WorldWideScience

Sample records for reducing pericentrin expression

  1. Pericentrin expression in Down's syndrome.

    Science.gov (United States)

    Salemi, Michele; Barone, Concetta; Romano, Carmelo; Salluzzo, Roberto; Caraci, Filippo; Cantarella, Rita Anna; Salluzzo, Maria Grazia; Drago, Filippo; Romano, Corrado; Bosco, Paolo

    2013-11-01

    Down's syndrome (DS) is the most frequent genetic cause of intellectual disability and is a chromosomal abnormality of chromosome 21 trisomy. The pericentrin gene (PCNT) has sequenced in 21q22.3 inside of the minimal critical region for Down's syndrome. Alterations of PCNT gene are associated with dwarfism, cardiomyopathy and other pathologies. In this study, we have evaluated the possible differential expression of PCNT mRNA, by qRT-PCR, in peripheral blood leukocytes of DS subjects compared with the normal population. In the present case-control study, PCNT gene expression was increased by 72.72% in 16 out 22 DS samples compared with normal subjects. Our data suggest that changes in the expression levels of PCNT in DS subjects may be involved into the molecular mechanism of Down's syndrome.

  2. TGF-b and a specific TGF-b inhibitor regulate pericentrin B and MYH9 in glioma cell lines

    Directory of Open Access Journals (Sweden)

    Óscar Álzate

    2006-01-01

    Full Text Available Malignant gliomas are heterogeneous, highly invasive vascular tumours. The multifunctional cytokine, transforming growth factor-beta (TGF-P, is expressed by grade III/IV gliomas and promotes tumour angiogenesis, invasión and immune escape. It has been shown previously that a small TGF-P receptor type I (TGF-(3-RI molecule inhibitor (SB-431542 blocks TGF-(3-mediated signal transduction, induction of angiogenic factor expression and cellular motility. As glioma cell lines display differential sensitivity to TGF-P, it was expected that they would also be differentially impacted by disruption of TGF-P signalling. Differential in gel expression (DIGE analysis and mass spectrometry was used in this work for determining protein regulation effects of both TGF-P and SB-431542 on human glioma cell lines. It was found that pericentrin B and non muscle myosin were differentially expressed in fragments which likely resulted from protease activation by the tumour growth mechanism. These results suggest that both pericentrin B and non-muscle myosin might be potential glioma biomarkers. Key words: DIGE, proteomics, glioma, TGF-P, mass spectrometry, non muscle myosin, pericentrin B.

  3. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism

    NARCIS (Netherlands)

    Rauch, Anita; Thiel, Christian T.; Schindler, Detlev; Wick, Ursula; Crow, Yanick J.; Ekici, Arif B.; van Essen, Anthonie J.; Goecke, Timm O.; Al-Gazali, Lihadh; Chrzanowska, Krystyna H.; Zweier, Christiane; Brunner, Han G.; Becker, Kristin; Curry, Cynthia J.; Dallapiccola, Bruno; Devriendt, Koenraad; Doerfler, Arnd; Kinning, Esther; Megarbane, Andre; Meinecke, Peter; Semple, Robert K.; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C.; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Doerr, Helmuth-Guenther; Reis, Andre

    2008-01-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss- of- function mutations in the centrosomal pericentrin ( PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial

  4. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism

    NARCIS (Netherlands)

    Rauch, Anita; Thiel, Christian T.; Schindler, Detlev; Wick, Ursula; Crow, Yanick J.; Ekici, Arif B.; van Essen, Anthonie J.; Goecke, Timm O.; Al-Gazali, Lihadh; Chrzanowska, Krystyna H.; Zweier, Christiane; Brunner, Han G.; Becker, Kristin; Curry, Cynthia J.; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K.; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C.; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André

    2008-01-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism

  5. A fraction of Crm1 locates at centrosomes by its CRIME domain and regulates the centrosomal localization of pericentrin

    International Nuclear Information System (INIS)

    Liu, Qinying; Jiang, Qing; Zhang, Chuanmao

    2009-01-01

    Crm1 plays a role in exporting proteins containing nuclear export signals (NESs) from the nucleus to the cytoplasm. Some proteins that are capable of interacting with Ran/Crm1 were reported to be localized at centrosomes and to function as centrosome checkpoints. But it remains unclear how Crm1 locates at centrosomes. In this study, we found that a fraction of Crm1 is located at centrosomes through its N-terminal CRM1, importin β etc. (CRIME) domain, which is responsible for interacting with RanGTP, suggesting that Crm1 might target to centrosomes through binding centrosomal RanGTP. Moreover, overexpression of the CRIME domain, which is free of NES binding domain, resulted in the dissociation of pericentrin and γ-tubulin complex from centrosomes and the disruption of microtubule nucleation. Deficiency of Crm1 provoked by RNAi also decreased the spindle poles localization of pericentrin and γ-tubulin complex, coupled with mitotic defects. Since pericentrin was sensitive to Crm1 specific inhibitor leptomycin B, we propose that the centrosomal Crm1 might interact with pericentrin and regulate the localization and function of pericentrin at centrosomes.

  6. The Drosophila Pericentrin-like-protein (PLP cooperates with Cnn to maintain the integrity of the outer PCM

    Directory of Open Access Journals (Sweden)

    Jennifer H. Richens

    2015-08-01

    Full Text Available Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM. In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs. As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM.

  7. TGF-b y un inhibidor específico de TGF-b regulan pericentrina B y MYH9 en células de glioma TGF-b and a specific TGF-b inhibitor regulate pericentrin B and MYH9 in glioma cell lines

    Directory of Open Access Journals (Sweden)

    Rich Jeremy N.

    2006-07-01

    Full Text Available Malignant gliomas are heterogeneous, highly invasive vascular tumours. The multifunctional cytokine, transforming growth factor-beta (TGF-P, is expressed by grade III/IV gliomas and promotes tumour angiogenesis, invasión and immune escape. It has been shown previously that a small TGF-P receptor type I (TGF-(3-RI molecule inhibitor (SB-431542 blocks TGF-(3-mediated signal transduction, induction of angiogenic factor expression and cellular motility. As glioma cell lines display differential sensitivity to TGF-P, it was expected that they would also be differentially impacted by disruption of TGF-P signalling. Differential in gel expression (DIGE analysis and mass spectrometry was used in this work for determining protein regulation effects of both TGF-P and SB-431542 on human glioma cell lines. It was found that pericentrin B and non muscle myosin were differentially expressed in fragments which likely resulted from protease activation by the tumour growth mechanism. These results suggest that both pericentrin B and non-muscle myosin might be potential glioma biomarkers. Key words: DIGE, proteomics, glioma, TGF-P, mass spectrometry, non muscle myosin, pericentrin B.Los gliomas malignos son tumores vasculares heterogéneos altamente invasivos. El factor de transformación de creci­miento P (TGF-P es una citoquina multifuncional que es expresada por gliomas de grado III /IV y promueve angiogenesis de tumores, invasión y escape inmunológico. Recientemente se demostró que una pequeña molécula inhibidora (SB-431542 del receptor de TGF-P tipo I (TGF-P-RI, bloquea la señal de transducción mediada por TGF-P, la inducción del factor angiogénico de expresión y la movilidad celular. Ya que las líneas celulares de gliomas mues­tran sensitividad diferencial a TGF-P, se esperaba que también mostrarían impacto diferencial por el bloqueo de la señal de TGF-p. En el presente trabajo se usó un análisis diferencial en gel (DIGE, por sus

  8. Molecular analysis of pericentrin gene (PCNT) in a series of 24 Seckel/microcephalic osteodysplastic primordial dwarfism type II (MOPD II) families.

    Science.gov (United States)

    Willems, M; Geneviève, D; Borck, G; Baumann, C; Baujat, G; Bieth, E; Edery, P; Farra, C; Gerard, M; Héron, D; Leheup, B; Le Merrer, M; Lyonnet, S; Martin-Coignard, D; Mathieu, M; Thauvin-Robinet, C; Verloes, A; Colleaux, L; Munnich, A; Cormier-Daire, V

    2010-12-01

    Microcephalic osteodysplastic primordial dwarfism type II (MOPD II, MIM 210720) and Seckel syndrome (SCKL, MIM 210600) belong to the primordial dwarfism group characterised by intrauterine growth retardation, severe proportionate short stature, and pronounced microcephaly. MOPD II is distinct from SCKL by more severe growth retardation, radiological abnormalities, and absent or mild mental retardation. Seckel syndrome is associated with defective ATR dependent DNA damage signalling. In 2008, loss-of-function mutations in the pericentrin gene (PCNT) have been identified in 28 patients, including 3 SCKL and 25 MOPDII cases. This gene encodes a centrosomal protein which plays a key role in the organisation of mitotic spindles. The aim of this study was to analyse PCNT in a large series of SCKL-MOPD II cases to further define the clinical spectrum associated with PCNT mutations. Among 18 consanguineous families (13 SCKL and 5 MOPDII) and 6 isolated cases (3 SCKL and 3 MOPD II), 13 distinct mutations were identified in 5/16 SCKL and 8/8 MOPDII including five stop mutations, five frameshift mutations, two splice site mutations, and one apparent missense mutation affecting the last base of exon 19. Moreover, we demonstrated that this latter mutation leads to an abnormal splicing with a predicted premature termination of translation. The clinical analysis of the 5 SCKL cases with PCNT mutations showed that they all presented minor skeletal changes and clinical features compatible with MOPDII diagnosis. It is therefore concluded that, despite variable severity, MOPDII is a genetically homogeneous condition due to loss-of-function of pericentrin.

  9. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin.

    Science.gov (United States)

    Baumann, Claudia; Wang, Xiaotian; Yang, Luhan; Viveiros, Maria M

    2017-04-01

    Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly. © 2017. Published by The Company of Biologists Ltd.

  10. Striking hematological abnormalities in patients with microcephalic osteodysplastic primordial dwarfism type II (MOPD II): a potential role of pericentrin in hematopoiesis.

    Science.gov (United States)

    Unal, Sule; Alanay, Yasemin; Cetin, Mualla; Boduroglu, Koray; Utine, Eda; Cormier-Daire, Valerie; Huber, Celine; Ozsurekci, Yasemin; Kilic, Esra; Simsek Kiper, Ozlem Pelin; Gumruk, Fatma

    2014-02-01

    Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) is a rare primordial dwarfism that is similar to Seckel syndrome. Seckel syndrome is known to be associated with various hematological abnormalities; however, hematological findings in MOPD II patients have not been previously reported. The present study aimed to describe the hematological findings in a series of eight patients with MOPD II from a single center. The study included eight patients with MOPD II that were analyzed via molecular testing, and physical and laboratory examinations. Molecular testing showed that seven of the eight patients had pericentrin (PCNT) gene mutations. Hematological evaluation showed that 7 (87.5%) patients had thrombocytosis, 6 (75%) had leukocytosis, 5 (62.5%) had both leukocytosis and thrombocytosis, and 2 (25%) had anemia. We report leukocytosis and thrombocytosis as a common hematologic abnormality in patients with MOPD II. The present findings may improve our understanding of the potential function of the PCNT gene in hematopoietic cell proliferation and differentiation. © 2013 Wiley Periodicals, Inc.

  11. Growth in individuals with Majewski osteodysplastic primordial dwarfism type II caused by pericentrin mutations.

    Science.gov (United States)

    Bober, Michael B; Niiler, Tim; Duker, Angela L; Murray, Jennie E; Ketterer, Tara; Harley, Margaret E; Alvi, Sabah; Flora, Christina; Rustad, Cecilie; Bongers, Ernie M H F; Bicknell, Louise S; Wise, Carol; Jackson, Andrew P

    2012-11-01

    Microcephalic primordial dwarfism (MPD) is a class of disorders characterized by intrauterine growth restriction (IUGR), impaired postnatal growth and microcephaly. Majewski osteodysplastic primordial dwarfism type II (MOPD II) is one of the more common conditions within this group. MOPD II is caused by truncating mutations in pericentrin (PCNT) and is inherited in an autosomal recessive manner. Detailed growth curves for length, weight, and OFC are presented here and derived from retrospective data from 26 individuals with MOPD II confirmed by molecular or functional studies. Severe pre- and postnatal growth failure is evident in MOPD II patients. The length, weight, and OFC at term (when corrected for gestational age) were -7.0, -3.9, and -4.6 standard deviation (SD) below the population mean and equivalent to the 50th centile of a 28-29-, 31-32-, and 30-31-week neonate, respectively. While at skeletal maturity, the height, weight, and OFC were -10.3, -14.3, and -8.5 SD below the population mean and equivalent to the size of 3-year 10- to 11-month-old, a 5-year 2- to 3-month-old, and 5- to 6-month-old, respectively. During childhood, MOPD II patients grow with slowed, but fairly constant growth velocities and show no evidence of any pubertal growth spurt. Treatment with human growth hormone (n = 11) did not lead to any significant improvement in final stature. The growth charts presented here will be of assistance with diagnosis and management of MOPD II, and should have particular utility in nutritional management of MOPD II during infancy. Copyright © 2012 Wiley Periodicals, Inc.

  12. Cep192 controls the balance of centrosome and non-centrosomal microtubules during interphase.

    Directory of Open Access Journals (Sweden)

    Brian P O'Rourke

    Full Text Available Cep192 is a centrosomal protein that contributes to the formation and function of the mitotic spindle in mammalian cells. Cep192's mitotic activities stem largely from its role in the recruitment to the centrosome of numerous additional proteins such as gamma-tubulin and Pericentrin. Here, we examine Cep192's function in interphase cells. Our data indicate that, as in mitosis, Cep192 stimulates the nucleation of centrosomal microtubules thereby regulating the morphology of interphase microtubule arrays. Interestingly, however, cells lacking Cep192 remain capable of generating normal levels of MTs as the loss of centrosomal microtubules is augmented by MT nucleation from other sites, most notably the Golgi apparatus. The depletion of Cep192 results in a significant decrease in the level of centrosome-associated gamma-tubulin, likely explaining its impact on centrosome microtubule nucleation. However, in stark contrast to mitosis, Cep192 appears to maintain an antagonistic relationship with Pericentrin at interphase centrosomes. Interphase cells depleted of Cep192 display significantly higher levels of centrosome-associated Pericentrin while overexpression of Cep192 reduces the levels of centrosomal Pericentrin. Conversely, depletion of Pericentrin results in elevated levels of centrosomal Cep192 and enhances microtubule nucleation at centrosomes, at least during interphase. Finally, we show that depletion of Cep192 negatively impacts cell motility and alters normal cell polarization. Our current working hypothesis is that the microtubule nucleating capacity of the interphase centrosome is determined by an antagonistic balance of Cep192, which promotes nucleation, and Pericentrin, which inhibits nucleation. This in turn determines the relative abundance of centrosomal and non-centrosomal microtubules that tune cell movement and shape.

  13. Reduced Ang2 expression in aging endothelial cells

    International Nuclear Information System (INIS)

    Hohensinner, P.J.; Ebenbauer, B.; Kaun, C.; Maurer, G.; Huber, K.; Wojta, J.

    2016-01-01

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  14. Reduced Ang2 expression in aging endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ebenbauer, B. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Kaun, C.; Maurer, G. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Huber, K. [Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); 3rd Medical Department, Wilhelminenhospital, Vienna (Austria); Sigmund Freud University, Medical Faculty, Vienna (Austria); Wojta, J. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Core Facilities, Medical University of Vienna, Vienna (Austria)

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  15. Developmental Hypothyroidism Reduces the Expression of ...

    Science.gov (United States)

    Disruption of thyroid hormone (TH) is a known effect of environmental contaminants. Neurotrophins including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been implicated in brain dysfunction resulting from severe developmental TH insufficiency. Neurotrophins are also implicated in activity-dependent plasticity, a process critical for appropriate use-dependent connectivity in the developing brain and for memory formation in the adult. This study examined activity-induced expression of neurotrophin gene products in the hippocampus using the long-term potentiation (LTP) after developmental hypothyroidism induced by propylthiouracil (PTU). Pregnant rats were exposed to PTU (0 or I0ppm) via the drinking water from early gestation to weaning. Adult male offspring were anesthetized with urethane and implanted with electrodes in the dentate gyrus (00) and perforant path (PP). LTP was induced by PP stimulation and responses from 00 were monitored at 15m intervals until sacrifice of the animals 5 h later. The 00 was dissected from the stimulated and nonstimulated hemispheres for rtPCR analysis of the neurotrophins Bdnf, Ngf, Ntf3 and related genes Egrl, Arc, Klf9. We found no PTU-induced difference in basal levels of expression of any of these genes in the nonstimulated 00. LTP increased expression of Bdnf, Ngf, Arc and Klj9 in the control DG, and reduced expression of Ntf3. LTP in DG from PTU animals failed to increase expression of Bdnf,

  16. Reduced Pms2 expression in non-neoplastic flat mucosa from patients with colon cancer correlates with reduced apoptosis competence.

    Science.gov (United States)

    Bernstein, Harris; Prasad, Anil; Holubec, Hana; Bernstein, Carol; Payne, Claire M; Ramsey, Lois; Dvorakova, Katerina; Wilson, Megan; Warneke, James A; Garewal, Harinder

    2006-06-01

    Pms2 protein is a component of the DNA mismatch repair complex responsible both for post-replication correction of DNA nucleotide mispairs and for early steps in apoptosis. Germline mutations in DNA mismatch repair genes give rise to hereditary non-polyposis colon cancer, which accounts for about 4% of colon cancers. However, little is known about the expression of mismatch repair proteins in relation to sporadic colon cancer, which accounts for the great majority of colon cancers. Multiple samples were taken from the non-neoplastic flat mucosa of colon resections from patients with no colonic neoplasia, a tubulovillous adenoma, or an adenocarcinoma. Expression of Pms2 was assessed using semiquantitative immunohistochemistry. Apoptosis was assessed in polychrome-stained epoxy sections using morphologic criteria. Samples from patients without colonic neoplasia had moderate to strong staining for Pms2 in cell nuclei at the base of crypts, while samples from 2 of the 3 colons with a tubulovillous adenoma, and from 6 of the 10 colons with adenocarcinomas, showed reduced Pms2 expression. Samples from patients with an adenocarcinoma that had reduced Pms2 expression also exhibited reduced apoptosis capability in nearby tissue samples, evidenced when this paired tissue was stressed ex vivo with bile acid. Reduced Pms2 expression in the colonic mucosa may be an early step in progression to colon cancer. This reduction may cause decreased mismatch repair, increased genetic instability, and/or reduced apoptotic capability. Immunohistochemical determination of reduced Pms2 expression, upon further testing, may prove to be a promising early biomarker of risk of progression to malignancy.

  17. Emotional facial expressions reduce neural adaptation to face identity.

    Science.gov (United States)

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing.

  18. RNAi reduces expression and intracellular retention of mutant cartilage oligomeric matrix protein.

    Directory of Open Access Journals (Sweden)

    Karen L Posey

    2010-04-01

    Full Text Available Mutations in cartilage oligomeric matrix protein (COMP, a large extracellular glycoprotein expressed in musculoskeletal tissues, cause two skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia. These mutations lead to massive intracellular retention of COMP, chondrocyte death and loss of growth plate chondrocytes that are necessary for linear growth. In contrast, COMP null mice have only minor growth plate abnormalities, normal growth and longevity. This suggests that reducing mutant and wild-type COMP expression in chondrocytes may prevent the toxic cellular phenotype causing the skeletal dysplasias. We tested this hypothesis using RNA interference to reduce steady state levels of COMP mRNA. A panel of shRNAs directed against COMP was tested. One shRNA (3B reduced endogenous and recombinant COMP mRNA dramatically, regardless of expression levels. The activity of the shRNA against COMP mRNA was maintained for up to 10 weeks. We also demonstrate that this treatment reduced ER stress. Moreover, we show that reducing steady state levels of COMP mRNA alleviates intracellular retention of other extracellular matrix proteins associated with the pseudoachondroplasia cellular pathology. These findings are a proof of principle and the foundation for the development of a therapeutic intervention based on reduction of COMP expression.

  19. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Baldry, Mara; Nielsen, Anita; Bojer, Martin S.

    2016-01-01

    characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response......-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive...... SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation....

  20. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Baldry, Mara; Nielsen, Anita; Bojer, Martin S.

    2016-01-01

    Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than...... viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325-4. The aim of the present study was to further...... SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation....

  1. Reduced Ang2 expression in aging endothelial cells.

    Science.gov (United States)

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Spectrum of centrosome autoantibodies in childhood varicella and post-varicella acute cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Stinton Laura M

    2003-09-01

    Full Text Available Abstract Background Sera from children with post-varicella infections have autoantibodies that react with centrosomes in brain and tissue culture cells. We investigated the sera of children with infections and post-varicella ataxia and related conditions for reactivity to five recombinant centrosome proteins: γγ-enolase, pericentrin, ninein, PCM-1, and Mob1. Methods Sera from 12 patients with acute post-varicella ataxia, 1 with post-Epstein Barr virus (EBV ataxia, 5 with uncomplicated varicella infections, and other conditions were tested for reactivity to cryopreserved cerebellum tissue and recombinant centrosome proteins. The distribution of pericentrin in the cerebellum was studied by indirect immunofluorescence (IIF using rabbit antibodies to the recombinant protein. Antibodies to phospholipids (APL were detected by ELISA. Results Eleven of 12 children with post-varicella ataxia, 4/5 children with uncomplicated varicella infections, 1/1 with post-EBV ataxia, 2/2 with ADEM, 1/2 with neuroblastoma and ataxia, and 2/2 with cerebellitis had antibodies directed against 1 or more recombinant centrosome antigens. Antibodies to pericentrin were seen in 5/12 children with post-varicella ataxia but not in any of the other sera tested. IIF demonstrated that pericentrin is located in axons and centrosomes of cerebellar cells. APL were detected in 75% of the sera from children with post-varicella ataxia and 50% of children with varicella without ataxia and in none of the controls. Conclusion This is the first study to show the antigen specificity of anti-centrosome antibodies in children with varicella. Our data suggest that children with post-varicella ataxia have unique autoantibody reactivity to pericentrin.

  3. GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury.

    Science.gov (United States)

    Duann, Pu; Lianos, Elias A

    2009-09-01

    Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-beta1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury.

  4. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    Science.gov (United States)

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination. © 2014 Scandinavian Plant Physiology Society.

  5. Inheritance and expression of reduced culm number character in rice

    International Nuclear Information System (INIS)

    Takamure, I.; Kinoshita, T.

    1985-01-01

    A mutant with a reduced culm number was found in M 2 population of AC-3 (a strain regenerated from A-5 Akamuro by another culture) after gamma-ray irradiation of dry seeds. In F2 population of the crossing between the mutant line, N-133 and the original strain, A-5, it was demonstrated that a single recessive gene, rcn is responsible for the reduced culm number type. A pleiotropic effect showing dwarfness was expressed although the seed fertility was unaffected. In the linkage analysis, it was found that rcn was linked with the genes belonging to the first linkage group such as wx (glutinous endosperm) and C (Chromogen for anthocyanin) in the order of wx-C-rcn. In addition, rcn was epistatic to the dwarf genes, d-2 (ebisu dwarf), d-3, d-4, d-5 (triplicate genes for bunketsu waito) and d-10 (toyohikari-bunwai). As for the relation with d-6 (ebisumochi dwarf), a non-parental dwarf type with a reduced culm number and shorter lower (below the second) internodes occurred as a double recessive genotype. The character expression of the mutant gene, rcn was remarkably affected. by the temperature conditlons during the growth period. Plant height and culm number of the mutant recovered to nearly normal when grown in a plastic house with the application of nitrogen. Since the plant height and culm number were retarded by the treatment with cold water (15°C), it was demonstrated that the gene expression was conditioned by the low temperature

  6. Histone deacetylase inhibition reduces cardiac Connexin43 expression and gap junction communication

    Directory of Open Access Journals (Sweden)

    Qin eXu

    2013-04-01

    Full Text Available Histone deactylase (HDAC inhibitors are being investigated as novel therapies for cancer, inflammation, neurodegeneration, and heart failure. The effects of HDAC inhibitors on the functional expression of cardiac gap junctions (GJ are essentially unknown. The purpose of this study was to determine the effects of trichostatin A (TSA and vorinostat (VOR on functional GJ expression in ventricular cardiomyocytes. The effects of HDAC inhibition on connexin43 (Cx43 expression and functional GJ assembly were examined in primary cultured neonatal mouse ventricular myocytes. TSA and VOR reduced Cx43 mRNA, protein expression, and immunolocalized Cx43 GJ plaque area within ventricular myocyte monolayer cultures in a dose-dependent manner. Chromatin-immunoprecipitation experiments revealed altered protein interactions with the Cx43 promoter. VOR also altered the phosphorylation state of several key regulatory Cx43 phospho-serine sites. Patch clamp analysis revealed reduced electrical coupling between isolated ventricular myocyte pairs, altered transjunctional voltage-dependent inactivation kinetics, and steady state junctional conductance inactivation and recovery relationships. Single GJ channel conductance was reduced to 54 pS only by maximum inhibitory doses of TSA (>= 100 nM. These two hydroxamate pan-HDAC inhibitors exert multiple levels of regulation on ventricular GJ communication by altering Cx43 expression, GJ area, post-translational modifications (e.g. phosphorylation, acetylation, gating, and channel conductance. Although a 50% downregulation of Cx43 GJ communication alone may not be sufficient to slow ventricular conduction or induce arrhythmias, the development of class-selective HDAC inhibitors may help avoid the potential negative cardiovascular effects of pan-HDACI.

  7. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    Science.gov (United States)

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  8. Angiotensin II Reduces Food Intake by Altering Orexigenic Neuropeptide Expression in the Mouse Hypothalamus

    Science.gov (United States)

    Yoshida, Tadashi; Semprun-Prieto, Laura; Wainford, Richard D.; Sukhanov, Sergiy; Kapusta, Daniel R.

    2012-01-01

    Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 μg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated. PMID:22234465

  9. ABI3 ectopic expression reduces in vitro and in vivo cell growth properties while inducing senescence

    Directory of Open Access Journals (Sweden)

    Riggins Gregory J

    2011-01-01

    Full Text Available Abstract Background Mounting evidence has indicated that ABI3 (ABI family member 3 function as a tumor suppressor gene, although the molecular mechanism by which ABI3 acts remains largely unknown. Methods The present study investigated ABI3 expression in a large panel of benign and malignant thyroid tumors and explored a correlation between the expression of ABI3 and its potential partner ABI3-binding protein (ABI3BP. We next explored the biological effects of ABI3 ectopic expression in thyroid and colon carcinoma cell lines, in which its expression was reduced or absent. Results We not only observed that ABI3 expression is reduced or lost in most carcinomas but also that there is a positive correlation between ABI3 and ABI3BP expression. Ectopic expression of ABI3 was sufficient to lead to a lower transforming activity, reduced tumor in vitro growth properties, suppressed in vitro anchorage-independent growth and in vivo tumor formation while, cellular senescence increased. These responses were accompanied by the up-regulation of the cell cycle inhibitor p21 WAF1 and reduced ERK phosphorylation and E2F1 expression. Conclusions Our result links ABI3 to the pathogenesis and progression of some cancers and suggests that ABI3 or its pathway might have interest as therapeutic target. These results also suggest that the pathways through which ABI3 works should be further characterized.

  10. Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells

    International Nuclear Information System (INIS)

    Brown, Iain; Shalli, Kawan; McDonald, Sarah L; Moir, Susan E; Hutcheon, Andrew W; Heys, Steven D; Schofield, Andrew C

    2004-01-01

    Docetaxel is one of the most effective chemotherapeutic agents in the treatment of breast cancer. Breast cancers can have an inherent or acquired resistance to docetaxel but the causes of this resistance remain unclear. However, apoptosis and cell cycle regulation are key mechanisms by which most chemotherapeutic agents exert their cytotoxic effects. We created two docetaxel-resistant human breast cancer cell lines (MCF-7 and MDA-MB-231) and performed cDNA microarray analysis to identify candidate genes associated with docetaxel resistance. Gene expression changes were validated at the RNA and protein levels by reverse transcription PCR and western analysis, respectively. Gene expression cDNA microarray analysis demonstrated reduced p27 expression in docetaxel-resistant breast cancer cells. Although p27 mRNA expression was found to be reduced only in MCF-7 docetaxel-resistant sublines (2.47-fold), reduced expression of p27 protein was noted in both MCF-7 and MDA-MB-231 docetaxel-resistant breast cancer cells (2.83-fold and 3.80-fold, respectively). This study demonstrates that reduced expression of p27 is associated with acquired resistance to docetaxel in breast cancer cells. An understanding of the genes that are involved in resistance to chemotherapy may allow further development in modulating drug resistance, and may permit selection of those patients who are most likely to benefit from such therapies

  11. Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ali Shakerimoghaddam

    2017-04-01

    Full Text Available Objective(s: This study aimed to investigate the effect of zinc oxide nanoparticles (ZnO-np on biofilm formation and expression of the flu gene in uropathogenic Escherichia coli (UPEC strains. Materials and Methods: Minimum inhibitory concentration (MIC of ZnO-np was determined by agar dilution method. The effect of MIC and sub-MIC concentrations of ZnO-np on biofilm formation were determined by microtiter plate assay. The expression level of the flu gene was assessed by Real-Time PCR assay. Results: MIC and sub-MIC ZnO-np concentrations reduced biofilm formation by 50% and 33.4%, respectively. Sub-MIC ZnO-np concentration significantly reduced the flu gene expression in the UPEC isolates (P

  12. Reduced expression of ZDHHC2 is associated with lymph node metastasis and poor prognosis in gastric adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Shu-Mei Yan

    Full Text Available BACKGROUND: Zinc finger, DHHC-type containing 2 (ZDHHC2, originally named as reduced expression associated with metastasis protein (REAM, has been proposed as a putative tumor/metastasis suppressor gene and is often aberrantly decreased in human cancers. However ZDHHC2 expression pattern and its clinical significance have not yet been investigated in gastric adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative Real-Time PCR (qRT-PCR and immunostaining were performed to detect ZDHHC2 expression in gastric adenocarcinoma, and then the correlation between ZDHHC2 expression and clinicpathologic parameters, and patient survival was analyzed. Compared to the adjacent normal tissues, ZDHHC2 expression was significantly reduced in gastric tumor tissues as shown by qRT-PCR and immunostaining. Low expression of ZDHHC2 was observed in 44.7% (211/472 of gastric adenocarcinoma patients, and was associated significantly with lymph node metastasis (p<0.001 and histological grade (p<0.001. Multivariate Cox regression analysis indicated that ZDHHC2 expression had a significant, independent predictive value for survival of gastric cancer patients (HR = 0.627, p = 0.001. CONCLUSIONS/SIGNIFICANCE: Our data suggest that reduced ZDHHC2 expression is associated with lymph node metastasis and independently predicts an unfavorable prognosis in gastric adenocarcinoma patients.

  13. Expressive Writing as a Brief Intervention for Reducing Drinking Intentions

    OpenAIRE

    Young, Chelsie M.; Rodriguez, Lindsey M.; Neighbors, Clayton

    2013-01-01

    The present study examined the effectiveness of expressive writing in reducing drinking behavior. We expected that students prompted to write about negative drinking experiences would show greater decreases in future drinking intentions compared to the neutral and the positive writing conditions. We also expected that decreases in drinking intentions following the writing prompts might differ based on current drinking and AUDIT scores. Participants included 200 (76% female) undergraduates who...

  14. Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder

    Science.gov (United States)

    Bychkov, ER; Ahmed, MR; Gurevich, VV; Benovic, JL; Gurevich, EV

    2011-01-01

    Alterations of multiple G protein-mediated signaling pathways are detected in schizophrenia. G protein-coupled receptor kinases (GRKs) and arrestins terminate signaling by G protein-coupled receptors exerting powerful influence on receptor functions. Modifications of arrestin and/or GRKs expression may contribute to schizophrenia pathology. Cortical expression of arrestins and GRKs was measured postmortem in control and subjects with schizophrenia or schizoaffective disorder. Additionally, arrestin/GRK expression was determined in elderly patients with schizophrenia and age-matched control. Patients with schizophrenia, but not schizoaffective disorder, displayed reduced concentration of arrestin and GRK mRNAs and GRK3 protein. Arrestins and GRK significantly decreased with age. In elderly patients, GRK6 was reduced, with other GRKs and arrestins unchanged. Reduced cortical concentration of GRKs in schizophrenia (resembling that in aging) may result in altered G protein-dependent signaling, thus contributing to prefrontal deficits in schizophrenia. The data suggest distinct molecular mechanisms underlying schizophrenia and schizoaffective disorder. PMID:21784156

  15. Facial expression coding in children and adolescents with autism: Reduced adaptability but intact norm-based coding.

    Science.gov (United States)

    Rhodes, Gillian; Burton, Nichola; Jeffery, Linda; Read, Ainsley; Taylor, Libby; Ewing, Louise

    2018-05-01

    Individuals with autism spectrum disorder (ASD) can have difficulty recognizing emotional expressions. Here, we asked whether the underlying perceptual coding of expression is disrupted. Typical individuals code expression relative to a perceptual (average) norm that is continuously updated by experience. This adaptability of face-coding mechanisms has been linked to performance on various face tasks. We used an adaptation aftereffect paradigm to characterize expression coding in children and adolescents with autism. We asked whether face expression coding is less adaptable in autism and whether there is any fundamental disruption of norm-based coding. If expression coding is norm-based, then the face aftereffects should increase with adaptor expression strength (distance from the average expression). We observed this pattern in both autistic and typically developing participants, suggesting that norm-based coding is fundamentally intact in autism. Critically, however, expression aftereffects were reduced in the autism group, indicating that expression-coding mechanisms are less readily tuned by experience. Reduced adaptability has also been reported for coding of face identity and gaze direction. Thus, there appears to be a pervasive lack of adaptability in face-coding mechanisms in autism, which could contribute to face processing and broader social difficulties in the disorder. © 2017 The British Psychological Society.

  16. Increased NY-ESO-1 Expression and Reduced Infiltrating CD3+ T Cells in Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Mara Giavina-Bianchi

    2015-01-01

    Full Text Available NY-ESO-1 is a cancer-testis antigen aberrantly expressed in melanomas, which may serve as a robust and specific target in immunotherapy. NY-ESO-1 antigen expression, tumor features, and the immune profile of tumor infiltrating lymphocytes were assessed in primary cutaneous melanoma. NY-ESO-1 protein was detected in 20% of invasive melanomas (16/79, rarely in in situ melanoma (1/10 and not in benign nevi (0/20. Marked intratumoral heterogeneity of NY-ESO-1 protein expression was observed. NY-ESO-1 expression was associated with increased primary tumor thickness (P=0.007 and inversely correlated with superficial spreading melanoma (P<0.02. NY-ESO-1 expression was also associated with reduced numbers and density of CD3+ tumor infiltrating lymphocytes (P=0.017. When NY-ESO-1 protein was expressed, CD3+ T cells were less diffusely infiltrating the tumor and were more often arranged in small clusters (P=0.010 or as isolated cells (P=0.002 than in large clusters of more than five lymphocytes. No correlation of NY-ESO-1 expression with gender, age, tumor site, ulceration, lymph node sentinel status, or survival was observed. NY-ESO-1 expression in melanoma was associated with tumor progression, including increased tumor thickness, and with reduced tumor infiltrating lymphocytes.

  17. Reduced expression of bax in small cell lung cancer cells is not sufficient to induce cisplatin-resistance

    Directory of Open Access Journals (Sweden)

    Biagosch J

    2010-10-01

    Full Text Available Abstract Resistance to cisplatin in the course of chemotherapy contributes to the poor prognosis of small cell lung cancer (SCLC. B cell lymphoma-2 is the founding member of a large family of proteins that either promote or inhibit apoptosis. We aimed at investigating if the pro-apoptotic members Bad, Bax, Bim and Bid are involved in cisplatin-resistance. Cisplatin-resistance in the SCLC cell line H1339 was induced by repetitive exposure to cisplatin. Protein expression was quantified by Western Blot and immuno-fluorescence analysis. Protein expression was altered using siRNA interference. Four "cycles" of 0.5 μg/ml cisplatin led to partial cisplatin-resistance in H1339 cells. The expression of Bad, Bim and Bid was comparable in naïve and resistant cells while the expression of Bax was reduced in the resistant clone. But, reducing Bax expression in naïve cells did not lead to altered cisplatin sensitivity neither in H1339 nor in H187 SCLC cells. We conclude that the reduced Bax expression after exposure to cisplatin is not sufficient to induce cis-platin-resistance in SCLC cells.

  18. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells

    Directory of Open Access Journals (Sweden)

    BA Walter

    2016-07-01

    Full Text Available The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4 ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease.

  19. Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes.

    Science.gov (United States)

    Kumar Dubey, Arvind; Kumar, Navin; Ranjan, Ruma; Gautam, Ambedkar; Pande, Veena; Sanyal, Indraneel; Mallick, Shekhar

    2018-02-01

    The present study was intended to investigate the role of amino acid glycine in detoxification of As in Oryza sativa L. The growth parameters such as, shoot length and fresh weight were decreased during As(III) and As(V) toxicity. However, the application of glycine recovered the growth parameters against As stress. The application of glycine reduced the As accumulation in all the treatments, and it was more effective against As(III) treatment and reduced the accumulation by 68% in root and 71% in shoot. Similarly, the translocation of As from root to shoot, was higher against As(III) and As(V) treatments, whereas, reduced upon glycine application. The translocation of Fe and Na was also affected by As, which was lower under As(III) and As(V) treatments. However, the application of glycine significantly enhanced the translocation of Fe and Na in the shoot. Besides, the expression of lower silicon transporters i.e. Lsi-1 and Lsi-2 was observed to be significantly suppressed in the root with the application of glycine against As treatment. Similarly, the expression of three GRX and two GST gene isoforms were found to be significantly increased with glycine application. Simultaneously, the activities of antioxidant enzymes i.e. l-arginine dependent NOS, SOD, NTR and GRX were found to be significantly enhanced in the presence of glycine. Increased activities of antioxidant enzymes coincided with the decreased level of TBARS and H 2 O 2 in rice seedlings. Overall, the results suggested that the application of glycine reduces As accumulation through suppressing the gene expression of lower silicon transporters and ameliorates As toxicity by enhancing antioxidants defense mechanism in rice seedlings. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David

    2017-07-01

    Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Campylobacter jejuni cocultured with epithelial cells reduces surface capsular polysaccharide expression.

    LENUS (Irish Health Repository)

    Corcionivoschi, N

    2012-02-01

    The host cell environment can alter bacterial pathogenicity. We employed a combination of cellular and molecular techniques to study the expression of Campylobacter jejuni polysaccharides cocultured with HCT-8 epithelial cells. After two passages, the amount of membrane-bound high-molecular-weight polysaccharide was considerably reduced. Microarray profiling confirmed significant downregulation of capsular polysaccharide (CPS) locus genes. Experiments using conditioned media showed that sugar depletion occurred only when the bacterial and epithelial cells were cocultured. CPS depletion occurred when C. jejuni organisms were exposed to conditioned media from a different C. jejuni strain but not when exposed to conditioned media from other bacterial species. Proteinase K or heat treatment of conditioned media under coculture conditions abrogated the effect on the sugars, as did formaldehyde fixation and cycloheximide treatment of host cells or chloramphenicol treatment of the bacteria. However, sugar depletion was not affected in flagellar export (fliQ) and quorum-sensing (luxS) gene mutants. Passaged C. jejuni showed reduced invasiveness and increased serum sensitivity in vitro. C. jejuni alters its surface polysaccharides when cocultured with epithelial cells, suggesting the existence of a cross talk mechanism that modulates CPS expression during infection.

  2. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    Energy Technology Data Exchange (ETDEWEB)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  3. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib.

    Science.gov (United States)

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-05-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC.

  4. Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study.

    Science.gov (United States)

    Ding, Yun-Hong; Mrizek, Michael; Lai, Qin; Wu, Yimin; Reyes, Raul; Li, Jie; Davis, William W; Ding, Yuchuan

    2006-11-01

    Exercise reduces ischemia and reperfusion injury in rat stroke models. We investigated whether gradual increases in tumor necrosis factor-alpha (TNF-alpha) reported during exercise down-regulates expression of TNF-alpha receptors I and II (TNFRI and II) in stroke, leading to reduced brain damage. Adult male Sprague Dawley rats were subjected to 30 minutes of exercise on a treadmill each day for 3 weeks. Then, stroke was induced by a 2-hour middle cerebral artery (MCA) occlusion using an intra-luminal filament. Expressions of TNFRI and II mRNA in the brain were detected using a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Protein expressions of TNFRI and II were determined by enzyme-linked immunoabsorbant assay (ELISA) in serum and brain homogenates. Spatial distribution of TNF-alpha receptors in brain regions was determined with immunocytochemistry. In human umbilical vein endothelial cells (HUVEC), we addressed the causal effect of TNF-alpha pretreatment on TNF I and II expression using ELISA and real-time PCR. In exercised rats after stroke, brain infarct was significantly (p<0.01) reduced in the entire MCA supplied regions, associated with a mild expression of TNFRI and II mRNA and protein. The TNF-alpha receptors were restricted to the ischemic core. In contrast, a robust expression of TNFRI and II molecules was found in non-exercised rats subjected to similar ischemia/reperfusion insults. An in vitro study revealed a causal link between TNF-alpha pretreatment and reduced cellular expression of TNF-alpha receptors under hypoxic/reoxygenated conditions. Our results suggest that reduced-brain damage in ischemic rats after exercise preconditioning may be attributable to the reduced expression of TNF-alpha receptors. Chronically increased TNF-alpha expression was also found to reduce TNFI and II responding to acute ischemia/reperfusion insult.

  5. Reduced Variance of Gene Expression at Numerous Loci in a Population of Chickens Selected for High Feather Pecking

    DEFF Research Database (Denmark)

    Hughes, A L; Buitenhuis, A J

    2010-01-01

    among populations with respect to mean expression scores, but numerous transcripts showed reduced variance in expression scores in the high FP population in comparison to control and low FP populations. The reduction in variance in the high FP population generally involved transcripts whose expression...

  6. High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells

    DEFF Research Database (Denmark)

    Bottley, G; Watherston, O G; Hiew, Y-L

    2007-01-01

    a role for E7 in tumour immune evasion. We show that knockdown of E7 expression in HPV16- and HPV18-transformed cervical carcinoma cells by RNA interference increased expression of major histocompatibility complex (MHC) class I at the cell surface and reduced susceptibility of these cells to natural...... killer (NK) cells. Tetracycline-regulated induction of HPV16 E7 resulted in reduced expression of cell surface MHC class I molecules and increased NK cell killing. Our results suggest that, for HPV-associated malignancies, reduced MHC class I expression is the result of an active immune evasion strategy...

  7. Mindfulness-Based Stress Reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial.

    Science.gov (United States)

    Creswell, J David; Irwin, Michael R; Burklund, Lisa J; Lieberman, Matthew D; Arevalo, Jesusa M G; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W

    2012-10-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N = 40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35) = 7.86, p = .008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33) = 3.39, p = .075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro

    2015-05-29

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.

  9. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    International Nuclear Information System (INIS)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V.

    2015-01-01

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition

  10. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qualtrough, David, E-mail: david.qualtrough@uwe.ac.uk [Department of Biological, Biomedical & Analytical Sciences, University of the West of England, Faculty of Health and Applied Sciences, University of the West of England, Frenchay, Bristol BS16 1QY (United Kingdom); Rees, Phil; Speight, Beverley; Williams, Ann C.; Paraskeva, Christos [School of Cellular & Molecular Medicine, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD (United Kingdom)

    2015-09-17

    Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH) signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist) associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer.

  11. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    David Qualtrough

    2015-09-01

    Full Text Available Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, Cancers 2015, 7 1886 these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer.

  12. The Hedgehog Inhibitor Cyclopamine Reduces β-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells

    International Nuclear Information System (INIS)

    Qualtrough, David; Rees, Phil; Speight, Beverley; Williams, Ann C.; Paraskeva, Christos

    2015-01-01

    Colorectal cancer is a major global health problem resulting in over 600,000 deaths world-wide every year with the majority of these due to metastatic disease. Wnt signalling, and more specifically β-catenin-related transcription, has been shown to drive both tumorigenesis and the metastatic process in colorectal neoplasia, yet its complex interactions with other key signalling pathways, such as hedgehog, remain to be elucidated. We have previously shown that the Hedgehog (HH) signalling pathway is active in cells from colorectal tumours, and that inhibition of the pathway with cyclopamine induces apoptosis. We now show that cyclopamine treatment reduces β-catenin related transcription in colorectal cancer cell lines, and that this effect can be reversed by addition of Sonic Hedgehog protein. We also show that cyclopamine concomitantly induces expression of the tumour suppressor and prognostic indicator E-cadherin. Consistent with a role for HH in regulating the invasive potential we show that cyclopamine reduces the expression of transcription factors (Slug, Snail and Twist) associated with the epithelial-mesenchymal transition and reduces the invasiveness of colorectal cancer cells in vitro. Taken together, these data show that pharmacological inhibition of the hedgehog pathway has therapeutic potential in the treatment of colorectal cancer

  13. Phaleria macrocarpa reduces glomerular growth factor expression in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Evy Sulistyoningrum

    2013-08-01

    Full Text Available Background Diabetic nephropathy (DN is the most serious complication of diabetes, causing end-stage renal disease throughout the world. Recent studies have reported a direct role of vascular endothelial growth factor (VEGF and transforming growth factor-â (TGF-â in DN pathogenesis. VEGF and TGF-â are expressed early in glomeruli in response to hyperglycemia. Active substances of Phaleria macrocarpa (PM pericarp are known to have nephroprotective effects. This study aimed to evaluate the effects of Phaleria macrocarpa (Scheff. Boerl pericarp extract on VEGF and TGF-â expression in alloxan-induced diabetic rats. Methods An experimental study was conducted on twenty five male albino (Sprague Dawley rats divided into five groups (of five each: normal control; diabetic; diabetic + metformin 100 mg/kgBW; diabetic + methanolic PM extract 250 mg/kgBW; and diabetic + aqueous PM extract 250 mg/kgBW. Diabetes was induced by alloxan monohydrate 150 mg/BW intraperitoneally. Treatment was given for 3 weeks. VEGF and TGF-â expression analysis was performed by means of immunohistochemical technique. Differences between groups were assessed by one-way ANOVA. Results VEGF expression in the PM extract group was significantly lower than that in the diabetic group and even metformin group (p<0.01. TGF-â expression in methanolic PM extract group was significantly lower than in diabetic and metformin group (p<0.01, but aqueous PM extract group only showed significancy when compared with diabetic group (p< 0.01. Conclusions Phaleria macrocarpa pericarp extract reduces glomerular expression of TGF-â and VEGF in alloxan-induced diabetic rats.

