussed following the swarms of volcano-tectonic (VT earthquakes on September 10th, September 26th to 29th, and October 24th to November 2nd. On September 26th to 29th, hypocentral distribution of those VT shifted from 5 km deep to just beneath the crater. The highest number of VT earthquakes occurred on November 1st attaining 50 events, then followed by a swarm of B-type events, where the number reached 1437 events in a day. The volcanic activity peaked on November 3rd when seismic records became saturated, which then was preceded by a sharp increase of lake temperature and a sudden deflation of radial tilt. It suggests that the lava extrusion forming a lava dome was taking place.

  2. Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran

    Science.gov (United States)

    Tayebi, Mohammad H.; Tangestani, Majid H.; Vincent, Robert K.; Neal, Devin

    2014-10-01

    This study applies Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and the Mixture Tuned Matched Filtering (MTMF) algorithm to map the sub-pixel distribution of alteration minerals associated with the Masahim volcano, SE Iran for understanding the spatial relationship between alteration minerals and volcano facies. Investigations of the alteration mineralogy were conducted using field-spectroscopy, X-ray diffraction (XRD) analysis and ASTER Short Wave Infrared (SWIR) spectral data. In order to spectrally characterize the stratovolcano deposits, lithological units and alteration minerals, the volcano was divided into three facies: the Central, Proximal, and Medial-distal facies. The reflectance spectra of rock samples show absorption features of a number of minerals including white mica, kaolinite, montmorillonite, illite, goethite, hematite, jarosite, opal, and chlorite. The end-members of key alteration minerals including sericite (phyllic zone), kaolinite (argillic zone) and chlorite (propylitic zone) were extracted from imagery using the Pixel Purity Index (PPI) method and were used to map alteration minerals. Accuracy assessment through field observations was used to verify the fraction maps. The results showed that most prominent altered rocks situated at the central facies of volcano. The alteration minerals were discriminated with the coefficient of determination (R2) of 0.74, 0.81, and 0.68 for kaolinite, sericite, and chlorite, respectively. The results of this study have the potential to refine the map of alteration zones in the Masahim volcano.

  3. Volcano Monitoring in Ecuador: Three Decades of Continuous Progress of the Instituto Geofisico - Escuela Politecnica Nacional

    Science.gov (United States)

    Ruiz, M. C.; Yepes, H. A.; Hall, M. L.; Mothes, P. A.; Ramon, P.; Hidalgo, S.; Andrade, D.; Vallejo Vargas, S.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Palacios, P.; Alvarado, A. P.; Enriquez, W.; Vasconez, F.; Vaca, M.; Arrais, S.; Viracucha, G.; Bernard, B.

    2014-12-01

    In 1988, the Instituto Geofisico (IG) began a permanent surveillance of Ecuadorian volcanoes, and due to activity on Guagua Pichincha, SP seismic stations and EDM control lines were then installed. Later, with the UNDRO and OAS projects, telemetered seismic monitoring was expanded to Tungurahua, Cotopaxi, Cuicocha, Chimborazo, Antisana, Cayambe, Cerro Negro, and Quilotoa volcanoes. In 1992 an agreement with the Instituto Ecuatoriano de Electrificacion strengthened the monitoring of Tungurahua and Cotopaxi volcanoes with real-time SP seismic networks and EDM lines. Thus, background activity levels became established, which was helpful because of the onset of the 1999 eruptive activity at Tungurahua and Guagua Pichincha. These eruptions had a notable impact on Baños and Quito. Unrest at Cotopaxi volcano was detected in 2001-2002, but waned. In 2002 Reventador began its eruptive period which continues to the present and is closely monitored by the IG. In 2006 permanent seismic BB stations and infrasound sensors were installed at Tungurahua and Cotopaxi under a cooperative program supported by JICA, which allowed us to follow Tungurahua's climatic eruptions of 2006 and subsequent eruptions up to the present. Programs supported by the Ecuadorian Secretaria Nacional de Ciencia y Tecnologia and the Secretaria Nacional de Planificacion resulted in further expansion of the IG's monitoring infrastructure. Thermal and video imagery, SO2 emission monitoring, geochemical analyses, continuous GPS and tiltmeters, and micro-barometric surveillance have been incorporated. Sangay, Soche, Ninahuilca, Pululahua, and Fernandina, Cerro Azul, Sierra Negra, and Alcedo in the Galapagos Islands are now monitored in real-time. During this time, international cooperation with universities (Blaise Pascal & Nice-France, U. North Carolina, New Mexico Tech, Uppsala-Sweden, Nagoya, etc.), and research centers (USGS & UNAVCO-USA, IRD-France, NIED-Japan, SGC-Colombia, VAAC, MIROVA) has introduced

  4. Integrating ambient noise with GIS for a new perspective on volcano imaging and monitoring: The case study of Mt. Etna

    Science.gov (United States)

    Guardo, R.; De Siena, L.

    2017-11-01

    The timely estimation of short- and long-term volcanic hazard relies on the availability of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centres and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The study recovers a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows that anomalies are generally related to volcano-tectonic structures active during the last 17 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource to monitor volcanoes in unrest, reducing the risk of loss of human lives and instrumentation.

  5. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly

  6. Volcano morphometry and volume scaling on Venus

    Science.gov (United States)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-01-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  7. Differential InSAR Monitoring of the Lampur Sidoarjo Mud Volcano (Java, Indonesia) Using ALOS PALSAR Imagery

    Science.gov (United States)

    Thomas, Adam; Holley, Rachel; Burren, Richard; Meikle, Chris; Shilston, David

    2010-03-01

    The Lampur Sidoarjo mud volcano (Java, Indonesia), colloquially called LUSI, first appeared in May 2006. Its cause, whether the result of natural or anthropogenic activities (or a combination of both), is still being debated within the academic, engineering and political communities.The mud volcano expels up to 150,000 m3 of mud per day; and over time, this large volume of mud has had a major environmental and economic impact on the region. The mud flow from LUSI has now covered 6 km2 to depths some tens of metres, displacing approximately 30,000 residents; and continues to threaten local communities, businesses and industry. With such a large volume of mud being expelled each day it is inevitable (as with onshore oil and gas production fields) that there will be some ground surface movement and instability issues at the mud source (the main vent), and in the vicinity of the mud volcano footprint.Due to the dynamic ground surface conditions, engineers and academics alike have found it difficult to reliably monitor ground surface movements within the effected region using conventional surveying techniques. Consequently, engineers responsible for the risk assessment of ground surface instabilities within the proximity of LUSI have called upon the use of satellite interferometry to continually monitor the hazard.The Advanced Land Observing Satellite (ALOS), launched on 24th January 2006, carries onboard an L- band Synthetic Aperture Radar (SAR) instrument called PALSAR (Phased Array type L-band Synthetic Aperture Radar). In contrast to established C-band (5.6cm wavelength) SAR instruments onboard ERS-1 & -2, Envisat, Radarsat-1, and the recently launched Radarsat-2 satellite, PALSAR's (L-band/23.8cm wavelength) instrument presents a number of advantages, including the ability to map larger-scale ground motions, over relatively short timeframes, in tropical environments, without suffering as significantly from signal decorrelation associated with C-band imagery

  8. Fluctuations of glaciers of the Klyuchevskaya group of volcanoes in the 20th –21st centuries

    Directory of Open Access Journals (Sweden)

    A. Ya. Muraviev

    2016-01-01

    Full Text Available Changes in sizes of the Klyuchevskaya volcanic group's glaciers had been estimated for the period from 1949–1950 to 2010–2015 using results of analysis of current satellite imagery, data of field observations and historic records. Changes in front positions for some glaciers were analyzed for different periods of time. According to results of comparison between our data and similar ones from the Glacier Inventory the glacier areas decreased by 0.7%. Calculations made with corrected data demonstrated the total increase of the glaciation area by 4.3%. Glaciation of the Klyuchevskoy volcano is characterized by dynamic instability and significant changeability. The Erman glacier, the largest one in this region, did constantly advance since 1945. In 1949‑2015, its area at the front increased by 4.96±0.39 km2, while the front advanced along the valley of the Sukhaya River by approximately 3675±15 m and by 3480±20 m along the valley of the Krutenkaya River. A number of «wandering glaciers» located on the North‑Eastern and Eastern slopes of the volcano, on the contrary, significantly reduced their areas. At the same time, formation of new flows of ice is noticed within the «ice belt». Under the influence of active volcanic processes, the configuration of glacier boundaries on the slopes of Klyuchevskoy volcano does actively change in not only the tongue areas but also in the accumulation areas. Changes in dynamics of the glaciation areas of the Klyuchevskaya group of volcanoes don’t correspond to the present‑day climate changes. The interaction of modern volcanism and glaciation in the area as a whole is conducive to the preservation and development of glaciers, despite the deterioration of climatic conditions of their existence.

  9. Carbonate assimilation at Merapi volcano, Java Indonesia

    DEFF Research Database (Denmark)

    Chadwick, J.P; Troll, V.R; Ginibre,, C.

    2007-01-01

    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An40^95...

  10. Catalog of earthquake hypocenters at Redoubt Volcano and Mt. Spurr, Alaska: October 12, 1989 - December 31, 1990

    Science.gov (United States)

    Power, John A.; March, Gail D.; Lahr, John C.; Jolly, Arthur D.; Cruse, Gina R.

    1993-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska, Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, began a program of seismic monitoring at potentially active volcanoes in the Cook Inlet region in 1988. Seismic monitoring of this area was previously accomplished by two independent seismic networks operated by the U.S. Geological Survey (Northern Cook Inlet) and the Geophysical Institute (Southern Cook Inlet). In 1989 the AVO seismic program consisted of three small-aperture networks of six, five, and six stations on Mt. Spurr, Redoubt Volcano, and Augustine Volcano respectively. Thirty-five other stations were operated in the Cook Inlet region as part of the AVO program. During 1990 six additional stations were added to the Redoubt network in response to eruptive activity, and three stations were installed at Iliamna Volcano. The principal objectives of the AVO program have been the seismic surveillance of the Cook Inlet volcanoes and the investigation of seismic processes associated with active volcanism.

  11. Geologic Mapping, Volcanic Stages and Magmatic Processes in Hawaiian Volcanoes

    Science.gov (United States)

    Sinton, J. M.

    2005-12-01

    The concept of volcanic stages arose from geologic mapping of Hawaiian volcanoes. Subaerial Hawaiian lava successions can be divided generally into three constructional phases: an early (shield) stage dominated by thin-bedded basaltic lava flows commonly associated with a caldera; a later (postshield) stage with much thicker bedded, generally lighter colored lava flows commonly containing clinopyroxene; calderas are absent in this later stage. Following periods of quiescence of a half million years or more, some Hawaiian volcanoes have experienced renewed (rejuvenated) volcanism. Geological and petrographic relations irrespective of chemical composition led to the identification of mappable units on Niihau, Kauai, Oahu, Molokai, Maui and Hawaii, which form the basis for this 3-fold division of volcanic activity. Chemical data have complicated the picture. There is a growing tendency to assign volcanic stage based on lava chemistry, principally alkalicity, into tholeiitic shield, alkalic postshield, and silica undersaturated rejuvenation, despite the evidence for interbedded tholeiitic and alkalic basalts in many shield formations, and the presence of mildly tholeiitic lavas in some postshield and rejuvenation formations. A consistent characteristic of lava compositions from most postshield formations is evidence for post-melting evolution at moderately high pressures (3-7 kb). Thus, the mapped shield to postshield transitions primarily reflect the disappearance of shallow magma chambers (and associated calderas) in Hawaiian volcanoes, not the earlier (~100 ka earlier in Waianae Volcano) decline in partial melting that leads to the formation of alkalic parental magmas. Petrological signatures of high-pressure evolution are high-temperature crystallization of clinopyroxene and delayed crystallization of plagioclase, commonly to <3 % MgO. Petrologic modeling using pMELTS and MELTS algorithms allows for quantification of the melting and fractionation conditions giving

  12. Body Wave and Ambient Noise Tomography of Makushin Volcano, Alaska

    Science.gov (United States)

    Lanza, F.; Thurber, C. H.; Syracuse, E. M.; Ghosh, A.; LI, B.; Power, J. A.

