WorldWideScience

Sample records for reducing rocking vibrations

  1. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  2. Ambient vibrations of unstable rock slopes - insights from numerical modeling

    Science.gov (United States)

    Burjanek, Jan; Kleinbrod, Ulrike; Fäh, Donat

    2017-04-01

    The recent events in Nepal (2015 M7.8 Gorkha) and New Zealand (2016 M7.8 Kaikoura) highlighted the importance of earthquake-induced landslides, which caused significant damages. Moreover, landslide created dams present a potential developing hazard. In order to reduce the costly consequences of such events it is important to detect and characterize earthquake susceptible rock slope instabilities before an event, and to take mitigation measures. For the characterisation of instable slopes, acquisition of ambient vibrations might be a new alternative to the already existing methods. We present both observations and 3D numerical simulations of the ambient vibrations of unstable slopes. In particular, models of representative real sites have been developed based on detailed terrain mapping and used for the comparison between synthetics and observations. A finite-difference code has been adopted for the seismic wave propagation in a 3D inhomogeneous visco-elastic media with irregular free surface. It utilizes a curvilinear grid for a precise modeling of curved topography and local mesh refinement to make computational mesh finer near the free surface. Topographic site effects, controlled merely by the shape of the topography, do not explain the observed seismic response. In contrast, steeply-dipping compliant fractures have been found to play a key role in fitting observations. Notably, the synthetized response is controlled by inertial mass of the unstable rock, and by stiffness, depth and network density of the fractures. The developed models fit observed extreme amplification levels (factors of 70!) and show directionality as well. This represents a possibility to characterize slope structure and infer depth or volume of the slope instability from the ambient noise recordings in the future.

  3. Forced vibration tests of a model foundation on rock ground

    International Nuclear Information System (INIS)

    Kisaki, N.; Siota, M.; Yamada, M.; Ikeda, A.; Tsuchiya, H.; Kitazawa, K.; Kuwabara, Y.; Ogiwara, Y.

    1983-01-01

    The response of very stiff structures, such as nuclear reactor buildings, to earthquake ground motion is significantly affected by radiation damping due to the soil-structure interaction. The radiation damping can be computed by vibration admittance theory or dynamical ground compliance theory. In order to apply the values derived from these theories to the practical problems, comparative studies between theoretical results and experimental results concerning the soil-structure interaction, especially if the ground is rock, are urgently needed. However, experimental results for rock are less easily obtained than theoretical ones. The purpose of this paper is to describe the harmonic excitation tests of a model foundation on rock and to describe the results of comparative studies. (orig./HP)

  4. Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for

  5. A Novel Dual–Parallelogram Passive Rocking Vibration Isolator: A Theoretical Investigation and Experiment

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2017-04-01

    Full Text Available Vibration isolators with quasi-zero stiffness (QZS perform well for low- or ultra-low-frequency vibration isolation. This paper proposes a novel dual-parallelogram passive rocking vibration isolator with QZS that could effectively attenuate in-plane disturbances with low-frequency vibration. First, a kinematic model of the proposed vibration isolator was established and four linear spring configuration schemes were developed to implement the QZS. Next, an optimal scheme with good high-static-low-dynamic stiffness (HSLDS performance was obtained through comparison and analysis, and used as a focus for the QZS model. Subsequently, a dynamic model-based Lagrangian equation that considered the spring stiffness and damping and the influence of the payload gravity center on the vibration isolation system was developed, and an average approach was used to analyze the vibration transmissibility. Finally, the prototype and test system were constructed. A comparison of the simulation and experimental results showed that this novel passive rocking vibration isolator could bolster a heavy payload. Experimentally, the vibration amplitude decreased by 53% and 86% under harmonic disturbances of 0.08 Hz and 0.35 Hz, respectively, suggesting the great practical applicability of this presented vibration isolator.

  6. Structural Characteristics of Rotate Vector Reducer Free Vibration

    Directory of Open Access Journals (Sweden)

    Chuan Chen

    2017-01-01

    Full Text Available For RV reducer widely used in robots, vibration significantly affects its performance. A lumped parameter model is developed to investigate free vibration characteristics without and with gyroscopic effects. The dynamic model considers key factors affecting vibration such as involute and cycloid gear mesh stiffness, crankshaft bending stiffness, and bearing stiffness. For both nongyroscopic and gyroscopic systems, free vibrations are examined and compared with each other. Results reveal the specific structure of vibration modes for both systems, which results from symmetry structure of RV reducer. According to vibration of the central components, vibration modes of two systems can be classified into three types, rotational, translational, and planetary component modes. Different from nongyroscopic system, the eigenvalues with gyroscopic effects are complex-valued and speed-dependent. The eigenvalue for a range of carrier speeds is obtained by numerical simulation. Divergence and flutter instability is observed at speeds adjacent to critical speeds. Furthermore, the work studies effects of key factors, which include crankshaft eccentricity and the number of pins, on eigenvalues. Finally, experiment is performed to verify the effectiveness of the dynamic model. The research of this paper is helpful for the analysis on free vibration and dynamic design of RV reducer.

  7. Vibration measurement for evaluating the danger of rock-collapse; Rakuseki kikendo hantei no tame no shindo sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T; Harada, H [The Nippon Road Co. Ltd., Tokyo (Japan); Mitsuzuka, T [Chishitsu-Keisoku Co. Ltd., Tokyo (Japan)

    1997-10-22

    Discussions were given on feasibility of a method for investigating a problem of the danger of rock-collapse by applying vibration measurement. The measurement investigation was carried out at a mouth of a tunnel under construction on a highway where the danger of rock-collapse is being investigated according to a qualitative determination criterion. Sixty-four rocks have been evaluated of their danger, with the degree of the danger having been classified to ranks one to three. Vibration measurement was performed on five floating rocks out of the 64 rocks. Vibroscopes were installed on upper portion of the rocks to be investigated and on exposed rocks nearby. The measurement revealed that the vibration has nearly the same amplitude in both of the floating rocks and the settled rocks before and after an automobile has passed, but the floating rocks shake more strongly than the settled rocks while an automobile is passing. This trend appears more noticeably in rocks regarded unstable in the danger determining investigation, indicating presence of close relationship between wave amplitude excited by the automobile and adhesion of the floating rocks. As a result of the discussions, it was made clear that the maximum amplitude ratio and the spectral ratio among the vibration characteristics of the floating rocks can be used as effective determination criteria. 2 refs., 7 figs., 2 tabs.

  8. On the seismic response of instable rock slopes based on ambient vibration recordings

    Czech Academy of Sciences Publication Activity Database

    Kleinbrod, U.; Burjánek, Jan; Fäh, D.

    2017-01-01

    Roč. 69, September (2017), č. článku 126. ISSN 1880-5981 Institutional support: RVO:67985530 Keywords : ambient vibrations * instable rock slopes * site amplification Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.243, year: 2016

  9. Approaches for reducing structural vibration of the carbody railway vehicles

    Directory of Open Access Journals (Sweden)

    Dumitriu Mădălina

    2017-01-01

    Full Text Available Reducing the weight of the railway vehicles stands as a decisive rule in their design, entailed by higher velocities, the need to consume less energy and lower the manufacturing costs, along with the maximization of the use of loads on the axle. Once complied with this rule, the vehicle flexibility increases and leads to an easy excitation of the structural vibrations in the carbody, with an impact upon the ride comfort in the railway vehicle. For a better ride comfort in lightweight railway vehicles, both vibration isolation approaches and structural damping approaches have been introduced. The paper herein submits a brief review of the main structural damping approaches aiming to reduce the amplitude in the carbody structural vibrations, based on the use of the piezoelectric elements in passive control schemes. The paper outcomes show the potential of the presented methods concerning the reduction of the flexible vibrations in the carbody and the ride comfort improvement.

  10. Input Shaping to Reduce Solar Array Structural Vibrations

    Science.gov (United States)

    Doherty, Michael J.; Tolson, Robert J.

    1998-01-01

    Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.

  11. Investigation of block foundations resting on soil–rock and rock–rock media under coupled vibrations

    Directory of Open Access Journals (Sweden)

    Renuka Darshyamkar

    2017-04-01

    Full Text Available In the present study, the dynamic response of block foundations of different equivalent radius to mass (Ro/m ratios under coupled vibrations is investigated for various homogeneous and layered systems. The frequency-dependent stiffness and damping of foundation resting on homogeneous soils and rocks are determined using the half-space theory. The dynamic response characteristics of foundation resting on the layered system considering rock–rock combination are evaluated using finite element program with transmitting boundaries. Frequencies versus amplitude responses of block foundation are obtained for both translational and rotational motion. A new methodology is proposed for determination of dynamic response of block foundations resting on soil–rock and weathered rock–rock system in the form of equations and graphs. The variations of dimensionless natural frequency and dimensionless resonant amplitude with shear wave velocity ratio are investigated for different thicknesses of top soil/weathered rock layer. The dynamic behaviors of block foundations are also analyzed for different rock–rock systems by considering sandstone, shale and limestone underlain by basalt. The variations of stiffness, damping and amplitudes of block foundations with frequency are shown in this study for various rock–rock combinations. In the analysis, two resonant peaks are observed at two different frequencies for both translational and rotational motion. It is observed that the dimensionless resonant amplitudes decrease and natural frequencies increase with increase in shear wave velocity ratio. Finally, the parametric study is performed for block foundations with dimensions of 4 m × 3 m × 2 m and 8 m × 5 m × 2 m by using generalized graphs. The variations of natural frequency and peak displacement amplitude are also studied for different top layer thicknesses and eccentric moments.

  12. Reducing vibration transfer from power plants by active methods

    Science.gov (United States)

    Kiryukhin, A. V.; Milman, O. O.; Ptakhin, A. V.

    2017-12-01

    The possibility of applying the methods of active damping of vibration and pressure pulsations for reducing their transfer from power plants into the environment, the seating, and the industrial premises are considered. The results of experimental works implemented by the authors on the active broadband damping of vibration and dynamic forces after shock-absorption up to 15 dB in the frequency band up to 150 Hz, of water pressure pulsations in the pipeline up to 20 dB in the frequency band up to 600 Hz, and of spatial low-frequency air noise indoors of a diesel generator at discrete frequency up to 20 dB are presented. It is shown that a reduction of vibration transfer through a vibration-isolating junction (expansion joints) of pipelines with liquid is the most complicated and has hardly been developed so far. This problem is essential for vibration isolation of power equipment from the seating and the environment through pipelines with water and steam in the power and transport engineering, shipbuilding, and in oil and gas pipelines in pumping stations. For improving efficiency, reducing the energy consumption, and decreasing the overall dimensions of equipment, it is advisable to combine the work of an active system with passive damping means, the use of which is not always sufficient. The executive component of the systems of active damping should be placed behind the vibration isolators (expansion joints). It is shown that the existence of working medium and connection of vibration with pressure pulsations in existing designs of pipeline expansion joints lead to growth of vibration stiffness of the expansion joint with the environment by two and more orders as compared with the static stiffness and makes difficulties for using the active methods. For active damping of vibration transfer through expansion joints of pipelines with a liquid, it is necessary to develop expansion joint structures with minimal connection of vibrations and pulsations and minimal

  13. Numerical Simulation of Blast Vibration and Crack Forming Effect of Rock-Anchored Beam Excavation in Deep Underground Caverns

    Directory of Open Access Journals (Sweden)

    XinPing Li

    2017-01-01

    Full Text Available Aiming at surrounding rock damage induced by dynamic disturbance from blasting excavation of rock-anchored beam in rock mass at moderate or far distance in underground cavern, numerical model of different linear charging density and crustal stress in underground cavern is established by adopting dynamic finite element software based on borehole layout, charging, and rock parameter of the actual situation of a certain hydropower station. Through comparison in vibration velocity, contour surface of rock mass excavation, and the crushing extent of excavated rock mass between calculation result and field monitoring, optimum linear charging density of blast hole is determined. Studies are also conducted on rock mass vibration in moderate or far distance to blasting source, the damage of surrounding rock in near-field to blasting source, and crushing degree of excavated rock mass under various in situ stress conditions. Results indicate that, within certain range of in situ stress, the blasting vibration is independent of in situ stress, while when in situ stress is increasing above certain value, the blasting vibration velocity will be increasing and the damage of surrounding rock and the crushing degree of excavated rock mass will be decreasing.

  14. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

    Science.gov (United States)

    Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

    2018-01-01

    The vibration isolation performances of vibration reducing (VR) gloves are invariably assessed in terms of power tools' handle vibration transmission to the palm of the hand using the method described in ISO 10819 (2013), while the nature of vibration transmitted to the fingers is ignored. Moreover, the VR gloves with relatively low stiffness viscoelastic materials affect the grip strength in an adverse manner. This study is aimed at performance assessments of 12 different VR gloves on the basis of handle vibration transmission to the palm and the fingers of the gloved hand, together with reduction in the grip strength. The gloves included 3 different air bladder, 3 gel, 3 hybrid, and 2 gel-foam gloves in addition to a leather glove. Two Velcro finger adapters, each instrumented with a three-axis accelerometer, were used to measure vibration responses of the index and middle fingers near the mid-phalanges. Vibration transmitted to the palm was measured using the standardized palm adapter. The vibration transmissibility responses of the VR gloves were measured in the laboratory using the instrumented cylindrical handle, also described in the standard, mounted on a vibration exciter. A total of 12 healthy male subjects participated in the study. The instrumented handle was also used to measure grip strength of the subjects with and without the VR gloves. The results of the study showed that the VR gloves, with only a few exceptions, attenuate handle vibration transmitted to the fingers only in the 10-200 Hz and amplify middle finger vibration at frequencies exceeding 200 Hz. Many of the gloves, however, provided considerable reduction in vibration transmitted to the palm, especially at higher frequencies. These suggest that the characteristics of vibration transmitted to fingers differ considerably from those at the palm. Four of the test gloves satisfied the screening criteria of the ISO 10819 (2013) based on the palm vibration alone, even though these caused

  15. An in situ test of vibrating wire stressmeters in granitic rock

    International Nuclear Information System (INIS)

    Spinney, M.H.

    1990-02-01

    An in situ test was conducted to assess the ability of vibrating-wire stressmeters to measure stress changes in hard, unfractured granitic rock at the Underground Research Laboratory (URL). Twelve vibrating-wire stressmeters installed ahead of the face and below floor grade of Room 205 were monitored during the excavation of Room 205. The results were compared with results from CSIRO hollow inclusion triaxial strain cells, USBM boreholes deformation gauge overcore tests done before and after excavation, and a two-dimensional numerical model

  16. Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests

    International Nuclear Information System (INIS)

    Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama

    2005-01-01

    This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)

  17. Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.

  18. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    Science.gov (United States)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  19. Reducing rock fall injuries in underground US coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, S.B.; Molinda, G.M.; Pappas, D.M. [Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

    2005-07-01

    A continuing risk to underground US coal miners is rock falling from the mine roof. Almost 99% of injuries caused by rock falls are not from a major roof collapse, but from smaller rock that fall from between roof bolts. Installing roof screen provides excellent overhead roof coverage and dramatically reduces the potential for rock fall injuries, especially to roof bolted operators. The National Institute for Occupational Safety and Health (NIOSH) has explored different installation techniques and roof screening options along with machine design innovations that make roof screening easier and safer. Applying ergonomic principles to roof screening will offer insight and direction for better material handling. Other techniques for controlling rock falls and roof falls for long-term stability include the application of surface support liners and polyurethane (PUR) injection. An ongoing study at the NIOSH Lake Lynn Laboratory of various types of spray-on liner and shotcrete materials is providing a unique opportunity to evaluate the long-term behaviour of liners in an underground environment. In-mine studies of PUR have involved pre- and post-injection core drilling and video borecole logging. The results have provided insights into how PUR penetrates and reinforces weak and highly fractured rock. 11 refs., 8 figs., 1 tab.

  20. Ambient vibration characterization and monitoring of a rock slope close to collapse

    Science.gov (United States)

    Burjánek, Jan; Gischig, Valentin; Moore, Jeffrey R.; Fäh, Donat

    2018-01-01

    We analyse the ambient vibration response of Alpe di Roscioro (AdR), an incipient rock slope failure located above the village Preonzo in southern Switzerland. Following a major failure in May 2012 (volume ˜210 000 m3), the remaining unstable rock mass (˜140 000 m3) remains highly fractured and disrupted, and has been the subject of intensive monitoring. We deployed a small-aperture seismic array at the site shortly after the 2012 failure. The measured seismic response exhibited strong directional amplification (factors up to 35 at 3.5 Hz), higher than previously recorded on rock slopes. The dominant direction of ground motion was found to be parallel to the predominant direction of deformation and perpendicular to open fractures, reflecting subsurface structure of the slope. We then equipped the site with two semi-permanent seismic stations to monitor the seismic response with the goal of identifying changes caused by internal damage that may precede subsequent failure. Although failure has not yet occurred, our data reveal important variations in the seismic response. Amplification factors and resonant frequencies exhibit seasonal trends related (both directly and inversely) to temperature changes and are sensitive to freezing periods (resonant frequencies increase with temperature and during freezing). We attribute these effects to thermal expansion driving microcrack closure, in addition to ice formation, which increase fracture and bulk rock stiffness. We find the site response at AdR is linear over the measured range of weak input motions spanning two orders of magnitude. Our results further develop and refine ambient vibration methods used in rock slope hazard assessment.

  1. A process for reducing rocks and concentrating heavy minerals

    Science.gov (United States)

    Strong, Thomas R.; Driscoll, Rhonda L.

    2016-03-30

    To obtain minerals suitable for age-dating and other analyses, it is necessary to first reduce the mineral-bearing rock to a fine, sand-like consistency. Reducing whole rock requires crushing, grinding, and sieving. Ideally, the reduced material should range in size from 80- to 270-mesh (an opening between wires in a sieve). The openings in an 80-mesh sieve are equal to 0.007 inches, 0.177 millimeters, or 177 micrometers. This size range ensures that compound grains are mostly disaggregated and that grains, in general, are dimensionally similar. This range also improves the segregation rate of conspicuous to extremely small individual heavy mineral grains.

  2. Damping element for reducing the vibration of an airfoil

    Science.gov (United States)

    Campbell, Christian X; Marra, John J

    2013-11-12

    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  3. Satellite Vibration Testing: Angle optimisation method to Reduce Overtesting

    Science.gov (United States)

    Knight, Charly; Remedia, Marcello; Aglietti, Guglielmo S.; Richardson, Guy

    2018-06-01

    Spacecraft overtesting is a long running problem, and the main focus of most attempts to reduce it has been to adjust the base vibration input (i.e. notching). Instead this paper examines testing alternatives for secondary structures (equipment) coupled to the main structure (satellite) when they are tested separately. Even if the vibration source is applied along one of the orthogonal axes at the base of the coupled system (satellite plus equipment), the dynamics of the system and potentially the interface configuration mean the vibration at the interface may not occur all along one axis much less the corresponding orthogonal axis of the base excitation. This paper proposes an alternative testing methodology in which the testing of a piece of equipment occurs at an offset angle. This Angle Optimisation method may have multiple tests but each with an altered input direction allowing for the best match between all specified equipment system responses with coupled system tests. An optimisation process that compares the calculated equipment RMS values for a range of inputs with the maximum coupled system RMS values, and is used to find the optimal testing configuration for the given parameters. A case study was performed to find the best testing angles to match the acceleration responses of the centre of mass and sum of interface forces for all three axes, as well as the von Mises stress for an element by a fastening point. The angle optimisation method resulted in RMS values and PSD responses that were much closer to the coupled system when compared with traditional testing. The optimum testing configuration resulted in an overall average error significantly smaller than the traditional method. Crucially, this case study shows that the optimum test campaign could be a single equipment level test opposed to the traditional three orthogonal direction tests.

  4. Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions.

    Science.gov (United States)

    McDowell, Thomas W; Dong, Ren G; Welcome, Daniel E; Xu, Xueyan S; Warren, Christopher

    2013-01-01

    Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand-arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary: This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction.

  5. Floor Vibrations - as Induced and Reduced by Humans

    DEFF Research Database (Denmark)

    Pedersen, Lars

    . As for dynamic loads focus is placed on heel impact excitation and actions of jumping people causing floor vibrations. As for interaction between stationary humans and the vibrating floor focus is on modelling humans as oscillating spring-mass-damper systems attached to the floor rather than as simple added mass...

  6. The use of platform dampers to reduce turbine blade vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jareland, Martin H.

    2001-07-01

    Friction damping is commonly used in jet engines to reduce the vibration level of the blades and thereby increase the reliability of the engine. This thesis deals with a specific type of friction damper denoted platform damper, which is frequently used in turbine stages. A platform damper is a piece of metal located in a cavity underneath two adjacent blade platforms. It is pressed against the platforms by centrifugal force and friction forces arise in the contacts when a relative motion between the platforms occurs. In this thesis, a number of phenomena regarding platform dampers are investigated and discussed. This is performed both experimentally and theoretically. In the simulations, friction interface models valid for both macroslip and microslip are used. Macroslip means that slipping occurs in the whole contact interface and microslip means that slipping occurs in only part of the interface. The latter is most likely in the contacts between the platform damper and the blade platforms due to the high normal force and the small motions. The first paper deals with mistuning of bladed disks due to variations in the properties of the platform dampers and the closely related topic wear of the dampers. This study indicates that damper mistuning can greatly affect the blade vibrations and that damper and blade mistuning constitutes a more severe case than blade mistuning alone. It is also found that wear of the contact areas can lead either to an increase or decrease in the resonance amplitude of the blades in the studied configuration. In the second paper, so-called cottage-roof dampers are studied. Cottage-roof dampers are a type of platform damper with inclined contact surfaces. The inclination leads to a varying normal load, which complicates the analysis. A model including this effect is presented and simulations are performed both in the time and frequency domain. A parametric study is performed with the aim of finding the optimal damper design with respect to

  7. Sampling and treatment of rock cores and groundwater under reducing environments of deep underground

    International Nuclear Information System (INIS)

    Ebashi, Katsuhiro; Yamaguchi, Tetsuji; Tanaka, Tadao

    2005-01-01

    A method of sampling and treatment of undisturbed rock cores and groundwater under maintained reducing environments of deep underground was developed and demonstrated in a Neogene's sandy mudstone layer at depth of GL-100 to -200 m. Undisturbed rock cores and groundwater were sampled and transferred into an Ar gas atmospheric glove box with minimized exposure to the atmosphere. The reducing conditions of the sampled groundwater and rock cores were examined in the Ar atmospheric glove box by measuring pH and Eh of the sampled groundwater and sampled groundwater contacting with disk type rock samples, respectively. (author)

  8. Based on records of Three Gorge Telemetric Seismic Network to analyze Vibration process of micro fracture of rock landslide

    Science.gov (United States)

    WANG, Q.

    2017-12-01

    Used the finite element analysis software GeoStudio to establish vibration analysis model of Qianjiangping landslide, which locates at the Three Gorges Reservoir area. In QUAKE/W module, we chosen proper Dynamic elasticity modulus and Poisson's ratio of soil layer and rock stratum. When loading, we selected the waveform data record of Three Gorge Telemetric Seismic Network as input ground motion, which includes five rupture events recorded of Lujiashan seismic station. In dynamic simulating, we mainly focused on sliding process when the earthquake date record was applied. The simulation result shows that Qianjiangping landslide wasn't not only affected by its own static force, but also experienced the dynamic process of micro fracture-creep-slip rupture-creep-slip.it provides a new approach for the early warning feasibility of rock landslide in future research.

  9. Investigation on the Vibration Effect of Shock Wave in Rock Burst by In Situ Microseismic Monitoring

    Directory of Open Access Journals (Sweden)

    Mingshi Gao

    2018-01-01

    Full Text Available Rock burst is a physical explosion associated with enormous damage at a short time. Due to the complicity of mechanics of rock burst in coal mine roadway, the direct use of traditional investigation method applied in tunnel is inappropriate since the components of surrounding rock are much more complex in underground than that of tunnel. In addition, the reliability of the results obtained through these methods (i.e., physical simulation, theoretical analysis, and monitoring in filed application is still not certain with complex geological conditions. Against this background, present experimental study was first ever conducted at initial site to evaluate the effect of shock wave during the rock burst. TDS-6 microseismic monitoring system was set up in situ to evaluate the propagation of shock wave resulting in microexplosions of roadway surrounding rock. Various parameters including the distance of epicentre and the characteristic of response have been investigated. Detailed test results revealed that (1 the shock wave attenuated exponentially with the increase of the distance to seismic source according to the equation of E=E0e-ηl; particularly, the amplitude decreased significantly after being 20 m apart from explosive resource and then became very weak after being 30 m apart from the seismic source; (2 the response mechanics are characteristic with large scatter based on the real location of surrounding rock despite being at the same section. That is, the surrounding rock of floor experienced serious damage, followed by ribs, the roof, and the humeral angles. This in situ experimental study also demonstrated that microseismic monitoring system can be effectively used in rock burst through careful setup and data investigation. The proposed in situ monitoring method has provided a new way to predict rock burst due to its simple instalment procedure associated with direct and reasonable experimental results.

  10. Evaluation of protective gloves and working techniques for reducing hand-arm vibration exposure in the workplace.

    Science.gov (United States)

    Milosevic, Matija; McConville, Kristiina M Valter

    2012-01-01

    Operation of handheld power tools results in exposure to hand-arm vibrations, which over time lead to numerous health complications. The objective of this study was to evaluate protective equipment and working techniques for the reduction of vibration exposure. Vibration transmissions were recorded during different work techniques: with one- and two-handed grip, while wearing protective gloves (standard, air and anti-vibration gloves) and while holding a foam-covered tool handle. The effect was examined by analyzing the reduction of transmitted vibrations at the wrist. The vibration transmission was recorded with a portable device using a triaxial accelerometer. The results suggest large and significant reductions of vibration with appropriate safety equipment. Reductions of 85.6% were achieved when anti-vibration gloves were used. Our results indicated that transmitted vibrations were affected by several factors and could be measured and significantly reduced.

  11. Forced vibration test on large scale model on soft rock site

    International Nuclear Information System (INIS)

    Kobayashi, Toshio; Fukuoka, Atsunobu; Izumi, Masanori; Miyamoto, Yuji; Ohtsuka, Yasuhiro; Nasuda, Toshiaki.

    1991-01-01

    Forced vibration tests were conducted in order to investigate the embedment effect on dynamic soil-structure interaction. Two model structures were constructed on actual soil about 60 m apart, after excavating the ground to 5 m depth. For both models, the sinusoidal forced vibration tests were performed with the conditions of different embedment depth, namely non-embedment, half-embedment and full-embedment. As the test results, the increase in both natural frequency and damping factor due to the embedment effects can be observed, and the soil impedances calculated from test results are discussed. (author)

  12. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    Science.gov (United States)

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2014-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170

  13. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    Science.gov (United States)

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. © 2013 Elsevier Inc. All rights reserved.

  14. Active Lubrication for Reducing Wear and Vibration: A combination of Fluid Power Control and Tribology

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  15. The efficacy of airflow and seat vibration on reducing visually induced motion sickness.

    Science.gov (United States)

    D'Amour, Sarah; Bos, Jelte E; Keshavarz, Behrang

    2017-09-01

    Visually induced motion sickness (VIMS) is a well-known sensation in virtual environments and simulators, typically characterized by a variety of symptoms such as pallor, sweating, dizziness, fatigue, and/or nausea. Numerous methods to reduce VIMS have been previously introduced; however, a reliable countermeasure is still missing. In the present study, the effect of airflow and seat vibration to alleviate VIMS was investigated. Eighty-two participants were randomly assigned to one of four groups (airflow, vibration, combined airflow and vibration, and control) and then exposed to a 15 min long video of a bicycle ride shot from first-person view. VIMS was measured using the Fast Motion Sickness Scale (FMS) and the Simulator Sickness Questionnaire (SSQ). Results showed that the exposure of airflow significantly reduced VIMS, whereas the presence of seat vibration, in contrast, did not have an impact on VIMS. Additionally, we found that females reported higher FMS scores than males, however, this sex difference was not found in the SSQ scores. Our findings demonstrate that airflow can be an effective and easy-to-apply technique to reduce VIMS in virtual environments and simulators, while vibration applied to the seat is not a successful method.

  16. A reduced energy supply strategy in active vibration control

    Science.gov (United States)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  17. A reduced energy supply strategy in active vibration control

    International Nuclear Information System (INIS)

    Ichchou, M N; Loukil, T; Bareille, O; Chamberland, G; Qiu, J

    2011-01-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings

  18. Vibration therapy reduces CPAP need in a prospective randomised controlled trial

    NARCIS (Netherlands)

    K. Helder MScN (Onno); W.C.J. Hop (Wim); J.B. van Goudoever (Hans)

    2008-01-01

    textabstractBackground: Increased mucus production is a common phenomena following ventilatory support, which might increase morbidity. In order to reduce airway obstruction we tested the effect of vibration therapy on the duration of ventilatory support. Methodology: We conducted a randomised

  19. REDUCING THE LOAD OF THE ELASTIC SUPPORT OF THE RESONANCE VIBRATING CONVEYOR MACHINES

    Directory of Open Access Journals (Sweden)

    A. I. Afanas'ev

    2018-03-01

    Full Text Available The relevance of the work is conditioned by the necessity of improving the efficiency of vibrator machines. This is done by means of increasing the reliability of the elastic reference elements. The purpose of the work is to develop a dynamic resonance system of the vibrator machine with a reduced mass of the working body and loads on elastic supports. The resonance vibrator machines appeared in the USSR in the mid-twentieth century. They were used in the coal industry. The machines of foreign production and some of the domestic machines are now produced according to the balanced scheme. Domestic machines of the "PEV" series are made according to the vibro-isolated scheme, and the vibro-exciter is rigidly connected to the box. The resonant oscillation frequency of these machines is 50 Hz, and the maximum acceleration is significantly greater than the one of free fall. These resonant machines operate with the amplitude up to 2.2 mm and they have a ratio mode greater than unity. The practice of running these machines shows their relatively low efficiency when screening thin products. The common disadvantage of unbalanced resonance vibrator machines is a relatively large loading of elastic elements (supports and the presence of a massive frame. The disadvantage of the balanced ones is the reactive mass or several working bodies with the same mass. One of the ways to achieve the goal is to define a rational dynamic scheme of the resonance vibrator machines. The results and their application. The authors proposed to transform a traditional one-mass oscillatory system into a system equivalent to a dynamic vibration dampener. This system can significantly reduce the weight of the machine. It can reduce the rigidity and loading of the elastic supports at a given frequency of oscillations. The upper mass can be reduced by 2 or 3 times, and the lower mass can be several times smaller than the upper one. At the same time, the dynamic loads on the supports

  20. VIBRATION DIAGNOSTICS AND VIBRATION ALIGNMENT – EFFECTIVE TOOL TO REDUCE THE COST OF REPAIRS AND MAINTENANCE OF EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Yu. V. Parkhomenko

    2017-01-01

    Full Text Available The article discribes the following types of adjusting rotary equipment such as: balancing in own bearings, on-center alignment and shaft alignment, elimination of soft foot. The vibration alignment is based on the results of vibration diagnostics at production run of OJSC «BSW – Management Company of Holding «BMC». 

  1. Vibration diagnostics and vibration alignment – effective tool to reduce the cost of repairs and maintenance of equipment

    OpenAIRE

    Пархоменко, Ю. В.

    2017-01-01

    The article discribes the following types of adjusting rotary equipment such as: balancing in own bearings, on-center alignment and shaft alignment, elimination of soft foot. The vibration alignment is based on the results of vibration diagnostics at production run of OJSC «BSW – Management Company of Holding «BMC». 

  2. Design of Hydraulic Bushing and Vehicle Testing for Reducing the Judder Vibration

    Directory of Open Access Journals (Sweden)

    Kim Youngman

    2018-01-01

    Full Text Available Generally, judder vibration is a low-frequency vibration phenomenon caused by a braking force imbalance that occurs when a vehicle is lightly decelerated within a range of 0.1 to 0.2g at a speed of 120 to 60 km/h. This comes from the change in the brake disk thickness (DTV, which is mainly caused by the side run-out (SRO and thermal deformation. The adoption of hydro-bushing in the low arm G bushings of the vehicle front suspension has been done in order to provide great damping in a particular frequency range (<20Hz in order to prevent this judder vibration from being transmitted to the body. The hydro bushing was formulated using a lumped parameter model. The fluid passage between the two chambers was modelled as a nonlinear element such as an orifice, and its important parameters (resistance, compliance were measured using a simplified experimental setup. The main design parameters are the ratio of the cross-sectional area of the chamber to the fluid passage, the length of the fluid passage, etc., and their optimal design is such that the loss angle is greater than 45 ° in the target frequency range of 10 to 20 Hz. The hydro bushing designed for reducing the judder vibration was prepared for the actual vehicle application test and applied to the actual vehicle test. In this study, the proposed hydro bushing was applied to the G bushing of the low arm of the front suspension system of the vehicle. The loss angle of the manufactured hydro bushing was measured using acceleration signals before and after passing through the bushing. The actual vehicle test was performed on the noise dynamometer for the performance analysis of the judder vibration reduction.

  3. Effects of vibration training in reducing risk of slip-related falls among young adults with obesity.

    Science.gov (United States)

    Yang, Feng; Munoz, Jose; Han, Long-Zhu; Yang, Fei

    2017-05-24

    This study examined the effects of controlled whole-body vibration training on reducing risk of slip-related falls in people with obesity. Twenty-three young adults with obesity were randomly assigned into either the vibration or placebo group. The vibration and placebo groups respectively received 6-week vibration and placebo training on a side-alternating vibration platform. Before and after the training, the isometric knee extensors strength capacity was measured for the two groups. Both groups were also exposed to a standardized slip induced by a treadmill during gait prior to and following the training. Dynamic stability and fall incidences responding to the slip were also assessed. The results indicated that vibration training significantly increased the muscle strength and improved dynamic stability control at recovery touchdown after the slip occurrence. The improved dynamic stability could be resulted from the enhanced trunk segment movement control, which may be attributable to the strength increment caused by the vibration training. The decline of the fall rates from the pre-training slip to the post-training one was greater among the vibration group than the placebo group (45% vs. 25%). Vibration-based training could be a promising alternative or additional modality to active exercise-based fall prevention programs for people with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The use of statistical characteristics of reducer vibrations as diagnostic symptoms

    Science.gov (United States)

    Balitskiy, F. Y.; Genkin, M. D.; Ivanova, M. A.; Sokolova, A. G.

    1973-01-01

    The results of a statistical analysis of the vibrations of the experimental RS-1 reducer stand, with a spiral-gear transmission, operating on a closed circuit, are presented. The analysis was carried out on the Minsk-2 and Minsk-32 digital computers, with two-channel analog-digital converter, built in the Institute of the Science of Mechanics. Two-dimensional distribution patterns, conditional dispersions and dispersion ratios were calculated. The octave-band-filtered first harmonics of the tooth frequency f sub z of the vibrations at two different measurement points were considered as the components of the vibration process to be analyzed. The regression lines, corresponding to different values of the loading torque, are presented. Since it was not the gear drive parameters which were determined by diagnostic methods, but the characteristics most sensitive to change in state of the object of the investigation, the loading torque, which is the simplest and most accessible for measurement, was chosen as the condition parameter.

  5. Performance of a reduced-order FSI model for flow-induced vocal fold vibration

    Science.gov (United States)

    Luo, Haoxiang; Chang, Siyuan; Chen, Ye; Rousseau, Bernard; PhonoSim Team

    2017-11-01

    Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which can be applied in procedures such as optimization and parameter estimation. In this work, we study performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model that is the same as in the full 3D model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin.