  14. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    Directory of Open Access Journals (Sweden)

    Brian R. Mullen

    2016-06-01

    Full Text Available Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology.

  15. Reduced expression of PARK2 in manganese-exposed smelting workers.

    Science.gov (United States)

    Fan, Ximin; Luo, Ying; Fan, Qiyuan; Zheng, Wei

    2017-09-01

    Manganese (Mn) is widely used in modern industries. Occupational exposure to Mn is known to cause clinical syndromes similar, but not identical to, Parkinson's disease. This human cohort study was designed to investigate if workers exposed to Mn altered the PARK2 gene expression, leading to Mn-induced neurotoxicity. Workers (n=26) occupationally exposed to Mn were recruited from a Mn-iron (Fe) alloy smelter, and control workers (n=20) without Mn-exposure were from an Fe smelter from Zunyi City in China. Subjects were matched with socioeconomic status and background for environmental factors. Metal concentrations were determined by atomic absorption spectrophotometry (AAS). Total RNA from the blood samples was isolated and analyzed by RT-PCR to quantify PARK2. The data showed that Mn concentrations in plasma, red blood cell (RBC) and saliva, and the cumulative Mn-exposure were about 2.2, 2.0, 1.7 and 3.0 fold higher, respectively, in Mn-exposed workers than those in control subjects (pworkers was significantly decreased by 42% as compared to controls (p<0.01). Linear regression analysis further established that the expression of PARK2 mRNA was inversely correlated with Mn levels in plasma, RBC and saliva, as well as the cumulative Mn exposure (p<0.01). Taken together, it seems likely that Mn exposure among smelters may lead to a reduced expression of PARK2, which may partly explain the Mn-induced Parkinsonian disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    International Nuclear Information System (INIS)

    Tsujiuchi, Toshifumi; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-01-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells

  17. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.

    Directory of Open Access Journals (Sweden)

    Valentina Guzmán-Pérez

    Full Text Available Nasturtium (Tropaeolum majus L. contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1. FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i the insulin-signaling pathway, ii the intracellular localization of FOXO1 and, iii the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived-like2 (NRF2 and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1. The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance.

  18. Elimination of Kalrn Expression in POMC Cells Reduces Anxiety-Like Behavior and Contextual Fear Learning

    Science.gov (United States)

    Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A.; Mains, Richard E.

    2014-01-01

    Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. PMID:25014196

  19. Recombinant myostatin reduces highly expressed microRNAs in differentiating C2C12 cells

    Directory of Open Access Journals (Sweden)

    Zachary A. Graham

    2017-03-01

    Full Text Available Myostatin is small glycopeptide that is produced and secreted by skeletal muscle. It is a potent negative regulator of muscle growth that has been associated with conditions of frailty. In C2C12 cells, myostatin limits cell differentiation. Myostatin acts through activin receptor IIB, activin receptor-like kinase (ALK and Smad transcription factors. microRNAs (miRNA are short, 22 base pair nucleotides that bind to the 3′ UTR of target mRNA to repress translation or reduce mRNA stability. In the present study, expression in differentiating C2C12 cells of the myomiRs miR-1 and 133a were down-regulated following treatment with 1 µg of recombinant myostatin at 1 d post-induction of differentiation while all myomiRs (miR-1, 133a/b and 206 were upregulated by SB431542, a potent ALK4/5/7 inhibitor which reduces Smad2 signaling, at 1 d and all, with the exception of miR-206, were upregulated by SB431542 at 3 d. The expression of the muscle-enriched miR-486 was greater following treatment with SB431542 but not altered by myostatin. Other highly expressed miRNAs in skeletal muscle, miR-23a/b and 145, were altered only at 1 d post-induction of differentiation. miR-27b responded differently to treatments at 1 d, where it was upregulated, as compared to 3 d, where it was downregulated. Neither myostatin nor SB431542 altered cell size or cell morphology. The data indicate that myostatin represses myomiR expression in differentiating C2C12 cells and that inhibition of Smad signaling with SB431542 can result in large changes in highly expressed miRNAs in differentiating myoblasts.

  20. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation.

    Science.gov (United States)

    Nagarajan, Raman P; Hogart, Amber R; Gwye, Ynnez; Martin, Michelle R; LaSalle, Janine M

    2006-01-01

    Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are "pervasive developmental disorders" and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism.

  1. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  2. Melatonin reduces the expression of chemokines in rat with trinitrobenzene sulfonic acid-induced colitis

    International Nuclear Information System (INIS)

    Li, Jun H.; Zhou, W.; Liu, K.; Li, Hong X.; Wang, L.

    2008-01-01

    Objective was to investigate the effect of melatonin on the colon inflammatory injury of rats with colitis and determine whether this effect is associated with inhibition of chemoattractant molecules interleukins (IL-8) and monocyte chemoattractant protein (MCP)-1.The study was designed and implemented in JingMen No.1 People's Hospital, HuBei Province, from May 2006 to April 2007. It involved 72 animals divided into 6 groups of 12 each: normal group, model group, 5-aminosalisalicylic acid group, and melatonin group (dose of 2.5, 5.0 and 10.0mg/kg). Rat colitis model was established by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) enema. Interleukin-8 and MCP-1 proteins in colon tissue were examined by immunohistochemistry and western blot. The messenger-RNA expressions of chemokines were determined by reverse transcription polymerase chain reaction analysis. Trinitrobenzene sulfonic acid enema resulted in pronounced pathological changes of colonic mucosa in model rats, which were in accordance with the significantly elevated Myeloperoxidase activity. Expressions of chemokines were up-regulated in colitis. Melatonin treatment reduced colonic lesions and improved colitis symptom, and decreased the protein and mRNA expressions of IL-8 and MCP-1 significantly in colon tissues of rats with colitis. Chemokines IL-8 and MCP-1 are elevated in mucosal tissues in colitis and play an important role in the perpetuation of tissue destructive inflammatory process; melatonin reduces colonic inflammatory injury of rats colitis through down-regulating the expressions of chemokines. Melatonin can be considered as a novel therapeutic alternative for the treatment of inflammatory bowel disease. (author)

  3. Increased expression of CD133 and reduced dystroglycan expression are strong predictors of poor outcome in colon cancer patients

    Directory of Open Access Journals (Sweden)

    Coco Claudio

    2012-09-01

    Full Text Available Abstract Background Expression levels of CD133, a cancer stem cell marker, and of the α-subunit of the dystroglycan (α-DG complex, have been previously reported to be altered in colorectal cancers. Methods Expression levels of CD133 and α-DG were assessed by immunohistochemistry in a series of colon cancers and their prognostic significance was evaluated. Results Scattered cells positive for CD133 were rarely detected at the bases of the crypts in normal colonic mucosa while in cancer cells the median percentage of positive cells was 5% (range 0–80. A significant correlation was observed with pT parameter and tumor stage but not with tumor grade and N status. Recurrence and death from disease were significantly more frequent in CD133-high expressing tumors and Kaplan-Meier curves showed a significant separation between high vs low expressor groups for both disease-free (p = 0.002 and overall (p = 0.008 survival. Expression of α-DG was reduced in a significant fraction of tumors but low α-DG staining did not correlate with any of the classical clinical-pathological parameters. Recurrence and death from the disease were significantly more frequent in α-DG-low expressing tumors and Kaplan-Meier curves showed a significant separation between high vs low expressor tumors for both disease-free (p = 0.02 and overall (p = 0.02 survival. Increased expression of CD133, but not loss of α-DG, confirmed to be an independent prognostic parameters at a multivariate analysis associated with an increased risk of recurrence (RR = 2.4; p = 0.002 and death (RR = 2.3; p = 0.003. Conclusions Loss of α-DG and increased CD133 expression are frequent events in human colon cancer and evaluation of CD133 expression could help to identify high-risk colon cancer patients.

  4. Elimination of Kalrn expression in POMC cells reduces anxiety-like behavior and contextual fear learning.

    Science.gov (United States)

    Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A; Mains, Richard E

    2014-07-01

    Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Intracerebroventricular C75 decreases meal frequency and reduces AgRP gene expression in rats.

    Science.gov (United States)

    Aja, Susan; Bi, Sheng; Knipp, Susan B; McFadden, Jill M; Ronnett, Gabriele V; Kuhajda, Francis P; Moran, Timothy H

    2006-07-01

    3-Carboxy-4-alkyl-2-methylenebutyrolactone (C75), an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyltransferase-1, reduces food intake and body weight in rodents when given systemically or centrally. Intracellular molecular mechanisms involving changes in cellular energy status are proposed to initiate the feeding and body weight reductions. However, effectors that lie downstream of these initial steps are not yet fully identified. Present experiments characterize the time courses of hypophagia and weight loss after single injections of C75 into the lateral cerebroventicle in rats and go on to identify specific meal pattern changes and coinciding alterations in gene expression for feeding-related hypothalamic neuropeptides. C75 reduced chow intake and body weight dose dependently. Although the principal effects occurred on the first day, weight losses relative to vehicle control were maintained over multiple days. C75 did not affect generalized locomotor activity. C75 began to reduce feeding after a 6-h delay. The hypophagia was due primarily to decreased meal number during 6-12 h without a significant effect on meal size, suggesting that central C75 reduced the drive to initiate meals. C75 prevented the anticipated hypophagia-induced increases in mRNA for AgRP in the arcuate nucleus at 22 h and at 6 h when C75 begins to suppress feeding. Overall, the data suggest that gene expression changes leading to altered melanocortin signaling are important for the hypophagic response to intracerebroventricular C75.

  6. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    International Nuclear Information System (INIS)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.; Wehnert, Manfred; Huebner, Stefan

    2009-01-01

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  7. Ovarian hormone deprivation reduces oxytocin expression in Paraventricular Nucleus preautonomic neurons and correlates with baroreflex impairment in rats

    Directory of Open Access Journals (Sweden)

    Vitor Ulisses De Melo

    2016-10-01

    Full Text Available The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN. Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation.

  8. Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.

    Science.gov (United States)

    Matthews, Paul R; Eastwood, Sharon L; Harrison, Paul J

    2012-01-01

    Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.

  9. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Chihiro Moriya

    2016-01-01

    Full Text Available We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD or a 60% high-fat diet (HFD with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  10. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1

    DEFF Research Database (Denmark)

    Tibelius, Alexandra; Marhold, Joachim; Zentgraf, Hanswalter

    2009-01-01

    Primary microcephaly, Seckel syndrome, and microcephalic osteodysplastic primordial dwarfism type II (MOPD II) are disorders exhibiting marked microcephaly, with small brain sizes reflecting reduced neuron production during fetal life. Although primary microcephaly can be caused by mutations...

  11. An Acceptance-Based Psychoeducation Intervention to Reduce Expressed Emotion in Relatives of Bipolar Patients

    Science.gov (United States)

    Eisner, Lori R.; Johnson, Sheri L.

    2008-01-01

    Expressed emotion (EE) is a robust predictor of outcome in bipolar disorder. Despite decades of research, interventions to reduce EE levels have had only modest effects. This study used an expanded model of EE to develop an intervention. Research has demonstrated a strong link between attributions and EE in families of patients with psychiatric…

  12. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  13. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    Science.gov (United States)

    DeSmet, Marsha L; Fleet, James C

    2017-10-01

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH) 2 D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH) 2 D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH) 2 D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH) 2 D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    Science.gov (United States)

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  15. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Zhu, Xiao Fang; Jiang, Tao; Wang, Zhi Wei; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2012-01-01

    Highlights: ► Cd reduces endogenous GA levels in Arabidopsis. ► GA exogenous applied decreases Cd accumulation in plant. ► GA suppresses the Cd-induced accumulation of NO. ► Decreased NO level downregulates the expression of IRT1. ► Suppressed IRT1 expression reduces Cd transport across plasma membrane. - Abstract: Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd 2+ , GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd 2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd 2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd 2+ uptake related gene-IRT1 in Arabidopsis.

  16. Centrosome-Based Mechanisms, Prognostics and Therapeutics in Prostate Cancer

    National Research Council Canada - National Science Library

    Doxsey, Stephen J

    2007-01-01

    .... Our results show that the centrosome protein pericentrin is present at the midbody, a structure involved in the final stage of cell division called cytokinesis, where it anchors PKA, PKB/Akt and PKC...

  17. An Anacardiaceae preparation reduces the expression of inflammation-related genes in murine macrophages.

    Science.gov (United States)

    Leiro, J; García, D; Arranz, J A; Delgado, R; Sanmartín, M L; Orallo, F

    2004-08-01

    This study investigated the effects of an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae; Vimang), which contains a defined mixture of components including polyphenols (principally mangiferin, MA), triterpenes, phytosteroids, fatty acids and microelements, on expression of inflammation mediators in inflammatory murine macrophages after stimulation in vitro with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). In vitro treatment with Vimang at 4 microg/ml reduced levels of NOS-2 mRNA and NOS-2, while treatment at 40 microg/ml also reduced levels of COX-2 mRNA, COX-2, and prostaglandin E2 (PGE2). Results suggested that MA is involved in these effects. In vitro treatment with Vimang at 40 microg/ml also inhibited mRNA levels of the proinflammatory cytokines interleukin 1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha) and colony-stimulating factor (GM-CSF), but did not affect mRNA levels of IL-6 or tumor growth factor-beta (TGF-beta). Extracellular release of TNF-alpha by inflammatory macrophages was inhibited by in vitro treatment with Vimang at the same concentrations that showed inhibition of TNF-alpha mRNA levels. The inhibition of TNF-alpha production appears to be at least partially attributable to MA. Vimang at 4 microg/ml decreased mRNA levels of nuclear factor-kappaB (NF-kappaB) but did not affect expression of the NF-kappaB inhibitor (IkappaB). These data indicate that the potent anti-inflammatory effects of Vimang are due to selective modulation of the expression of inflammation-related genes, leading to attenuation of macrophage activation.

  18. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency.

    Science.gov (United States)

    Eudes, Aymerick; Sathitsuksanoh, Noppadon; Baidoo, Edward E K; George, Anthe; Liang, Yan; Yang, Fan; Singh, Seema; Keasling, Jay D; Simmons, Blake A; Loqué, Dominique

    2015-12-01

    Lignin confers recalcitrance to plant biomass used as feedstocks in agro-processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3-dehydroshikimate dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3-dehydroshikimate - an intermediate of the shikimate pathway - into protocatechuate. Compared to wild-type plants, lines expressing QsuB contain higher amounts of protocatechuate, p-coumarate, p-coumaraldehyde and p-coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D-NMR spectroscopy and pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS) reveal an increase of p-hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size-exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The

  19. HLA-B*39:06 Efficiently Mediates Type 1 Diabetes in a Mouse Model Incorporating Reduced Thymic Insulin Expression.

    Science.gov (United States)

    Schloss, Jennifer; Ali, Riyasat; Racine, Jeremy J; Chapman, Harold D; Serreze, David V; DiLorenzo, Teresa P

    2018-04-09

    Type 1 diabetes (T1D) is characterized by T cell-mediated destruction of the insulin-producing β cells of the pancreatic islets. Among the loci associated with T1D risk, those most predisposing are found in the MHC region. HLA-B*39:06 is the most predisposing class I MHC allele and is associated with an early age of onset. To establish an NOD mouse model for the study of HLA-B*39:06, we expressed it in the absence of murine class I MHC. HLA-B*39:06 was able to mediate the development of CD8 T cells, support lymphocytic infiltration of the islets, and confer T1D susceptibility. Because reduced thymic insulin expression is associated with impaired immunological tolerance to insulin and increased T1D risk in patients, we incorporated this in our model as well, finding that HLA-B*39:06-transgenic NOD mice with reduced thymic insulin expression have an earlier age of disease onset and a higher overall prevalence as compared with littermates with typical thymic insulin expression. This was despite virtually indistinguishable blood insulin levels, T cell subset percentages, and TCR Vβ family usage, confirming that reduced thymic insulin expression does not impact T cell development on a global scale. Rather, it will facilitate the thymic escape of insulin-reactive HLA-B*39:06-restricted T cells, which participate in β cell destruction. We also found that in mice expressing either HLA-B*39:06 or HLA-A*02:01 in the absence of murine class I MHC, HLA transgene identity alters TCR Vβ usage by CD8 T cells, demonstrating that some TCR Vβ families have a preference for particular class I MHC alleles. Copyright © 2018 by The American Association of Immunologists, Inc.

  20. Reduced E-Cadherin and Aberrant β-Catenin Expression are Associated With Advanced Disease in Signet-Ring Cell Carcinomas.

    Science.gov (United States)

    Ma, Yihong R; Ren, Zhiyong; Conner, Michael G; Siegal, Gene P; Wei, Shi

    2017-07-01

    Signet-ring cell carcinomas (SRCCs) tend to present at higher stages and thus are generally associated with a worse prognosis. It has been postulated that a deficiency of E-cadherin may be causal in the pathogenesis of SRCC in animal models. In this study, we systemically analyzed the expression of E-cadherin and β-catenin, a key component of the cadherin complex, in 137 consecutive SRCCs of various organ systems to explore the significance of these molecules in the pathogenesis and progression of SRCCs. Seventy-six percent of SRCCs showed loss or reduced E-cadherin expression. Aberrant β-catenin expression, defined as loss of membranous expression and nuclear/cytoplasmic subcellular localization, was observed in 60% of these cases, with the altered β-catenin expression observed most commonly in the breast (93%) and least in the lung (38%) primaries. Further, the aberrant β-catenin was significantly associated with pathologic nodal stage (P=0.002) and clinical stage (P=0.02). Our findings demonstrated that reduced membranous E-cadherin and aberrant β-catenin expression were frequent events in SRCCs of various organs, and that the altered β-catenin expression was significantly associated with advanced disease. The observations further support the importance of these molecules in the pathogenesis of SRCCs, and indicate the fundamental role of the Wnt/β-catenin signaling pathway in the progression of these tumors. Further investigations of the downstream molecules in this cascade may provide potential novel therapeutic targets for this aggressive tumor type.

  1. The smallest teeth in the world are caused by mutations in the PCNT gene.

    Science.gov (United States)

    Kantaputra, Piranit; Tanpaiboon, Pranoot; Porntaveetus, Thantrira; Ohazama, Atsushi; Sharpe, Paul; Rauch, Anita; Hussadaloy, Atiwat; Thiel, Christian T

    2011-06-01

    We report a follow up study on two MOPD II Thai families with severe dental anomalies and hypoplastic alveolar bone. Striking dental anomalies comprise severe microdontia, opalescent and abnormally shaped teeth, and rootless molars. As a result of severe hypoplastic alveolar bone, most permanent teeth have been lost. Mutation analysis of PCNT revealed 2 novel mutations (p.Lys3154del and p.Glu1154X) and a recurrent mutation (p.Pro1923X). Teeth of the patient who carried a homozygous novel mutation of p.Glu1154X are probably the smallest ever reported. The sizes of the mandibular permanent incisors and all premolars were approximately 2-2.5 mm, mesiodistally. All previously reported, PCNT mutations have been described to cause premature truncation of the pericentrin protein. p.Lys3154del mutation was unique as it was pathogenic as a result of missing only a single amino acid. In situ hybridization of Pcnt shows its expression in the epithelium and mesenchyme during early stages of rodent tooth development. It is evident that PCNT has crucial role in tooth development. The permanent dentition is more severely affected than the one. This implies that PCNT appears to have more role in the development of the permanent dentition. As pericentrin is a critical centrosomal protein, the dental phenotype found in MOPD II patients is postulated to be the consequence of loss of microtubule integrity which leads to defective centrosome function. Copyright © 2011 Wiley-Liss, Inc.

  2. Chronic sleep deprivation markedly reduces coagulation factor VII expression

    Science.gov (United States)

    Pinotti, Mirko; Bertolucci, Cristiano; Frigato, Elena; Branchini, Alessio; Cavallari, Nicola; Baba, Kenkichi; Contreras-Alcantara, Susana; Ehlen, J. Christopher; Bernardi, Francesco; Paul, Ketema N.; Tosini, Gianluca

    2010-01-01

    Chronic sleep loss, a common feature of human life in industrialized countries, is associated to cardiovascular disorders. Variations in functional parameters of coagulation might contribute to explain this relationship. By exploiting the mouse model and a specifically designed protocol, we demonstrated that seven days of partial sleep deprivation significantly decreases (−30.5%) the thrombin generation potential in plasma evaluated upon extrinsic (TF/FVIIa pathway) but not intrinsic activation of coagulation. This variation was consistent with a decrease (−49.8%) in the plasma activity levels of factor VII (FVII), the crucial physiologicalal trigger of coagulation, which was even more pronounced at the liver mRNA level (−85.7%). The recovery in normal sleep conditions for three days completely restored thrombin generation and FVII activity in plasma. For the first time, we demonstrate that chronic sleep deprivation on its own reduces, in a reversible manner, the FVII expression levels, thus influencing the TF/FVIIa activation pathway efficiency. PMID:20418241

  3. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Jiang, Tao [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Lei, Gui Jie [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Cd reduces endogenous GA levels in Arabidopsis. Black-Right-Pointing-Pointer GA exogenous applied decreases Cd accumulation in plant. Black-Right-Pointing-Pointer GA suppresses the Cd-induced accumulation of NO. Black-Right-Pointing-Pointer Decreased NO level downregulates the expression of IRT1. Black-Right-Pointing-Pointer Suppressed IRT1 expression reduces Cd transport across plasma membrane. - Abstract: Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 {mu}M for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd{sup 2+}, GA at 5 {mu}M improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd{sup 2+} increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd{sup 2+} absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd{sup 2+} uptake related gene-IRT1 in Arabidopsis.

  4. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    Science.gov (United States)

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  5. Atorvastatin reduces lipopolysaccharide-induced expression of cyclooxygenase-2 in human pulmonary epithelial cells

    Directory of Open Access Journals (Sweden)

    Chen Ping

    2005-04-01

    Full Text Available Abstract Objective To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2 in human pulmonary epithelial cells (A549. Methods A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E2 (PGE2 was measured by enzyme-linked immunosorbent assay (ELISA. The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively. Results LPS increased the expression of COX-2 mRNA and production of PGE2 in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE2. There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE2 (r = 0.947, P Conclusion Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE2 in cultured A549 cells.

  6. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-05-01

    Full Text Available We examined the function of OsALMT4 in rice (Oryza sativa L. which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ABA, IAA, and salicylic acid. Malate efflux from the transgenic plants over-expressing OsALMT4 was inhibited by niflumate and salicylic acid. Growth of transgenic lines with either increased OsALMT4 expression or reduced expression was measured in different environments. Light intensity caused significant differences in growth between the transgenic lines and controls. When day-time light was reduced from 700 to 300 μmol m-2s-1 independent transgenic lines with either increased or decreased OsALMT4 expression accumulated less biomass compared to their null controls. This response was not associated with differences in photosynthetic capacity, stomatal conductance or sugar concentrations in tissues. We propose that by disrupting malate fluxes across the plasma membrane carbon partitioning and perhaps signaling are affected which compromises growth under low light. We conclude that OsALMT4 is expressed widely in rice and facilitates malate efflux from different cell types. Altering OsALMT4 expression compromises growth in low-light environments.

  7. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    Science.gov (United States)

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  8. Chlorella vulgaris reduces the impact of stress on hypothalamic-pituitary-adrenal axis and brain c-fos expression.

    Science.gov (United States)

    Souza Queiroz, Julia; Marín Blasco, Ignacio; Gagliano, Humberto; Daviu, Nuria; Gómez Román, Almudena; Belda, Xavier; Carrasco, Javier; Rocha, Michelle C; Palermo Neto, João; Armario, Antonio

    2016-03-01

    Predominantly emotional stressors activate a wide range of brain areas, as revealed by the expression of immediate early genes, such as c-fos. Chlorella vulgaris (CV) is considered a biological response modifier, as demonstrated by its protective activities against infections, tumors and stress. We evaluated the effect of acute pretreatment with CV on the peripheral and central responses to forced swimming stress in adult male rats. Pretreatment with CV produced a significant reduction of stress-related hypothalamic-pituitary-adrenal activation, demonstrated by decreased corticotrophin releasing factor gene expression in the hypothalamic paraventricular nucleus (PVN) and lower ACTH response. Hyperglycemia induced by the stressor was similarly reduced. This attenuated neuroendocrine response to stress occurred in parallel with a diminished c-fos expression in most evaluated areas, including the PVN. The data presented in this study reinforce the usefulness of CV to diminish the impact of stressors, by reducing the HPA response. Although our results suggest a central effect of CV, further studies are necessary to understand the precise mechanisms underpinning this effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Naringenin Inhibits Adipogenesis and Reduces Insulin Sensitivity and Adiponectin Expression in Adipocytes

    Directory of Open Access Journals (Sweden)

    Allison J. Richard

    2013-01-01

    Full Text Available Adipose tissue development and function are widely studied to examine the relationship between obesity and the metabolic syndrome. It is well documented that the inability of adipose tissue to properly increase its lipid storage capacity during the obese state can lead to metabolic dysfunction. In a blind screen of 425 botanicals, we identified naringenin as an inhibitor of adipocyte differentiation. Naringenin is one of the most abundant citrus flavonoids, and recent studies have demonstrated antihyperlipidemic capabilities. These studies have largely focused on the effects of naringenin on the liver. Our biochemical studies clearly demonstrate that naringenin inhibits adipogenesis and impairs mature fat cell function. Naringenin specifically inhibited adipogenesis in a dose-dependent fashion as judged by examining lipid accumulation and induction of adipocyte marker protein expression. In mature 3T3-L1 adipocytes, naringenin reduced the ability of insulin to induce IRS-1 tyrosine phosphorylation and substantially inhibited insulin-stimulated glucose uptake in a dose-dependent manner and over a time frame of 1.5 to 24 hours. Exposure to naringenin also inhibited adiponectin protein expression in mature murine and human adipocytes. Our studies have revealed that naringenin may have a negative impact on adipocyte-related diseases by limiting differentiation of preadipocytes, by significantly inducing insulin resistance, and by decreasing adiponectin expression in mature fat cells.

  10. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    International Nuclear Information System (INIS)

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-01-01

    Highlights: → Nerve transection increased Notch signaling in paralyzed muscle. → Nandrolone prevented denervation-induced Notch signaling. → Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. → Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  11. Expression of Arabidopsis hexokinase in citrus guard cells controls stomatal aperture and reduces transpiration

    Directory of Open Access Journals (Sweden)

    Nitsan eLugassi

    2015-12-01

    Full Text Available Hexokinase (HXK is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1 under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  12. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  13. β-Conglycinin Reduces the Tight Junction Occludin and ZO-1 Expression in IPEC-J2

    Directory of Open Access Journals (Sweden)

    Yuan Zhao

    2014-01-01

    Full Text Available Soybean allergy presents a health threat to humans and animals. The mechanism by which food/feed allergen β-conglycinin injures the intestinal barrier has not been well understood. In this study, the changes of epithelial permeability, integrity, metabolic activity, the tight junction (TJ distribution and expression induced by β-conglycinin were evaluated using IPEC-J2 model. The results showed a significant decrease of trans-epithelial electrical resistance (TEER (p < 0.001 and metabolic activity (p < 0.001 and a remarkable increase of alkaline phosphatase (AP activity (p < 0.001 in a dose-dependent manner. The expression levels of tight junction occludin and ZO-1 were decreased (p < 0.05. The reduced fluorescence of targets and change of cellular morphology were recorded. The tight junction occludin and ZO-1 mRNA expression linearly declined with increasing β-conglycinin (p < 0.001.

  14. Expressive writing as a brief intervention for reducing drinking intentions.

    Science.gov (United States)

    Young, Chelsie M; Rodriguez, Lindsey M; Neighbors, Clayton

    2013-12-01

    The present study examined the effectiveness of expressive writing in reducing drinking behavior. We expected that students prompted to write about negative drinking experiences would show greater decreases in future drinking intentions compared to the neutral and the positive writing conditions. We also expected that decreases in drinking intentions following the writing prompts might differ based on current drinking and AUDIT scores. Participants included 200 (76% female) undergraduates who completed measures of their current drinking behavior. They were then randomly assigned to either write about: a time when they had a lot to drink that was a good time (Positive); a time when they had a lot to drink that was a bad time (Negative); or their first day of college (Neutral), followed by measures assessing intended drinking over the next three months. Results revealed that participants intended to drink significantly fewer drinks per week and engage in marginally fewer heavy drinking occasions after writing about a negative drinking occasion when compared to control. Interactions provided mixed findings suggesting that writing about a positive event was associated with higher drinking intentions for heavier drinkers. Writing about a negative event was associated with higher intentions among heavier drinkers, but lower intentions among those with higher AUDIT scores. This research builds on previous expressive writing interventions by applying this technique to undergraduate drinkers. Preliminary results provide some support for this innovative strategy but also suggest the need for further refinement, especially with heavier drinkers. © 2013.

  15. [Neratinib + Valproate] exposure permanently reduces ERBB1 and RAS expression in 4T1 mammary tumors and enhances M1 macrophage infiltration.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Rais, Rumeesa; Kirkwood, John; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-01-19

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown in vitro to rapidly reduce the expression of ERBB1/2/4 and RAS proteins via autophagic/lysosomal degradation. We have recently demonstrated that neratinib and valproate interact to suppress the growth of 4T1 mammary tumors but had not defined whether the [neratinib + valproate] drug combination, in a mouse, had altered the biology of the 4T1 cells. Exposure of 4T1 mammary tumors to [neratinib + valproate] for three days resulted, two weeks later, in tumors that expressed less ERBB1, K-RAS, N-RAS, indoleamine-pyrrole 2,3-dioxygenase (IDO-1), ornithine decarboxylase (ODC) and had increased Class I MHCA expression. Tumors previously exposed to [neratinib + valproate] grew more slowly than those exposed to vehicle control and contained more CD8+ cells and activated NK cells. M1 but not M2 macrophage infiltration was significantly enhanced by the drug combination. In vitro exposure of 4T1 tumor cells to [neratinib + valproate] variably reduced the expression of histone deacetylases 1-11. In vivo , prior exposure of tumors to [neratinib + valproate] permanently reduced the expression of HDACs 1-3, 6 and 10. Combined knock down of HDACs 1/2/3 or of 3/10 rapidly reduced the expression IDO-1, and ODC and increased the expression of MHCA. H&E staining of normal tissues at animal nadir revealed no obvious cyto-architectural differences between control and drug-treated animals. We conclude that [neratinib + valproate] evolves 4T1 tumors to grow more slowly and to be more sensitive to checkpoint immunotherapy antibodies.

  16. Phenobarbital reduces blood glucose and gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats.

    Science.gov (United States)

    Oda, Hiroaki; Okuda, Yuji; Yoshida, Yukiko; Kimura, Noriko; Kakinuma, Atsushi

    2015-10-23

    The regulatory mechanism of phosphoenolpyruvate carboykinase (GTP) (EC 4.1.1.32) (PEPCK) gene expression and gluconeogenesis by phenobarbital (PB), which is known to induce drug-metabolizing enzymes, was investigated. Higher level of PEPCK mRNA was observed in spherical rat primary hepatocytes on EHS-gel than monolayer hepatocytes on TIC (type I collagen). We found that PB directly suppressed PEPCK gene expression in spherical hepatocytes on EHS-gel, but not in those on TIC. PB strongly suppressed cAMP-dependent induction of PEPCK gene expression. Tyrosine aminotransferase (TAT), another gluconeogenic enzyme, was induced by cAMP, but not suppressed by PB. Chronic administration of PB reduced hepatic PEPCK mRNA in streptozotocin-induced diabetic and nondiabetic rats, and PB reduced blood glucose level in diabetic rats. Increased TAT mRNA in diabetic rats was not suppressed by PB. These results indicated that PB-dependent reduction is specific to PEPCK. From pyrvate challenge test, PB suppressed the increased gluconeogenesis in diabetic rats. PEPCK gene promoter activity was suppressed by PB in HepG2 cells. In conclusion, we found that spherical hepatocytes cultured on EHS-gel are capable to respond to PB to suppress PEPCK gene expression. Moreover, our results indicate that hypoglycemic action of PB result from transcriptional repression of PEPCK gene and subsequent suppression of gluconeogenesis. Copyright © 2015. Published by Elsevier Inc.

  17. Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus.

    Science.gov (United States)

    Qiu, Jiazhang; Feng, Haihua; Lu, Jing; Xiang, Hua; Wang, Dacheng; Dong, Jing; Wang, Jianfeng; Wang, Xiaoliang; Liu, Juxiong; Deng, Xuming

    2010-09-01

    Eugenol, an essential oil component in plants, has been demonstrated to possess activity against both gram-positive and gram-negative bacteria. This study examined the influence that subinhibitory concentrations of eugenol may have on the expression of the major exotoxins produced by Staphylococcus aureus. The results from a tumor necrosis factor (TNF) release assay and a hemolysin assay indicated that S. aureus cultured with graded subinhibitory concentrations of eugenol (16 to 128 microg/ml) dose dependently decreased the TNF-inducing and hemolytic activities of culture supernatants. Western blot analysis showed that eugenol significantly reduced the production of staphylococcal enterotoxin A (SEA), SEB, and toxic shock syndrome toxin 1 (the key exotoxins to induce TNF release), as well as the expression of alpha-hemolysin (the major hemolysin to cause hemolysis). In addition, this suppression was also evaluated at the transcriptional level via real-time reverse transcription (RT)-PCR analysis. The transcriptional analysis indicated that 128 microg/ml of eugenol remarkably repressed the transcription of the S. aureus sea, seb, tst, and hla genes. According to these results, eugenol has the potential to be rationally applied on food products as a novel food antimicrobial agent both to inhibit the growth of bacteria and to suppress the production of exotoxins by S. aureus.

  18. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene.

    Science.gov (United States)

    de Barros, Patrícia Pimentel; Freire, Fernanda; Rossoni, Rodnei Dennis; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso

    2017-07-01

    Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.

  19. Identification of protein expression alterations in gefitinib-resistant human lung adenocarcinoma: PCNT and mPR play key roles in the development of gefitinib-associated resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chi-Chen [Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan (China); Institute of Biomedical Science, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taiwan (China); Department of Medical Research and Education, Taichung Veterans General Hospital, Taichung, Taiwan (China); Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan (China); Chen, Jing-Ting [Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan (China); Lin, Meng-Wei [Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan (China); Chan, Chia-Hao [Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu 30071, Taiwan (China); Wen, Yueh-Feng [Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan (China); Wu, Shin-Bei [Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan (China); Chung, Ting-Wen [Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan (China); Lyu, Kevin W. [Lutheran Medical Center, Brooklyn, NY (United States); Global Scholars Program, St. George' s University/Northumbria University, Newcastle upon Tyne (United Kingdom); Chou, Hsiu-Chuan, E-mail: chouhc@mail.nhcue.edu.tw [Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan (China); and others

    2015-11-01

    Gefitinib is the first-line chemotherapeutic drug for treating non-small cell lung cancer (NSCLC), which comprises nearly 85% of all lung cancer cases worldwide. However, most patients eventually develop drug resistance after 12–18 months of treatment. Hence, investigating the drug resistance mechanism and resistance-associated biomarkers is necessary. Two lung adenocarcinoma cell lines, PC9 and gefitinib-resistant PC9/Gef, were established for examining resistance mechanisms and identifying potential therapeutic targets. Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were used for examining global protein expression changes between PC9 and PC9/Gef. The results revealed that 164 identified proteins were associated with the formation of gefitinib resistance in PC9 cells. Additional studies using RNA interference showed that progesterone receptor membrane component 1 and pericentrin proteins have major roles in gefitinib resistance. In conclusion, the proteomic approach enabled identifying of numerous proteins involved in gefitinib resistance. The results provide useful diagnostic markers and therapeutic candidates for treating gefitinib-resistant NSCLC. - Highlights: • 164 proteins associated with gefitinib resistance were identified through proteomic analysis. • In this study, a lung adenocarcinoma and its gefitinib resistant partner were established. • mPR and PCNT proteins have evidenced to play important roles in gefitinib resistance.

  20. Identification of protein expression alterations in gefitinib-resistant human lung adenocarcinoma: PCNT and mPR play key roles in the development of gefitinib-associated resistance

    International Nuclear Information System (INIS)

    Lin, Chi-Chen; Chen, Jing-Ting; Lin, Meng-Wei; Chan, Chia-Hao; Wen, Yueh-Feng; Wu, Shin-Bei; Chung, Ting-Wen; Lyu, Kevin W.; Chou, Hsiu-Chuan

    2015-01-01

    Gefitinib is the first-line chemotherapeutic drug for treating non-small cell lung cancer (NSCLC), which comprises nearly 85% of all lung cancer cases worldwide. However, most patients eventually develop drug resistance after 12–18 months of treatment. Hence, investigating the drug resistance mechanism and resistance-associated biomarkers is necessary. Two lung adenocarcinoma cell lines, PC9 and gefitinib-resistant PC9/Gef, were established for examining resistance mechanisms and identifying potential therapeutic targets. Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were used for examining global protein expression changes between PC9 and PC9/Gef. The results revealed that 164 identified proteins were associated with the formation of gefitinib resistance in PC9 cells. Additional studies using RNA interference showed that progesterone receptor membrane component 1 and pericentrin proteins have major roles in gefitinib resistance. In conclusion, the proteomic approach enabled identifying of numerous proteins involved in gefitinib resistance. The results provide useful diagnostic markers and therapeutic candidates for treating gefitinib-resistant NSCLC. - Highlights: • 164 proteins associated with gefitinib resistance were identified through proteomic analysis. • In this study, a lung adenocarcinoma and its gefitinib resistant partner were established. • mPR and PCNT proteins have evidenced to play important roles in gefitinib resistance.

  1. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    Science.gov (United States)

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  2. Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self.

    Science.gov (United States)

    Cheng, Wei; Rolls, Edmund T; Gu, Huaguang; Zhang, Jie; Feng, Jianfeng

    2015-05-01

    Whole-brain voxel-based unbiased resting state functional connectivity was analysed in 418 subjects with autism and 509 matched typically developing individuals. We identified a key system in the middle temporal gyrus/superior temporal sulcus region that has reduced cortical functional connectivity (and increased with the medial thalamus), which is implicated in face expression processing involved in social behaviour. This system has reduced functional connectivity with the ventromedial prefrontal cortex, which is implicated in emotion and social communication. The middle temporal gyrus system is also implicated in theory of mind processing. We also identified in autism a second key system in the precuneus/superior parietal lobule region with reduced functional connectivity, which is implicated in spatial functions including of oneself, and of the spatial environment. It is proposed that these two types of functionality, face expression-related, and of one's self and the environment, are important components of the computations involved in theory of mind, whether of oneself or of others, and that reduced connectivity within and between these regions may make a major contribution to the symptoms of autism. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia

    Science.gov (United States)

    Kim, Jae Hwan; Lee, Yong Woo; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2010-01-01

    Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of -arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia. PMID:20029450

  4. Reduced proliferation and osteocalcin expression in osteoblasts of male idiopathic osteoporosis.

    Science.gov (United States)

    Ruiz-Gaspà, Sílvia; Blanch-Rubió, Josep; Ciria-Recasens, Manuel; Monfort, Jordi; Tío, Laura; Garcia-Giralt, Natàlia; Nogués, Xavier; Monllau, Joan C; Carbonell-Abelló, Jordi; Pérez-Edo, Lluis

    2010-03-01

    Osteoporosis is characterized by low bone mineral density (BMD), resulting in increasing susceptibility to bone fractures. In men, it has been related to some diseases and toxic habits, but in some instances the cause of the primary--or idiopathic--osteoporosis is not apparent. In a previous study, our group compared histomorphometric measurements in cortical and cancellous bones from male idiopathic osteoporosis (MIO) patients to those of control subjects and found reduced bone formation without major differences in bone resorption. To confirm these results, this study analyzed the etiology of this pathology, examining the osteoblast behavior in vitro. We compared two parameters of osteoblast activity in MIO patients and controls: osteoblastic proliferation and gene expression of COL1A1 and osteocalcin, in basal conditions and with vitamin D(3) added. All these experiments were performed from a first-passage osteoblastic culture, obtained from osteoblasts that had migrated from the transiliac explants to the plate. The results suggested that the MIO osteoblast has a slower proliferation rate and decreased expression of genes related to matrix formation, probably due to a lesser or slower response to some stimulus. We concluded that, contrary to female osteoporosis, in which loss of BMD is predominantly due to increased resorption, low BMD in MIO seems to be due to an osteoblastic defect.

  5. Angiotensin II reduces cardiac AdipoR1 expression through AT1 receptor/ROS/ERK1/2/c-Myc pathway.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Adiponectin, an abundant adipose tissue-derived protein, exerts protective effect against cardiovascular disease. Adiponectin receptors (AdipoR1 and AdipoR2 mediate the beneficial effects of adiponectin on the cardiovascular system. However, the alteration of AdipoRs in cardiac remodeling is not fully elucidated. Here, we investigated the effect of angiotensin II (AngII on cardiac AdipoRs expression and explored the possible molecular mechanism. AngII infusion into rats induced cardiac hypertrophy, reduced AdipoR1 but not AdipoR2 expression, and attenuated the phosphorylations of adenosine monophosphate-activated protein kinase and acetyl coenzyme A carboxylase, and those effects were all reversed by losartan, an AngII type 1 (AT1 receptor blocker. AngII reduced expression of AdipoR1 mRNA and protein in cultured neonatal rat cardiomyocytes, which was abolished by losartan, but not by PD123319, an AT2 receptor antagonist. The antioxidants including reactive oxygen species (ROS scavenger NAC, NADPH oxidase inhibitor apocynin, Nox2 inhibitor peptide gp91 ds-tat, and mitochondrial electron transport chain complex I inhibitor rotenone attenuated AngII-induced production of ROS and phosphorylation of extracellular signal-regulated kinase (ERK 1/2. AngII-reduced AdipoR1 expression was reversed by pretreatment with NAC, apocynin, gp91 ds-tat, rotenone, and an ERK1/2 inhibitor PD98059. Chromatin immunoprecipitation assay demonstrated that AngII provoked the recruitment of c-Myc onto the promoter region of AdipoR1, which was attenuated by PD98059. Moreover, AngII-induced DNA binding activity of c-Myc was inhibited by losartan, NAC, apocynin, gp91 ds-tat, rotenone, and PD98059. c-Myc small interfering RNA abolished the inhibitory effect of AngII on AdipoR1 expression. Our results suggest that AngII inhibits cardiac AdipoR1 expression in vivo and in vitro and AT1 receptor/ROS/ERK1/2/c-Myc pathway is required for the downregulation of AdipoR1 induced by AngII.

  6. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression.

    Science.gov (United States)

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-05-05

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2(f/f);Bmp4(f/f)ameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling.

  7. Incensole acetate reduces depressive-like behavior and modulates hippocampal BDNF and CRF expression of submissive animals.

    Science.gov (United States)

    Moussaieff, Arieh; Gross, Moshe; Nesher, Elimelech; Tikhonov, Tatiana; Yadid, Gal; Pinhasov, Albert

    2012-12-01

    Incensole acetate (IA), a constituent of Boswellia resin ('frankincense'), was previously demonstrated to exhibit an antidepressive-like effect in the Forced Swim Test (FST) in mice following single dose administration (50 mg/kg). Here, we show that acute administration of considerably lower dose (10 mg/kg) IA to selectively bred mice, showing prominent submissive behavior, exerted significant antidepressant-like effects in the FST. Furthermore, chronic administration of 1 or 5 mg/kg per day of IA for three consecutive weeks dose- and time-dependently reduced the submissiveness of the mice in the Dominant-Submissive Relationship test, developed to screen the chronic effect of antidepressants. This behavioral effect was concomitant to reduced serum corticosterone levels, dose-dependent down-regulation of corticotropin releasing factor and up-regulation of brain derived neurotrophic factor transcripts IV and VI expression in the hippocampus. These data suggest that IA modulates the hypothalamic-pituitary-adrenal (HPA) axis and influences hippocampal gene expression, leading to beneficial behavioral effects supporting its potential as a novel treatment of depressive-like disorders.

  8. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90.

    Science.gov (United States)

    Li, Wanxia; Tao, Shaoyu; Wu, Qinghua; Wu, Tao; Tao, Ran; Fan, Jun

    2017-12-01

    Myocardial cell injury and cardiac myocyte apoptosis are associated with sepsis. Glutamine (Gln) has been reported to repair myocardial cell injury. The aim of this study was to explore the role of Gln on cardiac myocytes in a cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Following induction of sepsis in a CLP rat model, viral encoding heat shock protein 90 (Hsp90) gene and Hsp90dsDNA were designed to express and knockdown Hsp90, respectively. Rat cardiac tissues were examined histologically, and apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, Hsp90, p53 upregulated modulator of apoptosis, and p53 was measured by western blotting and real-time polymerase chain reaction. Caspase-3, caspase-8, and caspase-9 were detected by enzyme-linked immunosorbent assay. Rat cardiac myocyte damage induced by CLP was reduced by Gln treatment and Hsp90 overexpression, and these changes were reversed by Hsp90 knockdown. Bcl-2 expression, Bcl-2-associated X protein, p53, p53 upregulated modulator of apoptosis, caspase-8, caspase-9, and caspase-3 activities were significantly upregulated in the CLP model, which were reduced by Gln treatment and Hsp90 overexpression. Gln reduced apoptosis of cardiac myocytes in a rat model of sepsis, by promoting Hsp90 expression. Further studies are needed to determine the possible therapeutic action of Gln in sepsis in human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Ganoderma lucidum Polysaccharides Reduce Lipopolysaccharide-Induced Interleukin-1β Expression in Cultured Smooth Muscle Cells and in Thoracic Aortas in Mice

    Directory of Open Access Journals (Sweden)

    Chan-Jung Liang

    2014-01-01

    Full Text Available The expression of inflammatory cytokines on vascular walls is a critical event in vascular diseases and inflammation. The aim of the present study was to examine the effects of an extract of Ganoderma lucidum (Reishi polysaccharides (EORPs, which is effective against immunological disorders, on interleukin- (IL- 1β expression by human aortic smooth muscle cells (HASMCs and the underlying mechanism. The lipopolysaccharide- (LPS- induced IL-1β expression was significantly reduced when HASMCs were pretreated with EORP by Western blot and immunofluorescent staining. Pretreatment with 10 μg/mL EORP decreased LPS-induced ERK, p38, JNK, and Akt phosphorylation. But the increase in IL-1β expression with LPS treatment was only inhibited by pretreatment with the ERK1/2 inhibitor, while the JNK and p38 inhibitors had no effect. In addition, EORP reduced the phosphorylation and nuclear translocation of nuclear factor- (NF- κB p65 in LPS-treated HASMCs. Furthermore, in vivo, IL-1β expression was strongly expressed in thoracic aortas in LPS-treated mice. Oral administration of EORP decreased IL-1β expression. The level of IL-1β expression in LPS-treated or in LPS/EORP-treated group was very low and was similar to that of the saline-treated group in toll-like receptor 4-deficient (TLR4−/− mice. These findings suggest that EORP has the anti-inflammatory property and could prove useful in the prevention of vascular diseases and inflammatory responses.