    2017-12-01

    Located in the eastern portion of the Alaska-Aleutian subduction zone, Makushin Volcano is among the most active volcanoes in the United States and has been classified as high threat based on eruptive history and proximity to the City of Unalaska and international air routes. In 2015, five individual seismic stations and three mini seismic arrays of 15 stations each were deployed on Unalaska island to supplement the Alaska Volcano Observatory (AVO) permanent seismic network. This temporary array was operational for one year. Taking advantage of the increased azimuthal coverage and the array's increased earthquake detection capability, we developed body-wave Vp and Vp/Vs seismic images of the velocity structure beneath the volcano. Body-wave tomography results show a complex structure with the upper 5 km of the crust dominated by both positive and negative Vp anomalies. The shallow high-Vp features possibly delineate remnant magma pathways or conduits. Low-Vp regions are found east of the caldera at approximately 6-9 km depth. This is in agreement with previous tomographic work and geodetic models, obtained using InSAR data, which had identified this region as a possible long-term source of magma. We also observe a high Vp/Vs feature extending between 7 and 12 km depth below the caldera, possibly indicating partial melting, although the resolution is diminished at these depths. The distributed stations allow us to further complement body-wave tomography with ambient noise imaging and to obtain higher quality of Vs images. Our data processing includes single station data preparation and station-pair cross-correlation steps (Bensen et al., 2007), and the use of the phase weighted stacking method (Schimmel and Gallart, 2007) to improve the signal-to-noise ratio of the cross-correlations. We will show surface-wave dispersion curves, group velocity maps, and ultimately a 3D Vs image. By performing both body wave and ambient noise tomography, we provide a high

  13. Tephrostratigraphy of Changbaishan volcano, northeast China, since the mid-Holocene

    Science.gov (United States)

    Sun, Chunqing; Liu, Jiaqi; You, Haitao; Nemeth, Karoly

    2017-12-01

    A detailed tephrostratigraphy of an active volcano is essential for evaluating its eruptive history, forecasting future eruptions and correlation with distal tephra records. Changbaishan volcano is known for its Millennium eruption (ME, AD 940s; VEI 7) and the ME tephra has been detected in Greenland ice cores ∼9000 km from the vent. However, the pre-Millennium (pre-ME) and post-Millennium (post-ME) eruptions are still poorly characterized. In this study, we present a detailed late Holocene eruptive sequence of Changbaishan volcano based on single glass shard compositions from tephra samples collected from around the caldera rim and flanks. Tephra ages are constrained by optically stimulated luminescence (OSL) and AMS 14C dates. Tephra from the mid-Holocene pre-ME eruption can be divided into two pyroclastic fall subunits, and it cannot be correlated with any known Changbaishan-sourced tephra recorded in the Japan Sea based on major element composition of glass shards, such as the B-J (Baegdusan-Japan Basin) and B-V (Baegdusan-Vladivostok-oki) tephras. ME pyroclastic fall deposits from the caldera rims and volcanic flanks can be correlated to the juvenile pumice lapilli or blocks within the pyroclastic density current (PDC) deposits deposited in the valleys around the volcano based on glass shard compositions. Our results indicate that the glass shard compositions of proximal ME tephra are more varied than previously thought and can be correlated with distal ME tephra. In addition, widely-dispersed mafic scoria was ejected by the ME Plinian column and deposited on the western and southern summits and the eastern flank of the volcano. Data for glass from post-ME eruptions, such as the historically-documented AD 1403, AD 1668 and AD 1702 eruptions, are reported here for the first time. Except for the ME, other Holocene eruptions, including pre-ME and post-ME eruptions, had the potential to form widely-distributed tephra layers around northeast Asia, and our dataset

  14. Reduced cancer risk in vegetarians: an analysis of recent reports.

    Science.gov (United States)

    Lanou, Amy Joy; Svenson, Barbara

    2010-12-20

    This report reviews current evidence regarding the relationship between vegetarian eating patterns and cancer risk. Although plant-based diets including vegetarian and vegan diets are generally considered to be cancer protective, very few studies have directly addressed this question. Most large prospective observational studies show that vegetarian diets are at least modestly cancer protective (10%-12% reduction in overall cancer risk) although results for specific cancers are less clear. No long-term randomized clinical trials have been conducted to address this relationship. However, a broad body of evidence links specific plant foods such as fruits and vegetables, plant constituents such as fiber, antioxidants and other phytochemicals, and achieving and maintaining a healthy weight to reduced risk of cancer diagnosis and recurrence. Also, research links the consumption of meat, especially red and processed meats, to increased risk of several types of cancer. Vegetarian and vegan diets increase beneficial plant foods and plant constituents, eliminate the intake of red and processed meat, and aid in achieving and maintaining a healthy weight. The direct and indirect evidence taken together suggests that vegetarian diets are a useful strategy for reducing risk of cancer.

  15. Biological Studies on a Live Volcano.

    Science.gov (United States)

    Zipko, Stephen J.

    1992-01-01

    Describes scientific research on an Earthwatch expedition to study Arenal, one of the world's most active volcanoes, in north central Costa Rica. The purpose of the two-week project was to monitor and understand the past and ongoing development of a small, geologically young, highly active stratovolcano in a tropical, high-rainfall environment.…

  16. Reducing the risk of Legionnaires' disease associated with cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Freije, M.R. [HC Information Resources Inc., Carlsbad, CA (United States)

    2008-08-15

    To reduce the health and legal risks associated with Legionnaires' disease, facility managers should take steps to minimize Legionella bacteria in plumbing systems, open industrial equipment, water features, cooling towers, and other aerosolizing water systems. The risk of Legionnaires' disease associated with cooling towers can be reduced by controlling Legionella bacteria in cooling water and preventing transmission of the bacteria from towers to people. This paper presents nine reasonable ways to accomplish these goals. (orig.)

  17. Geophysical investigations of magma plumbing systems at Cerro Negro volcano, Nicaragua

    OpenAIRE

    MacQueen, Patricia Grace

    2013-01-01

    Cerro Negro near Léon, Nicaragua is a very young (163 years), relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan (recurrence interval 6-7 years), presenting a significant hazard to nearby communities. Previous studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring Las Pilas-El Hoyo volcano. Analysis of Bouguer gravity data collected at Cerro Negro has revealed connected positive d...

  18. Relationships between Microbial Activities and Subduction-related Outgassing and Volatile Flux at Aleutian Arc Volcanoes

    Science.gov (United States)

    Miller, H.; Lopez, T. M.; Fischer, T. P.; Schrenk, M. O.

    2016-12-01

    Subduction-related processes, including the movement and alteration of carbon compounds, are an important component of global geochemical cycles. Actively degassing volcanoes of the Aleutian Island arc offer interesting opportunities to not only characterize the composition and abundance of volatiles, but also to identify the origin of the discharging gases (e.g. mantle, organic matter, or carbonates). Taking this approach a step further, microbial activities in and around volcanic fumarole areas may impact the composition and flux of reduced volcanic gases, either through their modification or their assimilation into fixed biomass. Microbiological studies of these systems can be used to develop predictive models to complement those based upon geochemical data while providing greater understanding of the causal relationships between microbial populations and their environment, and ultimately refine estimates of volcanic outgassing. Coupled fumarole soil and gas samples were collected from several Aleutian Island volcanoes in 2015 (Gareloi, Kanaga, Kiska, Little Sitkin) and 2016 (Okmok, Resheschnoi). DNA was extracted from the soil and used to describe microbial community composition, while gas samples were analyzed through chromatography and mass spectrometry. Preliminary data suggests a relationship between the abundance of specific groups of prokaryotes known to metabolize reduced gases, such as sulfur-oxidizers and methanotrophs, and the abundances of the degassing volatiles, including sulfur dioxide and methane. Ongoing studies aimed at investigating the relationship between the genomic composition of the fumarolic microbial community and the physical and chemical properties of the soil (i.e. mineralogy, bulk geochemistry, nutrient concentration, gas flux, and environmental measurements) are underway. These data will be used to evaluate the potential for microbial communities to remove volcanic carbon and store it as biomass, or to modify the volatile carbon

  19. Active volcanoes observed through Art: the contribution offered by the social networks

    Science.gov (United States)

    Neri, Marco; Neri, Emilia

    2015-04-01

    Volcanoes have always fascinated people for the wild beauty of their landscapes and also for the fear that they arouse with their eruptive actions, sometimes simply spectacular, but other times terrifying and catastrophic for human activities. In the past, volcanoes were sometimes imagined as a metaphysical gateway to the otherworld; they have inspired the creation of myths and legends ever since three thousand years ago, also represented by paintings of great artistic impact. Modern technology today offers very sophisticated and readily accessed digital tools, and volcanoes continue to be frequently photographed and highly appreciated natural phenomena. Moreover, in recent years, the spread of social networks (Facebook, Twitter, YouTube, Instagram, etc.) have made the widespread dissemination of graphic contributions even easier. The result is that very active and densely inhabited volcanoes such as Etna, Vesuvius and Aeolian Islands, in Italy, have become among the most photographed subjects in the world, providing a popular science tool with formidable influence and usefulness. The beauty of these landscapes have inspired both professional artists and photographers, as well as amateurs, who compete in the social networks for the publication of the most spectacular, artistic or simply most informative images. The end result of this often frantic popular scientific activity is at least two-fold: on one hand, it provides geoscientists and science communicators a quantity of documentation that is almost impossible to acquire through the normal systems of volcano monitoring, while on the other it raises awareness and respect for the land among the civil community.

  20. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin

    Science.gov (United States)

    Ferrara; Mazzolai; Lanzillotta; Nucaro; Pirrone

    2000-10-02

    Emissions from volcanoes, fumaroles and solfataras as well as contributions from widespread geological anomalies could represent an important source of mercury released to the atmosphere in the Mediterranean basin. Volcanoes located in this area (Etna, Stromboli and Vulcano) are the most active in Europe; therefore, it is extremely important to know their mercury contributions to the regional atmospheric budget. Two main methods are used for the evaluation of volcanic mercury flux: a direct determination of the flux (by measuring in the plume) and an indirect one derived from the determination of the Hg/SO2 (or Hg/S) ratio value, as SO2 emissions are constantly monitored by volcanologists. An attempt to estimate mercury flux from the Vulcano volcano and to establish the Hg/S ratio value has been made along three field campaigns carried out in October 1998, in February and May 1999 sampling several fumaroles. Traditional sampling methods were used to collect both total Hg and S. The average Hg/S ratio value resulted to be 1.2 x 10(-7). From the Hg/S value we derived the Hg/SO2 value, and by assuming that all the volcanoes located in this area have the same Hg/SO2 ratio, mercury emissions from Vulcano and Stromboli were estimated to be in the range 1.3-5.5 kg/year and 7.3-76.6 kg/year respectively, while for Etna mercury flux ranged from 61.8 to 536.5 kg/year. Data reported in literature appear to be overestimated (Fitzgerald WF. Mercury emission from volcanos. In: 4th International conference on mercury as a global pollutant, August 4-8 1996, Hamburg, Germany), volcanic mercury emission does not constitute the main natural source of the metal.

  1. Relative Seismic Velocity Variations Correlate with Deformation at Kīlauea Volcano.

    Science.gov (United States)

    Donaldson, C.; Caudron, C.; Green, R. G.; White, R. S.

    2016-12-01

    Passive interferometry using ambient seismic noise is an appealing monitoring tool at volcanoes. The continuous nature of seismic noise provides better temporal resolution than earthquake interferometry and ambient noise may be sensitive to changes at depths that do not deform the volcano surface. Despite this, to our knowledge, no studies have yet comprehensively compared deformation and velocity at a volcano over a significant length of time. We use a volcanic tremor source (approximately 0.3 - 1.0 Hz) at Kīlauea volcano as a source for interferometry to measure relative velocity changes with time. The tremor source that dominates the cross correlations is located under the Halema'uma'u caldera at Kīlauea summit. By cross-correlating the vertical component of day-long seismic records between 200 pairs of stations, we extract coherent and temporally consistent coda wave signals with time lags of up to 70 seconds. Our resulting time series of relative velocity shows a remarkable correlation with the tilt record measured at Kīlauea summit. Kīlauea summit is continually inflating and deflating as the level of the lava lake rises and falls. During these deflation-inflation (DI) events the tilt increases (inflation), as the velocity increases, on the scale of days to weeks. In contrast, we also detect a longer-term velocity decrease between 2011-2015 as the volcano slowly inflates. We suggest that variations in velocity result from opening and closing cracks and pores due to changes in magma pressurization. Early modeling results indicate that pressurizing magma reservoirs at different depths can result in opposite changes in compression/extension at the surface. The consistent correlation of relative velocity and deformation in this study provides an opportunity to better understand the mechanism causing velocity changes, which currently limits the scope of passive interferometry as a monitoring tool.

  2. Volcanic risk: the responsibility of science in communication

    Science.gov (United States)

    Piccione, Caterina

    2013-04-01

    The knowledge of the places where we live comes both from the experience handed down from one generation to the other and from scientific knowledge. In some cases, natural risks are "invisible", such as earthquakes, in some other cases, natural risks are seemingly "invisible", such as a wall in danger of collapse or a valley in a flood zone. And besides all this, there is volcanic risk, where the power of the forces of nature appears in all its beauty and majesty. The possibility to see volcanoes, to perceive their changes, to observe them closely and the need to live with them, makes it very important for the population living in these areas to have an adequate knowledge of the risk, a knowledge that should be based on scientific research. In Italy the experience of the Istituto Nazionale di Geofisica e Vulcanologia in the Vesuvio area, in the Aeolian Islands and around Etna shows how vital it is to make people aware of volcanic risk. Thanks to the support of the scientific community, the population can develop the best possible coexistence with volcanoes and with the risk they represent. These are extreme situations, but they are the starting point for educational and informative activities continuing to evolve and upgrade in parallel to the availability of new technologies and media and the progress of research that INGV has been conducting for years through specific projects. The scientific community and individual researchers have the ethical duty to share with the community the knowledge on risk, a responsibility that becomes especially important in those areas affected by volcanic risk. It is from this educational action that depends on the awareness of the populations with regard to the risk they are exposed to, that results in a responsible behavior in case of emergency, and that becomes the main variable for the safety of communities coexisting with active volcanoes.

  3. Vocanic Deformations During Repose Interval Revealed by GPS Measurements, Batur Volcano, Indonesia

    Science.gov (United States)

    Nishimae, K.; Fujii, N.; Kimata, F.; Murase, M.; Suganda, O. K.; Abidin, H. Z.