  6. Design and evaluation of a suspension seat to reduce vibration exposure of subway operators: a case study.

    Science.gov (United States)

    Marcotte, Pierre; Beaugrand, Sylvie; Boutin, Jérôme; Larue, Christian

    2010-01-01

    Subway operators have complained about discomfort caused by whole-body vibration. To address this problem, a suspension seat with extensive ergonomic features has been adapted to the confined space of the subway operator cab. The suspension was modified from an existing suspension in order to reduce the dominant frequency of the subway vertical vibration (2.4 Hz). The suspension seat has been extensively tested on a vertical hydraulic shaker. These tests have shown that the SEAT value was lower for a higher vibration level, for higher subject weight, and for the suspension adjusted at median height. The seat also produces a lower SEAT value when there was a predominance of the 6 Hz vibration component. The horizontal seat adjustments had no influence on the suspension SEAT value. Removing the suspension damper also decreases the SEAT value for all the tested configurations. The final version of the suspension seat prototype was validated during normal subway operation with 19 different operators having weight in the 5th, 50th and 95th percentile of the operator population. Accelerations were measured with triaxial accelerometers at the seat cushion, above the suspension and on the floor. In addition to the vibration measurements, each operator was asked about his perceived discomfort from vibration exposure. Globally, the suspension seat attenuated the vertical vibration (SEAT values from 0.86 to 0.99), but discomfort due to amplification of the 2.4 Hz component occurred when the suspension height was adjusted at the minimum, even when the global weighted acceleration was lower (SEAT value < 1). These results suggest that in order to reduce the discomfort caused by whole-body vibration, the transmissibility of the seat should also be considered, in particular when there is a dominant frequency in the vibration spectra.

  7. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil

    International Nuclear Information System (INIS)

    Chen, G.C.; He, Z.L.; Stoffella, P.J.; Yang, X.E.; Yu, S.; Calvert, D.

    2006-01-01

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils. - Fertilizers developed from dolomite phosphate rock (DPR) reduce phosphorus leaching from sandy soil

  8. Evaluation of commercially available seat suspensions to reduce whole body vibration exposures in mining heavy equipment vehicle operators.

    Science.gov (United States)

    Kim, Jeong Ho; Marin, Luz S; Dennerlein, Jack T

    2018-09-01

    As mining vehicle operators are exposed to high level of Whole body vibration (WBV) for prolonged periods of time, approaches to reduce this exposure are needed for the specific types of exposures in mining. Although various engineering controls (i.e. seat suspension systems) have been developed to address WBV, there has been lack of research to systematically evaluate these systems in reducing WBV exposures in mining heavy equipment vehicle settings. Therefore, this laboratory-based study evaluated the efficacy of different combinations of fore-aft (x-axis), lateral (y-axis), and vertical (z-axis) suspensions in reducing WBV exposures. The results showed that the active vertical suspension more effectively reduced the vertical vibration (∼50%; p's suspension (10%; p's suspension systems did not attenuate the corresponding axis vibration (p's > 0.06) and sometimes amplified the floor vibration, especially when the non-vertical vibration was predominant (p's suspensions to address non-vertical WBV exposures, especially because these non-vertical WBV exposures can increase risks for adverse health effects including musculoskeletal loading, discomfort, and impaired visual acuity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Fatigue of 1 {mu}m-scale gold by vibration with reduced resonant frequency

    Energy Technology Data Exchange (ETDEWEB)

    Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Matsumoto, Kenta [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Tsuchiya, Toshiyuki [Department of Micro Engineering, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Kitamura, Takayuki [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2012-10-30

    In order to investigate the fatigue strength of micro-metal (1 {mu}m-scale), a testing method using resonant vibration is developed. Although the loading by vibration can solve the difficulties associated with the fatigue experiment of micro-specimen (e.g., specimen gripping and high-cycle loading under tension-compression), it inherently has an excessively high resonance frequency (more than several GHz at least) in a 1 {mu}m-scale metal specimen. For control of the fatigue cycle, the resonance frequency must be reduced to several hundreds of kHz by tuning the specimen shape. We design a cantilever specimen of 1 {mu}m scale gold with a weight at the tip, which reduces the resonant frequency to about 330 kHz. The unique specimen with the test section of 1.26 {mu}m Multiplication-Sign 0.94 {mu}m Multiplication-Sign 1.52 {mu}m is successfully fabricated by a novel technique using a focused ion beam and the tension-compression fatigue cycle is applied to it by means of a piezoelectric actuator. The test section breaks at about 1.6 Multiplication-Sign 10{sup 6} cycles under {Delta}{sigma}/2=230 MPa, which is within the targeted range of this project. It is easy to extend this method to high-cycle fatigue for actual use (including the failure cycles of over 10{sup 8} cycles). The slip bands observed on the surface, which have concavity and convexity similar to the intrusions/extrusions of PSBs, indicate that the failure is induced by the fatigue.

  10. Nonlinear Microstructured Material to Reduce Noise and Vibrations at Low Frequencies

    International Nuclear Information System (INIS)

    Lavazec, Deborah; Cumunel, Gwendal; Duhamel, Denis; Soize, Christian; Batou, Anas

    2016-01-01

    At low frequencies, for which the wavelengths are wide, the acoustic waves and the mechanical vibrations cannot easily be reduced in the structures at macroscale by using dissipative materials, contrarily to the middle- and high-frequency ranges. The final objective of this work is to reduce the vibrations and the induced noise on a broad low-frequency band by using a microstructured material by inclusions that are randomly arranged in the material matrix. The dynamical regimes of the inclusions will be imposed in the nonlinear domain in order that the energy be effectively pumped over a broad frequency band around the resonance frequency, due to the nonlinearity. The first step of this work is to design and to analyze the efficiency of an inclusion, which is made up of a hollow frame including a point mass centered on a beam. This inclusion is designed in order to exhibit nonlinear geometric effects in the low-frequency band that is observed. For this first step, the objective is to develop the simplest mechanical model that has the capability to roughly predict the experimental results that are measured. The second step, which is not presented in the paper, will consist in developing a more sophisticated nonlinear dynamical model of the inclusion. In this paper, devoted to the first step, it is proved that the nonlinearity induces an attenuation on a broad frequency band around the resonance, contrarily to its linear behavior for which the attenuation is only active in a narrow frequency band around the resonance. We will present the design in terms of geometry, dimension and materials for the inclusion, the experimental manufacturing of this system realized with a 3D printing system, and the experimental measures that have been performed. We compare the prevision given by the stochastic computational model with the measurements. The results obtained exhibit the physical attenuation over a broad low-frequency band, which were expected. (paper)

  11. IE Information Notice No. 85-47: Potential effect of line-induced vibration on certain Target Rock solenoid-operated valves

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    On November 14, 1984, Arizona Public Services Company provided the NRC with a final report on a 10 CFR 50.55(e) reportable condition relating to qualification testing of certain TR (Target Rock), solenoid-operated valves. Four TR valves, procured by Combustion Engineering (CE) for use at Palo Verde Nuclear Generating Station Unit 3, were tested to the requirements of NUREG-0588, Category 1. Test valves included two 1-inch TR valves, model 77L-001 and two 2-inch TR valves, model 77L-003. The qualification test involved irradiation to 50 megarads, thermal aging at 260 F for 635 hours, mechanical cycling, vibrational aging to represent normal service vibration, seismic testing, and finally, testing in a simulated LOCA environment. The licensee reported that during the qualification testing, a number of anomalies were identified, and the test was discontinued when the test valves failed to function for different reasons during the seismic testing. CE an TR appraised the overall safety significance of the observed test anomalies for the licensee. They considered the failure of the valve to open on demand as a result of solenoid lead shorting caused by line-induced vibrational wear to be a common mode of failure that, in a seismic event, could potentially disable several redundant valves at the same time. This failure of the valve to open on demand is the only observed test anomaly considered to have significant generic safety implications and is the subject of this information notice

  12. Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines

    Science.gov (United States)

    Mohammadi, Ebrahim; Fadaeinedjad, Roohollah; Moschopoulos, Gerry

    2018-05-01

    Vibration control and fatigue loads reduction are important issues in large-scale wind turbines. Identifying the vibration frequencies and tuning dampers and controllers at these frequencies are major concerns in many control methods. In this paper, an internal model control (IMC) method with an adaptive algorithm is implemented to first identify the vibration frequency of the wind turbine tower and then to cancel the vibration signal. Standard individual pitch control (IPC) is also implemented to compare the performance of the controllers in term of fatigue loads reduction. Finally, the performance of the system when both controllers are implemented together is evaluated. Simulation results demonstrate that using only IMC or IPC alone has advantages and can reduce fatigue loads on specific components. IMC can identify and suppress tower vibrations in both fore-aft and side-to-side directions, whereas, IPC can reduce fatigue loads on blades, shaft and yaw bearings. When both IMC and IPC are implemented together, the advantages of both controllers can be used. The aforementioned analysis and comparisons were not studied in literature and this study fills this gap. FAST, AreoDyn and Simulink are used to simulate the mechanical, aerodynamic and electrical aspects of wind turbine.

  13. Rock outcrops reduce temperature-induced stress for tropical conifer by decoupling regional climate in the semiarid environment.

    Science.gov (United States)

    Locosselli, Giuliano Maselli; Cardim, Ricardo Henrique; Ceccantini, Gregório

    2016-05-01

    We aimed to understand the effect of rock outcrops on the growth of Podocarpus lambertii within a microrefuge. Our hypothesis holds that the growth and survival of this species depend on the regional climate decoupling provided by rock outcrops. To test this hypothesis, we characterized the microclimate of (1) surrounding vegetation, (2) rock outcrop corridors, and (3) adjacencies. We assessed population structure by collecting data of specimen stem diameter and height. We also assessed differences between vegetation associated or not with outcrops using satellite imaging. For dendrochronological analyses, we sampled 42 individuals. Tree rings of 31 individuals were dated, and climate-growth relationships were tested. Rock outcrops produce a favorable microclimate by reducing average temperature by 4.9 °C and increasing average air humidity by 12 %. They also reduce the variability of atmospheric temperature by 42 % and air humidity by 20 % supporting a vegetation with higher leaf area index. Within this vegetation, specimen height was strongly constrained by the outcrop height. Although temperature and precipitation modulate this species growth, temperature-induced stress is the key limiting growth factor for this population of P. lambertii. We conclude that this species growth and survival depend on the presence of rock outcrops. These topography elements decouple regional climate in a favorable way for this species growth. However, these benefits are restricted to the areas sheltered by rock outcrops. Although this microrefuge supported P. lambertii growth so far, it is unclear whether this protection would be sufficient to withstand the stress of future climate changes.

  14. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A., E-mail: jimfield@email.arizona.edu

    2016-05-05

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  15. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    International Nuclear Information System (INIS)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A.

    2016-01-01

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  16. Whole-body vibration exercise training reduces arterial stiffness in postmenopausal women with prehypertension and hypertension.

    Science.gov (United States)

    Figueroa, Arturo; Kalfon, Roy; Madzima, Takudzwa A; Wong, Alexei

    2014-02-01

    The purpose of this study was to examine the impact of whole-body vibration (WBV) exercise training on arterial stiffness (pulse wave velocity [PWV]), blood pressure (BP), and leg muscle function in postmenopausal women. Twenty-five postmenopausal women with prehypertension and hypertension (mean [SE]; age, 56 [1] y; systolic BP, 139 [2] mm Hg; body mass index, 34.7 [0.8] kg/m2) were randomized to 12 weeks of WBV exercise training (n = 13) or to the no-exercise control group. Systolic BP, diastolic BP, mean arterial pressure, heart rate, carotid-femoral PWV, brachial-ankle PWV, femoral-ankle PWV (legPWV), leg lean mass, and leg muscle strength were measured before and after 12 weeks. There was a group-by-time interaction (P exercise training compared with no change after control. Heart rate decreased (-3 [1] beats/min, P exercise training, but there was no interaction (P > 0.05). Leg lean mass and carotid-femoral PWV were not significantly (P > 0.05) affected by WBV exercise training or control. Our findings indicate that WBV exercise training improves systemic and leg arterial stiffness, BP, and leg muscle strength in postmenopausal women with prehypertension or hypertension. WBV exercise training may decrease cardiovascular and disability risks in postmenopausal women by reducing legPWV and increasing leg muscle strength.

  17. Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable

    International Nuclear Information System (INIS)

    Kim, In-Ho; Jung, Hyung-Jo; Koo, Jeong-Hoi

    2010-01-01

    This paper investigates the effectiveness of a self-powered smart damping system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device in reducing cable vibrations. The proposed smart damping system incorporates an EMI device, which is capable of converting vibration energy into useful electrical energy. Thus, the incorporated EMI device can be used as an alternative power source for the MR damper, making it a self-powering system. The primary goal of this experimental study is to evaluate the performance of the proposed smart damping system using a full-scale, 44.7 m long, high-tension cable. To this end, an EMI part and an MR damper were designed and manufactured. Using a cable test setup in a laboratory setting, a series of tests were performed to evaluate the effectiveness of the self-powered smart damping system in reducing free vibration responses of the cable. The performances of the proposed smart damping system are compared with those of an equivalent passive system. Moreover, the damping characteristics of the smart damping system and the passive system are compared. The experimental results show that the self-powered smart damping system outperforms the passive control cases in reducing the vibrations of the cable. The results also show that the EMI can operate the smart damping system as a sole power source, demonstrating the feasibility of the self-powering capability of the system

  18. Calculation of vibrational frequencies through a variational reduced-coupling approach.

    Science.gov (United States)

    Scribano, Yohann; Benoit, David M

    2007-10-28

    In this study, we present a new method to perform accurate and efficient vibrational configuration interaction computations for large molecular systems. We use the vibrational self-consistent field (VSCF) method to compute an initial description of the vibrational wave function of the system, combined with the single-to-all approach to compute a sparse potential energy surface at the chosen ab initio level of theory. A Davidson scheme is then used to diagonalize the Hamiltonian matrix built on the VSCF virtual basis. Our method is applied to the computation of the OH-stretch frequency of formic acid and benzoic acid to demonstrate the efficiency and accuracy of this new technique.

  19. Integrated Vibration and Acceleration Testing to Reduce Payload Mass, Cost and Mission Risk, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a capability to provide integrated acceleration, vibration, and shock testing using a state-of-the-art centrifuge, allowing for the test of...

  20. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : final report.

    Science.gov (United States)

    2012-02-01

    The University of Toledo University Transportation Center (UT-UTC) has identified : hybrid vehicles as one of the three areas of the research. The activities in this research : are directed towards the noise, vibration, and harshness (NVH) solutions ...

  1. Design and Test of Semi-Active Vibration-Reducing System for Lathe

    Directory of Open Access Journals (Sweden)

    Hongsheng Hu

    2014-09-01

    Full Text Available In this paper, its theory design, analysis and test system of semi-active vibration controlling system used for precision machine have been done. Firstly, lathe bed and spindle entity were modeled by using UG software; Then modes of the machine bed and the key components of spindle were obtained by using ANSYS software; Finally, harmonic response analysis of lathe spindle under complex load was acquired, which provided a basis of MR damper’s structure optimization design for a certain type of precision machine. In order to prove its effectives, a prototype semi-active vibration controlling lathe with MR damper was developed. Tests have been done, and comparison results between passive vibration isolation equipment and semi-active vibration controlling equipment proved its good performances of MR damper.

  2. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    OpenAIRE

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2013-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-spe...

  3. Effect of top ligament blanking on reducing flow induced vibration of protective grid

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Kyong Bo; Ryu, Joo Young; Kwon, Oh Joon; Park, Joon Kyoo; Jeon, Sang Youn; Suh, Jung Min [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    The protective grid is a Inconel 718 spacer grid located just above the bottom nozzle in many kinds of fuel assemblies for PWR. The purpose of using protective grid is to capture debris before they flow up into the fuel assembly and get trapped by the other grids causing fuel rod damages as well as to provide support at the lower end plugs of fuel rods. Recently, it has been reported that strap failure has occurred in the protective grids and the flow induced vibration of the strap has resulted in the strap fatigue failure. After the root cause of the protective grid failure was found to be the flow induced vibration of the strap, KEPCO NF has made an effort to find the vibration tendencies of grid strap and draw vibration mitigation concepts of the protective grid strap. The vibration tendency and the effect of the vibration mitigation concept of the protective grid which have been found by the results of the loop tests and simulations in KEPCO NF are presented herein.

  4. Reduced metabolic cost of locomotion in Svalbard rock ptarmigan (Lagopus muta hyperborea during winter.

    Directory of Open Access Journals (Sweden)

    John Lees

    2010-11-01

    Full Text Available The Svalbard rock ptarmigan, Lagopus muta hyperborea experiences extreme photoperiodic and climatic conditions on the Arctic archipelago of Svalbard. This species, however, is highly adapted to live in this harsh environment. One of the most striking adaptations found in these birds is the deposition, prior to onset of winter, of fat stores which may comprise up to 32% of body mass and are located primarily around the sternum and abdominal region. This fat, while crucial to the birds' survival, also presents a challenge in that the bird must maintain normal physiological function with this additional mass. In particular these stores are likely to constrain the respiratory system, as the sternum and pelvic region must be moved during ventilation and carrying this extra load may also impact upon the energetic cost of locomotion. Here we demonstrate that winter birds have a reduced cost of locomotion when compared to summer birds. A remarkable finding given that during winter these birds have almost twice the body mass of those in summer. These results suggest that Svalbard ptarmigan are able to carry the additional winter fat without incurring any energetic cost. As energy conservation is paramount to these birds, minimising the costs of moving around when resources are limited would appear to be a key adaptation crucial for their survival in the barren Arctic environment.

  5. Analysis of the Suppression Device as Vortex Induced Vibration (VIV Reducer on Free Span using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Dwi Priyanta

    2016-12-01

    Full Text Available Subsea pipeline is a transportation infrastructure of oil and gas as an alternative for ship tanker. The uneven topography surface of the sea floor resulting the pipe undergoes free span. The free span is a condition endured by the pipe where the pipe position has  distance or gap with the seabed supported by two pivot. The free span is at risk of experiencing a vibration caused by the presence of dynamic load that is current and the wave. The vibration that occurs is the impact of the presence of the phenomenon of Vortex Induced Vibration (VIV. The Phenomenon Of VIV occur on a cylindrical component caused by ocean currents, causing the occurrence of vibration by the movement of fluid on the pipe so that it raises the vortex at the rear of the direction of oncoming flow. One way to dampen or reduce the impact of VIV is by adding suppresion device. VIV suppression device is a tool that is installed on the pipeline on offshore piping installationcthat serves to dampen or reduce the impact of VIV. One of the simulations used to know the characteristics of a fluid is to use (CFD Computational Fluid Dynamic. With the addition of suppression device can add the rest of the operating time on a free span of affected VIV, on the condition of free span critical exposed VIV (Vortex Induced Vibration value has a life time on plain pipe 44.21 years, on pipe with 53.09 years and Fairing on the pipe with the Helical strike 52.95 year.

  6. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    International Nuclear Information System (INIS)

    Roos, Per; Jakobsen, Iver

    2008-01-01

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non-mycorrhizal plants and root-to-shoot ratio of most metals was increased by mycorrhizas. This protective role of mycorrhizas was observed even at very high supplies of phosphate rock. In contrast, phosphorus uptake was similar at all levels of phosphate rock, suggesting that the P was unavailable to the plant-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock

  7. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Per [Radiation Research Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Jakobsen, Iver [Biosystems Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark)], E-mail: iver.jakobsen@risoe.dk

    2008-05-15

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non-mycorrhizal plants and root-to-shoot ratio of most metals was increased by mycorrhizas. This protective role of mycorrhizas was observed even at very high supplies of phosphate rock. In contrast, phosphorus uptake was similar at all levels of phosphate rock, suggesting that the P was unavailable to the plant-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock.

  8. An innovative multi dof TMD system for motorcycle handlebars designed to reduce structural vibrations and human exposure

    Science.gov (United States)

    Agostoni, S.; Cheli, F.; Leo, E.; Pezzola, M.

    2012-08-01

    Motor vehicle ride comfort is mainly affected by reciprocating engine inertia unbalances. These forces are transmitted to the driver through the main frame, the engine mounts, and the auxiliary sub systems—all components with which he physically comes into contact. On-road traction vehicle engines are mainly characterized by transient exercise. Thus, an excitation frequency range from 800 RPM (≈15 Hz for stationary vehicles) up to 15,000 RPM (≈250 Hz as a cut off condition) occurs. Several structural resonances are induced by the unbalancing forces spectrum, thus exposing the driver to amplified vibrations. The aim of this research is to reduce driver vibration exposure, by acting on the modal response of structures with which the driver comes into contact. An experimental methodology, capable of identifying local vibration modes was developed. The application of this methodology on a reference vehicle allows us to detect if/when/how the above mentioned resonances are excited. Numerical models were used to study structural modifications. In this article, a handlebar equipped with an innovative multi reciprocating tuned mass damper was optimized. All structural modifications were designed, developed and installed on a vehicle. Modal investigations were then performed in order to predict modification efficiency. Furthermore, functional solution efficiency was verified during sweep tests performed on a target vehicle, by means of a roller bench capable of replicating on-road loads. Three main investigation zones of the vehicle were detected and monitored using accelerometers: (1) engine mounts, to characterize vibration emissions; (2) bindings connecting the engine to the frame, in order to detect vibration transfer paths, with particular attention being paid to local dynamic amplifications due to compliances and (3) the terminal components with which the driver comes into contact.

  9. Red-staining of the wall rock and its influence on the reducing capacity around water conducting fractures

    International Nuclear Information System (INIS)

    Drake, Henrik; Tullborg, Eva-Lena; Annersten, Hans

    2008-01-01

    Red-staining and alteration of wall rock is common around water conducting fractures in the Laxemar-Simpevarp area (SE Sweden), which is currently being investigated by the Swedish Nuclear Fuel and Waste Management Co. (SKB) in common with many other places. Red-staining is often interpreted as a clear sign of oxidation but relevant analyses are seldom performed. The area is dominated by Palaeoproterozoic crystalline rocks ranging in composition from quartz monzodiorite to granite. In this study wall rock samples have been compared with reference samples from within 0.1 to 1 m of the red-stained rock, in order to describe mineralogical and geochemical changes but also changes in redox conditions. A methodology for tracing changes in mineralogy, mineral and whole rock chemistry and Fe 3+ /Fe tot ratio in silicates and oxides in the red-stained wall rock and the reference rock is reported. The results show that the red-stained rock adjacent to the fractures displays major changes in mineralogy; biotite, plagioclase and magnetite have been altered and chlorite, K-feldspar, albite, sericite, prehnite, epidote and hematite have been formed. The changes in chemistry are however moderate; K-enrichment, Ca-depletion and constant Fe tot are documented. The Fe 3+ /Fe tot ratio in the oxide phase is higher in the red-stained samples whereas the Fe 3+ /Fe tot ratio in the silicate phase is largely similar in the wall rock and the reference samples. Because most of the Fe is hosted in the silicate phase the decrease in reducing capacity (Fe 2+ ), if any, in the red-stained wall rock is very small and not as high as macroscopic observations might suggest. Instead, the mineralogical changes in combination with the modest oxidation and formation of minute hematite grains in porous secondary minerals in pseudomorphs after plagioclase have produced the red-staining. Increased porosity is also characteristic for the red-stained rock. Moderate alteration in the macroscopically fresh

  10. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    DEFF Research Database (Denmark)

    Roos, Per; Jakobsen, Iver

    2008-01-01

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non-mycorrhizal......-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock. (c) 2007 Elsevier Ltd. All rights...

  11. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    of increasing their operational range. As a result, one achieves intelligent machines that are more flexible to operate in a fast-changing demand environment. Some limitations of the active lubrication are also discussed based on experimental data, where the response of the servo valves and the supply pressure...... play an important role: the eigenfrequency of the servo valves establishes the operational frequency range of the active lubrication, whereas the supply pressure establishes the amplitude of vibration reduction achieved with the active lubrication....

  12. An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine

    Directory of Open Access Journals (Sweden)

    Xuanlin Peng

    2017-11-01

    Full Text Available In this paper, a new methodology is proposed to reduce the vortex-induced vibration (VIV and improve the performance of the stay vane in a 200-MW Francis turbine. The process can be divided into two parts. Firstly, a diagnosis method for stay vane vibration based on field experiments and a finite element method (FEM is presented. It is found that the resonance between the Kármán vortex and the stay vane is the main cause for the undesired vibration. Then, we focus on establishing an intelligent optimization model of the stay vane’s trailing edge profile. To this end, an approach combining factorial experiments, extreme learning machine (ELM and particle swarm optimization (PSO is implemented. Three kinds of improved profiles of the stay vane are proposed and compared. Finally, the profile with a Donaldson trailing edge is adopted as the best solution for the stay vane, and verifications such as computational fluid dynamics (CFD simulations, structural analysis and fatigue analysis are performed to validate the optimized geometry.

  13. Testing a simple control law to reduce broadband frequency harmonic vibrations using semi-active tuned mass dampers

    International Nuclear Information System (INIS)

    Moutinho, Carlos

    2015-01-01

    This paper is focused on the control problems related to semi-active tuned mass dampers (TMDs) used to reduce harmonic vibrations, specially involving civil structures. A simplified version of the phase control law is derived and its effectiveness is investigated and evaluated. The objective is to improve the functioning of control systems of this type by simplifying the measurement process and reducing the number of variables involved, making the control system more feasible and reliable. Because the control law is of ON/OFF type, combined with appropriate trigger conditions, the activity of the actuation system may be significantly reduced, which may be of few seconds a day in many practical cases, increasing the durability of the device and reducing its maintenance. Moreover, due to the ability of the control system to command the motion of the inertial mass, the semi-active TMD is relatively insensitive to its initial tuning, resulting in the capability of self-tuning and in the possibility of controlling several vibration modes of a structure over a significant broadband frequency. (paper)

  14. Triangle bracing system to reduce the vibration level of cooling tower – case study in PT Star Energy Geothermal (Wayang Windu Ltd – Indonesia

    Directory of Open Access Journals (Sweden)

    Effendi Tri Bahtiar

    2018-06-01

    Full Text Available Periodical control and measurement revealed that vibration level of motor and gearbox which was supported by Cooling Tower Unit 1 at PT Star Energy Geothermal (Wayang Windu Ltd was significantly increasing since 2013. The vibration was not caused by machinery component failure, but induced by resonance of process flow. Decreasing stiffness of cooling tower structure was suspected causing the increasing vibration level. The physical, chemical, and mechanical properties of wood was deteriorated. The residual strength of the wood had been measured and the data was used to perform dynamic structural analysis on the cooling tower. Several scenarios of structure modification were modelled and drawn, and the best one which the most effectively reducing the vibration level among others was constructed in the field. Triangle inner structure was chosen and applied to modify the cooling tower structure to achieve stiffer and more rigid structure. The vibration level before and after structure modification were measured, and it was proved that the vibration level was significantly reduced after structure modification. Furthermore the cooling tower was not in zone D (danger anymore and the vibration level was accepted according to ISO 10816-3. Keywords: Cooling tower, Dynamic structural analysis, Geothermal power plant, Structural failure, Vibration level

  15. Forecasts and restrictions on vibrations from rock excavation and transportation. Encapsulation Plant and Repository for spent nuclear fuel, Laxemar; Prognoser och restriktioner foer vibrationer fraan bergschaktning och transporter. Inkapslingsanlaeggning och slutfoervar foer anvaent kaernbraensle, Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Carl; Johansson, Sven-Erik (Nitro Consult AB (Sweden))

    2010-12-15

    This study describes the impact on the surroundings that may occur during rock excavation activities for the final repository for spent nuclear fuel in Laxemar and the encapsulation facility in Simpevarp. The study also includes vibrations created by heavy shipments related to activities at the final repository. The study will provide input to the environmental impact assessment and future design work. The survey area for buildings and facilities covered by the study extends approximately 1,000 metres from the proposed location of the final repository. For the encapsulation facility the survey area has been limited to residential buildings and summer houses within 1,000 metres of the proposed location. In addition, residential buildings along road 743 have been surveyed with regard to the impact of heavy shipments between Laxemar and Faarbo. The results of the surveys and information on planned rock excavation activities have been used to formulate preliminary restrictions and predictions of vibrations and air shock waves from blasting, as well as noise from rock drilling. Predictions have also been made of vibrations from heavy shipments, and a reference survey has been carried out in a residential building near road 743. The predictions of vibrations from blasting rounds reveal low or very low levels. No risk of damage to buildings or equipment is expected. Vibrations from blasting may, however, be perceptible within large parts of the study area, since the human perception threshold for vibration is very low. They will hardly be regarded as disturbing, however. When the accesses to the final repository have been built and rock excavation continues at repository level, the impact on the surroundings is expected to be minimal. The main reason for this is that the blasting will then occur at a depth of about 500 metres, at an ample distance to buildings at surface level. Predictions of air shock waves from blasting rounds indicate low levels. There is no risk of

  16. A method for handlebars ballast calculation in order to reduce vibrations transmissibility in walk behind tractors

    Directory of Open Access Journals (Sweden)

    Angelo Fabbri

    2017-06-01

    Full Text Available Walk behind tractors have some advantages over other agricultural machines, such as the cheapness and the easy to use, however the driver is exposed to high level of vibrations transmitted from handles to hand-arm system and to shoulders. The vibrations induce discomfort and early fatigue to the operator. In order to control the vibration transmissibility, a ballast mass may be added to the handles. Even if the determination of the appropriate ballast mass is a critical point in the handle design. The aim of this research was to study the influence of the handle mass modification, on the dynamic structure behaviour. Modal frequencies and subsequent transmissibility calculated by using an analytical approach and a finite elements model, were compared. A good agreement between the results obtained by the two methods was found (average percentage difference calculated on natural frequencies equal to 5.8±3.8%. Power tillers are made generally by small or medium-small size manufacturers that have difficulties in dealing with finite element codes or modal analysis techniques. As a consequence, the proposed analytical method could be used to find the optimal ballast mass in a simple and economic way, without experimental tests or complex finite element codes. A specific and very simple software or spreadsheet, developed on the base of the analytical method here discussed, could effectively to help the manufacturers in the handlebar design phase. The choice of the correct elastic mount, the dimensioning of the guide members and the ballast mass could be considerably simplified.

  17. Phonon vibrational frequencies of all single-wall carbon nanotubes at the lambda point: reduced matrix calculations.

    Science.gov (United States)

    Wang, Yufang; Wu, Yanzhao; Feng, Min; Wang, Hui; Jin, Qinghua; Ding, Datong; Cao, Xuewei

    2008-12-01

    With a simple method-the reduced matrix method, we simplified the calculation of the phonon vibrational frequencies according to SWNTs structure and their phonon symmetric property and got the dispersion properties of all SWNTs at Gamma point in Brillouin zone, whose diameters lie between 0.6 and 2.5 nm. The calculating time is shrunk about 2-4 orders. A series of the dependent relationships between the diameters of SWNTs and the frequencies of Raman and IR active modes are given. Several fine structures including "glazed tile" structures in omega approximately d figures are found, which might predict a certain macro-quantum phenomenon of the phonons in SWNTs.

  18. Lower blasthole pressures: a means of reducing costs when blasting rocks of low to moderate strength

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, T.N.; Gibson, I.M.

    1988-03-01

    From a purely mechanical viewpoint, each explosive charge should produce a peak blasthole pressure (P/sub b/) that just fails to crush (i.e. pulverise or plastically deform) the rock which surrounds it. Where P/sub b/ exceeds a critical value, some explosion energy is wasted in crushing an annular section of rock immediately around each charge. As a rock's dynamic compressive breaking strain decreases, so should P/sub b/ (Hagan, 1977b). This paper reviews information on, and anticipates the blasting performance of, bulk charges having effective densities which are as low as about 40% of that for ammonium nitrate fuel oil (ANFO). It also outlines the potential advantages of extending the reaction periods of charges, even to the extent that explosive reactions continue after the blasthole wall and stemming have started to move. The paper then proceeds to define situations in which the use of such lower-pressure charges is likely to result in greatest reductions in mining costs. Some methods of applying bulk charges having effective densities in the 0.3-0.8 g cm/sup -3/ range and/or lower reaction rates are suggested. 15 refs., 3 figs.

  19. Does ℏ play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations.

    Science.gov (United States)

    Sakurai, Atsunori; Tanimura, Yoshitaka

    2011-04-28

    To investigate the role of quantum effects in vibrational spectroscopies, we have carried out numerically exact calculations of linear and nonlinear response functions for an anharmonic potential system nonlinearly coupled to a harmonic oscillator bath. Although one cannot carry out the quantum calculations of the response functions with full molecular dynamics (MD) simulations for a realistic system which consists of many molecules, it is possible to grasp the essence of the quantum effects on the vibrational spectra by employing a model Hamiltonian that describes an intra- or intermolecular vibrational motion in a condensed phase. The present model fully includes vibrational relaxation, while the stochastic model often used to simulate infrared spectra does not. We have employed the reduced quantum hierarchy equations of motion approach in the Wigner space representation to deal with nonperturbative, non-Markovian, and nonsecular system-bath interactions. Taking the classical limit of the hierarchy equations of motion, we have obtained the classical equations of motion that describe the classical dynamics under the same physical conditions as in the quantum case. By comparing the classical and quantum mechanically calculated linear and multidimensional spectra, we found that the profiles of spectra for a fast modulation case were similar, but different for a slow modulation case. In both the classical and quantum cases, we identified the resonant oscillation peak in the spectra, but the quantum peak shifted to the red compared with the classical one if the potential is anharmonic. The prominent quantum effect is the 1-2 transition peak, which appears only in the quantum mechanically calculated spectra as a result of anharmonicity in the potential or nonlinearity of the system-bath coupling. While the contribution of the 1-2 transition is negligible in the fast modulation case, it becomes important in the slow modulation case as long as the amplitude of the

  20. Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

    Directory of Open Access Journals (Sweden)

    Dhanjee Kumar Chaudhary

    2015-12-01

    Conclusion: Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.

  1. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  2. The efficacy of airflow and seat vibration on reducing visually induced motion sickness

    NARCIS (Netherlands)

    D’Amour, Sarah; Bos, Jelte E.; Keshavarz, Behrang

    2017-01-01

    Visually induced motion sickness (VIMS) is a well-known sensation in virtual environments and simulators, typically characterized by a variety of symptoms such as pallor, sweating, dizziness, fatigue, and/or nausea. Numerous methods to reduce VIMS have been previously introduced; however, a reliable

  3. The development of an intervention programme to reduce whole-body vibration exposure at work induced by a change in behaviour: a study protocol

    NARCIS (Netherlands)

    Tiemessen, Ivo J. H.; Hulshof, Carel T. J.; Frings-Dresen, Monique H. W.

    2007-01-01

    BACKGROUND: Whole body vibration (WBV) exposure at work is common and studies found evidence that this exposure might cause low back pain (LBP). A recent review concluded there is a lack of evidence of effective strategies to reduce WBV exposure. Most research in this field is focussed on the

  4. Reducing vibration damage claims: Field application of strong public relations and one method of using commonly available seismograph and video taping equipment to document blast vibration regression at the nearest structure

    International Nuclear Information System (INIS)

    Fritzen, M.R.; Fritzen, T.A.

    1994-01-01

    Anytime that blasting operations will be conducted near existing inhabited structures, vibration damage claims are a major concern of the blasting contractor. It has been the authors' experience that even when vibration and airblast levels generated from a blast are well below accepted damage thresholds, damage claims can still arise. The single greatest source of damage claims is the element of surprise associated with not knowing that blasting operations are being conducted nearby. The second greatest source of damage claims arise form the inability to produce accurate and detailed records of all blasting activity which provides evidence that vibration and air blast levels from each blast had been taken by seismic recording equipment. Using a two part plan consisting of extensive public relations followed by a detailed and accurate monitoring and recording of blasting operations has resulted in no substantiated claims of damage since its' incorporation. The authors experience shows that by using this two part process when conducting blasting operations near inhabited structures, unsubstantiated blast vibration damage claims may be significantly reduced

  5. Reducing vibration damage claims: Field application of strong public relations and one method of using commonly available seismograph and video taping equipment to document blast vibration regression at the nearest structure

    Energy Technology Data Exchange (ETDEWEB)

    Fritzen, M.R.; Fritzen, T.A. [Blasting Technology, Inc., Maui, HI (United States)

    1994-12-31

    Anytime that blasting operations will be conducted near existing inhabited structures, vibration damage claims are a major concern of the blasting contractor. It has been the authors` experience that even when vibration and airblast levels generated from a blast are well below accepted damage thresholds, damage claims can still arise. The single greatest source of damage claims is the element of surprise associated with not knowing that blasting operations are being conducted nearby. The second greatest source of damage claims arise form the inability to produce accurate and detailed records of all blasting activity which provides evidence that vibration and air blast levels from each blast had been taken by seismic recording equipment. Using a two part plan consisting of extensive public relations followed by a detailed and accurate monitoring and recording of blasting operations has resulted in no substantiated claims of damage since its` incorporation. The authors experience shows that by using this two part process when conducting blasting operations near inhabited structures, unsubstantiated blast vibration damage claims may be significantly reduced.