  10. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains

    International Nuclear Information System (INIS)

    Malinowsky, Katharina; Luksza, Julia; Dittmar, Matthias T.

    2008-01-01

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the YxxΦ domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1 NL4.3 compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and increase of

  11. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1.

    Science.gov (United States)

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A; Tyerman, Stephen D; Langridge, Peter; Sutton, Tim

    2010-08-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley.

  12. Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia.

    Science.gov (United States)

    Tischkowitz, M D; Morgan, N V; Grimwade, D; Eddy, C; Ball, S; Vorechovsky, I; Langabeer, S; Stöger, R; Hodgson, S V; Mathew, C G

    2004-03-01

    Fanconi anemia (FA) is an autosomal recessive chromosomal instability disorder caused by mutations in one of seven known genes (FANCA,C,D2,E,F,G and BRCA2). Mutations in the FANCA gene are the most prevalent, accounting for two-thirds of FA cases. Affected individuals have greatly increased risks of acute myeloid leukemia (AML). This raises the question as to whether inherited or acquired mutations in FA genes might be involved in the development of sporadic AML. Quantitative fluorescent PCR was used to screen archival DNA from sporadic AML cases for FANCA deletions, which account for 40% of FANCA mutations in FA homozygotes. Four heterozygous deletions were found in 101 samples screened, which is 35-fold higher than the expected population frequency for germline FANCA deletions (PFANCA in the AML samples with FANCA deletions did not detect mutations in the second allele and there was no evidence of epigenetic silencing by hypermethylation. However, real-time quantitative PCR analysis in these samples showed reduced expression of FANCA compared to nondeleted AML samples and to controls. These findings suggest that gene deletions and reduced expression of FANCA may be involved in the promotion of genetic instability in a subset of cases of sporadic AML.

  13. Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression*

    Science.gov (United States)

    Kasaikina, Marina V.; Lobanov, Alexei V.; Malinouski, Mikalai Y.; Lee, Byung Cheon; Seravalli, Javier; Fomenko, Dmitri E.; Turanov, Anton A.; Finney, Lydia; Vogt, Stefan; Park, Thomas J.; Miller, Richard A.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression. PMID:21372135

  14. Reduced TH expression and α-synuclein accumulation contribute towards nigrostriatal dysfunction in experimental hepatic encephalopathy.

    Science.gov (United States)

    Suárez, Isabel; Bodega, Guillermo; Rubio, Miguel; Fernández, Benjamín

    2017-01-01

    The present work examines α-synuclein expression in the nigrostriatal system of a rat chronic hepatic encephalopathy model induced by portacaval anastomosis (PCA). There is evidence that dopaminergic dysfunction in disease conditions is strongly associated with such expression. Possible relationships among dopaminergic neurons, astroglial cells and α-synuclein expression were sought. Brain tissue samples from rats at 1 and 6 months post-PCA, and controls, were analysed immunohistochemically using antibodies against tyrosine hydroxylase (TH), α-synuclein, glial fibrillary acidic protein (GFAP) and ubiquitin (Ub). In the control rats, TH immunoreactivity was detected in the neuronal cell bodies and processes in the substantia nigra pars compacta (SNc). A dense TH-positive network of neurons was also seen in the striatum. In the PCA-exposed rats, however, a reduction in TH-positive neurons was seen at both 1 and 6 months in the SNc, as well as a reduction in TH-positive fibres in the striatum. This was coincident with the appearance of α-synuclein-immunoreactive neurons in the SNc; some of the TH-positive neurons also showed α-synuclein immunoreactivity. In addition, α-synuclein accumulation was seen in the SNc and striatum at both 1 and 6 months post-PCA, whereas α-synuclein was only mildly expressed in the nigrostriatal pathway of the controls. Astrogliosis was also seen following PCA, as revealed by increased GFAP expression from 1 month to 6 months post-PCA in both the SN and striatum. The astroglial activation level in the SN paralleled the reduced neuronal expression of TH throughout PCA exposure. α-synuclein accumulation following PCA may induce dopaminergic dysfunction via the downregulation of TH, as well as astroglial activation.

  15. Long-term diet-induced hypertension in rats is associated with reduced expression and function of small artery SKCa, IKCa, and Kir2.1 channels

    DEFF Research Database (Denmark)

    Gradel, Anna Katrina Jógvansdóttir; Salomonsson, Max; Sørensen, Charlotte Mehlin

    2018-01-01

    in long-term diet-induced hypertension in rats. Hypothesis: A 28-week diet rich in fat, fructose, or both, will lead to changes in K+ transporter expression and function, which is associated with increased blood pressure and decreased arterial function. Methods and Results: Male Sprague Dawley rats......RNA expression of vascular K+ transporters, and vessel myography in small mesenteric arteries. BW was increased in the High Fat and High Fat/Fruc groups, and SBP was increased in the High Fat/Fruc group. mRNA expression of SKCa, IKCa, and Kir2.1 K+ channels were reduced in the High Fat/Fruc group. Reduced EDH......-type relaxation to acetylcholine was seen in the High Fat and High Fat/Fruc groups. Ba2+-sensitive dilatation to extracellular K+ was impaired in all experimental diet groups. Conclusions: Reduced expression and function of SKCa, IKCa and Kir2.1 channels is associated with elevated blood pressure in rats fed...

  16. Assisted Reproduction Causes Reduced Fetal Growth Associated with Downregulation of Paternally Expressed Imprinted Genes That Enhance Fetal Growth in Mice.

    Science.gov (United States)

    Li, Bo; Chen, Shuqiang; Tang, Na; Xiao, Xifeng; Huang, Jianlei; Jiang, Feng; Huang, Xiuying; Sun, Fangzhen; Wang, Xiaohong

    2016-02-01

    Alteration of intrauterine growth trajectory is linked to metabolic diseases in adulthood. In mammalian and, specifically, human species, pregnancies through assisted reproductive technology (ART) are associated with changes in intrauterine growth trajectory. However, it is still unclear how ART alters intrauterine growth trajectory, especially reduced fetal growth in early to midgestation. In this study, using a mouse model, it was found that ART procedures reduce fetal and placental growth at Embryonic Day 10.5. Furthermore, ART leads to decreased methylation levels at H19, KvDMR1, and Snrpn imprinting control regions in the placentae, instead of fetuses. Furthermore, in the placenta, ART downregulated a majority of parentally expressed imprinted genes, which enhance fetal growth, whereas it upregulated a majority of maternally expressed genes which repress fetal growth. Additionally, the expression of genes that regulate placental development was also affected by ART. ART also downregulated a majority of placental nutrient transporters. Disruption of genomic imprinting and abnormal expression of developmentally and functionally relevant genes in placenta may influence the placental development and function, which affect fetal growth and reprogramming. © 2016 by the Society for the Study of Reproduction, Inc.

  17. [The use of expressive writing in the course of care for cancer patients to reduce emotional distress: analysis of the literature].

    Science.gov (United States)

    Gallo, Isabella; Garrino, Lorenza; Di Monte, Valerio

    2015-01-01

    The emotional distress represents one of the symptoms most frequently reported in the cancer patient in therapy, increasing the risk of developing a disease depressive. Through the analysis of the literature we want to assess whether the use of expressive writing on cancer patients in their care pathway compared to the use of writing neutral reduces emotional distress. The bibliographic search was conducted using the databases CINAHL, PubMed, Cochrane Library and PsycInfo. The results of research conducted on 7 randomized controlled trials, including 3 pilot studies have shown after expressive writing sessions (experimental group) versus neutral writing (control group) a significant reduction in distress in the experimental group early stages of cancer (p = 0,0183); in patients with a diagnosis of metastatic assigned to the group expressive writing there was a statistically significant relevance in the reduction of mood disorders (p = 0,03).Were determined statistically significant group differences also with respect to some measure on the quality of sleep (p = 0,04). The expressive writing did not produce significant reductions in psychological distress and improvements in physical health (p > 0,20) in patients diagnosed with metastatic disease of long duration and, in the palliative care there have been results of feasibility for poor adherence at follow-up. From the results it is evident that the strategies of expressive writing improves the management of the disease, reduce the physical and psychological symptoms related to the tumor while reducing the emotional distress in patients at an early stage of the disease.

  18. Ruxolitinib synergizes with DMF to kill via BIM+BAD-induced mitochondrial dysfunction and via reduced SOD2/TRX expression and ROS.

    Science.gov (United States)

    Tavallai, Mehrad; Booth, Laurence; Roberts, Jane L; McGuire, William P; Poklepovic, Andrew; Dent, Paul

    2016-04-05

    We determined whether the myelofibrosis drug ruxolitinib, an inhibitor of Janus kinases 1/2 (JAK1 and JAK2), could interact with the multiple sclerosis drug dimethyl-fumarate (DMF) to kill tumor cells; studies used the in vivo active form of the drug, mono-methyl fumarate (MMF). Ruxolitinib interacted with MMF to kill brain, breast, lung and ovarian cancer cells, and enhanced the lethality of standard of care therapies such as paclitaxel and temozolomide. MMF also interacted with other FDA approved drugs to kill tumor cells including Celebrex® and Gilenya®. The combination of [ruxolitinib + MMF] inactivated ERK1/2, AKT, STAT3 and STAT5; reduced expression of MCL-1, BCL-XL, SOD2 and TRX; increased BIM expression; decreased BAD S112 S136 phosphorylation; and enhanced pro-caspase 3 cleavage. Expression of activated forms of STAT3, MEK1 or AKT each significantly reduced drug combination lethality; prevented BAD S112 S136 dephosphorylation and decreased BIM expression; and preserved TRX, SOD2, MCL-1 and BCL-XL expression. The drug combination increased the levels of reactive oxygen species in cells, and over-expression of TRX or SOD2 prevented drug combination tumor cell killing. Over-expression of BCL-XL or knock down of BAX, BIM, BAD or apoptosis inducing factor (AIF) protected tumor cells. The drug combination increased AIF : HSP70 co-localization in the cytosol but this event did not prevent AIF : eIF3A association in the nucleus.

  19. Decreased adrenoceptor stimulation in heart failure rats reduces NGF expression by cardiac parasympathetic neurons.

    Science.gov (United States)

    Hasan, Wohaib; Smith, Peter G

    2014-04-01

    Postganglionic cardiac parasympathetic and sympathetic nerves are physically proximate in atrial cardiac tissue allowing reciprocal inhibition of neurotransmitter release, depending on demands from central cardiovascular centers or reflex pathways. Parasympathetic cardiac ganglion (CG) neurons synthesize and release the sympathetic neurotrophin nerve growth factor (NGF), which may serve to maintain these close connections. In this study we investigated whether NGF synthesis by CG neurons is altered in heart failure, and whether norepinephrine from sympathetic neurons promotes NGF synthesis. NGF and proNGF immunoreactivity in CG neurons in heart failure rats following chronic coronary artery ligation was investigated. NGF immunoreactivity was decreased significantly in heart failure rats compared to sham-operated animals, whereas proNGF expression was unchanged. Changes in neurochemistry of CG neurons included attenuated expression of the cholinergic marker vesicular acetylcholine transporter, and increased expression of the neuropeptide vasoactive intestinal polypeptide. To further investigate norepinephrine's role in promoting NGF synthesis, we cultured CG neurons treated with adrenergic receptor (AR) agonists. An 82% increase in NGF mRNA levels was detected after 1h of isoproterenol (β-AR agonist) treatment, which increased an additional 22% at 24h. Antagonist treatment blocked isoproterenol-induced increases in NGF transcripts. In contrast, the α-AR agonist phenylephrine did not alter NGF mRNA expression. These results are consistent with β-AR mediated maintenance of NGF synthesis in CG neurons. In heart failure, a decrease in NGF synthesis by CG neurons may potentially contribute to reduced connections with adjacent sympathetic nerves. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Retinoic acid reduces human neuroblastoma cell migration and invasiveness: effects on DCX, LIS1, neurofilaments-68 and vimentin expression

    International Nuclear Information System (INIS)

    Messi, Elio; Florian, Maria C; Caccia, Claudio; Zanisi, Mariarosa; Maggi, Roberto

    2008-01-01

    Neuroblastoma is a severe pediatric tumor, histologically characterised by a variety of cellular phenotypes. One of the pharmacological approaches to neuroblastoma is the treatment with retinoic acid. The mechanism of action of retinoic acid is still unclear, and the development of resistance to this differentiating agent is a great therapy problem. Doublecortin, a microtubule-associated protein involved in neuronal migration, has recently been proposed as a molecular marker for the detection of minimal residual disease in human neuroblastoma. Nevertheless, no information is available on the expression of doublecortin in the different cell-types composing human neuroblastoma, its correlation with neuroblastoma cell motility and invasiveness, and the possible modulations exerted by retinoic acid treatment. We analysed by immunofluorescence and by Western blot analysis the presence of doublecortin, lissencephaly-1 (another protein involved in neuronal migration) and of two intermediate filaments proteins, vimentin and neurofilament-68, in SK-N-SH human neuroblastoma cell line both in control conditions and under retinoic acid treatment. Migration and cell invasiveness studies were performed by wound scratch test and a modified microchemotaxis assay, respectively. Doublecortin is expressed in two cell subtypes considered to be the more aggressive and that show high migration capability and invasiveness. Vimentin expression is excluded by these cells, while lissencephaly-1 and neurofilaments-68 are immunodetected in all the cell subtypes of the SK-N-SH cell line. Treatment with retinoic acid reduces cell migration and invasiveness, down regulates doublecortin and lissencephaly-1 expression and up regulates neurofilament-68 expression. However, some cells that escape from retinoic acid action maintain migration capability and invasiveness and express doublecortin. a) Doublecortin is expressed in human neuroblastoma cells that show high motility and invasiveness; b

  1. Subchronic nandrolone administration reduces cardiac oxidative markers during restraint stress by modulating protein expression patterns.

    Science.gov (United States)

    Pergolizzi, Barbara; Carriero, Vitina; Abbadessa, Giuliana; Penna, Claudia; Berchialla, Paola; De Francia, Silvia; Bracco, Enrico; Racca, Silvia

    2017-10-01

    Nandrolone decanoate (ND), an anabolic-androgenic steroid prohibited in collegiate and professional sports, is associated with detrimental cardiovascular effects through redox-dependent mechanisms. We previously observed that high-dose short-term ND administration (15 mg/kg for 2 weeks) did not induce left heart ventricular hypertrophy and, paradoxically, improved postischemic response, whereas chronic ND treatment (5 mg/kg twice a week for 10 weeks) significantly reduced the cardioprotective effect of postconditioning, with an increase in infarct size and a decrease in cardiac performance. We wanted to determine whether short-term ND administration could affect the oxidative redox status in animals exposed to acute restraint stress. Our hypothesis was that, depending on treatment schedule, ND may have a double-edged sword effect. Measurement of malondialdehyde and 4-hydroxynonenal, two oxidative stress markers, in rat plasma and left heart ventricular tissue, revealed that the levels of both markers were increased in animals exposed to restraint stress, whereas no increase in marker levels was noted in animals pretreated with ND, indicating a possible protective action of ND against stress-induced oxidative damage. Furthermore, isolation and identification of proteins extracted from the left heart ventricular tissue samples of rats pretreated or not with ND and exposed to acute stress showed a prevalent expression of enzymes involved in amino acid synthesis and energy metabolism. Among other proteins, peroxiredoxin 6 and alpha B-crystallin, both involved in the oxidative stress response, were predominantly expressed in the left heart ventricular tissues of the ND-pretreated rats. In conclusion, ND seems to reduce oxidative stress by inducing the expression of antioxidant proteins in the hearts of restraint-stressed animals, thus contributing to amelioration of postischemic heart performance.

  2. Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model.

    Science.gov (United States)

    Yadav, Satyndra Kumar; Rai, Sachchida Nand; Singh, Surya Pratap

    2017-03-01

    Parkinson's disease is one of the most common neurodegenerative disease found in aged peoples. Plentiful studies are being conducted to find a suitable and effective cure for this disease giving special impetus on use of herbal plants. The study aimed at investigating the effect of ethanolic extract of Mucuna pruriens (Mp) on level of nitric oxide (NO) in paraquat (PQ) induced Parkinson's disease (PD) mouse model and its subsequent contribution to lipid peroxidation. Twenty four Swiss albino mice were divided into three groups; Control, PQ and PQ+Mp. PQ doses were given intraperitoneally, twice in a week and oral dose of ethanolic extract of Mp seed was given for 9 weeks. Nitrite content and lipid peroxidation was measured in all treated groups along with respective controls. RNA was isolated from the nigrostriatal tissue of control and the treated mice and was reverse transcribed into cDNA. PCR was performed to amplify iNOS mRNA and western blot analysis was performed to check its protein level. We had also perfused the mice in all treated group and performed Tyrosine hydroxylase (TH) and iNOS immunoreactivity in substantia nigra region of mice brain. PQ-treatment increased nitrite content, expression of iNOS and lipid peroxidation compared to respective controls. Mp treatment resulted in a significant attenuation of iNOS expression, nitrite content and lipid peroxidation demonstrating that it reduces nitric oxide in PQ-induced Parkinson's disease. Interestingly; we also observed that mRNA, protein expression and immunoreactivity of iNOS was significantly decreased after Mp treatment and TH immunoreactivity was significantly improved after the treatment of Mp. Our results demonstrated that Mp protects the dopaminergic neurons from the NO injury in substantia nigra. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Majewski osteodysplastic primordial dwarfism type II (MOPD II) syndrome previously diagnosed as Seckel syndrome: report of a novel mutation of the PCNT gene.

    Science.gov (United States)

    Piane, Maria; Della Monica, Matteo; Piatelli, Gianluca; Lulli, Patrizia; Lonardo, Fortunato; Chessa, Luciana; Scarano, Gioacchino

    2009-11-01

    We report on a 3-year-old boy with prenatal onset of proportionate dwarfism, postnatal severe microcephaly, high forehead with receded hairline, sparse scalp hair, beaked nose, mild retrognathia and hypotonia diagnosed at birth as Seckel syndrome. At age 3 years, he became paralyzed due to a cerebrovascular malformation. Based on the clinical and radiological features showing evidence of skeletal dysplasia, the diagnosis was revised to Majewski osteodysplastic primordial dwarfism type II (MOPD II) syndrome. Western blot analysis of the patient's lymphoblastoid cell line lysate showed the absence of the protein pericentrin. Subsequent molecular analysis identified a novel homozygous single base insertion (c.1527_1528insA) in exon 10 of the PCNT gene, which leads to a frameshift (Treo510fs) and to premature protein truncation. PCNT mutations must be considered diagnostic of MOPD II syndrome. A possible role of pericentrin in the development of cerebral vessels is suggested. Copyright 2009 Wiley-Liss, Inc.

  4. Generation of transgenic cattle expressing human β-defensin 3 as an approach to reducing susceptibility to Mycobacterium bovis infection.

    Science.gov (United States)

    Su, Feng; Wang, Yongsheng; Liu, Guanghui; Ru, Kun; Liu, Xin; Yu, Yuan; Liu, Jun; Wu, Yongyan; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-03-01

    Bovine tuberculosis results from infection with Mycobacterium bovis, a member of the Mycobacterium tuberculosis family. Worldwide, M. bovis infections result in economic losses in the livestock industry; cattle production is especially hard-hit by this disease. Generating M. bovis-resistant cattle may potentially mitigate the impact of this disease by reducing M. bovis infections. In this study, we used transgenic somatic cell nuclear transfer to generate cattle expressing the gene encoding human β-defensin 3 (HBD3), which confers resistance to mycobacteria in vitro. We first generated alveolar epithelial cells expressing HBD3 under the control of the bovine MUC1 promoter, and confirmed that these cells secreted HBD3 and possessed anti-mycobacterial capacity. We then generated and identified transgenic cattle by somatic cell nuclear transfer. The cleavage and blastocyst formation rates of genetically modified embryos provided evidence that monoclonal transgenic bovine fetal fibroblast cells have an integral reprogramming ability that is similar to that of normal cells. Five genetically modified cows were generated, and their anti-mycobacterial capacities were evaluated. Alveolar epithelial cells and macrophages from these cattle expressed higher levels of HBD3 protein compared with non-transgenic cells and possessed effective anti-mycobacterial capacity. These results suggest that the overall risk of M. bovis infection in transgenic cattle is efficiently reduced, and support the development of genetically modified animals as an effective tool to reduce M. bovis infection. © 2016 Federation of European Biochemical Societies.

  5. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    Directory of Open Access Journals (Sweden)

    Michael S Stalvey

    Full Text Available Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF. CF-related bone disease (CFBD is characterized by uncoupled bone turnover--impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR, the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr-/- mouse model. In the murine calvarial organ culture assay, Cftr-/- calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+ littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr-/- compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl mRNA was detected, significantly less osteoprotegerin (Opg was expressed in Cftr-/- compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr-/- murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt

  6. Reduced expression of ASS is closely related to clinicopathological features and post-resectional survival of hepatocellular carcinoma.

    Science.gov (United States)

    Yang, Hua; Lin, Ming; Xiong, Fu Xia; Yang, Yu; Nie, Xiu; Zhou, Rou Li

    2010-01-01

    Argininosuccinate synthetase (ASS) has previously been proven to be reductively expressed in hepatocellular carcinoma (HCC) and various types of HCC cell lines. Arginine, the product of ASS, has been used as a target in HCC by recombinant human arginase or arginine deiminase, which is now in the phase II clinical trial stage. This study aimed to present the levels of ASS expression in HCCs and its correlation with clinicopathological features and prognosis of HCC patients. Immunohistochemical detection of ASS was performed on samples from 71 patients with HCC. Positive staining was found in 21 HCCs, with a score of 2, as well as in normal liver tissues. Reduced ASS staining was found in 70.4% (50/71) of HCC tissues, including 21 with a score of 0 and 29 with a score of 1. The staining score in cancer tissues was significantly associated with gender, background liver, histopathological differentiation, recurrence, TNM staging and portal vein invasion (PASS expression had significantly poorer overall and disease-free survival (PASS was reductively or negatively expressed in a large portion of HCC, and that ASS levels in HCCs correlated inversely with prognosis. In conclusion, a high expression of ASS may be a novel marker of poor prognosis of patients presenting with HCC.

  7. Reduced Sympathetic Innervation in Endometriosis is Associated to Semaphorin 3C and 3F Expression.

    Science.gov (United States)

    Scheerer, Claudia; Frangini, Sergio; Chiantera, Vito; Mechsner, Sylvia

    2017-09-01

    Endometriosis is a chronic inflammatory disease and one of the most common causes of pelvic pain. The mechanisms underlying pain emergence or chronic inflammation during endometriosis remain unknown. Several chronic inflammatory diseases including endometriosis show reduced amounts of noradrenergic nerve fibers. The source of the affected innervation is still unclear. Semaphorins represent potential elicitors, due to their known role as axonal guidance cues, and are suggested as nerve repellent factors in different chronic inflammatory diseases. Therefore, semaphorins might influence the progress of neuroinflammatory mechanisms during endometriosis. Here, we analyzed the noradrenergic innervation and the expression of the specific semaphorins and receptors possibly involved in the neuroimmunomodulation in endometriosis. Our studies revealed an affected innervation and a significant increase of semaphorins and their receptors in peritoneal endometriotic tissue. Thereby, the expression of the receptors was identified on the membrane of noradrenergic nerve fibers and vessels. Macrophages and activated fibroblasts were found in higher density levels and additionally express semaphorins in peritoneal endometriotic tissue. Inflammation leads to an increased release of immune cells, which secrete a variety of inflammatory factors capable of affecting innervation. Therefore, our data suggests that the chronic inflammatory condition in endometriosis might contribute to the increase of semaphorins, which could possibly affect the innervation in peritoneal endometriosis.

  8. Statins reduce the expressions of Tim-3 on NK cells and NKT cells in atherosclerosis.

    Science.gov (United States)

    Zhang, Na; Zhang, Min; Liu, Ru-Tao; Zhang, Peng; Yang, Chun-Lin; Yue, Long-Tao; Li, Heng; Li, Yong-Kang; Duan, Rui-Sheng

    2018-02-15

    3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors (statins) have an immuno-regulatory effect in addition to lowing-lipids. Accumulated evidence showed that the expressions of T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) on natural killer (NK) cells increased in atherosclerotic patients and animal models. In this study, 14 patients treated with rosuvastatin and 12 patients with atorvastatin for more than 3 months were included and 20 patients without statins treatment as control. Both statins treatment reduced the expressions of Tim-3 on NK cells and their subtypes, natural killer T (NKT) cells and CD3 + T cells, and increased the proportions of NKT cells among peripheral blood mononuclear cells, accompanied by the decreased levels of total cholesterol, low density lipoprotein, and increased ratios of high density lipoprotein to cholesterol. These may contribute to the functions of statins in the treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Loss of arylformamidase with reduced thymidine kinase expression leads to impaired glucose tolerance

    Directory of Open Access Journals (Sweden)

    Alison J. Hugill

    2015-11-01

    Full Text Available Tryptophan metabolites have been linked in observational studies with type 2 diabetes, cognitive disorders, inflammation and immune system regulation. A rate-limiting enzyme in tryptophan conversion is arylformamidase (Afmid, and a double knockout of this gene and thymidine kinase (Tk has been reported to cause renal failure and abnormal immune system regulation. In order to further investigate possible links between abnormal tryptophan catabolism and diabetes and to examine the effect of single Afmid knockout, we have carried out metabolic phenotyping of an exon 2 Afmid gene knockout. These mice exhibit impaired glucose tolerance, although their insulin sensitivity is unchanged in comparison to wild-type animals. This phenotype results from a defect in glucose stimulated insulin secretion and these mice show reduced islet mass with age. No evidence of a renal phenotype was found, suggesting that this published phenotype resulted from loss of Tk expression in the double knockout. However, despite specifically removing only exon 2 of Afmid in our experiments we also observed some reduction of Tk expression, possibly due to a regulatory element in this region. In summary, our findings support a link between abnormal tryptophan metabolism and diabetes and highlight beta cell function for further mechanistic analysis.

  10. The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation.

    Science.gov (United States)

    Rönnau, Cindy; Liebermann, Herbert E H; Helbig, Franz; Staudt, Alexander; Felix, Stephan B; Ewert, Ralf; Landsberger, Martin

    2009-02-28

    The bio-complex "reaction pattern in vertebrate cells" (RiV) is mainly represented by characteristic exosome-like particles--probably as reaction products of cells to specific stress. The transcription factor NF-kappaB plays a central role in inflammation. We tested the hypothesis that RiV particle preparations (RiV-PP) reduce cellular adhesion molecule (CAM) expression (ICAM-1, VCAM-1, E-selectin) by the attenuation of NF-kappaB translocation in human umbilical vein endothelial cells (HUVEC). After 4 hours, pre-incubation of HUVEC with RiV-PP before stimulation with TNF-alpha significantly reduced ICAM-1 (65.5+/-10.3%) and VCAM-1 (71.1+/-12.3%) mRNA expression compared to TNF-alpha-treated cells (100%, n=7). ICAM-1 surface expression was significantly albeit marginally reduced in RiV/TNF-alpha- treated cells (92.0+/-5.6%, n=4). No significant effect was observed on VCAM-1 surface expression. In RiV/TNF-alpha-treated cells (n=4), NF-kappaB subunits p50 (85.7+/-4.1%) and p65 (85.0+/-1.8%) nuclear translocation was significantly reduced. RiV-PP may exert an anti-inflammatory effect in HUVEC by reducing CAM mRNA expression via attenuation of p50 and p65 translocation.

  11. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    Science.gov (United States)

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  12. Boron Toxicity Tolerance in Barley through Reduced Expression of the Multifunctional Aquaporin HvNIP2;11[W

    Science.gov (United States)

    Schnurbusch, Thorsten; Hayes, Julie; Hrmova, Maria; Baumann, Ute; Ramesh, Sunita A.; Tyerman, Stephen D.; Langridge, Peter; Sutton, Tim

    2010-01-01

    Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley. PMID:20581256

  13. Preterm Birth Reduces Nutrient Absorption With Limited Effect on Immune Gene Expression and Gut Colonization in Pigs

    DEFF Research Database (Denmark)

    Østergaard, Mette V; Cilieborg, Malene S.; Skovgaard, Kerstin

    2015-01-01

    The primary risk factors for necrotizing enterocolitis (NEC) are preterm birth, enteral feeding, and gut colonization. It is unclear whether feeding and colonization induce excessive expression of immune genes that lead to NEC. Using a pig model, we hypothesized that reduced gestational age would...... upregulate immune-related genes and cause bacterial imbalance after birth. Preterm (85%-92% gestation, n = 53) and near-term (95%-99% gestation, n = 69) pigs were delivered by cesarean section and euthanized at birth or after 2 days of infant formula or bovine colostrum feeding. At birth, preterm delivery...... reduced 5 of 30 intestinal genes related to nutrient absorption and innate immunity, relative to near-term pigs, whereas 2 genes were upregulated. Preterm birth also reduced ex vivo intestinal glucose and leucine uptake (40%-50%), but failed to increase cytokine secretions from intestinal explants...

  14. Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring.

    Science.gov (United States)

    Mori, Ryoichi; Tanaka, Katsuya; de Kerckhove, Maiko; Okamoto, Momoko; Kashiyama, Kazuya; Tanaka, Katsumi; Kim, Sangeun; Kawata, Takuya; Komatsu, Toshimitsu; Park, Seongjoon; Ikematsu, Kazuya; Hirano, Akiyoshi; Martin, Paul; Shimokawa, Isao

    2014-09-01

    The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1(+/-) mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a(-/-) mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1(+/-) mice, along with markedly altered extracellular signal-regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Irradiation of rat brain reduces P-glycoprotein expression and function

    NARCIS (Netherlands)

    Bart, J.; Nagengast, W. B.; Coppes, R. P.; Wegman, T. D.; van der Graaf, W. T. A.; Groen, H. J. M.; Vaalburg, W.; de Vries, E. G. E.; Hendrikse, N. H.

    2007-01-01

    The blood - brain barrier ( BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P- glycoprotein ( P- gp), expressed on brain capillary endothelial cells, is part of the BBB. P- gp expression on capillary endothelium decreases 5 days after brain

  16. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    Science.gov (United States)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  17. Reduced angiogenic factor expression in intrauterine fetal growth restriction using semiquantitative immunohistochemistry and digital image analysis.

    Science.gov (United States)

    Alahakoon, Thushari I; Zhang, Weiyi; Arbuckle, Susan; Zhang, Kewei; Lee, Vincent

    2018-05-01

    To localize, quantify and compare angiogenic factors, vascular endothelial growth factor (VEGF), placental growth factor (PlGF), as well as their receptors fms-like tyrosine kinase receptor (Flt-1) and kinase insert domain receptor (KDR) in the placentas of normal pregnancy and complications of preeclampsia (PE), intrauterine fetal growth restriction (IUGR) and PE + IUGR. In a prospective cross-sectional case-control study, 30 pregnant women between 24-40 weeks of gestation, were recruited into four clinical groups. Representative placental samples were stained for VEGF, PlGF, Flt-1 and KDR. Analysis was performed using semiquantitative methods and digital image analysis. The overall VEGF and Flt-1 were strongly expressed and did not show any conclusive difference in the expression between study groups. PlGF and KDR were significantly reduced in expression in the placentas from pregnancies complicated by IUGR compared with normal and preeclamptic pregnancies. The lack of PlGF and KDR may be a cause for the development of IUGR and may explain the loss of vasculature and villous architecture in IUGR. Automated digital image analysis software is a viable alternative method to the manual reading of placental immunohistochemical staining. © 2018 Japan Society of Obstetrics and Gynecology.

  18. Branched-chain amino acids reduce hepatic iron accumulation and oxidative stress in hepatitis C virus polyprotein-expressing mice

    Science.gov (United States)

    Korenaga, Masaaki; Nishina, Sohji; Korenaga, Keiko; Tomiyama, Yasuyuki; Yoshioka, Naoko; Hara, Yuichi; Sasaki, Yusuke; Shimonaka, Yasushi; Hino, Keisuke

    2015-01-01

    Background & Aims Branched-chain amino acids (BCAA) reduce the incidence of hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the mechanisms that underlie these effects remain unknown. Previously, we reported that oxidative stress in male transgenic mice that expressed hepatitis C virus polyprotein (HCVTgM) caused hepatic iron accumulation by reducing hepcidin transcription, thereby leading to HCC development. This study investigated whether long-term treatment with BCAA reduced hepatic iron accumulation and oxidative stress in iron-overloaded HCVTgM and in patients with HCV-related advanced fibrosis. Methods Male HCVTgM were fed an excess-iron diet that comprised either casein or 3.0% BCAA, or a control diet, for 6 months. Results For HCVTgM, BCAA supplementation increased the serum hepcidin-25 levels and antioxidant status [ratio of biological antioxidant potential (BAP) relative to derivatives of reactive oxygen metabolites (dROM)], decreased the hepatic iron contents, attenuated reactive oxygen species generation, and restored mitochondrial superoxide dismutase expression and mitochondrial complex I activity in the liver compared with mice fed the control diet. After 48 weeks of BCAA supplementation in patients with HCV-related advanced fibrosis, BAP/dROM and serum hepcidin-25 increased and serum ferritin decreased compared with the pretreatment levels. Conclusions BCAA supplementation reduced oxidative stress by restoring mitochondrial function and improved iron metabolism by increasing hepcidin-25 in both iron-overloaded HCVTgM and patients with HCV-related advanced fibrosis. These activities of BCAA may partially account for their inhibitory effects on HCC development in cirrhosis patients. PMID:25156780

  19. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression.

    Science.gov (United States)

    Park, Kang-Seo; Ahn, Sang Hyun; Lee, Kang Pa; Park, Sun-Young; Cheon, Jin Hong; Choi, Jun-Yong; Kim, Kibong

    2018-01-01

    Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) miceDSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) miceDSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet-fed. Abbreviations used: DSE: Dansameum extract, PPAR-γ: Peroxisome proliferator

  20. Reduced glucocorticoid receptor expression predicts bladder tumor recurrence and progression.

    Science.gov (United States)

    Ishiguro, Hitoshi; Kawahara, Takashi; Zheng, Yichun; Netto, George J; Miyamoto, Hiroshi

    2014-08-01

    To assess the levels of glucocorticoid receptor (GR) expression in bladder tumors because the status and its prognostic value remain largely unknown. We immunohistochemically stained for GR in bladder tumor and matched non-neoplastic bladder tissue specimens. Overall, GR was positive in 129 (87%) of 149 urothelial tumors, which was significantly (P=.026) lower than in non-neoplastic urothelium (90 [96%] of 94). Forty-two (79%) of 53 low-grade tumors vs 45 (47%) of 96 high-grade carcinomas (Pcancer-specific survival of MI tumors (P=.067). Multivariate analysis identified low GR expression as a strong predictor for recurrence of NMI tumors (P=.034). GR expression was downregulated in bladder tumors compared with nonneoplastic bladder tumors and in high-grade/MI tumors compared with low-grade/NMI tumors. Decreased expression of GR, as an independent prognosticator, predicted recurrence of NMI tumors. These results support experimental evidence suggesting an inhibitory role of GR signals in bladder cancer outgrowth. Copyright© by the American Society for Clinical Pathology.

  1. PDE4 inhibition reduces neointima formation and inhibits VCAM-1 expression and histone methylation in an Epac-dependent manner.

    Science.gov (United States)

    Lehrke, Michael; Kahles, Florian; Makowska, Anna; Tilstam, Pathricia V; Diebold, Sebastian; Marx, Judith; Stöhr, Robert; Hess, Katharina; Endorf, Elizabeth B; Bruemmer, Dennis; Marx, Nikolaus; Findeisen, Hannes M

    2015-04-01

    Phosphodiesterase 4 (PDE4) activity mediates cAMP-dependent smooth muscle cell (SMC) activation following vascular injury. In this study we have investigated the effects of specific PDE4 inhibition with roflumilast on SMC proliferation and inflammatory activation in vitro and neointima formation following guide wire-induced injury of the femoral artery in mice in vivo. In vitro, roflumilast did not affect SMC proliferation, but diminished TNF-α induced expression of the vascular cell adhesion molecule 1 (VCAM-1). Specific activation of the cAMP effector Epac, but not PKA activation mimicked the effects of roflumilast on VCAM-1 expression. Consistently, the reduction of VCAM-1 expression was rescued following inhibition of Epac. TNF-α induced NFκB p65 translocation and VCAM-1 promoter activity were not altered by roflumilast in SMCs. However, roflumilast treatment and Epac activation repressed the induction of the activating epigenetic histone mark H3K4me2 at the VCAM-1 promoter, while PKA activation showed no effect. Furthermore, HDAC inhibition blocked the inhibitory effect of roflumilast on VCAM-1 expression. Both, roflumilast and Epac activation reduced monocyte adhesion to SMCs in vitro. Finally, roflumilast treatment attenuated femoral artery intima-media ratio by more than 50% after 4weeks. In summary, PDE4 inhibition regulates VCAM-1 through a novel Epac-dependent mechanism, which involves regulatory epigenetic components and reduces neointima formation following vascular injury. PDE4 inhibition and Epac activation might represent novel approaches for the treatment of vascular diseases, including atherosclerosis and in-stent restenosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

    Science.gov (United States)

    Hatazawa, Yukino; Ono, Yusuke; Hirose, Yuma; Kanai, Sayaka; Fujii, Nobuharu L; Machida, Shuichi; Nishino, Ichizo; Shimizu, Takahiko; Okano, Masaki; Kamei, Yasutomi; Ogawa, Yoshihiro

    2018-03-01

    DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.

  3. Arctigenin reduces blood pressure by modulation of nitric oxide synthase and NADPH oxidase expression in spontaneously hypertensive rats.

    Science.gov (United States)

    Liu, Ying; Wang, Guoyuan; Yang, Mingguang; Chen, Haining; zhao, Yan; Yang, Shucai; Sun, Changhao

    2015-12-25

    Arctigenin is a bioactive constituent from dried seeds of Arctium lappa L., which was traditionally used as medicine. Arctigenin exhibits various bioactivities, but its effects on blood pressure regulation are still not widely studied. In this study, we investigated antihypertensive effects of arctigenin by long-term treatment in spontaneously hypertensive rats (SHRs). Arctigenin (50 mg/kg) or vehicle was administered to SHRs or Wistar rats as negative control by oral gavage once a day for total 8 weeks. Nifedipine (3 mg/kg) was used as a positive drug control. After treatment, hemodynamic and physical parameters, vascular reactivity in aorta, the concentration of plasma arctigenin and serum thromboxane B2, NO release and vascular p-eNOS, p-Akt, caveolin-1 protein expression, and vascular superoxide anion generation and p47phox protein expression were detected and analyzed. The results showed that arctigenin significantly reduced systolic blood pressure and ameliorated endothelial dysfunction of SHRs. Arctigenin reduced the levels of thromboxane B2 in plasma and superoxide anion in thoracic aorta of SHRs. Furthermore, arctigenin increased the NO production by enhancing the phosphorylation of Akt and eNOS (Ser 1177), and inhibiting the expression of NADPH oxidase in thoracic aorta of SHRs. Our data suggested that antihypertensive mechanisms of arctigenin were associated with enhanced eNOS phosphorylation and decreased NADPH oxidase-mediated superoxide anion generation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    International Nuclear Information System (INIS)

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-01

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  5. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  6. Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells.

    Science.gov (United States)

    Selmin, Ornella I; Fang, Changming; Lyon, Adam M; Doetschman, Tom C; Thompson, Patricia A; Martinez, Jesse D; Smith, Jeffrey W; Lance, Peter M; Romagnolo, Donato F

    2016-02-01

    The farnesoid X receptor (FXR) regulates bile acid (BA) metabolism and possesses tumor suppressor functions. FXR expression is reduced in colorectal tumors of subjects carrying inactivated adenomatous polyposis coli (APC). Identifying the mechanisms responsible for this reduction may offer new molecular targets for colon cancer prevention. We investigated how APC inactivation influences the regulation of FXR expression in colonic mucosal cells. We hypothesized that APC inactivation would epigenetically repress nuclear receptor subfamily 1, group H, member 4 (FXR gene name) expression through increased CpG methylation. Normal proximal colonic mucosa and normal-appearing adjacent colonic mucosa and colon tumors were collected from wild-type C57BL/6J and Apc-deficient (Apc(Min) (/+)) male mice, respectively. The expression of Fxr, ileal bile acid-binding protein (Ibabp), small heterodimer partner (Shp), and cyclooxygenase-2 (Cox-2) were determined by real-time polymerase chain reaction. In both normal and adjacent colonic mucosa and colon tumors, we measured CpG methylation of Fxr in bisulfonated genomic DNA. In vitro, we measured the impact of APC inactivation and deoxycholic acid (DCA) treatment on FXR expression in human colon cancer HCT-116 cells transfected with silencing RNA for APC and HT-29 cells carrying inactivated APC. In Apc(Min) (/+) mice, constitutive CpG methylation of the Fxrα3/4 promoter was linked to reduced (60-90%) baseline Fxr, Ibabp, and Shp and increased Cox-2 expression in apparently normal adjacent mucosa and colon tumors. Apc knockdown in HCT-116 cells increased cellular myelocytomatosis (c-MYC) and lowered (∼50%) FXR expression, which was further reduced (∼80%) by DCA. In human HCT-116 but not HT-29 colon cancer cells, DCA induced FXR expression and lowered CpG methylation of FXR. We conclude that the loss of APC function favors the silencing of FXR expression through CpG hypermethylation in mouse colonic mucosa and human colon cells

  7. The centrosomin CM2 domain is a multi-functional binding domain with distinct cell cycle roles.

    Science.gov (United States)

    Citron, Y Rose; Fagerstrom, Carey J; Keszthelyi, Bettina; Huang, Bo; Rusan, Nasser M; Kelly, Mark J S; Agard, David A

    2018-01-01

    The centrosome serves as the main microtubule-organizing center in metazoan cells, yet despite its functional importance, little is known mechanistically about the structure and organizational principles that dictate protein organization in the centrosome. In particular, the protein-protein interactions that allow for the massive structural transition between the tightly organized interphase centrosome and the highly expanded matrix-like arrangement of the mitotic centrosome have been largely uncharacterized. Among the proteins that undergo a major transition is the Drosophila melanogaster protein centrosomin that contains a conserved carboxyl terminus motif, CM2. Recent crystal structures have shown this motif to be dimeric and capable of forming an intramolecular interaction with a central region of centrosomin. Here we use a combination of in-cell microscopy and in vitro oligomer assessment to show that dimerization is not necessary for CM2 recruitment to the centrosome and that CM2 alone undergoes significant cell cycle dependent rearrangement. We use NMR binding assays to confirm this intramolecular interaction and show that residues involved in solution are consistent with the published crystal structure and identify L1137 as critical for binding. Additionally, we show for the first time an in vitro interaction of CM2 with the Drosophila pericentrin-like-protein that exploits the same set of residues as the intramolecular interaction. Furthermore, NMR experiments reveal a calcium sensitive interaction between CM2 and calmodulin. Although unexpected because of sequence divergence, this suggests that centrosomin-mediated assemblies, like the mammalian pericentrin, may be calcium regulated. From these results, we suggest an expanded model where during interphase CM2 interacts with pericentrin-like-protein to form a layer of centrosomin around the centriole wall and that at the onset of mitosis this population acts as a nucleation site of intramolecular

  8. Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants

    Science.gov (United States)

    Mustapha, Mirna; Fang, Qing; Gong, Tzy-Wen; Dolan, David F.; Raphael, Yehoash; Camper, Sally A.; Duncan, R. Keith

    2012-01-01

    The absence of thyroid hormone (TH) during late gestation and early infancy can cause irreparable deafness in both humans and rodents. A variety of rodent models have been utilized in an effort to identify the underlying molecular mechanism. Here, we characterize a mouse model of secondary hypothyroidism, pituitary transcription factor 1 (Pit1dw), which has profound, congenital deafness that is rescued by oral TH replacement. These mutants have tectorial membrane abnormalities, including a prominent Hensen's stripe, elevated β-tectorin composition, and disrupted striated-sheet matrix. They lack distortion product otoacoustic emissions and cochlear microphonic responses, and exhibit reduced endocochlear potentials, suggesting defects in outer hair cell function and potassium recycling. Auditory system and hair cell physiology, histology and anatomy studies reveal novel defects of hormone deficiency related to deafness: (1) permanently impaired expression of KCNJ10 in the stria vascularis of Pit1dw mice, which likely contributes to the reduced endocochlear potential, (2) significant outer hair cell loss in the mutants, which may result from cellular stress induced by the lower KCNQ4 expression and current levels in Pit1dw mutant outer hair cells and (3) sensory and strial cell deterioration, which may have implications for thyroid hormone dysregulation in age related hearing impairment. In summary, we suggest that these defects in outer hair cell and strial cell function are important contributors to the hearing impairment in Pit1dw mice. PMID:19176829

  9. Drosophila PLP assembles pericentriolar clouds that promote centriole stability, cohesion and MT nucleation

    Science.gov (United States)

    Pratt, Metta B.; Johnson, Errin

    2018-01-01

    Pericentrin is a conserved centrosomal protein whose dysfunction has been linked to several human diseases. It has been implicated in many aspects of centrosome and cilia function, but its precise role is unclear. Here, we examine Drosophila Pericentrin-like-protein (PLP) function in vivo in tissues that form both centrosomes and cilia. Plp mutant centrioles exhibit four major defects: (1) They are short and have subtle structural abnormalities; (2) They disengage prematurely, and so overduplicate; (3) They organise fewer cytoplasmic MTs during interphase; (4) When forming cilia, they fail to establish and/or maintain a proper connection to the plasma membrane—although, surprisingly, they can still form an axoneme-like structure that can recruit transition zone (TZ) proteins. We show that PLP helps assemble “pericentriolar clouds” of electron-dense material that emanate from the central cartwheel spokes and spread outward to surround the mother centriole. We propose that the partial loss of these structures may largely explain the complex centriole, centrosome and cilium defects we observe in Plp mutant cells. PMID:29425198

  10. Drosophila PLP assembles pericentriolar clouds that promote centriole stability, cohesion and MT nucleation.

    Directory of Open Access Journals (Sweden)

    Helio Roque

    2018-02-01

    Full Text Available Pericentrin is a conserved centrosomal protein whose dysfunction has been linked to several human diseases. It has been implicated in many aspects of centrosome and cilia function, but its precise role is unclear. Here, we examine Drosophila Pericentrin-like-protein (PLP function in vivo in tissues that form both centrosomes and cilia. Plp mutant centrioles exhibit four major defects: (1 They are short and have subtle structural abnormalities; (2 They disengage prematurely, and so overduplicate; (3 They organise fewer cytoplasmic MTs during interphase; (4 When forming cilia, they fail to establish and/or maintain a proper connection to the plasma membrane-although, surprisingly, they can still form an axoneme-like structure that can recruit transition zone (TZ proteins. We show that PLP helps assemble "pericentriolar clouds" of electron-dense material that emanate from the central cartwheel spokes and spread outward to surround the mother centriole. We propose that the partial loss of these structures may largely explain the complex centriole, centrosome and cilium defects we observe in Plp mutant cells.