    2005-12-01

    Batur volcano is located north west of Bali Island in Indonesia.This volcano has two calderas with more than 10 km in diameter. Recent eruptions with lava flow occurred in 1963 and 1974. No effusion of lava has been observed since 1990, although steam explosions occurred August 1994, November 1997 and June 1998.This suggests that magmatic activity of this volcano would keep its high level since 1994.GPS observation network of this volcano has been kept by Institute Technology of Bandung (ITB) and Volcano Survey of Indonesia (VSI).The network was consisted of 10 observation points at the beginning in 1999, and now it becomes 23 observation points. We have made GPS campaign observations about five times from 2003 to 2005. Each campaign observation consisted of a couple of days of measurements for each observation point. In order to keep the quality of data as high as possible, observations have been made at least 12 hours of continuous data for each point. In this report, results of two campaign observations (December 2004 and July 2005) are used for the analysis. The data thus obtained are fitted to the Mogi source (i.e. a point source model) to locate the depth and amount of volume changes for 7 months. Location of the Mogi source was obtained about 4km southeast of the summit of central cone, and 3km depth with deflation volume change of 1.3_~106 m3 for about 7months. For the period from 1999 to 2004, estimated volume change suggests a continuous deflation throughout this period, although the reliability of data was not so high. Continuous deflations might be likely after the last effusive eruption in 1974, would suggest that shallow part of magma beneath the central cone would probably be drained down to further deep, or shrinkage of magma associated with the cooling or solidification. Further data are obviously needed to discriminate the mechanisms of the deformation process during the repose period in this volcano.

  4. Subsurface architecture of Las Bombas volcano circular structure (Southern Mendoza, Argentina) from geophysical studies

    Science.gov (United States)

    Prezzi, Claudia; Risso, Corina; Orgeira, María Julia; Nullo, Francisco; Sigismondi, Mario E.; Margonari, Liliana

    2017-08-01

    The Plio-Pleistocene Llancanelo volcanic field is located in the south-eastern region of the province of Mendoza, Argentina. This wide back-arc lava plateau, with hundreds of monogenetic pyroclastic cones, covers a large area behind the active Andean volcanic arc. Here we focus on the northern Llancanelo volcanic field, particularly in Las Bombas volcano. Las Bombas volcano is an eroded, but still recognizable, scoria cone located in a circular depression surrounded by a basaltic lava flow, suggesting that Las Bombas volcano was there when the lava flow field formed and, therefore, the lava flow engulfed it completely. While this explanation seems reasonable, the common presence of similar landforms in this part of the field justifies the need to establish correctly the stratigraphic relationship between lava flow fields and these circular depressions. The main purpose of this research is to investigate Las Bombas volcano 3D subsurface architecture by means of geophysical methods. We carried out a paleomagnetic study and detailed topographic, magnetic and gravimetric land surveys. Magnetic anomalies of normal and reverse polarity and paleomagnetic results point to the occurrence of two different volcanic episodes. A circular low Bouguer anomaly was detected beneath Las Bombas scoria cone indicating the existence of a mass deficit. A 3D forward gravity model was constructed, which suggests that the mass deficit would be related to the presence of fracture zones below Las Bombas volcano cone, due to sudden degassing of younger magma beneath it, or to a single phreatomagmatic explosion. Our results provide new and detailed information about Las Bombas volcano subsurface architecture.

  5. Policies for Reducing Coastal Risk on the East and Gulf Coasts

    Science.gov (United States)

    Glickson, D.; Johnson, S.

    2014-12-01

    Hurricane- and coastal storm-related economic losses have increased substantially over the past century, largely due to expanding population and development in susceptible coastal areas. Concurrent with this growth, the federal government has assumed an increasing proportion of the financial responsibility associated with U.S. coastal storms, which may discourage state and local governments from taking appropriate actions to reduce risk and enhance resilience. Strategies to manage coastal storm risks fall into two categories: reducing the probability of flooding or wave impact (such as seawalls, storm surge barriers, beach nourishment, dune building, restoration/expansion of oyster reefs, salt marshes, and mangroves) and reducing the number or vulnerability of people or structures (such as relocation, land-use planning, and elevating or floodproofing buildings). Over the past century, most coastal risk management programs have emphasized coastal armoring, while doing little to decrease development in harm's way. This National Research Council report calls for the development of a national vision for managing coastal risks that includes a long-term view, regional solutions, and recognition of all benefits. A national coastal risk assessment is needed to identify high priority areas. Benefit-cost analysis provides a reasonable framework to evaluate national investments in coastal risk reduction, if constrained by other important environmental, social, and life-safety factors. Extensive collaboration and additional policy changes will be necessary to move from a nation that is primarily reactive to coastal disasters to one that invests wisely in coastal risk reduction and builds resilience among coastal communities.

  6. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions

    Science.gov (United States)

    White, Randall A.; McCausland, Wendy

    2016-01-01

    We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from:

  7. Reducing mortality risk by targeting specific air pollution sources: Suva, Fiji.

    Science.gov (United States)

    Isley, C F; Nelson, P F; Taylor, M P; Stelcer, E; Atanacio, A J; Cohen, D D; Mani, F S; Maata, M

    2018-01-15

    Health implications of air pollution vary dependent upon pollutant sources. This work determines the value, in terms of reduced mortality, of reducing ambient particulate matter (PM 2.5 : effective aerodynamic diameter 2.5μm or less) concentration due to different emission sources. Suva, a Pacific Island city with substantial input from combustion sources, is used as a case-study. Elemental concentration was determined, by ion beam analysis, for PM 2.5 samples from Suva, spanning one year. Sources of PM 2.5 have been quantified by positive matrix factorisation. A review of recent literature has been carried out to delineate the mortality risk associated with these sources. Risk factors have then been applied for Suva, to calculate the possible mortality reduction that may be achieved through reduction in pollutant levels. Higher risk ratios for black carbon and sulphur resulted in mortality predictions for PM 2.5 from fossil fuel combustion, road vehicle emissions and waste burning that surpass predictions for these sources based on health risk of PM 2.5 mass alone. Predicted mortality for Suva from fossil fuel smoke exceeds the national toll from road accidents in Fiji. The greatest benefit for Suva, in terms of reduced mortality, is likely to be accomplished by reducing emissions from fossil fuel combustion (diesel), vehicles and waste burning. Copyright © 2017. Published by Elsevier B.V.

  8. Breast-feeding reduces the risk for childhood eczema.

    Science.gov (United States)

    Kull, Inger; Böhme, Maria; Wahlgren, Carl-Fredrik; Nordvall, Lennart; Pershagen, Göran; Wickman, Magnus

    2005-09-01

    The evidence for a preventive effect of breast-feeding on the development of eczema in childhood remains controversial. To investigate the effect of breast-feeding in various phenotypes of eczema to 4 years. A birth cohort of 4089 children made up the study base. Data on breast-feeding, allergic symptoms, and potential confounders were obtained from questionnaires when the children were 2 months and 1, 2, and 4 years old. At 4 years, blood specific IgE was analyzed. Children with symptoms of eczema and asthma during the period of breast-feeding were excluded in most analyses on risk assessment of eczema and asthma, respectively, to avoid disease-related modification of exposure. Exclusive breast-feeding for >or=4 months reduced the risk for eczema at the age of 4 years (odds ratio [OR], 0.78; 95% CI, 0.63--0.96) irrespective of combination with asthma, sensitization to common allergens, or parental allergic disease. This decreased risk was most evident for children with onset of eczema during the first 2 years persisting to 4 years (OR, 0.59; 95% CI, 0.45--0.77). Among children with early-onset eczema, irrespective of persistency, followed by late onset of asthma or early-onset asthma irrespective of persistency, followed by late-onset eczema to 4 years, a protective effect of breast-feeding was also seen (OR, 0.48; 95% CI, 0.30--0.76). Breast-feeding 4 months or more reduces the risk for eczema and onset of the allergy march to age 4.

  9. Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano

    Science.gov (United States)

    Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.

    2016-12-01

    "Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.

  10. Pb-210 and Po-210 from active volcanoes in Japan

    International Nuclear Information System (INIS)

    Komura, K.; Uchida, K.; Yamamoto, M.; Ueno, K.

    1991-01-01

    The concentration of Pb-210 and Po-210 in the surface air of volcanic areas is of considerable interest from the viewpoints of geochemistry, geophysics and also health physics, because these nuclides are the useful tracers for the estimation of the residence time or life time of aerosols, and give the significant radiation dose due to inhalation and ingestion through food stuffs. Since the establishment of Low Level Radioactivity Laboratory, Kanazawa University, in 1976, the measurement of environmental radioactivity has been one of the main subjects, and the measurement of Pb-210 and Po-210 in the surface air of Kagoshima was begun in 1987 to estimate the contribution from Volcano Sakurajima. In this study, the measurement of Pb-210 and Po-210 in air borne particles collected with air samplers, volcanic ash and lava of volcano Sakurajima of which the age of eruption is known. Moreover, the Po-210 in the volcanic gas and sulfur sublimate in the samples collected in four active volcanoes in Hokkaido was measured. The experiment and the results are reported. (K.I.)

  11. Pb-210 and Po-210 from active volcanoes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komura, K; Uchida, K; Yamamoto, M; Ueno, K [Kanazawa Univ. (Japan)

    1991-01-01

    The concentration of Pb-210 and Po-210 in the surface air of volcanic areas is of considerable interest from the viewpoints of geochemistry, geophysics and also health physics, because these nuclides are the useful tracers for the estimation of the residence time or life time of aerosols, and give the significant radiation dose due to inhalation and ingestion through food stuffs. Since the establishment of Low Level Radioactivity Laboratory, Kanazawa University, in 1976, the measurement of environmental radioactivity has been one of the main subjects, and the measurement of Pb-210 and Po-210 in the surface air of Kagoshima was begun in 1987 to estimate the contribution from Volcano Sakurajima. In this study, the measurement of Pb-210 and Po-210 in air borne particles collected with air samplers, volcanic ash and lava of volcano Sakurajima of which the age of eruption is known. Moreover, the Po-210 in the volcanic gas and sulfur sublimate in the samples collected in four active volcanoes in Hokkaido was measured. The experiment and the results are reported. (K.I.).

  12. Volcano monitoring using GPS: Developing data analysis strategies based on the June 2007 Kīlauea Volcano intrusion and eruption

    Science.gov (United States)

    Larson, Kristine M.; Poland, Michael; Miklius, Asta

    2010-01-01

    The global positioning system (GPS) is one of the most common techniques, and the current state of the art, used to monitor volcano deformation. In addition to slow (several centimeters per year) displacement rates, GPS can be used to study eruptions and intrusions that result in much larger (tens of centimeters over hours-days) displacements. It is challenging to resolve precise positions using GPS at subdaily time intervals because of error sources such as multipath and atmospheric refraction. In this paper, the impact of errors due to multipath and atmospheric refraction at subdaily periods is examined using data from the GPS network on Kīlauea Volcano, Hawai'i. Methods for filtering position estimates to enhance precision are both simulated and tested on data collected during the June 2007 intrusion and eruption. Comparisons with tiltmeter records show that GPS instruments can precisely recover the timing of the activity.

  13. Grand Sarcoui volcano (Chaîne des Puys, Massif Central, France), a case study for monogenetic trachytic lava domes

    Science.gov (United States)

    Miallier, D.; Pilleyre, T.; Boivin, P.; Labazuy, P.; Gailler, L.-S.; Rico, J.

    2017-10-01

    The Grand Sarcoui is a prominent trachytic volcano of the intraplate Quaternary volcanic field of Chaîne des Puys (Massif Central, France), which fulfills basic requirements for being qualified as monogenetic. Grand Sarcoui looks like a simple axisymmetric lava dome, but close observation reveals a complex and dissymmetric structure and composition. The construction of the dome, about 12.5 ka ago, combined both endogenous and exogenous growth which resulted in variable modes of emplacement and textures of the lava. One of its most interesting features is a large ( 0.29 106 m2) fan of deposits bearing hummocks and secondary hydro-eruption craters. Cross sections of these deposits demonstrate that they originated from a sector collapse accompanied by a blast-like event. The dome is covered by a thin layer of lapilli and ash, attributed to a delayed summit eruption which occurred about 10.6 ka ago, surprisingly late after its construction. So, this volcano has, at a reduced scale, features that are more usually observed in large composite volcanoes. However, some of these features differ slightly from those that have been documented to date, and they remain partly unexplained. This shows that monogenetic, well preserved, trachytic lava domes, are uncommon and poorly known, unlike rhyolitic, andesitic and dacitic domes.

  14. Trainable Cataloging for Digital Image Libraries with Applications to Volcano Detection

    Science.gov (United States)

    Burl, M. C.; Fayyad, U. M.; Perona, P.; Smyth, P.

    1995-01-01

    Users of digital image libraries are often not interested in image data per se but in derived products such as catalogs of objects of interest. Converting an image database into a usable catalog is typically carried out manually at present. For many larger image databases the purely manual approach is completely impractical. In this paper we describe the development of a trainable cataloging system: the user indicates the location of the objects of interest for a number of training images and the system learns to detect and catalog these objects in the rest of the database. In particular we describe the application of this system to the cataloging of small volcanoes in radar images of Venus. The volcano problem is of interest because of the scale (30,000 images, order of 1 million detectable volcanoes), technical difficulty (the variability of the volcanoes in appearance) and the scientific importance of the problem. The problem of uncertain or subjective ground truth is of fundamental importance in cataloging problems of this nature and is discussed in some detail. Experimental results are presented which quantify and compare the detection performance of the system relative to human detection performance. The paper concludes by discussing the limitations of the proposed system and the lessons learned of general relevance to the development of digital image libraries.