  6. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase III final report.

    Science.gov (United States)

    2011-08-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  7. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase II, final report, March 2010.

    Science.gov (United States)

    2010-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  8. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase II final report.

    Science.gov (United States)

    2010-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  9. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase I final report, March 2009.

    Science.gov (United States)

    2009-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  10. Vibration-proof FBR type reactor

    International Nuclear Information System (INIS)

    Kawamura, Yutaka.

    1992-01-01

    In a reactor container in an FBR type reactor, an outer building and upper and lower portions of a reactor container are connected by a load transmission device made of a laminated material of rubber and steel plates. Each of the reactor container and the outer building is disposed on a lower raft disposed on a rock by way of a vibration-proof device made of a laminated material of rubber and steel plates. Vibration-proof elements for providing vertical eigen frequency of the vibration-proof system comprising the reactor building and the vibration-proof device within a range of 3Hz to 5Hz are used. That is, the peak of designed acceleration for response spectrum in the horizontal direction of the reactor structural portions is shifted to side of shorter period from the main frequency region of the reactor structure. Alternatively, rigidity of the vibration-proof elements is decreased to shift the peak to the side of long period from the main frequency region. Designed seismic force can be greatly reduced both horizontally and vertically, to reduce the wall thickness of the structural members, improve the plant economy and to ensure the safety against earthquakes. (N.H.)

  11. Anti-vibration gloves?

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.

  12. Effectiveness of non-pharmacological measures for reducing pain and fear in children during venipuncture in the emergency department: a vibrating cold devices versus distraction.

    Science.gov (United States)

    García-Aracil, Noelia; Ramos-Pichardo, Juan Diego; Castejón-de la Encina, María Elena; José-Alcaide, Lourdes; Juliá-Sanchís, Rocío; Sanjuan-Quiles, Ángela

    2018-06-01

    To assess the effectiveness of a physical method of managing pain and fear in children and anxiety in the accompanying adult during venous puncture in the emergency department. Quasi-experimental study of 3 groups: one group used a combination of directed distraction by means of a vibration device with ice pack, a second group received only distraction, and no strategy was used in the third. Pain and adult anxiety were similar in the 2 groups in which a pain management strategy was applied. Pain and adult anxiety were greater when no strategy was adopted. We detected no differences in the level of the children's fear. Directed distraction can be useful for managing pain in children and it reduces the anxiety experienced by accompanying adults. The use of a vibration device with ice does not add benefits. Fear is not reduced by any of these measures.

  13. Regarding "Semi-active control of the rocking motion of monolithic art objects" [Journal of Sound and Vibration, 374 (2016) 1-16

    Science.gov (United States)

    Cartmell, Matthew P.

    2016-09-01

    The Editor wishes to make the reader aware that the paper "Semi-active control of the rocking motion of monolithic art objects" by R. Ceravolo, M.L. Pecorelli, and L.Z. Fragonara, did not contain a direct citation of the fundamental and original work by D. Konstantinidis and N. Makris entitled "Experimental and analytical studies on the seismic response of free-standing and anchored laboratory equipment", Report No. PEER 2005/07. Pacific Earthquake Engineering Research (PEER) Center, University of California, Berkeley, 2005. The Editor regrets that this omission was not noted at the time that the above paper was accepted and published.

  14. Methodology of reducing rock bump hazard during room and rillar mining of North Ural deep bauxite deposits

    Directory of Open Access Journals (Sweden)

    Д. В. Сидоров

    2017-03-01

    Full Text Available The article describes practical experience of using room and pillar mining (RAPM under conditions of deep horizons and dynamic overburden pressure. It was identified that methods of rock pressure control efficient at high horizons do not meet safety requirements when working at existing depths, that is explained by changes in geodynamic processes during mining. With deeper depth, the geodynamic processes become more intensive and number of pillar and roof failures increase. When working at 800 m the breakage of mine structures became massive and unpredictable, which paused a question of development and implementation of tools for compliance assessment of used elements of RAPM and mining, geological, technical and geodynamic conditions of North Ural bauxite deposits and further development of guidelines for safe mining under conditions of deep horizons and dynamic rock pressure.It describes reasons of mine structure failures in workings depending on natural and man-caused factors, determines possible hazards and objects of geomechanic support. It also includes compliance assessment of tools used for calculations of RAPM structures, forecast and measures for rock tectonic bursts at mines of OAO “Sevuralboksitruda” (SUBR. It describes modernization and development of new geomechanic support of RAPM considering natural and technogenic hazards. The article presents results of experimental testing of new parameters of RAPM construction elements of SUBR mines. It has data on industrial implementation of developed regulatory and guideline documents at these mines for identification of valid parameters of RAPM elements at deep depths.

  15. Dynamic characteristics of rocks and method of their determine

    OpenAIRE

    Radoslav Schügerl

    2009-01-01

    This paper presents selected problems of the research of the influence of technical vibrations on rocks. The vibrations are the products of the technological procedure, such as mining blasting, ramming of the piles, using of the drilling-equipment or vibration machines. The vibrations could be also evocated by road or train traffic. The most important dynamic characteristics of rocks are dynamic modulus of elasticity Edyn; dynamic modulus of deformation Edef, dyn; dynamic shear-modulus Gdyn; ...

  16. Vibration insensitive interferometry

    Science.gov (United States)

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  17. A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting

    Directory of Open Access Journals (Sweden)

    Xiuzhi Shi

    2016-01-01

    Full Text Available Ground vibrations originating from bench blasting may cause damage to slopes, structures, and underground workings in close proximity to an operating open-pit mine. It is important to monitor and predict ground vibration levels induced by blasting and to take measures to reduce their hazardous effects. The aims of this paper are to determine the weaker protection objects by comparatively studying bench blasting induced vibrations obtained at surface and in an underground tunnel in an open-pit mine and thus to seek vibration control methods to protect engineering objects at the site. Vibrations arising from measurement devices at surface and in an underground tunnel at the Zijinshan Open-Pit Mine were obtained. Comparative analysis of the peak particle velocities shows that, in the greatest majority of cases, surface values are higher than underground values for the same vibration distance. The transmission laws of surface and underground vibrations were established depending on the type of rock mass, the explosive charge, and the distance. Compared with the Chinese Safety Regulations for Blasting (GB6722-2014, the bench blasting induced vibrations would not currently cause damage to the underground tunnel. According to the maximum allowable peak particle velocities for different objects, the permitted maximum charges per delay are obtained to reduce damage to these objects at different distances.

  18. Rock breaking methods to replace blasting

    Science.gov (United States)

    Zhou, Huisheng; Xie, Xinghua; Feng, Yuqing

    2018-03-01

    The method of breaking rock by blasting has a high efficiency and the cost is relatively low, but the associated vibration, flyrock, production of toxic gases since the 1970’s, the Western developed countries began to study the safety of breaking rock. This paper introduces different methods and their progress to safely break rock. Ideally, safe rock breaking would have little vibration, no fly stone, and no toxic gases, which can be widely used in municipal engineering, road excavation, high-risk mining, quarrying and complex environment.

  19. A new method for evaluating the conformations and normal modes of macromolecule vibrations with a reduced force field. 2. Application to nonplanar distorted metal porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Unger, E.; Beck, M.; Lipski, R.J.; Dreybrodt, W.; Medforth, C.J.; Smith, K.M.; Schweitzer-Stenner, R.

    1999-11-11

    The authors have developed a novel method for molecular mechanics calculations and normal-mode analysis. It is based on symmetry of local units that constitutes the given molecule. Compared with general valence force field calculations, the number of free parameters is reduced by 40--80% in the procedure. It was found to reproduce very well the vibrational frequencies and mode compositions of aromatic compounds and porphyrins, as shown by comparison with DFT calculations. A slightly altered force field obtained from Ni(II) porphin was then used to calculate the structure and the normal modes of several meso-substituted Ni(II) porphyrins which are known to be subject to significant ruffling and/or saddling distortions. This method satisfactorily reproduces their nonplanar structure and Raman band frequencies in the natural abundance and isotopic derivative spectra. The polarization properties of bands from out-of-plane modes are in accordance with the predicted nonplanar distortions. Moreover, some of the modes below 800 cm{sup {minus}1} which appear intense in the Raman spectra contain considerable contributions from both in-plane and out-of-plane vibrations, so that the conventional mode assignments become questionable. The authors also demonstrate that the intensity and polarization of some low-frequency Raman bands can be used as a (quantitative) marker to elucidate type and magnitude of out-of-plane distortions. These were recently shown to affect heme groups of hemoglobin, myoglobin, and, in particular, of cytochrome c.

  20. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  1. The development of an intervention programme to reduce whole-body vibration exposure at work induced by a change in behaviour: a study protocol

    Science.gov (United States)

    Tiemessen, Ivo JH; Hulshof, Carel TJ; Frings-Dresen, Monique HW

    2007-01-01

    Background Whole body vibration (WBV) exposure at work is common and studies found evidence that this exposure might cause low back pain (LBP). A recent review concluded there is a lack of evidence of effective strategies to reduce WBV exposure. Most research in this field is focussed on the technical implications, although changing behaviour towards WBV exposure might be promising as well. Therefore, we developed an intervention programme to reduce WBV exposure in a population of drivers with the emphasis on a change in behaviour of driver and employer. The hypothesis is that an effective reduction in WBV exposure, in time, will lead to a reduction in LBP as WBV exposure is a proxy for an increased risk of LBP. Methods/Design The intervention programme was developed specifically for the drivers of vibrating vehicles and their employers. The intervention programme will be based on the most important determinants of WBV exposure as track conditions, driving speed, quality of the seat, etc. By increasing knowledge and skills towards changing these determinants, the attitude, social influence and self-efficacy (ASE) of both drivers and employers will be affected having an effect on the level of exposure. We used the well-known ASE model to develop an intervention programme aiming at a change or the intention to change behaviour towards WBV exposure. The developed programme consists of: individual health surveillance, an information brochure, an informative presentation and a report of the performed field measurements. Discussion The study protocol described is advantageous as the intervention program actively tries to change behaviour towards WBV exposure. The near future will show if this intervention program is effective by showing a decrease in WBV exposure. PMID:18005400

  2. The development of an intervention programme to reduce whole-body vibration exposure at work induced by a change in behaviour: a study protocol

    Directory of Open Access Journals (Sweden)

    Frings-Dresen Monique HW

    2007-11-01

    Full Text Available Abstract Background Whole body vibration (WBV exposure at work is common and studies found evidence that this exposure might cause low back pain (LBP. A recent review concluded there is a lack of evidence of effective strategies to reduce WBV exposure. Most research in this field is focussed on the technical implications, although changing behaviour towards WBV exposure might be promising as well. Therefore, we developed an intervention programme to reduce WBV exposure in a population of drivers with the emphasis on a change in behaviour of driver and employer. The hypothesis is that an effective reduction in WBV exposure, in time, will lead to a reduction in LBP as WBV exposure is a proxy for an increased risk of LBP. Methods/Design The intervention programme was developed specifically for the drivers of vibrating vehicles and their employers. The intervention programme will be based on the most important determinants of WBV exposure as track conditions, driving speed, quality of the seat, etc. By increasing knowledge and skills towards changing these determinants, the attitude, social influence and self-efficacy (ASE of both drivers and employers will be affected having an effect on the level of exposure. We used the well-known ASE model to develop an intervention programme aiming at a change or the intention to change behaviour towards WBV exposure. The developed programme consists of: individual health surveillance, an information brochure, an informative presentation and a report of the performed field measurements. Discussion The study protocol described is advantageous as the intervention program actively tries to change behaviour towards WBV exposure. The near future will show if this intervention program is effective by showing a decrease in WBV exposure.

  3. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  4. Experimental and Theoretical Study on Influence of Different Charging Structures on Blasting Vibration Energy

    Directory of Open Access Journals (Sweden)

    Wenbin Gu

    2015-01-01

    Full Text Available As an important parameter in blasting design, charging structure directly influences blasting effect. Due to complex conditions of this blasting and excavating engineering in Jiangsu, China, the authors carried out comparative researches with coupling structure, air-decoupling structure, and water-decoupling structure. After collecting, comparing, and analyzing produced signals on blasting vibration, the authors summarized that when proportional distances are the same, water-decoupling structure can reduce instantaneous energy of blasting vibration more effectively with more average rock fragmentation and less harm of dust. From the perspective of impedance matching, the present paper analyzed influence of charging structure on blasting vibration energy, demonstrating that impedance matching relationship between explosive and rock changes because of different charging structures. Through deducing relationship equation that meets the impedance matching of explosive and rock under different charging structures, the research concludes that when blasting rocks with high impedance, explosive with high impedance can better transmits blasting energy. Besides, when employing decoupling charging, there exists a reasonable decoupling coefficient helping realize impedance matching of explosive and rock.

  5. Triangle bracing system to reduce the vibration level of cooling tower – case study in PT Star Energy Geothermal (Wayang Windu) Ltd – Indonesia

    OpenAIRE

    Effendi Tri Bahtiar; Naresworo Nugroho; Dede Hermawan; Wilis Wirawan; Khuschandra

    2018-01-01

    Periodical control and measurement revealed that vibration level of motor and gearbox which was supported by Cooling Tower Unit 1 at PT Star Energy Geothermal (Wayang Windu) Ltd was significantly increasing since 2013. The vibration was not caused by machinery component failure, but induced by resonance of process flow. Decreasing stiffness of cooling tower structure was suspected causing the increasing vibration level. The physical, chemical, and mechanical properties of wood was deteriorate...

  6. Rock Art

    Science.gov (United States)

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  7. Innovative computational tools for reducing exploration risk through integration of water-rock interactions and magnetotelluric surveys

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Joseph [Univ. of Utah, Salt Lake City, UT (United States)

    2017-04-20

    Mapping permeability distributions in geothermal reservoirs is essential for reducing the cost of geothermal development. To avoid the cost and sampling bias of measuring permeability directly through drilling, we require remote methods of imaging permeability such as geophysics. Electrical resistivity (or its inverse, conductivity) is one of the most sensitive geophysical properties known to reflect long range fluid interconnection and thus the likelihood of permeability. Perhaps the most widely applied geophysical methods for imaging subsurface resistivity is magnetotellurics (MT) due to its relatively great penetration depths. A primary goal of this project is to confirm through ground truthing at existing geothermal systems that MT resistivity structure interpreted integratively is capable of revealing permeable fluid pathways into geothermal systems.

  8. Ship Vibrations

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...

  9. 'Escher' Rock

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks [figure removed for brevity, see original site] Figure 1 This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters. The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water. Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend. These data were taken by the rover's alpha particle X-ray spectrometer.

  10. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

    In   this   paper   we   describe   a   field   study   conducted   with   a   wearable   vibration   belt   where   we   test   to   determine   the   vibration   intensity   sensitivity   ranges   on   a   large   diverse   group   of   participants   with   evenly   distributed  ages  and...

  11. Recreating Rocks

    DEFF Research Database (Denmark)

    Posth, Nicole R

    2008-01-01

    Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers.......Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers....

  12. Effect of shelf aging on vibration transmissibility of anti-vibration gloves

    Science.gov (United States)

    SHIBATA, Nobuyuki

    2017-01-01

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817

  13. Art Rocks with Rock Art!

    Science.gov (United States)

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  14. Rock Physics

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2017-01-01

    Rock physics is the discipline linking petrophysical properties as derived from borehole data to surface based geophysical exploration data. It can involve interpretation of both elastic wave propagation and electrical conductivity, but in this chapter focus is on elasticity. Rock physics is based...... on continuum mechanics, and the theory of elasticity developed for statics becomes the key to petrophysical interpretation of velocity of elastic waves. In practice, rock physics involves interpretation of well logs including vertical seismic profiling (VSP) and analysis of core samples. The results...

  15. Vibration isolation of a ship's seat

    Science.gov (United States)

    Agahi, Maryam; Samani, Mehrdad B.; Behzad, Mehdi

    2005-05-01

    Different factors cause vibration. These vibrations make the voyages difficult and reduce comfort and convenience in passenger ships. In this paper, the creating factors of vibration have discussed first, then with mathematical modelling it will be attempted to minimize the vibration over the crew's seat. The modelling consists of a system with two degrees of freedom and by using vibrationisolation with passive method of Tuned Mass Damper (TMD) it will be tried to reduce the vibration over personnel. Moreover using active control systems will be compared with passive systems.

  16. STUDY ON THE BLASTING SEISMIC DAMAGE CONTROL TECHNOLOGY FOR SMALL SPACING SOFT ROCK TUNNEL

    Directory of Open Access Journals (Sweden)

    Yang Chengzhong

    2017-07-01

    Full Text Available With a lot construction of transportation infrastructure in Chinese mountainous area, because of its unique advantages such as less land occupation, beautiful appearance and convenient route planning, small spacing tunnels are widely used. The shallow buried tunnel with small spacing, the blasting excavation will lead to tunnel surrounding rock especially in the middle rock wall damage and reduce the self-bearing capacity of surrounding rock. Through detecting and analyzing by the geological radar of the excavated red layer soft rock tunnel surrounding rock found that the middle rock wall loose circle thickness of the tunnel reaches to 1.8 m, the vault and sidewall loose circle thickness is about 1.2 m. Through selection of rational strengthening measures and blasting design scheme to improve drilling parameters and methods, as far as possible to protect the integrity and self-bearing capacity of the surrounding rock, the deformation and vibration of the tunnel would be controlled in reasonable limits and ensure the safety of tunnel construction.

  17. Dissipation of Impact Stress Waves within the Artificial Blasting Damage Zone in the Surrounding Rocks of Deep Roadway

    Directory of Open Access Journals (Sweden)

    Jianguo Ning

    2016-01-01

    Full Text Available Artificial explosions are commonly used to prevent rockburst in deep roadways. However, the dissipation of the impact stress wave within the artificial blasting damage zone (ABDZ of the rocks surrounding a deep roadway has not yet been clarified. The surrounding rocks were divided into the elastic zone, blasting damage zone, plastic zone, and anchorage zone in this research. Meanwhile, the ABDZ was divided into the pulverizing area, fractured area, and cracked area from the inside out. Besides, the model of the normal incidence of the impact stress waves in the ABDZ was established; the attenuation coefficient of the amplitude of the impact stress waves was obtained after it passed through the intact rock mass, and ABDZ, to the anchorage zone. In addition, a numerical simulation was used to study the dynamic response of the vertical stress and impact-induced vibration energy in the surrounding rocks. By doing so, the dissipation of the impact stress waves within the ABDZ of the surrounding rocks was revealed. As demonstrated in the field application, the establishment of the ABDZ in the surrounding rocks reduced the effect of the impact-induced vibration energy on the anchorage support system of the roadway.

  18. Rocking pneumonia

    OpenAIRE

    Rijkers, Ger T.; Rodriguez Gomez, Maria

    2017-01-01

    Ever since Chuck Berry coined the term “rocking pneumonia” in his 1956 song “Roll over Beethoven”, pneumonia has been mentioned frequently in modern blues and rock songs. We analyzed the lyrics of these songs to examine how various elements of pneumonia have been represented in popular music, specifically the cause of pneumonia, the risk groups, comorbidity (such as the boogie woogie flu), the clinical symptoms, and treatment and outcome. Up to this day, songwriters suggest that pneumonia is ...

  19. Vibrating minds

    CERN Multimedia

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  20. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  1. Novel active vibration absorber with magnetorheological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, T; Ehrlich, J; Boese, H [Fraunhofer-Institut fuer Silicatforschung ISC, Neunerplatz 2, D-97082 Wuerzburg (Germany)], E-mail: thomas.gerlach@isc.fraunhofer.de

    2009-02-01

    Disturbing vibrations diminish the performance of technical high precision devices significantly. In search of a suitable solution for reducing these vibrations, a novel concept of active vibration reduction was developed which exploits the special properties of magnetorheological fluids. In order to evaluate the concept of such an active vibration absorber (AVA) a demonstrator was designed and manufactured. This demonstrator generates a force which counteracts the motion of the vibrating body. Since the counterforce is generated by a centrifugal exciter, the AVA provides the capability to compensate vibrations even in two dimensions. To control the strength of the force transmitted to the vibrating body, the exciter is based on a tunable MR coupling. The AVA was integrated in an appropriate testing device to investigate its performance. The recorded results show a significant reduction of the vibration amplitudes by an order of magnitude.

  2. Dynamic vibration measurements at the fundaments of wind power plants to reduce the expenses during maintenance; Dynamische Schwingungsmessungen an WEA-Fundamenten zur Kostenreduzierung bei der Instandhaltung

    Energy Technology Data Exchange (ETDEWEB)

    Deininger, Klaus [KTW Umweltschutztechnik GmbH, Mellingen (Germany)

    2013-06-01

    The author of the contribution under consideration reports on dynamic vibration measurements at the foundations of wind power plants. Typical damages at these foundations as well as various options of sealing are described. The author recommends the installation of condition monitoring systems which punctually display critical states of wind power plants using the global positioning system or direct involvement in the entire data of the wind power plant.

  3. Evaluation of the agronomic effectiveness of rock phosphates from the Polpino deposit in the Russian federation and their potential to reduce 137Cs accumulation in plants

    International Nuclear Information System (INIS)

    Kuznetsov, V.K.; Sanzharova, N.I.; Alexakhin, R.M.

    2002-01-01

    The ability to supply P to plants (agronomic effectiveness) of local rock phosphates (RP) from the Polpino deposit in the Bryansk region was determined in a Sod-podzolic acid soil. In addition, the effectiveness of using the RP to reduce 137 Cs accumulation in barley was also studied. A series of greenhouse experiments were carried out using 32 P and 137 Cs as tracers. Standard methods for soil analysis and evaluation of chemical status of RP in soil were employed. The grain yield increased by 17.7, 44.3 and 57.5% compared to the control at rates of 21.8, 43.6 and 87.2 mg P/kg soil, respectively. The relative availability of phosphorus from RP applied at a rate of 21.8 P mg/kg soil was 56.1% compared to superphosphate and reached 74.5 and 81.3% at rates of 43.6 and 87.2 mg P/kg soil. The uptake of P by plants was increased with the increase in the rates of the fertilizers applied, but the percent of P fertilizer utilization decreased. The amount of P used by plants from fertilizers depended on the type and rates of P fertilizers. With an increase in SP rates from 21.8 to 87.2 mg/kg soil, the use of fertilizer P by plants dropped from 32.6 to 21.9%. For local RP, these differences were less pronounced with the percent of the total amount of P used by plants 2.1 times less than that from SP. The application of local RP at rates of 43.6 and 87.2 mg P/ kg soil resulted in a 1.3-fold decrease in 137 Cs accumulation in grain and straw of crops. At a rate of 21.8 mg P/kg soil, the differences in 137 Cs accumulation between grain and straw were insignificant compared to the control. (author)

  4. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  5. Source rock

    Directory of Open Access Journals (Sweden)

    Abubakr F. Makky

    2014-03-01

    Full Text Available West Beni Suef Concession is located at the western part of Beni Suef Basin which is a relatively under-explored basin and lies about 150 km south of Cairo. The major goal of this study is to evaluate the source rock by using different techniques as Rock-Eval pyrolysis, Vitrinite reflectance (%Ro, and well log data of some Cretaceous sequences including Abu Roash (E, F and G members, Kharita and Betty formations. The BasinMod 1D program is used in this study to construct the burial history and calculate the levels of thermal maturity of the Fayoum-1X well based on calibration of measured %Ro and Tmax against calculated %Ro model. The calculated Total Organic Carbon (TOC content from well log data compared with the measured TOC from the Rock-Eval pyrolysis in Fayoum-1X well is shown to match against the shale source rock but gives high values against the limestone source rock. For that, a new model is derived from well log data to calculate accurately the TOC content against the limestone source rock in the study area. The organic matter existing in Abu Roash (F member is fair to excellent and capable of generating a significant amount of hydrocarbons (oil prone produced from (mixed type I/II kerogen. The generation potential of kerogen in Abu Roash (E and G members and Betty formations is ranging from poor to fair, and generating hydrocarbons of oil and gas prone (mixed type II/III kerogen. Eventually, kerogen (type III of Kharita Formation has poor to very good generation potential and mainly produces gas. Thermal maturation of the measured %Ro, calculated %Ro model, Tmax and Production index (PI indicates that Abu Roash (F member exciting in the onset of oil generation, whereas Abu Roash (E and G members, Kharita and Betty formations entered the peak of oil generation.

  6. Intellektuaalne rock

    Index Scriptorium Estoniae

    2007-01-01

    Briti laulja-helilooja ja näitleja Toyah Willcox ning Bill Rieflin ansamblist R.E.M. ja Pat Mastelotto King Krimsonist esinevad koos ansamblitega The Humans ja Tuner 25. okt. Tallinnas Rock Cafés ja 27. okt Tartu Jaani kirikus

  7. Igneous Rocks

    Science.gov (United States)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  8. Using piezo-electric material to simulate a vibration environment

    Science.gov (United States)

    Jepsen, Richard A.; Davie, Neil T.; Vangoethem, Douglas J.; Romero, Edward F.

    2010-12-14

    A target object can be vibrated using actuation that exploits the piezo-electric ("PE") property. Under combined conditions of vibration and centrifugal acceleration, a centrifugal load of the target object on PE vibration actuators can be reduced by using a counterweight that offsets the centrifugal loading. Target objects are also subjected to combinations of: spin, vibration, and acceleration; spin and vibration; and spin and acceleration.

  9. White Rock

    Science.gov (United States)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  10. Analytical stiffness calculations of a cone-shaped magnetic vibration isolator for a micro balance

    NARCIS (Netherlands)

    Casteren, van D.T.E.H.; Paulides, J.J.H.; Janssen, J.L.G.; Lomonova, E.A.

    2013-01-01

    The accuracy of a micro balance is highly dependent on the level of floor vibrations. One strategy to reduce floor vibrations is a magnetic vibration isolator. Magnetic vibration isolators have the possibility to obtain a zero-stiffness region, which is beneficial for attenuating vibrations. In this

  11. A reduced-scaling density matrix-based method for the computation of the vibrational Hessian matrix at the self-consistent field level

    International Nuclear Information System (INIS)

    Kussmann, Jörg; Luenser, Arne; Beer, Matthias; Ochsenfeld, Christian

    2015-01-01

    An analytical method to calculate the molecular vibrational Hessian matrix at the self-consistent field level is presented. By analysis of the multipole expansions of the relevant derivatives of Coulomb-type two-electron integral contractions, we show that the effect of the perturbation on the electronic structure due to the displacement of nuclei decays at least as r −2 instead of r −1 . The perturbation is asymptotically local, and the computation of the Hessian matrix can, in principle, be performed with O(N) complexity. Our implementation exhibits linear scaling in all time-determining steps, with some rapid but quadratic-complexity steps remaining. Sample calculations illustrate linear or near-linear scaling in the construction of the complete nuclear Hessian matrix for sparse systems. For more demanding systems, scaling is still considerably sub-quadratic to quadratic, depending on the density of the underlying electronic structure

  12. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  13. Alleviation of Buffet-Induced Vibration Using Piezoelectric Actuators

    National Research Council Canada - National Science Library

    Morgenstern, Shawn D

    2006-01-01

    .... The objective of this research was to determine the most critical natural modes of vibration for the F-16 ventral fin and design piezoelectric actuators capable of reducing buffet-induced ventral fin vibration...

  14. Rock stresses (Grimsel rock laboratory)

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, S.; Braeuer, V.; Gloeggler, W.

    1989-01-01

    On the research and development project 'Rock Stress Measurements' the BGR has developed and tested several test devices and methods at GTS for use in boreholes at a depth of 200 m and has carried out rock mechanical and engineering geological investigations for the evaluation and interpretation of the stress measurements. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on hollow cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure and vertical stresses which agree well with the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are generally lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (orig./HP) [de

  15. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  16. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  17. Thermal Inertia of Rocks and Rock Populations

    Science.gov (United States)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  18. Epigenetic alterations of sedimentary rocks at deposits

    International Nuclear Information System (INIS)

    Komarova, G.V.; Kondrat'eva, I.A.; Zelenova, O.I.

    1980-01-01

    Notions are explained, and technique for studying epigenetic alterations of sedimentary rocks at uranium deposits is described. Main types of epigenetic transformations and their mineralogic-geochemical characteristics are considered. Rock alterations, accompanying uranium mineralization, can be related to 2 types: oxidation and reduction. The main mineralogic-geochemical property of oxidation transformations is epigenetic limonitization. Stratal limonitization in primary grey-coloured terrigenic rocks and in epigenetically reduced (pyritized) rocks, as well as in rock, subjected to epigenetic gleying, are characterized. Reduction type of epigenetic transformations is subdivided into sulphidic and non-sulphidic (gley) subtypes. Sulphidic transformations in grey-coloured terrigenic rocks with organic substance of carbonic row, in rocks, containing organic substance of oil row, sulphide transformations of sedimentary rocks, as well as gley transformations, are considered

  19. Radioactivities (dose rates) of rocks in Japan

    International Nuclear Information System (INIS)

    Matsuda, Hideharu; Minato, Susumu

    1995-01-01

    The radioactive distribution (radiation doses) of major rocks in Japan was monitored to clarify the factors influencing terrestrial gamma-ray absorbed dose rates. The rock samples were reduced to powder and analyzed by well-type NaI(Tl) scintillation detector and pulse height analyzer. Terrestrial gamma-ray dose rates were estimated in terms of gamma radiation dose rate 1 m above the ground. The radioactivity concentration was highest in acidic rock which contains much SiO 2 among igneous rock, followed by neutral rock, basic rock, and ultrabasic rock. The radioactive concentration was 30-40% lower in acidic and clastic rocks than those of the world average concentration. Higher radioactive concentration was observed in soils than the parent rocks of sedimentary rock and metamorphic rock. The gamma radiation dose rate was in proportion to the radioactive concentration of the rocks. To clarify the radioactive effect in the change course of rocks into soils, comparative measurement of outcrop and soil radioactive concentrations is important. (S.Y.)

  20. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  1. Vibration of machine

    International Nuclear Information System (INIS)

    Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo

    2001-09-01

    This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.

  2. Automatic crack detection method for loaded coal in vibration failure process.

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    Full Text Available In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM. A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.

  3. Enhanced vibration diagnostics using vibration signature analysis

    International Nuclear Information System (INIS)

    Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.

    2001-01-01

    Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)

  4. Modelling nuclear fuel vibrations in horizontal CANDU reactors

    International Nuclear Information System (INIS)

    Jagannath, D.V.; Oldaker, I.E.

    1976-01-01

    Flow-induced fuel vibrations in the pressure tubes of CANDU reactors are of vital interest to designers because fretting damage may result. Computer simulation is being used to study how bundles vibrate and to identify bundle design features which will reduce vibration and hence fretting. (author)

  5. Numerical analysis using state space method for vibration control of ...

    African Journals Online (AJOL)

    In passenger cars the vibrations developed at the ground are transmitted to the passengers through seats. Due to vibrations discomfort is experienced by the passengers. Dampers are being successfully utilized to reduce the vibrations in civil engineering structures. Few dampers are used in passenger cars as well.

  6. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  7. Control of blast overpressure and vibrations at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Mohanty, B.

    1991-01-01

    AECL Research (AECL) has constructed an Underground Research Laboratory (URL) as a facility for research and development in the Canadian Nuclear Fuel Waste Management Program. The objectives of the program are to develop and evaluate the technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. Several multidisciplinary experiments and engineering demonstrations are planned for the URL over the next ten years. In 1989, AECL excavated a test room for the Buffer/Container Experiment at the 240 Level. The blasts were designed to limit vibration and overpressure damage because the excavation was located close to existing furnishings and services that were very susceptible to blast-induced vibration and overpressure. An experimental room, which contained sensitive instrumentation, was located within 30 m of the initial blasts. A concrete floor slab, timber curtains and a bulkhead were installed to protect furnishings and services from fly-rock and overpressure. Five of the initial blasts were monitored. This paper describes the results of the monitoring program and the effectiveness of the blast design, floor slab and timber curtains and bulkhead in reducing blast overpressure and vibrations at the blast site. It is shown that greater than a 20-fold reduction in both blast vibrations and air overpressures can be achieved with specific combinations of blast design, installation of timber curtains and construction of a concrete floor slab

  8. [Occupational standing vibration rate and vibrational diseases].

    Science.gov (United States)

    Karnaukh, N G; Vyshchipan, V F; Haumenko, B S

    2003-12-01

    Occupational standing vibration rate is proposed in evaluating a degree of impairment of an organism activity. It will allow more widely to introduce specification of quality and quantity in assessment of the development of vibrational disease. According out-patient and inpatient obtained data we have established criterial values of functional changes in accordance with accumulated occupational standing vibration rate. The nomogram was worked out for defining a risk of the development of vibrational disease in mine workers. This nomogram more objectively can help in diagnostics of the disease.

  9. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  10. Analytic vibrational matrix elements for diatomic molecules

    International Nuclear Information System (INIS)

    Bouanich, J.P.; Ogilvie, J.F.; Tipping, R.H.

    1986-01-01

    The vibrational matrix elements and expectation values for a diatomic molecule, including the rotational dependence, are calculated for powers of the reduced displacement in terms of the parameters of the Dunham potential-energy function. (orig.)

  11. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  12. A THEORETICAL STUDY AND 3D MODELING OF NONLINEAR PASSIVE VIBRATION ISOLATOR

    OpenAIRE

    Sabyasachi Mukherjee

    2017-01-01

    The study of sound and vibration are closely related. Sound or "pressure waves" are generated by vibrating structures (e.g. vocal cords); these pressure waves can also induce the vibration of structures (e.g. ear drum). Hence, when trying to reduce noise it is often a problem in trying to reduce vibration. The high speed engines and machines when mounted on foundations and supports cause vibrations of excessive amplitude because of unbalance forces setup during their working. These are the di...

  13. Modeling the Rock Glacier Cycle

    Science.gov (United States)

    Anderson, R. S.; Anderson, L. S.

    2016-12-01

    Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock

  14. Study of low vibration 4 K pulse tube cryocoolers

    Science.gov (United States)

    Xu, Mingyao; Nakano, Kyosuke; Saito, Motokazu; Takayama, Hirokazu; Tsuchiya, Akihiro; Maruyama, Hiroki

    2012-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has been continuously improving the efficiency and reducing the vibration of a 4 K pulse tube cryocooler. One advantage of a pulse tube cryocooler over a GM cryocooler is low vibration. In order to reduce vibration, both the displacement and the acceleration have to be reduced. The vibration acceleration can be reduced by splitting the valve unit from the cold head. One simple way to reduce vibration displacement is to increase the wall thickness of the tubes on the cylinder. However, heat conduction loss increases while the wall thickness increases. To overcome this dilemma, a novel concept, a tube with non-uniform wall thickness, is proposed. Theoretical analysis of this concept, and the measured vibration results of an SHI lowvibration pulse tube cryocooler, will be introduced in this paper.

  15. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    spacecraft and the test fixture, alleviates the severe overtest at spacecraft resonances inherent in rigid fixture vibration tests. It has the distinct advantage over response limiting that the method is not dependent on the accuracy of a detailed dynamic model of the spacecraft. Combined loads, vibration, and modal testing were recently performed on the QuikSCAT spacecraft. The combined tests were performed in a single test setup per axis on a vibration shaker, reducing test time by a factor of two or three. Force gages were employed to measure the true c.g. acceleration of the spacecraft for structural loads verification using a sine burst test, to automatically notch random vibration test input accelerations at spacecraft resonances based on predetermined force limits, and to directly measure modal masses in a base drive modal test. In addition to these combined tests on the shaker, the QuikSCAT spacecraft was subjected to a direct field acoustic test by surrounding the spacecraft, still on the vibration shaker, with rock concert type acoustic speakers. Since the spacecraft contractor does not have a reverberant field acoustic test facility, performing a direct field acoustic test -saved the program nearly two weeks schedule time that would have been required for packing / unpacking and shipping of the spacecraft. This paper discusses the rationale behind and advantages of the above test approaches and provides examples of their actual implementation and comparisons to flight data. The applicability of the test approaches to Mars Micromission spacecraft qualification is discussed.