  11. Maillard reaction products enriched food extract reduce the expression of myofibroblast phenotype markers.

    Science.gov (United States)

    Ruhs, Stefanie; Nass, Norbert; Somoza, Veronika; Friess, Ulrich; Schinzel, Reinhard; Silber, Rolf-Edgar; Simm, Andreas

    2007-04-01

    Advanced glycation end products (AGE) are associated with a wide range of degenerative diseases. The present investigation aimed at analysing the influence of AGE containing nutritional extracts on cardiac fibroblasts (CFs) as the major cell type responsible for cardiac fibrosis. Mice CFs were treated with bread crust extract (BCE) which contained significant amounts of a variety of AGE modifications. BCE treatment with up to 30 mg/mL did not impair cell viability. Furthermore, BCE induced a moderate elevation of reactive oxygen species (ROS) production and activation of redox sensitive pathways like the p42/44(MAPK), p38(MAPK) and NF-kappaB but did not alter Akt kinase phosphorylation. Expression of smooth muscle alpha-actin and tropomyosin-1, which represent markers for myofibroblast differentiation, was reduced after bread crust treatment. These data suggest a putative antifibrotic effect of melanoidin-rich food.

  12. Selected lactic acid-producing bacterial isolates with the capacity to reduce Salmonella translocation and virulence gene expression in chickens.

    Directory of Open Access Journals (Sweden)

    Xiaojian Yang

    Full Text Available BACKGROUND: Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. METHODOLOGY/PRINCIPAL FINDINGS: In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0 and high bile salt (0.3-1.5% and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (10(6-7 CFU/chick or phosphate-buffered saline (PBS at 1 day of age followed by Salmonella challenge (10(4 CFU/chick next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1. These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10 in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. CONCLUSIONS/SIGNIFICANCE: The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in

  13. Anethole potentiates dodecanol's fungicidal activity by reducing PDR5 expression in budding yeast.

    Science.gov (United States)

    Fujita, Ken-Ichi; Ishikura, Takayuki; Jono, Yui; Yamaguchi, Yoshihiro; Ogita, Akira; Kubo, Isao; Tanaka, Toshio

    2017-02-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum and a weaker antimicrobial potency than other available antibiotics. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to exhibit synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the mechanism underlying this synergistic effect of anethole has not been characterized. We studied this mechanism using dodecanol-treated S. cerevisiae cells and focusing on genes related to multidrug efflux. Although dodecanol transiently reduced the number of colony forming units, this recovered to levels similar to those of untreated cells with continued incubation beyond 24h. Reverse transcription polymerase chain reaction analysis revealed overexpression of an ATP-binding cassette (ABC) transporter gene, PDR5, in addition to a slight increase in PDR11, PDR12, and PDR15 transcriptions in dodecanol-treated cells. In the presence of anethole, these effects were attenuated and the fungicidal activity of dodecanol was extended. Dodecanol showed longer lasting fungicidal activity against a Δpdr5. In addition, Δpdr3 and Δlge1, lack transcription factors of PDR5 and PDR3, were partly and completely susceptible to dodecanol, respectively. Furthermore, combination of anethole with fluconazole was also found to exhibit synergy on C. albicans. These results indicated that although anethole reduced the transcription of several transporters, PDR5 expression was particularly relevant to dodecanol efflux. Anethole is expected to be a promising candidate drug for the inhibition of efflux by reducing the transcription of several ABC transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Histone deacetylase inhibitors reduce the number of herpes simplex virus-1 genomes initiating expression in individual cells

    Directory of Open Access Journals (Sweden)

    Lev Shapira

    2016-12-01

    Full Text Available Although many viral particles can enter a single cell, the number of viral genomes per cell that establish infection is limited. However, mechanisms underlying this restriction were not explored in depth. For herpesviruses, one of the possible mechanisms suggested is chromatinization and silencing of the incoming genomes. To test this hypothesis, we followed infection with three herpes simplex virus 1 (HSV-1 fluorescence-expressing recombinants in the presence or absence of histone deacetylases inhibitors (HDACi’s. Unexpectedly, a lower number of viral genomes initiated expression in the presence of these inhibitors. This phenomenon was observed using several HDACi: Trichostatin A (TSA, Suberohydroxamic Acid (SBX, Valporic Acid (VPA and Suberoylanilide Hydoxamic Acid (SAHA. We found that HDACi presence did not change the progeny outcome from the infected cells but did alter the kinetic of the gene expression from the viral genomes. Different cell types (HFF, Vero and U2OS, which vary in their capability to activate intrinsic and innate immunity, show a cell specific basal average number of viral genomes establishing infection. Importantly, in all cell types, treatment with TSA reduced the number of viral genomes. ND10 nuclear bodies are known to interact with the incoming herpes genomes and repress viral replication. The viral immediate early protein, ICP0, is known to disassemble the ND10 bodies and to induce degradation of some of the host proteins in these domains. HDACi treated cells expressed higher levels of some of the host ND10 proteins (PML and ATRX, which may explain the lower number of viral genomes initiating expression per cell. Corroborating this hypothesis, infection with three HSV-1 recombinants carrying a deletion in the gene coding for ICP0, show a reduction in the number of genomes being expressed in U2OS cells. We suggest that alterations in the levels of host proteins involved in intrinsic antiviral defense may result in

  15. Failure of signal transduction pathway of DNA damage in hereditary microcephaly

    International Nuclear Information System (INIS)

    Miyamoto, Tatsuo; Matsuura, Shinya

    2009-01-01

    Mechanisms underlying the brain size determination are considered from an aspect of DNA-damage signaling recently revealed by studies on hereditary microcephaly (M), in relation to the radiation-induced M. International Commission of Radiological Protection (ICRP) assesses the risk of M by in utero exposure as 40%/Sv, the threshold dose is about 0.2 Gy (deterministic effect), A-bomb M is conceived to be due to the exposure at 8-5 weeks of gestation, and M is induced by radiation at 10 days after fertilization in the mouse. Recent studies on causing genes of M have revealed its particular connection with signaling pathways: in ataxia-telangiectasia (AT), genes of ATM; in Seckel syndrome, of ATR (AT and Rad3-related) and pericentrin (PCNT); Nijmegen syndrome (NBS), of NBS1; NBS-like disease, of Rad50 and Mre11; AT-like disease, of Mre11; Lig4 syndrome, of Lig4; immunodeficiency combined with M, of XLF; primary M, of MCPH1, ASPM, CdkRap2, CENP-J and STIL. Single and double strand breaks of DNA respectively activate the signaling pathway of ATR where PCNT and MCPH1 participate, and pathway of ATM where NBS1, Mre11 and Rad50 do. PCNT is a major protein, pericentrin, composing the centrosome, of which defect results in the Seckel disease with spindle dysfunction. At present, M can be thus said to be of the cellular common features of failure of ATM/ATR signaling and of dysfunction of centrosome. As well, ASPM gene expression is recently reported to be suppressed by radiation. Thus future studies on M will spread to wider biological field of cell and development as well as radiation and inheritance. (K.T.)

  16. Deletion of Nhlh2 results in a defective torpor response and reduced Beta adrenergic receptor expression in adipose tissue.

    Directory of Open Access Journals (Sweden)

    Umesh D Wankhade

    2010-08-01

    Full Text Available Mice with a targeted deletion of the basic helix-loop-helix transcription factor, Nescient Helix-Loop-Helix 2 (Nhlh2, display adult-onset obesity with significant increases in their fat depots, abnormal responses to cold exposure, and reduced spontaneous physical activity levels. These phenotypes, accompanied by the hypothalamic expression of Nhlh2, make the Nhlh2 knockout (N2KO mouse a useful model to study the role of central nervous system (CNS control on peripheral tissue such as adipose tissue.Differences in body temperature and serum analysis of leptin were performed in fasted and ad lib fed wild-type (WT and N2KO mice. Histological analysis of white (WAT and brown adipose tissue (BAT was performed. Gene and protein level expression of inflammatory and metabolic markers were compared between the two genotypes.We report significant differences in serum leptin levels and body temperature in N2KO mice compared with WT mice exposed to a 24-hour fast, suggestive of a defect in both white (WAT and brown adipose tissue (BAT function. As compared to WT mice, N2KO mice showed increased serum IL-6 protein and WAT IL-6 mRNA levels. This was accompanied by slight elevations of mRNA for several macrophage markers, including expression of macrophage specific protein F4/80 in adipose, suggestive of macrophage infiltration of WAT in the mutant animals. The mRNAs for beta3-adrenergic receptors (beta3-AR, beta2-AR and uncoupling proteins were significantly reduced in WAT and BAT from N2KO mice compared with WT mice.These studies implicate Nhlh2 in the central control of WAT and BAT function, with lack of Nhlh2 leading to adipose inflammation and altered gene expression, impaired leptin response to fasting, all suggestive of a deficient torpor response in mutant animals.

  17. Glutamate reduces glucose utilization while concomitantly enhancing AQP9 and MCT2 expression in cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Fabio eTescarollo

    2014-08-01

    Full Text Available The excitatory neurotransmitter glutamate has been reported to have a major impact on brain energy metabolism. Using primary cultures of rat hippocampal neurons, we observed that glutamate reduces glucose utilization in this cell type, suggesting alteration in mitochondrial oxidative metabolism. The aquaglyceroporin AQP9 and the monocarboxylate transporter MCT2, two transporters for oxidative energy substrates, appear to be present in mitochondria of these neurons. Moreover, they not only co-localize but they interact with each other as they were found to co-immunoprecipitate from hippocampal neuron homogenates. Exposure of cultured hippocampal neurons to glutamate 100 µM for 1 hour led to enhanced expression of both AQP9 and MCT2 at the protein level without any significant change at the mRNA level. In parallel, a similar increase in the protein expression of LDHA was evidenced without an effect on the mRNA level. These data suggest that glutamate exerts an influence on neuronal energy metabolism likely through a regulation of the expression of some key mitochondrial proteins.

  18. Anticancer Drug 2-Methoxyestradiol Protects against Renal Ischemia/Reperfusion Injury by Reducing Inflammatory Cytokines Expression

    Directory of Open Access Journals (Sweden)

    Ying-Yin Chen

    2014-01-01

    -A-treated RMC and NRK52E cells. Conclusions. 2ME2 reduces renal I/R injury in mice because it inhibits the expression of ROS and proinflammatory cytokines and induces antiapoptotic proteins.

  19. Ectopic Expression of Xylella fastidiosa rpfF Conferring Production of Diffusible Signal Factor in Transgenic Tobacco and Citrus Alters Pathogen Behavior and Reduces Disease Severity.

    Science.gov (United States)

    Caserta, R; Souza-Neto, R R; Takita, M A; Lindow, S E; De Souza, A A

    2017-11-01

    The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.

  20. A novel thromboxane A2 receptor N42S variant results in reduced surface expression and platelet dysfunction.

    Science.gov (United States)

    Nisar, Shaista P; Lordkipanidzé, Marie; Jones, Matthew L; Dawood, Ban; Murden, Sherina; Cunningham, Margaret R; Mumford, Andrew D; Wilde, Jonathan T; Watson, Steve P; Mundell, Stuart J; Lowe, Gillian C

    2014-05-05

    A small number of thromboxane receptor variants have been described in patients with a bleeding history that result in platelet dysfunction. We have identified a patient with a history of significant bleeding, who expresses a novel heterozygous thromboxane receptor variant that predicts an asparagine to serine substitution (N42S). This asparagine is conserved across all class A GPCRs, suggesting a vital role for receptor structure and function.We investigated the functional consequences of the TP receptor heterozygous N42S substitution by performing platelet function studies on platelet-rich plasma taken from the patient and healthy controls. We investigated the N42S mutation by expressing the wild-type (WT) and mutant receptor in human embryonic kidney (HEK) cells. Aggregation studies showed an ablation of arachidonic acid responses in the patient, whilst there was right-ward shift of the U46619 concentration response curve (CRC). Thromboxane generation was unaffected. Calcium mobilisation studies in cells lines showed a rightward shift of the U46619 CRC in N42S-expressing cells compared to WT. Radioligand binding studies revealed a reduction in BMax in platelets taken from the patient and in N42S-expressing cells, whilst cell studies confirmed poor surface expression. We have identified a novel thromboxane receptor variant, N42S, which results in platelet dysfunction due to reduced surface expression. It is associated with a significant bleeding history in the patient in whom it was identified. This is the first description of a naturally occurring variant that results in the substitution of this highly conserved residue and confirms the importance of this residue for correct GPCR function.

  1. Reduced expression of Jak-1 and Tyk-2 proteins leads to interferon resistance in Hepatitis C virus replicon

    Directory of Open Access Journals (Sweden)

    Luftig Ronald

    2007-09-01

    Full Text Available Abstract Background Alpha interferon in combination with ribavirin is the standard therapy for hepatitis C virus infection. Unfortunately, a significant number of patients fail to eradicate their infection with this regimen. The mechanisms of IFN-resistance are unclear. The aim of this study was to determine the contribution of host cell factors to the mechanisms of interferon resistance using replicon cell lines. Results HCV replicons with high and low activation of the IFN-promoter were cultured for a prolonged period of time in the presence of interferon-alpha (IFN-alpha2b. Stable replicon cell lines with resistant phenotype were isolated and characterized by their ability to continue viral replication in the presence of IFN-alpha. Interferon resistant cell colonies developed only in replicons having lower activation of the IFN promoter and no resistant colonies arose from replicons that exhibit higher activation of the IFN promoter. Individual cell clones were isolated and nine IFN resistant cell lines were established. HCV RNA and protein levels in these cells were not altered by IFN- alpha2b. Reduced signaling and IFN-resistant phenotype was found in all Huh-7 cell lines even after eliminating HCV, suggesting that cellular factors are involved. Resistant phenotype in the replicons is not due to lack of interferon receptor expression. All the cell lines show defect in the JAK-STAT signaling and phosphorylation of STAT 1 and STAT 2 proteins were strongly inhibited due to reduced expression of Tyk2 and Jak-1 protein. Conclusion This in vitro study provides evidence that altered expression of the Jak-Stat signaling proteins can cause IFN resistance using HCV replicon cell clones.

  2. Reduced expression of TAC1, PENK and SOCS2 in Hcrtr-2 mutated narcoleptic dog brain

    Directory of Open Access Journals (Sweden)

    Mignot Emmanuel

    2007-05-01

    Full Text Available Abstract Background Narcolepsy causes dramatic behavioral alterations in both humans and dogs, with excessive sleepiness and cataplexy triggered by emotional stimuli. Deficiencies in the hypocretin system are well established as the origin of the condition; both from studies in humans who lack the hypocretin ligand (HCRT and in dogs with a mutation in hypocretin receptor 2 (HCRTR2. However, little is known about molecular alterations downstream of the hypocretin signals. Results By using microarray technology we have screened the expression of 29760 genes in the brains of Doberman dogs with a heritable form of narcolepsy (homozygous for the canarc-1 [HCRTR-2-2] mutation, and their unaffected heterozygous siblings. We identified two neuropeptide precursor molecules, Tachykinin precursor 1 (TAC1 and Proenkephalin (PENK, that together with Suppressor of cytokine signaling 2 (SOCS2, showed reduced expression in narcoleptic brains. The difference was particularly pronounced in the amygdala, where mRNA levels of PENK were 6.2 fold lower in narcoleptic dogs than in heterozygous siblings, and TAC1 and SOCS2 showed 4.4 fold and 2.8 fold decrease in expression, respectively. The results obtained from microarray experiments were confirmed by real-time RT-PCR. Interestingly, it was previously shown that a single dose of amphetamine-like stimulants able to increase wakefulness in the dogs, also produce an increase in the expression of both TAC1 and PENK in mice. Conclusion These results suggest that TAC1, PENK and SOCS2 might be intimately connected with the excessive daytime sleepiness not only in dogs, but also in other species, possibly including humans.

  3. Benefits of expressive writing in reducing test anxiety: A randomized controlled trial in Chinese samples.

    Science.gov (United States)

    Shen, Lujun; Yang, Lei; Zhang, Jing; Zhang, Meng

    2018-01-01

    To explore the effect of expressive writing of positive emotions on test anxiety among senior-high-school students. The Test Anxiety Scale (TAS) was used to assess the anxiety level of 200 senior-high-school students. Seventy-five students with high anxiety were recruited and divided randomly into experimental and control groups. Each day for 30 days, the experimental group engaged in 20 minutes of expressive writing of positive emotions, while the control group was asked to merely write down their daily events. A second test was given after the month-long experiment to analyze whether there had been a reduction in anxiety among the sample. Quantitative data was obtained from TAS scores. The NVivo10.0 software program was used to examine the frequency of particular word categories used in participants' writing manuscripts. Senior-high-school students indicated moderate to high test anxiety. There was a significant difference in post-test results (P 0.05). Students' writing manuscripts were mainly encoded on five code categories: cause, anxiety manifestation, positive emotion, insight and evaluation. There was a negative relation between positive emotion, insight codes and test anxiety. There were significant differences in the positive emotion, anxiety manifestation, and insight code categories between the first 10 days' manuscripts and the last 10 days' ones. Long-term expressive writing of positive emotions appears to help reduce test anxiety by using insight and positive emotion words for Chinese students. Efficient and effective intervention programs to ease test anxiety can be designed based on this study.

  4. Benefits of expressive writing in reducing test anxiety: A randomized controlled trial in Chinese samples.

    Directory of Open Access Journals (Sweden)

    Lujun Shen

    Full Text Available To explore the effect of expressive writing of positive emotions on test anxiety among senior-high-school students.The Test Anxiety Scale (TAS was used to assess the anxiety level of 200 senior-high-school students. Seventy-five students with high anxiety were recruited and divided randomly into experimental and control groups. Each day for 30 days, the experimental group engaged in 20 minutes of expressive writing of positive emotions, while the control group was asked to merely write down their daily events. A second test was given after the month-long experiment to analyze whether there had been a reduction in anxiety among the sample. Quantitative data was obtained from TAS scores. The NVivo10.0 software program was used to examine the frequency of particular word categories used in participants' writing manuscripts.Senior-high-school students indicated moderate to high test anxiety. There was a significant difference in post-test results (P 0.05. Students' writing manuscripts were mainly encoded on five code categories: cause, anxiety manifestation, positive emotion, insight and evaluation. There was a negative relation between positive emotion, insight codes and test anxiety. There were significant differences in the positive emotion, anxiety manifestation, and insight code categories between the first 10 days' manuscripts and the last 10 days' ones.Long-term expressive writing of positive emotions appears to help reduce test anxiety by using insight and positive emotion words for Chinese students. Efficient and effective intervention programs to ease test anxiety can be designed based on this study.

  5. Benefits of expressive writing in reducing test anxiety: A randomized controlled trial in Chinese samples

    Science.gov (United States)

    Zhang, Jing; Zhang, Meng

    2018-01-01

    Purpose To explore the effect of expressive writing of positive emotions on test anxiety among senior-high-school students. Methods The Test Anxiety Scale (TAS) was used to assess the anxiety level of 200 senior-high-school students. Seventy-five students with high anxiety were recruited and divided randomly into experimental and control groups. Each day for 30 days, the experimental group engaged in 20 minutes of expressive writing of positive emotions, while the control group was asked to merely write down their daily events. A second test was given after the month-long experiment to analyze whether there had been a reduction in anxiety among the sample. Quantitative data was obtained from TAS scores. The NVivo10.0 software program was used to examine the frequency of particular word categories used in participants’ writing manuscripts. Results Senior-high-school students indicated moderate to high test anxiety. There was a significant difference in post-test results (P 0.05). Students’ writing manuscripts were mainly encoded on five code categories: cause, anxiety manifestation, positive emotion, insight and evaluation. There was a negative relation between positive emotion, insight codes and test anxiety. There were significant differences in the positive emotion, anxiety manifestation, and insight code categories between the first 10 days’ manuscripts and the last 10 days’ ones. Conclusions Long-term expressive writing of positive emotions appears to help reduce test anxiety by using insight and positive emotion words for Chinese students. Efficient and effective intervention programs to ease test anxiety can be designed based on this study. PMID:29401473

  6. Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain.

    Science.gov (United States)

    Lewis, Jo E; Brameld, John M; Hill, Phil; Cocco, Cristina; Noli, Barbara; Ferri, Gian-Luca; Barrett, Perry; Ebling, Francis J P; Jethwa, Preeti H

    2017-01-01

    VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-thioglucose obese mice. However, this anabolic role for VGF has not been supported by a number of subsequent studies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice and protected against diet-induced obesity. Similarly, ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this was due to a decrease in food intake, with no effect on energy expenditure. Subsequently NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vector to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental effects or associated functional compensation. Initially, hypothalamic over-expression of VGF in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks post-infusion hamsters had increased oxygen consumption and a tendency to increased carbon dioxide production; this attenuated body weight gain, reduced interscapular white adipose tissue and resulted in a compensatory increase in food intake. These observed changes in energy expenditure and food intake were associated with an increase in the hypothalamic contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides during development, as well

  7. Low PIP4K2B expression in human breast tumors correlates with reduced patient survival: A role for PIP4K2B in the regulation of E-cadherin expression.

    Science.gov (United States)

    Keune, Willem-Jan; Sims, Andrew H; Jones, David R; Bultsma, Yvette; Lynch, James T; Jirström, Karin; Landberg, Goran; Divecha, Nullin

    2013-12-01

    Phosphatidylinositol-5-phosphate (PtdIns5P) 4-kinase β (PIP4K2B) directly regulates the levels of two important phosphoinositide second messengers, PtdIns5P and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P2]. PIP4K2B has been linked to the regulation of gene transcription, to TP53 and AKT activation, and to the regulation of cellular reactive oxygen accumulation. However, its role in human tumor development and on patient survival is not known. Here, we have interrogated the expression of PIP4K2B in a cohort (489) of patients with breast tumor using immunohistochemical staining and by a meta-analysis of gene expression profiles from 2,999 breast tumors, both with associated clinical outcome data. Low PIP4K2B expression was associated with increased tumor size, high Nottingham histological grade, Ki67 expression, and distant metastasis, whereas high PIP4K2B expression strongly associated with ERBB2 expression. Kaplan-Meier curves showed that both high and low PIP4K2B expression correlated with poorer patient survival compared with intermediate expression. In normal (MCF10A) and tumor (MCF7) breast epithelial cell lines, mimicking low PIP4K2B expression, using short hairpin RNA interference-mediated knockdown, led to a decrease in the transcription and expression of the tumor suppressor protein E-cadherin (CDH1). In MCF10A cells, knockdown of PIP4K2B enhanced TGF-β-induced epithelial to mesenchymal transition (EMT), a process required during the development of metastasis. Analysis of gene expression datasets confirmed the association between low PIP4K2B and low CDH1expression. Decreased CDH1 expression and enhancement of TGF-β-induced EMT by reduced PIP4K2B expression might, in part, explain the association between low PIP4K2B expression and poor patient survival.

  8. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...... accumulation and attenuates peripheral insulin resistance in obese mice........ In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  9. Aberrant Methylation and Reduced Expression of LHX9 in Malignant Gliomas of Childhood

    Directory of Open Access Journals (Sweden)

    Valentina Vladimirova

    2009-07-01

    Full Text Available High-grade gliomas (HGGs of childhood represent approximately 7% of pediatric brain tumors. They are highly invasive tumors and respond poorly to conventional treatments in contrast to pilocytic astrocytomas, which usually are well demarcated and frequently can be cured by surgery. The molecular events for this clinical relevant finding are only partially understood. In the current study, to identify aberrantly methylated genes that may be involved in the tumorigenesis of pediatric HGGs, we performed a microarray-based differential methylation hybridization approach and found frequent hypermethylation of the LHX9 (human Lim-homebox 9 gene encoding a transcription factor involved in brain development. Bisulfite genomic sequencing and combined bisulfite restriction analysis showed that HGGs were frequently methylated at two CpG-rich LHX9 regions in comparison to benign, nondiffuse pilocytic astrocytomas and normal brain tissues. The LHX9 hypermethylation was associated with reduced messenger RNA expression in pediatric HGG samples and corresponding cell lines. This epigenetic modification was reversible by pharmacological inhibition (5-aza-2′-deoxycytidine, and reexpression of LHX9 transcript was induced in pediatric glioma cell lines. Exogenous expression of LHX9 in glioma cell lines did not directly affect cell proliferation and apoptosis but specifically inhibited glioma cell migration and invasion in vitro, suggesting a possible implication of LHX9 in the migratory phenotype of HGGs. Our results demonstrate that the LHX9 gene is frequently silenced in pediatric malignant astrocytomas by hypermethylation and that this epigenetic alteration is involved in glioma cell migration and invasiveness.

  10. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells.

    Science.gov (United States)

    Lin, Yuan-Na; Izbicki, Jakob R; König, Alexandra; Habermann, Jens K; Blechner, Christine; Lange, Tobias; Schumacher, Udo; Windhorst, Sabine

    2014-04-01

    In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy. © 2013 UICC.

  11. Berberine reduces fibronectin expression by suppressing the S1P-S1P2 receptor pathway in experimental diabetic nephropathy models.

    Directory of Open Access Journals (Sweden)

    Kaipeng Huang

    Full Text Available The accumulation of glomerular extracellular matrix (ECM is one of the critical pathological characteristics of diabetic renal fibrosis. Fibronectin (FN is an important constituent of ECM. Our previous studies indicate that the activation of the sphingosine kinase 1 (SphK1-sphingosine 1- phosphate (S1P signaling pathway plays a key regulatory role in FN production in glomerular mesangial cells (GMCs under diabetic condition. Among the five S1P receptors, the activation of S1P2 receptor is the most abundant. Berberine (BBR treatment also effectively inhibits SphK1 activity and S1P production in the kidneys of diabetic models, thus improving renal injury. Based on these data, we further explored whether BBR could prevent FN production in GMCs under diabetic condition via the S1P2 receptor. Here, we showed that BBR significantly down-regulated the expression of S1P2 receptor in diabetic rat kidneys and GMCs exposed to high glucose (HG and simultaneously inhibited S1P2 receptor-mediated FN overproduction. Further, BBR also obviously suppressed the activation of NF-κB induced by HG, which was accompanied by reduced S1P2 receptor and FN expression. Taken together, our findings suggest that BBR reduces FN expression by acting on the S1P2 receptor in the mesangium under diabetic condition. The role of BBR in S1P2 receptor expression regulation could closely associate with its inhibitory effect on NF-κB activation.

  12. Optimising parallel R correlation matrix calculations on gene expression data using MapReduce.

    Science.gov (United States)

    Wang, Shicai; Pandis, Ioannis; Johnson, David; Emam, Ibrahim; Guitton, Florian; Oehmichen, Axel; Guo, Yike

    2014-11-05

    High-throughput molecular profiling data has been used to improve clinical decision making by stratifying subjects based on their molecular profiles. Unsupervised clustering algorithms can be used for stratification purposes. However, the current speed of the clustering algorithms cannot meet the requirement of large-scale molecular data due to poor performance of the correlation matrix calculation. With high-throughput sequencing technologies promising to produce even larger datasets per subject, we expect the performance of the state-of-the-art statistical algorithms to be further impacted unless efforts towards optimisation are carried out. MapReduce is a widely used high performance parallel framework that can solve the problem. In this paper, we evaluate the current parallel modes for correlation calculation methods and introduce an efficient data distribution and parallel calculation algorithm based on MapReduce to optimise the correlation calculation. We studied the performance of our algorithm using two gene expression benchmarks. In the micro-benchmark, our implementation using MapReduce, based on the R package RHIPE, demonstrates a 3.26-5.83 fold increase compared to the default Snowfall and 1.56-1.64 fold increase compared to the basic RHIPE in the Euclidean, Pearson and Spearman correlations. Though vanilla R and the optimised Snowfall outperforms our optimised RHIPE in the micro-benchmark, they do not scale well with the macro-benchmark. In the macro-benchmark the optimised RHIPE performs 2.03-16.56 times faster than vanilla R. Benefiting from the 3.30-5.13 times faster data preparation, the optimised RHIPE performs 1.22-1.71 times faster than the optimised Snowfall. Both the optimised RHIPE and the optimised Snowfall successfully performs the Kendall correlation with TCGA dataset within 7 hours. Both of them conduct more than 30 times faster than the estimated vanilla R. The performance evaluation found that the new MapReduce algorithm and its

  13. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    Science.gov (United States)

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2014-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170

  14. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    Science.gov (United States)

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. © 2013 Elsevier Inc. All rights reserved.

  15. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    International Nuclear Information System (INIS)

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H 2 O 2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H 2 O 2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H 2 O 2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.

  16. Mao-to Prolongs the Survival of and Reduces TNF-α Expression in Mice with Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Zhu Shijie

    2010-01-01

    Full Text Available Goal of this study was to evaluate effects of Mao-to on development of myocarditis induced by encephalomyocarditis (EMC virus in mice. Mice were randomly divided into five groups. Group N included uninfected controls (n = 18, while group A, B and C underwent intraperitoneal injection of EMC virus. Group A was administered oral saline from day 0 to day 4. Group B was administered oral Mao-to (500 mg−1 kg−1 day−1 from day 0 to day 4. Group C was administered Mao-to from day 2 to day 6. Group D was administered Mao-to from day 5 to day 10. Treated mice were followed for survival rates during 2 weeks after infection. Body weight (BW and organ weights including heart (HW, lungs, thymus and spleen were examined on days 4, 6 and 14. Survival rate of group C (36.4% was significantly improved compared with group A, B or D (0% of each, P < 0.05. HW and HW/BW ratio in group C was significantly (P < 0.05 lower than those in group A, B or D. Viral titers of hearts were significantly different among groups A, B and C. Cardiac expression in tumor necrosis factor-α (TNF-α was significantly reduced in group C in comparison with group A, B or D on day 6 by immunohistochemical study. Administration of Mao-to starting on day 2 improves mortality resulting from viral myocarditis in mice with reduced expression of cardiac TNF-α. These findings suggest that timing of Mao-to is crucial for preventing cardiac damage in mice with viral myocarditis.

  17. Kefir reduces insulin resistance and inflammatory cytokine expression in an animal model of metabolic syndrome.

    Science.gov (United States)

    Rosa, Damiana D; Grześkowiak, Łukasz M; Ferreira, Célia L L F; Fonseca, Ana Carolina M; Reis, Sandra A; Dias, Mariana M; Siqueira, Nathane P; Silva, Leticia L; Neves, Clóvis A; Oliveira, Leandro L; Machado, Alessandra B F; Peluzio, Maria do Carmo G

    2016-08-10

    There is growing evidence that kefir can be a promising tool in decreasing the risk of many diseases, including metabolic syndrome (MetS). The aim of the present study was to evaluate the effect of kefir supplementation in the diet of Spontaneously Hypertensive Rats (SHR) in which MetS was induced with monosodium glutamate (MSG), and to determine its effect on metabolic parameters, inflammatory and oxidation marker expression and glycemic index control. Thirty animals were used in this experiment. For the induction of MetS, twenty two-day-old male SHR received five consecutive intradermal injections of MSG. For the Negative Control, ten newborn male SHR received intradermal injections of saline solution (0.9% saline solution). After weaning, animals received standard diet and water ad libitum until reaching 3 months old, for the development of MetS. They were then divided into three groups (n = 10): negative control (NC, 1 mL saline solution per day), positive control (PC, 1 mL saline solution per day) and the Kefir group (1 mL kefir per day). Feeding was carried out by gavage for 10 weeks and the animals received standard food and water ad libitum. Obesity, insulin resistance, pro- and anti-inflammatory markers, and the histology of pancreatic and adipose tissues were among the main variables evaluated. Compared to the PC group, kefir supplementation reduced plasma triglycerides, liver lipids, liver triglycerides, insulin resistance, fasting glucose, fasting insulin, thoracic circumference, abdominal circumference, products of lipid oxidation, pro-inflammatory cytokine expression (IL-1β) and increased anti-inflammatory cytokine expression (IL-10). The present findings indicate that kefir has the potential to benefit the management of MetS.

  18. Liver Growth Factor (LGF Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Lucía Calatrava-Ferreras

    2016-12-01

    Full Text Available Friedreich’s ataxia (FA is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF, which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXNYG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold and heart (1.2-fold. LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA.

  19. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    Directory of Open Access Journals (Sweden)

    David Ramonet

    2011-04-01

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  20. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice

    International Nuclear Information System (INIS)

    Feder, D.; Rugollini, M.; Santomauro, A. Jr; Oliveira, L.P.; Lioi, V.P.; Santos, R. dos; Ferreira, L.G.; Nunes, M.T.; Carvalho, M.H.; Delgado, P.O.; Carvalho, A.A.S.; Fonseca, F.L.A.

    2014-01-01

    Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin expression was significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO=0.60±0.11, control=1.07±0.11). On the other hand, rhEPO had no significant effect on the expression of TGF-β1 (rhEPO=0.95±0.14, control=1.05±0.16) and TNF-α (rhEPO=0.73±0.20, control=1.01±0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle

  1. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice

    Energy Technology Data Exchange (ETDEWEB)

    Feder, D.; Rugollini, M.; Santomauro, A. Jr; Oliveira, L.P.; Lioi, V.P. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Santos, R. dos; Ferreira, L.G.; Nunes, M.T.; Carvalho, M.H. [Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, SP (Brazil); Delgado, P.O.; Carvalho, A.A.S. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Fonseca, F.L.A. [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Universidade Federal de São Paulo, Ambientais e Farmacêuticas, Instituto de Ciências Químicas, Diadema, SP (Brazil)

    2014-09-05

    Erythropoietin (EPO) has been well characterized as a renal glycoprotein hormone regulating red blood cell production by inhibiting apoptosis of erythrocyte progenitors in hematopoietic tissues. EPO exerts regulatory effects in cardiac and skeletal muscles. Duchenne muscular dystrophy is a lethal degenerative disorder of skeletal and cardiac muscle. In this study, we tested the possible therapeutic beneficial effect of recombinant EPO (rhEPO) in dystrophic muscles in mdx mice. Total strength was measured using a force transducer coupled to a computer. Gene expression for myostatin, transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) was determined by quantitative real time polymerase chain reaction. Myostatin expression was significantly decreased in quadriceps from mdx mice treated with rhEPO (rhEPO=0.60±0.11, control=1.07±0.11). On the other hand, rhEPO had no significant effect on the expression of TGF-β1 (rhEPO=0.95±0.14, control=1.05±0.16) and TNF-α (rhEPO=0.73±0.20, control=1.01±0.09). These results may help to clarify some of the direct actions of EPO on skeletal muscle.

  2. mRNA-binding protein TIA-1 reduces cytokine expression in human endometrial stromal cells and is down-regulated in ectopic endometrium.

    Science.gov (United States)

    Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Kristiansson, Helena; Duke, Cindy M P; Choe, Gina; Flannery, Clare; Kallen, Caleb B; Seli, Emre

    2014-12-01

    Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Endometrial

  3. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    International Nuclear Information System (INIS)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika

    2005-01-01

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  4. Deletion of the B-B' and C-C' regions of inverted terminal repeats reduces rAAV productivity but increases transgene expression.

    Science.gov (United States)

    Zhou, Qingzhang; Tian, Wenhong; Liu, Chunguo; Lian, Zhonghui; Dong, Xiaoyan; Wu, Xiaobing

    2017-07-14

    Inverted terminal repeats (ITRs) of the adeno-associated virus (AAV) are essential for rescue, replication, packaging, and integration of the viral genome. While ITR mutations have been identified in previous reports, we designed a new truncated ITR lacking the B-B' and C-C' regions named as ITRΔBC and investigated its effects on viral genome replication, packaging, and expression of recombinant AAV (rAAV). The packaging ability was compared between ITRΔBC rAAV and wild-type (wt) ITR rAAV. Our results showed the productivity of ITRΔBC rAAV was reduced 4-fold, which is consistent with the 8-fold decrease in the replication of viral genomic DNA of ITRΔBC rAAV compared with wt ITR rAAV. Surprisingly, transgene expression was significantly higher for ITRΔBC rAAV. A preliminary exploration of the underlying mechanisms was carried out by inhibiting and degrading the ataxia telangiectasia mutated (ATM) protein and the Mre11 complex (MRN), respectively, since the rAAV expression was inhibited by the ATM and/or MRN through cis interaction or binding with wt ITRs. We demonstrated that the inhibitory effects were weakened on ITRΔBC rAAV expression. This study suggests deletion in ITR can affect the transgene expression of AAV, which provides a new way to improve the AAV expression through ITRs modification.

  5. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system.

    Science.gov (United States)

    Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik; Hallén, Anna; Bäckhed, Fredrik; Jansson, John-Olov

    2013-10-01

    The gut microbiota contributes to fat mass and the susceptibility to obesity. However, the underlying mechanisms are not completely understood. To investigate whether the gut microbiota affects hypothalamic and brainstem body fat-regulating circuits, we compared gene expression of food intake-regulating neuropeptides between germ-free and conventionally raised (CONV-R) mice. We found that CONV-R mice had decreased expression of the antiobesity neuropeptide glucagon-like peptide-1 (GLP-1) precursor proglucagon (Gcg) in the brainstem. Moreover, in both the hypothalamus and the brainstem, CONV-R mice had decreased expression of the antiobesity neuropeptide brain-derived neurotrophic factor (Bdnf). CONV-R mice had reduced expression of the pro-obesity peptides neuropeptide-Y (Npy) and agouti-related protein (Agrp), and increased expression of the antiobesity peptides proopiomelanocortin (Pomc) and cocaine- and amphetamine-regulated transcript (Cart) in the hypothalamus. The latter changes in neuropeptide expression could be secondary to elevated fat mass in CONV-R mice. Leptin treatment caused less weight reduction and less suppression of orexigenic Npy and Agrp expression in CONV-R mice compared with germ-free mice. The hypothalamic expression of leptin resistance-associated suppressor of cytokine signaling 3 (Socs-3) was increased in CONV-R mice. In conclusion, the gut microbiota reduces the expression of 2 genes coding for body fat-suppressing neuropeptides, Gcg and Bdnf, an alteration that may contribute to fat mass induction by the gut microbiota. Moreover, the presence of body fat-inducing gut microbiota is associated with hypothalamic signs of Socs-3-mediated leptin resistance, which may be linked to failed compensatory body fat reduction.

  6. The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression.

    Science.gov (United States)

    Lavebratt, C; Olsson, S; Backlund, L; Frisén, L; Sellgren, C; Priebe, L; Nikamo, P; Träskman-Bendz, L; Cichon, S; Vawter, M P; Osby, U; Engberg, G; Landén, M; Erhardt, S; Schalling, M

    2014-03-01

    The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P=0.005, n=19) or schizophrenia (P=0.02, n=36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg(452) allele was associated with psychotic features during manic episodes (P=0.003). KMO Arg(452) was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg(452) associated with increased levels of CSF KYNA (P=0.03) and reduced lymphoblastoid and hippocampal KMO expression (P≤0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes.

  7. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  8. Reduced RAN expression and disrupted transport between cytoplasm and nucleus; a key event in Alzheimer's disease pathophysiology.

    Directory of Open Access Journals (Sweden)

    Diego Mastroeni

    Full Text Available Transcription of DNA is essential for cell maintenance and survival; inappropriate localization of proteins that are involved in transcription would be catastrophic. In Alzheimer's disease brains, and in vitro studies, we have found qualitative and quantitative deficits in transport into the nucleus of DNA methyltransferase 1 (DNMT1 and RNA polymerase II (RNA pol II, accompanied by their abnormal sequestration in the cytoplasm. RAN (RAs-related Nuclear protein knockdown, by siRNA and oligomeric Aβ42 treatment in neurons, replicate human data which indicate that transport disruption in AD may be mechanistically linked to reduced expression of RAN, a pivotal molecule in nucleocytoplasmic transport. In vitro studies also indicate a significant role for oligomeric Aβ42 in the observed phenomena. We propose a model in which reduced transcription regulators in the nucleus and their increased presence in the cytoplasm may lead to many of the cellular manifestations of Alzheimer's disease.

  9. Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) with multiple vascular complications misdiagnosed as Dubowitz syndrome

    OpenAIRE

    Dieks, Jana-Katharina; Baumer, Alessandra; Wilichowski, Ekkehard; Rauch, Anita; Sigler, Matthias

    2014-01-01

    To date, the genetic basis of Dubowitz syndrome (short stature, microcephaly, facial abnormalities, eczema) is unknown and vascular complications are not known to be associated with this syndrome. In microcephalic osteodysplastic primordial dwarfism type II (MOPD II; disproportionate short statue, microcephaly, facial abnormalities), however, cerebral aneurysms and other vascular abnormalities are frequent complications. MOPD II is a genetic disorder caused by mutations in the pericentrin (PC...

  10. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma

    Directory of Open Access Journals (Sweden)

    Stafford Phillip

    2010-09-01

    Full Text Available Abstract Background Malignant brain tumors affect people of all ages and are the second leading cause of cancer deaths in children. While current treatments are effective and improve survival, there remains a substantial need for more efficacious therapeutic modalities. The ketogenic diet (KD - a high-fat, low-carbohydrate treatment for medically refractory epilepsy - has been suggested as an alternative strategy to inhibit tumor growth by altering intrinsic metabolism, especially by inducing glycopenia. Methods Here, we examined the effects of an experimental KD on a mouse model of glioma, and compared patterns of gene expression in tumors vs. normal brain from animals fed either a KD or a standard diet. Results Animals received intracranial injections of bioluminescent GL261-luc cells and tumor growth was followed in vivo. KD treatment significantly reduced the rate of tumor growth and prolonged survival. Further, the KD reduced reactive oxygen species (ROS production in tumor cells. Gene expression profiling demonstrated that the KD induces an overall reversion to expression patterns seen in non-tumor specimens. Notably, genes involved in modulating ROS levels and oxidative stress were altered, including those encoding cyclooxygenase 2, glutathione peroxidases 3 and 7, and periredoxin 4. Conclusions Our data demonstrate that the KD improves survivability in our mouse model of glioma, and suggests that the mechanisms accounting for this protective effect likely involve complex alterations in cellular metabolism beyond simply a reduction in glucose.

  11. A Novel Platelet Activating Factor Receptor Antagonist Reduces Cell Infiltration and Expression of Inflammatory Mediators in Mice Exposed to Desiccating Conditions after PRK

    Directory of Open Access Journals (Sweden)

    Salomon Esquenazi

    2009-01-01

    Results. Confocal microscopy showed an increased number of reflective structures in the corneal epithelium after PRK and exposure to DE in eyes treated with vehicle as compared to eyes treated with LAU-0901. Significant decrease of COX-2 and Arginase I expression and reduced alpha SMA cells was observed after PRK and exposure to DE in eyes treated with LAU-0901. Discussion: Exposure of mice to a DE after PRK increases the epithelial turnover rate. PAF is involved in the inflammatory cell infiltration and expression of inflammatory cytokines that follow PRK under DE.

  12. High-fat diet reduces local myostatin-1 paralog expression and alters skeletal muscle lipid content in rainbow trout, Oncorhynchus mykiss

    Science.gov (United States)

    Galt, Nicholas J.; Froehlich, Jacob Michael; Meyer, Ben M.; Barrows, Frederic T.; Biga, Peggy R.

    2014-01-01

    Muscle growth is an energetically demanding process that is reliant on intramuscular fatty acid depots in most fishes. The complex mechanisms regulating this growth and lipid metabolism are of great interest for human health and aquaculture applications. It is well established that the skeletal muscle chalone, myostatin, plays a role in lipid metabolism and adipogenesis in mammals; however, this function has not been fully assessed in fishes. We therefore examined the interaction between dietary lipid levels and myostatin expression in rainbow trout (Oncorhynchus mykiss). Five-weeks of high-fat (HFD; 25% lipid) dietary intake increased white muscle lipid content, and decreased circulating glucose levels and hepatosomatic index when compared to low-fat diet (LFD; 10% lipid) intake. In addition HFD intake reduced myostatin-1a and -1b expression in white muscle and myostatin-1b expression in brain tissue. Characterization of the myostatin-1a, -1b, and -2a promoters revealed putative binding sites for a subset of transcription factors associated with lipid metabolism. Taken together, these data suggest that HFD may regulate myostatin expression through cis-regulatory elements sensitive to increased lipid intake. Further, these findings provide a framework for future investigations of mechanisms describing the relationships between myostatin and lipid metabolism in fish. PMID:24264425

  13. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model

    Science.gov (United States)

    Schimunek, Lukas; Serve, Rafael; Teuben, Michel P. J.; Störmann, Philipp; Auner, Birgit; Woschek, Mathias; Pfeifer, Roman; Horst, Klemens; Simon, Tim-P.; Kalbitz, Miriam; Sturm, Ramona; Pape, Hans-C.; Hildebrand, Frank; Marzi, Ingo

    2017-01-01

    immediately and remained lower during the first 3.5 h after trauma, but increased after 24 h. Antagonizing TLR2 significantly decreased the phagocytizing activity of monocytes. Both, decreased percentage of activated as well as TLR2 expressing monocytes persisted as long as the reduced phagocytosis was observed. Moreover, neutralizing TLR2 led to a reduced capability of phagocytosis as well. Therefore, we assume that reduced TLR2 expression may be responsible for the decreased phagocytizing capacity of circulating monocytes in the early post-traumatic phase. PMID:29125848

  14. HYDROXYCHLOROQUINE REDUCES BINDING OF ANTIPHOSPHOLIPID ANTIBODIES TO SYNCYTIOTROPHOBLASTS AND RESTORES ANNEXIN A5 EXPRESSION

    Science.gov (United States)

    Wu, Xiao-Xuan; Guller, Seth; Rand, Jacob H.