  15. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    Energy Technology Data Exchange (ETDEWEB)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Kristianto, E-mail: kris@vsi.esdm.go.id [Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency, Bandung, 40122 (Indonesia)

    2015-04-24

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4{sup th}, 2011 and still continuously erupted until August 28{sup th}, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination of the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.

  16. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-05-23

    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  17. Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition

    Science.gov (United States)

    Sides. I.R.,; Edmonds, M.; Maclennan, J.; Swanson, Don; Houghton, Bruce F.

    2014-01-01

    Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths was thought to have little influence on eruptive style. Ocean island basaltic volcanoes are the product of melting of a geochemically heterogeneous mantle plume and are expected to give rise to heterogeneous primary melts. This range in primary melt composition, particularly with respect to the volatile components, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of Kīlauea, Hawai‘i, over the past 600 years. We find that more explosive styles of eruption at Kīlauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at Kīlauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region.

  18. Study Shows Aspirin Reduces Colorectal Cancer in Those at High Risk

    Science.gov (United States)

    Findings from the first large clinical trial of its kind indicate that taking high doses of aspirin daily for at least 2 years substantially reduces the risk of colorectal cancer among people at increased risk of the disease.

  19. Resistivity variations related to the large March 9, 1998 eruption at La Fournaise volcano inferred by continuous MT monitoring

    Science.gov (United States)

    Wawrzyniak, Pierre; Zlotnicki, Jacques; Sailhac, Pascal; Marquis, Guy

    2017-11-01

    The 2645 m-high La Fournaise volcano, located in the Southwest of Réunion Island (Indian Ocean), is a shield basaltic volcano where effusive eruptions generally occur along long fissures starting from the summit, alongside major fractures that characterize the eruptions' dynamism and effusivity. Between 1992 and 1998, the volcano underwent a quiet period during which few earthquakes were recorded. Minor seismic activity returned after 1997 and picked up in March 1998 during the 35 h preceding the March 9 eruption. From 1996, two autonomous stations (CSV and BAV) were installed on the volcano. CSV was located inside the Enclos Fouqué caldera while BAV was positioned 8.2 km NW of the volcano summit. Horizontal components of the electric and magnetic fields were sampled every 20 s. Continuous time-series were available from 1996 to 1999 at CSV, and from 1997 to March 1998 at BAV. Data have been processed using both single-station and remote-reference processing. Both results show apparent resistivity variations synchronous to the eruption. Time-lapse impedance estimates are computed on overlapping time windows of about two days at both stations. The only major decrease of the observed impedance coincides with the March 1998 eruption. At CSV, the resistivity started to drop about five days before the eruption, reached several local minima until April, and then slowly increased as the volcanic crisis reduced in activity. After the end of the crisis in September 1998, the apparent resistivity recovered its pre-crisis value. The time-lapse results also show variability in directionality: sharp and elongated phase tensor ellipse residuals appear during the eruption with a N105° orientation, suggesting the emergence of an almost NS-striking dyke. A 1D background model built from MT soundings performed during the quiet period (1996 to February 1998) on which a 3D NS-striking dyke was added shows a good agreement with phase tensor residuals and spatial distribution of the

  20. Comparison of human exposure pathways in an urban brownfield: reduced risk from paving roads.

    Science.gov (United States)

    James, Kyle; Farrell, Richard E; Siciliano, Steven D

    2012-10-01

    Risk assessments often do not quantify the risk associated with soil inhalation. This pathway generally makes a negligible contribution to the cumulative risk, because soil ingestion is typically the dominant exposure pathway. Conditions in northern or rural centers in Canada characterized by large areas of exposed soil, including unpaved roads, favor the resuspension of soil particles, making soil inhalation a relevant risk pathway. The authors determined and compared human exposure to metals and polycyclic aromatic hydrocarbons (PAHs) from soil ingestion and inhalation and analyzed the carcinogenic and noncarcinogenic risks before and after roads were paved in a northern community. To determine the inhalation exposure, three size fractions of airborne particulate matter were collected (total suspended particulates [TSP], particulate matter with an aerodynamic diameter less than 10 µm [PM10], and particulate matter with an aerodynamic diameter less than 2.5 µm [PM2.5]) before and after roads were paved. Road paving reduced the concentration of many airborne contaminants by 25 to 75%, thus reducing risk. For example, before paving, the carcinogenic risk associated with inhalation of Cr was 3.4 excess cancers per 100,000 people exposed, whereas after paving, this risk was reduced to 1.6 in 100,000. Paving roads reduced the concentrations of total suspended particulates (TSP; p roads is an effective method of reducing risk from the inhalation of soil particles. Copyright © 2012 SETAC.

  1. Natural disturbance reduces disease risk in endangered rainforest frog populations.

    Science.gov (United States)

    Roznik, Elizabeth A; Sapsford, Sarah J; Pike, David A; Schwarzkopf, Lin; Alford, Ross A

    2015-08-21

    Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that increase or decrease infection prevalence and intensity in host populations. Here we show that a reduction of rainforest canopy cover caused by a severe tropical cyclone decreased the risk of endangered rainforest frogs (Litoria rheocola) becoming infected by a fungal pathogen (Batrachochytrium dendrobatidis). Reductions in canopy cover increased the temperatures and rates of evaporative water loss in frog microhabitats, which reduced B. dendrobatidis infection risk in frogs by an average of 11-28% in cyclone-damaged areas, relative to unaffected areas. Natural disturbances to the rainforest canopy can therefore provide an immediate benefit to frogs by altering the microclimate in ways that reduce infection risk. This could increase host survival and reduce the probability of epidemic disease outbreaks. For amphibian populations under immediate threat from this pathogen, targeted manipulation of canopy cover could increase the availability of warmer, drier microclimates and therefore tip the balance from host extinction to coexistence.

  2. Cereal fiber intake may reduce risk of gastric adenocarcinomas : The EPIC-EURGAST study

    NARCIS (Netherlands)

    Mendez, M. A.; Pera, Guillem; Aguclo, Antonio; Bueno-de-Mesquita, H. Bas; Palli, Domenico; Boeing, Heiner; Carneiro, Ftima; Berrino, Franco; Sacerdote, Carlotta; Tumino, Rosario; Panico, Salvatore; Berglund, Goeran; Manjer, Jonas; Johansson, Ingegerd; Stenling, Roger; Martinez, Carmen; Dorronsoro, Miren; Barricarte, Aurelio; Tormo, Maria J.; Quiros, Jose R.; Allen, Naomi; Key, Timothy J.; Bingham, Sheila; Linseisen, Jakob; Kaaks, Rudolf; Overvad, Kim; Jensen, Majken; Olsen, Anja; Tjonneland, Anne; Peeters, Petra H. M.; Numans, Mattijs E.; Ocke, Marga C.; Clavel-Chapelon, Francoise; Boutron-Ruault, Marie-Christine; Trichopoulou, Antonia; Lund, Eiliv; Slimani, Nadia; Jenab, Mazda; Ferrari, Pietro; Riboli, Elio; Gonzalez, Carlos A.

    2007-01-01

    Numerous case-control studies suggest dietary fiber may reduce risk of gastric cancer, but this has not been confirmed prospectively. A previous case-control study reported reduced risk of gastric cardia adenocarcinomas associated with cereal fiber, but not with fruit or vegetable fiber. To date,

  3. Looking inside volcanoes with the Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Del Santo, M.; Catalano, O.; Cusumano, G.; La Parola, V.; La Rosa, G.; Maccarone, M. C.; Mineo, T.; Sottile, G.; Carbone, D.; Zuccarello, L.; Pareschi, G.; Vercellone, S.

    2017-12-01

    Cherenkov light is emitted when charged particles travel through a dielectric medium with velocity higher than the speed of light in the medium. The ground-based Imaging Atmospheric Cherenkov Telescopes (IACT), dedicated to the very-high energy γ-ray Astrophysics, are based on the detection of the Cherenkov light produced by relativistic charged particles in a shower induced by TeV photons interacting with the Earth atmosphere. Usually, an IACT consists of a large segmented mirror which reflects the Cherenkov light onto an array of sensors, placed at the focal plane, equipped by fast electronics. Cherenkov light from muons is imaged by an IACT as a ring, when muon hits the mirror, or as an arc when the impact point is outside the mirror. The Cherenkov ring pattern contains information necessary to assess both direction and energy of the incident muon. Taking advantage of the muon detection capability of IACTs, we present a new application of the Cherenkov technique that can be used to perform the muon radiography of volcanoes. The quantitative understanding of the inner structure of a volcano is a key-point to monitor the stages of the volcano activity, to forecast the next eruptive style and, eventually, to mitigate volcanic hazards. Muon radiography shares the same principle as X-ray radiography: muons are attenuated by higher density regions inside the target so that, by measuring the differential attenuation of the muon flux along different directions, it is possible to determine the density distribution of the interior of a volcano. To date, muon imaging of volcanic structures has been mainly achieved with detectors made up of scintillator planes. The advantage of using Cherenkov telescopes is that they are negligibly affected by background noise and allow a consistently improved spatial resolution when compared to the majority of the current detectors.

  4. Multiresolution pattern recognition of small volcanos in Magellan data

    Science.gov (United States)

    Smyth, P.; Anderson, C. H.; Aubele, J. C.; Crumpler, L. S.

    1992-01-01

    The Magellan data is a treasure-trove for scientific analysis of venusian geology, providing far more detail than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations. However, at this point, planetary scientists are being overwhelmed by the sheer quantities of data collected--data analysis technology has not kept pace with our ability to collect and store it. In particular, 'small-shield' volcanos (less than 20 km in diameter) are the most abundant visible geologic feature on the planet. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 10(exp 5) to 10(exp 6) of these volcanos visible in the Magellan data. Identifying and studying these volcanos is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is very time-consuming. Hence, we have undertaken the development of techniques to partially automate this task. The goal is not the unrealistic one of total automation, but rather the development of a useful tool to aid the project scientists. The primary constraints for this particular problem are as follows: (1) the method must be reasonably robust; and (2) the method must be reasonably fast. Unlike most geological features, the small volcanos of Venus can be ascribed to a basic process that produces features with a short list of readily defined characteristics differing significantly from other surface features on Venus. For pattern recognition purposes the relevant criteria include the following: (1) a circular planimetric outline; (2) known diameter frequency distribution from preliminary studies; (3) a limited number of basic morphological shapes; and (4) the common occurrence of a single, circular summit pit at the center of the edifice.

  5. Late Holocene phases of dome growth and Plinian activity at Guagua Pichincha volcano (Ecuador)

    NARCIS (Netherlands)

    Robin, Claude; Samaniego, Pablo; Le Pennec, Jean-Luc; Mothes, Patricia; van der Plicht, Johannes

    2008-01-01

    Since the eruption which affected Quito in AD 1660, Guagua Pichincha has been considered a hazardous volcano. Based on field studies and twenty C-14 dates, this paper discusses the eruptive activity of this volcano, especially that of the last 2000 years. Three major Plinian eruptions with

  6. Inflation and Collapse of the Wai'anae Volcano (Oahu,Hawaii, USA):Insights from Magnetic Fabric Studies of Dikes

    Science.gov (United States)

    Lau, J. K. S.; Herrero-Bervera, E.; Moreira, M. A. D. A.

    2016-12-01

    The Waianae Volcano is the older of two shield volcanoes that make up the island of Oahu. Previous age determinations suggest that the subaerial portion of the edifice erupted between approximately 3.7 and 2.7 Ma. The eroded Waianae Volcano had a well-developed caldera centered near the back of its two most prominent valleys and two major rift zones: a prominent north-west rift zone, well-defined by a complex of sub-parallel dikes trending approximately N52W, and a more diffuse south rift zone trending between S20W to due South. In order to investigate the volcanic evolution, the plumbing and the triggering mechanisms of the catastrophic mass wasting that had occurred in the volcano, we have undertaken an AMS study of 7 dikes from the volcano. The width of the dikes ranged between 0.5 to 4 m. Low-field susceptibility versus temperature (k-T) and SIRM experiments were able to identify magnetite at 575 0C and at about 250-300 0C, corresponding to titanomagnetite.. Magnetic fabric studies of the dikes along a NW-SE section across the present southwestern part of the Waianae volcano have been conducted. The flow direction was studied using the imbrication angle between the dike walls and the magnetic foliation. The flow direction has been obtained in the 7 studied dikes. For the majority of the cases, the maximum axis, K1, appears to be perpendicular to the flow direction, and in some cases, with a permutation with respect to the intermediate axis, K2, or even with respect to the minimum axis, K3. In addition, in one of the sites studied, the minimum axis, K3, is very close to the flow direction. In all cases, the magma flowed along a direction with a moderate plunge. For six of the dikes, the interpreted flow was from the internal part of the volcano towards the volcano border, and corresponds probably to the inflation phase of the volcano. In two cases (dikes located on the northwestern side of the volcano), the flow is slightly downwards, possibly related to the

  7. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.

    Science.gov (United States)

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-10-25

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.

  8. A distal earthquake cluster concurrent with the 2006 explosive eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Fisher, M.A.; Ruppert, N.A.; White, R.A.; Wilson, Frederic H.; Comer, D.; Sliter, R.W.; Wong, F.L.