  16. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  17. Study on vibration behaviors of engineered barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Minowa, Chikahiro [National Research Inst. for Earth Science and Disaster Prevention, Tsukuba, Ibaraki (Japan)

    1999-02-01

    Small engineered barrier model was mode and tested by vibrating with the random wave and the real earthquake wave. The wave observed at Kamaishi (N-S, N-W), Iwate Prefecture, in September 6, 1993, and Kobe (N-S) etc. were used as the real earthquake waves. The trial overpack showed non-linear characteristics (soft spring) by vibrating with the random wave. The pressure and acceleration of trial overpack and constraint container increased with increasing the vibration level of the real earthquake wave. The trial overpack moved the maximum 1.7 mm of displacement and 16 mm subsidence. The results showed both waves rocked the trialpack. (S.Y.)

  18. Rollerjaw Rock Crusher

    Science.gov (United States)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  19. Comparative Study of Reducing the Vibration Level of a Cylindrical Gear Transmissions by Increasing the Manufacturing Precision of the Gears, Respective by Applying of Fluoropolymer Coating on the Gear Teeth

    Directory of Open Access Journals (Sweden)

    Zoltan Korka

    2012-09-01

    Full Text Available The current trend in the construction of gearboxes, regarding the speed increase, favors the increase of the dynamic loads and, consequentially of the vibration level. Therefore, the vibration reduction of gear transmissions finds a growing interest, representing an element of fight against environmental pollution.

  20. Rock fill in a KBS-3 repository. Rock material for filling of shafts and ramps in a KBS-3V repository in the closure phase

    International Nuclear Information System (INIS)

    Pusch, Roland

    2008-09-01

    The content of large blocks in blasted rock makes it impossible to fill and compact the material effectively unless those larger than about 500 mm are removed. Tunnel Boring Machine (TBM) muck gives flat chips, that are usually not longer than a couple of decimeters, and serves better as backfill. The granulometrical composition of both types can be more suitable for effective compaction by crushing, which is hence a preferable process. Use of unsorted, unprocessed blasted rock can only be accepted if the density and physical properties, like self-compaction, are not important. Crushing of blasted rock and TBM muck for backfilling can be made in one or two steps depending on the required gradation. Placement of rock fill is best made by use of tractors with blades that push the material forwards over already placed and compacted material. The dry density of well graded rock fill effectively compacted by very heavy vibratory rollers can be as high as 2,400 kg/m3. For road compaction by ordinary vibratory rollers common dry density values are in the interval 2,050 to 2,200 kg m 3 . Blasted rock dumped and moved on site by tractors can get an average dry density of 1,600-1,800 kg/m3 without compaction. Crushed, blasted rock and TBM muck placed by tractors in horizontal layers and compacted by 5-10 t vibrating rollers in the lower part of the rooms, and moved by tractors to form inclined layers compacted by vibrating plates in the upper part, would get a dry density of 1,900-2,000 kg/m 3 . Flushing water over the rock fill in conjunction with the compaction work gives more effective densification than dry compaction. Based on recorded settlement of Norwegian rock fill dams constructed with water flushing it is estimated that the self-compaction of a 5 m high backfill of crushed rock or TBM muck causes a settlement of the top of the backfill of about 8 mm while a 200 m high shaft fill would undergo compression by more than half a meter. Repeated, strong earthquakes may

  1. Rock fill in a KBS-3 repository. Rock material for filling of shafts and ramps in a KBS-3V repository in the closure phase

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland (Geodevelopment International AB/SWECO AB, Lund (Sweden))

    2008-09-15

    The content of large blocks in blasted rock makes it impossible to fill and compact the material effectively unless those larger than about 500 mm are removed. Tunnel Boring Machine (TBM) muck gives flat chips, that are usually not longer than a couple of decimeters, and serves better as backfill. The granulometrical composition of both types can be more suitable for effective compaction by crushing, which is hence a preferable process. Use of unsorted, unprocessed blasted rock can only be accepted if the density and physical properties, like self-compaction, are not important. Crushing of blasted rock and TBM muck for backfilling can be made in one or two steps depending on the required gradation. Placement of rock fill is best made by use of tractors with blades that push the material forwards over already placed and compacted material. The dry density of well graded rock fill effectively compacted by very heavy vibratory rollers can be as high as 2,400 kg/m3. For road compaction by ordinary vibratory rollers common dry density values are in the interval 2,050 to 2,200 kg m3. Blasted rock dumped and moved on site by tractors can get an average dry density of 1,600-1,800 kg/m3 without compaction. Crushed, blasted rock and TBM muck placed by tractors in horizontal layers and compacted by 5-10 t vibrating rollers in the lower part of the rooms, and moved by tractors to form inclined layers compacted by vibrating plates in the upper part, would get a dry density of 1,900-2,000 kg/m3. Flushing water over the rock fill in conjunction with the compaction work gives more effective densification than dry compaction. Based on recorded settlement of Norwegian rock fill dams constructed with water flushing it is estimated that the self-compaction of a 5 m high backfill of crushed rock or TBM muck causes a settlement of the top of the backfill of about 8 mm while a 200 m high shaft fill would undergo compression by more than half a meter. Repeated, strong earthquakes may

  2. Novel, low-vibration excavation techniques for underground radioactive waste storage

    International Nuclear Information System (INIS)

    Kogelmann, W.J.

    1994-01-01

    In order to meet the construction specifications of the challenging Yucca Mountain nuclear waste repository, novel, low-vibration tunneling and shaft sinking techniques must be applied. Conventional roadheaders, even with reduced cutting speed, cannot be employed due to the high strength and widely varying physical properties of the rock formations. The Multi Tool Miner (MTM) concept utilizes both an impact hammer, for efficient hard rock mining, and a cutter head, tooled with drag-bits (picks), to profile tunnel walls down to the sound, undisturbed rock, in order to meet the 10,000-year stability requirement for underground structures. As the operational requirements and rock conditions at the Yucca Mountain site are not suitable for wide, transverse open-quotes ripperclose quotes cutting drums, a small diameter, in-line, open-quotes milling augerclose quotes cutter head was developed. The synergetic combination of high-production hammer excavation and precise milling will facilitate the construction of stable, long-life underground structures within the budget limitations mandated by Congress

  3. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Science.gov (United States)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  4. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  5. Review of magnetostrictive vibration energy harvesters

    Science.gov (United States)

    Deng, Zhangxian; Dapino, Marcelo J.

    2017-10-01

    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  6. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  7. Vibration-damping structure for reactor building

    International Nuclear Information System (INIS)

    Kuno, Toshio; Iba, Chikara; Tanaka, Hideki; Kageyama, Mitsuru

    1998-01-01

    In a damping structure of a reactor building, an inner concrete body and a reactor container are connected by way of a vibration absorbing member. As the vibration absorbing member, springs or dampers are used. The inner concrete body and the reactor container each having weight and inherent frequency different from each other are opposed displaceably by way of the vibration absorbing member thereby enabling to reduce seismic input and reduce shearing force at least at leg portions. Accordingly, seismic loads are reduced to increase the grounding rate of the base thereby enabling to satisfy an allowable value. Therefore, it is not necessary to strengthen the inner concrete body and the reactor container excessively, the amount of reinforcing rods can be reduced, and the amount of a portion of the base buried to the ground can be reduced thereby enabling to constitute the reactor building easily. (N.H.)

  8. Ultrasonically assisted drilling of rocks

    Science.gov (United States)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  9. EFFECTOF ISOLATION WALL USING SCRAP TIRE ON GROUND VIBRATION REDUCTION

    Science.gov (United States)

    Kashimoto, Takahiko; Kashimoto, Yusuke; Hayakawa, Kiyoshi; Matsui, Tamotsu; Fujimoto, Hiroaki

    Some countermeasure methods against the environmental ground vibration caused by some traffic vibrations have been proposed so far. The authors have developed a new type ground vibration isolation wall using scrap tire, and evaluated its effectiveness on the ground vibration reduction by full scale field tests. In this paper, the authors discussed and examined the effectiveness of the developed countermeasure method by two field tests. The one concerns on the effect of scrap tire as soft material of vibration isolation wall, and the other on the effect of the developed countermeasure method practically applied in a residential area close to monorail traffic. As the results, it was elucidated that the ground vibration of 2-3 dB was reduced in case of two times volume of the soft material, the conversion ratio of the vibration energy of the soft material to the kinetic energy was higher than that of the core material of PHC pile, the vibration acceleration of 0.19 - 1.26 gal was reduced by the developed countermeasure method in case of the monorail traffic, and the vibration reduction measured behind the isolation wall agreed well with the proposed theoretical value, together with confirming the effectiveness of the ground vibration isolation wall using scrap tire as the countermeasure method against the environmental ground vibration.

  10. Rocks Can Wow? Yes, Rocks Can Wow!

    Science.gov (United States)

    Hardman, Sally; Luke, Sue

    2016-01-01

    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  11. Bandshapes in vibrational spectroscopy

    International Nuclear Information System (INIS)

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  12. Transfer vibration through spine

    OpenAIRE

    Benyovszky, Adam

    2012-01-01

    Transfer Vibration through Spine Abstract In the bachelor project we deal with the topic of Transfer Vibration through Spine. The problem of TVS is trying to be solved by the critical review method. We analyse some diagnostic methods and methods of treatment based on this principle. Close attention is paid to the method of Transfer Vibration through Spine that is being currently solved by The Research Institute of Thermomechanics in The Czech Academy of Sciences in cooperation with Faculty of...

  13. Rock slope design guide.

    Science.gov (United States)

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  14. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  15. The Rock Cycle

    Science.gov (United States)

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  16. Hand-Arm vibration assessment among tiller operator

    Directory of Open Access Journals (Sweden)

    P. Nassiri

    2013-08-01

    Result: Results of the present study indicated that in all measured situations, exposure to hand arm vibration was higher than the standard limit suggested by Iranian occupational health committee and there was risk of vibration-induced disorders. The maximum exposure to vibration is in plowing ground. Exposure to hand arm vibration in three modes of plowing, transmission and natural, were respectively 16.95, 14.16 and 8.65 meters per second squared. Additionally, in all situations, vibration exposure was highest in the X-axis in comparison with Z- and Y-axes. .Conclusion: This study emphasizes on the need to provide intervention and controlling and managing strategies in order to eliminate or reduce vibration transmitted from tiller to operators hand and arm and also prevent to serious problems including neurovascular disorders, discomfort and white finger syndrome. Meanwhile, more studies are necessary to identify the sources of vibration on different models of tiller.

  17. Dependence of steam generator vibrations on feedwater pressure

    International Nuclear Information System (INIS)

    Sadilek, J.

    1989-01-01

    Vibration sensors are attached to the bottom of the steam generator jacket between the input and output primary circuit collectors. The effective vibration value is recorded daily. Several times higher vibrations were observed at irregular intervals; their causes were sought, and the relation between the steam generator vibrations measured at the bottom of its vessel and the feedwater pressure was established. The source of the vibrations was found to be in the feedwater tract of the steam generator. The feedwater tract is described and its hydraulic characteristics are given. Vibrations were measured on the S02 valve. It is concluded that vibrations can be eliminated by reducing the water pressure before the control valves and by replacing the control valves with ones with more suitable control characteristics. (E.J.). 3 figs., 1 tab., 3 refs

  18. Electrochemistry of lunar rocks

    Science.gov (United States)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  19. Rock History and Culture

    OpenAIRE

    Gonzalez, Éric

    2013-01-01

    Two ambitious works written by French-speaking scholars tackle rock music as a research object, from different but complementary perspectives. Both are a definite must-read for anyone interested in the contextualisation of rock music in western popular culture. In Une histoire musicale du rock (i.e. A Musical History of Rock), rock music is approached from the point of view of the people – musicians and industry – behind the music. Christophe Pirenne endeavours to examine that field from a m...

  20. Vibration monitoring with artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging

  1. Rocking motion of structures under earthquakes. Overturning of 2-DOF system

    International Nuclear Information System (INIS)

    Kobayashi, Koichi; Watanabe, Tetsuya; Tanaka, Kihachiro; Tomoda, Akinori

    2011-01-01

    In recent years, huge earthquakes happen, for example, The South Hyogo prefecture Earthquake in 1995, The Mid Niigata Prefecture Earthquake in 2004, The Iwate-Miyagi Nairiku Earthquake in 2008. In The Niigataken Chuetsu-oki Earthquake in 2007, hundreds of drums fell down and water spilled out. A lot of studies about rocking behavior of rigid body had been performed from 1960's. However, these studies were only for a specific condition of the structure size or input vibration characteristics. Therefore, generalizes fall condition for earthquake is required. This paper deals with the analytical and the experimental study of the rocking vibration of 1-DOF rocking system, 2-DOF vibration-rocking system and 2-DOF rocking system under earthquakes. In this study, the equation of motion for each rocking systems are developed. The numerical model of 2-DOF rocking system is evaluated by free rocking experiment. In this paper, 'Overturning Map' which can distinguish whether structures falls or not is proposed. The overturning map of each rocking systems excited by the artificial earthquake wave calculated from the design spectrum is shown. As the result, overturning condition of structures is clarified. (author)

  2. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  3. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  4. Surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  5. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  6. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Gu Wenbin

    2015-01-01

    Full Text Available Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater drilling blasting was measured in a field experiment. It shows that the water bottom vibration monitor could collect vibration signals quite effectively in underwater environments. The followed signal analysis shows that the characteristics of water bottom vibration and land ground vibration induced by the same underwater drilling blasting are quite different due to the different geological environments. The amplitude and frequency band of water bottom vibration both exceed those of land ground vibration. Water bottom vibration is mainly in low-frequency band that induced by blasting impact directly acts on rock. Besides the low-frequency component, land vibration contains another higher frequency band component that induced by followed water hammer wave acts on bank slope.

  7. Handbook Of Noise And Vibration

    International Nuclear Information System (INIS)

    1995-12-01

    This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

  8. Enhancement of the vibration stability of a microdiffraction goniometer

    International Nuclear Information System (INIS)

    Lee, S. H.; Preissner, C.; Lai, B.; Cai, Z.; Shu, D.

    2002-01-01

    High-precision instrumentation, such as that for x-ray diffraction, electron microscopy, scanning probe microscopy, and other optical micropositioning systems, requires the stability that comes from vibration-isolated support structures. Structure-born vibrations impede the acquisition of accurate experimental data through such high-precision instruments. At the Advanced Photon Source, a multiaxis goniometer is installed in the 2-ID-D station for synchrotron microdiffraction investigations. However, ground vibration can excite the kinematic movements of the goniometer linkages, resulting in critically contaminated experimental data. In this paper, the vibration behavior of the goniometer has been considered. Experimental vibration measurements were conducted to define the present vibration levels and determine the threshold sensitivity of the equipment. In addition, experimental modal tests were conducted and used to guide an analytical finite element analysis. Both results were used for finding the best way to reduce the vibration levels and to develop a vibration damping/isolation structure for the 2-ID-D goniometer. The device that was designed and tested could be used to reduce local vibration levels for the vibration isolation of similar high-precision instruments

  9. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  10. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  11. Improvement of the vibration isolation system for TAMA300

    CERN Document Server

    Takahashi, R

    2002-01-01

    The vibration isolation system for TAMA300 has a vibration isolation ratio large enough to achieve the requirement in the observation band around 300 Hz. At a lower frequency range, it is necessary to reduce the large fluctuation of mirrors for stable operation of the interferometer. With this aim, the mirror suspension systems were modified and an active vibration isolation system using pneumatic actuators was installed. These improvements contributed to the realization of a continuous interferometer lock for more than 24 h.

  12. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    field monitoring. Vibration prediction diminishes the importance of trial-and-error procedures such as drill-off tests, which are valid only for short sections. It also solves an existing lapse in Mechanical Specific Energy (MSE) real-time drilling control programs applying the theory of Teale, which states that a drilling system is perfectly efficient when it spends the exact energy to overcome the in situ rock strength. Using the proprietary software tool this paper will examine the resonant vibration modes that may be initiated while drilling with different BHA's and drill string designs, showing that the combination of a proper BHA design along with the correct selection of input parameters results in an overall improvement to drilling efficiency. Also, being the BHA predictively analyzed, it will be reduced the potential for vibration or stress fatigue in the drill string components, leading to a safer operation. In the recent years there has been an increased focus on vibration detection, analysis, and mitigation techniques, where new technologies, like the Drilling Dynamics Data Recorders (DDDR), may provide the capability to capture high frequency dynamics data at multiple points along the drilling system. These tools allow the achievement of drilling performance improvements not possible before, opening a whole new array of opportunities for optimization and for verification of predictions calculated by the drill string dynamics modeling software tool. The results of this study will identify how the dynamics from the drilling system, interacting with formation, directly relate to inefficiencies and to the possible solutions to mitigate drilling vibrations in order to improve drilling performance. Software vibration prediction and downhole measurements can be used for non-drilling operations like drilling out casing or reaming, where extremely high vibration levels - devastating to the cutting structure of the bit before it has even touched bottom - have

  13. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  14. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  15. Silicon micromachined vibrating gyroscopes

    Science.gov (United States)

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  16. System Detects Vibrational Instabilities

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1990-01-01

    Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.

  17. Coherent vibrational dynamics

    CERN Document Server

    Lanzani, Guglielmo; De Silvestri, Sandro

    2007-01-01

    Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.

  18. The vibration compensation system for ARGOS

    Science.gov (United States)

    Peter, D.; Gaessler, W.; Borelli, J.; Kulas, M.

    2011-09-01

    For every adaptive optics system telescope vibrations can strongly reduce the performance. This is true for the receiver part of the system i.e. the telescope and wave front sensor part as well as for the transmitter part in the case of a laser guide star system. Especially observations in deep fields observed with a laser guide star system without any tip-tilt star will be greatly spoiled by telescope vibrations. The ARGOS GLAO system actually being built for the LBT aims to implement this kind of mode where wave front correction will rely purely on signals from the laser beacons. To remove the vibrations from the uplink path a vibration compensation system will be installed. This system uses accelerometers to measure the vibrations and corrects their effect with a small fast tip-tilt mirror. The controller of the system is built based on the assumption that the vibrations take place at a few distinct frequencies. Here I present a lab set-up of this system and show first results of the performance.

  19. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang

    1998-01-01

    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  20. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration th...... theory is unchanged in comparison to the 3rd edition. Only a few errors have been corrected.......The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  1. Improved Laser Vibration Radar

    National Research Council Canada - National Science Library

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  2. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  3. A vibration sieve

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Denisenko, V.V.; Dzhalalov, M.G.; Kirichek, F.P.; Pitatel, Yu.A.; Prokopov, L.I.; Tikhonov, Yu.P.

    1982-01-01

    A vibration sieve is proposed which includes a vibration drive, a body and a screen installed on shock absorbers, a device for washing out the screen, and a subassembly for loading the material. To increase the operational reliability and effectiveness of the vibration sieve by improving the cleaning of the screen, the loading subassembly is equipped with a baffle with a lever which is hinged to it. The device for washing out the screen is made in the form of an electromagnet with a connecting rod, a switch and an eccentric, a friction ratchet mechanism and sprinkling systems. Here, the latter are interconnected, using a connecting rod, while the sprinkling system is installed on rollers under the screen. The electromagnetic switch is installed under the lever. The body is made with grooves for installing the sprinkling system. The vibration sieve is equipped with a switch which interacts with the connecting rod. The friction ratchet mechanism is equipped with a lug.

  4. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  5. 2008 Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  6. Underground large scale test facility for rocks

    International Nuclear Information System (INIS)

    Sundaram, P.N.

    1981-01-01

    This brief note discusses two advantages of locating the facility for testing rock specimens of large dimensions in an underground space. Such an environment can be made to contribute part of the enormous axial load and stiffness requirements needed to get complete stress-strain behavior. The high pressure vessel may also be located below the floor level since the lateral confinement afforded by the rock mass may help to reduce the thickness of the vessel

  7. Distribution coefficient of radionuclides on rocks for performance assessment of high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Shibutani, Tomoki; Shibata, Masahiro; Suyama, Tadahiro

    1999-11-01

    Distribution coefficients of radionuclides on rocks are selected for safety assessment in the 'Second Progress Report on Research and Development for the geological disposal of HLW in Japan (H12 Report)'. The categorized types of rock are granitic rocks (crystalline and acidic rocks), basaltic rocks (crystalline and basic rocks), psammitic rocks (neogene sedimentary (soft)), and tuffaceous-pelitic rocks (pre-neogene sedimentary rocks (hard)). The types of groundwater are FRHP (fresh reducing high-pH), FRLP (fresh reducing low-pH), SRHP (saline reducing high-pH), SRLP (saline reducing low-pH), MRNP (mixing reducing neutral-pH) and FOHP (fresh oxidizing high-pH) groundwater. The elements to be surveyed are Ni, Se, Zr, Nb, Tc, Pd, Sn, Cs, Sm, Pb, Ra, Ac, Th, Pa, U, Np, Pu, Am and Cm. Distribution coefficients are collected from literatures describing batch sorption experimental results, and are selected under consideration of conservativity. (author)

  8. Rock Cycle Roulette.

    Science.gov (United States)

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  9. Rock engineering in Finland

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Contains a large collection of short articles concerned with tunnels and underground caverns and their construction and use. The articles are grouped under the following headings: use of the subsurface space; water supply; waste water services; energy management (includes articles on power stations, district heating and oil storage and an article on coal storage); multipurpose tunnels; waste disposal; transport; shelters; sporting and recreational amenities located in rock caverns; storage facilities; industrial, laboratory, and service facilities; rock foundations; tourism and culture; utilization of rock masses; research on the disposal of nuclear waste; training and research in the field of rock engineering; site investigation techniques; design of structures in rock; construction; the environment and occupational safety; modern equipment technology; underground space in Helsinki.

  10. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    Directory of Open Access Journals (Sweden)

    Zhihua Cui

    Full Text Available The shear swirling flow vibration cementing (SSFVC technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1 the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2 the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  11. Damage Detection by Laser Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Elena Daniela Birdeanu

    2008-10-01

    Full Text Available The technique based on the vibration analysis by scanning laser Doppler vibrometer is one of the most promising, allowing to extract also small defect and to directly correlate it to local dynamic stiffness and structural integrity. In fact, the measurement capabilities of vibrometers, such as sensitivity, accuracy and reduced intrusively, allow having a very powerful instrument in diagnostic.

  12. Development of a screening procedure for vibrational fatigue in small bore piping

    International Nuclear Information System (INIS)

    Smith, J.K.; Riccardella, P.C.; Gosselin, S.R.

    1995-01-01

    Approximately 80% of the documented fatigue failures in nuclear power plants are caused by high cycle vibrational fatigue. These failures typically occur in socket welded pipe fittings in small bore piping (2 in. nominal diameter and smaller). These failures have been unexpected, and have caused costly, unscheduled outages in some cases. In order to reduce the number of vibrational fatigue failures in operating nuclear power plants, a vibrational fatigue screening procedure has been developed under Electric Power Research Institute (EPRI) sponsorship. The purpose of this paper is to describe this procedure, and to discuss topics related to vibrational fatigue failures. These topics include sources of vibration in nuclear power plants, the effect of socket welds on vibrational fatigue failures, vibrational fatigue screening criteria for small bore piping systems, and good design practices for reducing the number of vibrational fatigue failures in small bore piping

  13. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  14. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  15. Eos Chaos Rocks

    Science.gov (United States)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region. Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  16. Processing of acoustic signal in rock desintegration

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-12-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  17. Mechanical properties of rock at high temperatures

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Abe, Tohru; Wakabayashi, Naruki; Ishida, Tsuyoshi.

    1997-01-01

    The laboratory tests have been performed in order to investigate the effects of temperature up to 300degC and pressure up to 30 MPa on the mechanical properties of three types of rocks, Inada granite, Sanjoume andesite and Oya tuff. The experimental results indicated that the significant differences in temperature dependence of mechanical properties exist between the three rocks, because of the difference of the factors which determine the mechanical properties of the rocks. The effect of temperature on the mechanical properties for the rocks is lower than that of pressure and water content. Temperature dependence of the mechanical properties is reduced by increase in pressure in the range of pressure and temperature investigated in this paper. (author)

  18. Force Limited Vibration Test of HESSI Imager

    Science.gov (United States)

    Amato, Deborah; Pankow, David; Thomsen, Knud

    2000-01-01

    The High Energy Solar Spectroscopic Imager (HESSI) is a solar x-ray and gamma-ray observatory scheduled for launch in November 2000. Vibration testing of the HESSI imager flight unit was performed in August 1999. The HESSI imager consists of a composite metering tube, two aluminum trays mounted to the tube on titanium flexure mounts, and nine modulation grids mounted on each tray. The vibration tests were acceleration controlled and force limited, in order to prevent overtesting. The force limited strategy reduced the shaker force and notched the acceleration at resonances. The test set-up, test levels, and results are presented. The development of the force limits is also discussed. The imager successfully survived the vibration testing.

  19. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    Science.gov (United States)

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  20. Vibrations in orthopedics.

    Science.gov (United States)

    Nokes, L D; Thorne, G C

    1988-01-01

    Measurements of various mechanical properties of skeletal material using vibration techniques have been reported. The purposes of such investigations include the monitoring of pathogenic disorders such as osteoporosis, the rate and extent of fracture healing, and the status of internal fixations. Early investigations pioneered the application of conventional vibration measurement equipment to biological systems. The more recent advent of the microcomputer has made available to research groups more sophisticated techniques for data acquisition and analysis. The economical advantages of such equipment has led to the development of portable research instrumentation which lends itself to use in a clinical environment. This review article reports on the developments and progression of the various vibrational techniques and theories as applied to musculoskeletal systems.

  1. Vibration behavior of the artificial barrier system

    International Nuclear Information System (INIS)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Nakamura, Izuru

    2000-01-01

    This study aims at production of a mimic specimen of artificial barrier, experimental elucidation of influence of seismic motion due to a vibration experiment on the artificial barrier system, and establishment of an evaluating method on its long-term behavior. The study has been carried out under a cooperative study of the National Research Institute for Earth Science and Disaster Prevention and the Japan Nuclear Cycle Development Institute. In 1998 fiscal year, an artificial barrier specimen initiated by crosscut road was produced, and their random wave and actual seismic wave vibrations were carried out to acquire their fundamental data. As a result of the both vibrations, it was found that in a Case 2 specimen of which buffer material was swelled by poured water, the material was integrated with a mimic over-pack to vibrate under judgement of eigen-frequency, maximum acceleration ratio, and so forth on the test results. And, in a Case 1 specimen, it was thought that the mimic over-pack showed an extreme non-linear performance (soft spring) because of reducing eigen-frequency with increase of its vibration level. (G.K.)

  2. Effects of Vibration Therapy in Pediatric Immunizations.

    Science.gov (United States)

    Benjamin, Arika L; Hendrix, Thomas J; Woody, Jacque L

    2016-01-01

    A randomized clinical trial of 100 children (52 boys, 48 girls) ages 2 months to 7 years was conducted to evaluate the effect of vibration therapy without cold analgesia on pain. A convenience sample was recruited at two sites: a publicly funded, free immunization clinic and a private group pediatric practice. Participants were randomly assigned to receive vibration therapy via a specialized vibrating device or standard care. All children regardless of intervention group were allowed to be distracted and soothed by the parent. Pain was evaluated using the FLACC score, which two nurses assessed at three points in time: prior to, during, and after the injection(s). Data were analyzed using a two-independent samples-paired t-test. Results show that vibration therapy had no effect on pain scores in the younger age groups studied (2 months ≤ 1 year, > 1 year ≤ 4 years). In the oldest age group (> 4 to 7 years of age), a heightened pain reading was found in the period from preinjection to post-injection periods (p = 0.045). These results indicate that the addition of vibration therapy (without cold analgesia) to standard soothing techniques is no more effective in reducing immunization pain than standard soothing techniques alone, and thus, is not indicated for use with immunization pain. Recommendations include further evaluation of interventions.

  3. Vibration behavior of the artificial barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Nakamura, Izuru [National Research Inst. for Earth sceince and Disaster Prevention (Japan)

    2000-02-01

    This study aims at production of a mimic specimen of artificial barrier, experimental elucidation of influence of seismic motion due to a vibration experiment on the artificial barrier system, and establishment of an evaluating method on its long-term behavior. The study has been carried out under a cooperative study of the National Research Institute for Earth Science and Disaster Prevention and the Japan Nuclear Cycle Development Institute. In 1998 fiscal year, an artificial barrier specimen initiated by crosscut road was produced, and their random wave and actual seismic wave vibrations were carried out to acquire their fundamental data. As a result of the both vibrations, it was found that in a Case 2 specimen of which buffer material was swelled by poured water, the material was integrated with a mimic over-pack to vibrate under judgement of eigen-frequency, maximum acceleration ratio, and so forth on the test results. And, in a Case 1 specimen, it was thought that the mimic over-pack showed an extreme non-linear performance (soft spring) because of reducing eigen-frequency with increase of its vibration level. (G.K.)

  4. Analytic vibration-rotational matrix elements for diatomic molecules

    International Nuclear Information System (INIS)

    Bouanich, J.P.

    1987-01-01

    The vibration-rotational matrix elements for infrared or Raman transitions vJ → v'J' of diatomic molecules are calculated for powers of the reduced displacement X from parameters of the Dunham potential-energy function. (orig.)

  5. Hydraulic elements in reduction of vibrations in mechanical systems

    Science.gov (United States)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  6. Development of adaptive helicopter seat systems for aircrew vibration mitigation

    Science.gov (United States)

    Chen, Yong; Wickramasinghe, Viresh; Zimcik, David G.

    2008-03-01

    Helicopter aircrews are exposed to high levels of whole body vibration during flight. This paper presents the results of an investigation of adaptive seat mount approaches to reduce helicopter aircrew whole body vibration levels. A flight test was conducted on a four-blade helicopter and showed that the currently used passive seat systems were not able to provide satisfactory protection to the helicopter aircrew in both front-back and vertical directions. Long-term exposure to the measured whole body vibration environment may cause occupational health issues such as spine and neck strain injuries for aircrew. In order to address this issue, a novel adaptive seat mount concept was developed to mitigate the vibration levels transmitted to the aircrew body. For proof-of-concept demonstration, a miniature modal shaker was properly aligned between the cabin floor and the seat frame to provide adaptive actuation authority. Adaptive control laws were developed to reduce the vibration transmitted to the aircrew body, especially the helmet location in order to minimize neck and spine injuries. Closed-loop control test have been conducted on a full-scale helicopter seat with a mannequin configuration and a large mechanical shaker was used to provide representative helicopter vibration profiles to the seat frame. Significant vibration reductions to the vertical and front-back vibration modes have been achieved simultaneously, which verified the technical readiness of the adaptive mount approach for full-scale flight test on the vehicle.

  7. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  8. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  9. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration th...... theory is basically unchanged in comparison to the 1st edition. Only section 4.2 on single input - single output systems and chapter 6 on offshore structures have been modified in order to enhance the clearness....

  10. Rock properties data base

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1991-03-01

    As mining companies proceed deeper and into areas whose stability is threatened by high and complex stress fields, the science of rock mechanics becomes invaluable in designing underground mine strata control programs. CANMET's Mining Research Laboratories division has compiled a summary of pre- and post-failure mechanical properties of rock types which were tested to provide design data. The 'Rock Properties Data Base' presents the results of these tests, and includes many rock types typical of Canadian mine environments. The data base also contains 'm' and 's' values determined using Hoek and Brown's failure criteria for both pre- and post-failure conditions. 7 refs., 3 tabs., 9 figs., 1 append.

  11. Eclogite facies rocks

    National Research Council Canada - National Science Library

    Carswell, D. A

    1990-01-01

    ... of eclogite evolution and genesis. The authors present a thorough treatment of the stability relations and geochemistry of these rocks, their intimate association with continental plate collision zones and suture zones...

  12. Rock kinoekraanil / Katrin Rajasaare

    Index Scriptorium Estoniae

    Rajasaare, Katrin

    2008-01-01

    7.-11. juulini kinos Sõprus toimuval filminädalal "Rock On Screen" ekraanile jõudvatest rockmuusikuid portreteerivatest filmidest "Lou Reed's Berlin", "The Future Is Unwritten: Joe Strummer", "Control: Joy Division", "Hurriganes", "Shlaager"

  13. Eclogite facies rocks

    National Research Council Canada - National Science Library

    Carswell, D. A

    1990-01-01

    .... This is the first volume to provide a coherent and comprehensive review of the conditions necessary for the formation of eclogites and eclogite facies rocks and assemblages, and a detailed account...

  14. Solid as a rock

    International Nuclear Information System (INIS)

    Pincus, H.J.

    1984-01-01

    Recent technologic developments have required a more comprehensive approach to the behavior of rock mass or rock substance plus discontinuities than was adequate previously. This work considers the inherent problems in such operations as the storage of hot or cold fluids in caverns and aquifers, underground storage of nuclear waste, underground recovery of heat from hydrocarbon fuels, tertiary recovery of oil by thermal methods, rapid excavation of large openings at shallow to great depths and in hostile environments, and retrofitting of large structures built on or in rock. The standardization of methods for determining rock properties is essential to all of the activities described, for use not only in design and construction but also in site selection and post-construction monitoring. Development of such standards is seen as a multidisciplinary effort

  15. Rock Equity Holdings, LLC

    Science.gov (United States)

    The EPA is providing notice of an Administrative Penalty Assessment in the form of an Expedited Storm Water Settlement Agreement against Rock Equity Holdings, LLC, for alleged violations at The Cove at Kettlestone/98th Street Reconstruction located at 3015

  16. Pop & rock / Berk Vaher

    Index Scriptorium Estoniae

    Vaher, Berk, 1975-

    2001-01-01

    Uute heliplaatide Redman "Malpractice", Brian Eno & Peter Schwalm "Popstars", Clawfinger "A Whole Lot of Nothing", Dario G "In Full Color", MLTR e. Michael Learns To Rock "Blue Night" lühitutvustused

  17. Basic rocks in Finland

    International Nuclear Information System (INIS)

    Piirainen, T.; Gehoer, S.; Iljina, M.; Kaerki, A.; Paakkola, J.; Vuollo, J.

    1992-10-01

    Basic igneous rocks, containing less than 52% SiO 2 , constitute an important part of the Finnish Archaean and Proterozoic crust. In the Archaean crust exist two units which contain the majority of the basic rocks. The Arcaean basic rocks are metavolcanics and situated in the Greenstone Belts of Eastern Finland. They are divided into two units. The greenstones of the lower one are tholeiites, komatiites and basaltic komatiites. The upper consists of bimodal series of volcanics and the basic rocks of which are Fe-tholeiites, basaltic komatiites and komatiites. Proterozoic basic rocks are divided into seven groups according to their ages. The Proterozoic igneous activity started by the volominous basic magmatism 2.44 Ga ago. During this stage formed the layered intrusions and related dykes in the Northern Finland. 2.2 Ga old basic rocks are situated at the margins of Karelian formations. 2.1 Ga aged Fe-tholeiitic magmatic activity is widespread in Eastern and Northern Finland. The basic rocks of 1.97 Ga age group are met within the Karelian Schist Belts as obducted ophiolite complexes but they occur also as tholeiitic diabase dykes cutting the Karelian schists and Archean basement. The intrusions and the volcanics of the 1.9 Ga old basic igneous activity are mostly encountered around the Granitoid Complex of Central Finland. Subjotnian, 1.6 Ga aged tholeiitic diabases are situated around the Rapakivi massifs of Southern Finland, and postjotnian, 1.2 Ga diabases in Western Finland where they form dykes cutting Svecofennian rocks

  18. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  19. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  20. Vibration in car repair work.

    Science.gov (United States)

    Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E

    1987-03-01

    The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.

  1. Relative scale and the strength and deformability of rock masses

    Science.gov (United States)

    Schultz, Richard A.

    1996-09-01

    The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.