    2011-01-01

    Objectives Antibody-mediated disruption of the annexin A5 (AnxA5) anticoagulant shield has been posited to be a thrombogenic mechanism in the antiphospholipid syndrome. We recently showed that the antimalarial drug, hydroxychloroquine, dissociates antiphospholipid immune complexes and restores AnxA5 binding to planar phospholipid bilayer. Using quantitative immunoassays, we demonstrated similar effects on BeWo trophoblasts. We therefore investigated the effects of the drug on localization of AnxA5 in primary cultures of human placental syncytiotrophoblasts (SCTs). Study Laser confocal microscopy with computer-based morphometric analysis was used to localize AnxA5 and antiphospholipid antibodies on SCTs exposed to polyclonal and monoclonal antiphospholipid and control IgGs. Results Hydroxychloroquine reversed the effects of the antiphospholipid antibodies on the SCTs by markedly reducing IgG binding and restoring AnxA5 expression. Conclusions These results provide the first morphologic evidence for this effect of hydroxychloroquine on human placental SCTs and support the possibility of novel treatments that target antiphospholipid antibody binding. PMID:21871597

  15. Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer.

    LENUS (Irish Health Repository)

    Furlong, Fiona

    2012-04-01

    Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular chemotherapeutic responses in EOC cells has the potential to impact significantly on patient outcome. The mitotic arrest deficiency protein 2 (MAD2), is a centrally important mediator of the cellular response to paclitaxel. MAD2 immunohistochemical analysis was performed on 82 high-grade serous EOC samples. A multivariate Cox regression analysis of nuclear MAD2 IHC intensity adjusting for stage, tumour grade and optimum surgical debulking revealed that low MAD2 IHC staining intensity was significantly associated with reduced progression-free survival (PFS) (p = 0.0003), with a hazard ratio of 4.689. The in vitro analyses of five ovarian cancer cell lines demonstrated that cells with low MAD2 expression were less sensitive to paclitaxel. Furthermore, paclitaxel-induced activation of the spindle assembly checkpoint (SAC) and apoptotic cell death was abrogated in cells transfected with MAD2 siRNA. In silico analysis identified a miR-433 binding domain in the MAD2 3\\' UTR, which was verified in a series of experiments. Firstly, MAD2 protein expression levels were down-regulated in pre-miR-433 transfected A2780 cells. Secondly, pre-miR-433 suppressed the activity of a reporter construct containing the 3\\'-UTR of MAD2. Thirdly, blocking miR-433 binding to the MAD2 3\\' UTR protected MAD2 from miR-433 induced protein down-regulation. Importantly, reduced MAD2 protein expression in pre-miR-433-transfected A2780 cells rendered these cells less sensitive to paclitaxel. In conclusion, loss of MAD2 protein expression results in increased resistance to paclitaxel in EOC cells. Measuring MAD2 IHC staining intensity may predict

  16. Angiotensin II-induced hypertension blunts thick ascending limb NO production by reducing NO synthase 3 expression and enhancing threonine 495 phosphorylation.

    Science.gov (United States)

    Ramseyer, Vanesa D; Gonzalez-Vicente, Agustin; Carretero, Oscar A; Garvin, Jeffrey L

    2015-01-15

    Thick ascending limbs reabsorb 30% of the filtered NaCl load. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl transport by this segment. In contrast, chronic angiotensin II (ANG II) infusion increases net thick ascending limb transport. NOS3 activity is regulated by changes in expression and phosphorylation at threonine 495 (T495) and serine 1177 (S1177), inhibitory and stimulatory sites, respectively. We hypothesized that NO production by thick ascending limbs is impaired by chronic ANG II infusion, due to reduced NOS3 expression, increased phosphorylation of T495, and decreased phosphorylation of S1177. Rats were infused with 200 ng·kg(-1)·min(-1) ANG II or vehicle for 1 and 5 days. ANG II infusion for 5 days decreased NOS3 expression by 40 ± 12% (P thick ascending limbs from ANG II-infused animals [ANG II -0.01 ± 0.06 arbitrary fluorescence units (AFU)/min vs. 0.17 ± 0.02 AFU/min in controls; P thick ascending limbs is impaired due to decreased NOS3 expression and altered phosphorylation. Copyright © 2015 the American Physiological Society.

  17. Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    Directory of Open Access Journals (Sweden)

    Ma Jianjun

    2008-10-01

    Full Text Available Abstract Background NDRG2 (N-Myc downstream-regulated gene 2 was initially cloned in our laboratory. Previous results have shown that NDRG2 expressed differentially in normal and cancer tissues. Specifically, NDRG2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of NDRG2 inhibited the proliferation of cancer cells. NDRG2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether NDRG2 participates in carcinogenesis of the thyroid. Methods In this study, we investigated the expression profile of human NDRG2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40 and carcinomas (n = 35, along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc. Results The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of NDRG2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of NDRG2 expression with gender, age, different histotypes of thyroid cancers or distant metastases. Conclusion Our data indicates that NDRG2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of NDRG2 in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of NDRG2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma.

  18. Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    International Nuclear Information System (INIS)

    Zhao, Huadong; Chen, Suning; Lin, Wei; Shi, Hai; Ma, Jianjun; Liu, Xinping; Ma, Qingjiu; Yao, Libo; Zhang, Jian; Lu, Jianguo; He, Xianli; Chen, Changsheng; Li, Xiaojun; Gong, Li; Bao, Guoqiang; Fu, Qiang

    2008-01-01

    NDRG2 (N-Myc downstream-regulated gene 2) was initially cloned in our laboratory. Previous results have shown that NDRG2 expressed differentially in normal and cancer tissues. Specifically, NDRG2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of NDRG2 inhibited the proliferation of cancer cells. NDRG2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether NDRG2 participates in carcinogenesis of the thyroid. In this study, we investigated the expression profile of human NDRG2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40) and carcinomas (n = 35), along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc. The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of NDRG2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of NDRG2 expression with gender, age, different histotypes of thyroid cancers or distant metastases. Our data indicates that NDRG2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of NDRG2 in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of NDRG2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma

  19. Nucleoside Analog-treated Chronic Hepatitis B Patients showed Reduced Expression of PECAM-1 Gene in Peripheral Blood Mononuclear Cells in Bangladesh

    Science.gov (United States)

    Tabassum, Shahina; Ullah Munshi, Saif; Hossain, Marufa; Imam, Akhter

    2014-01-01

    ABSTRACT Background and aim Assessment of therapeutic response is important for monitoring the prognosis and to take decision for cessation of nucleoside analogues therapy in chronic hepatitis B patients. In addition to serum alanine aminotransferase (ALT), hepatitis B virus (HBV) deoxyribonucleic acid (DNA) load and HBeAg status, identification of molecular markers associated with host immune response would be essential to assess therapeutic response. In this regard the current study was performed with the aim to detect expression of platelet endothelial cell adhesion molecule (PECAM)-I gene in peripheral blood monocytes (PBMCs) of treated chronic hepatitis B patients and also to correlate expression of this gene with serum HBV DNA load and serum ALT levels. Materials and methods The study analyzed 60 chronic hepatitis B (CHB) patients, including 30 untreated and 30 nucleoside analogs treated and 10 healthy controls. PECAM-1 gene expression/ transcripts were detected by conventional RT-PCR. Results The expression PECAM-1 mRNA in the PBMCs of CHB patients was significantly higher in untreated (3.17 ± 0.75) than the treated patients (1.64 ± 0.29) (p Tabassum S, Munshi SU, Hossain M, Imam A. Nucleoside Analog-treated Chronic Hepatitis B Patients showed Reduced Expression of PECAM-1 Gene in Peripheral Blood Mononuclear Cells in Bangladesh. Euroasian J Hepato-Gastroenterol 2014;4(2):87-91. PMID:29699354

  20. LIM kinase activity is required for microtubule organising centre positioning in mouse oocyte meiosis.

    Science.gov (United States)

    Li, Xin; Zhu, Yubo; Cao, Yan; Wang, Qian; Du, Juan; Tian, Jianhui; Liang, Yuanjing; Ma, Wei

    2017-04-01

    LIM kinase 1 (LIMK1) activity is essential for cell migration and cell cycle progression. Little is known about LIMK1 expression and function in mammalian oocytes. In the present study we assessed LIMK1 protein expression, subcellular distribution and function during mouse oocyte meiosis. Western blot analysis revealed high and stable expression of LIMK1 from the germinal vesicle (GV) to MII stage. In contrast, activated LIMK1 (i.e. LIMK1 phosphorylated at threonine 508 (pLIMK1 Thr508 )) was only detected after GV breakdown, with levels increasing gradually to peak at MI and MII. Immunofluorescence showed pLIMK1 Thr508 was colocalised with the microtubule organising centre (MTOC) components pericentrin and γ-tubulin at the spindle poles. A direct interaction between γ-tubulin and pLIMK1 Thr508 was confirmed by co-immunoprecipitation. LIMK inhibition with 1μM BMS3 damaged MTOC protein localisation to spindle poles, undermined the formation and positioning of functional MTOC and thus disrupted spindle formation and chromosome alignment. These effects were phenocopied by microinjection of LIMK1 antibody into mouse oocytes. In summary, the data demonstrate that LIMK activity is essential for MTOC organisation and distribution and so bipolar spindle formation and maintenance in mouse oocytes.

  1. Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy

    Science.gov (United States)

    Dadsetan, Sherry; Balzano, Tiziano; Forteza, Jerónimo; Cabrera-Pastor, Andrea; Taoro-Gonzalez, Lucas; Hernandez-Rabaza, Vicente; Gil-Perotín, Sara; Cubas-Núñez, Laura; García-Verdugo, José-Manuel; Agusti, Ana; Llansola, Marta; Felipo, Vicente

    2016-01-01

    Inflammation contributes to cognitive impairment in patients with hepatic encephalopathy (HE). However, the process by which peripheral inflammation results in cognitive impairment remains unclear. In animal models, neuroinflammation and altered neurotransmission mediate cognitive impairment. Taking into account these data, we hypothesized that in rats with HE: (1) peripheral inflammation is a main contributor to neuroinflammation; (2) neuroinflammation in hippocampus impairs spatial learning by altering AMPA and/or NMDA receptors membrane expression; (3) reducing peripheral inflammation with infliximab (anti-TNF-a) would improve spatial learning; (4) this would be associated with reduced neuroinflammation and normalization of the membrane expression of glutamate receptors. The aims of this work were to assess these hypotheses. We analyzed in rats with portacaval shunt (PCS) and control rats, treated or not with infliximab: (a) peripheral inflammation by measuring prostaglandin E2, IL10, IL-17, and IL-6; (b) neuroinflammation in hippocampus by analyzing microglial activation and the content of TNF-a and IL-1b; (c) AMPA and NMDA receptors membrane expression in hippocampus; and (d) spatial learning in the Radial and Morris water mazes. We assessed the effects of treatment with infliximab on peripheral inflammation, on neuroinflammation and AMPA and NMDA receptors membrane expression in hippocampus and on spatial learning and memory. PCS rats show increased serum prostaglandin E2, IL-17, and IL-6 and reduced IL-10 levels, indicating increased peripheral inflammation. PCS rats also show microglial activation and increased nuclear NF-kB and expression of TNF-a and IL-1b in hippocampus. This was associated with altered AMPA and NMDA receptors membrane expression in hippocampus and impaired spatial learning and memory in the radial and Morris water maze. Treatment with infliximab reduces peripheral inflammation in PCS rats, normalizing prostaglandin E2, IL-17, IL-6, and

  2. Reduced expression of dermcidin, a peptide active against propionibacterium acnes, in sweat of patients with acne vulgaris.

    Science.gov (United States)

    Nakano, Toshiaki; Yoshino, Takashi; Fujimura, Takao; Arai, Satoru; Mukuno, Akira; Sato, Naoya; Katsuoka, Kensei

    2015-09-01

    Dermcidin (DCD), an antimicrobial peptide with a broad spectrum of activity against bacteria such as Propionibacterum acnes, is expressed constitutively in sweat in the absence of stimulation due to injury or inflammation. The aim of this study was to determine the relationship between DCD expression and acne vulgaris associated with P. acnes. The antimicrobial activity of recombinant full-length DCD (50 μg/ml) was 97% against Escherichia coli and 100% against Staphylococcus aureus. Antimicrobial activity against P. acnes ranged from 68% at 50 μg/ml DCD to 83% at 270 μg/ml DCD. DCD concentration in sweat from patients with acne vulgaris (median 9.8 μg/ml, range 6.9-95.3 μg/ml) was significantly lower than in healthy subjects (median 136.7 μg/ml, range 45.4-201.6 μg/ml) (p = 0.001). DCD demonstrated concentration-dependent, but partial, microbicidal activity against P. acnes. These results suggest that reduced DCD concentration in sweat in patients with inflammatory acne may permit proliferation of P. acnes in pilosebaceous units, resulting in progression of inflammatory acne.

  3. Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression

    Science.gov (United States)

    Jakka, Siva R. K.; Gong, Liang; Hasler, James; Banerjee, Rahul; Sheets, Joel J.; Narva, Kenneth; Blanco, Carlos A.

    2015-01-01

    Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae. PMID:26637593

  4. Neuroglobin over expressing mice

    DEFF Research Database (Denmark)

    Raida, Zindy; Hundahl, Christian Ansgar; Nyengaard, Jens R

    2013-01-01

    showed over expression to be confined to primarily the cortex, hippocampus, cerebellum, and only in neurons. The level and expression pattern of endogenous Neuroglobin was unaffected by insertion of the over expressing Ngb transgene. Neuroglobin over expression resulted in a significant reduction...... previous reports, Neuroglobin over expression is not global but confined to a few well-defined brain regions, and only in neurons. This study confirms previous reports showing a correlation between reduced infarct volume and elevated Neuroglobin levels, but underlines the need to study the likely...

  5. Reduced peripheral expression of the glucocorticoid receptor α isoform in individuals with posttraumatic stress disorder: a cumulative effect of trauma burden.

    Science.gov (United States)

    Gola, Hannah; Engler, Andrea; Morath, Julia; Adenauer, Hannah; Elbert, Thomas; Kolassa, Iris-Tatjana; Engler, Harald

    2014-01-01

    Posttraumatic stress disorder (PTSD) is a serious psychiatric condition that was found to be associated with altered functioning of the hypothalamic-pituitary-adrenal (HPA) axis and changes in glucocorticoid (GC) responsiveness. The physiological actions of GCs are primarily mediated through GC receptors (GR) of which isoforms with different biological activities exist. This study aimed to investigate whether trauma-experience and/or PTSD are associated with altered expression of GR splice variants. GRα and GRβ mRNA expression levels were determined by real-time quantitative PCR in whole blood samples of individuals with chronic and severe forms of PTSD (n = 42) as well as in ethnically matched reference subjects (non-PTSD, n = 35). Individuals suffering from PTSD exhibited significantly lower expression of the predominant and functionally active GRα isoform compared to non-PTSD subjects. This effect remained significant when accounting for gender, smoking, psychotropic medication or comorbid depression. Moreover, the GRα expression level was significantly negatively correlated with the number of traumatic event types experienced, both in the whole sample and within the PTSD patient group. Expression of the less abundant and non-ligand binding GRβ isoform was comparable between patient and reference groups. Reduced expression of the functionally active GRα isoform in peripheral blood cells of individuals with PTSD seems to be a cumulative effect of trauma burden rather than a specific feature of PTSD since non-PTSD subjects with high trauma load showed an intermediate phenotype between PTSD patients and individuals with no or few traumatic experiences.

  6. Reduced peripheral expression of the glucocorticoid receptor α isoform in individuals with posttraumatic stress disorder: a cumulative effect of trauma burden.

    Directory of Open Access Journals (Sweden)

    Hannah Gola

    Full Text Available BACKGROUND: Posttraumatic stress disorder (PTSD is a serious psychiatric condition that was found to be associated with altered functioning of the hypothalamic-pituitary-adrenal (HPA axis and changes in glucocorticoid (GC responsiveness. The physiological actions of GCs are primarily mediated through GC receptors (GR of which isoforms with different biological activities exist. This study aimed to investigate whether trauma-experience and/or PTSD are associated with altered expression of GR splice variants. METHODS: GRα and GRβ mRNA expression levels were determined by real-time quantitative PCR in whole blood samples of individuals with chronic and severe forms of PTSD (n = 42 as well as in ethnically matched reference subjects (non-PTSD, n = 35. RESULTS: Individuals suffering from PTSD exhibited significantly lower expression of the predominant and functionally active GRα isoform compared to non-PTSD subjects. This effect remained significant when accounting for gender, smoking, psychotropic medication or comorbid depression. Moreover, the GRα expression level was significantly negatively correlated with the number of traumatic event types experienced, both in the whole sample and within the PTSD patient group. Expression of the less abundant and non-ligand binding GRβ isoform was comparable between patient and reference groups. CONCLUSIONS: Reduced expression of the functionally active GRα isoform in peripheral blood cells of individuals with PTSD seems to be a cumulative effect of trauma burden rather than a specific feature of PTSD since non-PTSD subjects with high trauma load showed an intermediate phenotype between PTSD patients and individuals with no or few traumatic experiences.

  7. Ginger Extract Reduces the Expression of IL-17 and IL-23 in the Sera and Central Nervous System of EAE Mice.

    Science.gov (United States)

    Jafarzadeh, Abdollah; Azizi, Sayyed-Vahab; Nemati, Maryam; Khoramdel-Azad, Hossain; Shamsizadeh, Ali; Ayoobi, Fatemeh; Taghipour, Zahra; Hassan, Zuhair Mohammad

    2015-12-01

    IL-17/IL-23 axis plays an important role in the pathogenesis of several autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). The immunomodulatory properties of ginger are reported in previous studies. To evaluate the effects of ginger extract on the expression of IL-17 and IL-23 in a model of EAE. EAE was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein and then treated with PBS or ginger extracts, from day +3 to +30. At day 31, mice were scarificed and the expression of IL-17 and IL-23 mRNA in spinal cord were determined by using real time-PCR. The serum levels of cytokines were measured by ELISA. The mRNA expression of IL-17, IL-23 P19 and IL-23 P40 in CNS and serum levels of IL-17 and IL-23 were significantly higher in PBS-treated EAE mice than non-EAE group (pginger-treated EAE mice the mRNA expression of IL-17, P19 and P40 in CNS and serum IL-23 levels were significantly decreased as compared to PBS-treated EAE mice (pginger-treated EAE group had significantly lower expression of IL-17, P19 and P40 in CNS and lower serum IL-17 and IL-23 levels than PBS-treated EAE group (pGinger extract reduces the expression of IL-17 and IL-23 in EAE mice. The therapeutic potential of ginger for treatment of MS could be considered in further studies.

  8. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes.

    Science.gov (United States)

    Gu, Liping; Ma, Yuhang; Gu, Mingyu; Zhang, Ying; Yan, Shuai; Li, Na; Wang, Yufan; Ding, Xiaoying; Yin, Jiajing; Fan, Nengguang; Peng, Yongde

    2015-09-01

    Spexin mRNA and protein are widely expressed in rat tissues and associate with weight loss in rodents of diet-induced obesity. Its location in endocrine and epithelial cells has also been suggested. Spexin is a novel peptide that involves weight loss in rodents of diet-induced obesity. Therefore, we aimed to examine its expression in human tissues and test whether spexin could have a role in glucose and lipid metabolism in type 2 diabetes mellitus (T2DM). The expression of the spexin gene and immunoreactivity in the adrenal gland, skin, stomach, small intestine, liver, thyroid, pancreatic islets, visceral fat, lung, colon, and kidney was higher than that in the muscle and connective tissue. Immunoreactive serum spexin levels were reduced in T2DM patients and correlated with fasting blood glucose (FBG, r=-0.686, Pepithelial tissues, indicating that spexin may be involved in physiological functions of endocrine and in several other tissues. Circulating spexin levels are low in T2DM patients and negatively related to blood glucose and lipids suggesting that the peptide may play a role in glucose and lipid metabolism in T2DM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli

    Directory of Open Access Journals (Sweden)

    Tanja S. H. Wingenbach

    2018-06-01

    Full Text Available According to embodied cognition accounts, viewing others’ facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others’ facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a explicit imitation of viewed facial emotional expressions (stimulus-congruent condition, (b pen-holding with the lips (stimulus-incongruent condition, and (c passive viewing (control condition. It was hypothesised that (1 experimental condition (a and (b result in greater facial muscle activity than (c, (2 experimental condition (a increases emotion recognition accuracy from others’ faces compared to (c, (3 experimental condition (b lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c. Participants (42 males, 42 females underwent a facial emotion recognition experiment (ADFES-BIV while electromyography (EMG was recorded from five facial muscle sites. The experimental conditions’ order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed.

  10. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan); Shiraishi, Hiroshi [Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga (Japan); Shimoda, Kouji [Department of Laboratory Animal Center, Keio University School of Medicine, Tokyo (Japan); Yoshimura, Akihiko, E-mail: yoshimura@a6.keio.jp [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  11. Incongruence Between Observers' and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli.

    Science.gov (United States)

    Wingenbach, Tanja S H; Brosnan, Mark; Pfaltz, Monique C; Plichta, Michael M; Ashwin, Chris

    2018-01-01

    According to embodied cognition accounts, viewing others' facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others' facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others' faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions' order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed.

  12. Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli

    Science.gov (United States)

    Wingenbach, Tanja S. H.; Brosnan, Mark; Pfaltz, Monique C.; Plichta, Michael M.; Ashwin, Chris

    2018-01-01

    According to embodied cognition accounts, viewing others’ facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others’ facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others’ faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions’ order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed. PMID:29928240

  13. Centrosome-Based Mechanisms, Prognostics and Therapeutics in Prostate Cancer

    Science.gov (United States)

    2006-12-01

    Roberts, J. M. CDK inhibitors: positive and negative regulators of G1- phase progression. Genes Dev. 13, 1501–1512 (1999). 20. La Terra , S. et al. The...centrosome matura - tion because disruption of the tubulin–pericentrin inter- action disrupts spindle pole assembly and possibly centrosome maturation...monitoring. We favor a model in which the check- point senses spindle pole assembly/centrosome matura - tion because disruption of the tubulin

  14. Improved functional expression of recombinant human ether-a-go-go (hERG K+ channels by cultivation at reduced temperature

    Directory of Open Access Journals (Sweden)

    Hamilton Bruce

    2007-12-01

    Full Text Available Abstract Background HERG potassium channel blockade is the major cause for drug-induced long QT syndrome, which sometimes cause cardiac disrhythmias and sudden death. There is a strong interest in the pharmaceutical industry to develop high quality medium to high-throughput assays for detecting compounds with potential cardiac liability at the earliest stages of drug development. Cultivation of cells at lower temperature has been used to improve the folding and membrane localization of trafficking defective hERG mutant proteins. The objective of this study was to investigate the effect of lower temperature maintenance on wild type hERG expression and assay performance. Results Wild type hERG was stably expressed in CHO-K1 cells, with the majority of channel protein being located in the cytoplasm, but relatively little on the cell surface. Expression at both locations was increased several-fold by cultivation at lower growth temperatures. Intracellular hERG protein levels were highest at 27°C and this correlated with maximal 3H-dofetilide binding activity. In contrast, the expression of functionally active cell surface-associated hERG measured by patch clamp electrophysiology was optimal at 30°C. The majority of the cytoplasmic hERG protein was associated with the membranes of cytoplasmic vesicles, which markedly increased in quantity and size at lower temperatures or in the presence of the Ca2+-ATPase inhibitor, thapsigargin. Incubation with the endocytic trafficking blocker, nocodazole, led to an increase in hERG activity at 37°C, but not at 30°C. Conclusion Our results are consistent with the concept that maintenance of cells at reduced temperature can be used to boost the functional expression of difficult-to-express membrane proteins and improve the quality of assays for medium to high-throughput compound screening. In addition, these results shed some light on the trafficking of hERG protein under these growth conditions.

  15. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism.

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H; Blesso, Christopher N; Fernandez, Maria Luz

    2017-06-22

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group ( p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group ( p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls ( p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  16. Adenomatous polyposis coli is required for early events in the normal growth and differentiation of the developing cerebral cortex

    Directory of Open Access Journals (Sweden)

    Price David J

    2009-01-01

    Full Text Available Abstract Background Adenomatous polyposis coli (Apc is a large multifunctional protein known to be important for Wnt/β-catenin signalling, cytoskeletal dynamics, and cell polarity. In the developing cerebral cortex, Apc is expressed in proliferating cells and its expression increases as cells migrate to the cortical plate. We examined the consequences of loss of Apc function for the early development of the cerebral cortex. Results We used Emx1Cre to inactivate Apc specifically in proliferating cerebral cortical cells and their descendents starting from embryonic day 9.5. We observed reduction in the size of the mutant cerebral cortex, disruption to its organisation, and changes in the molecular identity of its cells. Loss of Apc leads to a decrease in the size of the proliferative pool, disrupted interkinetic nuclear migration, and increased apoptosis. β-Catenin, pericentrin, and N-cadherin proteins no longer adopt their normal high concentration at the apical surface of the cerebral cortical ventricular zone, indicating that cell polarity is disrupted. Consistent with enhanced Wnt/β-catenin signalling resulting from loss of Apc we found increased levels of TCF/LEF-dependent transcription and expression of endogenous Wnt/β-catenin target genes (Axin2 (conductin, Lef1, and c-myc in the mutant cerebral cortex. In the Apc mutant cerebral cortex the expression of transcription factors Foxg1, Pax6, Tbr1, and Tbr2 is drastically reduced compared to normal and many cells ectopically express Pax3, Wnt1, and Wt1 (but not Wnt2b, Wnt8b, Ptc, Gli1, Mash1, Olig2, or Islet1. This indicates that loss of Apc function causes cerebral cortical cells to lose their normal identity and redirect to fates normally found in more posterior-dorsal regions of the central nervous system. Conclusion Apc is required for multiple aspects of early cerebral cortical development, including the regulation of cell number, interkinetic nuclear migration, cell polarity, and

  17. Gene expression correlates with process rates quantified for sulfate- and Fe(III-reducing bacteria in U(VI-contaminated sediments

    Directory of Open Access Journals (Sweden)

    Denise M Akob

    2012-08-01

    Full Text Available Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III and sulfate reduction pathways in order to monitor these processes during in situ U(VI remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA and the dissimilatory (bisulfite reductase gene (dsrA, were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC site at Oak Ridge, Tennessee. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically-active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.

  18. Scaling of gene expression data allowing the comparison of different gene expression platforms

    NARCIS (Netherlands)

    van Ruissen, Fred; Schaaf, Gerben J.; Kool, Marcel; Baas, Frank; Ruijter, Jan M.

    2008-01-01

    Serial analysis of gene expression (SAGE) and microarrays have found a widespread application, but much ambiguity exists regarding the amalgamation of the data resulting from these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce

  19. Relationship between serum IGF-1 and skeletal muscle IGF-1 mRNA expression to phosphocreatine recovery after exercise in obese men with reduced GH.

    Science.gov (United States)

    Hamarneh, Sulaiman R; Murphy, Caitlin A; Shih, Cynthia W; Frontera, Walter; Torriani, Martin; Irazoqui, Javier E; Makimura, Hideo

    2015-02-01

    GH and IGF-1 are believed to be physiological regulators of skeletal muscle mitochondria. The objective of this study was to examine the relationship between GH/IGF-1 and skeletal muscle mitochondria in obese subjects with reduced GH secretion in more detail. Fifteen abdominally obese men with reduced GH secretion were treated for 12 weeks with recombinant human GH. Subjects underwent (31)P-magnetic resonance spectroscopy to assess phosphocreatine (PCr) recovery as an in vivo measure of skeletal muscle mitochondrial function and percutaneous muscle biopsies to assess mRNA expression of IGF-1 and mitochondrial-related genes at baseline and 12 weeks. At baseline, skeletal muscle IGF-1 mRNA expression was significantly associated with PCr recovery (r = 0.79; P = .01) and nuclear respiratory factor-1 (r = 0.87; P = .001), mitochondrial transcription factor A (r = 0.86; P = .001), peroxisome proliferator-activated receptor (PPAR)γ (r = 0.72; P = .02), and PPARα (r = 0.75; P = .01) mRNA expression, and trended to an association with PPARγ coactivator 1-α (r = 0.59; P = .07) mRNA expression. However, serum IGF-1 concentration was not associated with PCr recovery or any mitochondrial gene expression (all P > .10). Administration of recombinant human GH increased both serum IGF-1 (change, 218 ± 29 μg/L; P IGF-1 mRNA in muscle (fold change, 2.1 ± 0.3; P = .002). Increases in serum IGF-1 were associated with improvements in total body fat (r = -0.53; P = .04), trunk fat (r = -0.55; P = .03), and lean mass (r = 0.58; P = .02), but not with PCr recovery (P > .10). Conversely, increase in muscle IGF-1 mRNA was associated with improvements in PCr recovery (r = 0.74; P = .02), but not with body composition parameters (P > .10). These data demonstrate a novel association of skeletal muscle mitochondria with muscle IGF-1 mRNA expression, but independent of serum IGF-1 concentrations.

  20. Peptide-Conjugated Nanoparticles Reduce Positive Co-stimulatory Expression and T Cell Activity to Induce Tolerance.

    Science.gov (United States)

    Kuo, Robert; Saito, Eiji; Miller, Stephen D; Shea, Lonnie D

    2017-07-05

    Targeted approaches to treat autoimmune diseases would improve upon current therapies that broadly suppress the immune system and lead to detrimental side effects. Antigen-specific tolerance was induced using poly(lactide-co-glycolide) nanoparticles conjugated with disease-relevant antigen to treat a model of multiple sclerosis. Increasing the nanoparticle dose and amount of conjugated antigen both resulted in more durable immune tolerance. To identify active tolerance mechanisms, we investigated downstream cellular and molecular events following nanoparticle internalization by antigen-presenting cells. The initial cell response to nanoparticles indicated suppression of inflammatory signaling pathways. Direct and functional measurement of surface MHC-restricted antigen showed positive correlation with both increasing particle dose from 1 to 100 μg/mL and increasing peptide conjugation by 2-fold. Co-stimulatory analysis of cells expressing MHC-restricted antigen revealed most significant decreases in positive co-stimulatory molecules (CD86, CD80, and CD40) following high doses of nanoparticles with higher peptide conjugation, whereas expression of a negative co-stimulatory molecule (PD-L1) remained high. T cells isolated from mice immunized against myelin proteolipid protein (PLP 139-151 ) were co-cultured with antigen-presenting cells administered PLP 139-151 -conjugated nanoparticles, which resulted in reduced T cell proliferation, increased T cell apoptosis, and a stronger anti-inflammatory response. These findings indicate several potential mechanisms used by peptide-conjugated nanoparticles to induce antigen-specific tolerance. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  1. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl phthalate in male Long Evans rats.

    Directory of Open Access Journals (Sweden)

    Catherine A Smith

    Full Text Available Early developmental exposure to di(2-ethylhexyl phthalate (DEHP has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  2. Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II.

    Science.gov (United States)

    Doublier, Sophie; Salvidio, Gennaro; Lupia, Enrico; Ruotsalainen, Vesa; Verzola, Daniela; Deferrari, Giacomo; Camussi, Giovanni

    2003-04-01

    We studied the distribution of nephrin in renal biopsies from 17 patients with diabetes and nephrotic syndrome (7 type 1 and 10 type 2 diabetes), 6 patients with diabetes and microalbuminuria (1 type 1 and 5 type 2 diabetes), and 10 normal subjects. Nephrin expression was semiquantitatively evaluated by measuring immunofluorescence intensity by digital image analysis. We found an extensive reduction of nephrin staining in both type 1 (67 +/- 9%; P < 0.001) and type 2 (65 +/- 10%; P < 0.001) diabetic patients with diabetes and nephrotic syndrome when compared with control subjects. The pattern of staining shifted from punctate/linear distribution to granular. In patients with microalbuminuria, the staining pattern of nephrin also showed granular distribution and reduction intensity of 69% in the patient with type 1 diabetes and of 62 +/- 4% (P < 0.001) in the patients with type 2 diabetes. In vitro studies on human cultured podocytes demonstrated that glycated albumin and angiotensin II reduced nephrin expression. Glycated albumin inhibited nephrin synthesis through the engagement of receptor for advanced glycation end products, whereas angiotensin II acted on cytoskeleton redistribution, inducing the shedding of nephrin. This study indicates that the alteration in nephrin expression is an early event in proteinuric patients with diabetes and suggests that glycated albumin and angiotensin II contribute to nephrin downregulation.

  3. Regulation of SFRP-1 expression in the rat dental follicle.

    Science.gov (United States)

    Liu, Dawen; Yao, Shaomian; Wise, Gary E

    2012-01-01

    Tooth eruption requires osteoclastogenesis and subsequent bone resorption. Secreted frizzled-related protein-1 (SFRP-1) negatively regulates osteoclastogenesis. Our previous studies indicated that SFRP-1 is expressed in the rat dental follicle (DF), with reduced expression at days 3 and 9 close to the times for the major and minor bursts of osteoclastogenesis, respectively; but it remains unclear as to what molecules contribute to its reduced expression at these critical times. Thus, it was the aim of this study to determine which molecules regulate the expression of SFRP-1 in the DF. To that end, the DF cells were treated with cytokines that are maximally expressed at days 3 or 9, and SFRP-1 expression was determined. Our study indicated that colony-stimulating factor-1 (CSF-1), a molecule maximally expressed in the DF at day 3, down-regulated SFRP-1 expression. As to endothelial monocyte-activating polypeptide II (EMAP-II), a highly expressed molecule in the DF at day 3, it had no effect on the expression of SFRP-1. However, when EMAP-II was knocked down by siRNA, the expression of SFRP-1 was elevated, and this elevated SFRP-1 expression could be reduced by adding recombinant EMAP-II protein. This suggests that EMAP-II maintained a lower level of SFRP-1 in the DF. TNF-α is a molecule maximally expressed at day 9, and this study indicated that it also down-regulated the expression of SFRP-1 in the DF cells. In conclusion, CSF-1 and EMAP-II may contribute to the reduced SFRP-1 expression seen on day 3, while TNF-α may contribute to the reduced SFRP-1 expression at day 9.

  4. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H.; Blesso, Christopher N.; Fernandez, Maria Luz

    2017-01-01

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group (p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group (p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver. PMID:28640194

  5. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Manal Mused Almatrafi

    2017-06-01

    Full Text Available To investigate the mechanisms by which Moringa oleifera leaves (ML modulate hepatic lipids, guinea pigs were allocated to either control (0% ML, 10% Low Moringa (LM or 15% High Moringa (HM diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH and triglyceride (TG metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG with the lowest concentrations in the HM group (p < 0.001, consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL-1β and interferon-γ, were lowest in the HM group (p < 0.005. Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01. This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  6. Treatment with 1,25(OH){sub 2}D{sub 3}induced HDAC2 expression and reduced NF-κB p65 expression in a rat model of OVA-induced asthma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Wang, G.F.; Yang, L.; Liu, F.; Kang, J.Q.; Wang, R.L.; Gu, W.; Wang, C.Y. [Department of Gerontology Medicine, Xinhua Hospital, Shanghai Jiatong University School of Medicine, Shanghai (China)

    2015-04-28

    Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D{sub 3} (1,25[OH]{sub 2}D{sub 3}) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH){sub 2}D{sub 3} on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH){sub 2}D{sub 3} pretreatment, 1,25(OH){sub 2}D{sub 3} treatment, Dx treatment, and Dx and 1,25(OH){sub 2}D{sub 3} treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH){sub 2}D{sub 3} reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH){sub 2}D{sub 3} and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH){sub 2}D{sub 3}might be useful as a novel HDAC2 activator in the treatment of asthma.

  7. Artesunate inhibits adipogeneis in 3T3-L1 preadipocytes by reducing the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr

    2016-05-20

    Differentiation of preadipocyte, also called adipogenesis, leads to the phenotype of mature adipocyte. However, excessive adipogenesis is closely linked to the development of obesity. Artesunate, one of artemisinin-type sesquiterpene lactones from Artemisia annua L., is known for anti-malarial and anti-cancerous activities. In this study, we investigated the effect of artesunate on adipogenesis in 3T3-L1 preadipocytes. Artesunate strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes at 5 μM concentration. Artesunate at 5 μM also reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during adipocyte differentiation. Moreover, artesunate at 5 μM reduced leptin, but not adiponectin, mRNA expression during adipocyte differentiation. Taken together, these findings demonstrate that artesunate inhibits adipogenesis in 3T3-L1 preadipoytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. -- Highlights: •Artesunate, an artemisinin derivative, inhibits adipogenesis. •Artesunate inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. •Artesunate reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. •Artesunate thus may have therapeutic potential against obesity.

  8. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression.

    Science.gov (United States)

    Nocarova, Eva; Fischer, Lukas

    2009-04-22

    Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with

  9. Neonatal Gene Therapy for Hemophilia B by a Novel Adenovirus Vector Showing Reduced Leaky Expression of Viral Genes.

    Science.gov (United States)

    Iizuka, Shunsuke; Sakurai, Fuminori; Tachibana, Masashi; Ohashi, Kazuo; Mizuguchi, Hiroyuki

    2017-09-15

    Gene therapy during neonatal and infant stages is a promising approach for hemophilia B, a congenital disorder caused by deficiency of blood coagulation factor IX (FIX). An adenovirus (Ad) vector has high potential for use in neonatal or infant gene therapy for hemophilia B due to its superior transduction properties; however, leaky expression of Ad genes often reduces the transduction efficiencies by Ad protein-mediated tissue damage. Here, we used a novel Ad vector, Ad-E4-122aT, which exhibits a reduction in the leaky expression of Ad genes in liver, in gene therapy studies for neonatal hemophilia B mice. Ad-E4-122aT exhibited significantly higher transduction efficiencies than a conventional Ad vector in neonatal mice. In neonatal hemophilia B mice, a single neonatal injection of Ad-E4-122aT expressing human FIX (hFIX) (Ad-E4-122aT-AHAFIX) maintained more than 6% of the normal plasma hFIX activity levels for approximately 100 days. Sequential administration of Ad-E4-122aT-AHAFIX resulted in more than 100% of the plasma hFIX activity levels for more than 100 days and rescued the bleeding phenotypes of hemophilia B mice. In addition, immunotolerance to hFIX was induced by Ad-E4-122aT-AHAFIX administration in neonatal hemophilia B mice. These results indicated that Ad-E4-122aT is a promising gene delivery vector for neonatal or infant gene therapy for hemophilia B.

  10. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    Science.gov (United States)

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  11. Cell wall composition and digestibility alterations in Brachypodium distachyon achieved through reduced expression of the UDP-arabinopyranose mutase

    Science.gov (United States)

    Rancour, David M.; Hatfield, Ronald D.; Marita, Jane M.; Rohr, Nicholas A.; Schmitz, Robert J.

    2015-01-01

    Nucleotide-activated sugars are essential substrates for plant cell-wall carbohydrate-polymer biosynthesis. The most prevalent grass cell wall (CW) sugars are glucose (Glc), xylose (Xyl), and arabinose (Ara). These sugars are biosynthetically related via the UDP–sugar interconversion pathway. We sought to target and generate UDP–sugar interconversion pathway transgenic Brachypodium distachyon lines resulting in CW carbohydrate composition changes with improved digestibility and normal plant stature. Both RNAi-mediated gene-suppression and constitutive gene-expression approaches were performed. CWs from 336 T0 transgenic plants with normal appearance were screened for complete carbohydrate composition. RNAi mutants of BdRGP1, a UDP-arabinopyranose mutase, resulted in large alterations in CW carbohydrate composition with significant decreases in CW Ara content but with minimal change in plant stature. Five independent RNAi-RGP1 T1 plant lines were used for in-depth analysis of plant CWs. Real-time PCR analysis indicated that gene expression levels for BdRGP1, BdRGP2, and BdRGP3 were reduced in RNAi-RGP1 plants to 15–20% of controls. CW Ara content was reduced by 23–51% of control levels. No alterations in CW Xyl and Glc content were observed. Corresponding decreases in CW ferulic acid (FA) and ferulic acid-dimers (FA-dimers) were observed. Additionally, CW p-coumarates (pCA) were decreased. We demonstrate the CW pCA decrease corresponds to Ara-coupled pCA. Xylanase-mediated digestibility of RNAi-RGP1 Brachypodium CWs resulted in a near twofold increase of released total carbohydrate. However, cellulolytic hydrolysis of CW material was inhibited in leaves of RNAi-RGP1 mutants. Our results indicate that targeted manipulation of UDP–sugar biosynthesis can result in biomass with substantially altered compositions and highlights the complex effect CW composition has on digestibility. PMID:26136761

  12. Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

    Science.gov (United States)

    Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne

    2010-10-01

    We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.

  13. Calcimimetic R568 inhibits tetrodotoxin-sensitive colonic electrolyte secretion and reduces c-fos expression in myenteric neurons.

    Science.gov (United States)

    Sun, Xiangrong; Tang, Lieqi; Winesett, Steven; Chang, Wenhan; Cheng, Sam Xianjun

    2018-02-01

    Calcium-sensing receptor (CaSR) is expressed on neurons of both submucosal and myenteric plexuses of the enteric nervous system (ENS) and the CaSR agonist R568 inhibited Cl - secretion in intestine. The purpose of this study was to localize the primary site of action of R568 in the ENS and to explore how CaSR regulates secretion through the ENS. Two preparations of rat proximal and distal colon were used. The full-thickness preparation contained both the submucosal and myenteric plexuses, whereas for the "stripped" preparation the myenteric plexus with the muscle layers was removed. Both preparations were mounted onto Ussing chambers and Cl - secretory responses were compared by measuring changes in short circuit current (I sc ). Two tissue-specific CaSR knockouts (i.e., neuron-specific vs. enterocyte-specific) were generated to compare the effect of R568 on expression of c-fos protein in myenteric neurons by immunocytochemistry. In full-thickness colons, tetrodotoxin (TTX) inhibited I sc , both in proximal and distal colons. A nearly identical inhibition was produced by R568. However, in stripped preparations, while the effect of TTX on I sc largely remained, the effect of R568 was nearly completely eliminated. In keeping with this, R568 reduced c-fos protein expression only in myenteric neurons of wild type mice and mutant mice that contained CaSR in neurons (i.e., villin Cre/Casr flox/flox mice), but not in myenteric neurons of nestin Cre/Casr flox/flox mice in which neuronal cell CaSR was eliminated. These results indicate that R568 exerts its anti-secretory effects predominantly via CaSR-mediated inhibition of neuronal activity in the myenteric plexus. Published by Elsevier Inc.

  14. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22

    International Nuclear Information System (INIS)

    Waseda, Masazumi; Arimura, Sumimasa; Shimura, Eri; Nakae, Susumu; Yamanashi, Yuji

    2016-01-01

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 single KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.

  15. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22

    Energy Technology Data Exchange (ETDEWEB)

    Waseda, Masazumi; Arimura, Sumimasa [Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Shimura, Eri [Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Nakae, Susumu [Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, 332-0012 (Japan); Yamanashi, Yuji, E-mail: yyamanas@ims.u-tokyo.ac.jp [Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan)

    2016-09-09

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 single KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.

  16. JNK1/2 Activation by an Extract from the Roots of Morus alba L. Reduces the Viability of Multidrug-Resistant MCF-7/Dox Cells by Inhibiting YB-1-Dependent MDR1 Expression

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2013-01-01

    Full Text Available Cancer cells acquire anticancer drug resistance during chemotherapy, which aggravates cancer disease. MDR1 encoded from multidrug resistance gene 1 mainly causes multidrug resistance phenotypes of different cancer cells. In this study, we demonstrate that JNK1/2 activation by an extract from the root of Morus alba L. (White mulberry reduces doxorubicin-resistant MCF-7/Dox cell viability by inhibiting YB-1 regulation of MDR1 gene expression. When MCF-7 or MCF-7/Dox cells, where MDR1 is highly expressed were treated with an extract from roots or leaves of Morus alba L., respectively, the root extract from the mulberry (REM but not the leaf extract (LEM reduced cell viabilities of both MCF-7 and MCF-7/Dox cells, which was enhanced by cotreatment with doxorubicin. REM but not LEM further inhibited YB-1 nuclear translocation and its regulation of MDR1 gene expression. Moreover, REM promoted phosphorylation of c-Jun NH2-terminal kinase 1/2 (JNK1/2 and JNK1/2 inhibitor, SP600125 and rescued REM inhibition of both MDR1 expression and viabilities in MCF-7/Dox cells. Consistently, overexpression of JNK1, c-Jun, or c-Fos inhibited YB-1-dependent MDR1 expression and reduced viabilities in MCF-7/Dox cells. In conclusion, our data indicate that REM-activated JNK-cJun/c-Fos pathway decreases the viability of MCF-7/Dox cells by inhibiting YB-1-dependent MDR1 gene expression. Thus, we suggest that REM may be useful for treating multidrug-resistant cancer cells.

  17. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation.

    Science.gov (United States)

    Arnardottir, Erna S; Nikonova, Elena V; Shockley, Keith R; Podtelezhnikov, Alexei A; Anafi, Ron C; Tanis, Keith Q; Maislin, Greg; Stone, David J; Renger, John J; Winrow, Christopher J; Pack, Allan I

    2014-10-01

    To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Sleep laboratory. Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Thirty-eight hours of continuous wakefulness. We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. © 2014 Associated Professional Sleep Societies, LLC.

  18. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis.

    Science.gov (United States)

    Pandey, Gaurav; Shankar, Kripa; Makhija, Ekta; Gaikwad, Anil; Ecelbarger, Carolyn; Mandhani, Anil; Srivastava, Aneesh; Tiwari, Swasti

    2017-02-01

    Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT 308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    International Nuclear Information System (INIS)

    Jang, Byeong-Churl

    2016-01-01

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrine also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. - Highlights: • Tetrandrine, a bisbenzylisoquinoline alkaloid, inhibits adipogenesis. • Tetrandrine inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. • Tetrandrine reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Tetrandrine may thus have therapeutic potential against obesity.