    2009-01-01

    Clustered earthquakes located 25??km northeast of Augustine Volcano began about 6??months before and ceased soon after the volcano's 2006 explosive eruption. This distal seismicity formed a dense cluster less than 5??km across, in map view, and located in depth between 11??km and 16??km. This seismicity was contemporaneous with sharply increased shallow earthquake activity directly below the volcano's vent. Focal mechanisms for five events within the distal cluster show strike-slip fault movement. Cluster seismicity best defines a plane when it is projected onto a northeast-southwest cross section, suggesting that the seismogenic fault strikes northwest. However, two major structural trends intersect near Augustine Volcano, making it difficult to put the seismogenic fault into a regional-geologic context. Specifically, interpretation of marine multichannel seismic-reflection (MCS) data shows reverse faults, directly above the seismicity cluster, that trend northeast, parallel to the regional geologic strike but perpendicular to the fault suggested by the clustered seismicity. The seismogenic fault could be a reactivated basement structure.

  9. The Active Lava Flows of Kilauea Volcano, Hawaii

    Indian Academy of Sciences (India)

    'lahar' is from Indonesia, a country with some of the most active and destructive volcanoes .... tourist-dependent businesses such as airlines, rental car compa- nies, and hotels. ... excellent viewing conditions and photo opportunities. The heat.

  10. Risk-reducing mastectomy and salpingo-oophorectomy in unaffected BRCA mutation carriers: uptake and timing

    DEFF Research Database (Denmark)

    Skytte, A-B; Gerdes, Anne-Marie Axø; Andersen, M K

    2010-01-01

    from 306 healthy BRCA carriers with no personal history of ovarian or breast cancer. We found a 10-year uptake of 75% for risk-reducing salpingo-oophorectomy and 50% for risk-reducing mastectomy by time to event analysis. Age and childbirth influenced this decision. The uptake rate has not changed......Once female carriers of a BRCA mutation are identified they have to make decisions on risk management. The aim of this study is to outline the uptake of risk-reducing surgery in the Danish population of BRCA mutation positive women and to search for factors affecting this decision. We analysed data...

  11. Deformation of Copahue volcano: Inversion of InSAR data using a genetic algorithm

    Science.gov (United States)

    Velez, Maria Laura; Euillades, Pablo; Caselli, Alberto; Blanco, Mauro; Díaz, Jose Martínez

    2011-04-01

    The Copahue volcano is one of the most active volcanoes in Argentina with eruptions having been reported as recently as 1992, 1995 and 2000. A deformation analysis using the Differential Synthetic Aperture Radar technique (DInSAR) was performed on Copahue-Caviahue Volcanic Complex (CCVC) from Envisat radar images between 2002 and 2007. A deformation rate of approximately 2 cm/yr was calculated, located mostly on the north-eastern flank of Copahue volcano, and assumed to be constant during the period of the interferograms. The geometry of the source responsible for the deformation was evaluated from an inversion of the mean velocity deformation measurements using two different models based on pressure sources embedded in an elastic homogeneous half-space. A genetic algorithm was applied as an optimization tool to find the best fit source. Results from inverse modelling indicate that a source located beneath the volcano edifice at a mean depth of 4 km is producing a volume change of approximately 0.0015 km/yr. This source was analysed considering the available studies of the area, and a conceptual model of the volcanic-hydrothermal system was designed. The source of deformation is related to a depressurisation of the system that results from the release of magmatic fluids across the boundary between the brittle and plastic domains. These leakages are considered to be responsible for the weak phreatic eruptions recently registered at the Copahue volcano.

  12. Geophysical Analysis of Young Monogenetic Volcanoes in the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Rees, S.; Porter, R. C.; Riggs, N.

    2017-12-01

    The San Francisco Volcanic Field (SFVF), located in northern Arizona, USA, contains some of the youngest intracontinental volcanism within the United States and, given its recent eruptive history, presents an excellent opportunity to better understand how these systems behave. Geophysical techniques such as magnetics, paleomagnetics, and seismic refraction can be used to understand eruptive behavior and image shallow subsurface structures. As such, they present an opportunity to understand eruptive processes associated with the monogenetic volcanism that is common within the SFVF. These techniques are especially beneficial in areas where erosion has not exposed shallow eruptive features within the volcano. We focus on two volcanoes within the SFVF, Merriam Crater and Crater 120 for this work. These are thought to be some of the youngest volcanoes in the field and, as such, are well preserved. Aside from being young, they both exhibit interesting features such as multiple vents, apparent vent alignment, and lack of erosional features that are present at many of the other volcanoes in the SFVF, making them ideal for this work. Initial results show that shallow subsurface basaltic masses can be located using geophysical techniques. These masses are interpreted as dikes or lava flows that are covered by younger scoria. Propagating dikes drive eruptions at monogenetic volcanoes, which often appear in aligned clusters. Locating these features will further the understanding of how magma is transported and how eruptions may have progressed.

  13. Using Bayesian Belief Networks To Assess Volcano State from Multiple Monitoring Timeseries And Other Evidence

    Science.gov (United States)

    Odbert, Henry; Aspinall, Willy

    2013-04-01

    When volcanoes exhibit unrest or become eruptively active, science-based decision support invariably is sought by civil authorities. Evidence available to scientists about a volcano's internal state is usually indirect, secondary or very nebulous.Advancement of volcano monitoring technology in recent decades has increased the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Monitoring timeseries may be interpreted in real time by observatory staff and are often later subjected to further analytic scrutiny by the research community at large. With increasing variety and resolution of data, interpreting these multiple strands of parallel, partial evidence has become increasingly complex. In practice, interpretation of many timeseries involves familiarity with the idiosyncracies of the volcano, the monitoring techniques, the configuration of the recording instrumentation, observations from other datasets, and so on. Assimilation of this knowledge is necessary in order to select and apply the appropriate statistical techniques required to extract the required information. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple observations, model results and interpretations - and associated uncertainties - in a methodical manner. The formulation is usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic timeseries, the certainty with which inferences may be drawn, and how they can be updated dynamically. Such approaches provide a route to developing analytical interface(s) between volcano monitoring analyses and probabilistic hazard analysis. We discuss the use of BBNs in hazard

  14. Opportunities to reduce risk associated with nuclear logging techniques

    International Nuclear Information System (INIS)

    Wraight, P.D.; Robinson, E.; de Fleurieu, R.

    1991-01-01

    Nuclear logging provides petroleum exploration and production companies with data that are critical to their decisions and operations. Because this type data is so important, environmentally conscious well-logging and service companies are constantly reviewing the risks to people and environment associated with nuclear sources with the ALARA (as low as reasonably achievable) principle in mind. Opportunities to additionally reduce risks, which can be accomplished only with the active involvement of oil companies, are proposed in this paper

  15. Geophysical Investigations of Magma Plumbing Systems at Cerro Negro Volcano, Nicaragua

    Science.gov (United States)

    MacQueen, Patricia Grace

    Cerro Negro near Leon, Nicaragua is a very young (163 years), relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan (recurrence interval 6--7 years), presenting a significant hazard to nearby communities. Previous studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring Las Pilas-El Hoyo volcano. Analysis of Bouguer gravity data collected at Cerro Negro has revealed connected positive density anomalies beneath Cerro Negro and Las Pilas-El Hoyo. These findings suggest that eruptions at Cerro Negro may be tapping a large magma reservoir beneath Las Pilas-El Hoyo, implying that Cerro Negro should be considered the newest vent on the Las Pilas-El Hoyo volcanic complex. As such, it is possible that the intensity of volcanic hazards at Cerro Negro may eventually increase in the future to resemble those pertaining to a stratovolcano. Keywords: Cerro Negro; Las Pilas-El Hoyo; Bouguer gravity; magmatic plumbing systems; potential fields; volcano.

  16. Eruption of a deep-sea mud volcano triggers rapid sediment movement

    Science.gov (United States)

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R.; Camilli, Richard; German, Christopher R.; de Beer, Dirk

    2014-01-01

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO2 from the seafloor. PMID:25384354

  17. Probing magma reservoirs to improve volcano forecasts

    Science.gov (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  18. The anatomy of an andesite volcano: A time-stratigraphic study of andesite petrogenesis and crustal evolution at Ruapehu volcano, New Zealand

    DEFF Research Database (Denmark)

    Price, R.C.; Gamble, J.A.; Smith, I.E.M.

    2012-01-01

    Ruapehu, New Zealand’s largest active andesite volcano is located at the southern tip of the Taupo Volcanic Zone (TVZ), the main locus of subduction-related volcanism in the North Island. Geophysical data indicate that crustal thickness transitions from ... Ruapehu. The volcano is built on a basement of Mesozoic metagreywacke and geophysical evidence together with xenoliths contained in lavas indicates that this is underlain by oceanic, meta-igneous lower crust. The present-day Ruapehu edifice has been constructed by a series of eruptive events that produced...... and andesite. Dacite also occurs but only one basalt flow has been identified. There have been progressive changes in the minor and trace element chemistry and isotopic composition of Ruapehu eruptives over time. In comparison with rocks from younger formations, Te Herenga eruptives have lower K2O abundances...

  19. Magnetic volcanos in gadolinium Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Tishin, A.M. E-mail: amt@mailaps.org; Snigirev, O.V.; Khomutov, G.B.; Gudoshnikov, S.A.; Bohr, J

    2001-09-01

    Magnetic, structural and electronic properties of Langmuir-Blodgett films with incorporated Gd{sup 3+} ions has been detected using a scanning DC SQUID microscope, scanning electron microscope and X-ray diffraction. The magnetic images of 28 and 50 layer thick films at 77 K have been obtained after in-plane and out-of-plane pre-magnetization in a field of 1.4 T at 300 K. Randomly placed 'magnetic volcanos' with a remanent magnetic moment of the order of 10{sup -13} A m{sup 2} was observed. A decay of the remanent magnetization with a characteristic time of about 120 h was observed. It is suggested that the magnetic order is relatively long ranged, and that topological defects (vortices) lead to the observed out-of-plane field lines, and are responsible for the magnetic volcanos. Finally, it is hypothesized that a similar topology of field lines is responsible for superconductivity as observed in ceramic high-T{sub C} superconductors.

  20. Motivators and barriers of tamoxifen use as risk-reducing medication amongst women at increased breast cancer risk: a systematic literature review.

    Science.gov (United States)

    Meiser, B; Wong, W K T; Peate, M; Julian-Reynier, C; Kirk, J; Mitchell, G

    2017-01-01

    Selective estrogen receptor modulators, such as tamoxifen, reduce breast cancer risk by up to 50% in women at increased risk for breast cancer. Despite tamoxifen's well-established efficacy, many studies show that most women are not taking up tamoxifen. This systematic literature review aimed to identify the motivators and barriers to tamoxifen use 's amongst high-risk women. Using MEDLINE, PsycINFO, and Embase plus reviewing reference lists of relevant articles published between 1995 and 2016, 31 studies (published in 35 articles) were identified, which addressed high-risk women's decisions about risk-reducing medication to prevent breast cancer and were peer-reviewed primary clinical studies. A range of factors were identified as motivators of, and barriers to, tamoxifen uptake including: perceived risk, breast-cancer-related anxiety, health professional recommendation, perceived drug effectiveness, concerns about side-effects, knowledge and access to information about side-effects, beliefs about the role of risk-reducing medication, provision of a biomarker, preference for other forms of breast cancer risk reduction, previous treatment experience, concerns about randomization in clinical trial protocols and finally altruism. Results indicate that the decision for high-risk women regarding tamoxifen use or non-use as a risk-reducing medication is not straightforward. Support of women making this decision is essential and needs to encompass the full range of factors, both informational and psychological.

  1. A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Tarraga, Marta [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain)], E-mail: martat@mncn.csic.es; Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine, Via Cotonificio 114, 33100 Udine (Italy)], E-mail: roberto.carniel@uniud.it; Ortiz, Ramon; Garcia, Alicia [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Moreno, Hugo [Observatorio Volcanologico de los Andes del Sur (OVDAS), Servicio Nacional de Geologia y Mineria de Chile (SERNAGEOMIN), Temuco, IX Region (Chile)

    2008-09-15

    Although Villarrica volcano in Chile is one of the most active in the southern Andes, the literature studying its seismic activity is relatively scarce. An interesting problem recently tackled is the possibility for a regional tectonic event to trigger a change in the volcanic activity of this basaltic to basaltic-andesitic volcano, which is in turn reflected in the time evolution of the properly volcanic seismicity, especially in the form of a continuous volcanic tremor. In this work, we conduct a spectral, dynamical and statistical analysis of the tremor recorded during September and October 2000, in order to characterize the anomalous behaviour of the volcano following a tectonic event recorded on 20th September 2000. The observed dynamical transitions are compared with remote sensing and visual observations describing the changes in the eruptive style of the volcano.