  2. A numerical analytic method for electromagnetic radiation accompanying with fracture of rocks

    International Nuclear Information System (INIS)

    Zhen, Chen; Ka-Ma, Huang

    2010-01-01

    This paper studies Rabinovitch's compression experiments on granite and chalk and proposes an oscillating dipole model to analyse and simulate the electromagnetic radiation phenomenon caused by fracture of rocks. Our model assumes that the electromagnetic radiation pulses are initiated by vibrations of the charged rock grains on the tips of the crack. The vibrations of the rock grains are stimulated by the pulses of the cracks. Our simulations show comparable results with Rabinovitch's compression experiments. From the simulation results, it verifies an assumption that the crack width is inversely proportional to the circular frequency electromagnetic radiation, which is presented by Rabinovitch et al. The simulation results also imply that, by using our oscillating dipole model together with Rabinovitch's two equations about the crack length and crack width, we can quantitatively analyse and simulate the electromagnetic radiation phenomenon, which is induced from the fracture of the rocks. (fluids, plasmas and electric discharges)

  3. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    at the University of Southern Denmark, it reports on fundamental formulas and makes uses of graphical representation to promote understanding. Thanks to the emphasis put on analytical methods and numerical results, the book is meant to make students and engineers familiar with all fundamental equations...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  4. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  5. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathe- matics and physics. ... ing this science [mechanics],and the art of solving the problems pertaining to it, to .... used tools for finding maxima and minima of functions of several variables.

  6. Heat exchanger vibration

    International Nuclear Information System (INIS)

    Richards, D.J.W.

    1977-01-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration

  7. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  8. Heat exchanger vibration

    Energy Technology Data Exchange (ETDEWEB)

    Richards, D J.W. [CERL, CEGB, Leatherhead, Surrey (United Kingdom)

    1977-12-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration.

  9. General principles of vibrational spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Atoms in molecules and solids do not remain in fixed relative positions, but vibrate about some mean position. This vibrational motion is quantized and at room temperature, most of the molecules in a given sample are in their lowest vibrational state. Absorption of electromagnetic radiation with

  10. High-Temperature Vibration Damper

    Science.gov (United States)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  11. Finite Element Analysis and Experimental Study on Elbow Vibration Transmission Characteristics

    Science.gov (United States)

    Qing-shan, Dai; Zhen-hai, Zhang; Shi-jian, Zhu

    2017-11-01

    Pipeline system vibration is one of the significant factors leading to the vibration and noise of vessel. Elbow is widely used in the pipeline system. However, the researches about vibration of elbow are little, and there is no systematic study. In this research, we firstly analysed the relationship between elbow vibration transmission characteristics and bending radius by ABAQUS finite element simulation. Then, we conducted the further vibration test to observe the vibration transmission characteristics of different elbows which have the same diameter and different bending radius under different flow velocity. The results of simulation calculation and experiment both showed that the vibration acceleration levels of the pipeline system decreased with the increase of bending radius of the elbow, which was beneficial to reduce the transmission of vibration in the pipeline system. The results could be used as reference for further studies and designs for the low noise installation of pipeline system.

  12. Method of degassifying a massive of rock

    Energy Technology Data Exchange (ETDEWEB)

    Levin, M M; Krivosheev, V O; Preobrazhenskaia, E I; Talapkerov, A Sh; Taushkin, G T

    1979-05-30

    This invention concerns the mining industry, chiefly the coal industry, and can be used for the degasification of coal layers and interfering rock. The method of preliminary extraction of gas with underground development of burning minerals, including the pumping of gas through a collector, carried in the plane of the degasifying layer, discharged from rock pressure by means of extracting the lower lying layer, is known. However, the given method does not make it possible to degasify the interfering rock. Another method, consisting of the fact that from the mining development in the lateral rock, chambers are made, from which a group of wells are bored, and the latter are united with the gas removing system, is well known. This method has the inadequacy that the well of each chamber is connected to the gas removing system of the pipelines, and this leads to an increase in the price of the method. A new system is presented for the degasification of the massive of rock which is presented in an illustration...... The advantage of the suggested method consists of the fact that material outlays are reduced for the unification of each chamber with the gas removing pipeline, and besides this, the wells, connecting the chambers are drains for the surrounding rock, which increases the effectiveness of the degasification.

  13. Understanding of bridge cable vibrations and the associate flow-field through the full-scale monitoring of vibrations and Wind

    DEFF Research Database (Denmark)

    Acampora, Antonio

    This dissertation investigates the conditions that promote rain-wind-induced vibrations of inclined cable on cable-stayed bridges. Rain-wind-induced vibrations are known as the most common type of cable vibrations and capable of severe vibrations. The recent increase in the number of cable stayed...... bridges continuously becoming longer and lighter have resulted in a high number of observations of cable vibrations. A theoretical background for the tool used in this work is presented in terms of cables vibrations mechanisms, aerodynamic damping and system identification techniques. A detailed...... literature review of reported observations of rain-wind-induced cable vibrations of fullscale bridges is shown. The database of observed events on bridges collects information about the conditions that likely develop the phenomenon, together with the means used to suppress or reduce the occurrence of cable...

  14. Parametric analysis of protective grid flow induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jooyoung; Eom, Kyongbo; Jeon, Sangyoun; Suh, Jungmin [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    Protective grid (P-grid) flow-induced vibration in a nuclear power reactor is one of the critical factors for the mechanical integrity of a nuclear fuel. The P-grid is located at the lower most position above the bottom nozzle of the nuclear fuel as shown in Fig. 1, and it is required for not only filtering debris, but also supporting fuel rods. On the other hand, P-grid working conditions installed in a nuclear fuel in a reactor are severe in terms of flow speed, temperature and pressure. Considering such a severe condition of P-grid's functional performance in working environment, excessive vibration could be developed. Furthermore, if the P-grid is exposed to high levels of excessive vibration over a long period of time, fatigue failure could be unavoidable. Therefore, it is important to reduce excessive vibration while maintaining P-grid's own functional performance. KEPCO Nuclear Fuel has developed a test facility - Investigation Flow-induced Vibration (INFINIT) - to study flow-induced vibration caused by flowing coolant at various flow rates. To investigate specific relationships between configuration of P-grid and flow-induced vibration characteristics, several types of the P-grids were tested in INFINIT facility. And, based on the test results through parametric studies, the flow-induced vibration characteristics could be analyzed, and critical design parameters were found.

  15. Investigation of Concrete Floor Vibration Using Heel-Drop Test

    Science.gov (United States)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Azhar, A. F.; Fauzi, A. A.; Ismail, H. A.; Syed Idrus, S. S.; Mokhjar, S. S.; Hamid, F. F. Abd

    2018-04-01

    In recent years, there is an increased in floor vibration problems of structures like residential and commercial building. Vibration is defined as a serviceability issue related to the comfort of the occupant or damage equipment. Human activities are the main source of vibration in the building and it could affect the human comfort and annoyance of residents in the building when the vibration exceed the recommend level. A new building, Madrasah Tahfiz located at Yong Peng have vibration problem when load subjected on the first floor of the building. However, the limitation of vibration occurs on building is unknown. Therefore, testing is needed to determine the vibration behaviour (frequency, damping ratio and mode shape) of the building. Heel-drop with pace 2Hz was used in field measurement to obtain the vibration response. Since, the heel-drop test results would vary in light of person performance, test are carried out three time to reduce uncertainty. Natural frequency from Frequency Response Function analysis (FRF) is 17.4Hz, 16.8, 17.4Hz respectively for each test.

  16. Flow-induced vibration of helical coil compression springs

    International Nuclear Information System (INIS)

    Stokes, F.E.; King, R.A.

    1983-01-01

    Helical coil compression springs are used in some nuclear fuel assembly designs to maintain holddown and to accommodate thermal expansion. In the reactor environment, the springs are exposed to flowing water, elevated temperatures and pressures, and irradiation. Flow parallel to the longitudinal axis of the spring may excite the spring coils and cause vibration. The purpose of this investigation was to determine the flow-induced vibration (FIV) response characteristics of the helical coil compression springs. Experimental tests indicate that a helical coil spring responds like a single circular cylinder in cross-flow. Two FIV excitation mechanisms control spring vibration. Namely: 1) Turbulent Buffeting causes small amplitude vibration which increases as a function of velocity squared. 2) Vortex Shedding causes large amplitude vibration when the spring natural frequency and Strouhal frequency coincide. Several methods can be used to reduce or to prevent vortex shedding large amplitude vibrations. One method is compressing the spring to a coil pitch-to-diameter ratio of 2 thereby suppressing the vibration amplitude. Another involves modifying the spring geometry to alter its stiffness and frequency characteristics. These changes result in separation of the natural and Strouhal frequencies. With an understanding of how springs respond in the flowing water environment, the spring physical parameters can be designed to avoid large amplitude vibration. (orig.)

  17. Development of an innovative device for ultrasonic elliptical vibration cutting.

    Science.gov (United States)

    Zhou, Ming; Hu, Linhua

    2015-07-01

    An innovative ultrasonic elliptical vibration cutting (UEVC) device with 1st resonant mode of longitudinal vibration and 3rd resonant mode of bending vibration was proposed in this paper, which can deliver higher output power compared to previous UEVC devices. Using finite element method (FEM), resonance frequencies of the longitudinal and bending vibrations were tuned to be as close as possible in order to excite these two vibrations using two-phase driving voltages at a single frequency, while wave nodes of the longitudinal and bending vibrations were also adjusted to be as coincident as possible for mounting the device at a single fixed point. Based on the simulation analysis results a prototype device was fabricated, then its vibration characteristics were evaluated by an impedance analyzer and a laser displacement sensor. With two-phase sinusoidal driving voltages both of 480 V(p-p) at an ultrasonic frequency of 20.1 kHz, the developed prototype device achieved an elliptical vibration with a longitudinal amplitude of 8.9 μm and a bending amplitude of 11.3 μm. The performance of the developed UEVC device is assessed by the cutting tests of hardened steel using single crystal diamond tools. Experimental results indicate that compared to ordinary cutting process, the tool wear is reduced significantly by using the proposed device. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  19. Resonant Column Tests and Nonlinear Elasticity in Simulated Rocks

    Science.gov (United States)

    Sebastian, Resmi; Sitharam, T. G.

    2018-01-01

    Rocks are generally regarded as linearly elastic even though the manifestations of nonlinearity are prominent. The variations of elastic constants with varying strain levels and stress conditions, disagreement between static and dynamic moduli, etc., are some of the examples of nonlinear elasticity in rocks. The grain-to-grain contact, presence of pores and joints along with other compliant features induce the nonlinear behavior in rocks. The nonlinear elastic behavior of rocks is demonstrated through resonant column tests and numerical simulations in this paper. Resonant column tests on intact and jointed gypsum samples across varying strain levels have been performed in laboratory and using numerical simulations. The paper shows the application of resonant column apparatus to obtain the wave velocities of stiff samples at various strain levels under long wavelength condition, after performing checks and incorporating corrections to the obtained resonant frequencies. The numerical simulation and validation of the resonant column tests using distinct element method are presented. The stiffness reductions of testing samples under torsional and flexural vibrations with increasing strain levels have been analyzed. The nonlinear elastic behavior of rocks is reflected in the results, which is enhanced by the presence of joints. The significance of joint orientation and influence of joint spacing during wave propagation have also been assessed and presented using the numerical simulations. It has been found that rock joints also exhibit nonlinear behavior within the elastic limit.

  20. [Vibration-assisted music therapy reduces pain and promotes relaxation of para- and tetraplegic patients. A pilot study of psychiatric and physical effects of simultaneous acoustic and somatosensory music stimulation as pain management].

    Science.gov (United States)

    Mariauzouls, C; Michel, D; Schiftan, Y

    1999-11-01

    Pain is a well known phenomenon in posttraumatic spinal cord injuries. Nearly 10% of the patients develop most severe, invalidizing, as a rule neurogenic pain conditions that are hardly accessible to conventional therapies. A pilot study was therefore conducted with 10 paraplegics and tetraplegics suffering chronic pain, investigating how vibration supported music therapy with the Musica Medica method affected pain experience, tension/relaxation and well-being. In addition to subjective experience, we measured physiological parameters (finger tip skin temperature, electrodermal activity, heart rate, respiration frequency) during the therapy sessions. All patients had a high acceptance of the method which throughout the group had brought about an increase in relaxation and well-being as well as a decrease of pain experience. The autonomic nervous system variables correlated with relaxation and in addition pointed to an activating impact of the therapy chosen.

  1. I. Some results from a field investigation of thermo-mechanical loading of a rock mass when heaters are emplaced in the rock

    International Nuclear Information System (INIS)

    Hood, M.

    1979-01-01

    Results are presented of a field experiment to monitor the response of a rock mass to thermomechanical loading from electrically heated canisters emplaced in the rock at a depth of 340 m. Measurements made to date of temperature, displacement, and stress fields indicate that heat is transferred through the rock mainly by conduction; discontinuities within the rock mass have a minimal effect on the heat flow. Displacements within the rock from thermal expansion are shown to be much less than those predicted by linear thermoelastic theory. A plausible, though not complete, reason for these reduced displacements is the absorption of the initial rock expansions into discontinuities within the rock mass. Difficulties have been experienced in obtaining reliable stress measurement data using borehole deformation gauges to monitor changes in rock stress. Some data have been obtained and are being analyzed. Rock decrepitation in the heater boreholes is discussed

  2. Transporting radioactive rock

    International Nuclear Information System (INIS)

    Pearce, G.

    1990-01-01

    The case is made for exempting geological specimens from the IAEA Regulations for Safer Transport of Radioactive Materials. It is pointed out that many mineral collectors in Devon and Cornwall may be unwittingly infringing these regulations by taking naturally radioactive rocks and specimens containing uranium ores. Even if these collectors are aware that these rocks are radioactive, and many are not, few have the necessary equipment to monitor the activity levels. If the transport regulations were to be enforced alarm could be generated and the regulations devalued in case of an accident. The danger from a spill of rock specimens is negligible compared with an accident involving industrial or medical radioactive substances yet would require similar special treatment. (UK)

  3. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    of modes. The designed control scheme is applied to a coupled rotor-blade system and dynamic responses are numerically evaluated. Such responses show that the vibrations are efficiently reduced. Frequency response diagrams demonstrate that both basis and parametric vibration modes are significantly...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...

  4. Common Vocal Effects and Partial Glottal Vibration in Professional Nonclassical Singers.

    Science.gov (United States)

    Caffier, Philipp P; Ibrahim Nasr, Ahmed; Ropero Rendon, Maria Del Mar; Wienhausen, Sascha; Forbes, Eleanor; Seidner, Wolfram; Nawka, Tadeus

    2018-05-01

    To multidimensionally investigate common vocal effects in experienced professional nonclassical singers, to examine their mechanism of production and reproducibility, to demonstrate the existence of partial glottal vibration, and to assess the potential of damage to the voice from nonclassical singing. Individual cohort study. Ten male singers aged between 25 and 46 years (34 ± 7 years [mean ± SD]) with different stylistic backgrounds were recruited (five pop/rock/metal, five musical theater). Participants repeatedly presented the usual nonclassical vocal effects and techniques in their repertoire. All performances were documented and analyzed using established instruments (eg, auditory-perceptual assessment, videolaryngostroboscopy, electroglottography, voice function diagnostics). The vocal apparatus of all singers was healthy and capable of high performance. Typical nonclassical vocal effects were breathy voice, creaky voice, vocal fry, grunting, distortion, rattle, belt, and twang. All effects could be easily differentiated from each other. They were intraindividually consistently repeatable and also interindividually produced in a similar manner. A special feature in one singer was the first evidence of partial glottal vibration when belting in the high register. The unintended transition to this reduced voice quality was accompanied by physical fatigue and inflexible respiratory support. The long-lasting use of the investigated nonclassical vocal effects had no negative impact on trained singers. The possibility of long-term damage depends on the individual constitution, specific use, duration, and extent of the hyperfunction. The incidence of partial glottal vibration and its consequences require continuing research to learn more about efficient and healthy vocal function in nonclassical singing. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Hard rock drilling: from conventional technologies to the potential use of laser; Perfuracao em rochas duras: das tecnologias convencionais ate o potencial uso do laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, Renato; Lomba, Rosana Fatima Teixieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Perez, Maria Angelica Acosta; Valente, Luiz Carlos Guedes; Braga, Arthur Martins Barbosa [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2012-07-01

    One of the biggest challenges in the drilling of the carbonate rocks of the Pre-salt is to overcome the low penetration rates that have been obtained in the drilling of the reservoir rock in the vertical and directional wells. To overcome this challenge, a great effort is being developed in several lines of research, both in developing new concepts in drill bits and in the selection of a drilling system that together with appropriate type of bit provide an expected improvement in performance. To achieve these results, procedures are being prioritized and drilling systems with lower vibration levels are being used, since this phenomenon of vibration reduces the performance of penetration rate also affecting the lifetime of the equipment and consequently causes a reduction in reliability of all system and raises the cost per meter of drilling. Thus, new drill bit technology and new drilling systems are under development and, among these technologies we can distinguish those that promote improvements in conventional technologies and innovative technologies frankly which uses new mechanisms to cut or weaken the rock. This paper presents an overview of the conventional technology of drilling systems and drill bits, and provides information about the researches that have been developed with the use of innovative technologies which is presented as highly promising, among these innovative technologies, laser drilling and the drilling itself assisted by laser. In this process the laser beam has the main function to weaken the rock improving the rate of penetration. This paper presents a summary of studies and analyzes which are underway to investigate the potential of laser technology, also presents some results of laboratory tests already carried out. The drilling fluid in which the laser will have to pass through in the future applications is analyzed on the approach of their physicochemical properties. Thus, a better understanding of the interaction with the drilling

  6. Water-rock interaction in a high-FeO olivine rock in nature

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Lindberg, A.; Tullborg, E.L.

    1992-12-01

    The long-term behaviour in nature of high-FeO olivine rock in contact with surface water has been studied at the Lovasjaervi instrusion, SE-Finland. The rock has been proposed as a high-capasity, higly reactive redox-buffer backfill in a repository for spent fuel. Favourable groundwater chemistry is a major parameter relevant to safety of such a repository. Reducing conditions favour the retardation of long-lived, redox-sensitive radionuclides. Weathering influences have been studied at the natural outcrop of the rock mass. The interaction of oxidizing surface waters with rock at greater depths has been studied by using fissure filling minerals. Investigation of weathered rock from the outcrop indicates that the olivine rock is highly reactive on a geological time scale and its redox capasity is available although the instrusion as a whole is surprisingly well preserved. The fissure fillings studied allow the conclusion that oxygen seems to be efficiently removed from intruding surface water. Oxidation seem to have caused visible effects only along very conducting fractures and near the contact zones of the surrounding granitic rock. Stable isotope data of fissure filling calcites indicate that the influence of surface waters can be traced clearly down to a depth of about 50 m, but also at greater depths re-equilibration has occurred. Groundwater data from the site were not available. (orig.)

  7. Bioremediation in Fractured Rock: 2. Mobilization of Chloroethene Compounds from the Rock Matrix.

    Science.gov (United States)

    Shapiro, Allen M; Tiedeman, Claire R; Imbrigiotta, Thomas E; Goode, Daniel J; Hsieh, Paul A; Lacombe, Pierre J; DeFlaun, Mary F; Drew, Scott R; Curtis, Gary P

    2018-03-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards. © 2017, National Ground Water Association.

  8. Bioremediation in fractured rock: 2. Mobilization of chloroethene compounds from the rock matrix

    Science.gov (United States)

    Shapiro, Allen M.; Tiedeman, Claire; Imbrigiotta, Thomas; Goode, Daniel J.; Hsieh, Paul A.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Curtis, Gary P.

    2018-01-01

    A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards.

  9. Geotechnical properties of rock

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1995-12-31

    The manual is a compilation of the geotechnical properties of many types of rock that are typical of Canadian mining environments. Included are values for density, porosity, compressive and shear wave velocity, uniaxial compressive strength, Young`s modulus, and Poisson`s ratio. The data base contains material constants that were determined using the Hoek and Brown failure criteria for both before and after failure conditions. 76 data sheets of rock properties in Canadian mines are included. 7 refs., 85 figs., 3 tabs.

  10. Rock engineering applications, 1991

    International Nuclear Information System (INIS)

    Franklin, J.A.; Dusseault, M.B.

    1991-01-01

    This book demonstrates how to apply the theories and principles of rock engineering to actual engineering and construction tasks. It features insights on geology for mining and tunnelling applications. It is practical resource that focuses on the latest technological innovation and examines up-to-date procedures used by engineers for coping with complex rock conditions. The authors also discuss question related to underground space, from design approaches to underground housing and storage. And they cover the monitoring of storage caverns for liquid and gaseous products or toxic and radioactive wastes

  11. Smart Rocking Armour Units

    OpenAIRE

    Hofland, B.; Arefin, Syed Shamsil; van der Lem, Cock; van gent, Marcel

    2018-01-01

    This paper describes a method to measure the rocking motion of lab-scale armour units. Sensors as found in mobile phones are used. These sensors, data-storage and battery are all embedded in the model units, such that they can be applied without wires attached to them. The technique is applied to double-layer units in order to compare the results to the existing knowledge for this type of armour layers. In contrast to previous research, the gyroscope reading is used to determine the (rocking)...

  12. Rock Hellsinki, Marketing Research

    OpenAIRE

    Todd, Roosa; Jalkanen, Katariina

    2013-01-01

    This paper is a qualitative research about rock and heavy metal music tourism in the capital city of Finland, Helsinki. As Helsinki can be considered the city of contrasts, the silent nature city mixed with urban activities, it is important to also use the potential of the loud rock and heavy metal music contrasting the silence. Finland is known abroad for bands such as HIM, Nightwish, Korpiklaani and Children of Bodom so it would make sense to utilize these in the tourism sector as well. The...

  13. Substantiation of vibration strength of nuclear reactor and steam generator internals. Main problems

    International Nuclear Information System (INIS)

    Fyodorov, V.G.; Sinyavasky, V.F.

    1977-01-01

    The report details the scope and priority of studies necessary for substantiation of vibration strength of steam generator tube bundles and reactor fuel assemblies, and design modifications helping to reduce flow-induced vibration of the internals specified. Steam generator tube bundles are studied on the basis of a standard establishing vibration requirements at various stages of design, manufacture and operation of a steam generator at a nuclear power station. The main vibration characteristics of tubes obtained through model and full-scale tests are compared with calculation results. Results are provided concerning test-stand vibration tests of fuel elements and fuel assemblies. (author)

  14. Vibration of fuel bundles

    International Nuclear Information System (INIS)

    Chen, S.S.

    1975-06-01

    Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods

  15. Vibrations in the urban environment controlling 222Rn migration in soils

    International Nuclear Information System (INIS)

    Wiegand, J.

    1998-01-01

    Comparable to investigations looking for a connection of 222 Rn and earthquakes, this study shows the influence of subsurface vibrations on the 222 Rn concentration of the soil-gas in urban environments. Generally, the 222 Rn concentration increases through vibrations induced by trains, street-traffic and activities at project sites. The spatial radius of the 222 Rn increase due to vibrations reach highest values at project sites where piled foundations or metal panels are rammed into the ground (> 60 m). Along railway tracks the radius is wider (> 30 m) than along heavy traffic roads ( 222 Rn concentrations in soil-gas due to vibrations is the highest at project sites (53%). Along heavy traffic roads the increase of 222 Rn concentrations by motor vehicle traffic is higher (37%) than that by railway traffic (11.5%). The maximum increase of 400% was observed in a distance of 1 m from a railway track. In the vicinity of railway tracks a difference of the vibration influence according to unconsolidated rock (11.1%) or solid rock (11.8%) was not noticed. Beside this vibration effect, the overall 222 Rn level decreases with increasing distance to the vibration source, but only at locations laying above solid rocks. The observation of the increase of 222 Rn concentrations can be explained by a 'pump effect': the mechanical vibration of soil and mineral particles leads to an upward motion of the whole volume of soil-gas. Therefore, 222 Rn is pumped out of the soil to the atmosphere and as a result the upward transport is increased. (author)

  16. Sampled control of vibration in suspended cask by using vibration manipulation functions

    International Nuclear Information System (INIS)

    Kotake, Shigeo

    2014-01-01

    Safe and reliable operation is most important for decommissioning the Fukushima 1 nuclear power plant. Especially it requires for transferring spent nuclear fuels from fuel pool to storage cask. Since the heavy cask will be suspended during the transferring operation, there is a risk of dropping it in case of the strike of large earthquakes. In this study, we introduce analytical functions to suppress residual vibration of a suspended cask by using vibration manipulation function. Hence the oscillation of the cask can be feedforward or sampled-data controlled by moving a trolley with analog actuator, the possible risk could be reduced. (author)

  17. Topology optimization of free vibrations of fiber laser packages

    DEFF Research Database (Denmark)

    Hansen, Lars Voxen

    2005-01-01

    The optimization problems described in the present paper are inspired by the problem of fiber laser package design for vibrating environments. The optical frequency of tuned fiber lasers glued to stiff packages is sensitive to acoustic or other mechanical vibrations. The paper presents a method...... for reducing this sensitivity by limiting the glue point movement on the package while using only a limited knowledge of vibrating external forces. By use of topology optimization a density distribution for the package is obtained, where the critical eigenmode of the package only effects a small elongation...

  18. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  19. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  20. Technology of Rock Destruction by Combined Explosion-Mechanical Load

    Directory of Open Access Journals (Sweden)

    Oleg M. Terentiev

    2017-10-01

    Full Text Available Background. Rock drilling is characterized by an energy capacity of more than 120 kWh/m3. This is due to the fact that about 90 % of the energy is expended on the “preparation” of rocks for destruction. This study proposes to combine explosive and mechanical loads to reduce specific energy consumption of rock destruction. Objective. The aim of the paper is energy effective technology development for rock destruction by combined explosive-mechanical loads. Methods. Analytical studies; regression analysis; math modeling; experimental research; technical and economic analysis. Results. Specific energy decreasing for explosive-mechanical rock drilling by 4–16 % was experimentally proved. Conclusions. As a result of the implementation of explosive-mechanical rock drilling on the created full-sized experimental device, the efficiency coefficient increased from 77 to 80 %.

  1. Experimental Study on the Vibration Control Effect of Long Elastic Sleeper Track in Subways

    Directory of Open Access Journals (Sweden)

    Xiaopei Cai

    2018-01-01

    Full Text Available The vibration effect of urban rail transit has gained attention from both academia and the industry sector. Long Elastic Sleeper Track (LEST is a new structure for vibration reduction which has recently been designed and applied to Chinese subways. However, little research has been devoted to its vibration reduction effect. In this study, field tests were conducted during peak transit hours on Beijing Subway Line 15 to examine the vibration reduction effects of the common ballastless track and LEST on both straight and curved sections. The results demonstrate that although LEST increases the wheel-rail vertical forces, rail vertical displacements, and rail accelerations to some extent, these effects do not threaten subway operational safety, and vibrations of track bed and tunnel wall are positively mitigated. LEST has an obvious vibration reduction effect at frequencies above 40 Hz. In straight track, the vibration of bottom of the tunnel wall measured in one-third octave bands is reduced by 10.52 dB, while the vibration at point on the tunnel wall at 1.5 m height is reduced by 9.60 dB. For the curved track, the vibrations at those two points are reduced by 9.35 dB and 8.44 dB, respectively. This indicates that LEST reduces vibrations slightly more for the straight track than for the curved track.

  2. A study on the evaluation of vibration effect and the development of vibration reduction method for Wolsung unit 1 main steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1996-08-01

    The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.

  3. Hand-arm vibration syndrome in South African gold miners.

    Science.gov (United States)

    Nyantumbu, Busi; Barber, Chris M; Ross, Mary; Curran, Andrew D; Fishwick, David; Dias, Belinda; Kgalamono, Spo; Phillips, James I

    2007-01-01

    Hand-arm vibration syndrome (HAVS) is associated with the use of hand-held vibrating tools. Affected workers may experience symptoms of tingling, numbness, loss of grip strength and pain. Loss of dexterity may impair everyday activities, and potentially increase the risk of occupational accidents. Although high vibration levels (up to 31 m/s(2)) have been measured in association with rock drills, HAVS has not been scientifically evaluated in the South African mining industry. The aim of this study was to determine the prevalence and severity of HAVS in South African gold miners, and to identify the tools responsible. A cross-sectional study was conducted in a single South African gold-mine. Participants were randomly selected from mineworkers returning from annual leave, comprising 156 subjects with occupational exposure to vibration, and 140 workers with no exposure. Miners who consented to participate underwent a clinical HAVS assessment following the UK Health and Safety Laboratory protocol. The prevalence of HAVS in vibration-exposed gold miners was 15%, with a mean latent period of 5.6 years. Among the non-exposed comparison group, 5% had signs and symptoms indistinguishable from HAVS. This difference was statistically significant (P < 0.05). All the cases of HAVS gave a history of exposure to rock drills. The study has diagnosed the first cases of HAVS in the South African mining industry. The prevalence of HAVS was lower than expected, and possible explanations for this may include a survivor population, and lack of vascular symptom reporting due to warm-ambient temperatures.

  4. Vibration noise control in laser satellite communication

    Science.gov (United States)

    Saksonov, Avigdor; Shlomi, Arnon; Kopeika, Norman S.

    2001-08-01

    Laser satellite communication has become especially attractive in recent years. Because the laser beam width is narrow than in the RF or microwave range, the transmitted optical power may be significantly reduced. This leads to development of miniature communication systems with extremely low power consumption. On the other hand, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause angular noise in laser beam pointing, comparable to the laser beam width. As result, as significant portion of the optical power between transmitter and receiver is lost and the bit error rate is increased. Consequently, vibration noise control is a critical problem in laser satellite communication. The direction of the laser beam is corrected with a fast steering mirror (FSM). In this paper are presented two approaches for the FSM control. One is the feedback control that uses an LQG algorithm. The second is the direct feed- forward control when vibration noise is measured by three orthogonal accelerometers and drives directly the F SM. The performances of each approach are evaluated using MATLAB simulations.

  5. Vibration Spectrum Analysis for Indicating Damage on Turbine and Steam Generator Amurang Unit 1

    Directory of Open Access Journals (Sweden)

    Beny Cahyono

    2017-12-01

    Full Text Available Maintenance on machines is a mandatory asset management activity to maintain asset reliability in order to reduce losses due to failure. 89% of defects have random failure mode, the proper maintenance method is predictive maintenance. Predictive maintenance object in this research is Steam Generator Amurang Unit 1, which is predictive maintenance is done through condition monitoring in the form of vibration analysis. The conducting vibration analysis on Amurang Unit 1 Steam Generator is because vibration analysis is very effective on rotating objects. Vibration analysis is predicting the damage based on the vibration spectrum, where the vibration spectrum is the result of separating time-based vibrations and simplifying them into vibrations based on their frequency domain. The transformation of time-domain-wave into frequency-domain-wave is using the application of FFT, namely AMS Machinery. The measurement of vibration value is done on turbine bearings and steam generator of Unit 1 Amurang using Turbine Supervisory Instrument and CSI 2600 instrument. The result of this research indicates that vibration spectrum from Unit 1 Amurang Power Plant indicating that there is rotating looseness, even though the vibration value does not require the Unit 1 Amurang Power Plant to stop operating (shut down. This rotating looseness, at some point, can produce some indications that similar with the unbalance. In order to avoid more severe vibrations, it is necessary to do inspection on the bearings in the Amurang Unit 1 Power Plant.

  6. Identification and reduction of piping-vibrations in plants

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhof, K. [Stuttgart Univ. (Germany). MPA

    2012-07-01

    Safe operation, availability and lifetime assessment of piping systems are of utmost concern for plant operators. The use of tuned mass dampers is a rather new approach for reducing vibrations to avoid high cycle fatigue in a large chemical piping system. The investigated piping system is supported by a tall structure fixed at the base. As a result, the steel building stiffness decreases with height. Furthermore large piping-elbow forces act at the top of the building, which lead to large vibration amplitudes. Since both piping system and supporting structure exhibited these large vibration amplitudes, dampers or shock absorbers placed between them would prove ineffective. Therefore, special vibration absorbers were developed for such piping systems. The paper presents the design process, starting with an extensive system investigation up to the passive multi-axial vibration absorber design parameters. This includes: Laboratory tests with a mock-up pipe system, where the first design ideas for new passive vibration absorbers were investigated. Vibration measurements were carried out to investigate the current state of the vibration behaviour. The piping system was inspected; strain gauges were used to identify stress concentrations at welds and other notches due to ovalization. Finite element calculations were performed, first as a combined beam and shell model for the pipe without the support structure. A detailed model for the combined steel construction and pipe system was created. Model-updating was done to fit the calculated model to the experimental modal analysis data. Loading assumptions describing excitation forces from the mass flow were checked. Harmonic frequency analysis was performed. On the basis of these calculations design parameters for the passive vibration absorber were determined. Finally, a solution for the design of two passive vibration absorbers will be presented.

  7. Identification and reduction of piping-vibrations in plants

    International Nuclear Information System (INIS)

    Kerkhof, K.

    2012-01-01

    Safe operation, availability and lifetime assessment of piping systems are of utmost concern for plant operators. The use of tuned mass dampers is a rather new approach for reducing vibrations to avoid high cycle fatigue in a large chemical piping system. The investigated piping system is supported by a tall structure fixed at the base. As a result, the steel building stiffness decreases with height. Furthermore large piping-elbow forces act at the top of the building, which lead to large vibration amplitudes. Since both piping system and supporting structure exhibited these large vibration amplitudes, dampers or shock absorbers placed between them would prove ineffective. Therefore, special vibration absorbers were developed for such piping systems. The paper presents the design process, starting with an extensive system investigation up to the passive multi-axial vibration absorber design parameters. This includes: Laboratory tests with a mock-up pipe system, where the first design ideas for new passive vibration absorbers were investigated. Vibration measurements were carried out to investigate the current state of the vibration behaviour. The piping system was inspected; strain gauges were used to identify stress concentrations at welds and other notches due to ovalization. Finite element calculations were performed, first as a combined beam and shell model for the pipe without the support structure. A detailed model for the combined steel construction and pipe system was created. Model-updating was done to fit the calculated model to the experimental modal analysis data. Loading assumptions describing excitation forces from the mass flow were checked. Harmonic frequency analysis was performed. On the basis of these calculations design parameters for the passive vibration absorber were determined. Finally, a solution for the design of two passive vibration absorbers will be presented.

  8. Hand-arm vibration in orthopaedic surgery: a neglected risk.

    Science.gov (United States)

    Mahmood, F; Ferguson, K B; Clarke, J; Hill, K; Macdonald, E B; Macdonald, D J M

    2017-12-30

    Hand-arm vibration syndrome is an occupational disease caused by exposure to hand-arm transmitted vibration. The Health and Safety Executive has set limits for vibration exposure, including an exposure action value (EAV), where steps should be taken to reduce exposure, and an exposure limit value (ELV), beyond which vibrating equipment must not be used for the rest of the working day. To measure hand-arm transmitted vibration among orthopaedic surgeons, who routinely use hand-operated saws. We undertook a cadaveric study measuring vibration associated with a tibial cut using battery-operated saws. Three surgeons undertook three tibial cuts each on cadaveric tibiae. Measurements were taken using a frequency-weighted root mean square acceleration, with the vibration total value calculated as the root of the sums squared in each of the three axes. A mean (SD) vibration magnitude of 1 (0.2) m/s2 in the X-axis, 10.3 (1.9) m/s2 in the Y-axis and 4.2 (1.3) m/s2 in the Z-axis was observed. The weighted root mean squared magnitude of vibration was 11.3 (1.7) m/s2. These results suggest an EAV of 23 min and ELV of 1 h 33 min using this equipment. Our results demonstrate that use of a battery-operated sagittal saw can transmit levels of hand-arm vibration approaching the EAV or ELV through prolonged use. Further study is necessary to quantify this risk and establish whether surveillance is necessary for orthopaedic surgeons. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. A Rock Retrospective.

    Science.gov (United States)

    O'Grady, Terence J.

    1979-01-01

    The author offers an analysis of musical techniques found in the major rock trends of the 1960s. An annotated list of selected readings and a subject-indexed list of selected recordings are appended. This article is part of a theme issue on popular music. (Editor/SJL)

  10. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  11. Fluids in metamorphic rocks

    NARCIS (Netherlands)

    Touret, J.L.R.

    2001-01-01

    Basic principles for the study of fluid inclusions in metamorphic rocks are reviewed and illustrated. A major problem relates to the number of inclusions, possibly formed on a wide range of P-T conditions, having also suffered, in most cases, extensive changes after initial trapping. The

  12. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  13. Northeast Church Rock Mine

    Science.gov (United States)

    Northeast Church Rock Mine, a former uranium mine 17 miles northeast of Gallup, NM in the Pinedale Chapter of the Navajo Nation. EPA is working with NNEPA to oversee cleanup work by United Nuclear Corporation, a company owned by General Electric (GE).