  20. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr

    2016-08-05

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrine also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. - Highlights: • Tetrandrine, a bisbenzylisoquinoline alkaloid, inhibits adipogenesis. • Tetrandrine inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. • Tetrandrine reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Tetrandrine may thus have therapeutic potential against obesity.

  1. Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression

    Directory of Open Access Journals (Sweden)

    G.H.M. eSagor

    2016-02-01

    Full Text Available The link between polyamine oxidases (PAOs, which function in polyamine catabolism, and stress responses remains elusive. Here, we address this issue using Arabidopsis pao mutants in which the expression of the five PAO genes is knocked-out or knocked-down. As the five single pao mutants and wild type (WT showed similar response to salt stress, we tried to generate the mutants that have either the cytoplasmic PAO pathway (pao1 pao5 or the peroxisomal PAO pathway (pao2 pao3 pao4 silenced. However, the latter triple mutant was not obtained. Thus, in this study, we used two double mutants, pao1 pao5 and pao2 pao4. Of interest, pao1 pao5 mutant was NaCl- and drought-tolerant, whereas pao2 pao4 showed similar sensitivity to those stresses as WT. To reveal the underlying mechanism of salt tolerance, further analyses were performed. Na uptake of the mutant (pao1 pao5 decreased to 75% of WT. PAO activity of the mutant was reduced to 62% of WT. The content of reactive oxygen species (ROS such as hydrogen peroxide, a reaction product of PAO action, and superoxide anion in the mutant became 81% and 72% of the levels in WT upon salt treatment. The mutant contained 2.8-fold higher thermospermine compared to WT. Moreover, the mutant induced the genes of salt overly sensitive-, abscisic acid (ABA-dependent- and ABA-independent- pathways more strongly than WT upon salt treatment. The results suggest that the Arabidopsis plant silencing cytoplasmic PAOs shows salinity tolerance by reducing ROS production and strongly inducing subsets of stress-responsive genes under stress conditions.

  2. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Takahashi, Nobuhiko; Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka; Ieko, Masahiro

    2011-01-01

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  3. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  4. Rex3 (reduced in expression 3) as a new tumor marker in mouse hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Braeuning, Albert; Jaworski, Maike; Schwarz, Michael; Koehle, Christoph

    2006-01-01

    In a previous microarray expression analysis, Rex3, a gene formerly not linked to tumor formation, was found to be highly overexpressed in both Ctnnb1-(β-Catenin) and Ha-ras-mutated mouse liver tumors. Subsequent analyses by in situ hybridization and real-time PCR confirmed a general liver tumor-specific overexpression of the gene (up to 400-fold). To investigate the role of Rex3 in liver tumors, hepatoma cells were transfected with FLAG- and Myc-tagged Rex3 expression vectors. Rex3 was shown to be exclusively localized to the cytoplasm, as determined by fluorescence microscopy and Western blotting. However, forced overexpression of Rex3 did not significantly affect proliferation or stress-induced apoptosis of transfected mouse hepatoma cells. Rex3 mRNA was determined in primary hepatocytes in culture by real-time PCR. In primary mouse hepatocytes, expression of Rex3 increased while cells dedifferentiated in culture. This effect was abolished when hepatocytes were maintained in a differentiated state. Furthermore, expression of Rex3 decreased in mouse liver with age of mice and the expression profile was highly correlated to that of the tumor markers α-fetoprotein and H19. The findings suggest a role of Rex3 as a marker for hepatocyte differentiation/dedifferentiation processes and tumor formation

  5. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression.

    Science.gov (United States)

    Peeters, Janneke G C; Vervoort, Stephin J; Tan, Sander C; Mijnheer, Gerdien; de Roock, Sytze; Vastert, Sebastiaan J; Nieuwenhuis, Edward E S; van Wijk, Femke; Prakken, Berent J; Creyghton, Menno P; Coffer, Paul J; Mokry, Michal; van Loosdregt, Jorg

    2015-09-29

    The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA) is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4(+) memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression

    Directory of Open Access Journals (Sweden)

    Janneke G.C. Peeters

    2015-09-01

    Full Text Available The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4+ memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases.

  7. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  8. A missense mutation in Grm6 reduces but does not eliminate mGluR6 expression or rod depolarizing bipolar cell function.

    Science.gov (United States)

    Peachey, Neal S; Hasan, Nazarul; FitzMaurice, Bernard; Burrill, Samantha; Pangeni, Gobinda; Karst, Son Yong; Reinholdt, Laura; Berry, Melissa L; Strobel, Marge; Gregg, Ronald G; McCall, Maureen A; Chang, Bo

    2017-08-01

    GRM6 encodes the metabotropic glutamate receptor 6 (mGluR6) used by retinal depolarizing bipolar cells (DBCs). Mutations in GRM6 lead to DBC dysfunction and underlie the human condition autosomal recessive complete congenital stationary night blindness. Mouse mutants for Grm6 are important models for this condition. Here we report a new Grm6 mutant, identified in an electroretinogram (ERG) screen of mice maintained at The Jackson Laboratory. The Grm6 nob8 mouse has a reduced-amplitude b-wave component of the ERG, which reflects light-evoked DBC activity. Sequencing identified a missense mutation that converts a highly conserved methionine within the ligand binding domain to leucine (p.Met66Leu). Consistent with prior studies of Grm6 mutant mice, the laminar size and structure in the Grm6 nob8 retina were comparable to control. The Grm6 nob8 phenotype is distinguished from other Grm6 mutants that carry a null allele by a reduced but not absent ERG b-wave, decreased but present expression of mGluR6 at DBC dendritic tips, and mislocalization of mGluR6 to DBC somas. Consistent with a reduced but not absent b-wave, there were a subset of retinal ganglion cells whose responses to light onset have times to peak within the range of those in control retinas. These data indicate that the p.Met66Leu mutant mGluR6 is trafficked less than control. However, the mGluR6 that is localized to the DBC dendritic tips is able to initiate DBC signal transduction. The Grm6 nob8 mouse extends the Grm6 allelic series and will be useful for elucidating the role of mGluR6 in DBC signal transduction and in human disease. NEW & NOTEWORTHY This article describes a mouse model of the human disease complete congenital stationary night blindness in which the mutation reduces but does not eliminate GRM6 expression and bipolar cell function, a distinct phenotype from that seen in other Grm6 mouse models.

  9. Oleuropein aglycone protects transgenic C. elegans strains expressing Aβ42 by reducing plaque load and motor deficit.

    Directory of Open Access Journals (Sweden)

    Luisa Diomede

    Full Text Available The presence of amyloid aggregates of the 42 amino acid peptide of amyloid beta (Aβ42 in the brain is the characteristic feature of Alzheimer's disease (AD. Amyloid beta (Aβ deposition is also found in muscle fibers of individuals affected by inclusion body myositis (sIBM, a rare muscular degenerative disease affecting people over 50. Both conditions are presently lacking an effective therapeutic treatment. There is increasing evidence to suggest that natural polyphenols may prevent the formation of toxic amyloid aggregates; this applies also to oleuropein aglycone (OLE, the most abundant polyphenol in extra virgin olive oil, previously shown to hinder amylin and Aβ aggregation. Here we evaluated the ability of OLE to interfere with Aβ proteotoxicity in vivo by using the transgenic CL2006 and CL4176 strains of Caenorhabditis elegans, simplified models of AD and of sIBM, which express human Aβ in the cytoplasm of body wall muscle cells. OLE-fed CL2006 worms displayed reduced Aβ plaque deposition, less abundant toxic Aβ oligomers, remarkably decreased paralysis and increased lifespan with respect to untreated animals. A protective effect was also observed in CL4176 worms but only when OLE was administered before the induction of the Aβ transgene expression. These effects were specific, dose-related, and not mediated by the known polyphenolic anti-oxidant activity, suggesting that, in this model organism, OLE interferes with the Aβ aggregation skipping the appearance of toxic species, as already shown in vitro for Aβ42.

  10. Silencing of osteopontin promotes the radiosensitivity of breast cancer cells by reducing the expression of hypoxia inducible factor 1 and vascular endothelial growth factor

    Institute of Scientific and Technical Information of China (English)

    YANG Li; ZHAO Wei; ZUO Wen-shu; WEI Ling; SONG Xian-rang; WANG Xing-wu; ZHENG Gang; ZHENG Mei-zhu

    2012-01-01

    Background Osteopontin (OPN) is a secreted phosphoglycoprotein (SSP) that is overexpressed in a variety of tumors and was regarded as a molecular marker of tumors.In this study,we intended to demonstrate the role of OPN in human breast cancer cell line MDA-MB-231.Methods Recombinant plasmid expressing small interfering RNA (siRNA) specific to OPN mRNA was transfected into MDA-MB-231 cells to generate the stable transfected cell line MDA-MB-343,and the empty plasmid tansfected cells (MDA-MB-neg) or wildtype MDA-MB-231 cells were used as control cells respectively.Expression of OPN,hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) proteins was analyzed by Western blotting analysis.The radiosensitivity of cells was determined by detecting cell apoptosis,cell proliferation and cell senescence.Results HIF-1 and VEGF proteins in MDA-MB-343 cells were significantly downregulated upon the efficient knockdown of OPN expression under either hypoxia or normoxia environment.Moreover,expression of OPN protein was upregualted upon hypoxic culture.Stable OPN-silencing also decreased cell invasion,increased cell apoptosis and cell senescence,as well as reduced clonogenic survival,resulting in increase radiation tolerance.Conclusions Suppression of OPN gene expression can enhance radiosensitivity and affect cell apoptosis in breast cancer cells.OPN seems to be an attractive target for the improvement of radiotherapy.

  11. miR-451 deficiency is associated with altered endometrial fibrinogen alpha chain expression and reduced endometriotic implant establishment in an experimental mouse model.

    Directory of Open Access Journals (Sweden)

    Warren B Nothnick

    Full Text Available Endometriosis is defined as the growth of endometrial glandular and stromal components in ectopic locations and affects as many as 10% of all women of reproductive age. Despite its high prevalence, the pathogenesis of endometriosis remains poorly understood. MicroRNAs, small non-coding RNAs that post-transcriptionally regulate gene expression, are mis-expressed in endometriosis but a functional role in the disease pathogenesis remains uncertain. To examine the role of microRNA-451 (miR-451 in the initial development of endometriosis, we utilized a novel mouse model in which eutopic endometrial fragments used to induce endometriosis were deficient for miR-451. After induction of the disease, we evaluated the impact of this deficiency on implant development and survival. Loss of miR-451 expression resulted in a lower number of ectopic lesions established in vivo. Analysis of differential protein profiles between miR-451 deficient and wild-type endometrial fragments revealed that fibrinogen alpha polypeptide isoform 2 precursor was approximately 2-fold higher in the miR-451 null donor endometrial tissue and this elevated expression of the protein was associated with altered expression of the parent fibrinogen alpha chain mRNA and protein. As this polypeptide contains RGD amino acid "cell adhesion" motifs which could impact early establishment of lesion development, we examined and confirmed using a cyclic RGD peptide antagonist, that endometrial cell adhesion and endometriosis establishment could be respectively inhibited both in vitro and in vivo. Collectively, these results suggest that the reduced miR-451 eutopic endometrial expression does not enhance initial establishment of these fragments when displaced into the peritoneal cavity, that loss of eutopic endometrial miR-451 expression is associated with altered expression of fibrinogen alpha chain mRNA and protein, and that RGD cyclic peptide antagonists inhibit establishment of endometriosis

  12. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    , but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  13. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  14. The expression of heterologous MAM-7 in Lactobacillus rhamnosus reduces its intrinsic capacity to inhibit colonization of pathogen Vibrio parahaemolyticus in vitro.

    Science.gov (United States)

    Beltran, Sebastian; Munoz-Bergmann, Cristian A; Elola-Lopez, Ana; Quintana, Javiera; Segovia, Cristopher; Trombert, Annette N

    2016-01-07

    Vibrio parahaemolyticus (V. parahaemolyticus) is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis), characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL) expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization. We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7) adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain. MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus.

  15. Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi-SlPH tomato line with reduced fruit acidity and higher pH.

    Science.gov (United States)

    Barad, Shiri; Sela, Noa; Dubey, Amit K; Kumar, Dilip; Luria, Neta; Ment, Dana; Cohen, Shahar; Schaffer, Arthur A; Prusky, Dov

    2017-08-04

    The destructive phytopathogen Colletotrichum gloeosporioides causes anthracnose disease in fruit. During host colonization, it secretes ammonia, which modulates environmental pH and regulates gene expression, contributing to pathogenicity. However, the effect of host pH environment on pathogen colonization has never been evaluated. Development of an isogenic tomato line with reduced expression of the gene for acidity, SlPH (Solyc10g074790.1.1), enabled this analysis. Total RNA from C. gloeosporioides colonizing wild-type (WT) and RNAi-SlPH tomato lines was sequenced and gene-expression patterns were compared. C. gloeosporioides inoculation of the RNAi-SlPH line with pH 5.96 compared to the WT line with pH 4.2 showed 30% higher colonization and reduced ammonia accumulation. Large-scale comparative transcriptome analysis of the colonized RNAi-SlPH and WT lines revealed their different mechanisms of colonization-pattern activation: whereas the WT tomato upregulated 13-LOX (lipoxygenase), jasmonic acid and glutamate biosynthesis pathways, it downregulated processes related to chlorogenic acid biosynthesis II, phenylpropanoid biosynthesis and hydroxycinnamic acid tyramine amide biosynthesis; the RNAi-SlPH line upregulated UDP-D-galacturonate biosynthesis I and free phenylpropanoid acid biosynthesis, but mainly downregulated pathways related to sugar metabolism, such as the glyoxylate cycle and L-arabinose degradation II. Comparison of C. gloeosporioides gene expression during colonization of the WT and RNAi-SlPH lines showed that the fungus upregulates ammonia and nitrogen transport and the gamma-aminobutyric acid metabolic process during colonization of the WT, while on the RNAi-SlPH tomato, it mainly upregulates the nitrate metabolic process. Modulation of tomato acidity and pH had significant phenotypic effects on C. gloeosporioides development. The fungus showed increased colonization on the neutral RNAi-SlPH fruit, and limited colonization on the WT acidic fruit

  16. Reduced expression of exocytotic proteins caused by anti-cholinesterase pesticides in Brachionus calyciflorus (Rotifera: Monogononta

    Directory of Open Access Journals (Sweden)

    IA Pérez-Legaspi

    Full Text Available AbstractThe organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE, by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.

  17. Clusterin Reduces Cold Ischemia-Reperfusion Injury in Heart Transplantation Through Regulation of NF-kB Signaling and Bax/Bcl-xL Expression

    Directory of Open Access Journals (Sweden)

    Guodong Liu

    2018-02-01

    Full Text Available Background/Aims: Ischemia-reperfusion (I/R injury is an unavoidable event occurring during heart transplantation and is a key factor in graft failure and the long-term survival rate of recipients. Therefore, there is an urgent need for the development of new therapies to prevent I/R injury. Clusterin is a hetero-dimeric glycoprotein with an antiapoptotic function. In this study, we investigated whether clusterin was cardioprotective in heart transplantation against I/R injury using an in vivo rat model and an in vitro cell culture system, and examined the underlying mechanisms of I/R injury. Methods: Heart grafts from wild-type C57BL/6 mice were preserved in UW solution (control or UW solution containing recombinant human apolipoprotein-J (hr clusterin for 24 h. The preserved hearts were implanted into recipient mice of the same strain as the donors for 72 h, and the heart grafts were then taken for histopathological and gene expression analyses. An in vitro ischemia reperfusion model using H9C2 cells or H9C2/clusterin cDNA cells was constructed. The expression of clusterin, p65, Bax, Bcl-xL, IL-1β, and TNF-α protein and mRNA in heart tissue and H9C2 cells was detected by western blot, reverse transcription-polymerase chain reaction (RT-PCR, and quantitative RT-PCR assays; IL-1β and TNF-α protein was detected by enzyme-linked immunosorbent assays; NF-kB activity was detected by an electrophoretic mobility shift assay; cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and flow cytometric analyses. Results: Cold I/R caused severe morphologic myocardial injury to heart grafts from wild-type C57BL/6 mice, whereas grafts from hr clusterin preservation showed less damage, as demonstrated by decreased cell apoptosis/death, decreased neutrophil infiltration, and the preservation of the normal structure of the heart. Clusterin reduced the expression of p65, pre-inflammatory IL-1β, and TNF-α, and

  18. Clusterin Reduces Cold Ischemia-Reperfusion Injury in Heart Transplantation Through Regulation of NF-kB Signaling and Bax/Bcl-xL Expression.

    Science.gov (United States)

    Liu, Guodong; Zhang, Hongmei; Hao, Fengyun; Hao, Jing; Pan, Lixiao; Zhao, Qing; Wo, Jinshan

    2018-01-01

    Ischemia-reperfusion (I/R) injury is an unavoidable event occurring during heart transplantation and is a key factor in graft failure and the long-term survival rate of recipients. Therefore, there is an urgent need for the development of new therapies to prevent I/R injury. Clusterin is a hetero-dimeric glycoprotein with an antiapoptotic function. In this study, we investigated whether clusterin was cardioprotective in heart transplantation against I/R injury using an in vivo rat model and an in vitro cell culture system, and examined the underlying mechanisms of I/R injury. Heart grafts from wild-type C57BL/6 mice were preserved in UW solution (control) or UW solution containing recombinant human apolipoprotein-J (hr clusterin) for 24 h. The preserved hearts were implanted into recipient mice of the same strain as the donors for 72 h, and the heart grafts were then taken for histopathological and gene expression analyses. An in vitro ischemia reperfusion model using H9C2 cells or H9C2/clusterin cDNA cells was constructed. The expression of clusterin, p65, Bax, Bcl-xL, IL-1β, and TNF-α protein and mRNA in heart tissue and H9C2 cells was detected by western blot, reverse transcription-polymerase chain reaction (RT-PCR), and quantitative RT-PCR assays; IL-1β and TNF-α protein was detected by enzyme-linked immunosorbent assays; NF-kB activity was detected by an electrophoretic mobility shift assay; cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and flow cytometric analyses. Cold I/R caused severe morphologic myocardial injury to heart grafts from wild-type C57BL/6 mice, whereas grafts from hr clusterin preservation showed less damage, as demonstrated by decreased cell apoptosis/death, decreased neutrophil infiltration, and the preservation of the normal structure of the heart. Clusterin reduced the expression of p65, pre-inflammatory IL-1β, and TNF-α, and the pro-apoptotic gene Bax, while it enhanced the

  19. [Neratinib + Valproate] exposure permanently reduces ERBB1 and RAS expression in 4T1 mammary tumors and enhances M1 macrophage infiltration

    OpenAIRE

    Booth, Laurence; Roberts, Jane L.; Rais, Rumeesa; Kirkwood, John; Avogadri-Connors, Francesca; Cutler, Richard E.; Lalani, Alshad S.; Poklepovic, Andrew; Dent, Paul

    2017-01-01

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown in vitro to rapidly reduce the expression of ERBB1/2/4 and RAS proteins via autophagic/lysosomal degradation. We have recently demonstrated that neratinib and valproate interact to suppress the growth of 4T1 mammary tumors but had not defined whether the [neratinib + valproate] drug combination, in a mouse, had altered the biology of the 4T1 cells. Exposure of 4T1 mammary tumors to [neratinib + valproate] for three days resulted, t...

  20. Decreased surface expression of the δ subunit of the GABAA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Zhang, Nianhui; Peng, Zechun; Tong, Xiaoping; Lindemeyer, A Kerstin; Cetina, Yliana; Huang, Christine S; Olsen, Richard W; Otis, Thomas S; Houser, Carolyn R

    2017-11-01

    While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABA A receptors (GABA A Rs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABA A R, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABA A Rs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with

  1. Reduced Penetrance and Variable Expression of SCN5A Mutations and the Importance of Co-inherited Genetic Variants: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    T. Robyns, MD.

    2014-05-01

    Full Text Available Mutations in the SCN5A gene are responsible for multiple phenotypical presentations including Brugada syndrome, long QT syndrome, progressive familial heart block, sick sinus syndrome, dilated cardiomyopathy, lone atrial fibrillation and multiple overlap syndromes. These different phenotypic expressions of a mutation in a single gene can be explained by variable expression and reduced penetrance. One of the possible explanations of these phenomena is the co-inheritance of genetic variants. We describe a family where the individuals exhibit a compound heterozygosity in the SCN5A gene including a mutation (R1632H and a new variant (M858L. Individuals with both the mutation and new variant present with a more severe phenotype including spontaneous atrial tachyarrhythmia at young age. We give an overview of the different phenotypes of "SCN5A disease" and discuss the importance of co-inherited genetic variants in the expression of SCN5A disease.

  2. Pokemon reduces Bcl-2 expression through NF-κ Bp65: A possible mechanism of hepatocellular carcinoma.

    Science.gov (United States)

    Zhao, Xinkai; Ning, Qiaoming; Sun, Xiaoning; Tian, De'an

    2011-06-01

    To investigate the relationship among Pokemon, NF-κ B p65 and Bcl-2 in hepatoma cells. HCC cell HepG2, SMMC7721 and human fetal liver cell line LO2 cells were used, and expression of Pokemon, NF-κ B p65 and Bcl-2 in three cells were detected by real-time PCR and western blot. Then siRNA of Pokemon was applied to inhibit the expression of Pokemon and NF-κ B p65 and apoptotic rate was determined by flow cytometric analysis. Expressions of Pokemon, NF-κ B p65 and Bcl-2 in human hepatoma cell HepG2, SMMC7721 expression were significantly higher than those in human embryonic stem cells LO2. siRNA of Pokemon inhibited the expression of Pokemon, NF-κ B p65 and Bcl-2 in liver cancer cells, and significantly increased apoptosis of liver cells. While siRNA of NF-κ B p65 inhibited the expression of NF-κ B p65 and Bcl-2, but Pokemon expression in hepatoma cells had no significant change. The proto-oncogene Pokemon can inhibit P14ARF by specific transcription regulation of cell cycle and can induce tumors. In addition, Pokemon can regulate NF-κ B p65 through the expression of apoptosis repressor, and promote the development of liver cancer. It suggests signal network in the liver include the regulation of new non-classical NF-κ B regulatory pathway. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  3. The expression of heterologous MAM-7 in Lactobacillus rhamnosus reduces its intrinsic capacity to inhibit colonization of pathogen Vibrio parahaemolyticus in vitro

    Directory of Open Access Journals (Sweden)

    Sebastian Beltran

    Full Text Available BACKGROUND: Vibrio parahaemolyticus (V. parahaemolyticus is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis, characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization RESULTS: We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7 adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain CONCLUSIONS: MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus

  4. p100, a precursor of NF-κB2, inhibits c-Rel and reduces the expression of IL-23 in dendritic cells

    International Nuclear Information System (INIS)

    Mise-Omata, Setsuko; Obata, Yuichi; Doi, Takahiro S.

    2014-01-01

    Highlights: • The deficiency of p100 enhances c-Rel-, not RelA-, dependent cytokine expression. • p100 associates with c-Rel in the steady state but dissociates after LPS stimulation. • The deficiency of p100 enhances the nuclear translocation of c-Rel. • p100 negatively regulates the c-Rel function. - Abstract: Nuclear factor κB regulates various genes involved in the immune response, inflammation, cell survival, and development. NF-κB activation is controlled by proteins possessing ankyrin repeats, such as IκBs. A precursor of the NF-κB2 (p52) subunit, p100, contains ankyrin repeats in its C-terminal portion and has been found to act as a cytoplasmic inhibitor of RelA in the canonical pathway of NF-κB activation. Here, we demonstrate that p100 also suppresses c-Rel function in dendritic cells. Expression of the p19 and p40 subunits of IL-23, a c-Rel-dependent cytokine, was enhanced in p100-deficient cells, although expression of a RelA-dependent cytokine, TNF-α, was reduced. Nuclear translocation of c-Rel was enhanced in p100-deficient cells. p100, and not the processed p52 form, associated with c-Rel in the steady state and dissociated immediately after lipopolysaccharide stimulation in wild-type dendritic cells. Four hours after the stimulation, p100 was newly synthesized and associated with c-Rel again. In cells expressing both c-Rel and RelA, c-Rel is preferentially suppressed by p100

  5. LocExpress: a web server for efficiently estimating expression of novel transcripts.

    Science.gov (United States)

    Hou, Mei; Tian, Feng; Jiang, Shuai; Kong, Lei; Yang, Dechang; Gao, Ge

    2016-12-22

    The temporal and spatial-specific expression pattern of a transcript in multiple tissues and cell types can indicate key clues about its function. While several gene atlas available online as pre-computed databases for known gene models, it's still challenging to get expression profile for previously uncharacterized (i.e. novel) transcripts efficiently. Here we developed LocExpress, a web server for efficiently estimating expression of novel transcripts across multiple tissues and cell types in human (20 normal tissues/cells types and 14 cell lines) as well as in mouse (24 normal tissues/cell types and nine cell lines). As a wrapper to RNA-Seq quantification algorithm, LocExpress efficiently reduces the time cost by making abundance estimation calls increasingly within the minimum spanning bundle region of input transcripts. For a given novel gene model, such local context-oriented strategy allows LocExpress to estimate its FPKMs in hundreds of samples within minutes on a standard Linux box, making an online web server possible. To the best of our knowledge, LocExpress is the only web server to provide nearly real-time expression estimation for novel transcripts in common tissues and cell types. The server is publicly available at http://loc-express.cbi.pku.edu.cn .

  6. Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression.

    Directory of Open Access Journals (Sweden)

    Pin-Shern Chen

    Full Text Available BACKGROUND: Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum, was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells. METHODS AND PRINCIPAL FINDINGS: Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2 and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2 was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt, extracellular signal regulating kinase (ERK and c-Jun N-terminal kinase (JNK. In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB, suggesting that diosgenin inhibited NF-κB activity. CONCLUSION/SIGNIFICANCE: The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy.

  7. Expression of Recombinant Human Coagulation Factor VII by the Lizard Leishmania Expression System

    Directory of Open Access Journals (Sweden)

    Sina Mirzaahmadi

    2011-01-01

    Full Text Available The variety of recombinant protein expression systems have been developed as a resource of FVII gene expression. In the current study, the authors used a novel protein expression system based on the Iranian Lizard Leishmania, a trypanosomatid protozoan as a host for expression of FVII. Plasmid containing cDNA encoding full-length human FVII was introduced into Lizard Leishmania and positive transfectants were analyzed by SDS-PAGE and Western blot analysis. Furthermore, biological activity of purified protein was detected by PT assay. The recombinant strain harboring a construct was analyzed for expression of FVII at the mRNA and protein level. Purified rFVII was obtained and in order to confirm the purified compound was in fact rFVII. Western blot analysis was carried out. Clotting time in PT assay was reduced about 30 seconds with the purified rFVII. In Conclusion, this study has demonstrated, for the first time, that Leishmania cells can be used as an expression system for producing recombinant FVII.

  8. Insulin-regulated aminopeptidase immunoreactivity is abundantly present in human hypothalamus and posterior pituitary gland, with reduced expression in paraventricular and suprachiasmatic neurons in chronic schizophrenia.

    Science.gov (United States)

    Bernstein, Hans-Gert; Müller, Susan; Dobrowolny, Hendrik; Wolke, Carmen; Lendeckel, Uwe; Bukowska, Alicja; Keilhoff, Gerburg; Becker, Axel; Trübner, Kurt; Steiner, Johann; Bogerts, Bernhard

    2017-08-01

    The vasopressin- and oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP) is expressed in various organs including the brain. However, knowledge about its presence in human hypothalamus is fragmentary. Functionally, for a number of reasons (genetic linkage, hydrolysis of oxytocin and vasopressin, its role as angiotensin IV receptor in learning and memory and others) IRAP might play a role in schizophrenia. We studied the regional and cellular localization of IRAP in normal human brain with special emphasis on the hypothalamus and determined numerical densities of IRAP-expressing cells in the paraventricular, supraoptic and suprachiasmatic nuclei in schizophrenia patients and controls. By using immunohistochemistry and Western blot analysis, IRAP was immunolocalized in postmortem human brains. Cell countings were performed to estimate numbers and numerical densities of IRAP immunoreactive hypothalamic neurons in schizophrenia patients and control cases. Shape, size and regional distribution of IRAP-expressing cells, as well the lack of co-localization with the glia marker glutamine synthetase, show that IRAP is expressed in neurons. IRAP immunoreactive cells were observed in the hippocampal formation, cerebral cortex, thalamus, amygdala and, abundantly, hypothalamus. Double labeling experiments (IRAP and oxytocin/neurophysin 1, IRAP with vasopressin/neurophysin 2) revealed that IRAP is present in oxytocinergic and in vasopressinergic neurons. In schizophrenia patients, the numerical density of IRAP-expressing neurons in the paraventricular and the suprachiasmatic nuclei is significantly reduced, which might be associated with the reduction in neurophysin-containing neurons in these nuclei in schizophrenia. The pathophysiological role of lowered hypothalamic IRAP expression in schizophrenia remains to be established.

  9. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice.

    Directory of Open Access Journals (Sweden)

    Francisco Altamirano

    Full Text Available Duchenne Muscular Dystrophy (DMD is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM decreased [Ca(2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox/p47(phox NOX2 subunits and pro-apoptotic (Bax genes in mdx diaphragm muscles and lowered serum creatine kinase (CK levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+]r in mdx skeletal muscle cells. The results in this work open new

  10. IL-6 deficiency leads to reduced metallothionein-I+II expression and increased oxidative stress in the brain stem after 6-aminonicotinamide treatment

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2000-01-01

    -AN-injected IL-6KO mice reactive astrocytosis and recruitment of macrophages and T-lymphocytes were clearly reduced, as were BM leukopoiesis and spleen immune reaction. Expression of MT-I+II was significantly reduced while MT-III was increased. Oxidative stress, as determined by measuring nitrated...... in brain stem gray matter areas and BM toxicity. In both normal and genetically IL-6-deficient mice (IL-6 knockout (IL-6KO) mice), the extent of astroglial degeneration/cell death in the brain stem was similar as determined from disappearance of GFAP immunoreactivity. In 6-AN-injected normal mice reactive...... tyrosine and malondialdehyde, was increased by 6-AN to a greater extent in IL-6KO mice. The blood-brain barrier to albumin was only disrupted in 6-AN-injected normal mice, which likely is due to the substantial migration of blood-derived inflammatory cells into the CNS. The present results demonstrate...

  11. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia.

    Science.gov (United States)

    Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W

    2012-06-01

    Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.

  12. N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus

    International Nuclear Information System (INIS)

    Dey, Antu K.; David, Kathryn B.; Ray, Neelanjana; Ketas, Thomas J.; Klasse, Per J.; Doms, Robert W.; Moore, John P.

    2008-01-01

    The native, functional HIV-1 envelope glycoprotein (Env) complex is a trimer of two non-covalently associated subunits: the gp120 surface glycoprotein and the gp41 transmembrane glycoprotein. However, various non-functional forms of Env are present on virus particles and HIV-1-infected cells, some of which probably arise as the native complex decays. The aberrant forms include gp120-gp41 monomers and oligomers, as well as gp41 subunits from which gp120 has dissociated. The presence of non-functional Env creates binding sites for antibodies that do not recognize native Env complexes and that are, therefore, non-neutralizing. Non-native Env forms (monomers, dimers, tetramers and aggregates) can also arise when soluble gp140 proteins, lacking the cytoplasmic and transmembrane domains of gp41, are expressed for vaccine studies. We recently identified five amino acids in the gp41 N-terminal region (I535, Q543, S553, K567 and R588) that promote gp140 trimerization. We have now studied their influence on the function and antigenic properties of JR-FL Env expressed on the surfaces of pseudoviruses and Env-transfected cells. The 5 substitutions in gp41 reduce the expression of non-trimeric gp160s, without affecting trimer levels. Pseudovirions bearing the mutant Env are fully infectious with similar kinetics of Env-mediated fusion. Various non-neutralizing antibodies bind less strongly to the Env mutant, but neutralizing antibody binding is unaffected. Hence the gp41 substitutions do not adversely affect Env structure, supporting their use for making new Env-based vaccines. The mutant Env might also help in studies intended to correlate antibody binding to virus neutralization. Of note is that the 5 residues are much more frequent, individually or collectively, in viruses from subtypes other than B

  13. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saaidi, Rasha [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Rasmussen, Torsten B. [Department of Cardiology, Aarhus University Hospital, Aarhus (Denmark); Palmfeldt, Johan [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Nissen, Peter H. [Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus (Denmark); Beqqali, Abdelaziz [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Hansen, Jakob [Department of Forensic Medicine, Bioanalytical Unit, University of Aarhus (Denmark); Pinto, Yigal M. [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Boesen, Thomas [Department of Molecular Biology and Genetics, University of Aarhus (Denmark); Mogensen, Jens [Department of Cardiology, Odense University Hospital, Odense (Denmark); Bross, Peter, E-mail: peter.bross@ki.au.dk [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark)

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that

  14. Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models

    Directory of Open Access Journals (Sweden)

    Kung PJ

    2014-10-01

    Full Text Available Pin-Jui Kung,1,* Yu-Chen Tao,1,* Ho-Chiang Hsu,1 Wan-Ling Chen,1 Te-Hsien Lin,1 Donala Janreddy,2 Ching-Fa Yao,2 Kuo-Hsuan Chang,3 Jung-Yaw Lin,1 Ming-Tsan Su,1 Chung-Hsin Wu,1 Guey-Jen Lee-Chen,1 Hsiu-Mei Hsieh-Li1 1Department of Life Science, 2Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan; 3Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan *These authors contributed equally to this work Abstract: In spinocerebellar ataxia type 17 (SCA17, the expansion of a translated CAG repeat in the TATA box binding protein (TBP gene results in a long polyglutamine (polyQ tract in the TBP protein, leading to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On SH-SY5Y cells with inducible SCA17 TBP/Q79-green fluorescent protein (GFP expression to test indole and synthetic derivative NC001-8 for neuroprotection. We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells. The effects on promoting neurite outgrowth and on reduction of aggregation on Purkinje cells were also confirmed with cerebellar primary and slice cultures of SCA17 transgenic mice. Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment. Keywords: spinocerebellar ataxia type 17, TATA box binding protein, polyQ aggregation, indole and derivative, therapeutics

  15. Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Sung Hwan Kim

    2016-12-01

    Full Text Available Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF, secreted by the retinal pigment epithelium (RPE, in pathological angiogenesis and the development of choroidal neovascularization (CNV in age-related macular degeneration (AMD. RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA is a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase (IDH, which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS. Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.

  16. Saccharomyces cerevisiae expressing bacteriophage endolysins reduce Lactobacillus contamination during fermentation

    Science.gov (United States)

    One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...

  17. Xenopus reduced folate carrier regulates neural crest development epigenetically.

    Directory of Open Access Journals (Sweden)

    Jiejing Li

    Full Text Available Folic acid deficiency during pregnancy causes birth neurocristopathic malformations resulting from aberrant development of neural crest cells. The Reduced folate carrier (RFC is a membrane-bound receptor for facilitating transfer of reduced folate into the cells. RFC knockout mice are embryonic lethal and develop multiple malformations, including neurocristopathies. Here we show that XRFC is specifically expressed in neural crest tissues in Xenopus embryos and knockdown of XRFC by specific morpholino results in severe neurocristopathies. Inhibition of RFC blocked the expression of a series of neural crest marker genes while overexpression of RFC or injection of 5-methyltetrahydrofolate expanded the neural crest territories. In animal cap assays, knockdown of RFC dramatically reduced the mono- and trimethyl-Histone3-K4 levels and co-injection of the lysine methyltransferase hMLL1 largely rescued the XRFC morpholino phenotype. Our data revealed that the RFC mediated folate metabolic pathway likely potentiates neural crest gene expression through epigenetic modifications.

  18. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source.

    Science.gov (United States)

    Fraisier, V; Gojon, A; Tillard, P; Daniel-Vedele, F

    2000-08-01

    The NpNRT2.1 gene encodes a putative inducible component of the high-affinity nitrate (NO3-) uptake system in Nicotiana plumbaginifolia. Here we report functional and physiological analyses of transgenic plants expressing the NpNRT2.1 coding sequence fused to the CaMV 35S or rolD promoters. Irrespective of the level of NO3- supplied, NO3- contents were found to be remarkably similar in wild-type and transgenic plants. Under specific conditions (growth on 10 mM NO3-), the steady-state NpNRT2. 1 mRNA level resulting from the deregulated transgene expression was accompanied by an increase in 15NO3- influx measured in the low concentration range. This demonstrates for the first time that the NRT2.1 sequence codes a limiting element of the inducible high-affinity transport system. Both 15NO3- influx and mRNA levels decreased in the wild type after exposure to ammonium, in agreement with previous results from many species. Surprisingly, however, influx was also markedly decreased in transgenic plants, despite stable levels of transgene expression in independent transformants after ammonium addition. We conclude that the conditions associated with the supply of a reduced nitrogen source such as ammonium, or with the generation of a further downstream metabolite, probably exert a repressive effect on NO3- influx at both transcriptional and post-transcriptional levels.

  19. Expression-dependent susceptibility to face distortions in processing of facial expressions of emotion.

    Science.gov (United States)

    Guo, Kun; Soornack, Yoshi; Settle, Rebecca

    2018-03-05

    Our capability of recognizing facial expressions of emotion under different viewing conditions implies the existence of an invariant expression representation. As natural visual signals are often distorted and our perceptual strategy changes with external noise level, it is essential to understand how expression perception is susceptible to face distortion and whether the same facial cues are used to process high- and low-quality face images. We systematically manipulated face image resolution (experiment 1) and blur (experiment 2), and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. Our analysis revealed a reasonable tolerance to face distortion in expression perception. Reducing image resolution up to 48 × 64 pixels or increasing image blur up to 15 cycles/image had little impact on expression assessment and associated gaze behaviour. Further distortion led to decreased expression categorization accuracy and intensity rating, increased reaction time and fixation duration, and stronger central fixation bias which was not driven by distortion-induced changes in local image saliency. Interestingly, the observed distortion effects were expression-dependent with less deterioration impact on happy and surprise expressions, suggesting this distortion-invariant facial expression perception might be achieved through the categorical model involving a non-linear configural combination of local facial features. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The Daiokanzoto (TJ-84 Kampo Formulation Reduces Virulence Factor Gene Expression in Porphyromonas gingivalis and Possesses Anti-Inflammatory and Anti-Protease Activities.

    Directory of Open Access Journals (Sweden)

    Jade Fournier-Larente

    Full Text Available Kampo formulations used in Japan to treat a wide variety of diseases and to promote health are composed of mixtures of crude extracts from the roots, bark, leaves, and rhizomes of a number of herbs. The present study was aimed at identifying the beneficial biological properties of Daiokanzoto (TJ-84, a Kampo formulation composed of crude extracts of Rhubarb rhizomes and Glycyrrhiza roots, with a view to using it as a potential treatment for periodontal disease. Daiokanzoto dose-dependently inhibited the expression of major Porphyromonas gingivalis virulence factors involved in host colonization and tissue destruction. More specifically, Daiokanzoto reduced the expression of the fimA, hagA, rgpA, and rgpB genes, as determined by quantitative real-time PCR. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to evaluate the anti-inflammatory properties of Daiokanzoto. Daiokanzoto attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. It also reduced the secretion of pro-inflammatory cytokines (IL-6 and CXCL8 by lipopolysaccharide-stimulated oral epithelial cells and gingival fibroblasts. Lastly, Daiokanzoto, dose-dependently inhibited the catalytic activity of matrix metalloproteinases (-1 and -9. In conclusion, the present study provided evidence that Daiokanzoto shows potential for treating and/or preventing periodontal disease. The ability of this Kampo formulation to act on both bacterial pathogens and the host inflammatory response, the two etiological components of periodontal disease, is of high therapeutic interest.

  1. Medical management of moyamoya disease and recurrent stroke in an infant with Majewski osteodysplastic primordial dwarfism type II (MOPD II).

    Science.gov (United States)

    Kılıç, Esra; Utine, Eda; Unal, Sule; Haliloğlu, Göknur; Oğuz, Kader Karli; Cetin, Mualla; Boduroğlu, Koray; Alanay, Yasemin

    2012-10-01

    We report an infant diagnosed with Majewski osteodysplastic primordial dwarfism type II at age 8 months, who experienced cerebrovascular morbidities related to this entity. Molecular analysis identified c.2609+1 G>A, intron 14, homozygous splice site mutation in the pericentrin gene. At age 18 months, she developed recurrent strokes and hemiparesis. Brain magnetic resonance imaging and magnetic resonance angiography showed abnormal gyral pattern, cortical acute infarcts, bilateral stenosis of the internal carotid arteries and reduced flow on the cerebral arteries, consistent with moyamoya disease. In Majewski osteodysplastic primordial dwarfism type II, life expectancy is reduced because of high risk of stroke secondary to cerebral vascular anomalies (aneurysms, moyamoya disease). Periodic screening for vascular events is recommended in individuals with Majewski osteodysplastic primordial dwarfism type II every 12-18 months following diagnosis. Our patient was medically managed with low molecular weight heparin followed with aspirin prophylaxis, in addition to carbamazepine and physical rehabilitation. We report an infant with moyamoya disease and recurrent stroke presenting 10 months after diagnosis (at age 18 months), and discuss the outcome of nonsurgical medical management. The presented case is the second youngest case developing stroke and moyamoya disease.

  2. Carprofen neither reduces postoperative facial expression scores in rabbits treated with buprenorphine nor alters long term bone formation after maxillary sinus grafting.

    Science.gov (United States)

    Hedenqvist, Patricia; Trbakovic, Amela; Thor, Andreas; Ley, Cecilia; Ekman, Stina; Jensen-Waern, Marianne

    2016-08-01

    In connection with bilateral maxillary sinus augmentation, the acute effects of the nonsteroidal anti-inflammatory drug carprofen on facial expressions and long-term effects on bone formation were evaluated in 18 male New Zealand White rabbits. A 10×10mm bone window was drilled in the maxilla, the sinus membrane elevated and a titanium mini-implant inserted. One of two test materials was randomly inserted unilaterally and bovine bone chips (control) on the contralateral side in the created space. Rabbits were randomly allocated to receive buprenorphine plus carprofen (n=9) or buprenorphine plus saline (n=9) postoperatively. Buprenorphine was administered subcutaneously every 6h for 3days in a tapered dose (0.05-0.01mg/kg) and carprofen (5mg/kg) or saline administered subcutaneously 1h before, and daily for 4days postoperatively. To assess pain, clinical examination, body weight recording and scoring of facial expressions from photos taken before, and 6-13h after surgery were performed. Twelve weeks after surgery the rabbits were euthanized and sections of maxillary bones and sinuses were analysed with histomorphometry and by qualitative histology. Carprofen had no effect on mean facial expression scores, which increased from 0.0 to 3.6 (carprofen) and 4.3 (saline), of a maximum of 8.0. Neither did carprofen have an effect on bone formation or implant incorporation, whereas the test materials had. In conclusion, treatment with 5mg/kg carprofen once daily for 5days did not reduce facial expression scores after maxillary sinus augmentation in buprenorphine treated rabbits and did not affect long term bone formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pipeline Drag Reducers

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Pipeline drag reducers have proven to be an extremely powerful tool in fluid transportation. High molecular weight polymers are used to reduce the frictional pressure loss ratio in crude oil pipelines, refined fuel and aqueous pipelines. Chemical structure of the main used pipeline drag reducers is one of the following polymers and copolymers classified according to the type of fluid to ; low density polyethylene, copolymer of I-hexane cross linked with divinyl benzene, polyacrylamide, polyalkylene oxide polymers and their copolymers, fluorocarbons, polyalkyl methacrylates and terpolymer of styrene, alkyl acrylate and acrylic acid. Drag reduction is the increase in pump ability of a fluid caused by the addition of small amounts of an additive to the fluid. The effectiveness of a drag reducer is normally expressed in terms of percent drag reduction. Frictional pressure loss in a pipeline system is a waste of energy and it costly. The drag reducing additive minimizes the flow turbulence, increases throughput and reduces the energy costs. The Flow can be increased by more than 80 % with existing assets. The effectiveness of the injected drag reducer in Mostorod to Tanta crude oil pipeline achieved 35.4 % drag reduction and 23.2 % flow increase of the actual performance The experimental application of DRA on Arab Petroleum Pipeline Company (Summed) achieved a flow increase ranging from 9-32 %

  4. The plastic instability of clamped-clamped conical thin-walled pipe reducers

    International Nuclear Information System (INIS)

    Awad, Ibrahim; Saleh, Ch.A.R.; Ragab, A.R.

    2016-01-01

    The analytical study for plastic deformation of clamped–clamped conical reducer pipe under internal pressure does not deduce a closed form expression for the pressure at plastic instability. The presented study employs finite element analysis (FEA) to estimate the internal pressure at instability for conical reducers made of different materials and having different dimensional configurations. Forty dimensional configurations, classified as medium type, and five types of materials have been included in the analysis using ABAQUS package. A correlation expression is derived by nonlinear regression to predict the instability pressure. The proposed expression is verified for other dimensional configurations out of the above used forty models and for other materials. Experiments have been conducted by pressurizing conical clamped-clamped reducers until bursting in order to verify the finite element models. Comparison of instability pressures, strains and deflections at specific points along the conical surface shows satisfactory agreement between analysis and experiments. - Highlights: • This study offers a parametric study of the plastic instability pressure of clamped-clamped conical reducers. • A closed form analytical expression for the instability pressure is derived by using nonlinear regression. • The finite element analysis is validated by conducting bursting tests.

  5. An accurate expression for radial distribution function of the Lennard-Jones fluid

    International Nuclear Information System (INIS)

    Morsali, Ali; Goharshadi, Elaheh K.; Ali Mansoori, G.; Abbaspour, Mohsen

    2005-01-01

    A simple and accurate expression for radial distribution function (RDF) of the Lennard-Jones fluid is presented. The expression explicitly states the RDF as a continuous function of reduced interparticle distance, temperature, and density. It satisfies the limiting conditions of zero density and infinite distance imposed by statistical thermodynamics. The distance dependence of this expression is expressed by an equation which contains 11 adjustable parameters. These parameters are fitted to 353 RDF data, obtained by molecular dynamics calculations, and then expressed as functions of reduced distance, temperature and density. This expression, having a total of 65 constants, reproduces the RDF data with an average root-mean-squared deviation of 0.0152 for the range of state variables of 0.5= * = * = * =ρσ 3 are reduced temperature and density, respectively). The expression predicts the pressure and the internal energy of the Lennard-Jones fluid with an uncertainty that is comparable to that obtained directly from the molecular dynamics simulations

  6. Feeding the developing brain: Juvenile rats fed diet rich in prebiotics and bioactive milk fractions exhibit reduced anxiety-related behavior and modified gene expression in emotion circuits.