  2. A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September-October 2000

    International Nuclear Information System (INIS)

    Tarraga, Marta; Carniel, Roberto; Ortiz, Ramon; Garcia, Alicia; Moreno, Hugo

    2008-01-01

    Although Villarrica volcano in Chile is one of the most active in the southern Andes, the literature studying its seismic activity is relatively scarce. An interesting problem recently tackled is the possibility for a regional tectonic event to trigger a change in the volcanic activity of this basaltic to basaltic-andesitic volcano, which is in turn reflected in the time evolution of the properly volcanic seismicity, especially in the form of a continuous volcanic tremor. In this work, we conduct a spectral, dynamical and statistical analysis of the tremor recorded during September and October 2000, in order to characterize the anomalous behaviour of the volcano following a tectonic event recorded on 20th September 2000. The observed dynamical transitions are compared with remote sensing and visual observations describing the changes in the eruptive style of the volcano

  3. 238U-230Th radioactive disequilibria in the volcanic products from Izu arc volcanoes, Japan

    International Nuclear Information System (INIS)

    Kurihara, Yuichi; Takahashi, Masaomi; Sato, Jun

    2007-01-01

    The timescale of magmatic processes of Izu arc volcanoes, Japan, was estimated by the 238 U- 230 Th disequilibria in the volcanic products from the volcanoes. The majority of the 230 Th/ 238 U activity ratios of the products were less than unity, being enriched in 238 U relative to 230 Th. The ( 230 Th/ 232 Th)-( 238 U/ 232 Th)diagram for younger Fuji and Izu-Oshima volcanoes formed a whole rock isochrons, and the ages were 1x10 4 and 2x10 4 years, respectively. The ( 230 Th/ 232 Th) - ( 238 U/ 232 Th) data set for younger Fuji volcano formed a cluster on the diagram, while those of Izu-Oshima formed another cluster apparently apart from each other, suggesting that the concentration of U and Th may possibly be un-uniform in the mantle beneath Izu arc. (author)

  4. Evolution of 222 Rn and chemical species related with eruptive processes of the Popocatepetl volcano

    International Nuclear Information System (INIS)

    Aranda, P.; Ceballos, S.; Cruz, D.; Hernandez, A.; Lopez, R.; Pena, P.; Salazar, S.; Segovia, N.; Tamez, E.

    1997-01-01

    The 222 Rn monitoring in the Popocatepetl volcano was initiated on 1993. At December 21, 1994 it is initiated an eruptive stage in the volcano with gas emission, ashes and the lava dome formation on the crater at middle 1996. During all this time it has been determined radon concentrations on soils with active and passive detectors. In this work the changes in radon contents are reported also the physicochemical parameters in spring water related with the volcanic building associated to the recent activity of the volcano. (Author)

  5. Radioactive equilibria and disequilibria of U-series nuclides in erupting magmas from Izu arc volcanoes

    International Nuclear Information System (INIS)

    Sato, Jun; Kurihara, Yuichi; Takahashi, Masaomi

    2009-01-01

    Radioactive disequilibria among U-series nuclides are observed in the magmas from volcanoes in the world. Basaltic products from Izu arc volcanoes, including Izu-Oshima and Fuji volcanoes, show 230 Th 238 U and 226 Ra> 230 Th disequilibria, indicating that the addition of U-and Ra-rich fluid from the subducting slab to the mantle wedge at the magma genesis. The disequilibria of 226 Ra> 230 Th in the erupting magmas suggest that the timescale from magma genesis to the eruption may be less than 8000 years. (author)

  6. Reducing risk where tectonic plates collide

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  7. What can individuals do to reduce personal health risks from air pollution?

    Science.gov (United States)

    Laumbach, Robert; Meng, Qingyu; Kipen, Howard

    2015-01-01

    In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or

  8. The story of the Hawaiian Volcano Observatory -- A remarkable first 100 years of tracking eruptions and earthquakes

    Science.gov (United States)

    Babb, Janet L.; Kauahikaua, James P.; Tilling, Robert I.

    2011-01-01

    The year 2012 marks the centennial of the Hawaiian Volcano Observatory (HVO). With the support and cooperation of visionaries, financiers, scientists, and other individuals and organizations, HVO has successfully achieved 100 years of continuous monitoring of Hawaiian volcanoes. As we celebrate this milestone anniversary, we express our sincere mahalo—thanks—to the people who have contributed to and participated in HVO’s mission during this past century. First and foremost, we owe a debt of gratitude to the late Thomas A. Jaggar, Jr., the geologist whose vision and efforts led to the founding of HVO. We also acknowledge the pioneering contributions of the late Frank A. Perret, who began the continuous monitoring of Kīlauea in 1911, setting the stage for Jaggar, who took over the work in 1912. Initial support for HVO was provided by the Massachusetts Institute of Technology (MIT) and the Carnegie Geophysical Laboratory, which financed the initial cache of volcano monitoring instruments and Perret’s work in 1911. The Hawaiian Volcano Research Association, a group of Honolulu businessmen organized by Lorrin A. Thurston, also provided essential funding for HVO’s daily operations starting in mid-1912 and continuing for several decades. Since HVO’s beginning, the University of Hawaiʻi (UH), called the College of Hawaii until 1920, has been an advocate of HVO’s scientific studies. We have benefited from collaborations with UH scientists at both the Hilo and Mänoa campuses and look forward to future cooperative efforts to better understand how Hawaiian volcanoes work. The U.S. Geological Survey (USGS) has operated HVO continuously since 1947. Before then, HVO was under the administration of various Federal agencies—the U.S. Weather Bureau, at the time part of the Department of Agriculture, from 1919 to 1924; the USGS, which first managed HVO from 1924 to 1935; and the National Park Service from 1935 to 1947. For 76 of its first 100 years, HVO has been

  9. Coupled geohazards at Southern Andes (Copahue-Lanín volcanoes): Chile's GEO supersite proposal

    Science.gov (United States)

    Lara, Luis E.; Cordova, Loreto

    2017-04-01

    volcanism (the so-called Red Nacional de Vigilancia Volcánica at Sernageomin) and tectonics (Centro Sismólogico Nacional at Universidad de Chile) allow a good complement with space-borne data (e.g., we observed deformation by GPS and InSAR at Villarrica volcano related to the March 3, 2015 eruption) in order to promote basic and applied research for a successful national strategy of disaster risk reduction. In addition, at least 3 active national research grants focus in this area and a number of young scientists are working there. Thus, we propose the Copahue-Lanín (37.5-39.5°S) segment of the Southern Volcanic Zone as a Geohazards Supersite and look forward for an enhanced engagement of the scientific community in this area.

  10. Extreme Geohazards: Reducing the Disaster Risk and Increasing Resilience

    Science.gov (United States)

    Plag, Hans-Peter; Stein, Seth; Brocklebank, Sean; Jules-Plag, Shelley; Marsh, Stuart; Campus, Paola

    2013-04-01

    Extreme geohazards have the potential to escalate the global sustainability crisis and put us close to the boundaries of the safe operating space for humanity. Exposure of human assets to geohazards has increased dramatically in recent decades, and the sensitivity of the built environment and the embedded socio-economic fabric have changed. We are putting the urban environment, including megacities, in harm's way. Paradoxically, innovation during recent decades, in particular, urban innovation, has increased the disaster risk and coupled this risk to the sustainability crisis. Only more innovation can reduce disaster risk and lead us out of the sustainability crisis. Extreme geohazards (volcanic eruptions, earthquakes, tsunamis) that occurred regularly throughout the last few millennia mostly did not cause major disasters because population density was low and the built environment was not sprawling into hazardous areas to the same extent as today. Similar extreme events today would cause unparalleled damage on a global scale and could worsen the sustainability crisis. Simulation of these extreme hazards under present conditions can help to assess the disaster risk. The Geohazards Community of Practice of the Group on Earth Observations (GEO) with support from the European Science Foundation is preparing a white paper assessing the contemporary disaster risks associated with extreme geohazards and developing a vision for science and society to engage in deliberations addressing this risk (see http://www.geohazcop.org/projects/extgeowp). Risk awareness and monitoring is highly uneven across the world, and this creates two kinds of problems. Firstly, potential hazards are much more closely monitored in wealthy countries than in the developing world. But the largest hazards are global in nature, and it is critical to get as much forewarning as possible to develop an effective response. The disasters and near-misses of the past show that adherence to scientific

  11. Damage-reducing measures to manage flood risks in a changing climate

    Science.gov (United States)

    Kreibich, Heidi; Bubeck, Philip; Van Vliet, Mathijs; De Moel, Hans

    2014-05-01

    Damage due to floods has increased during the last few decades, and further increases are expected in several regions due to climate change and a growing vulnerability. To address the projected increase in flood risk, a combination of structural and non-structural flood risk mitigation measures is considered as a promising adaptation strategy. Such a combination takes into account that flood defence systems may fail, and prepare for unexpected crisis situations via land-use planning, building construction, evacuation and disaster response. Non-structural flood risk mitigation measures like shielding with water shutters or sand bags, building fortification or safeguarding of hazardous substances are often voluntary: they demand self-dependent action by the population at risk (Bubeck et al. 2012; 2013). It is believed that these measures are especially effective in areas with frequent flood events and low flood water levels, but some types of measures showed a significant damage-reducing effect also during extreme flood events, such as the Elbe River flood in August 2002 in Germany (Kreibich et al. 2005; 2011). Despite the growing importance of damage-reducing measures, information is still scarce about factors that motivate people to undertake such measures, the state of implementation of various non-structural measures in different countries and their damage reducing effects. Thus, we collected information and undertook an international review about this topic in the framework of the Dutch KfC project "Climate proof flood risk management". The contribution will present an overview about the available information on damage-reducing measures and draw conclusions for practical flood risk management in a changing climate. References: Bubeck, P., Botzen, W. J. W., Suu, L. T. T., Aerts, J. C. J. H. (2012): Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam. Journal of Flood Risk Management, 5, 4, 295-302 Bubeck, P

  12. Reducing the Risk of Methadone Overdose PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-07-03

    This 60 second PSA is based on the July 2012 CDC Vital Signs report. Approximately 14 people die every day of overdoses related to methadone. Listen to learn how to reduce your risk of an overdose.  Created: 7/3/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 7/3/2012.

  13. Patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus

    Science.gov (United States)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1993-01-01

    Magellan radar imaging and topography data are now available for a number of volcanoes on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Venus, erosion and sediment deposition are negligible, so tectonic evidence of deformation around large volcanoes should be evident except where buried by very young flows. Radar images reveal that most tectonic features and flow units on the flanks of these volcanoes have predominantly radial orientations. However, both Tepev Mons in Bell Regio and Sapas Mons in Atla Regio exhibit circumferential graben on their flanks. In addition, images reveal several flow units with an annular character around the north and west flanks of Tepev Mons. This pattern most likely results from ponding of flows in an annular flexural moat. Maat Mons in Atla Regio and Sif Mons in Eistla Regio are examples of volcanoes that lack circumferential graben and annular flows; discernible flow units and fractures on these constructs appear to be predominantly radial. Altimetry data can also provide evidence of flexural response. Tepev Mons is partially encircled by depressions that may be sections of a flexural moat that has not been completely filled. The locations of these depressions generally coincide with the annular flows described above. There is weaker evidence for such depressions around Maat Mons as well. The lack of circumferential tectonic features around most volcanoes on Venus might be explained by gradual moat filling and coverage by radial flows. The depressions around Tepev (and possible Maat) may indicate that this process is currently continuing. We use analytic models of plate flexure in an axisymmetric geometry to constrain the elastic plate thickness supporting Tepev Mons. If we consider the outer radius of the ponded flows to be the edge of a moat, we find that models with elastic plate thickness of 10-20 km fit best. Finite element

  14. Pharmacist intervention reduces gastropathy risk in patients using NSAIDs.

    Science.gov (United States)

    Ibañez-Cuevas, Victoria; Lopez-Briz, Eduardo; Guardiola-Chorro, M Teresa

    2008-12-01

    To establish a detection and intervention strategy in order to reduce the number of non-steroidal anti-inflammatory drug (NSAIDs) users at risk of gastropathy from receiving either inadequate or no gastroprotection. Community Pharmacies in Valencia, Spain. Prospective longitudinal intervention study without control group carried out by 79 Community Pharmacies. Patients over 18 who asked for any systemic NSAID were interviewed according to standard procedure. Pharmacist intervention was carried out when a patient at risk of serious NSAID-induced gastrointestinal complications due to inadequate or no gastric protection was identified. The doctor responsible was informed in order to then be able to assess the need to prescribe gastroprotection or change it if inadequate. In the case of over-the-counter (OTC) drugs, pharmacist intervention mainly involved replacing NSAIDs for safer medications. Firstly, the number of patients who had no prescribed gastroprotection or inadequate gastroprotection was determined. Pharmacist intervention then brought about changes in pharmacotherapy in this situation. Of the 6,965 patients who asked for NSAIDs during the study period, 3,054 (43.9%) presented NSAID gastropathy risk factors. 35.6% of the latter (1,089) were not prescribed gastroprotection or were prescribed inadequate gastroprotection. Pharmacist intervention was carried out in 1,075 of these cases. On 391 occasions such risk situations were reported to doctors, who accepted pharmacist intervention on 309 occasions (79.0%) and then either prescribed gastroprotection (77% of cases); changed it (13.9%); withdrew the NSAID (5.8%) or substituted it (3.2%). 235 Pharmacist interventions took place when dispensing OTC NSAIDs. Our strategy allowed us to identify a large number of patients who asked for NSAIDs in Community Pharmacies and who were at risk of NSAID gastropathy, as they received either inadequate gastroprotection or no gastroprotection whatsoever. Moreover, the

  15. Automatic readout for nuclear emulsions in muon radiography of volcanoes

    Science.gov (United States)

    Aleksandrov, A.; Bozza, C.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Kose, U.; Lauria, A.; Medinaceli, E.; Miyamoto, S.; Montesi, C.; Pupilli, F.; Rescigno, R.; Russo, A.; Sirignano, C.; Stellacci, S. M.; Strolin, P.; Tioukov, V.