  14. Smart Rocking Armour Units

    NARCIS (Netherlands)

    Hofland, B.; Arefin, Syed Shamsil; van der Lem, Cock; van gent, Marcel

    2018-01-01

    This paper describes a method to measure the rocking motion of lab-scale armour units. Sensors as found in mobile phones are used. These sensors, data-storage and battery are all embedded in the model units, such that they can be applied without wires attached to them. The technique is applied to

  15. Teaching the Rock Cycle with Ease.

    Science.gov (United States)

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  16. Vibration Suppression of Electronic Box by a Dual Function Piezoelectric Energy Harvester-Tuned Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Sajid Rafique

    2014-04-01

    Full Text Available Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber. It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of 'electromechanical' TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel "electromechanical" TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry

  17. Vibration suppression of electronic box by a dual function piezoelectric energy harvester-tuned vibration absorber

    International Nuclear Information System (INIS)

    Rafique, S.; Shah, S.

    2014-01-01

    Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber). It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of electromechanical TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel electromechanical TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry. (author)

  18. Structural-Vibration-Response Data Analysis

    Science.gov (United States)

    Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.

    1983-01-01

    Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.

  19. For Those About to Rock : Naislaulajat rock-genressä

    OpenAIRE

    Herranen, Linda

    2015-01-01

    For those about to rock – naislaulajat rock-genressä antaa lukijalleen kokonaisvaltaisen käsityksen naisista rock-genressä: rockin historiasta, sukupuolittuneisuudesta, seksismistä, suomalaisten naislaulajien menestyksestä. Työn aineisto on koottu aihepiirin kirjallisuudesta ja alalla toimiville naislaulajille teetettyjen kyselyiden tuloksista. Lisäksi avaan omia kokemuksiani ja ajatuksiani, jotta näkökulma naisista rock-genressä tulisi esille mahdollisimman monipuolisesti. Ajatus aihees...

  20. Comparison of disposal concepts for rock salt and hard rock

    International Nuclear Information System (INIS)

    Papp, R.

    1998-01-01

    The study was carried out in the period 1994-1996. The goals were to prepare a draft on spent fuel disposal in hard rock and additionally a comparison with existing disposal concepts for rock salt. A cask for direct disposal of spent fuel and a repository for hard rock including a safeguards concept were conceptually designed. The results of the study confirm, that the early German decision to employ rock salt was reasonable. (orig.)

  1. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  2. Conditions of efficient vibrodischarge of rock materials in modern mining and processing technologies

    Science.gov (United States)

    Levenson, SYa; Gendlina, LI; Kulikova, EG

    2018-03-01

    The paper reviews vibration feeders used to discharge storage reservoirs in mineral mining. In spotlight are vibrofeeders equipped with an active member of low flexural rigidity developed at Chinakal Institute of Mining. The authors present the results of the physical and numerical studies on vibratory discharge of cohesive rocks from a bunker.

  3. Plasma Discharge Initiation of Explosives in Rock Blasting Application: A Case Study

    International Nuclear Information System (INIS)

    Chae, Jae-Ou; Jeong, Young-Jun; Shmelev, V M; Denicaev, A A; Poutchkov, V M; Ravi, V

    2006-01-01

    A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly

  4. EXPERIMENTAL STUDY ON THE STABILITY OF SURROUNDING ROCK IN TUNNEL BLASTING CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Hongxian Fu

    2018-04-01

    Full Text Available In this study, criteria and blasting technologies are introduced in order to control the stability of surrounding rock of tunnel built using drill-and-blast safety. The paper is composed of three parts, namely, a blast vibration propagation law in roof surrounding rock in close proximity to tunnel face, two formulae to calculate particle critical vibration velocity of shotcrete and key structural element at the roof of tunnel, and innovative technologies of tunnel blasting. The blast vibration propagation law is the base to control the stability of surrounding rock during tunnel blasting. Based on Morhr-Coulomb criterion and the dynamic analysis, two formulae to calculate the critical particle vibration velocity are proposed. Based on a series of trial blasts using electronic detonators, two innovative blasting technologies are derived. One is the blast holes detonated one by one by using electronic detonator, and another is the blast holes detonated by combining initiation system of electronic detonators and nonel detonators. The use of electronic detonators in tunnel blasting not only leads to a smaller blast vibration but also to a smaller extent of the EDZ (excavation damaged zone.

  5. Range sections as rock models for intensity rock scene segmentation

    CSIR Research Space (South Africa)

    Mkwelo, S

    2007-11-01

    Full Text Available This paper presents another approach to segmenting a scene of rocks on a conveyor belt for the purposes of measuring rock size. Rock size estimation instruments are used to monitor, optimize and control milling and crushing in the mining industry...

  6. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  7. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  8. On the Dynamics of Rocking Motion of the Hard-Disk Drive Spindle Motor System

    Science.gov (United States)

    Wang, Joseph

    Excessive rocking motion of the spindle motor system can cause track misregistration resulting in poor throughput or even drive failure. The chance of excessive disk stack rocking increases as a result of decreasing torsional stiffness of spindle motor bearing system due to the market demand for low profile hard drives. As the track density increases and the vibration specification becomes increasingly stringent, rocking motion of a spindle motor system deserves even more attention and has become a primary challenge for a spindle motor system designer. Lack of understanding of the rocking phenomenon combined with misleading paradox has presented a great difficulty in the effort of avoiding the rocking motion in the hard-disk drive industry. This paper aims to provide fundamental understanding of the rocking phenomenon of a rotating spindle motor system, to clarify the paradox in disk-drive industry and to provide a design guide to an optimized spindle system. This paper, theoretically and experimentally, covers a few important areas of industrial interest including the prediction of rocking natural frequencies and mode shape of a rotating spindle, free vibration, and frequency response under common forcing functions such as rotating and fixed-plane forcing functions. The theory presented here meets with agreeable experimental observation.

  9. A Universal Rig for Supporting Large Hammer Drills: Reduced Injury Risk and Improved Productivity.

    Science.gov (United States)

    Rempel, David; Barr, Alan

    2015-10-01

    Drilling holes into concrete with heavy hammer and rock drills is one of the most physically demanding tasks performed in commercial construction and poses risks for musculoskeletal disorders, noise induced hearing loss, hand arm vibration syndrome and silicosis. The aim of this study was to (1) use a participatory process to develop a rig to support pneumatic rock drills or large electric hammer drills in order to reduce the health risks and (2) evaluate the usability of the rig. Seven prototype rigs for supporting large hammer drills were developed and modified with feedback from commercial contractors and construction workers. The final design was evaluated by laborers and electricians (N=29) who performed their usual concrete drilling with the usual method and the new rig. Subjective regional fatigue was significantly less in the neck, shoulders, hands and arms, and lower back) when using the universal rig compared to the usual manual method. Usability ratings for the rig were significantly better than the usual method on stability, control, drilling, accuracy, and vibration. Drilling time was reduced by approximately 50% with the rig. Commercial construction contractors, laborers and electricians who use large hammer drills for drilling many holes should consider using such a rig to prevent musculoskeletal disorders, fatigue, and silicosis.

  10. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  11. Vibration damping method and apparatus

    Science.gov (United States)

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  12. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  13. Critical issues in soft rocks

    OpenAIRE

    Milton Assis Kanji

    2014-01-01

    This paper discusses several efforts made to study and investigate soft rocks, as well as their physico-mechanical characteristics recognized up to now, the problems in their sampling and testing, and the possibility of its reproduction through artificially made soft rocks. The problems in utilizing current and widespread classification systems to some types of weak rocks are also discussed, as well as other problems related to them. Some examples of engineering works in soft rock or in soft ...

  14. Vibration for Pain Reduction in a Plastic Surgery Clinic.

    Science.gov (United States)

    Eichhorn, Mitchell George; Karadsheh, Murad Jehad; Krebiehl, Johanna Ruth; Ford, Dawn Marie; Ford, Ronald D

    2016-01-01

    Patients can experience significant pain during routine procedures in the plastic surgery clinic. Methods for clinical pain reduction are often impractical, time-consuming, or ineffective. Vibration is a safe, inexpensive, and highly applicable modality for pain reduction that can be readily utilized for a wide variety of procedures. This study evaluated the use of vibration as a viable pain-reduction strategy in the clinical plastic surgery setting. Patients requiring at least 2 consecutive procedures that are considered painful were enrolled in the study. These included injections, staple removal, and suture removal. In the same patient, one half of the procedures were performed without vibration and the other half with vibration. After completing the procedures, the patients rated their pain with vibration and without vibration. The patient and the researcher also described the experience with a short questionnaire. Twenty-eight patients were enrolled in the study. Patients reported significantly less pain on the Numeric Rating Scale pain scale when vibration was used compared with the control group (p reduction. It significantly reduces the pain experienced by patients during minor office procedures. Given its practicality and ease of use, it is a welcome tool in the plastic surgery clinic.

  15. Isotope shifting capacity of rock

    International Nuclear Information System (INIS)

    Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1980-01-01

    Any oxygen isotope shifted rock volume exactly defines a past throughput of water. An expression is derived that relates the throughput of an open system to the isotope shift of reservoir rock and present-day output. The small isotope shift of Ngawha reservoir rock and the small, high delta oxygen-18 output are best accounted for by a magmatic water source

  16. Digital analysis of vibrations

    International Nuclear Information System (INIS)

    Bohnstedt, H.J.; Walter, G.

    1982-01-01

    Vibrational measurements, e.g. on turbomachinery, can be evaluated rapidly and economically with the aid of a combination of the following instruments: a desk-top computer, a two-channel vector filter and a FFT spectral analyzer. This equipment combination is available within the Allianz Centre for Technology and has also been used for mobile, on-site investigations during the last year. It enables calculation and display of time functions, kinetic shaft orbits, displacement diagrams. Bode plots, polar-coordinate plots, cascade diagrams and histograms. (orig.) [de

  17. Turbine blade vibration dampening

    Science.gov (United States)

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  18. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  19. Vibration control, machine diagnostics

    International Nuclear Information System (INIS)

    1990-01-01

    Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG) [de

  20. Conditions for Stable Chip Breaking and Provision of Machined Surface Quality While Turning with Asymmetric Tool Vibrations

    OpenAIRE

    Шелег, В. К.; Молочко, В. И.; Данильчик, С. С.

    2015-01-01

    The paper considers a process of turning structural steel with asymmetric tool vibrations directed along feeding. Asymmetric vibrations characterized by asymmetry coefficient of vibration cycle, their frequency and amplitude are additionally transferred to the tool in the turning process with the purpose to crush chips. Conditions of stable chip breaking and obtaining optimum dimensions of chip elements have been determined in the paper. In order to reduce a negative impact of the vibration a...

  1. Rock burst governance of working face under igneous rock

    Science.gov (United States)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  2. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  3. Rock solidification method

    International Nuclear Information System (INIS)

    Nakaya, Iwao; Murakami, Tadashi; Miyake, Takafumi; Funakoshi, Toshio; Inagaki, Yuzo; Hashimoto, Yasuhide.

    1985-01-01

    Purpose: To convert radioactive wastes into the final state for storage (artificial rocks) in a short period of time. Method: Radioactive burnable wastes such as spent papers, cloths and oils and activated carbons are burnt into ashes in a burning furnace, while radioactive liquid wastes such as liquid wastes of boric acid, exhausted cleaning water and decontaminating liquid wastes are powderized in a drying furnace or calcining furnace. These powders are joined with silicates as such as white clay, silica and glass powder and a liquid alkali such as NaOH or Ca(OH) 2 and transferred to a solidifying vessel. Then, the vessel is set to a hydrothermal reactor, heated and pressurized, then taken out about 20 min after and tightly sealed. In this way, radioactive wastes are converted through the hydrothermal reactions into aqueous rock stable for a long period of time to obtain solidification products insoluble to water and with an extremely low leaching rate. (Ikeda, J.)

  4. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  5. Rock and mineral magnetism

    CERN Document Server

    O’Reilly, W

    1984-01-01

    The past two decades have witnessed a revolution in the earth sciences. The quantitative, instrument-based measurements and physical models of. geophysics, together with advances in technology, have radically transformed the way in which the Earth, and especially its crust, is described. The study of the magnetism of the rocks of the Earth's crust has played a major part in this transformation. Rocks, or more specifically their constituent magnetic minerals, can be regarded as a measuring instrument provided by nature, which can be employed in the service of the earth sciences. Thus magnetic minerals are a recording magnetometer; a goniometer or protractor, recording the directions of flows, fields and forces; a clock; a recording thermometer; a position recorder; astrain gauge; an instrument for geo­ logical surveying; a tracer in climatology and hydrology; a tool in petrology. No instrument is linear, or free from noise and systematic errors, and the performance of nature's instrument must be assessed and ...

  6. Off-axis Modal Active Vibration Control Of Rotational Vibrations

    NARCIS (Netherlands)

    Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.

    Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the

  7. Reduction method for residual stress of welded joint using random vibration

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Nishimura, Tadashi; Hiroi, Tetsumaro

    2005-01-01

    Welded joints are used for construction of many structures. Residual stress is induced near the bead caused by locally given heat. Tensile residual stress on the surface may reduce fatigue strength. In this paper, a new method for reduction of residual stress using vibration during welding is proposed. As vibrational load, random vibration, white noise and filtered white noise are used. Two thin plates are butt-welded. Residual stress is measured with a paralleled beam X-ray diffractometer with scintillation counter after removing quenched scale chemically. It is concluded that tensile residual stress near the bead is reduced by using random vibration during welding

  8. Aram Chaos Rocks

    Science.gov (United States)

    2005-01-01

    8 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of light-toned, sedimentary rock among darker-toned mesas in Aram Chaos. Dark, windblown megaripples -- large ripples -- are also present at this location. Location near: 3.0oN, 21.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  9. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  10. Physical modeling of rock

    International Nuclear Information System (INIS)

    Cheney, J.A.

    1981-01-01

    The problems of statisfying similarity between a physical model and the prototype in rock wherein fissures and cracks place a role in physical behavior is explored. The need for models of large physical dimensions is explained but also testing of models of the same prototype over a wide range of scales is needed to ascertain the influence of lack of similitude of particular parameters between prototype and model. A large capacity centrifuge would be useful in that respect

  11. Rock disposal problems identified

    Energy Technology Data Exchange (ETDEWEB)

    Knox, R

    1978-06-01

    Mathematical models are the only way of examining the return of radioactivity from nuclear waste to the environment over long periods of time. Work in Britain has helped identify areas where more basic data is required, but initial results look very promising for final disposal of high level waste in hard rock repositories. A report by the National Radiological Protection Board of a recent study, is examined.

  12. Prototype observation and influencing factors of environmental vibration induced by flood discharge

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The results indicate that field vibrations caused by flood discharge have distinctive characteristics of constancy, low frequency, small amplitude, and randomness with impact, which significantly differ from the common high-frequency vibration characteristics. Field vibrations have a main frequency of about 0.5–3.0 Hz and the characteristics of long propagation distance and large-scale impact. The vibration of a stilling basin slab runs mainly in the vertical direction. The vibration response of the guide wall perpendicular to the flow is significantly stronger than it is in other directions and decreases linearly downstream along the guide wall. The vibration response of the underground turbine floor is mainly caused by the load of unit operation. Urban environmental vibration has particular distribution characteristics and change patterns, and is greatly affected by discharge, scheduling modes, and geological conditions. Along with the increase of the height of residential buildings, vibration responses show a significant amplification effect. The horizontal and vertical vibrations of the 7th floor are, respectively, about 6 times and 1.5 times stronger than the corresponding vibrations of the 1st floor. The vibration of a large-scale chemical plant presents the combined action of flood discharge and working machines. Meanwhile, it is very difficult to reduce the low-frequency environmental vibrations. Optimization of the discharge scheduling mode is one of the effective measures of reducing the flow impact loads at present. Choosing reasonable dam sites is crucial.

  13. Lateral vibration behavior analysis and TLD vibration absorption design of the soft yoke single-point mooring system

    Science.gov (United States)

    Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu

    2017-06-01

    Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.

  14. Rock pushing and sampling under rocks on Mars

    Science.gov (United States)

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  15. The Rock Characterization Facility

    International Nuclear Information System (INIS)

    Holmes, J.

    1994-01-01

    In 1989, UK Nirex began a programme of surface-based characterization of the geology and hydrogeology of a site at Sellafield to evaluate its suitability to host a deep repository for radioactive waste. The next major stage in site characterization will be the construction and operation of a Rock Characterization Facility (RCF). It will be designed to provide rock characterization information and scope for model validation to permit firmer assessment of long-term safety. It will also provide information needed to decide the detailed location, design and orientation of a repository and to inform repository construction methods. A three-phase programme is planned for the RCF. During each phase, testwork will steadily improve our geological, hydrogeological and geotechnical understanding of the site. The first phase will involve sinking two shafts. That will be preceded by the establishment of a network of monitoring boreholes to ensure that the impact of shaft sinking can be measured. This will provide valuable data for model validation. In phase two, initial galleries will be excavated, probably at a depth of 650 m below Ordnance datum, which will host a comprehensive suite of experiments. These galleries will be extended in phase three to permit access to most of the rock volume that would host the repository. (Author)

  16. Rock in Rio: forever young

    Directory of Open Access Journals (Sweden)

    Ricardo Ferreira Freitas

    2014-12-01

    Full Text Available The purpose of this article is to discuss the role of Rock in Rio: The Musical, as herald of megafestival Rock in Rio. Driven by the success that musicals have reached in Brazil, we believe that the design of this spectacle of music, dance and staging renews the brand of the rock festival, once it adds the force of young and healthy bodies to its concept. Moreover, the musical provides Rock in Rio with some distance from the controversal trilogy of sex, drugs and rock and roll, a strong mark of past festivals around the world. Thus, the musical expands the possibilities of growth for the brand.

  17. METHOD FOR DETERMINATION OF ROTATION CENTER IN VIBRATING OBJECT

    Directory of Open Access Journals (Sweden)

    I. P. Kauryha

    2016-01-01

    Full Text Available Linear piezoelectric gauges, eddy current transducers and other control and measuring devices have been widely applied for vibration diagnostics of objects in industry. Methods based on such gauges and used for measuring angular and linear vibrations do not provide the possibility to assess a rotation center or point angle of an object. Parasitic oscillations may occur during rotor rotation and in some cases the oscillations are caused by dis-balance. The known methods for measuring angular and linear vibrations make it possible to detect the phenomenon and they do not provide information for balancing of the given object. For this very reason the paper describes a method for obtaining instantaneous rotation center in the vibrating object. It allows to improve informational content of the measurements owing to obtaining additional data on position of object rotation center. The obtained data can be used for balancing of a control object. Essence of the given method is shown by an example of piezoelectric gauges of linear vibrations. Two three-axial gauges are fixed to the investigated object. Then gauge output signals are recalculated in angular vibrations of the object (for this purpose it is necessary to know a distance between gauges. Further projection positions of the object rotation center are determined on three orthogonal planes. Instantaneous rotation center is calculated according to the position of one of the gauges. The proposed method permits to obtain data on linear and angular vibrations and rotation center position of the vibrating object using one system of linear gauge. Possibilities of object diagnostics are expanded due to increase in number of determined parameters pertaining to object moving. The method also makes it possible to reduce material and time expenses for measurement of an angular vibration component. 

  18. Ultrasonic Linear Motor with Two Independent Vibrations

    Science.gov (United States)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  19. Damping of wind turbine tower vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Pedersen, Mikkel Melters

    Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... dominated vibrations.The first part of the thesis presents the theoretical framework for implementation of supplemental dampers in wind turbines. It is demonstrated that the feasibility of installing dampers at the bottom of the tower is significantly increased when placing passive or semiactive dampers...... in a stroke amplifying brace, which amplifies the displacement across the damper and thus reduces the desired level of damper force. For optimal damping of the two lowest tower modes, a novel toggle-brace concept for amplifying the bending deformation of the tower is presented. Numerical examples illustrate...

  20. Blasting vibrations control: The shortcomings of traditional methods

    Energy Technology Data Exchange (ETDEWEB)

    Vuillaume, P.M.; Kiszlo, M. [Institut National de l`Environnement Industriel et des Risques, Verneuil en Halatte (France); Bernard, T. [Compagnie Nouvelle de Scientifiques, Nice (France)

    1996-12-31

    In the context of its studies for the French ministry of the environment and for the French national coal board, INERIS (the French institute for the industrial environment and hazards, formerly CERCHAR) has made a complete critical survey of the methods generally used to reduce the levels of blasting vibrations. It is generally acknowledged that the main parameter to control vibrations is the so-called instantaneous charge, or charge per delay. This should be reduced as much as possible in order to diminish vibration levels. On account of this, the use of a new generation of blasting devices, such as non-electric detonators or electronic sequential timers has been developed since the seventies. INERIS has collected data from about 900 blasts in 2 quarries and 3 open pit mines. These data include input parameters such as borehole diameter, burden, spacing, charge per hole, charge per delay, total fired charge, etc ... They also include output measurements, such as vibration peak particle velocities, and main frequencies. These data have been analyzed with the help of multi variable statistical tools. Blasting tests were undertaken to evaluate new methods of vibrations control, such as the superposition of vibration signals. These methods appear to be accurate in many critical cases, but certainly would be highly improved with a better accuracy of firing delays. The development of electronic detonators seems to be the way of the future for a better blasting control.

  1. Vibration monitoring of EDF rotating machinery using artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E.; Hamon, L.; Lefevre, F.

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected by Electricite de France (EDF). Two neural networks algorithms were used in our project: the Recirculation algorithm and the Backpropagation algorithm. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results are very encouraging

  2. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  3. Active vibration control based on piezoelectric smart composite

    International Nuclear Information System (INIS)

    Gao, Le; Lu, Qingqing; Fei, Fan; Leng, Jinsong; Liu, Liwu; Liu, Yanju

    2013-01-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology. (paper)

  4. Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers

    Science.gov (United States)

    Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.

    2018-04-01

    Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.

  5. Flushing Enhancement with Vibration and Pulsed Current in Electrochemical Machining

    Directory of Open Access Journals (Sweden)

    Zhujian Feng

    2017-12-01

    Full Text Available This research aims to understand flushing of by-products in electrochemical machining (ECM by modeling and experimentally verifying mechanism of particle transport in inter-electrode gap under low frequency vibration. A series of hole were drilled on steel plates to evaluate the effect of vibration on material removal rate and hole quality. Infinite focus optical technique was used to capture and analyze the three-dimensional images of ECM'ed features. Experimental results showed that maximum machining depth and minimum taper angle can be achieved when vibrating the workpiece at 40 Hz and 10 µm amplitude. Simulation results showed that the highest average flushing speed of 0.4 m/s was obtained at this vibration frequency and amplitude. Machining depth and material removal rate has a positive correlation with the average flushing speed. Sharper ECM’ed profile is obtained since the taper angle is favorably reduced at high average flushing speed.

  6. Development of artificial soft rock

    International Nuclear Information System (INIS)

    Kishi, Kiyoshi

    1995-01-01

    When foundation base rocks are deeper than the level of installing structures or there exist weathered rocks and crushed rocks in a part of base rocks, often sound artificial base rocks are made by substituting the part with concrete. But in the construction of Kashiwazaki Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc., the foundation base rocks consist of mudstone, and the stiffness of concrete is large as compared with the surrounding base rocks. As the quality of the substituting material, the nearly same stiffness as that of the surrounding soft rocks and long term stability are suitable, and the excellent workability and economical efficiency are required, therefore, artificial soft rocks were developed. As the substituting material, the soil mortar that can obtain the physical property values in stable form, which are similar to those of Nishiyama mudstone, was selected. The mechanism of its hardening and the long term stability, and the manufacturing plant are reported. As for its application to the base rocks of Kashiwazaki Kariwa Nuclear Power Station, the verification test at the site and the application to the base rocks for No. 7 plant reactor building and other places are described. (K.I.)

  7. Hydrological characteristics of Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial to evaluate the hydrogeological characteristics of rock in Japan in order to assess the performance of geosphere. This report summarizes the hydrogeological characteristics of various rock types obtained from broad literature surveys and the fields experiments at the Kamaishi mine in northern Japan and at the Tono mine in central Japan. It is found that the hydraulic conductivity of rock mass ranges from 10 -9 m/s to 10 -8 m/s, whereas the hydraulic conductivity of fault zone ranges from 10 -9 m/s to 10 -3 m/s. It is also found that the hydraulic conductivity tends to decrease with depth. Therefore, the hydraulic conductivity of rock mass at the depth of a repository will be smaller than above values. From the investigations at outcrops and galleries throughout the country, fractures are observed as potential pathways in all rock types. All kinds of crystalline rocks and pre-Neogene sedimentary rocks are classified as fractured media where fracture flow is dominant. Among these rocks, granitic rock is considered the archetype fractured media. On the other hand, andesite, tuff and Neogene sedimentary rocks are considered as intermediate between fractured media and porous media where flow in fractures as well as in rock matrix are significant. (author)

  8. Vibrational spectra of ordered perovskites

    NARCIS (Netherlands)

    Corsmit, A.F.; Hoefdraad, H.E.; Blasse, G.

    1972-01-01

    The vibrational spectra of the molecular M6+O6 (M = Mo, Te, W) group in ordered perovskites of the type Ba2M2+M6+O6 are reported. These groups have symmetry Oh, whereas their site symmetry is also Oh. An assignment of the internal vibrations is presented.

  9. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  10. Grinding into Soft, Powdery Rock

    Science.gov (United States)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars. Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements. In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  11. Low Cost Digital Vibration Meter.

    Science.gov (United States)

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  12. Lessons Learned on the Application of Vibration Absorbers for Enhanced Cannon Stabilization

    Directory of Open Access Journals (Sweden)

    Eric Kathe

    2001-01-01

    Full Text Available This paper will summarize the successful application of muzzle-end vibration absorbers to reduce cannon vibration. This technology constitutes a weapons stabilization approach that focuses on passive mechanical structural modification of the cannon, rather than relying upon an external control law to actively cancel vibrations. Challenges encountered during field testing, non-ideal behavior, and performance evaluation using digital signal processing will be highlighted.

  13. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  14. Small-scale bentonite injection test on rock

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-03-01

    When radiactive waste is disposed a sealing of the rock is very valuable since it reduces the rate of water percolation and diffusion. In an earlier report injection of bentonite gels by means of over-pressure and subsequent electrophoresis has been suggested. The present report describes a rock test series where bentonite injection was applied. For the test an approximately cubical block of about 1 m 3 was selected. The rock type was diorite with a fairly high frequency of quartz denses. The block was kept in a basin during the test in order to maintain the water saturation. Holes were bored in the block. A bentonite slurry with 1000 percent water content was injected. It was shown that the bentonite had a sealing effect but the depth of extrusion into rock joints was not large because of gelation. Electro-Kinetic injection of montmorillonite was found to be a more promising technique for rock lightening

  15. Lattice vibration spectra. 16

    International Nuclear Information System (INIS)

    Lutz, H.D.; Willich, P.

    1977-01-01

    The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)

  16. Rock stress investigations

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, St.; Braeuer, V.; Gloeggler, W.

    1989-04-01

    On the research project 'Rock Stress Mesurements' the BGR has developed and tested several methods for use in boreholes at a depth of 200 m. Indirect stress measurements using overcoring methods with BGR-probes and CSIR-triaxial cells as well as direct stress measurements using the hydraulic-fracturing method were made. To determine in-situ rock deformation behavior borehole deformation tests, using a BGR-dilatometer, were performed. Two types of the BGR-probe were applied: a four-component-probe to determine horizontal stresses and a five-component-probe to determine a quasi three-dimensional stress field. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on low cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (author) 4 tabs., 76 figs., 31 refs

  17. A Review of the Evaluation, Control, and Application Technologies for Drill String Vibrations and Shocks in Oil and Gas Well

    Directory of Open Access Journals (Sweden)

    Guangjian Dong

    2016-01-01

    Full Text Available Drill string vibrations and shocks (V&S can limit the optimization of drilling performance, which is a key problem for trajectory optimizing, wellbore design, increasing drill tools life, rate of penetration, and intelligent drilling. The directional wells and other special trajectory drilling technologies are often used in deep water, deep well, hard rock, and brittle shale formations. In drilling these complex wells, the cost caused by V&S increases. According to past theories, indoor experiments, and field studies, the relations among ten kinds of V&S, which contain basic forms, response frequency, and amplitude, are summarized and discussed. Two evaluation methods are compared systematically, such as theoretical and measurement methods. Typical vibration measurement tools are investigated and discussed. The control technologies for drill string V&S are divided into passive control, active control, and semiactive control. Key methods for and critical equipment of three control types are compared. Based on the past development, a controlling program of drill string V&S is devised. Application technologies of the drill string V&S are discussed, such as improving the rate of penetration, controlling borehole trajectory, finding source of seismic while drilling, and reducing the friction of drill string. Related discussions and recommendations for evaluating, controlling, and applying the drill string V&S are made.

  18. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  19. A smart rock

    Science.gov (United States)

    Pressel, Phil

    2014-12-01

    This project was to design and build a protective weapon for a group of associations that believed in aliens and UFO's. They collected enough contributions from societies and individuals to be able to sponsor and totally fund the design, fabrication and testing of this equipment. The location of this facility is classified. It also eventually was redesigned by the Quartus Engineering Company for use at a major amusement park as a "shoot at targets facility." The challenge of this project was to design a "smart rock," namely an infrared bullet (the size of a gallon can of paint) that could be shot from the ground to intercept a UFO or any incoming suspicious item heading towards the earth. Some of the challenges to design this weapon were to feed cryogenic helium at 5 degrees Kelvin from an inair environment through a unique rotary coupling and air-vacuum seal while spinning the bullet at 1500 rpm and maintain its dynamic stability (wobble) about its spin axis to less than 10 micro-radians (2 arc seconds) while it operated in a vacuum. Precision optics monitored the dynamic motion of the "smart rock."

  20. Rock critics as 'Mouldy Modernists'

    Directory of Open Access Journals (Sweden)

    Becky Shepherd

    2011-08-01

    Full Text Available Contemporary rock criticism appears to be firmly tied to the past. The specialist music press valorise rock music of the 1960s and 1970s, and new emerging artists are championed for their ‘retro’ sounding music by journalists who compare the sound of these new artists with those included in the established ‘canon’ of rock music. This article examines the narrative tropes of authenticity and nostalgia that frame the retrospective focus of this contemporary rock writing, and most significantly, the maintenance of the rock canon within contemporary popular culture. The article concludes by suggesting that while contemporary rock criticism is predominately characterised by nostalgia, this nostalgia is not simply a passive romanticism of the past. Rather, this nostalgia fuels a process of active recontextualisation within contemporary popular culture.

  1. Theoretical rotation-vibration spectrum of thioformaldehyde

    International Nuclear Information System (INIS)

    Yachmenev, Andrey; Polyak, Iakov; Thiel, Walter

    2013-01-01

    We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H 2 CS. It covers 41 809 rovibrational levels for states up to J max = 30 with vibrational band origins up to 5000 cm −1 and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments

  2. Induced vibrations facilitate traversal of cluttered obstacles

    Science.gov (United States)

    Thoms, George; Yu, Siyuan; Kang, Yucheng; Li, Chen

    When negotiating cluttered terrains such as grass-like beams, cockroaches and legged robots with rounded body shapes most often rolled their bodies to traverse narrow gaps between beams. Recent locomotion energy landscape modeling suggests that this locomotor pathway overcomes the lowest potential energy barriers. Here, we tested the hypothesis that body vibrations induced by intermittent leg-ground contact facilitate obstacle traversal by allowing exploration of locomotion energy landscape to find this lowest barrier pathway. To mimic a cockroach / legged robot pushing against two adjacent blades of grass, we developed an automated robotic system to move an ellipsoidal body into two adjacent beams, and varied body vibrations by controlling an oscillation actuator. A novel gyroscope mechanism allowed the body to freely rotate in response to interaction with the beams, and an IMU and cameras recorded the motion of the body and beams. We discovered that body vibrations facilitated body rolling, significantly increasing traversal probability and reducing traversal time (P locomotor pathways in complex 3-D terrains.

  3. Flexural Free Vibrations of Multistep Nonuniform Beams

    Directory of Open Access Journals (Sweden)

    Guojin Tan

    2016-01-01

    Full Text Available This paper presents an exact approach to investigate the flexural free vibrations of multistep nonuniform beams. Firstly, one-step beam with moment of inertia and mass per unit length varying as I(x=α11+βxr+4 and m(x=α21+βxr was studied. By using appropriate transformations, the differential equation for flexural free vibration of one-step beam with variable cross section is reduced to a four-order differential equation with constant coefficients. According to different types of roots for the characteristic equation of four-order differential equation with constant coefficients, two kinds of modal shape functions are obtained, and the general solutions for flexural free vibration of one-step beam with variable cross section are presented. An exact approach to solve the natural frequencies and modal shapes of multistep beam with variable cross section is presented by using transfer matrix method, the exact general solutions of one-step beam, and iterative method. Numerical examples reveal that the calculated frequencies and modal shapes are in good agreement with the finite element method (FEM, which demonstrates the solutions of present method are exact ones.

  4. Intracellular recording from a spider vibration receptor.

    Science.gov (United States)

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  5. Theoretical rotation-vibration spectrum of thioformaldehyde

    Science.gov (United States)

    Yachmenev, Andrey; Polyak, Iakov; Thiel, Walter

    2013-11-01

    We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H2CS. It covers 41 809 rovibrational levels for states up to Jmax = 30 with vibrational band origins up to 5000 cm-1 and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments.

  6. Theoretical rotation-vibration spectrum of thioformaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Yachmenev, Andrey [Department of Physics and Astronomy, University College London, London, WC1E 6BT (United Kingdom); Polyak, Iakov; Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D–45470 Mülheim an der Ruhr (Germany)

    2013-11-28

    We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H{sub 2}CS. It covers 41 809 rovibrational levels for states up to J{sub max} = 30 with vibrational band origins up to 5000 cm{sup −1} and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments.

  7. Torsional vibrations of shafts of mechanical systems

    Science.gov (United States)

    Gulevsky, V. A.; Belyaev, A. N.; Trishina, T. V.

    2018-03-01

    The aim of the research is to compare the calculated dependencies for determining the equivalent rigidity of a mechanical system and to come to an agreement on the methods of compiling dynamic models for systems with elastic reducer couplings in applied and classical oscillation theories. As a result of the analysis, it was revealed that most of the damage in the mechanisms and their details is due to the appearance of oscillations due to the dynamic impact of various factors: shock and alternating loads, unbalanced parts of machines, etc. Therefore, the designer at the design stage, and the engineer in the process of operation should provide the possibility of regulating the oscillatory processes both in details and machines by means of creating rational designs, as well as the use of special devices such as vibration dampers, various vibrators with optimal characteristics. A method is proposed for deriving a formula for determining the equivalent stiffness of a double-mass oscillating system of a multistage reducer with elastic reducer links without taking into account the internal losses and inertia of its elements, which gives a result completely coinciding with the result obtained by the classical theory of small mechanical oscillations and allows eliminating formulas for reducing the moments of inertia of the flywheel masses and the stiffness of the shafts.

  8. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  9. Flow induced vibrations in gas tube assembly of centrifuge

    International Nuclear Information System (INIS)

    Alam, M.; Atta, M.A.; Mirza, J.A.; Khan, A.Q.

    1986-01-01

    A centrifuge essentially consists of a rotor rotating at very high speed. Gas tube assembly, located at the center of the rotor, is used to introduce feed gas into the rotor and remove product and waste streams from it. The gas tube assembly is thus a static component, the product and waste scoops of which are lying in the high pressure region of a fluid rotating at very high speed. This can cause flow induced vibrations in the gas tube assembly. Such vibrations affect not only the mechanical stability of the gas tube assembly but may also reduce the separative power of the centrifuge. In a cascade, if some of the centrifuges have gas tube vibration, then cascade performance will be affected. A theoretical analysis of the effect of waste tube vibrations on product and waste flow rates and pressures in the centrifuge is presented. A simple stage consisting of two centrifuges, in which one has tube vibration, is considered for this purpose. The results are compared with experiment. It is shown that waste tube vibration generates oscillations in waste and product flow rates that are observable outside the centrifuge. (author)

  10. Integrated cable vibration control system using wireless sensors

    Science.gov (United States)

    Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han

    2017-04-01

    As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.