    Science.gov (United States)

    Mika, Agnieszka; Gaffney, Michelle; Roller, Rachel; Hills, Abigail; Bouchet, Courtney A; Hulen, Kristina A; Thompson, Robert S; Chichlowski, Maciej; Berg, Brian M; Fleshner, Monika

    2018-01-30

    Early life nutrition is critical for brain development. Dietary prebiotics and bioactive milk fractions support brain development by increasing plasticity and altering activity in brain regions important for cognition and emotion regulation, perhaps through the gut-microbiome-brain axis. Here we examined the impact of a diet containing prebiotics, lactoferrin, and milk fat globule membrane (test diet) on beneficial gut bacteria, basal gene expression for activity and plasticity markers within brain circuits important for cognition and anxiety, and anxiety-related behavior in the open field. Juvenile male F344 rats were fed the test diet or a calorically matched control diet beginning postnatal day 24. After 4 weeks on diets, rats were sacrificed and brains were removed. Test diet significantly increased mRNA expression for cfos, brain derived neurotropic factor, and the GluN1 subunit of the NMDA receptor in the prefrontal cortex and reduced cfos mRNA within the amygdala. Diet-induced increases in fecal Lactobacillus spp., measured using selective bacterial culture, positively correlated with altered gene expression for cfos and serotonin receptors within multiple brain regions. In a separate cohort of juvenile rats, 4 weeks of the test diet increased time spent in the center of the open field, a behavior indicative of reduced anxiety. These data demonstrate that early life diets containing prebiotics and bioactive milk fractions can adaptively alter genes in neural circuits underlying emotion regulation and decrease anxiety-related behavior. Copyright © 2018. Published by Elsevier B.V.

  7. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.

    Science.gov (United States)

    Xie, Ying; Koch, Mia Lee; Zhang, Xin; Hamblen, Melanie J; Godinho, Frank J; Fujiwara, Yuko; Xie, Huafeng; Klusmann, Jan-Henning; Orkin, Stuart H; Li, Zhe

    2017-07-01

    ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Erg kd ) in which Erg expression can be conditionally restored by Cre recombinase. Erg kd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Erg kd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin - Sca-1 + c-Kit + (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Erg kd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785. © 2017 AlphaMed Press.

  8. Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction.

    Science.gov (United States)

    Rodriguez-Romaguera, Jose; Sotres-Bayon, Francisco; Mueller, Devin; Quirk, Gregory J

    2009-05-15

    Previous work has implicated noradrenergic beta-receptors in the consolidation and reconsolidation of conditioned fear. Less is known, however, about their role in fear expression and extinction. The beta-receptor blocker propranolol has been used clinically to reduce anxiety. With an auditory fear conditioning task in rats, we assessed the effects of systemic propranolol on the expression and extinction of two measures of conditioned fear: freezing and suppression of bar-pressing. One day after receiving auditory fear conditioning, rats were injected with saline, propranolol, or peripheral beta-receptor blocker sotalol (both 10 mg/kg, IP). Twenty minutes after injection, rats were given either 6 or 12 extinction trials and were tested for extinction retention the following day. The effect of propranolol on the firing rate of neurons in prelimbic (PL) prefrontal cortex was also assessed. Propranolol reduced freezing by more than 50%, an effect that was evident from the first extinction trial. Suppression was also significantly reduced. Despite this, propranolol had no effect on the acquisition or retention of extinction. Unlike propranolol, sotalol did not affect fear expression, although both drugs significantly reduced heart rate. This suggests that propranolol acts centrally to reduce fear. Consistent with this, propranolol reduced the firing rate of PL neurons. Propranolol reduced the expression of conditioned fear, without interfering with extinction learning. Reduced fear with intact extinction suggests a possible use for propranolol in reducing anxiety during extinction-based exposure therapies, without interfering with long-term clinical response.

  9. Cutis laxa: reduced elastin gene expression in skin fibroblast cultures as determined by hybridizations with a homologous cDNA and an exon 1-specific oligonucleotide

    International Nuclear Information System (INIS)

    Olsen, D.R.; Fazio, M.J.; Shamban, A.T.; Rosenbloom, J.; Uitto, J.

    1988-01-01

    Fibroblast cultures were established from six patients with cutis laxa, and elastin gene expression was analyzed by RNA hybridizations with a 2.5-kilobase human elastin cDNA or an exon 1-specific 35-base oligomer. Northern analyses using either probe detected mRNA transcripts of ∼ 3.5 kilobases, and no qualitative difference between the control and cutis laxa mRNAs was detected. However, quantitation of the elastin mRNA abundance by slot blot hybridizations revealed markedly reduced levels in all cutis laxa cell strains. Assuming equal translational activity of the control and cutix laxa mRNAs, the reduced mRNA levels could result in diminished elastin production, providing an explanation for the paucity of elastic fibers in the skin and other tissues in cutis laxa

  10. POD-1/Tcf21 overexpression reduces endogenous SF-1 and StAR expression in rat adrenal cells

    Directory of Open Access Journals (Sweden)

    M. M. França

    2015-12-01

    Full Text Available During gonad and adrenal development, the POD-1/capsulin/TCF21transcription factor negatively regulates SF-1/NR5A1expression, with higher SF-1 levels being associated with increased adrenal cell proliferation and tumorigenesis. In adrenocortical tumor cells, POD-1 binds to the SF-1 E-box promoter region, decreasing SF-1 expression. However, the modulation of SF-1 expression by POD-1 has not previously been described in normal adrenal cells. Here, we analyzed the basal expression of Pod-1 and Sf-1 in primary cultures of glomerulosa (G and fasciculata/reticularis (F/R cells isolated from male Sprague-Dawley rats, and investigated whether POD-1 overexpression modulates the expression of endogenous Sf-1 and its target genes in these cells. POD-1 overexpression, following the transfection of pCMVMycPod-1, significantly decreased the endogenous levels of Sf-1 mRNA and protein in F/R cells, but not in G cells, and also decreased the expression of the SF-1 target StAR in F/R cells. In G cells overexpressing POD-1, no modulation of the expression of SF-1 targets, StAR and CYP11B2, was observed. Our data showing that G and F/R cells respond differently to ectopic POD-1 expression emphasize the functional differences between the outer and inner zones of the adrenal cortex, and support the hypothesis that SF-1 is regulated by POD-1/Tcf21 in normal adrenocortical cells lacking the alterations in cellular physiology found in tumor cells.

  11. Aging Reduces an ERRalpha-Directed Mitochondrial Glutaminase Expression Suppressing Glutamine Anaplerosis and Osteogenic Differentiation of Mesenchymal Stem Cells.

    Science.gov (United States)

    Huang, Tongling; Liu, Renzhong; Fu, Xuekun; Yao, Dongsheng; Yang, Meng; Liu, Qingli; Lu, William W; Wu, Chuanyue; Guan, Min

    2017-02-01

    Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424. © 2016 AlphaMed Press.

  12. Silencing of NRF2 Reduces the Expression of ALDH1A1 and ALDH3A1 and Sensitizes to 5-FU in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hong-Quan Duong

    2017-07-01

    Full Text Available Pancreatic cancer remains an intractable cancer with a poor five-year survival rate, which requires new therapeutic modalities based on the biology of pancreatic oncogenesis. Nuclear factor E2 related factor-2 (NRF2, a key cytoprotective nuclear transcription factor, regulates antioxidant production, reduction, detoxification and drug efflux proteins. It also plays an essential role in cell homeostasis, cell proliferation and resistance to chemotherapy. We aimed to evaluate the possibility that modulation of NRF2 expression could be effective in the treatment of pancreatic cancer cells. We investigated whether the depletion of NRF2 by using small interfering RNAs (siRNAs is effective in the expression of biomarkers of pancreatic cancer stemness such as aldehyde dehydrogenase 1 family, member A1 (ALDH1A1 and aldehyde dehydrogenase 3 family, member A1 (ALDH3A1. NRF2 knockdown markedly reduced the expression of NRF2 and glutamate-cysteine ligase catalytic subunit (GCLC in cell lines established from pancreatic cancers. NRF2 silencing also decreased the ALDH1A1 and ALDH3A1 expression. Furthermore, this NRF2 depletion enhanced the antiproliferative effects of the chemotherapeutic agent, 5-fluorouracil (5-FU in pancreatic cancer cells.

  13. Facial Expression Recognition for Traumatic Brain Injured Patients

    DEFF Research Database (Denmark)

    Ilyas, Chaudhary Muhammad Aqdus; Nasrollahi, Kamal; Moeslund, Thomas B.

    2018-01-01

    In this paper, we investigate the issues associated with facial expression recognition of Traumatic Brain Insured (TBI) patients in a realistic scenario. These patients have restricted or limited muscle movements with reduced facial expressions along with non-cooperative behavior, impaired reason...

  14. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  15. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Sun, Wenxing [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Public Health, Nantong University, Nantong 226019 (China); Gao, Ying [College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Lifan [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Chen, Jie, E-mail: jiechen@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. - Highlights: • C2C12 myotubes inhibited proliferation and differentiation of 3T3-L1 preadipocytes. • C2C12 myotubes arrested cell cycle of 3T3-L1 preadipocytes. • C2C12 myotubes induced apoptosis of 3T3-L1 preadipocytes. • C2C12 inhibit 3T3-L1 cells by reducing the expression of glucocorticoid receptor gene.

  16. Reduced expression of APC-1B but not APC-1A by the deletion of promoter 1B is responsible for familial adenomatous polyposis.

    Science.gov (United States)

    Yamaguchi, Kiyoshi; Nagayama, Satoshi; Shimizu, Eigo; Komura, Mitsuhiro; Yamaguchi, Rui; Shibuya, Tetsuo; Arai, Masami; Hatakeyama, Seira; Ikenoue, Tsuneo; Ueno, Masashi; Miyano, Satoru; Imoto, Seiya; Furukawa, Yoichi

    2016-05-24

    Germline mutations in the tumor suppressor gene APC are associated with familial adenomatous polyposis (FAP). Here we applied whole-genome sequencing (WGS) to the DNA of a sporadic FAP patient in which we did not find any pathological APC mutations by direct sequencing. WGS identified a promoter deletion of approximately 10 kb encompassing promoter 1B and exon1B of APC. Additional allele-specific expression analysis by deep cDNA sequencing revealed that the deletion reduced the expression of the mutated APC allele to as low as 11.2% in the total APC transcripts, suggesting that the residual mutant transcripts were driven by other promoter(s). Furthermore, cap analysis of gene expression (CAGE) demonstrated that the deleted promoter 1B region is responsible for the great majority of APC transcription in many tissues except the brain. The deletion decreased the transcripts of APC-1B to 39-45% in the patient compared to the healthy controls, but it did not decrease those of APC-1A. Different deletions including promoter 1B have been reported in FAP patients. Taken together, our results strengthen the evidence that analysis of structural variations in promoter 1B should be considered for the FAP patients whose pathological mutations are not identified by conventional direct sequencing.

  17. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    Science.gov (United States)

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  18. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    International Nuclear Information System (INIS)

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-01-01

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  19. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Ren, Pingping; Zhang, Lin [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Wang, Xing Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Chen, Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Shen, Ying H., E-mail: hyshen@bcm.edu [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States)

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  20. Amlodipine reduces the antimigratory effect of diclofenac in spontaneously hypertensive rats.

    Science.gov (United States)

    Rodrigues, Stephen Fernandes; Dossantos, Rosangela Aparecida; de Oliveira, Maria Aparecida; Rastelli, Viviani Milan; Nucci, Gilberto de; Tostes, Rita de Cássia; Nigro, Dorothy; Carvalho, Maria Helena; Fortes, Zuleica B

    2008-05-01

    Amlodipine, an antihypertensive drug, and diclofenac, an antiinflammatory drug, may generally be combined, particularly in elderly patients; therefore, the potential for their interaction is high. We aim to determine if amlodipine interferes with the antimigratory effect of diclofenac. For this, male spontaneously hypertensive rats (SHRs) were treated with either diclofenac (1 mg.kg.d, 15 d) alone or combined with amlodipine (10 mg.kg.d, 15 d). Leukocyte rolling, adherence, and migration were studied by intravital microscopy. Diclofenac did not change (180.0 +/- 2.3), whereas amlodipine combined (163.4 +/- 5.1) or not (156.3 +/- 4.3) with diclofenac reduced the blood pressure (BP) levels in SHR (183.1 +/- 4.4). Diclofenac and amlodipine reduced leukocyte adherence, migration, and ICAM-1 expression, whereas only diclofenac reduced rolling leukocytes as well. Combined with amlodipine, the effect of the diclofenac was reduced. Neither treatment tested increased the venular shear rate or modified the venular diameters, number of circulating leukocytes, P-selectin, PECAM-1, L-selectin, or CD-18 expressions. No difference could be found in plasma concentrations of both drugs given alone or in association. In conclusion, amlodipine reduces leukocyte migration in SHR, reducing endothelial cell ICAM-1 expression. Amlodipine reduces the effect of the diclofenac, possibly by the same mechanism. A pharmacokinetic interaction as well as an effect on the other adhesion molecules tested could be discarded.

  1. Bacterial lipoprotein-induced self-tolerance and cross-tolerance to LPS are associated with reduced IRAK-1 expression and MyD88-IRAK complex formation.

    LENUS (Irish Health Repository)

    Li, Chong Hui

    2012-02-03

    Tolerance to bacterial cell-wall components may represent an essential regulatory mechanism during bacterial infection. We have demonstrated previously that the inhibition of nuclear factor (NF)-kappaB and mitogen-activated protein kinase activation was present in bacterial lipoprotein (BLP) self-tolerance and its cross-tolerance to lipopolysaccharide (LPS). In this study, the effect of BLP-induced tolerance on the myeloid differentiation factor 88 (MyD88)-dependent upstream signaling pathway for NF-kappaB activation in vitro was examined further. When compared with nontolerant human monocytic THP-1 cells, BLP-tolerant cells had a significant reduction in tumor necrosis factor alpha (TNF-alpha) production in response to a high-dose BLP (86+\\/-12 vs. 6042+\\/-245 ng\\/ml, P < 0.01) or LPS (341+\\/-36 vs. 7882+\\/-318 ng\\/ml, P < 0.01) stimulation. The expression of Toll-like receptor 2 (TLR2) protein was down-regulated in BLP-tolerant cells, whereas no significant differences in TLR4, MyD88, interleukin-1 receptor-associated kinase 4 (IRAK-4), and TNF receptor-associated factor 6 expression were observed between nontolerant and BLP-tolerant cells, as confirmed by Western blot analysis. The IRAK-1 protein was reduced markedly in BLP-tolerant cells, although IRAK-1 mRNA expression remained unchanged as revealed by real-time reverse transcriptase-polymerase chain reaction analysis. Furthermore, decreased MyD88-IRAK immunocomplex formation, as demonstrated by immunoprecipitation, was observed in BLP-tolerant cells following a second BLP or LPS stimulation. BLP pretreatment also resulted in a marked inhibition in total and phosphorylated inhibitor of kappaB-alpha (IkappaB-alpha) expression, which was not up-regulated by subsequent BLP or LPS stimulation. These results demonstrate that in addition to the down-regulation of TLR2 expression, BLP tolerance is associated with a reduction in IRAK-1 expression, MyD88-IRAK association, and IkappaB-alpha phosphorylation. These

  2. Reduced Expression of HLA-DR on Monocytes During Severe Respiratory Syncytial Virus Infections

    NARCIS (Netherlands)

    Ahout, I.M.L.; Jans, J.; Haroutiounian, L.; Simonetti, E.R.; Gaast-de Jongh, C.E. van der; Diavatopoulos, D.A.; Jonge, M.I. de; Groot, R. de; Ferwerda, G.

    2016-01-01

    BACKGROUND: Respiratory syncytial virus (RSV) is a common cause of bronchiolitis in infants with a wide spectrum of disease severity. Besides environmental and genetic factors, it is thought that the innate immune system plays a pivotal role. The aim of this study was to investigate the expression

  3. Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Thais T Zampieri

    Full Text Available Leucine activates the intracellular mammalian target of the rapamycin (mTOR pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity.

  4. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    International Nuclear Information System (INIS)

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-01-01

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  5. Expression of modified tocopherol content and profile in sunflower tissues.

    Science.gov (United States)

    Del Moral, Lidia; Fernández-Martínez, José M; Pérez-Vich, Begoña; Velasco, Leonardo

    2012-01-30

    Alpha-tocopherol is the predominant tocopherol form in sunflower seeds. Sunflower lines that accumulate increased levels of beta-, gamma- and delta-tocopherol in seeds as well as lines with reduced and increased total seed tocopherol content have been developed. The objective of this research was to evaluate whether the modified tocopherol levels are expressed in plant tissues other than seeds. Lines with increased levels of beta-, gamma- and delta-tocopherol in seeds also possessed increased levels of these tocopherols in leaves, roots and pollen. Correlation coefficients for the proportion of individual tocopherols in different plant tissues were significantly positive in all cases, ranging from 0.68 to 0.97. A line with reduced tocopherol content in seeds also showed reduced content in roots and pollen. Genetic modifications producing altered seed tocopherol profiles in sunflower are also expressed in leaves, roots and pollen. Reduced total seed tocopherol content is mainly expressed at the root and pollen level. The expression of tocopherol mutations in other plant tissues will enable further studies on the physiological role of tocopherols and could be of interest for early selection for these traits in breeding programmes. Copyright © 2011 Society of Chemical Industry.

  6. Maternal Pre-Gravid Obesity Changes Gene Expression Profiles Towards Greater Inflammation and Reduced Insulin Sensitivity in Umbilical Cord

    Science.gov (United States)

    Thakali, Keshari M.; Saben, Jessica; Faske, Jennifer B.; Lindsey, Forrest; Gomez-Acevedo, Horacio; Lowery, Curtis L.; Badger, Thomas M.; Andres, Aline; Shankar, Kartik

    2014-01-01

    Background Maternal obesity is associated with unfavorable outcomes, which may be reflected in the as yet undiscovered gene expression profiles of the umbilical cord (UC). Methods UCs from 12 lean (pre-gravid BMI obese (OW/OB, pre-gravid BMI ≥25) women without gestational diabetes were collected for gene expression analysis using Human Primeview microarrays (Affymetrix). Metabolic parameters were assayed in mother’s plasma and cord blood. Results Although offspring birth weight and adiposity (at 2-wk) did not differ between groups, expression of 232 transcripts was affected in UC from OW/OB compared to those of lean mothers. GSEA analysis revealed an up-regulation of genes related to metabolism, stimulus and defense response and inhibitory to insulin signaling in the OW/OB group. We confirmed that EGR1, periostin, and FOSB mRNA expression was induced in UCs from OW/OB moms, while endothelin receptor B, KFL10, PEG3 and EGLN3 expression was decreased. Messenger RNA expression of EGR1, FOSB, MEST and SOCS1 were positively correlated (pmaternal obesity and changes in UC gene expression profiles favoring inflammation and insulin resistance, potentially predisposing infants to develop metabolic dysfunction later on in life. PMID:24819376

  7. Edaravone inhibits pressure overload-induced cardiac fibrosis and dysfunction by reducing expression of angiotensin II AT1 receptor

    Directory of Open Access Journals (Sweden)

    Zhang WW

    2017-10-01

    Full Text Available Wei-Wei Zhang,1,2 Feng Bai,1 Jin Wang,1 Rong-Hua Zheng,1 Li-Wang Yang,1 Erskine A James,3 Zhi-Qing Zhao1,4 1Department of Physiology, Shanxi Medical University, 2Department of Anesthesiology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China; 3Department of Internal Medicine, Navicent Health, Macon, 4Department of Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA Abstract: Angiotensin II (Ang II is known to be involved in the progression of ventricular dysfunction and heart failure by eliciting cardiac fibrosis. The purpose of this study was to demonstrate whether treatment with an antioxidant compound, edaravone, reduces cardiac fibrosis and improves ventricular function by inhibiting Ang II AT1 receptor. The study was conducted in a rat model of transverse aortic constriction (TAC. In control, rats were subjected to 8 weeks of TAC. In treated rats, edaravone (10 mg/kg/day or Ang II AT1 receptor blocker, telmisartan (10 mg/kg/day was administered by intraperitoneal injection or gastric gavage, respectively, during TAC. Relative to the animals with TAC, edaravone reduced myocardial malonaldehyde level and increased superoxide dismutase activity. Protein level of the AT1 receptor was reduced and the AT2 receptor was upregulated, as evidenced by the reduced ratio of AT1 over AT2 receptor (0.57±0.2 vs 3.16±0.39, p<0.05 and less locally expressed AT1 receptor in the myocardium. Furthermore, the protein level of angiotensin converting enzyme 2 was upregulated. In coincidence with these changes, edaravone significantly decreased the populations of macrophages and myofibroblasts in the myocardium, which were accompanied by reduced levels of transforming growth factor beta 1 and Smad2/3. Collagen I synthesis was inhibited and collagen-rich fibrosis was attenuated. Relative to the TAC group, cardiac systolic function was preserved, as shown by increased left ventricular systolic pressure (204±51 vs 110±19

  8. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma.

    Science.gov (United States)

    Rodriguez-Perez, N; Schiavi, E; Frei, R; Ferstl, R; Wawrzyniak, P; Smolinska, S; Sokolowska, M; Sievi, N A; Kohler, M; Schmid-Grendelmeier, P; Michalovich, D; Simpson, K D; Hessel, E M; Jutel, M; Martin-Fontecha, M; Palomares, O; Akdis, C A; O'Mahony, L

    2017-11-01

    Fatty acids and lipid mediator signaling play an important role in the pathogenesis of asthma, yet this area remains largely underexplored. The aims of this study were (i) to examine fatty acid levels and their metabolism in obese and nonobese asthma patients and (ii) to determine the functional effects of altered fatty acid metabolism in experimental models. Medium- and long-chain fatty acid levels were quantified in serum from 161 human volunteers by LC/MS. Changes in stearoyl-coenzyme A desaturase (SCD) expression and activity were evaluated in the ovalbumin (OVA) and house dust mite (HDM) murine models. Primary human bronchial epithelial cells from asthma patients and controls were evaluated for SCD expression and activity. The serum desaturation index (an indirect measure of SCD) was significantly reduced in nonobese asthma patients and in the OVA murine model. SCD1 gene expression was significantly reduced within the lungs following OVA or HDM challenge. Inhibition of SCD in mice promoted airway hyper-responsiveness. SCD1 expression was suppressed in bronchial epithelial cells from asthma patients. IL-4 and IL-13 reduced epithelial cell SCD1 expression. Inhibition of SCD reduced surfactant protein C expression and suppressed rhinovirus-induced IP-10 secretion, which was associated with increased viral titers. This is the first study to demonstrate decreased fatty acid desaturase activity in humans with asthma. Experimental models in mice and human epithelial cells suggest that inhibition of desaturase activity leads to airway hyper-responsiveness and reduced antiviral defense. SCD may represent a new target for therapeutic intervention in asthma patients. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  9. [Expression analysis of a transformer gene in Daphnia pulex after RNAi].

    Science.gov (United States)

    Guo, C Y; Chen, P; Zhang, M M; Ning, J J; Wang, С L; Wang, D L; Zhao, Y L

    2016-01-01

    In order to explore the importance of the transformer (tra) gene in reproductive mode switching in Daphnia pulex, we studied the effect of silencing of this gene using RNA interference (RNAi). We obtained Dptra dsRNA by constructing and using a dsRNA expression vector and transcription method in vitro. D. pulex individuals in different reproductive modes were treated by soaking in a solution of Dptra dsRNA. We then assayed the expression of the endogenous Dptra mRNA after RNAi treatment using RT-PCR and obtained the suppression ratio. Expression of the tra gene in the RNAi groups was down-regulated compared with the controls after 16 h (p < 0.05). We also analyzed the effect of RNAi on the expression of the TRA protein using Western blot, which showed that the expression level of the TRA protein was reduced after RNAi treatment. Our experimental results showed that soaking of D. pulex adults in tra-specific dsRNA transcribed in vitro can specifically reduce the level of tra mRNA and also reduce the expression of the TRA protein, demonstrating effective in vivo silencing of the tra gene.

  10. Combination of Medicinal Herbs KIOM-79 Reduces Advanced Glycation End Product Accumulation and the Expression of Inflammatory Factors in the Aorta of Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Eunjin Sohn

    2011-01-01

    Full Text Available Previous studies have reported that KIOM-79 shows a strong inhibitory effect on AGE formation and inhibited a proinflammatory state in a murine macrophage cell line. In the present study, we investigated the effect of KIOM-79 on AGE accumulation and vascular inflammation in the aorta of Zucker diabetic fatty (ZDF rats, a commonly used model of type 2 diabetes. Seven-week-old male ZDF rats were treated with KIOM-79 (50 mg/kg once a day orally for 13 weeks. We examined the dissected aortas for AGE accumulation, expression of the receptor for AGEs (RAGE, and the expression of proinflammatory factors, including monocyte chemoattractant protein-1 (MCP-1, vascular endothelial growth factor (VEGF, and vascular adhesion molecule-1 (VCAM-1. Nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were also measured by Southwestern histochemistry, electrophoretic mobility shift assay (EMSA, and immunohistochemistry, respectively. KIOM-79 markedly reduced the accumulation of AGEs and the expression of RAGE in the aorta. We also found that KIOM-79 attenuated the expression of inflammatory factors including NF-κB, MCP-1, VEGF, VCAM-1, and iNOS in the aortas of ZDF rats. These data suggest that KIOM-79 may prevent or retard the development of inflammation in diabetic vascular disease.

  11. Novel Omega-3 Fatty Acid Epoxygenase Metabolite Reduces Kidney Fibrosis

    Science.gov (United States)

    Sharma, Amit; Khan, Md. Abdul Hye; Levick, Scott P.; Lee, Kin Sing Stephen; Hammock, Bruce D.; Imig, John D.

    2016-01-01

    Cytochrome P450 (CYP) monooxygenases epoxidize the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid into novel epoxydocosapentaenoic acids (EDPs) that have multiple biological actions. The present study determined the ability of the most abundant EDP regioisomer, 19,20-EDP to reduce kidney injury in an experimental unilateral ureteral obstruction (UUO) renal fibrosis mouse model. Mice with UUO developed kidney tubular injury and interstitial fibrosis. UUO mice had elevated kidney hydroxyproline content and five-times greater collagen positive fibrotic area than sham control mice. 19,20-EDP treatment to UUO mice for 10 days reduced renal fibrosis with a 40%–50% reduction in collagen positive area and hydroxyproline content. There was a six-fold increase in kidney α-smooth muscle actin (α-SMA) positive area in UUO mice compared to sham control mice, and 19,20-EDP treatment to UUO mice decreased α-SMA immunopositive area by 60%. UUO mice demonstrated renal epithelial-to-mesenchymal transition (EMT) with reduced expression of the epithelial marker E-cadherin and elevated expression of multiple mesenchymal markers (FSP-1, α-SMA, and desmin). Interestingly, 19,20-EDP treatment reduced renal EMT in UUO by decreasing mesenchymal and increasing epithelial marker expression. Overall, we demonstrate that a novel omega-3 fatty acid metabolite 19,20-EDP, prevents UUO-induced renal fibrosis in mice by reducing renal EMT. PMID:27213332

  12. Developmental retardation, reduced fecundity, and modulated expression of the defensome in the intertidal copepod Tigriopus japonicus exposed to BDE-47 and PFOS

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeonghoon; Won, Eun-Ji; Lee, Min-Chul [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Seo, Jung Soo [Pathology Team, National Fisheries Research & Development Institute, Busan 619-902 (Korea, Republic of); Lee, Su-Jae [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-08-15

    Highlights: • The repercussions of BDE-47 and PFOS were occurred on development and fecundity. • BDE-47 and PFOS can induce oxidative stress through the generation of ROS. • The expression of defensome was changed in response to BDE-47 and PFOS. • ROS-induced DNA damage in BDE-47 and PFOS exposure lead to apoptosis and DNA repair. - Abstract: 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and perfluorooctane sulfonate (PFOS) are widely dispersed persistent organic pollutants (POPs) in the marine ecosystem. However, their toxic effects on marine organisms are still poorly understood. In this study, we investigated the effects of BDE-47 and PFOS on development and reproduction at the organismal level and reactive oxygen species (ROS) production and gene expression patterns of the defensome at the cellular level in the intertidal copepod Tigriopus japonicus. In copepods exposed to BDE-47 and PFOS, we observed developmental retardation and reduced fecundity, suggesting repercussions on in vivo endpoints through alterations to the normal molting and reproduction system of T. japonicus. BDE-47 and PFOS increased levels of ROS in T. japonicus in a concentration-dependent manner, indicating that POPs can induce oxidative stress through the generation of ROS. Additionally, transcript profiles of genes related to detoxification (e.g., CYPs), antioxidant functions (e.g., GST- sigma, catalase, MnSOD), apoptosis (e.g., p53, Rb), and cellular proliferation (e.g., PCNA) were modulated over 72 h in response to BDE-47 (120 μg/L) and PFOS (1000 μg/L). These findings indicate that BDE-47 and PFOS can induce oxidative stress-mediated DNA damage repair systems with transcriptional regulation of detoxification, antioxidant, and apoptosis-related genes, resulting in developmental retardation and reduced fecundity in the copepod T. japonicus.

  13. Developmental retardation, reduced fecundity, and modulated expression of the defensome in the intertidal copepod Tigriopus japonicus exposed to BDE-47 and PFOS

    International Nuclear Information System (INIS)

    Han, Jeonghoon; Won, Eun-Ji; Lee, Min-Chul; Seo, Jung Soo; Lee, Su-Jae; Lee, Jae-Seong

    2015-01-01

    Highlights: • The repercussions of BDE-47 and PFOS were occurred on development and fecundity. • BDE-47 and PFOS can induce oxidative stress through the generation of ROS. • The expression of defensome was changed in response to BDE-47 and PFOS. • ROS-induced DNA damage in BDE-47 and PFOS exposure lead to apoptosis and DNA repair. - Abstract: 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and perfluorooctane sulfonate (PFOS) are widely dispersed persistent organic pollutants (POPs) in the marine ecosystem. However, their toxic effects on marine organisms are still poorly understood. In this study, we investigated the effects of BDE-47 and PFOS on development and reproduction at the organismal level and reactive oxygen species (ROS) production and gene expression patterns of the defensome at the cellular level in the intertidal copepod Tigriopus japonicus. In copepods exposed to BDE-47 and PFOS, we observed developmental retardation and reduced fecundity, suggesting repercussions on in vivo endpoints through alterations to the normal molting and reproduction system of T. japonicus. BDE-47 and PFOS increased levels of ROS in T. japonicus in a concentration-dependent manner, indicating that POPs can induce oxidative stress through the generation of ROS. Additionally, transcript profiles of genes related to detoxification (e.g., CYPs), antioxidant functions (e.g., GST- sigma, catalase, MnSOD), apoptosis (e.g., p53, Rb), and cellular proliferation (e.g., PCNA) were modulated over 72 h in response to BDE-47 (120 μg/L) and PFOS (1000 μg/L). These findings indicate that BDE-47 and PFOS can induce oxidative stress-mediated DNA damage repair systems with transcriptional regulation of detoxification, antioxidant, and apoptosis-related genes, resulting in developmental retardation and reduced fecundity in the copepod T. japonicus

  14. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice.

    Science.gov (United States)

    Vincent, Jessica; Adura, Carolina; Gao, Pu; Luz, Antonio; Lama, Lodoe; Asano, Yasutomi; Okamoto, Rei; Imaeda, Toshihiro; Aida, Jumpei; Rothamel, Katherine; Gogakos, Tasos; Steinberg, Joshua; Reasoner, Seth; Aso, Kazuyoshi; Tuschl, Thomas; Patel, Dinshaw J; Glickman, J Fraser; Ascano, Manuel

    2017-09-29

    Cyclic GMP-AMP synthase is essential for innate immunity against infection and cellular damage, serving as a sensor of DNA from pathogens or mislocalized self-DNA. Upon binding double-stranded DNA, cyclic GMP-AMP synthase synthesizes a cyclic dinucleotide that initiates an inflammatory cellular response. Mouse studies that recapitulate causative mutations in the autoimmune disease Aicardi-Goutières syndrome demonstrate that ablating the cyclic GMP-AMP synthase gene abolishes the deleterious phenotype. Here, we report the discovery of a class of cyclic GMP-AMP synthase inhibitors identified by a high-throughput screen. These compounds possess defined structure-activity relationships and we present crystal structures of cyclic GMP-AMP synthase, double-stranded DNA, and inhibitors within the enzymatic active site. We find that a chemically improved member, RU.521, is active and selective in cellular assays of cyclic GMP-AMP synthase-mediated signaling and reduces constitutive expression of interferon in macrophages from a mouse model of Aicardi-Goutières syndrome. RU.521 will be useful toward understanding the biological roles of cyclic GMP-AMP synthase and can serve as a molecular scaffold for development of future autoimmune therapies.Upon DNA binding cyclic GMP-AMP synthase (cGAS) produces a cyclic dinucleotide, which leads to the upregulation of inflammatory genes. Here the authors develop small molecule cGAS inhibitors, functionally characterize them and present the inhibitor and DNA bound cGAS crystal structures, which will facilitate drug development.

  15. Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity.

    Science.gov (United States)

    Sanikhani, Mohsen; Mibus, Heiko; Stummann, Bjarne M; Serek, Margrethe

    2008-04-01

    Transgenic Kalanchoe blossfeldiana Poelln. with reduced ethylene sensitivity in flowers was obtained by Agrobacterium tumefaciens-mediated transformation using the plasmid pBEO210 containing the mutant ethylene receptor gene etr1-1 from Arabidopsis thaliana under the control of the flower-specific fbp1-promoter from Petunia. Three ethylene-resistent T0 lines, 300, 324 and 331, were selected and analyzed for postharvest-performance and morphological characteristics. Line 324 was found to be infertile and only slightly less ethylene-sensitive than control-plants, but lines 300 and 331 had significantly increased ethylene-resistance and were fertile. These two lines were analyzed for copy-number of the etr1-1 gene by Southern blotting and were crossed with the ethylene-sensitive cultivar 'Celine' to create T1 progeny. Line 300 contains two T-DNA copies per nucleus, one of which is rearranged, and these are unlinked according to segregation data from the crossing to 'Celine' and PCR-analysis of progeny plants. For control plants all flowers were closed after 2 days at 2 microl l(-1 )ethylene, but for line 300 only 33% were closed after 10 days. Line 331 contains three T-DNA copies per nucleus and is more sensitive to ethylene than line 300. In the line 300 the etr1-1 gene was found by RT-PCR to be expressed in petals and stamens but not in carpels and sepals. Both lines 300 and 331, and their progeny, appear morphologically and physiologically identical to control plants except for the higher ethylene resistance. Line 300 and its progeny with only one T-DNA copy have very low ethylene sensitivity and may be useful in future breeding.

  16. Cationic star-shaped polymer as an siRNA carrier for reducing MMP-9 expression in skin fibroblast cells and promoting wound healing in diabetic rats

    Directory of Open Access Journals (Sweden)

    Li N

    2014-07-01

    Full Text Available Na Li,1,* Heng-Cong Luo,1,* Chuan Yang,1 Jun-Jie Deng,2 Meng Ren,1 Xiao-Ying Xie,1 Diao-Zhu Lin,1 Li Yan,1 Li-Ming Zhang2 1Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China; 2DSAPM Lab and PCFM Lab, Institute of Polymer Science, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Background: Excessive expression of matrix metalloproteinase-9 (MMP-9 is deleterious to the cutaneous wound-healing process in the context of diabetes. The aim of the present study was to explore whether a cationic star-shaped polymer consisting of ß-cyclodextrin (ß-CD core and poly(amidoamine dendron arms (ß-CD-[D3]7 could be used as the gene carrier of small interfering RNA (siRNA to reduce MMP-9 expression for enhanced diabetic wound healing. Methods: The cytotoxicity of ß-CD-(D37 was investigated by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay (MMT method in the rat CRL1213 skin fibroblast cell line. The transfection efficiency of ß-CD-(D37/MMP-9-small interfering RNA (siRNA complexes was determined by confocal microscopy and flow cytometry. Quantitative real time (RT polymerase chain reaction was performed to measure the gene expression of MMP-9 after the transfection by ß-CD-(D37/MMP-9-siRNA complexes. The ß-CD-(D37/MMP-9-siRNA complexes were injected on the wounds of streptozocin-induced diabetic rats. Wound closure was measured on days 4 and 7 post-wounding. Results: ß-CD-(D37 exhibited low cytotoxicity in fibroblast cells, and easily formed the complexes with MMP-9-siRNA. The ß-CD-(D37/MMP-9-siRNA complexes were readily taken up by fibroblast cells, resulting in the downregulation of MMP-9 gene expression (P<0.01. Animal experiments revealed that the treatment by ß-CD-(D37/MMP-9-siRNA complexes enhanced wound

  17. Short communication: Acute but transient increase in serum insulin reduces messenger RNA expression of hepatic enzymes associated with progesterone catabolism in dairy cows.

    Science.gov (United States)

    Vieira, F V R; Cooke, R F; Aboin, A C; Lima, P; Vasconcelos, J L M

    2013-02-01

    The objective of this experiment was to evaluate the effects of glucose infusion on serum concentrations of glucose, insulin, and progesterone (P4), as well as mRNA expression of hepatic CYP2C19 and CYP3A4 in nonlactating, ovariectomized cows in adequate nutritional status. Eight Gir × Holstein cows were maintained on a low-quality Brachiaria brizantha pasture with reduced forage availability, but they individually received, on average, 3 kg/cow daily (as fed) of a corn-based concentrate from d -28 to 0 of the experiment. All cows had an intravaginal P4-releasing device inserted on d -14, which remained in cows until the end of the experiment (d 1). On d 0, cows were randomly assigned to receive, in a crossover design containing 2 periods of 24h each (d 0 and 1), (1) an intravenous glucose infusion (GLUC; 0.5 g of glucose/kg of BW, over a 3-h period) or (2) an intravenous saline infusion (SAL; 0.9%, over a 3-h period). Cows were fasted for 12h before infusions, and they remained fasted during infusion and sample collections. Blood samples were collected at 0, 3, and 6h relative to the beginning of infusions. Liver biopsies were performed concurrently with blood collections at 0 and 3h. After the last blood collection of period 1, cows received concentrate and returned to pasture. Cows gained BW (16.5 ± 3.6 kg) and BCS (0.08 ± 0.06) from d -28 to 0. Cows receiving GLUC had greater serum glucose and insulin concentrations at 3h compared with SAL cohorts. No treatment effects were detected for serum P4 concentrations, although mRNA expression of CYP2C19 and CYP3A4 after the infusion period was reduced for cows in the GLUC treatment compared with their cohorts in the SAL treatment. In conclusion, hepatic CYP3A4 and CYP2C19 mRNA expression can be promptly modulated by glucose infusion followed by acute increases in circulating insulin, which provides novel insight into the physiological mechanisms associating nutrition and reproductive function in dairy cows

  18. Mechanical unloading reduces microtubule actin crosslinking factor 1 expression to inhibit β-catenin signaling and osteoblast proliferation.

    Science.gov (United States)

    Yin, Chong; Zhang, Yan; Hu, Lifang; Tian, Ye; Chen, Zhihao; Li, Dijie; Zhao, Fan; Su, Peihong; Ma, Xiaoli; Zhang, Ge; Miao, Zhiping; Wang, Liping; Qian, Airong; Xian, Cory J

    2018-07-01

    Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance β-catenin expression and activity, and mechanical unloading decreased β-catenin expression through MACF1. Moreover, β-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing β-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation. © 2017 Wiley Periodicals, Inc.

  19. Everolimus immunosuppression reduces the serum expression of fibrosis markers in liver transplant recipients.

    Science.gov (United States)

    Fernández-Yunquera, Ainhoa; Ripoll, Cristina; Bañares, Rafael; Puerto, Marta; Rincón, Diego; Yepes, Ismael; Catalina, Vega; Salcedo, Magdalena

    2014-06-24

    To evaluate the expression of serum fibrosis markers in liver transplantation (LT) recipients on everolimus monotherapy compared to patients on an anti-calcineurin regimen. This cross-sectional case-control study included LT patients on everolimus monotherapy (cases) (E) (n = 30) and matched controls on an anti-calcineurin regimen (calcineurin inhibitors, CNI), paired by etiology of liver disease and time since LT (n = 30). Clinical characteristics, blood tests and elastography were collected. Serum levels of transforming growth factor-β (TGF-β), angiopoietin-1, tumor necrosis factor (TNF), platelet derived growth factor, amino-terminal propeptide of type III procollagen (PIIINP), hyaluronic acid (HA), VCM-1 (ng/mL), interleukin (IL)-10, interferon-inducible protein 10 (IP-10), vascular endothelial growth factor and hepatocyte growth factor (HGF) (pg/mL) were determined by enzyme-linked immunosorbent assay. Expression of these markers between E and CNI was compared. Stratified analysis was done according to factors that may influence liver fibrosis. Variables are described with medians (interquartillic range) or percentages. A total of 60 patients [age: 59 (49-64), hepatitis C virus (HCV): n = 21 (35%), time from LT: 73 mo (16-105)] were included. Patients had been on everolimus for a median of 15 mo. No differences in inflammatory activity, APRI test or liver elastography were found between the groups. No significant differences were observed between the groups in serum levels of PIIINP, metalloproteinase type = 1, angiopoietin, HGF, IP-10, TNF-α, IL-10 and vascular cell adhesion molecule. Patients on E had a lower expression of TGF-β [E: 12.7 (3.7-133.6), CNI: 152.5 (14.4-333.2), P = 0.009] and HA [E: 702.89 (329.4-838.2), CNI: 1513.6 (691.9-1951.4), P = 0.001] than those on CNI. This difference was maintained in the stratified analysis when recipient age is more than 50 years (TFG-β1: P = 0.06; HA: P = 0.005), in patients without active neoplasia (TFG-β1

  20. Comparison of gene expression patterns between porcine cumulus ...

    African Journals Online (AJOL)

    These results suggest that the aberrant of gene expression patterns detected in the oocytes of NOs compared with COCs explains their reduced quality in terms of development and maturation. In conclusion, these differentially expressed mRNAs may be involved in cellular interactions between oocytes and cumulus cells ...

  1. Reduced TCA Flux in Diabetic Myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. Diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux but at present it is unclear in which part of the TCA cycle the defect is localised. In order to localise the defect we studied ATP p...... production of investigated substrate combinations was significantly reduced in mitochondria isolated from type 2 diabetic subjects compared to lean. However, when ATP synthesis rates at different substrate combinations were normalized to the corresponding individual pyruvate-malate rate...

  2. Reduced expression of circRNA hsa_circ_0003159 in gastric cancer and its clinical significance.

    Science.gov (United States)

    Tian, Mengqian; Chen, Ruoyu; Li, Tianwen; Xiao, Bingxiu

    2018-03-01

    Circular RNAs (circRNAs) play a crucial role in the occurrence of several diseases including cancers. However, little is known about circRNAs' diagnostic values for gastric cancer, one of the worldwide most common diseases of mortality. The hsa_circ_0003159 levels in 108 paired gastric cancer tissues and adjacent non-tumorous tissues from surgical patients with gastric cancer were first detected by real-time quantitative reverse transcription-polymerase chain reaction. Then, the relationships between hsa_circ_0003159 expression levels in gastric cancer tissues and the clinicopathological factors of patients with gastric cancer were analyzed. Finally, its diagnostic value was evaluated through the receiver operating characteristic curve. Compared with paired adjacent non-tumorous tissues, hsa_circ_0003159 expression was significantly down-regulated in gastric cancer tissues. What is more, we found that hsa_circ_0003159 expression levels were significantly negatively associated with gender, distal metastasis, and tumor-node-metastasis stage. All of the results suggest that hsa_circ_0003159 may be a potential cancer marker of patients with gastric cancer. © 2017 Wiley Periodicals, Inc.

  3. Reduced frequency of T lymphocytes expressing CTLA-4 in frontotemporal dementia compared to Alzheimer's disease.

    Science.gov (United States)

    Santos, Rodrigo Ribeiro; Torres, Karen C; Lima, Giselle S; Fiamoncini, Carolina M; Mapa, Filipe C; Pereira, Patricia A; Rezende, Vitor B; Martins, Luiza C; Bicalho, Maria A; Moraes, Edgar N; Reis, Helton J; Teixeira, Antonio L; Romano-Silva, Marco A

    2014-01-03

    Studies suggest that inflammation is involved in the neurodegenerative cascade of dementias. Immunological mechanisms may be part of the pathophysiological process in frontotemporal dementia (FTD), but up till now only vague evidence of such mechanisms has been presented. The B7- CD28/CTLA-4 pathway is an important immunological signaling pathway involved in modulation of T cell activation. The aim of this study was to compare the expression of molecules associated with co-stimulatory signaling in peripheral blood mononuclear cells (PBMC) of FTD to Alzheimer disease (AD) and control groups. Our results confirm the previous demonstrated increased expression of CD80 in CD14+ Alzheimer patients T cells but show, for the first time, a reduction in the expression of CTLA-4 in CD4+ FTD cells. As CTLA-4 is the most potent negative regulators of T-cell activation we speculated that peripheral T lymphocytes in FTD are more activated and this could be involved in the neurodegeneration observed in this dementia. © 2013 Elsevier Inc. All rights reserved.