    2012-04-01

    Nuclear emulsions are an effective choice in many scenarios of volcano radiography by cosmic-ray muons. They are cheap and emulsion-based detectors require no on-site power supply. Nuclear emulsion films provide sub-micrometric tracking precision and intrinsic angular accuracy better than 1 mrad. Imaging the inner structure of a volcano requires that the cosmic-ray absorption map be measured on wide angular range. High-absorption directions can be probed by allowing for large statistics, which implies a large overall flux, i.e. wide surface for the detector. A total area of the order of a few m2 is nowadays typical, thanks to the automatic readout tools originally developed for high-energy physics experiments such as CHORUS, PEANUT, OPERA. The European Scanning System is now being used to read out nuclear emulsion films exposed to cosmic rays on the side of volcanoes. The structure of the system is described in detail with respect to both hardware and software. Its present scanning speed of 20 cm2/h/side/microscope is suitable to fulfil the needs of the current exposures of nuclear emulsion films for muon radiograph, but it is worth to notice that applications in volcano imaging are among the driving forces pushing to increase the performances of the system. Preliminary results for the Unzen volcano of a joint effort by research groups in Italy and Japan show that the current system is already able to provide signal/background ratio in the range 100÷10000:1, depending on the quality cuts set in the off-line data analysis. The size of the smallest detectable structures in that experimental setup is constrained by the available statistics in the region of highest absorption to about 50 mrad, or 22 m under the top of the mountain. Another exposure is currently taking data at the Stromboli volcano. Readout of the exposed films is expected to begin in March 2012, and preliminary results will be available soon after. An effort by several universities and INFN has

  16. Geochemistry of mud volcano fluids in the Taiwan accretionary prism

    International Nuclear Information System (INIS)

    You Chenfeng; Gieskes, Joris M.; Lee, Typhoon; Yui Tzenfu; Chen Hsinwen

    2004-01-01

    Taiwan is located at the collision boundary between the Philippine Sea Plate and the Asian Continental Plate and is one of the most active orogenic belts in the world. Fluids sampled from 9 sub-aerial mud volcanoes distributed along two major geological structures in southwestern Taiwan, the Chishan fault and the Gutingkeng anticline, were analyzed to evaluate possible sources of water and the degree of fluid-sediment interaction at depth in an accretionary prism. Overall, the Taiwanese mud volcano fluids are characterized by high Cl contents, up to 347 mM, suggesting a marine origin from actively de-watering sedimentary pore waters along major structures on land. The fluids obtained from the Gutingkeng anticline, as well as from the Coastal Plain area, show high Cl, Na, K, Ca, Mg and NH 4 , but low SO 4 and B concentrations. In contrast, the Chishan fault fluids are much less saline (1/4 seawater value), but show much heavier O isotope compositions (δ 18 O=5.1-6.5 %o). A simplified scenario of mixing between sedimentary pore fluids and waters affected by clay dehydration released at depth can explain several crucial observations including heavy O isotopes, radiogenic Sr contents ( 87 Sr/ 86 Sr=0.71136-0.71283), and relatively low salinities in the Chishan fluids. Gases isolated from the mud volcanoes are predominantly CH 4 and CO 2 , where the CH 4 -C isotopic compositions show a thermogenic component of δ 13 C=-38 %o. These results demonstrate that active mud volcano de-watering in Taiwan is a direct product of intense sediment accretion and plate collision in the region

  17. Full-wave Ambient Noise Tomography of Mt Rainier volcano, USA

    Science.gov (United States)

    Flinders, Ashton; Shen, Yang

    2015-04-01

    Mount Rainier towers over the landscape of western Washington (USA), ranking with Fuji-yama in Japan, Mt Pinatubo in the Philippines, and Mt Vesuvius in Italy, as one of the great stratovolcanoes of the world. Notwithstanding its picturesque stature, Mt Rainier is potentially the most devastating stratovolcano in North America, with more than 3.5 million people living beneath is shadow in the Seattle-Tacoma area. The primary hazard posed by the volcano is in the form of highly destructive debris flows (lahars). These lahars form when water and/or melted ice erode away and entrain preexisting volcanic sediment. At Mt Rainier these flows are often initiated by sector collapse of the volcano's hydrothermally rotten flanks and compounded by Mt Rainier's extensive snow and glacial ice coverage. It is therefore imperative to ascertain the extent of the volcano's summit hydrothermal alteration, and determine areas prone to collapse. Despite being one of the sixteen volcanoes globally designated by the International Association of Volcanology and Chemistry of the Earth's Interior as warranting detailed and focused study, Mt Rainier remains enigmatic both in terms of the shallow internal structure and the degree of summit hydrothermal alteration. We image this shallow internal structure and areas of possible summit alteration using ambient noise tomography. Our full waveform forward modeling includes high-resolution topography allowing us to accuratly account for the effects of topography on the propagation of short-period Rayleigh waves. Empirical Green's functions were extracted from 80 stations within 200 km of Mt Rainier, and compared with synthetic greens functions over multiple frequency bands from 2-28 seconds.

  18. Improving GNSS time series for volcano monitoring: application to Canary Islands (Spain)

    Science.gov (United States)

    García-Cañada, Laura; Sevilla, Miguel J.; Pereda de Pablo, Jorge; Domínguez Cerdeña, Itahiza

    2017-04-01

    The number of permanent GNSS stations has increased significantly in recent years for different geodetic applications such as volcano monitoring, which require a high precision. Recently we have started to have coordinates time series long enough so that we can apply different analysis and filters that allow us to improve the GNSS coordinates results. Following this idea we have processed data from GNSS permanent stations used by the Spanish Instituto Geográfico Nacional (IGN) for volcano monitoring in Canary Islands to obtained time series by double difference processing method with Bernese v5.0 for the period 2007-2014. We have identified the characteristics of these time series and obtained models to estimate velocities with greater accuracy and more realistic uncertainties. In order to improve the results we have used two kinds of filters to improve the time series. The first, a spatial filter, has been computed using the series of residuals of all stations in the Canary Islands without an anomalous behaviour after removing a linear trend. This allows us to apply this filter to all sets of coordinates of the permanent stations reducing their dispersion. The second filter takes account of the temporal correlation in the coordinate time series for each station individually. A research about the evolution of the velocity depending on the series length has been carried out and it has demonstrated the need for using time series of at least four years. Therefore, in those stations with more than four years of data, we calculated the velocity and the characteristic parameters in order to have time series of residuals. This methodology has been applied to the GNSS data network in El Hierro (Canary Islands) during the 2011-2012 eruption and the subsequent magmatic intrusions (2012-2014). The results show that in the new series it is easier to detect anomalous behaviours in the coordinates, so they are most useful to detect crustal deformations in volcano monitoring.

  19. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  20. Satellite Observations of Volcanic Clouds from the Eruption of Redoubt Volcano, Alaska, 2009

    Science.gov (United States)

    Dean, K. G.; Ekstrand, A. L.; Webley, P.; Dehn, J.

    2009-12-01

    Redoubt Volcano began erupting on 23 March 2009 (UTC) and consisted of 19 events over a 14 day period. The volcano is located on the Alaska Peninsula, 175 km southwest of Anchorage, Alaska. The previous eruption was in 1989/1990 and seriously disrupted air traffic in the region, including the near catastrophic engine failure of a passenger airliner. Plumes and ash clouds from the recent eruption were observed on a variety of satellite data (AVHRR, MODIS and GOES). The eruption produced volcanic clouds up to 19 km which are some of the highest detected in recent times in the North Pacific region. The ash clouds primarily drifted north and east of the volcano, had a weak ash signal in the split window data and resulted in light ash falls in the Cook Inlet basin and northward into Alaska’s Interior. Volcanic cloud heights were measured using ground-based radar, and plume temperature and wind shear methods but each of the techniques resulted in significant variations in the estimates. Even though radar showed the greatest heights, satellite data and wind shears suggest that the largest concentrations of ash may be at lower altitudes in some cases. Sulfur dioxide clouds were also observed on satellite data (OMI, AIRS and Calipso) and they primarily drifted to the east and were detected at several locations across North America, thousands of kilometers from the volcano. Here, we show time series data collected by the Alaska Volcano Observatory, illustrating the different eruptive events and ash clouds that developed over the subsequent days.

  1. Persistent growth of a young andesite lava cone: Bagana volcano, Papua New Guinea

    Science.gov (United States)

    Wadge, G.; McCormick Kilbride, B. T.; Edmonds, M.; Johnson, R. W.

    2018-05-01

    Bagana, an andesite lava cone on Bougainville Island, Papua New Guinea, is thought to be a very young central volcano. We have tested this idea by estimating the volumes of lava extruded over different time intervals (1-, 2-, 3-, 9-, 15-, 70-years) using digital elevation models (DEMs), mainly created from satellite data. Our results show that the long-term extrusion rate at Bagana, measured over years to decades, has remained at about 1.0 m3 s-1. We present models of the total edifice volume, and show that, if our measured extrusion rates are representative, the volcano could have been built in only 300 years. It could also possibly have been built at a slower rate during a longer, earlier period of growth. Six kilometres NNW of Bagana, an andesite-dacite volcano, Billy Mitchell, had a large, caldera-forming plinian eruption 437 years ago. We consider the possibility that, as a result of this eruption, the magma supply was diverted from Billy Mitchell to Bagana. It seems that Bagana is a rare example of a very youthful, polygenetic, andesite volcano. The characteristics of such a volcano, based on the example of Bagana, are: a preponderance of lava products over pyroclastic products, a high rate of lava extrusion maintained for decades, a very high rate of SO2 emission, evidence of magma batch fractionation and location in a trans-tensional setting at the end of an arc segment above a very steeply dipping and rapidly converging subduction zone.

  2. The 1793 Eruption of San Martin Volcano (Los Tuxtlas, Veracruz, Mexico)

    Science.gov (United States)

    Espindola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Rodriguez-Elizarraras, S.

    2007-12-01

    San Martin Tuxtla Volcano is located in the State of Veracruz, Eastern Mexico (18.572N, 95.169W, 1650 masl). Its last eruption, which occurred 1793, was described by D. Jose Moziño, a naturalist sent by the Viceroy-of the then New Spain-to report on the eruption. The activity lasted for several months with distinct events of explosive character, which produced thick ash fall deposits in its vicinity. The explosions were heard, among other places, in the coasts of Tampico some 500km NW from the volcano. The ash fall reached distances up to 200 Km from the crater and covered an area of about 112,000 Km2. Following the description of Moziño and the results of field studies we make a reconstruction of the eruption. We identified the air fall deposit from this eruption and present an isopach map. We present radiocarbon ages of the paleosoils under the ash bed as an indirect evidence of its age. This data together with present day wind velocities, and a diffusion-advection model of the dispersion of ashes allow to estimate in at least 10km the altitude reached by some of the eruptive plumes. An estimation of the minimum volume of ash erupted, based on the reconstructed isopachs, is of about 1.3 x 108 m3. Microphotographs of the ashes suggest that the activity was of phreatomagmatic and strombolian nature. Finally, we address some aspects of the volcanic risk in the area derived from our study.

  3. Space volcano observatory (SVO): a metric resolution system on-board a micro/mini-satellite

    Science.gov (United States)

    Briole, P.; Cerutti-Maori, G.; Kasser, M.

    2017-11-01

    1500 volcanoes on the Earth are potentially active, one third of them have been active during this century and about 70 are presently erupting. At the beginning of the third millenium, 10% of the world population will be living in areas directly threatened by volcanoes, without considering the effects of eruptions on climate or air-trafic for example. The understanding of volcanic eruptions, a major challenge in geoscience, demands continuous monitoring of active volcanoes. The only way to provide global, continuous, real time and all-weather information on volcanoes is to set up a Space Volcano Observatory closely connected to the ground observatories. Spaceborne observations are mandatory and implement the ground ones as well as airborne ones that can be implemented on a limited set of volcanoes. SVO goal is to monitor both the deformations and the changes in thermal radiance at optical wavelengths from high temperature surfaces of the active volcanic zones. For that, we propose to map at high resolution (1 to 1,5 m pixel size) the topography (stereoscopic observation) and the thermal anomalies (pixel-integrated temperatures above 450°C) of active volcanic areas in a size of 6 x 6 km to 12 x 12 km, large enough for monitoring most of the target features. A return time of 1 to 3 days will allow to get a monitoring useful for hazard mitigation. The paper will present the concept of the optical payload, compatible with a micro/mini satellite (mass in the range 100 - 400 kg), budget for the use of Proteus platform in the case of minisatellite approach will be given and also in the case of CNES microsat platform family. This kind of design could be used for other applications like high resolution imagery on a limited zone for military purpose, GIS, evolution cadaster…

  4. Active fans and grizzly bears: Reducing risks for wilderness campers

    Science.gov (United States)

    Sakals, M. E.; Wilford, D. J.; Wellwood, D. W.; MacDougall, S. A.

    2010-03-01

    Active geomorphic fans experience debris flows, debris floods and/or floods (hydrogeomorphic processes) that can be hazards to humans. Grizzly bears ( Ursus arctos) can also be a hazard to humans. This paper presents the results of a cross-disciplinary study that analyzed both hydrogeomorphic and grizzly bear hazards to wilderness campers on geomorphic fans along a popular hiking trail in Kluane National Park and Reserve in southwestern Yukon Territory, Canada. Based on the results, a method is proposed to reduce the risks to campers associated with camping on fans. The method includes both landscape and site scales and is based on easily understood and readily available information regarding weather, vegetation, stream bank conditions, and bear ecology and behaviour. Educating wilderness campers and providing a method of decision-making to reduce risk supports Parks Canada's public safety program; a program based on the principle of user self-sufficiency. Reducing grizzly bear-human conflicts complements the efforts of Parks Canada to ensure a healthy grizzly bear population.