  11. A vibration correction method for free-fall absolute gravimeters

    Science.gov (United States)

    Qian, J.; Wang, G.; Wu, K.; Wang, L. J.

    2018-02-01

    An accurate determination of gravitational acceleration, usually approximated as 9.8 m s-2, has been playing an important role in the areas of metrology, geophysics, and geodetics. Absolute gravimetry has been experiencing rapid developments in recent years. Most absolute gravimeters today employ a free-fall method to measure gravitational acceleration. Noise from ground vibration has become one of the most serious factors limiting measurement precision. Compared to vibration isolators, the vibration correction method is a simple and feasible way to reduce the influence of ground vibrations. A modified vibration correction method is proposed and demonstrated. A two-dimensional golden section search algorithm is used to search for the best parameters of the hypothetical transfer function. Experiments using a T-1 absolute gravimeter are performed. It is verified that for an identical group of drop data, the modified method proposed in this paper can achieve better correction effects with much less computation than previous methods. Compared to vibration isolators, the correction method applies to more hostile environments and even dynamic platforms, and is expected to be used in a wider range of applications.

  12. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  13. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Science.gov (United States)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  14. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    Science.gov (United States)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  15. On the control of vibrations using synchrophasing

    Science.gov (United States)

    Dench, M. R.; Brennan, M. J.; Ferguson, N. S.

    2013-09-01

    This paper describes the application of a technique, known as synchrophasing, to the control of machinery vibration. It is applicable to machinery installations, in which several synchronous machines, such as those driven by electrical motors, are fitted to an isolated common structure known as a machinery raft. To reduce the vibration transmitted to the host structure to which the machinery raft is attached, the phase of the electrical supply to the motors is adjusted so that the net transmitted force to the host structure is minimised. It is shown that while this is relatively simple for an installation consisting of two machines, it is more complicated for installations in which there are more than two machines, because of the interaction between the forces generated by each machine. The development of a synchrophasing scheme, which has been applied to propeller aircraft, and is known as Propeller Signature Theory (PST) is discussed. It is shown both theoretically and experimentally, that this is an efficient way of controlling the phase of multiple machines. It is also shown that synchrophasing is a worthwhile vibration control technique, which has the potential to suppress vibration transmitted to the host structure by up to 20 dB at certain frequencies. Although the principle of synchronisation has been demonstrated on a one-dimensional structure, it is believed that this captures the key features of the approach. However, it should be realised that the mode-shapes of a machinery raft may be more complex than that of a one-dimensional structure and this may need to be taken into account in a real application.

  16. Theoretical Modeling of Rock Breakage by Hydraulic and Mechanical Tool

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2014-01-01

    Full Text Available Rock breakage by coupled mechanical and hydraulic action has been developed over the past several decades, but theoretical study on rock fragmentation by mechanical tool with water pressure assistance was still lacking. The theoretical model of rock breakage by mechanical tool was developed based on the rock fracture mechanics and the solution of Boussinesq’s problem, and it could explain the process of rock fragmentation as well as predicating the peak reacting force. The theoretical model of rock breakage by coupled mechanical and hydraulic action was developed according to the superposition principle of intensity factors at the crack tip, and the reacting force of mechanical tool assisted by hydraulic action could be reduced obviously if the crack with a critical length could be produced by mechanical or hydraulic impact. The experimental results indicated that the peak reacting force could be reduced about 15% assisted by medium water pressure, and quick reduction of reacting force after peak value decreased the specific energy consumption of rock fragmentation by mechanical tool. The crack formation by mechanical or hydraulic impact was the prerequisite to improvement of the ability of combined breakage.

  17. Gear noise, vibration, and diagnostic studies at NASA Lewis Research Center

    Science.gov (United States)

    Zakrajsek, J. J.; Oswald, F. B.; Townsend, D. P.; Coy, J. J.

    1990-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command are involved in a joint research program to advance the technology of rotorcraft transmissions. This program consists of analytical as well as experimental efforts to achieve the overall goals of reducing weight, noise, and vibration, while increasing life and reliability. Recent analytical activities are highlighted in the areas of gear noise, vibration, and diagnostics performed in-house and through NASA and U.S. Army sponsored grants and contracts. These activities include studies of gear tooth profiles to reduce transmission error and vibration as well as gear housing and rotordynamic modeling to reduce structural vibration and transmission and noise radiation, and basic research into current gear failure diagnostic methodologies. Results of these activities are presented along with an overview of near-term research plans in the gear noise, vibration, and diagnostics area.

  18. Nonlinear dynamic analysis of 2-DOF nonlinear vibration isolation floating raft systems with feedback control

    International Nuclear Information System (INIS)

    Li Yingli; Xu Daolin; Fu Yiming; Zhou Jiaxi

    2012-01-01

    In this paper, the average method is adopted to analysis dynamic characteristics of nonlinear vibration isolation floating raft system with feedback control. The analytic results show that the purposes of reducing amplitude of oscillation and complicating the motion can be achieved by adjusting properly the system parameters, exciting frequency and control gain. The conclusions can provide some available evidences for the design and improvement of both the passive and active control of the vibration isolation systems. By altering the exciting frequency and control gain, complex motion of the system can be obtained. Numerical simulations show the system exhibits period vibration, double period vibration and quasi-period motion.

  19. A new design concept of fully grouted rock bolts in underground construction

    Science.gov (United States)

    Phich Nguyen, Quang; Nguyen, Van Manh; Tuong Nguyen, Ke

    2018-04-01

    The main problem after excavating an underground excavation is to maintain the stability of the excavation for a certain period of time. Failure in meeting this demand is a threat to safety of men and equipment. Support and reinforcement are different instruments with different mechanisms. Among the common support systems in tunnelling and mining, rock bolts have been widely used to reinforce rock mass and also to reduce geological hazards. Furthermore rock bolts can be applied under varying different geological conditions with cost-effectiveness. Although different methods are developed for grouted rock bolts design until now, the interaction mechanism of the rock bolts and rock mass is still very complicated issue. The paper addresses an analytical model for the analysis and design of fully grouted rock bolts based on the reinforcement principle. According to this concept the jointed rock mass reinforced by grouted rock bolts is considered as composite material which includes rock mass, the grout material and the bolt shank. The mechanical properties of this composite material depend on the ratio of the components. The closed-form solution was developed based on the assumption that the rock mass arround a circular tunnel remained elastic after installing fully grouted rock bolts. The main parameters of the rock-bolt system (the diameter and length of bolt shank, the space between the bolts) are then easily estimated from the obtained solution.

  20. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S [Sedco forex, Montrouge (France); Malone, D [Anadrill, Sugar Land, TX (United States); Sheppard, M [Schlumberger Cambridge Research, Cambridge (United Kingdom)

    1994-01-01

    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  1. Investigation of active vibration drilling using acoustic emission and cutting size analysis

    Directory of Open Access Journals (Sweden)

    Yingjian Xiao

    2018-04-01

    Full Text Available This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests (DOTs were conducted where the drilling rate-of-penetration (ROP was measured at a series of step-wise increasing static bit thrusts or weight-on-bits (WOBs. Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission (AE system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT (linear variable differential transformer recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP. Keywords: Active bit vibration, Diamond coring drilling, Drill

  2. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  3. An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities

    Science.gov (United States)

    Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie

    2017-11-01

    The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.

  4. Analysis of rotation-vibration relative equilibria on the example of a tetrahedral four atom molecule

    NARCIS (Netherlands)

    Efstathiou, K; Sadovskii, DA; Zhilinskii, BI

    2004-01-01

    We study relative equilibria ( RE) of a nonrigid molecule, which vibrates about a well-defined equilibrium configuration and rotates as a whole. Our analysis unifies the theory of rotational and vibrational RE. We rely on the detailed study of the symmetry group action on the initial and reduced

  5. Evaluation of Massey Ferguson Model 165 Tractor Drivers exposed to whole-body vibration

    Directory of Open Access Journals (Sweden)

    P. Nassiri

    2013-12-01

    Conclusion: This study shows that the need to provide intervention , controlling and managing measures to eliminate or reduce exposure to whole body vibration among tractor drivers its necessary. And, preventing main disorder Including musculoskeletal disorders, discomfort and early fatigue is of circular importance. More studies are also necessary to identify the sources of vibration among various of tractors.

  6. Microseism Induced by Transient Release of In Situ Stress During Deep Rock Mass Excavation by Blasting

    Science.gov (United States)

    Yang, Jianhua; Lu, Wenbo; Chen, Ming; Yan, Peng; Zhou, Chuangbing

    2013-07-01

    During deep rock mass excavation with the method of drill and blast, accompanying the secession of rock fragments and the formation of a new free surface, in situ stress on this boundary is suddenly released within several milliseconds, which is termed the transient release of in situ stress. In this process, enormous strain energy around the excavation face is instantly released in the form of kinetic energy and it inevitably induces microseismic events in surrounding rock masses. Thus, blasting excavation-induced microseismic vibrations in high-stress rock masses are attributed to the combined action of explosion and the transient release of in situ stress. The intensity of stress release-induced microseisms, which depends mainly on the magnitude of the in situ stress and the dimension of the excavation face, is comparable to that of explosion-induced vibrations. With the methods of time-energy density analysis, amplitude spectrum analysis, and finite impulse response (FIR) digital filter, microseismic vibrations induced by the transient release of in situ stress were identified and separated from recorded microseismic signals during a blast of deep rock masses in the Pubugou Hydropower Station. The results show that the low-frequency component in the microseismic records results mainly from the transient release of in situ stress, while the high-frequency component originates primarily from explosion. In addition, a numerical simulation was conducted to demonstrate the occurrence of microseismic events by the transient release of in situ stress, and the results seem to have confirmed fairly well the separated vibrations from microseismic records.

  7. Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-10-28

    Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach is found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.

  8. Signal Processing Methods for Removing the Effects of Whole Body Vibration upon Speech

    Science.gov (United States)

    Bitner, Rachel M.; Begault, Durand R.

    2014-01-01

    Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phases of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech under whole-body vibration is proposed and a method to remove its effect is described. The method described reduces the perceptual effects of vibration, yields higher ASR accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within communication systems to improve radio-communication systems in environments such a spaceflight, aviation, or off-road vehicle operations.

  9. Vibration Damping Via Acoustic Treatment Attached To Vehicle Body Panels

    Science.gov (United States)

    Gambino, Carlo

    Currently, in the automotive industry, the control of noise and vibration is the subject of much research, oriented towards the creation of innovative solutions to improve the comfort of the vehicle and to reduce its cost and weight. This thesis fits into this particular framework, as it aims to investigate the possibility of integrating the functions of sound absorptioninsulation and vibration damping in a unique component. At present the bituminous viscoelastic treatments, which are bonded to the car body panels, take charge of the vibration damping, while the sound absorption and insulation is obtained by means of the poroacoustic treatments. The solution proposed here consists of employing porous materials to perform both these functions, thus allowing the partial or complete removal of the viscoelastic damping treatments from the car body. This should decrease the weight of the vehicle, reducing fuel consumption and emissions, and it might also benefit production costs.

  10. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber

    2016-12-01

    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  11. Vibration control of a cluster of buildings through the Vibrating Barrier

    Science.gov (United States)

    Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.

    2018-02-01

    A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.

  12. The Influence of Tractor-Seat Height above the Ground on Lateral Vibrations

    Directory of Open Access Journals (Sweden)

    Jaime Gomez-Gil

    2014-10-01

    Full Text Available Farmers experience whole-body vibrations when they drive tractors. Among the various factors that influence the vibrations to which the driver is exposed are terrain roughness, tractor speed, tire type and pressure, rear axle width, and tractor seat height above the ground. In this paper the influence of tractor seat height above the ground on the lateral vibrations to which the tractor driver is exposed is studied by means of a geometrical and an experimental analysis. Both analyses show that: (i lateral vibrations experienced by a tractor driver increase linearly with tractor-seat height above the ground; (ii lateral vibrations to which the tractor driver is exposed can equal or exceed vertical vibrations; (iii in medium-size tractors, a feasible 30 cm reduction in the height of the tractor seat, which represents only 15% of its current height, will reduce the lateral vibrations by around 20%; and (iv vertical vibrations are scarcely influenced by tractor-seat height above the ground. The results suggest that manufacturers could increase the comfort of tractors by lowering tractor-seat height above the ground, which will reduce lateral vibrations.

  13. The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise.

    Science.gov (United States)

    Custer, Lisa; Peer, Kimberly S; Miller, Lauren

    2017-05-01

    Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.

  14. Rocks under pressure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-01

    Physicists have used nuclear magnetic resonance to investigate the destructive effects of the crystallization of salt. Salt-weathering is one of the main causes of rock disintegration in nature, particularly in deserts, polar regions and along coastlines. However, it is also a very widespread cause of damage to man-made constructions. Bridges, for example, are attacked by de-icing salts, and cities such as Bahrain, Abu Dhabi and Adelaide are affected by rising damp from high ground-water levels. Indeed, many examples of cultural heritage, including the Islamic sites of Bokhara and Petra in Jordan and the Sphinx in Egypt, may ultimately be destroyed due to the effects of salt-weathering. Now Lourens Rijniers and colleagues at Eindhoven University in the Netherlands have developed a way to observe the solubility of various salts inside porous materials directly (Phys. Rev. Lett. 94 075503). (U.K.)

  15. Rock the Globe

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    Created in 2005, the Swiss rock band "Wind of Change" is now candidate for the Eurovision Song Contest 2011 with a new song " Night & Light " with the music video filmed at CERN.   With over 20 gigs under their belt and two albums already released, the five members of the band (Alex Büchi, vocals; Arthur Spierer, drums; David Gantner, bass; Romain Mage and Yannick Gaudy, guitar) continue to excite audiences. For their latest composition "Night & Light", the group filmed their music video in the Globe of Science and Innovation. Winning the Eurovision contest would be a springboard in their artistic career for these young musicians. The selection results will be available December 11, 2010.      

  16. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  17. Smart accelerometer. [vibration damage detection

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  18. Vibrational excitation from heterogeneous catalysis

    International Nuclear Information System (INIS)

    Purvis, G.D. III; Redmon, M.J.; Woken, G. Jr.

    1979-01-01

    Classical trajectories have been used by numerous researchers to investigate the dynamics of exothermic chemical reactions (atom + diatom) with a view toward understanding what leads to vibrational excitation of the product molecule. Unlike these studies, the case where the reaction is catalyzed by a solid surface is considered. The trajectory studies indicate that there should be conditions under which considerable vibrational energy appears in the product molecules without being lost to the solid during the course of the reaction. 2 figures, 3 tables

  19. Vibrational Spectral Studies of Gemfibrozil

    Science.gov (United States)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  20. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    International Nuclear Information System (INIS)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-01-01

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  1. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  2. Rock Art in Kurdistan Iran

    Directory of Open Access Journals (Sweden)

    Jamal Lahafian

    2013-12-01

    Full Text Available Kurdistan, with great potential and prehistoric resources, has numerous petroglyphs in different areas of the province. During the last 14 years of extensive field study, more than 30 sites of rock art have been identified and introduced by the author. In this article, we summarize these rock art areas in Iranian Kurdistan.

  3. Rockin' around the Rock Cycle

    Science.gov (United States)

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  4. 'Mister Badger' Pushing Mars Rock

    Science.gov (United States)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  5. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Jonas, David M.

    2018-02-01

    Vibrational-electronic resonance in photosynthetic pigment-protein complexes invalidates Förster's adiabatic framework for interpreting spectra and energy transfer, thus complicating determination of how the surrounding protein affects pigment properties. This paper considers the combined effects of vibrational-electronic resonance and inhomogeneous variations in the electronic excitation energies of pigments at different sites on absorption, emission, circular dichroism, and hole-burning spectra for a non-degenerate homodimer. The non-degenerate homodimer has identical pigments in different sites that generate differences in electronic energies, with parameters loosely based on bacteriochlorophyll a pigments in the Fenna-Matthews-Olson antenna protein. To explain the intensity borrowing, the excited state vibrational-electronic eigenvectors are discussed in terms of the vibrational basis localized on the individual pigments, as well as the correlated/anti-correlated vibrational basis delocalized over both pigments. Compared to those in the isolated pigment, vibrational satellites for the correlated vibration have the same frequency and precisely a factor of 2 intensity reduction through vibrational delocalization in both absorption and emission. Vibrational satellites for anti-correlated vibrations have their relaxed emission intensity reduced by over a factor 2 through vibrational and excitonic delocalization. In absorption, anti-correlated vibrational satellites borrow excitonic intensity but can be broadened away by the combination of vibronic resonance and site inhomogeneity; in parallel, their vibronically resonant excitonic partners are also broadened away. These considerations are consistent with photosynthetic antenna hole-burning spectra, where sharp vibrational and excitonic satellites are absent. Vibrational-excitonic resonance barely alters the inhomogeneously broadened linear absorption, emission, and circular dichroism spectra from those for a

  6. Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: Seneca Rocks Discovery Center, Seneca Rocks, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Kiatreungwattana, Kosol [National Renewable Energy Lab. (NREL), Golden, CO (United States); Salasovich, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kandt, Alicen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-22

    As part of ongoing efforts by the U.S. Forest Service to reduce energy use and incorporate renewable energy technologies into its facilities, the Department of Energy's National Renewable Energy Laboratory performed an energy efficiency and renewable energy site assessment of the Seneca Rocks Discovery Center in Seneca Rocks, West Virginia. This report documents the findings of this assessment, and provides site-specific information for the implementation of energy and water conservation measures, and renewable energy measures.

  7. Rock suitability classification RSC 2012

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, T. (ed.) [McEwen Consulting, Leicester (United Kingdom); Kapyaho, A. [Geological Survey of Finland, Espoo (Finland); Hella, P. [Saanio and Riekkola, Helsinki (Finland); Aro, S.; Kosunen, P.; Mattila, J.; Pere, T.

    2012-12-15

    This report presents Posiva's Rock Suitability Classification (RSC) system, developed for locating suitable rock volumes for repository design and construction. The RSC system comprises both the revised rock suitability criteria and the procedure for the suitability classification during the construction of the repository. The aim of the classification is to avoid such features of the host rock that may be detrimental to the favourable conditions within the repository, either initially or in the long term. This report also discusses the implications of applying the RSC system for the fulfilment of the regulatory requirements concerning the host rock as a natural barrier and the site's overall suitability for hosting a final repository of spent nuclear fuel.

  8. Rock suitability classification RSC 2012

    International Nuclear Information System (INIS)

    McEwen, T.; Kapyaho, A.; Hella, P.; Aro, S.; Kosunen, P.; Mattila, J.; Pere, T.

    2012-12-01

    This report presents Posiva's Rock Suitability Classification (RSC) system, developed for locating suitable rock volumes for repository design and construction. The RSC system comprises both the revised rock suitability criteria and the procedure for the suitability classification during the construction of the repository. The aim of the classification is to avoid such features of the host rock that may be detrimental to the favourable conditions within the repository, either initially or in the long term. This report also discusses the implications of applying the RSC system for the fulfilment of the regulatory requirements concerning the host rock as a natural barrier and the site's overall suitability for hosting a final repository of spent nuclear fuel

  9. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  10. ROCK inhibitors in ocular disease

    Directory of Open Access Journals (Sweden)

    Eva Halasz

    2016-12-01

    Full Text Available Rho kinases (ROCKs have a crucial role in actin-cytoskeletal reorganization and thus are involved in broad aspects of cell motility, from smooth muscle contraction to neurite outgrowth. The first marketed ROCK inhibitor, called fasudil, has been used safely for treatment of cerebral vasospasm since 1995 in Japan. During the succeeding decades ROCK inhibitors have been applied in many pathological conditions from central nervous system disorders to cardiovascular disease as potential therapeutic agents or experimental tools to help understand the underlying (pathomechanisms. In 2014, a fasudil derivate named ripasudil was accepted for clinical use in glaucoma and ocular hypertension. Since ROCK kinases are widely expressed in ocular tissues, they have been implicated in the pathology of many ocular conditions such as corneal dysfunction, glaucoma, cataract, diabetic retinopathy, age-related macular degeneration, and retinal detachment. This paper aims to provide an overview of the most recent status/application of ROCK inhibitors in the field of eye disease.

  11. Application of rock mechanics in opencast mining

    Energy Technology Data Exchange (ETDEWEB)

    Desurmont, M; Feuga, B

    1979-07-01

    The significance of opencast mining in the world today is mentioned. With the exception of coal, opencast workings provide approximately 80% of output. The importance of opencast has continued to increase over the last ten years. Access to the mineral usually necessitates the removal of large quantities of rock. The aim is to reduce the quantity of the latter as much as possible in order to minimize the dirt/mineral ratio. For this purpose use has been made of the operating techniques of rock mechanics in order to determine the optimum dimensions of the access trench compatible with safety requirements. The author illustrates this technique by means of three examples: the Luzenac talc workings, the Mont-Roc fluorine workings and the Big Hole at Kimberley.

  12. Experiments at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small particles

  13. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  14. Nonlinear transverse vibrations of elastic beams under tension

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Konno, Kimiaki; Wadati, Miki.

    1980-02-01

    Nonlinear transverse vibrations of elastic beams under end-thrust have been examined with full account of the rigorous nonlinear relation of curvature and deformation of elastic beams. When the beams are subject to tension, the derived equation is shown to be reduced to one of the new integrable evolution equations discovered by us. (author)

  15. Classical Analysis of the Shear Vibration Characteristics of an ...

    African Journals Online (AJOL)

    For harmonic displacement response, it was found that the governing partial differential equation reduces to an ordinary differential equation of the Bessel type. This was then solved, subject to the boundary conditions, to obtain the modal shape functions and natural frequencies of vibration. The shear stress distribution ...

  16. Influence of microparticle size on cavitation noise during ultrasonic vibration

    Directory of Open Access Journals (Sweden)

    H. Ge

    2015-09-01

    Full Text Available The cavitation noise in the ultrasonic vibration system was found to be influenced by the size of microparticles added in water. The SiO2 microparticles with the diameter smaller than 100 μm reduced the cavitation noise, and the reason was attributed to the constrained oscillation of the cavitation bubbles, which were stabilized by the microparticles.

  17. Analysis of radial vibrations of poroelastic circular cylindrical shells ...

    African Journals Online (AJOL)

    DR OKE

    vanished, the considered problem reduces to the problem of radial vibrations of fluid-filled poroelastic circular cylindrical shell. (2). When the .... the volume change of the solid to that of liquid. ..... When the outer fluid density is zero, that is, ρof = 0 then the poroelastic cylindrical shell immersed in an acoustic medium will.

  18. Vibrations in a Multi-Storey Lightweight Building Structure

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Kirkegaard, Poul Henning

    2013-01-01

    This paper provides a quantification of the changes in vibration level that can be expected in a lightweight multi-storey wooden building due to reduced connection stiffness or added nonstructural mass. Firstly, the impact of changes in the floor-to-wall connections is examined. Secondly, a study...

  19. Tracer transport in fractured rocks

    International Nuclear Information System (INIS)

    Tsang, C.F.; Tsang, Y.W.; Hale, F.V.

    1988-07-01

    Recent interest in the safety of toxic waste underground disposal and nuclear waste geologic repositories has motivated many studies of tracer transport in fractured media. Fractures occur in most geologic formations and introduce a high degree of heterogeneity. Within each fracture, the aperture is not constant in value but strongly varying. Thus for such media, tracer tends to flow through preferred flowpaths or channels within the fractures. Along each of these channels, the aperture is also strongly varying. A detailed analysis is carried out on a 2D single fracture with variable apertures and the flow through channels is demonstrated. The channels defined this way are not rigidly set pathways for tracer transport, but are the preferred flow paths in the sense of stream-tubes in the potential theory. It is shown that such variable-aperture channels can be characterized by an aperture probability distribution function, and not by the exact deterministic geometric locations. We also demonstrate that the 2D tracer transport in a fracture can be calculated by a model of a system of 1D channels characterized by this distribution function only. Due to the channeling character of tracer transport in fractured rock, random point measurements of tracer breakthrough curves may give results with a wide spread in value due to statistical fluctuations. The present paper suggests that such a wide spread can probably be greatly reduced by making line/areal (or multiple) measurements covering a few spatial correlation lengths. 13 refs., 11 figs., 1 tab

  20. Dissecting the roles of ROCK isoforms in stress-induced cell detachment.

    Science.gov (United States)

    Shi, Jianjian; Surma, Michelle; Zhang, Lumin; Wei, Lei

    2013-05-15

    The homologous Rho kinases, ROCK1 and ROCK2, are involved in stress fiber assembly and cell adhesion and are assumed to be functionally redundant. Using mouse embryonic fibroblasts (MEFs) derived from ROCK1(-/-) and ROCK2(-/-) mice, we have recently reported that they play different roles in regulating doxorubicin-induced stress fiber disassembly and cell detachment: ROCK1 is involved in destabilizing the actin cytoskeleton and cell detachment, whereas ROCK2 is required for stabilizing the actin cytoskeleton and cell adhesion. Here, we present additional insights into the roles of ROCK1 and ROCK2 in regulating stress-induced impairment of cell-matrix and cell-cell adhesion. In response to doxorubicin, ROCK1(-/-) MEFs showed significant preservation of both focal adhesions and adherens junctions, while ROCK2(-/-) MEFs exhibited impaired focal adhesions but preserved adherens junctions compared with the wild-type MEFs. Additionally, inhibition of focal adhesion or adherens junction formations by chemical inhibitors abolished the anti-detachment effects of ROCK1 deletion. Finally, ROCK1(-/-) MEFs, but not ROCK2(-/-) MEFs, also exhibited preserved central stress fibers and reduced cell detachment in response to serum starvation. These results add new insights into a novel mechanism underlying the anti-detachment effects of ROCK1 deletion mediated by reduced peripheral actomyosin contraction and increased actin stabilization to promote cell-cell and cell-matrix adhesion. Our studies further support the differential roles of ROCK isoforms in regulating stress-induced loss of central stress fibers and focal adhesions as well as cell detachment.

  1. Strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoting; Wang, Rong Hui; Chen, Li; Dong, Chung Uang [School of Civil Engineering and Transportation, South China University of Technology, Guangzhou (China)

    2016-08-15

    This article investigated the strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections. The von Karman nonlinear strain-displacement relationships are applied. The nonlinear vibration of stiffened plate is reduced to a one-degree-of-freedom nonlinear system by assuming mode shapes. The Multiple scales Lindstedt-Poincare method (MSLP) and Modified Lindstedt-Poincare method (MLP) are used to solve the governing equations of vibration. Numerical examples for stiffened plates with different initial geometric imperfections are presented in order to discuss the influences to the strongly nonlinear free vibration of the stiffened plate. The results showed that: the frequency ratio reduced as the initial geometric imperfections of plate increased, which showed that the increase of the initial geometric imperfections of plate can lead to the decrease of nonlinear effect; by comparing the results calculated by MSLP method, using MS method to study strongly nonlinear vibration can lead to serious mistakes.

  2. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization

    Science.gov (United States)

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.

    2018-03-01

    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  3. A structural behavior study of rock caverns considering the effects of discontinuities

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kim, Sun Hoon; Seo, Jeong Moon; Choi, Kyu Seop; Kim, Dae Hong; Lee, Kyung Jin; Choi, In Gil; Lee, Dong Yong

    1990-06-01

    The objective of this study is to understand the effects of discontinuities within rock masses on the structural behavior of underground rock caverns for radioactive waste disposal, and then develop a computer program for the structural analysis of rock caverns considering these effect of discontinuities. The behavior of rock masses, such as strength, deformation modes, ect., is very difficult to predict because discontinuities in the form of microcracks or joints are randomly distributed within rock masses. Discontinuties existing around the rock cavern for underground radioactive waste disposal may become the main transport pathways of radionuclides, and reduce the strength of rock masses eventually causing the rock cavern structure unstable. Therefore, a comprehensive understanding of the mechanical properties and behavior of discontinuous rock masses and an improvement of structural analysis methods are essential in order to understand the behavior of underground rock cavern structures properly in order to design safe and economic understanding the behavior of discontinuous rock masses is essential. Therfore, this study includes literature review on mechanical properties of and computational models for discontinuous rock masses, and on structures. Then, bases on the engineering judgement a suitable selection and slight modifications on computational models and analysis methods have been made before developing the structural analysis computer program for underground radioactive waste disposal structures. (author)

  4. Adaptive learning algorithms for vibration energy harvesting

    International Nuclear Information System (INIS)

    Ward, John K; Behrens, Sam

    2008-01-01

    By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27–34%

  5. 16 x 16 Vantage+ Fuel Assembly Flow Vibrational Testing

    International Nuclear Information System (INIS)

    Chambers, Martin; Kurincic, Bojan

    2014-01-01

    Nuklearna Elektrarna Krsko (NEK) has experienced leaking fuel after increasing the cycle duration to 18 months. The leaking fuel mechanism has predominantly been consistent over multiple cycles and is typically observed in highly irradiated Fuel Assemblies (FA) after around 4 years of continuous operation that were located at the core periphery (baffle). The cause of the leaking fuel is due to Grid-To-Rod-Fretting (GRTF) and occasional debris fretting. NEK utilises a 16x16 Vantage+ FA design with all Inconel structural mixing vane grids (8 in total), Zirlo thimbles, Integral Fuel Burnable Absorber (IFBA) rods with enriched ZrB2, enriched Annular Blanket, Debris Filter Bottom Nozzle (DFBN), Removable Top Nozzle (RTN) and Zirlo fuel cladding material with a high burnup capability of 60 GWD/MTU. Numerous design and operational changes are thought to have reduced the original 16x16 FA design margin to fretting resistance of either vibration or its wear work rate, such as significant power uprate (spring force loss, rod creep down...), operational cycle duration increase from 12 to 18 months (increasing residence time as well as lead FA and fuel rod burnup values), Reactor Coolant System flow increase (increased vibration), removal of Thimble Plugs (increased bypass flow, increased vibration) and Zirc-4 to Zirlo cladding change (decreasing wear work rate). The fuel rod to grid spring as well as dimple contact areas are relatively smaller than other FA designs that exhibit good in-reactor fretting performance. A FA design change project to address the small rod to dimple / spring contact area and utilise fuel cladding oxide coating is currently being pursued with the fuel supplier. The FA vibrational properties are very important to the in-reactor FA performance and reliability. The 16x16 Vantage+ vibrational testing was performed with a full size FA in the Fuel Assembly Compatibility Testing (FACTS) loop that is able to provide full flow rates at elevated temperature

  6. They will rock you!

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    On 30 September, CERN will be the venue for one of the most prestigious events of the year: the concert for the Bosons&More event, the Organization’s celebration of the remarkable performance of the LHC and all its technical systems, as well as the recent fundamental discoveries. Topping the bill will be the Orchestre de la Suisse Romande, the CERN Choir, the Zürcher Sing-Akademie and the Alan Parsons Live Project rock group, who have joined forces to create an unforgettable evening’s entertainment.   The Orchestre de la Suisse Romande, directed by Maestro Neeme Järvi, artistic and musical director of the OSR. (Image: Grégory Maillot). >>> From the Orchestre de la Suisse Romande… Henk Swinnen, General Manager of the Orchestre de la Suisse Romande (OSR), answers some questions for the CERN Bulletin, just a few days before the event. How did this project come about? When CERN invited us to take part in the B...

  7. Rock salt constitutive modeling

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1980-01-01

    The Serata model is the best operational model available today because it incorporates: (1) a yield function to demarcate between viscoelastic and viscoplastic behavior of rock salt; (2) a pressure and temperature dependence for yield stresses; and (3) a standard linear solid, which can be readily extended into the non-linear regime, to represent creep behavior. Its only deficiencies appear to be the lack of secondary creep behavior (a free dashpot) and some unsettling arbitrariness about the Poisson's ratio (ν → 0.5) argument for viscoplasticity. The Sandia/WIPP model will have good primary and secondary creep capability, but lacks the viscoplastic behavior. In some cases, estimated inelastic strains may be underpredicted. If a creep acceleration mechanism associated with brine inclusions is observed, this model may require extensive revision. Most of the other models available (SAI, RE-SPEC, etc.) are only useful for short-term calculations, because they employ temporal power law (t/sup n/) primary creep representations. These models are unsatisfactory because they cannot represent dual mechanisms with differing characteristic times. An approach based upon combined creep and plasticity is recommended in order to remove the remaining deficiency in the Serata model. DOE/Sandia/WIPP should be encouraged to move aggressively in this regard

  8. Research into basic rocks types

    International Nuclear Information System (INIS)

    1993-06-01

    Teollisuuden Voima Oy (TVO) has carried out research into basic rock types in Finland. The research programme has been implemented in parallel with the preliminary site investigations for radioactive waste disposal in 1991-1993. The program contained two main objectives: firstly, to study the properties of the basic rock types and compare those with the other rock types under the investigation; secondly, to carry out an inventory of rock formations consisting of basic rock types and suitable in question for final disposal. A study of environmental factors important to know regarding the final disposal was made of formations identified. In total 159 formations exceeding the size of 4 km 2 were identified in the inventory. Of these formations 97 were intrusive igneous rock types and 62 originally extrusive volcanic rock types. Deposits consisting of ore minerals, industrial minerals or building stones related to these formations were studied. Environmental factors like natural resources, protected areas or potential for restrictions in land use were also studied

  9. Aqueous Alteration of Endeavour Crater Rim Apron Rocks

    Science.gov (United States)

    Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; Grant, J. A., III; Jolliff, B. L.; Parker, T. J.; Peretyazhko, T.

    2014-12-01

    Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis

  10. Vibration of carbon nanotubes with defects: order reduction methods

    Science.gov (United States)

    Hudson, Robert B.; Sinha, Alok

    2018-03-01

    Order reduction methods are widely used to reduce computational effort when calculating the impact of defects on the vibrational properties of nearly periodic structures in engineering applications, such as a gas-turbine bladed disc. However, despite obvious similarities these techniques have not yet been adapted for use in analysing atomic structures with inevitable defects. Two order reduction techniques, modal domain analysis and modified modal domain analysis, are successfully used in this paper to examine the changes in vibrational frequencies, mode shapes and mode localization caused by defects in carbon nanotubes. The defects considered are isotope defects and Stone-Wales defects, though the methods described can be extended to other defects.

  11. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  12. Machinery Vibration Monitoring Program at the Savannah River Site

    International Nuclear Information System (INIS)

    Potvin, M.M.

    1990-01-01

    The Reactor Maintenance's Machinery Vibration Monitoring Program (MVMP) plays an essential role in ensuring the safe operation of the three Production Reactors at the Westinghouse Savannah River Company (WRSC) Savannah River Site (SRS). This program has increased machinery availability and reduced maintenance cost by the early detection and determination of machinery problems. This paper presents the Reactor Maintenance's Machinery Vibration Monitoring Program, which has been documented based on Electric Power Research Institute's (EPRI) NP-5311, Utility Machinery Monitoring Guide, and some examples of the successes that it has enjoyed

  13. Time average vibration fringe analysis using Hilbert transformation

    International Nuclear Information System (INIS)

    Kumar, Upputuri Paul; Mohan, Nandigana Krishna; Kothiyal, Mahendra Prasad

    2010-01-01

    Quantitative phase information from a single interferogram can be obtained using the Hilbert transform (HT). We have applied the HT method for quantitative evaluation of Bessel fringes obtained in time average TV holography. The method requires only one fringe pattern for the extraction of vibration amplitude and reduces the complexity in quantifying the data experienced in the time average reference bias modulation method, which uses multiple fringe frames. The technique is demonstrated for the measurement of out-of-plane vibration amplitude on a small scale specimen using a time average microscopic TV holography system.

  14. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  15. Structural and vibrational studies of clean and chemisorbed metal surfaces

    International Nuclear Information System (INIS)

    Jiang, Qing-Tang.