  5. Laser-ranging scanning system to observe topographical deformations of volcanoes.

    Science.gov (United States)

    Aoki, T; Takabe, M; Mizutani, K; Itabe, T

    1997-02-20

    We have developed a laser-ranging system to observe the topographical structure of volcanoes. This system can be used to measure the distance to a target by a laser and shows the three-dimensional topographical structure of a volcano with an accuracy of 30 cm. This accuracy is greater than that of a typical laser-ranging system that uses a corner-cube reflector as a target because the reflected light jitters as a result of inclination and unevenness of the target ground surface. However, this laser-ranging system is useful for detecting deformations of topographical features in which placement of a reflector is difficult, such as in volcanic regions.

  6. Ruiz Volcano: Preliminary report

    Science.gov (United States)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  7. Comparison of authigenic carbonates formation at mud volcanoes and pockmarks in the Portuguese Margin vs. at the Yinazao serpentinite mud volcano in the Marianas forearc

    Science.gov (United States)

    Magalhaes, V. H.; Freitas, M.; Azevedo, M. R.; Pinheiro, L. M.; Salgueiro, E.; Abrantes, F. F. G.

    2017-12-01

    On the Portuguese passive continental margin, active and past seepage processes form mud volcanoes and pockmarks at the seafloor. Often associated with these structures are extensive methane-derived authigenic carbonates that form from deep-sourced methane-rich fluids that ascend from deep to the upper sedimentary column and often discharge at the seafloor. These carbonates form within the sediments and are either dominated by dolomite and high-Mg calcites, when formed under a restricted seawater circulation environment, anoxic and low sulphate conditions; or by aragonite and calcite when formed close to or at the seafloor in a high sulphate system. The δ13C values (-56.2‰ VPDB) found on the carbonate-cemented material clearly indicates methane as the major carbon source. On the Yinazao serpentinite mud volcano at an active, non-accretionary, convergent margin, sediment samples from IODP Sites U1491 and U1492 (Exp. 366) contain authigenic minerals such as aragonite, calcite, brucite, gypsum among others. Authigenic aragonite occurs predominantly within the top meters of the cores where both oxidation and seawater circulation in the sedimentary column are higher. In this system, initial results indicate that the major carbon source is most probably not methane but seawater related. This work discusses and compares the major carbon sources in both systems: sedimentary mud volcanoes and pockmarks of a passive margin vs. a serpentinite mud volcano of an active, non-accretionary, convergent margin. We acknowledge the support from the PES project - Pockmarks and fluid seepage in the Estremadura Spur: implications for regional geology, biology, and petroleum systems (PTDC/GEOFIQ/5162/2014) financed by the Portuguese Foundation for Science and Technology (FCT).

  8. Using detection and deterrence to reduce insider risk

    International Nuclear Information System (INIS)

    Eggers, R.F.; Carlson, R.L.; Udell, C.J.

    1988-01-01

    This paper addresses a new concept of interaction between adversary detection and deterrence. It provides an initial evaluation of the effects of these variables on the risk of theft of special nuclear material by an insider adversary and can be extended to the sabotage threat. A steady-state risk equation is used. Exercises with this equation show that deterrence, resulting from the prospect of detection, has a greater ability to reduce the risk than the detection exercise itself. This is true for all cases except those in which the probabilty of detection is 1. Cases were developed for three different types of adversaries that can be distinguished from one another by the level of detection they are willing to tolerate before they are deterred from attempting a theft. By considering the effects of detection, deterrence, and adversary type, the ground work is laid for designing cost-effective insider threat-protection systems

  9. Reduced cancer risk in vegetarians: an analysis of recent reports

    Directory of Open Access Journals (Sweden)

    Amy Joy Lanou

    2010-12-01

    Full Text Available Amy Joy Lanou1, Barbara Svenson21Department of Health and Wellness, 2Ramsey Library, University of North Carolina Asheville, Asheville, NC, USAAbstract: This report reviews current evidence regarding the relationship between vegetarian eating patterns and cancer risk. Although plant-based diets including vegetarian and vegan diets are generally considered to be cancer protective, very few studies have directly addressed this question. Most large prospective observational studies show that vegetarian diets are at least modestly cancer protective (10%–12% reduction in overall cancer risk although results for specific cancers are less clear. No long-term randomized clinical trials have been conducted to address this relationship. However, a broad body of evidence links specific plant foods such as fruits and vegetables, plant constituents such as fiber, antioxidants and other phytochemicals, and achieving and maintaining a healthy weight to reduced risk of cancer diagnosis and recurrence. Also, research links the consumption of meat, especially red and processed meats, to increased risk of several types of cancer. Vegetarian and vegan diets increase beneficial plant foods and plant constituents, eliminate the intake of red and processed meat, and aid in achieving and maintaining a healthy weight. The direct and indirect evidence taken together suggests that vegetarian diets are a useful strategy for reducing risk of cancer.Keywords: diet, vegan, prevention

  10. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    Science.gov (United States)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  11. The "Mud-volcanoes route" (Emilia Apennines, northern Italy)

    Science.gov (United States)

    Coratza, Paola; Castaldini, Doriano

    2016-04-01

    In the present paper the "Mud-volcanoes route" (MVR), an itinerary unfolds across the districts of Viano, Sassuolo, Fiorano Modenese and Maranello, in which part of the Emilia mud volcanoes fields are located, is presented. The Mud-volanoes route represents an emotional journey that connects places and excellences through the geological phenomenon of mud volcanoes, known with the local name "Salse". The Mud Volcanoes are created by the surfacing of salt water and mud mixed with gaseous and liquid hydrocarbons along faults and fractures of the ground. The name "Salsa"- from Latin salsus - results from the"salt" content of these muddy waters, ancient heritage of the sea that about a million years ago was occupying the current Po Plain. The "Salse" may take the shape of a cone or a level-pool according to the density of the mud. The Salse of Nirano, in the district of Fiorano Modenese, is one of the most important in Italy and among the most complex in Europe. Less extensive but equally charming and spectacular, are the "Salse" located in the districts of Maranello (locality Puianello), Sassuolo (locality Montegibbio) and Viano (locality Casola Querciola and Regnano). These fascinating lunar landscapes have always attracted the interest of researchers and tourist.The presence on the MVR territory of ancient settlements, Roman furnaces and mansions, fortification systems and castles, besides historic and rural buildings, proves the lasting bond between this land and its men. In these places, where the culture of good food has become a resource, we can find wine cellars, dairy farms and Balsamic vinegar factories that enable us to appreciate unique worldwide products. This land gave also birth to some personalities who created unique worldwide famous values, such as the myth of the Ferrrari, the ceramic industry and the mechatronics. The MVR is represented in a leaflet containing, short explanation, photos and a map in which are located areas with mud volcanoes, castles

  12. Isotopic evolution of Mauna Loa volcano

    International Nuclear Information System (INIS)

    Kurz, M.D.; Kammer, D.P.

    1991-01-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3 He/ 4 He (≅ 16-20 times atmospheric), higher 206 Pb/ 204 Pb (≅ 18.2), and lower 87 Sr/ 86 Sr(≅ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 x atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3 He/ 4 He ratios similar to the other young Kau basalt (≅ 8.5 x atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. (orig./WL)

  13. Innovative Corporate Initiatives to Reduce Climate Risk: Lessons from East Asia

    Directory of Open Access Journals (Sweden)

    Edward B. Barbier

    2017-12-01

    Full Text Available Businesses, investors, and insurers are requiring better quantitative assessments of their exposure to climate risks and their impact on climate change. They are incorporating these assessments in their day-to-day management and long-term investment decisions. Already, there are efforts to develop international guidelines, common policies and legal frameworks for such assessments, as well as the desire to foster climate financing. We examine recent progress in East Asia and the rest of the world in setting targets, pricing policies, and other mechanisms to reduce climate risks. We develop a model that demonstrates how reduced climate risk management may lower the total cost of capital of firms, thus making them more attractive to investors. We discuss the additional policies needed to support improved climate risk management in investment decisions, private investments in climate science, technology and innovation (STI expansion, and more widespread adoption of climate financing and principles. Central banks, financial authorities, and governments can advance this objective by creating financial incentives to support investment decision-making. This would take into account factors such as improving climate performance, establishing better climate risk management and reporting requirements to foster green STI, and developing international guidelines and common policy and legal frameworks to support better climate risk management, assessments and reporting.

  14. Combining Volcano Monitoring Timeseries Analyses with Bayesian Belief Networks to Update Hazard Forecast Estimates

    Science.gov (United States)

    Odbert, Henry; Hincks, Thea; Aspinall, Willy

    2015-04-01

    Volcanic hazard assessments must combine information about the physical processes of hazardous phenomena with observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We show how our method

  15. Determining Volcanic Deformation at San Miguel Volcano, El Salvador by Integrating Radar Interferometry and Seismic Analyses

    Science.gov (United States)

    Schiek, C. G.; Hurtado, J. M.; Velasco, A. A.; Buckley, S. M.; Escobar, D.

    2008-12-01

    From the early 1900's to the present day, San Miguel volcano has experienced many small eruptions and several periods of heightened seismic activity, making it one of the most active volcanoes in the El Salvadoran volcanic chain. Prior to 1969, the volcano experienced many explosive eruptions with Volcano Explosivity Indices (VEI) of 2. Since then, eruptions have decreased in intensity to an average VEI of 1. Eruptions mostly consist of phreatic explosions and central vent eruptions. Due to the explosive nature of this volcano, it is important to study the origins of the volcanism and its relationship to surface deformation and earthquake activity. We analyze these interactions by integrating interferometric synthetic aperture radar (InSAR) results with earthquake source location data from a ten-month (March 2007-January 2008) seismic deployment. The InSAR results show a maximum of 7 cm of volcanic inflation from March 2007 to mid-October 2007. During this time, seismic activity increased to a Real-time Seismic-Amplitude Measurement (RSAM) value of >400. Normal RSAM values for this volcano are earthquakes that occurred between March 2007 and January 2008 suggests a fault zone through the center of the San Miguel volcanic cone. This fault zone is most likely where dyke propagation is occurring. Source mechanisms will be determined for the earthquakes associated with this fault zone, and they will be compared to the InSAR deformation field to determine if the mid-October seismic activity and observed surface deformation are compatible.

  16. SSMILes: Investigating Various Volcanic Eruptions and Volcano Heights.

    Science.gov (United States)

    Wagner-Pine, Linda; Keith, Donna Graham

    1994-01-01

    Presents an integrated math/science activity that shows students the differences among the three types of volcanoes using observation, classification, graphing, sorting, problem solving, measurement, averages, pattern relationships, calculators, computers, and research skills. Includes reproducible student worksheet. Lists 13 teacher resources.…

  17. Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean

    NARCIS (Netherlands)

    Charlou, J.-L.; Donval, J.-P.; Zitter, T.; Roy, N.; Jean Baptiste, P.; Foucher, J.P.; Woodside, J.M.; Medinaut, Party

    2003-01-01

    As a part of the Dutch-French MEDINAUT diving expedition in 1998, cold seeps and mud volcanoes were studied and sampled in two distinctive tectonic settings in the eastern Mediterranean Sea. The first setting was the Olimpi Mud Volcano field (OMV area), including Napoli, Milano, Maidstone and Moscow

  18. Copahue volcano and its regional magmatic setting

    Science.gov (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  19. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    Science.gov (United States)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Aleutian arc volcanoes. Tephra deposits from typical VEI 2 historical eruptions are not well preserved on the island so tephra-fall frequency estimated from stratigraphic studies is underestimated. Akutan Island is home to the largest seafood processing plant in North America and has a workforce of more than one thousand people. Other infrastructure consists of a recently constructed paved airfield on neighboring Akun Island (25 km east of the active vent) and a new boat harbor at the head of Akutan Harbor. Plans to develop greenhouses, tourism, and increased cold storage capacity on Akutan and Akun Islands also are evolving. To support the power demands of the development efforts, The City of Akutan is considering the utilization of geothermal resources on the island that are located in Hot Springs Bay valley northwest of the city. All of the existing and planned infrastructure, water supply, and residential areas are about 12 km downwind (east) of the volcano and are at risk from ash-producing eruptions. The historical eruptive history suggests that VEI 2 eruptions are plausible in the near future and the Holocene tephra-fall record indicates that large eruptions (VEI 4 or larger) occur about every few thousand years. Numerical modeling of tephra fallout based on the record of ash-producing eruptions will be used to improve tephra-fall hazard assessments for the area.

  20. Using detection and deterrence to reduce insider risk

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, R F; Carlson, R L; Udell, C J

    1988-06-01

    This paper addresses a new concept of interaction between adversary detection and deterrence. It provides an initial evaluation of the effects of these variables on the risk of theft of special nuclear material by an insider adversary and can be extended to the sabotage threat. A steady-state risk equation is used. Exercises with this equation show that deterrence, resulting from the prospect of detection, has a greater ability to reduce the risk than the detection exercise itself. This is true for all cases except those in which the probability of detection is 1. Cases were developed for three different types of adversaries that can be distinguished from one another by the level of detection they are willing to tolerate before they are deterred from attempting a theft. By considering the effects of detection, deterrence, and adversary type, the ground work is laid for designing cost-effective insider threat-protection systems. 2 refs., 6 figs.