    1992-01-01

    Using Medium Energy Ion Scattering, we have studied the structural and vibrational properties of a number of clean and chemisorbed metal surfaces. The work presented in this thesis is mainly of a fundamental nature. However, it is believed that an atomistic understanding of the forces that affect surface structural and vibrational properties can have a beneficial impact on a large number of areas of applied nature. We find that the surface structure of Cu(001) follows the common trend for metal surfaces, where a small oscillatory relaxation exists beginning with a slight contraction in the top layer. In addition, the surface vibrational amplitude is enhanced (as s usually the case) by ∼80%. A detailed analysis of our data shows an unexpected anisotropy of the vibrational amplitude, such that the out-of-plane vibrational amplitude is 30% smaller than the in-plane vibrational amplitude. The unexpected results may imply a large tensile stress on Cu(001). Upon adsorption of 1/4 of a monolayer of S, a p(2 x 2)-S/Cu(001) surface is created. This submonolayer amount of S atoms makes the surface bulk-like, in which the anisotropy of the surface vibrations is removed and the first interlayer contraction is lifted. By comparing our model to earlier contradictory results on this controversial system. We find excellent agreement with a recent LEED study. The presence of 0.1 monolayer of Ca atoms on the Au(113) surface induces a drastic atomic rearrangements, in which half of the top layer Au atoms are missing and a (1 x 2) symmetry results. In addition, the first interlayer spacing of Au(113) is significantly reduced. Our results are discussed in terms of the energy balance between competing surface electronic charge densities

  16. Active Blade Vibration Control Being Developed and Tested

    Science.gov (United States)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  17. Nonlinear Vibration of Ladle Crane due to a Moving Trolley

    Directory of Open Access Journals (Sweden)

    Yunsheng Xin

    2018-01-01

    Full Text Available The structural vibration of the main beam of a crane causes fatigue damage and discomfort to the driver. The swing of the payload has an effect on positioning precision, especially for a ladle crane, and this directly affects production safety. To study the influence of system parameters on the vibration of a crane’s main beam and the angle of the payload, a system consisting of the main beam, trolley, payload, and cabin was constructed. A rigid-flexible coupling dynamic model of a moving trolley with a hanging payload that moves on the flexible main beam with a concentrated cabin mass is established, and the direct integration method is used to solve the nonlinear differential equations of system vibration, which are obtained through Lagrange’s equation. Then, the time domain responses of the flexible main beam, payload angle, and cabin vibration are obtained. The influences of the trolley running speed, quality of the payload, and quality and position of the cabin on the vibration of the main beam and payload angle are analyzed. The results indicate that the amplitude of the main beam is directly proportional to the quality of the trolley, payload, and cab; the position of the cabin is closer to the mid-span; the amplitude of the main beam is larger; the structural damping has some influence on the vibration of the main beam; and the swing angle of the payload is related to the maximum running speed of the trolley, acceleration time, and length of the wire rope. In order to reduce the vibration of the main beam and cabin, the connection stiffness of the cabin should be ensured during installation.

  18. PC based vibration monitoring system

    International Nuclear Information System (INIS)

    Jain, Sanjay K.; Roy, D.A.; Pithawa, C.K.; Patil, R.K.

    2004-01-01

    Health of large rotating machinery gets reflected in the vibration signature of the rotor and supporting structures and proper recording of these signals and their analysis can give a clear picture of the health of the machine. Using these data and their trending, it is possible to predict an impending trouble in the machine so that preventive action can be taken in time and catastrophic failure can be avoided. Continuous monitoring and analysis can give quick warning and enable operator to take preventive measures. Reactor Control Division, BARC is developing a PC based Vibration monitoring system for turbo generator machinery. The System can acquire 20 vibration signals at a rate of 5000 samples per second and also 15 process signals at a rate of 100 samples/ sec. The software for vibration monitoring system includes acquisition modules, analysis modules and Graphical User Interface module. The acquisition module involves initialization, setting of required parameters and acquiring the data from PC-based data acquisition cards. The acquired raw vibration data is then stored for analysis using various software packages. The display and analysis of acquired data is done in LabVIEW 7.0 where the data is displayed in time as well as frequency domain along with the RMS value of the signal. (author)

  19. B (E2) values of transitions from kπ= 0+→ 2+ vibrational bands in some well deformed heavy nuclei

    International Nuclear Information System (INIS)

    Singh, M.; Varshney, Mani; Gupta, D.K.; Bihari, Chhail; Singh, Yuvraj; Varshney, A.K.; Gupta, K.K

    2009-01-01

    There is simultaneous reduced B (E2) values of low-lying K π= 0 + → 2 + states, indicating a beta vibration like structure as well as the two particle transfer cross-section which suggest a pairing vibration like character and interpreted that low-lying k π= 0 + → 2 + resonance are classical beta vibrations. Recently, similar doubts about the origin of beta vibrations from surface oscillation have also been published

  20. Applying Low-Frequency Vibration for the Experimental Investigation of Clutch Hub Forming

    Directory of Open Access Journals (Sweden)

    De’an Meng

    2018-05-01

    Full Text Available A vibration-assisted plastic-forming method was proposed, and its influence on clutch hub forming process was investigated. The experiments were conducted on a vibration-assisted hydraulic extrusion press with adjustable frequency and amplitude. Vibration frequency and amplitude were considered in investigating the effect of vibration on forming load and surface quality. Results showed that applying vibration can effectively reduce forming force and improve surface quality. The drop in forming load was proportional to the vibration frequency and amplitude, and the load decreased by up to 25%. Such reduction in forming load raised with amplitude increase because the increase in amplitude would accelerate punch relative speed, which then weakened the adhesion between workpiece and dies. By increasing the vibration frequency, the punch movement was enhanced, and the number of attempts to drag the lubricant out of the pits was increased. In this manner, the lubrication condition was improved greatly. The 3D surface topography testing confirmed the assumption. Moreover, vibration frequency exerted a more significant effect on the forming load reduction than vibration amplitude.

  1. Multiverso: Rock'n'Astronomy

    Science.gov (United States)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  2. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  3. Test procedures for salt rock

    International Nuclear Information System (INIS)

    Dusseault, M.B.

    1985-01-01

    Potash mining, salt mining, design of solution caverns in salt rocks, disposal of waste in salt repositories, and the use of granular halite backfill in underground salt rock mines are all mining activities which are practised or contemplated for the near future. Whatever the purpose, the need for high quality design parameters is evident. The authors have been testing salt rocks in the laboratory in a number of configurations for some time. Great care has been given to the quality of sample preparation and test methodology. This paper describes the methods, presents the elements of equipment design, and shows some typical results

  4. Registration and processing of acoustic signal in rock drilling

    Directory of Open Access Journals (Sweden)

    Futó Jozef

    2002-03-01

    Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Košice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research

  5. Fluid and rock interaction in permeable volcanic rock

    International Nuclear Information System (INIS)

    Lindley, J.I.

    1985-01-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K 2 O as much as 130% of their original values at the expense of Na 2 O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta 18 O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta 18 of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals

  6. Time and space domain separation of pulsed X-ray beams diffracted from vibrating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nosik, V. L., E-mail: v-nosik@yandex.ru, E-mail: nosik@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)

    2016-11-15

    It is known that a set of additional reflections (satellites) may arise on rocking curves in the case of X-ray diffraction in the Bragg geometry from crystals where high-frequency ultrasonic vibrations are excited. It is shown that, under certain conditions, the pulse wave fields of the satellites and main reflection may be intersected in space (playing the role of pump and probe beams) and in time (forming interference superlattices).

  7. Effect of Micro-Structure on Fatigue Behavior of Intact Rocks under Completely Reversed Loading

    Directory of Open Access Journals (Sweden)

    Saeed Jamali Zavareh

    2017-01-01

    Full Text Available Rock formations and structures can be subjected to both static and dynamic loadings. Static loadings resulting from different sources such as gravity and tectonic forces and dynamic forces are intermittently transmitted via vibrations of the earth’s crust, through major earthquakes, rock bursts, rock blasting and drilling and also, traffic. Reaction of rocks to cyclic and repetitive stresses resulting from dynamic loads has been generally neglected with the exception of a few rather limited studies. In this study, , two crystalline quarry stones in Iran; (Natanz gabbro and Green onyx and one non-crystalline rock (Asmari limestone are used to evaluate the effect of micro-structure of intact rock on fatigue behavior. These rocks have different mineral compositions and formation conditions. A new apparatus based on rotating beam fatigue testing machine (R.R.Moore, which is commonly used for laboratory fatigue test in metals, is developed and fatigue behavior and existence of the endurance limit were evaluated for the mentioned rocks based on stress-life method. The obtained results in the variation of applied amplitude stress versus loading cycle number (S-N diagram followed common relationship in other materials. In addition, the endurance limit is perceived for all tested rocks. The results also illustrated that the endurance limits for all types of tested rocks in this study are ranged between 0.4 and 0.6 of their tensile strengths. The endurance limit to tensile strength fraction of green onyx and Natanz gabbro were approximated in a higher value compared to the Asmari limestone with non-crystalline micro-structure.

  8. Task-specific recruitment of motor units for vibration damping.

    Science.gov (United States)

    Wakeling, James M; Liphardt, Anna-Maria

    2006-01-01

    Vibrations occur within the soft tissues of the lower extremities due to the heel-strike impact during walking. Increases in muscle activity in the lower extremities result in increased damping to reduce this vibration. The myoelectric intensity spectra were compared using principal component analysis from the tibialis anterior and lateral gastrocnemius of 40 subjects walking with different shoe conditions. The soft insert condition resulted in a significant, simultaneous increase in muscle activity with a shift to higher myoelectric frequencies in the period 0-60 ms after heel-strike which is the period when the greater vibration damping occurred. These increases in myoelectric frequency match the spectral patterns which indicate increases in recruitment of faster motor units. It is concluded that fast motor units are recruited during the task of damping the soft-tissue resonance that occurs following heel-strike.

  9. Application of Sub-Micrometer Vibrations to Mitigate Bacterial Adhesion

    Directory of Open Access Journals (Sweden)

    Will R. Paces

    2014-03-01

    Full Text Available As a prominent concern regarding implantable devices, eliminating the threat of opportunistic bacterial infection represents a significant benefit to both patient health and device function. Current treatment options focus on chemical approaches to negate bacterial adhesion, however, these methods are in some ways limited. The scope of this study was to assess the efficacy of a novel means of modulating bacterial adhesion through the application of vibrations using magnetoelastic materials. Magnetoelastic materials possess unique magnetostrictive property that can convert a magnetic field stimulus into a mechanical deformation. In vitro experiments demonstrated that vibrational loads generated by the magnetoelastic materials significantly reduced the number of adherent bacteria on samples exposed to Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus suspensions. These experiments demonstrate that vibrational loads from magnetoelastic materials can be used as a post-deployment activated means to deter bacterial adhesion and device infection.

  10. Flow induced vibrations in a PWR piping system

    International Nuclear Information System (INIS)

    Seligmann, D.C.; Guillou, J.P.

    1995-01-01

    In this paper, we present and industrial study of the dynamic behaviour of the piping system of a French 1300 M We nuclear power plant. High-amplitude vibrations had been noticed on a safeguard system during the periodical operation startup tests. These vibrations, due to acoustical pump sources, cause fatigue-damage and it is therefore necessary to propose an estimation of the service-life of the piping and to propose modification of piping system to reduce vibrations. First, we define a mechanical model readjusted according to gauged vibratory speeds and construct a vibro-acoustic coupled model and a pump-behaviour model as a source of excitation. Second, we simulate a modification of the supports. The influence of this modification is analysed by comparison of the root mean square values of vibratory speeds and the stresses between the initial system and the modified system. 3 refs., 7 figs

  11. Vibration condition measure instrument of motor using MEMS accelerometer

    Science.gov (United States)

    Chen, Jun

    2018-04-01

    In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.

  12. Flow induced vibration of secondary piping of LMFBR

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    This paper presents a method for evaluating the characteristics of vibrations caused by internal flow in three-dimensional piping systems conveying high density fluids. The excitation of the circuit is mainly caused by the flow singularities, and it is shown that the problem may be reduced to calculate the response of the circuit to an acoustical pressure discontinuity, localised at each flow singularity. The paper is divided into two main parts: First part is devoted to the theoretical formulation of the coupled acoustical-mechanical problem and to its numerical solution by the french computer code TEDEL. Second part describes an experimental test of the method. The tested piping system consists of a stainless steel tube circuit comprising four 909 bends, conveying water. Vibrations are excited by a half closed gate valve. Satisfactory results are obtained concerning both the frequencies of resonance of the circuit and the level of the vibrations observed

  13. Energy-dependent collisional deactivation of vibrationally excited azulene

    International Nuclear Information System (INIS)

    Shi, J.; Barker, J.R.

    1988-01-01

    Collisional energy transfer parameters for highly vibrationally excited azulene have been deduced from new infrared fluorescence (IRF) emission lifetime data with an improved calibration relating IRF intensity to vibrational energy [J. Shi, D. Bernfeld, and J. R. Barker, J. Chem. Phys. 88, XXXX (1988), preceding paper]. In addition, data from previous experiments [M. J. Rossi, J. R. Pladziewicz, and J. R. Barker, J. Chem. Phys. 78, 6695 (1983)] have been reanalyzed based on the improved calibration. Inversion of the IRF decay curves produced plots of energy decay, which were analyzed to determine , the average energy transferred per collision. Master equation simulations reproduced both the original IRF decays and the deduced energy decays. A third (simple) method of determination agrees well with the other two. The results show to be nearly directly proportional to the vibrational energy of the excited azulene from ∼8000 to 33 000 cm -1 . At high energies, there are indications that the energy dependence may be slightly reduced

  14. Terahertz thickness determination with interferometric vibration correction for industrial applications.

    Science.gov (United States)

    Pfeiffer, Tobias; Weber, Stefan; Klier, Jens; Bachtler, Sebastian; Molter, Daniel; Jonuscheit, Joachim; Von Freymann, Georg

    2018-05-14

    In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.

  15. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  16. Apollo rocks, fines and soil cores

    Science.gov (United States)

    Allton, J.; Bevill, T.

    Apollo rocks and soils not only established basic lunar properties and ground truth for global remote sensing, they also provided important lessons for planetary protection (Adv. Space Res ., 1998, v. 22, no. 3 pp. 373-382). The six Apollo missions returned 2196 samples weighing 381.7 kg, comprised of rocks, fines, soil cores and 2 gas samples. By examining which samples were allocated for scientific investigations, information was obtained on usefulness of sampling strategy, sampling devices and containers, sample types and diversity, and on size of sample needed by various disciplines. Diversity was increased by using rakes to gather small rocks on the Moon and by removing fragments >1 mm from soils by sieving in the laboratory. Breccias and soil cores are diverse internally. Per unit weight these samples were more often allocated for research. Apollo investigators became adept at wringing information from very small sample sizes. By pushing the analytical limits, the main concern was adequate size for representative sampling. Typical allocations for trace element analyses were 750 mg for rocks, 300 mg for fines and 70 mg for core subsamples. Age-dating and isotope systematics allocations were typically 1 g for rocks and fines, but only 10% of that amount for core depth subsamples. Historically, allocations for organics and microbiology were 4 g (10% for cores). Modern allocations for biomarker detection are 100mg. Other disciplines supported have been cosmogenic nuclides, rock and soil petrology, sedimentary volatiles, reflectance, magnetics, and biohazard studies . Highly applicable to future sample return missions was the Apollo experience with organic contamination, estimated to be from 1 to 5 ng/g sample for Apollo 11 (Simonheit &Flory, 1970; Apollo 11, 12 &13 Organic contamination Monitoring History, U.C. Berkeley; Burlingame et al., 1970, Apollo 11 LSC , pp. 1779-1792). Eleven sources of contaminants, of which 7 are applicable to robotic missions, were

  17. On generalized fractional vibration equation

    International Nuclear Information System (INIS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-01-01

    Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.

  18. General vibration monitoring: Experimental hall

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1993-01-01

    The reported vibration data were generated from measurements made on the experimental hall floor on December 2, 1992. At the time of the measurements, the ESRF hydrolevel was set-up in the Early Assembly Area (EAA) of the experimental hall and was being used to measure static displacement (settlement) of the floor. The vibration measurement area was on and adjacent to the EAA, in the vicinity of the ESRF hydrolevel test which was in progress. This report summarizes the objectives, instrumentation, measurement locations, observations, and conclusions, and provides selected results in the form of RMS vs. time plots, and power spectral densities from which frequency information can be derived. Measured response amplitudes were within the vibration criteria established for the APS

  19. Vibration Analysis Of Automotive Structures Using Holographic Interferometry

    Science.gov (United States)

    Brown, G. M.; Wales, R. R.

    1983-10-01

    Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.

  20. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    Science.gov (United States)

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  1. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Seung-Bok Choi

    2013-02-01

    Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  2. Entropy for Mechanically Vibrating Systems

    Science.gov (United States)

    Tufano, Dante

    The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators

  3. Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body

    Science.gov (United States)

    Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai

    2018-04-01

    This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.

  4. Comparison of Some Blast Vibration Predictors for Blasting in Underground Drifts and Some Observations

    Science.gov (United States)

    Bhagwat, Vaibhab Pramod; Dey, Kaushik

    2016-04-01

    Drilling and blasting are the most economical excavation techniques in underground drifts driven through hard rock formation. Burn cut is the most popular drill pattern, used in this case, to achieve longer advance per blast round. The ground vibration generated due to the propagation of blast waves on the detonation of explosive during blasting is the principal cause for structural and rock damage. Thus, ground vibration is a point of concern for the blasting engineers. The ground vibration from a blast is measured using a seismograph placed at the blast monitoring station. The measured vibrations, in terms of peak particle velocity, are related to the maximum charge detonated at one instant and the distance of seismograph from the blast point. The ground vibrations from a number of blast rounds of varying charge/delay and distances are monitored. A number of scaling factors of these dependencies (viz. Distance and maximum charge/delay) have been proposed by different researchers, namely, square root, cube root, CMRI, Langefors and Kihlstrom, Ghosh-Daemon, Indian standard etc. Scaling factors of desired type are computed for all the measured blast rounds. Regression analysis is carried out between the scaling factors and peak particle velocities to establish the coefficients of the vibration predictor equation. Then, the developed predictor equation is used for designing the blast henceforth. Director General of Mine Safety, India, specified that ground vibrations from eight to ten blast rounds of varying charge/delay and distances should be monitored to develop a predictor equation; however, there is no guideline about the type of scaling factor to be used. Further to this, from the statistical point of view, a regression analysis on a small sample population cannot be accepted without the testing of hypothesis. To show the importance of the above, in this paper, seven scaling factors are considered for blast data set of a hard-rock underground drift using burn

  5. Beach rock from Goa Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.; Wagle, B.G.

    constituents of beach rock found along Goa coast is dealt with in detail. While discussing the various views on its origin, it is emphasized that the process of cementation is chiefly controlled by ground water evaporation, inorganic precipitation and optimum...

  6. The Chronology of Rock Art

    Indian Academy of Sciences (India)

    Such phases are tentatively ascribed to different archaeological cultures on the basis of the contextual availability, stylistic similarities and so on. Ethnographic analogies are also attempted in the dating of rock art .

  7. Chemical methods of rock analysis

    National Research Council Canada - National Science Library

    Jeffery, P. G; Hutchison, D

    1981-01-01

    A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...

  8. Heat production in granitic rocks

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Jakobsen, Kiki

    2017-01-01

    Granitic rocks play special role in the dynamics and evolution of the Earth and its thermal regime. First, their compositional variability, reflected in the distribution of concentrations of radiogenic elements, provides constraints on global differentiation processes and large scale planetary...... evolution, where emplacement of granites is considered a particularly important process for the formation of continental crust. Second, heat production by radioactive decay is among the main heat sources in the Earth. Therefore knowledge of heat production in granitic rocks is pivotal for thermal modelling...... of the continental lithosphere, given that most radiogenic elements are concentrated in granitic rocks of the upper continental crust whereas heat production in rocks of the lower crust and lithospheric mantle is negligible. We present and analyze a new global database GRANITE2017 (with about 500 entries...

  9. Defending dreamer’s rock

    OpenAIRE

    Beck, Günter U.

    2007-01-01

    Defending dreamer’s rock : Geschichte, Geschichtsbewusstsein und Geschichtskultur im Native drama der USA und Kanadas. - Trier : WVT Wiss. Verl. Trier, 2007. - 445 S. - (CDE - Studies ; 14). - Zugl.: Augsburg, Univ., Diss., 2006

  10. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  11. Flow induced vibration studies on PFBR control plug components

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V., E-mail: prakash@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India); Kumar, P. Anup; Anandaraj, M.; Thirumalai, M.; Anandbabu, C.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2012-09-15

    susceptible to flow induced vibrations. Since control plug is partially immersed in hot sodium, the reactor transients are felt by the components, hence it is very much essential to understand the vibration response of the control plug components. The main vibration excitation mechanisms are vortex shedding, turbulence buffeting, fluid-elastic instability, etc. In order to assess the susceptibility of CP internals against flow induced vibrations (FIVs), to measure structural response and to validate the analytical codes developed for FIV analysis of CP along with the assumptions of supports for various CP internals therein, a flow induced vibration testing program was formulated in 1:4 scale model of PFBR CP. As the first phase of this program, experimental modal analysis of CP internals was carried out in air to estimate the modal parameters. Subsequently, flow induced vibration studies were conducted in the 1:4 scale model of CP in water. In this model, size of the tubes, shell and plates are reduced to Vulgar-Fraction-One-Quarter size of the PFBR CP. The stiffness of CP parts is reduced by 4 times and mass decreased by 64 times which results in scaling up of modal frequencies by 4 times. The CP internals in the model were instrumented with accelerometers and strain gages. The studies were conducted in water with flows derived on the basis of velocity similitude. The output signals from the sensors were acquired and analyzed to obtain frequency spectra, overall vibration amplitude and strain values at various locations inside CP. The study carried out confirms the absence of resonance due to flow induced vibration mechanisms for the entire operating range. This paper elucidates the modeling details, similitude criteria, instrumentation employed and experimental results obtained with discussion on results.

  12. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders

    Science.gov (United States)

    Jegley, Dawn C.

    1988-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  13. Fundamental Vibration of Molecular Hydrogen

    Science.gov (United States)

    Dickenson, G. D.; Niu, M. L.; Salumbides, E. J.; Komasa, J.; Eikema, K. S. E.; Pachucki, K.; Ubachs, W.

    2013-05-01

    The fundamental ground tone vibration of H2, HD, and D2 is determined to an accuracy of 2×10-4cm-1 from Doppler-free laser spectroscopy in the collisionless environment of a molecular beam. This rotationless vibrational splitting is derived from the combination difference between electronic excitation from the X1Σg+, v=0, and v=1 levels to a common EF1Σg+, v=0 level. Agreement within 1σ between the experimental result and a full ab initio calculation provides a stringent test of quantum electrodynamics in a chemically bound system.

  14. Detecting debris flows using ground vibrations

    Science.gov (United States)

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  15. Predicting rock bursts in mines

    Science.gov (United States)

    Spall, H.

    1979-01-01

    In terms of lives lost, rock bursts in underground mines can be as hazardous as earthquakes on the surface. So it is not surprising that fo the last 40 years the U.S Bureau of Mines has been using seismic methods for detecting areas in underground mines where there is a high differential stress which could lead to structural instability of the rock mass being excavated.

  16. The Shock and Vibration Bulletin. Part 2. Vibration Analysis.

    Science.gov (United States)

    1977-09-01

    J.N. Tait, Naval Air Development Center, Warminster, PA EVALUATION OF AN ADAPTIVE FILTER AS A DIGITAL TRACKING FILTER D.O. Smallwood and D.L. Gregory...Oklahoma Norman , Oklahoma In contrast to the considerable information abailable on free vibration of isotropic plates, there is only a very limited

  17. Eddy currents self-tuning dynamic vibration absorber for machine tool chatter suppression

    OpenAIRE

    Aguirre , Gorka; Gorostiaga , Mikel; Porchez , Thomas; Munoa , Jokin

    2013-01-01

    International audience; The current trend in machine tool design aims at stiffer machines with lowerinfluence of friction, leading to faster and more precise machines. However, this is atthe expense of reducing the machine damping, which is mainly produced by friction,and thus increasing the risk of suffering from a self-excited vibration named chatter,which limits the productivity of the process. Dynamic vibration absorbers (DVAs)offer a relatively simple and low cost solution to reduce chat...

  18. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the brittle

  19. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  20. Design of Propeller Ducts to Reduce Cavitation and Vibration.

    Science.gov (United States)

    1982-09-01

    529 of the paper by Van Manen ind Oosterveld that the sectional lift on an axially symmetric duct should not exceed unity at the risk of inducing stall...max mum lift is only experienced local lv as .ie proceed around the circu"-ere,ce, tne Van Manen and Oosterveld limitation may be too restrictive...The results of carrying out the computations indicated by Eqs. (18) and (13) show that C = 3.0. Since this exceeds the Van Manen and Oosterveld limit

  1. Shock and Vibration. Volume 1, Issue 1

    National Research Council Canada - National Science Library

    Pilkey, Walter D

    1994-01-01

    ..., and earthquake engineering. Among the specific areas to be covered are vibration testing and control, vibration condition monitoring and diagnostics, shock hardenings, modal technology, shock testing, data acquisition, fluid...

  2. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)

  3. Predicting Statistical Distributions of Footbridge Vibrations

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2009-01-01

    The paper considers vibration response of footbridges to pedestrian loading. Employing Newmark and Monte Carlo simulation methods, a statistical distribution of bridge vibration levels is calculated modelling walking parameters such as step frequency and stride length as random variables...

  4. Application of eigenfunction orthogonalities to vibration problems

    CSIR Research Space (South Africa)

    Fedotov, I

    2009-07-01

    Full Text Available The modelling of vibration problems is of great importance in engineering. A popular method of analysing such problems is the variational method. The simplest vibration model is represented using the example of a long rod. Two kinds...

  5. Experiments of 4-stage pulse power system for rock fragmentation

    International Nuclear Information System (INIS)

    Chung Kyoung-Jae; Kim Chul-Yeong; Chang Cheol-Jong; Jeong Soon-Hyoung

    2002-01-01

    The blasting method using the high current electrical discharge has been verified as a green technology against such environmental pollutions as blasting vibration, noise and the scattering of broken pieces of rock. In fact, EPIT TM (Electro-Power Impact Technology) has been applied to dozens of construction sites in Korea, and it has been evaluated as a competitive blasting technique compared with other rock breaking methods. For more effective blasting, however, the sequential blasting technique, sEPIT TM (Sequential Electro-Power Impact Technology) has been developed since September, 2001. The prototype equipment for 4-stage pulse generation was made and has been tested. The equipment consists of a capacitor charging power supply, a capacitor bank, solid-state switches and high voltage relays. The delay time between stages can be controlled in milliseconds by programmable logic controller. The dummy load tests for the 4-stage high current discharge have been performed successfully in the laboratory. The error level is below 8% of preset delay time, and it is allowable for this application. Now, authors are investigating to find out the optimum time delays depending on rock strength. Detailed characteristics of the equipment and some test results are described in this paper

  6. Hard rock tunneling using pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Brekke, T.L.; Finnie, I.

    1974-01-01

    Intense submicrosecond bursts of energetic electrons cause significant pulverization and surface spalling of a variety of rock types, the spall debris generally consisting of sand, dust, and small flakes. If carried out at rapid repetition rate this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods were studied. (auth)

  7. Memory-Efficient Onboard Rock Segmentation

    Science.gov (United States)

    Burl, Michael C.; Thompson, David R.; Bornstein, Benjamin J.; deGranville, Charles K.

    2013-01-01

    Rockster-MER is an autonomous perception capability that was uploaded to the Mars Exploration Rover Opportunity in December 2009. This software provides the vision front end for a larger software system known as AEGIS (Autonomous Exploration for Gathering Increased Science), which was recently named 2011 NASA Software of the Year. As the first step in AEGIS, Rockster-MER analyzes an image captured by the rover, and detects and automatically identifies the boundary contours of rocks and regions of outcrop present in the scene. This initial segmentation step reduces the data volume from millions of pixels into hundreds (or fewer) of rock contours. Subsequent stages of AEGIS then prioritize the best rocks according to scientist- defined preferences and take high-resolution, follow-up observations. Rockster-MER has performed robustly from the outset on the Mars surface under challenging conditions. Rockster-MER is a specially adapted, embedded version of the original Rockster algorithm ("Rock Segmentation Through Edge Regrouping," (NPO- 44417) Software Tech Briefs, September 2008, p. 25). Although the new version performs the same basic task as the original code, the software has been (1) significantly upgraded to overcome the severe onboard re source limitations (CPU, memory, power, time) and (2) "bulletproofed" through code reviews and extensive testing and profiling to avoid the occurrence of faults. Because of the limited computational power of the RAD6000 flight processor on Opportunity (roughly two orders of magnitude slower than a modern workstation), the algorithm was heavily tuned to improve its speed. Several functional elements of the original algorithm were removed as a result of an extensive cost/benefit analysis conducted on a large set of archived rover images. The algorithm was also required to operate below a stringent 4MB high-water memory ceiling; hence, numerous tricks and strategies were introduced to reduce the memory footprint. Local filtering

  8. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    Science.gov (United States)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  9. Exposure to vibrations in wine growing

    Directory of Open Access Journals (Sweden)

    Domenico Pessina

    2013-09-01

    Full Text Available Apart the winter period, the activity in specialized agricultural cultivations (i.e. wine- and fruit-growing is distributed for a long period of the year. Some tasks, such as pesticide distribution, are repeated several times during the growing season. On the other hand, mechanization is one of the pillars on which is based the modern agriculture management. As a consequence, in wine growing the tractor driver has to be considered a worker potentially subjected to high level of vibrations, due to the poor machinery conditions often encountered, and sometimes to the rough soil surface of the vineyard combined with the high travelling speed adopted in carrying out many operations. About vibrations, the Italian Decree 81/08 basically refers to the European Directive 2002/44/CE, that provides some very strict limits of exposure, both for whole body and hand-arm districts. In Oltrepo pavese, a large hilly area located the south part of the Pavia province (Lombardy - Italy wine growing is the main agricultural activity; for this reason, a detailed survey on the vibration levels recorded at the tractor driver’s seat was carried out, in order to ascertain the real risk to which the operators are exposed. The activity in wine growing has been classified into 6 groups of similar tasks, as follows: 1. canopy management: pruning, trimming, binding, stripping, etc.; 2. soil management: harrowing, hoeing, subsoiling etc.; 3. inter-row management: chopping of pruning , pinching, grass mowing, etc.; 4. crop protection: pesticides and fungicides distribution, sulfidation, foliar fertilization, etc.; 5. grape harvesting: manual or mechanical; 6. transport: from the vineyard to the cellar. For each group of tasks, the vibration levels on 3 the traditional axes (x, y and z were recorded, and then an exposure time was calculated for each of them, in order to ascertain the risk level in comparison to what provided by the dedicated standard. Finally, a detailed

  10. Vibrational properties of amorphous semiconductors

    International Nuclear Information System (INIS)

    Schulz, P.A.B.

    1985-01-01

    A model for the lattice dynamics of a-Si 1-X N X is introduced. This model is based on a Born hamiltonian, solved in the Bethe lattice approximation. Starting from the local density of vibrational states, we analize the infrared absoption spectra of this material. (author) [pt

  11. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  12. Monothiodibenzoylmethane: Structural and vibrational assignments

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Gorski, Alexander; Posokhov, Yevgen

    2007-01-01

    vibrational spectra were compared with theoretical transitions obtained with B3LYP/cc-pVTZ density functional theory (DFT). The results leave no doubt that the stable ground state configuration of TDBM corresponds to the intramolecularly hydrogen bonded enol form (e-CCC), and that the photoproduct corresponds...

  13. Low-Vibration Oscillating Compressor

    Science.gov (United States)

    Studer, P. A.

    1984-01-01

    Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.

  14. Vibrational entropies in metallic alloys

    Science.gov (United States)

    Ozolins, Vidvuds; Asta, Mark; Wolverton, Christopher

    2000-03-01

    Recently, it has been recognized that vibrational entropy can have significant effects on the phase stability of metallic alloys. Using density functional linear response calculations and molecular dynamics simulations we study three representative cases: (i) phase diagram of Al-rich Al-Sc alloys, (ii) stability of precipitate phases in CuAl_2, and (iii) phonon dynamics in bcc Zr. We find large vibrational entropy effects in all cases. In the Al-Sc system, vibrations increase the solid solubility of Sc in Al by decreasing the stability of the L12 (Al_3Sc) phase. This leads to a nearly ten-fold increase in the solid solubility of Sc in Al at T=800 K. In the Cu-Al system, our calculations predict that the tetragonal Laves phase of CuAl2 has 0.35 kB/atom higher vibrational entropy than the cubic CaF_2-type phase (the latter is predicted to be the T=0 K ground state of CuAl_2). This entropy difference causes a structural transformation in CuAl2 precipitates from the fluorite to the tetragonal Laves phase around T=500 K. Finally, we analyze the highly unusual dynamics of anharmonically stabilized bcc Zr, finding large diffuse-scattering intensity streaks between the bcc Bragg peaks.

  15. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  16. Evaluation of Rock Bolt Support for Polish Hard Rock Mines

    Science.gov (United States)

    Skrzypkowski, Krzysztof

    2018-03-01

    The article presents different types of rock bolt support used in Polish ore mining. Individual point resin and expansion rock bolt support were characterized. The roof classes for zinc and lead and copper ore mines were presented. Furthermore, in the article laboratory tests of point resin rock bolt support in a geometric scale of 1:1 with minimal fixing length of 0.6 m were made. Static testing of point resin rock bolt support were carried out on a laboratory test facility of Department of Underground Mining which simulate mine conditions for Polish ore and hard coal mining. Laboratory tests of point resin bolts were carried out, especially for the ZGH Bolesław, zinc and lead "Olkusz - Pomorzany" mine. The primary aim of the research was to check whether at the anchoring point length of 0.6 m by means of one and a half resin cartridge, the type bolt "Olkusz - 20A" is able to overcome the load.The second purpose of the study was to obtain load - displacement characteristic with determination of the elastic and plastic range of the bolt. For the best simulation of mine conditions the station steel cylinders with an external diameter of 0.1 m and a length of 0.6 m with a core of rock from the roof of the underground excavations were used.

  17. Seismic response of rock joints and jointed rock mass

    International Nuclear Information System (INIS)

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs

  18. 30 CFR 57.3461 - Rock bursts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  19. Primary pump vibration under accident conditions

    International Nuclear Information System (INIS)

    Guthrie, B.M.; Currie, T.C.

    1984-06-01

    This report presents the results of an international survey on the subject of vibration in nuclear primary coolant pumps due to two-phase flow, accident conditions. The literature search also revealed few Canadian references other than those of Ontario Hydro. Ontario Hydro's work has been extensive. Confidence in the mechanical integrity of the pumpsets is good, given the extent of the testing. However, conclusions with respect to piping integrity and thermal-hydraulic performance are difficult to determine due to the inexact geometry of the piping and the difficulties in estimating fluid conditions at the pump. The tests help to understand the phenomena and provide background information for analysis, but should be applied with caution to plant analyses. Much of the discussion in the report relates to pump head instability. This is perceived to be the most important flow regime causing vibration, as attested by the emphasis of the reviewed literature. A method for quantitative assessment of the forcing functions acting on the pump-piping system due to void generation and collapse is recommended. A relatively fundamental analytical approach is proposed, supplemented by reduced scale testing in the latter stages. 151 refs

  20. Vibration energy harvesting using the Halbach array

    International Nuclear Information System (INIS)

    Zhu, Dibin; Beeby, Steve; Tudor, John; Harris, Nick

    2012-01-01

    This paper studies the feasibility of vibration energy harvesting using a Halbach array. A Halbach array is a specific arrangement of permanent magnets that concentrates the magnetic field on one side of the array while cancelling the field to almost zero on the other side. This arrangement can improve electromagnetic coupling in a limited space. The Halbach array offers an advantage over conventional layouts of magnets in terms of its concentrated magnetic field and low-profile structure, which helps improve the output power of electromagnetic energy harvesters while minimizing their size. Another benefit of the Halbach array is that due to the existence of an almost-zero magnetic field zone, electronic components can be placed close to the energy harvester without any chance of interference, which can potentially reduce the overall size of a self-powered device. The first reported example of a low-profile, planar electromagnetic vibration energy harvester utilizing a Halbach array was built and tested. Results were compared to ones for energy harvesters with conventional magnet layouts. By comparison, it is concluded that although energy harvesters with a Halbach array can have higher magnetic field density, a higher output power requires careful design in order to achieve the maximum magnetic flux gradient. (paper)