  4. Reduced dental calcium expression and dental mass in chronic sleep deprived rats: Combined EDS, TOF-SIMS, and micro-CT analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Yi-Jie [Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Huang, Yung-Kai [School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Chou, Hsiu-Chu; Pai, Man-Hui; Lee, Ai-Wei [Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Mai, Fu-Der [Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Chang, Hung-Ming, E-mail: taiwanzoo@gmail.com [Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-08-01

    Highlights: • The growth of teeth is closely regulated by the circadian rhythmicity. • Sleep deprivation significantly disrupts the circadian regulation. • Sleep deprivation reduces the dental calcium level and impairs dental intensity. • This study highlights for the first time that sleep is essential for dental structure. • Establishing satisfactory sleep behavior may be a helpful strategy to prevent dental disability. - Abstract: Teeth are the hardest tissue in the body. The growth of teeth is closely regulated by circadian rhythmicity. Considering that sleep deprivation (SD) is a severe condition that disrupts normal circadian rhythmicity, this study was conducted to determine whether calcium expression (the major element participating in teeth constitution), and dental mass would be significantly impaired following SD. Adolescent rats subjected to 3 weeks of SD were processed for energy dispersive spectrum (EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and micro-computed tomography (micro-CT) analyses. The EDS and TOF-SIMS results indicated that high calcium intensity was detected in both the upper and lower incisors of untreated rats. Micro-CT analysis corresponded closely with spectral data in which an enhanced dental mass was calculated in intact animals. However, following SD, both calcium expression and the dental mass were remarkably decreased to nearly half those of the untreated values. Because SD plays a detrimental role in impairing dental structure, establishing satisfactory sleep behavior would therefore serve as a crucial strategy for preventing or improving prevalent dental dysfunctions.

  5. Reduced dental calcium expression and dental mass in chronic sleep deprived rats: Combined EDS, TOF-SIMS, and micro-CT analysis

    International Nuclear Information System (INIS)

    Kuo, Yi-Jie; Huang, Yung-Kai; Chou, Hsiu-Chu; Pai, Man-Hui; Lee, Ai-Wei; Mai, Fu-Der; Chang, Hung-Ming

    2015-01-01

    Highlights: • The growth of teeth is closely regulated by the circadian rhythmicity. • Sleep deprivation significantly disrupts the circadian regulation. • Sleep deprivation reduces the dental calcium level and impairs dental intensity. • This study highlights for the first time that sleep is essential for dental structure. • Establishing satisfactory sleep behavior may be a helpful strategy to prevent dental disability. - Abstract: Teeth are the hardest tissue in the body. The growth of teeth is closely regulated by circadian rhythmicity. Considering that sleep deprivation (SD) is a severe condition that disrupts normal circadian rhythmicity, this study was conducted to determine whether calcium expression (the major element participating in teeth constitution), and dental mass would be significantly impaired following SD. Adolescent rats subjected to 3 weeks of SD were processed for energy dispersive spectrum (EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and micro-computed tomography (micro-CT) analyses. The EDS and TOF-SIMS results indicated that high calcium intensity was detected in both the upper and lower incisors of untreated rats. Micro-CT analysis corresponded closely with spectral data in which an enhanced dental mass was calculated in intact animals. However, following SD, both calcium expression and the dental mass were remarkably decreased to nearly half those of the untreated values. Because SD plays a detrimental role in impairing dental structure, establishing satisfactory sleep behavior would therefore serve as a crucial strategy for preventing or improving prevalent dental dysfunctions

  6. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    unknown. Therefore we aim to examine the relationship between BMI and gene expression of central inflammatory markers in the human frontal cortex. Microarray data of 141 neurologically and psychiatrically healthy individuals were obtained through the BrainCloud database. A simple linear regression...... correlated (Plinear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...... analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...

  7. Lemon Odor Reduces Stress-induced Neuronal Activation in the Emotion Expression System: An Animal Model Study

    Science.gov (United States)

    Sanada, Kazue; Sugimoto, Koji; Shutoh, Fumihiro; Hisano, Setsuji

    Perception of particular sensory stimuli from the surroundings can influence emotion in individuals. In an uncomfortable situation, humans protect themselves from some aversive stimulus by acutely evoking a stress response. Animal model studies have contributed to an understanding of neuronal mechanisms underlying the stress response in humans. To study a possible anti-stressful effect of lemon odor, an excitation of neurons secreting corticotropin-releasing hormone (CRH) as a primary factor of the hypothalamic-pituitary-adrenal axis (HPA) was analyzed in animal model experiments, in which rats are restrained in the presence or absence of the odor. The effect was evaluated by measuring expression of c-Fos (an excited neuron marker) in the hypothalamic paraventricular nucleus (PVN), a key structure of the HPA in the brain. We prepared 3 animal groups: Groups S, L and I. Groups S and L were restrained for 30 minutes while being blown by air and being exposed to the lemon odor, respectively. Group I was intact without any treatment. Two hours later of the onset of experiments, brains of all groups were sampled and processed for microscopic examination. Brain sections were processed for c-Fos immunostaining and/or in situ hybridization for CRH. In Group S but not in Group I, c-Fos expression was found in the PVN. A combined in situ hybridization-immunohistochemical dual labeling revealed that CRH mRNA-expressing neurons express c-Fos. In computer-assisted automatic counting, the incidence of c-Fos-expressing neurons in the entire PVN was statistically lower in Group L than in Group S. Detailed analysis of PVN subregions demonstrated that c-Fos-expressing neurons are fewer in Group L than in Group S in the dorsal part of the medial parvocellular subregion. These results may suggest that lemon odor attenuates the restraint stress-induced neuronal activation including CRH neurons, presumably mimicking an aspect of stress responses in humans.

  8. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Sifeng, E-mail: taosifeng@aliyun.com; He, Haifei; Chen, Qiang; Yue, Wenjie

    2014-08-15

    Highlights: • E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells. • GPER mediates the E2-induced increase of miR-148a in MCF-7 and MDA-MB-231 cells. • E2-GPER regulates the expression of HLA-G by miR-148a. - Abstract: Breast cancer is the most common malignant diseases in women. miR-148a plays an important role in regulation of cancer cell proliferation and cancer invasion and down-regulation of miR-148a has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. However, the regulation mechanism of miR-148a is unclear. The role of estrogen signaling, a signaling pathway is important in development and progression of breast cancer. Therefore, we speculated that E2 may regulate miR-148a through G-protein-coupled estrogen receptor-1 (GPER). To test our hypothesis, we checked the effects of E2 on miR-148a expression in ER positive breast cancer cell MCF-7 and TN cancer cell MDA-MB-231. Then we used GPER inhibitor G15 to investigate whether GPER is involved in regulation of E2 on miR-148a. Furthermore, we analyzed whether E2 affects the expression of HLA-G, which is a miR-148a target gene through GPER. The results showed that E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells, GPER mediates the E2-induced increase in miR-148a expression in MCF-7 and MDA-MB-231 cells and E2-GPER regulates the expression of HLA-G by miR-148a. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HLA-G expression through inhibiting miR-148a that supports immune evasion in breast cancer.

  9. Tropoelastin regulates chemokine expression in fibroblasts in Costello syndrome

    International Nuclear Information System (INIS)

    Tatano, Yutaka; Fujinawa, Reiko; Kozutsumi, Yasunori; Takahashi, Tsutomu; Tsuji, Daisuke; Takeuchi, Naohiro; Tsuta, Kohji; Takada, Goro; Sakuraba, Hitoshi; Itoh, Kohji

    2008-01-01

    Costello syndrome is a multiple congenital anomaly associated with growth and mental retardation, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Comprehensive expression analysis revealed remarkable up-regulation of several cytokines and chemokines including Gro family proteins, interleukin-1β (IL-1β), IL-8 and MCP-1 but down-regulation of extracellular matrix components including collagens and proteoglycans of skin fibroblasts derived from a Japanese Costello syndrome patient characterized by significantly reduced tropoelastin mRNA, impaired elastogenesis and enhanced cell proliferation. In contrast, decreases in these chemokines and IL-1β expression were observed in Costello fibroblastic cell lines stably expressing the bovine tropoelastin (btEln) gene and in restored elastic fibers. These results strongly suggest that the human TE gene (ELN) transfer could be applicable for the gene therapy of a group of Costello syndrome patients with reduced ELN gene expression

  10. Mucosal Progranulin expression is induced by H. pylori, but independent of Secretory Leukocyte Protease Inhibitor (SLPI expression

    Directory of Open Access Journals (Sweden)

    Treiber Gerhard

    2011-05-01

    Full Text Available Abstract Background Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI are specifically reduced in relation to H. pylori-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI. Considering the role of SLPI for regulating the activity of elastase, we studied whether the H. pylori-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both ex vivo and in vitro. Methods The expression of Progranulin was studied in biopsies of H. pylori-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR. Results H. pylori-infected subjects had about 2-fold increased antral Progranulin expression compared to H. pylori-negative and -eradicated subjects (P H. pylori infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The H. pylori-induced upregulation of Progranulin was verified in AGS cells infected by H. pylori. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by H. pylori. Conclusions Taken together, Progranulin was identified as novel molecule that is upregulated in context to H. pylori infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in H. pylori-mediated gastritis.

  11. Mucosal Progranulin expression is induced by H. pylori, but independent of Secretory Leukocyte Protease Inhibitor (SLPI) expression.

    Science.gov (United States)

    Wex, Thomas; Kuester, Doerthe; Schönberg, Cornelius; Schindele, Daniel; Treiber, Gerhard; Malfertheiner, Peter

    2011-05-26

    Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI) are specifically reduced in relation to H. pylori-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI). Considering the role of SLPI for regulating the activity of elastase, we studied whether the H. pylori-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both ex vivo and in vitro. The expression of Progranulin was studied in biopsies of H. pylori-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR. H. pylori-infected subjects had about 2-fold increased antral Progranulin expression compared to H. pylori-negative and -eradicated subjects (P Progranulin and SLPI levels were identified. Immunohistochemical analysis confirmed the upregulation of Progranulin in relation to H. pylori infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The H. pylori-induced upregulation of Progranulin was verified in AGS cells infected by H. pylori. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by H. pylori. Taken together, Progranulin was identified as novel molecule that is upregulated in context to H. pylori infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in H. pylori-mediated gastritis.

  12. Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder.

    LENUS (Irish Health Repository)

    Frodl, T

    2012-01-01

    Neuroplasticity may have a core role in the pathophysiology of major depressive disorder (MDD), a concept supported by experimental studies that found that excessive cortisol secretion and\\/or excessive production of inflammatory cytokines impairs neuronal plasticity and neurogenesis in the hippocampus. The objective of this study was to examine how changes in the glucocorticoid and inflammatory systems may affect hippocampal volumes in MDD. A multimodal approach with structural neuroimaging of hippocampus and amygdala, measurement of peripheral inflammatory proteins interleukin (IL)-6 and C-reactive protein (CRP), glucocorticoid receptor (GR) mRNA expression, and expression of glucocorticoid-inducible genes (glucocorticoid-inducible genes Leucin Zipper (GILZ) and glucocorticoid-inducible kinase-1 (SGK-1)) was used in 40 patients with MDD and 43 healthy controls (HC). Patients with MDD showed smaller hippocampal volumes and increased inflammatory proteins IL-6 and CRP compared with HC. Childhood maltreatment was associated with increased CRP. Patients with MDD, who had less expression of the glucocorticoid-inducible genes GILZ or SGK-1 had smaller hippocampal volumes. Regression analysis showed a strong positive effect of GILZ and SGK-1 mRNA expression, and further inverse effects of IL-6 concentration, on hippocampal volumes. These findings suggest that childhood maltreatment, peripheral inflammatory and glucocorticoid markers and hippocampal volume are interrelated factors in the pathophysiology of MDD. Glucocorticoid-inducible genes GILZ and SGK-1 might be promising candidate markers for hippocampal volume changes relevant for diseases like MDD. Further studies need to explore the possible clinical usefulness of such a blood biomarker, for example, for diagnosis or prediction of therapy response.

  13. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants

    Directory of Open Access Journals (Sweden)

    Susan K. Eszterhas

    2011-09-01

    Full Text Available Human Immunodeficiency Virus-type 1 (HIV- 1 binds to CD4 and CCR5 receptors on target cells in the human female reproductive tract. We sought to determine whether reducing levels of messenger RNA (mRNA transcripts that encode these receptors in female reproductive tract cells could protect mucosal tissue explants from HIV- 1 infection. Explants prepared from the endometrium, endocervix, and ectocervix of hysterectomy tissues from HIV-1 sero-negative women were exposed to nanoparticles containing CD4- and CCR5-specific short-interfering RNA (siRNA sequences. Explants were then exposed two days later to HIV-1, and HIV-1 reverse transcripts were measured five days post-infection. Explants treated with nanoparticles containing CD4- and CCR5-specific siRNA showed reduced levels of CD4 and CCR5 transcripts, and significantly lower levels of HIV-1 reverse transcripts compared to those treated with an irrelevant siRNA. In female reproductive tract explants and in peripheral blood cell cultures, siRNA transfection induced the secretion of IFN-alpha (IFN-α, a potent antiviral cytokine. In female mice, murine-specific Cd4-siRNA nanoparticles instilled within the uterus significantly reduced murine Cd4 transcripts by day 3. Our findings demonstrate that siRNA nanoparticles reduce expression of HIV-1 infectivity receptors in human female reproductive tract tissues and also inhibit HIV-1 infection. Murine studies demonstrate that nanoparticles can penetrate the reproductive tract tissues in vivo and silence gene expression. The induction of IFN-α after siRNA transfection can potentially contribute to the antiviral effect. These findings support the therapeutic development of nanoparticles to deliver siRNA molecules to silence host cell receptors in the female reproductive tract as a novel microbicide to inhibit mucosal HIV-1 transmission.

  14. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    Science.gov (United States)

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  15. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  16. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression

    Directory of Open Access Journals (Sweden)

    Hai Van Le

    2016-06-01

    Full Text Available Toll-like receptor 10 (TLR10 is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1, lipopolysaccharide (LPS, and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8, Interleukin-1 beta (IL-1β, Tumor necrosis factor-alpha (TNF-α and Chemokine (C–C Motif Ligand 20 (CCL20 expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10.

  17. Stable Toll-Like Receptor 10 Knockdown in THP-1 Cells Reduces TLR-Ligand-Induced Proinflammatory Cytokine Expression.

    Science.gov (United States)

    Le, Hai Van; Kim, Jae Young

    2016-06-01

    Toll-like receptor 10 (TLR10) is the only orphan receptor whose natural ligand and function are unknown among the 10 human TLRs. In this study, to test whether TLR10 recognizes some known TLR ligands, we established a stable TLR10 knockdown human monocytic cell line THP-1 using TLR10 short hairpin RNA lentiviral particle and puromycin selection. Among 60 TLR10 knockdown clones that were derived from each single transduced cell, six clones were randomly selected, and then one of those clones, named E7, was chosen for the functional study. E7 exhibited approximately 50% inhibition of TLR10 mRNA and protein expression. Of all the TLRs, only the expression of TLR10 changed significantly in this cell line. Additionally, phorbol 12-myristate 13-acetate-induced macrophage differentiation of TLR10 knockdown cells was not affected in the knockdown cells. When exposed to TLR ligands, such as synthetic diacylated lipoprotein (FSL-1), lipopolysaccharide (LPS), and flagellin, significant induction of proinflammatory cytokine gene expression including Interleukin-8 (IL-8), Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha (TNF-α) and Chemokine (C-C Motif) Ligand 20 (CCL20) expression, was found in the control THP-1 cells, whereas the TLR10 knockdown cells exhibited a significant reduction in the expression of IL-8, IL-1β, and CCL20. TNF-α was the only cytokine for which the expression did not decrease in the TLR10 knockdown cells from that measured in the control cells. Analysis of putative binding sites for transcription factors using a binding-site-prediction program revealed that the TNF-α promoter does not have putative binding sites for AP-1 or c-Jun, comprising a major transcription factor along with NF-κB for TLR signaling. Our results suggest that TLR10 is involved in the recognition of FSL-1, LPS, and flagellin and TLR-ligand-induced expression of TNF-α does not depend on TLR10.

  18. Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon.

    Science.gov (United States)

    Luan, Wei; Hammond, Luke Alexander; Cotter, Edmund; Osborne, Geoffrey William; Alexander, Suzanne Adele; Nink, Virginia; Cui, Xiaoying; Eyles, Darryl Walter

    2018-03-01

    Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.

  19. Hepcidin Protects Neuron from Hemin-Mediated Injury by Reducing Iron

    Directory of Open Access Journals (Sweden)

    Yu-Fu Zhou

    2017-05-01

    Full Text Available Hemin plays a key role in mediating secondary neuronal injury after intracerebral hemorrhage (ICH and the cell toxicity of hemin is thought to be due to iron that is liberated when hemin is degraded. In a recent study, we demonstrated the iron regulatory hormone hepcidin reduces brain iron in iron-overloaded rats. Therefore, we hypothesized that hepcidin might be able to reduce iron and then protect neurons from hemin or iron-mediated neurotoxicity in hemin-treated neuronal cells. Here, we tested the hypothesis and demonstrated that ad-hepcidin and hepcidin peptide both have the ability to suppress the hemin-induced increase in LDH release and apoptotic cell numbers, to reduce cell iron and ferritin contents, and to inhibit expression of transferrin receptor 1, divalent metal transporter 1, and ferroportin 1 in hemin-treated neurons. We conclude that hepcidin protects neuron from hemin-mediated injury by reducing iron via inhibition of expression of iron transport proteins.

  20. Human Tear Fluid Reduces Culturability of Contact Lens Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence Associated Type III Secretion System

    Science.gov (United States)

    Wu, Yvonne T.; Tam, Connie; Zhu, Lucia S.; Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    Purpose The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. Methods P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. Results With or without tear fluid, biofilms grew to ~108 cfu viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ~180-fold (pbacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (p=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS (p=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (p = 0.04) and 1.89 ± 0.26-fold (p<.001), respectively. Conclusions Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis. PMID:27670247

  1. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus.

    Science.gov (United States)

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (-23%) and dentate gyrus (-48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression.

  2. The Viterbi Algorithm expressed in Constraint Handling Rules

    DEFF Research Database (Denmark)

    Christiansen, Henning; Have, Christian Theil; Lassen, Ole Torp

    2010-01-01

    The Viterbi algorithm is a classical example of a dynamic programming algorithm, in which pruning reduces the search space drastically, so that an otherwise exponential time complexity is reduced to linearity. The central steps of the algorithm, expansion and pruning, can be expressed in a concis...

  3. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model.

    Science.gov (United States)

    Di Liddo, Rosa; Valente, Sergio; Taurone, Samanta; Zwergel, Clemens; Marrocco, Biagina; Turchetta, Rosaria; Conconi, Maria Teresa; Scarpa, Carlotta; Bertalot, Thomas; Schrenk, Sandra; Mai, Antonello; Artico, Marco

    2016-01-20

    Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.

  4. Cholesterol Removal from Adult Skeletal Muscle impairs Excitation-Contraction Coupling and Aging reduces Caveolin-3 and alters the Expression of other Triadic Proteins

    Directory of Open Access Journals (Sweden)

    Genaro eBarrientos

    2015-04-01

    Full Text Available Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation-contraction coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not sarcoplasmic reticulum membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX activity and protein content of NOX2 subunits (p47phox and gp91phox, implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs excitation-contraction coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged

  5. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    International Nuclear Information System (INIS)

    Ye, Lusi; Jiang, Ying; Zuo, Xiaoxia

    2015-01-01

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  6. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Lusi [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China); Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015 (China); Jiang, Ying [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China); Zuo, Xiaoxia, E-mail: susanzuo@hotmail.com [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China)

    2015-11-06

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  7. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...... correlated (PIL10 was mostly affected by individuals with BMI ⩾40. Multiple linear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...

  8. Reduced STMN1 expression induced by RNA interference inhibits the bioactivity of pancreatic cancer cell line Panc-1.

    Science.gov (United States)

    Li, J; Hu, G H; Kong, F J; Wu, K M; He, B; Song, K; Sun, W J

    2014-01-01

    Increased expression of STMN1 has been observed in many tumor forms, but its expression and potential biological role in pancreatic cancer is still unknown. In this study, we demonstrated that STMN1 was expressed to a large extent in pancreatic cancer tissues and cell lines as compared to normal pancreatic tissues. Suppression of STMN1 expression via transfection with STMN1-specific siRNA could not only significantly inhibit the proliferation, migration and invasion ability of Panc-1 cells, but also enhance the apoptosis of Panc-1 cells. In addition, downregulation of STMN1 obviously enhanced the acetylation level of α-tubulin. All these results indicated that STMN1 plays an important role in pancreatic cancer development, and might serve as a potential therapeutic target for pancreatic cancer.

  9. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  10. Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion

    Directory of Open Access Journals (Sweden)

    Shepherd Trevor G

    2010-02-01

    Full Text Available Abstract Background Activation of bone morphogenetic protein (BMP4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. Methods To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT and cell adhesion. Results Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced β1- and β3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and β-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and

  11. Reduced volume and increased training intensity elevate muscle Na+/K+ pump {alpha}2-subunit expression as well as short- and long-term work capacity in humans

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Gunnarsson, Thomas Petursson; Wendell, Jesper

    2009-01-01

    was unaltered, but the 3-K (3,000 m) time was reduced (Pexpression and performance remained unaltered in CON. The present data suggest that both short- and long-term......% reduction in the amount of training but including speed endurance training consisting of 6-12 30-s sprint runs 3-4 times a week (SET, n=12) or a control group (CON, n=5), which continued the endurance training (about 55 km(.)wk(-1)). For SET the expression of the muscle Na(+)/K(+) pump alpha2-subunit was 68...

  12. A naturally occurring mutation in ropB suppresses SpeB expression and reduces M1T1 group A streptococcal systemic virulence.

    Directory of Open Access Journals (Sweden)

    Andrew Hollands

    Full Text Available Epidemiological studies of group A streptococcus (GAS have noted an inverse relationship between SpeB expression and invasive disease. However, the role of SpeB in the course of infection is still unclear. In this study we utilize a SpeB-negative M1T1 clinical isolate, 5628, with a naturally occurring mutation in the gene encoding the regulator RopB, to elucidate the role of RopB and SpeB in systemic virulence. Allelic exchange mutagenesis was used to replace the mutated ropB allele in 5628 with the intact allele from the well characterized isolate 5448. The inverse allelic exchange was also performed to replace the intact ropB in 5448 with the mutated allele from 5628. An intact ropB was found to be essential for SpeB expression. While the ropB mutation was shown to have no effect on hemolysis of RBC's, extracellular DNase activity or survival in the presence of neutrophils, strains with the mutated ropB allele were less virulent in murine systemic models of infection. An isogenic SpeB knockout strain containing an intact RopB showed similarly reduced virulence. Microarray analysis found genes of the SpeB operon to be the primary target of RopB regulation. These data show that an intact RopB and efficient SpeB production are necessary for systemic infection with GAS.

  13. Osteoprotegerin expression in triple-negative breast cancer cells promotes metastasis

    International Nuclear Information System (INIS)

    Weichhaus, Michael; Segaran, Prabu; Renaud, Ashleigh; Geerts, Dirk; Connelly, Linda

    2014-01-01

    Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that has been well characterized as a negative regulator of bone remodeling. OPG is also expressed in human breast cancer tissues and cell lines. In vitro studies suggest that OPG exerts tumor-promoting effects by binding to TNF-related apoptosis inducing ligand (TRAIL), thereby preventing induction of apoptosis. However, the in vivo effect of OPG expression by primary breast tumors has not been characterized. We knocked down OPG expression in MDA-MB-231 and MDA-MB-436 human breast cancer cells using shRNA and siRNA to investigate impact on metastasis in the chick embryo model. We observed a reduction in metastasis with OPG knockdown cells. We found that lowering OPG expression did not alter sensitivity to TRAIL-induced apoptosis; however, the OPG knockdown cells had a reduced level of invasion. In association with this we observed reduced expression of the proteases Cathepsin D and Matrix Metalloproteinase-2 upon OPG knockdown, indicating that OPG may promote metastasis via modulation of protease expression and invasion. We conclude that OPG has a metastasis-promoting effect in breast cancer cells

  14. Individual differences in emotional expressivity predict oxytocin responses to cortisol administration : Relevance to breast cancer?

    NARCIS (Netherlands)

    Tops, Mattie; van Peer, Jacobien M.; Korf, Jakob

    Reduced emotional expression has been consistently related to susceptibility or fast progression of breast cancer. Breast cancer development and reduced emotional expression have both been related to rejection- and separation-related conditions. The neuropeptide oxytocin is low in response to

  15. Facial Expression Recognition Based on TensorFlow Platform

    Directory of Open Access Journals (Sweden)

    Xia Xiao-Ling

    2017-01-01

    Full Text Available Facial expression recognition have a wide range of applications in human-machine interaction, pattern recognition, image understanding, machine vision and other fields. Recent years, it has gradually become a hot research. However, different people have different ways of expressing their emotions, and under the influence of brightness, background and other factors, there are some difficulties in facial expression recognition. In this paper, based on the Inception-v3 model of TensorFlow platform, we use the transfer learning techniques to retrain facial expression dataset (The Extended Cohn-Kanade dataset, which can keep the accuracy of recognition and greatly reduce the training time.

  16. Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration.

    Science.gov (United States)

    Suresh, Shruthy; Raghu, Dinesh; Karunagaran, Devarajan

    2013-01-01

    Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.

  17. A novel platelet activating factor receptor antagonist reduces cell infiltration and expression of inflammatory mediators in mice exposed to desiccating conditions after PRK.

    Science.gov (United States)

    Esquenazi, Salomon; He, Jiucheng; Li, Na; Bazan, Nicolas G; Esquenazi, Isi; Bazan, Haydee E P

    2009-01-01

    To study the contribution of a novel PAF receptor antagonist LAU-0901 in the modulation of the increased inflammatory response in mice exposed to dessicating conditions (DE) after PRK. Eighty 13-14 week old female Balb/C mice were used. They were divided into two groups: One group was treated with LAU-0901 topical drops. The other group was treated with vehicle. In each group ten mice served as controls and ten were placed in DE. The other twenty mice underwent bilateral PRK and were divided in two additional groups: ten mice remained under normal conditions (NC) and the other ten were exposed to DE. After 1 week all animals underwent in vivo confocal microscopy, immunostaining and western blotting analysis. Confocal microscopy showed an increased number of reflective structures in the corneal epithelium after PRK and exposure to DE in eyes treated with vehicle as compared to eyes treated with LAU-090). Significant decrease of COX-2 and Arginase I expression and reduced alpha SMA cells was observed after PRK and exposure to DE in eyes treated with LAU-0901. Exposure of mice to a DE after PRK increases the epithelial turnover rate. PAF is involved in the inflammatory cell infiltration and expression of inflammatory cytokines that follow PRK under DE.

  18. Reduced expression of the polymeric immunoglobulin receptor in pancreatic and periampullary adenocarcinoma signifies tumour progression and poor prognosis.

    Directory of Open Access Journals (Sweden)

    Richard Fristedt

    Full Text Available The polymeric immunoglobulin receptor (pIgR is a key component of the mucosal immune system that mediates epithelial transcytosis of immunoglobulins. High pIgR expression has been reported to correlate with a less aggressive tumour phenotype and an improved prognosis in several human cancer types. Here, we examined the expression and prognostic significance of pIgR in pancreatic and periampullary adenocarcinoma. The study cohort encompasses a consecutive series of 175 patients surgically treated with pancreaticoduodenectomy for pancreatic and periampullary adenocarcinoma in Malmö and Lund University Hospitals, Sweden, between 2001-2011. Tissue microarrays were constructed from primary tumours (n = 175 and paired lymph node metastases (n = 105. A multiplied score was calculated from the fraction and intensity of pIgR staining. Classification and regression tree analysis was used to select the prognostic cut-off. Unadjusted and adjusted hazard ratios (HR for death and recurrence within 5 years were calculated. pIgR expression could be evaluated in 172/175 (98.3% primary tumours and in 96/105 (91.4% lymph node metastases. pIgR expression was significantly down-regulated in lymph node metastases as compared with primary tumours (p = 0.018. Low pIgR expression was significantly associated with poor differentiation grade (p < 0.001, perineural growth (p = 0.027, lymphatic invasion (p = 0.016, vascular invasion (p = 0.033 and infiltration of the peripancreatic fat (p = 0.039. In the entire cohort, low pIgR expression was significantly associated with an impaired 5-year survival (HR = 2.99, 95% confidence interval (CI 1.71-5.25 and early recurrence (HR = 2.89, 95% CI 1.67-4.98. This association remained significant for survival after adjustment for conventional clinicopathological factors, tumour origin and adjuvant treatment (HR = 1.98, 95% CI 1.10-3.57. These results demonstrate, for the first time, that high tumour-specific pIgR expression signifies

  19. Decreased astroglial monocarboxylate transporter 4 expression in temporal lobe epilepsy.

    Science.gov (United States)

    Liu, Bei; Niu, Le; Shen, Ming-Zhi; Gao, Lei; Wang, Chao; Li, Jie; Song, Li-Jia; Tao, Ye; Meng, Qiang; Yang, Qian-Li; Gao, Guo-Dong; Zhang, Hua

    2014-10-01

    Efflux of monocaroxylates like lactate, pyruvate, and ketone bodies from astrocytes through monocarboxylate transporter 4 (MCT4) supplies the local neuron population with metabolic intermediates to meet energy requirements under conditions of increased demand. Disruption of this astroglial-neuron metabolic coupling pathway may contribute to epileptogenesis. We measured MCT4 expression in temporal lobe epileptic foci excised from patients with intractable epilepsy and in rats injected with pilocarpine, an animal model of temporal lobe epilepsy (TLE). Cortical MCT4 expression levels were significantly lower in TLE patients compared with controls, due at least partially to MCT4 promoter methylation. Expression of MCT4 also decreased progressively in pilocarpine-treated rats from 12 h to 14 days post-administration. Underexpression of MCT4 in cultured astrocytes induced by a short hairpin RNA promoted apoptosis. Knockdown of astrocyte MCT4 also suppressed excitatory amino acid transporter 1 (EAAT1) expression. Reduced MCT4 and EAAT1 expression by astrocytes may lead to neuronal hyperexcitability and epileptogenesis in the temporal lobe by reducing the supply of metabolic intermediates and by allowing accumulation of extracellular glutamate.

  20. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission

    Science.gov (United States)

    Glennon, Elizabeth K. K.; Adams, L. Garry; Hicks, Derrick R.; Dehesh, Katayoon; Luckhart, Shirley

    2016-01-01

    Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761

  1. Reduced gene expression levels after chronic exposure to high concentrations of air pollutants

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Tulupová, Elena; Rössnerová, Andrea; Líbalová, Helena; Hoňková, Kateřina; Gmuender, H.; Pastorková, Anna; Švecová, Vlasta; Topinka, Jan; Šrám, Radim

    2015-01-01

    Roč. 780, oct (2015), s. 60-70 ISSN 0027-5107 R&D Projects: GA MŽP(CZ) SP/1B3/8/08; GA MŠk(CZ) LO1508; GA ČR GA13-13458S; GA MŠk 2B08005 Institutional support: RVO:68378041 Keywords : chronic exposure * air pollution * gene expression profiles * human health * particulate matter * polycyclic aromatic hydrocarbons Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.581, year: 2015

  2. Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume.

    Science.gov (United States)

    Grassini, Daniela R; Lagendijk, Anne K; De Angelis, Jessica E; Da Silva, Jason; Jeanes, Angela; Zettler, Nicole; Bower, Neil I; Hogan, Benjamin M; Smith, Kelly A

    2018-05-11

    Atrial natriuretic peptide ( nppa/anf ) and brain natriuretic peptide ( nppb/bnp ) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy however their genomic location in cis has impeded formal analysis. Using genome-editing, we generated mutants for nppa and nppb and found single mutants indistinguishable from wildtype whereas nppa / nppb double mutants display heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4 , tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for Hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirm cardiac jelly expansion in nppa / nppb double mutants. Finally, bmp4 knockdown rescues the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber. © 2018. Published by The Company of Biologists Ltd.

  3. Myofibroblast Expression in Skin Wounds Is Enhanced by Collagen III Suppression

    Directory of Open Access Journals (Sweden)

    Mohammed M. Al-Qattan

    2015-01-01

    Full Text Available Generally speaking, the excessive expression of myofibroblasts is associated with excessive collagen production. One exception is seen in patients and animal models of Ehlers-Danlos syndrome type IV in which the COL3A1 gene mutation results in reduced collagen III but with concurrent increased myofibroblast expression. This paradox has not been examined with the use of external drugs/modalities to prevent hypertrophic scars. In this paper, we injected the rabbit ear wound model of hypertrophic scarring with two doses of a protein called nAG, which is known to reduce collagen expression and to suppress hypertrophic scarring in that animal model. The higher nAG dose was associated with significantly less collagen III expression and concurrent higher degree of myofibroblast expression. We concluded that collagen III content of the extracellular matrix may have a direct or an indirect effect on myofibroblast differentiation. However, further research is required to investigate the pathogenesis of this paradoxical phenomenon.

  4. The role of expressive writing in math anxiety.

    Science.gov (United States)

    Park, Daeun; Ramirez, Gerardo; Beilock, Sian L

    2014-06-01

    Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. A Breast Tissue Protein Expression Profile Contributing to Early Parity-Induced Protection Against Breast Cancer

    Directory of Open Access Journals (Sweden)

    Christina Marie Gutierrez

    2015-11-01

    Full Text Available Background/Aims: Early parity reduces breast cancer risk, whereas, late parity and nulliparity increase breast cancer risk. Despite substantial efforts to understand the protective effects of early parity, the precise molecular circuitry responsible for these changes is not yet fully defined. Methods: Here, we have conducted the first study assessing protein expression profiles in normal breast tissue of healthy early parous, late parous, and nulliparous women. Breast tissue biopsies were obtained from 132 healthy parous and nulliparous volunteers. These samples were subjected to global protein expression profiling and immunohistochemistry. GeneSpring and MetaCore bioinformatics analysis software were used to identify protein expression profiles associated with early parity (low risk versus late/nulliparity (high risk. Results: Early parity reduces expression of key proteins involved in mitogenic signaling pathways in breast tissue through down regulation of EGFR1/3, ESR1, AKT1, ATF, Fos, and SRC. Early parity is also characterized by greater genomic stability and reduced tissue inflammation based on differential expression of aurora kinases, p53, RAD52, BRCA1, MAPKAPK-2, ATF-1, ICAM1, and NF-kappaB compared to late and nulli parity. Conclusions: Early parity reduces basal cell proliferation in breast tissue, which translates to enhanced genomic stability, reduced cellular stress/inflammation, and thus reduced breast cancer risk.

  6. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    Science.gov (United States)

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  7. Differences in grain ultrastructure, phytochemical and proteomic profiles between the two contrasting grain Cd-accumulation barley genotypes.

    Directory of Open Access Journals (Sweden)

    Hongyan Sun

    Full Text Available To reveal grain physio-chemical and proteomic differences between two barley genotypes, Zhenong8 and W6nk2 of high- and low-grain-Cd-accumulation, grain profiles of ultrastructure, amino acid and proteins were compared. Results showed that W6nk2 possesses significantly lower protein content, with hordein depicting the greatest genotypic difference, compared with Zhenong8, and lower amino acid contents with especially lower proportion of Glu, Tyr, Phe and Pro. Both scanning and transmission electron microscopy observation declared that the size of A-type starch molecule in W6nk2 was considerably larger than that of Zhenong8. Grains of Zhenong8 exhibited more protein-rich deposits around starch granules, with some A-type granules having surface pits. Seventeen proteins were identified in grains, using 2-DE coupled with mass spectrometry, with higher expression in Zhenong8 than that in W6nk2; including z-type serpin, serpin-Z7 and alpha-amylase/trypsin inhibitor CM, carbohydrate metabolism, protein synthesis and signal transduction related proteins. Twelve proteins were less expressed in Zhenong8 than that in W6nk2; including barley trypsin inhibitor chloroform/methanol-soluble protein (BTI-CMe2.1, BTI-CMe2.2, trypsin inhibitor, dehydroascorbate reductase (DHAR, pericentrin, dynein heavy chain and some antiviral related proteins. The data extend our understanding of mechanisms underlying Cd accumulation/tolerance and provides possible utilization of elite genetic resources in developing low-grain-Cd barley cultivars.

  8. Phenotypical expression of reduced mobility during limb ontogeny in frogs: the knee-joint case

    Directory of Open Access Journals (Sweden)

    Maria Laura Ponssa

    2016-02-01

    Full Text Available Movement is one of the most important epigenetic factors for normal development of the musculoskeletal system, particularly during genesis and joint development. Studies regarding alterations to embryonic mobility, performed on anurans, chickens and mammals, report important phenotypical similarities as a result of the reduction or absence of this stimulus. The precise stage of development at which the stimulus modification generates phenotypic modifications however, is yet to be determined. In this work we explore whether the developmental effects of abnormal mobility can appear at any time during development or whether they begin to express themselves in particular phases of tadpole ontogeny. We conducted five experiments that showed that morphological abnormalities are not visible until Stages 40–42. Morphology in earlier stages remains normal, probably due to the fact that the bones/muscles/tendons have not yet developed and therefore are not affected by immobilization. These results suggest the existence of a specific period of phenotypical expression in which normal limb movement is necessary for the correct development of the joint tissue framework.

  9. Arrhythmia causes lipid accumulation and reduced glucose uptake.

    Science.gov (United States)

    Lenski, Matthias; Schleider, Gregor; Kohlhaas, Michael; Adrian, Lucas; Adam, Oliver; Tian, Qinghai; Kaestner, Lars; Lipp, Peter; Lehrke, Michael; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2015-01-01

    Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca(2+)]c. This was associated with the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and (14)C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as (3)H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca(2+)]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways.

  10. Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression

    Directory of Open Access Journals (Sweden)

    Mauricio Schüler Nin

    2011-11-01

    Full Text Available The pharmacological action of SSRI antidepressants may include a normalization of the decreased brain levels of neurosteroids such as that of the progesterone metabolite allopregnanolone and that of the brain-derived neurotrophic factor (BDNF, which are decreased in patients with depression and PTSD. Allopregnanolone and BDNF decrease in these patients is associated with behavioral symptom severity. Antidepressant treatment upregulates both allopregnanolone levels and the expression of BDNF in a manner that significantly correlates with improved symptomatology, which suggests that neurosteroid biosynthesis and BDNF expression may be interrelated. Preclinical studies using the socially isolated mouse as an animal model of behavioral deficits that resemble some of the symptoms observed in PTSD patients have shown that fluoxetine and derivatives improve anxiety-like behavior, fear responses, and aggressive behavior by elevating the corticolimbic levels of allopregnanolone and BDNF mRNA expression. These actions appeared to be independent and more selective from the action of these drugs on 5-HT reuptake inhibition.Hence, this review addresses the hypothesis that in PTSD or depressed patients brain allopregnanolone levels and BDNF expression upregulation may be part of the mechanisms involved in the beneficial actions of antidepressants or other selective brain steroidogenic stimulant (SBSS molecules.

  11. Selective post-training time window for memory consolidation interference of cannabidiol into the prefrontal cortex: Reduced dopaminergic modulation and immediate gene expression in limbic circuits.

    Science.gov (United States)

    Rossignoli, Matheus Teixeira; Lopes-Aguiar, Cleiton; Ruggiero, Rafael Naime; Do Val da Silva, Raquel Araujo; Bueno-Junior, Lezio Soares; Kandratavicius, Ludmyla; Peixoto-Santos, José Eduardo; Crippa, José Alexandre; Cecilio Hallak, Jaime Eduardo; Zuardi, Antonio Waldo; Szawka, Raphael Escorsim; Anselmo-Franci, Janete; Leite, João Pereira; Romcy-Pereira, Rodrigo Neves

    2017-05-14

    The prefrontal cortex (PFC), amygdala and hippocampus display a coordinated activity during acquisition of associative fear memories. Evidence indicates that PFC engagement in aversive memory formation does not progress linearly as previously thought. Instead, it seems to be recruited at specific time windows after memory acquisition, which has implications for the treatment of post-traumatic stress disorders. Cannabidiol (CBD), the major non-psychotomimetic phytocannabinoid of the Cannabis sativa plant, is known to modulate contextual fear memory acquisition in rodents. However, it is still not clear how CBD interferes with PFC-dependent processes during post-training memory consolidation. Here, we tested whether intra-PFC infusions of CBD immediately after or 5h following contextual fear conditioning was able to interfere with memory consolidation. Neurochemical and cellular correlates of the CBD treatment were evaluated by the quantification of extracellular levels of dopamine (DA), serotonin, and their metabolites in the PFC and by measuring the cellular expression of activity-dependent transcription factors in cortical and limbic regions. Our results indicate that bilateral intra-PFC CBD infusion impaired contextual fear memory consolidation when applied 5h after conditioning, but had no effect when applied immediately after it. This effect was associated with a reduction in DA turnover in the PFC following retrieval 5days after training. We also observed that post-conditioning infusion of CBD reduced c-fos and zif-268 protein expression in the hippocampus, PFC, and thalamus. Our findings support that CBD interferes with contextual fear memory consolidation by reducing PFC influence on cortico-limbic circuits. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Emotion Unchained: Facial Expression Modulates Gaze Cueing under Cognitive Load.

    Science.gov (United States)

    Pecchinenda, Anna; Petrucci, Manuel

    2016-01-01

    Direction of eye gaze cues spatial attention, and typically this cueing effect is not modulated by the expression of a face unless top-down processes are explicitly or implicitly involved. To investigate the role of cognitive control on gaze cueing by emotional faces, participants performed a gaze cueing task with happy, angry, or neutral faces under high (i.e., counting backward by 7) or low cognitive load (i.e., counting forward by 2). Results show that high cognitive load enhances gaze cueing effects for angry facial expressions. In addition, cognitive load reduces gaze cueing for neutral faces, whereas happy facial expressions and gaze affected object preferences regardless of load. This evidence clearly indicates a differential role of cognitive control in processing gaze direction and facial expression, suggesting that under typical conditions, when we shift attention based on social cues from another person, cognitive control processes are used to reduce interference from emotional information.

  13. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    Science.gov (United States)

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  14. Facial responsiveness of psychopaths to the emotional expressions of others.

    Directory of Open Access Journals (Sweden)

    Janina Künecke

    Full Text Available Psychopathic individuals show selfish, manipulative, and antisocial behavior in addition to emotional detachment and reduced empathy. Their empathic deficits are thought to be associated with a reduced responsiveness to emotional stimuli. Immediate facial muscle responses to the emotional expressions of others reflect the expressive part of emotional responsiveness and are positively related to trait empathy. Empirical evidence for reduced facial muscle responses in adult psychopathic individuals to the emotional expressions of others is rare. In the present study, 261 male criminal offenders and non-offenders categorized dynamically presented facial emotion expressions (angry, happy, sad, and neutral during facial electromyography recording of their corrugator muscle activity. We replicated a measurement model of facial muscle activity, which controls for general facial responsiveness to face stimuli, and modeled three correlated emotion-specific factors (i.e., anger, happiness, and sadness representing emotion specific activity. In a multi-group confirmatory factor analysis, we compared the means of the anger, happiness, and sadness latent factors between three groups: 1 non-offenders, 2 low, and 3 high psychopathic offenders. There were no significant mean differences between groups. Our results challenge current theories that focus on deficits in emotional responsiveness as leading to the development of psychopathy and encourage further theoretical development on deviant emotional processes in psychopathic individuals.

  15. High RBM3 expression in prostate cancer independently predicts a reduced risk of biochemical recurrence and disease progression

    Directory of Open Access Journals (Sweden)

    Bjartell Anders

    2011-09-01

    Full Text Available Abstract Background High expression of the RNA-binding protein RBM3 has previously been found to be associated with good prognosis in breast cancer, ovarian cancer, malignant melanoma and colorectal cancer. The aim of this study was to examine the prognostic impact of immunohistochemical RBM3 expression in prostate cancer. Findings Immunohistochemical RBM3 expression was examined in a tissue microarray with malignant and benign prostatic specimens from 88 patients treated with radical prostatectomy for localized disease. While rarely expressed in benign prostate gland epithelium, RBM3 was found to be up-regulated in prostate intraepithelial neoplasia and present in various fractions and intensities in invasive prostate cancer. High nuclear RBM3 expression was significantly associated with a prolonged time to biochemical recurrence (BCR (HR 0.56, 95% CI: 0.34-0.93, p = 0.024 and clinical progression (HR 0.09, 95% CI: 0.01-0.71, p = 0.021. These associations remained significant in multivariate analysis, adjusted for preoperative PSA level in blood, pathological Gleason score and presence or absence of extracapsular extension, seminal vesicle invasion and positive surgical margin (HR 0.41, 95% CI: 0.19-0.89, p = 0.024 for BCR and HR 0.06, 95% CI: 0.01-0.50, p = 0.009 for clinical progression. Conclusion Our results demonstrate that high nuclear expression of RBM3 in prostate cancer is associated with a prolonged time to disease progression and, thus, a potential biomarker of favourable prognosis. The value of RBM3 for prognostication, treatment stratification and follow-up of prostate cancer patients should be further validated in larger studies.

  16. Mechanism of inhibitory effect of atorvastatin on resistin expression induced by tumor necrosis factor-α in macrophages

    Directory of Open Access Journals (Sweden)

    Chua Su-Kiat

    2009-05-01

    Full Text Available Abstract Atorvastatin has been shown to reduce resistin expression in macrophages after pro-inflammatory stimulation. However, the mechanism of reducing resistin expression by atorvastatin is not known. Therefore, we sought to investigate the molecular mechanisms of atorvastatin for reducing resistin expression after proinflammatory cytokine, tumor necrosis factor-α (TNF-α stimulation in cultured macrophages. Cultured macrophages were obtained from human peripheral blood mononuclear cells. TNF-α stimulation increased resistin protein and mRNA expression and atorvastatin inhibited the induction of resistin by TNF-α. Addition of mevalonate induced resistin protein expression similar to TNF-α stimulation. However, atorvastatin did not have effect on resistin protein expression induced by mevalonate. SP600125 and JNK small interfering RNA (siRNA completely attenuated the resistin protein expression induced by TNF-α and mevalonate. TNF-α induced phosphorylation of Rac, while atorvastatin and Rac-1 inhibitor inhibited the phosphorylation of Rac induced by TNF-α. The gel shift and promoter activity assay showed that TNF-α increased AP-1-binding activity and resistin promoter activity, while SP600125 and atorvastatin inhibited the AP-1-binding activity and resistin promoter activity induced by TNF-α. Recombinant resistin and TNF-α significantly reduced glucose uptake in cultured macrophages, while atorvastatin reversed the reduced glucose uptake by TNF-α. In conclusion, JNK and Rac pathway mediates the inhibitory effect of atorvastatin on resistin expression induced by TNF-α.

  17. Spectral function from Reduced Density Matrix Functional Theory

    Science.gov (United States)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  18. Reduced DICER1 Expression Bestows Rheumatoid Arthritis Synoviocytes Proinflammatory Properties and Resistance to Apoptotic Stimuli.

    Science.gov (United States)

    Alsaleh, Ghada; Nehmar, Ramzi; Blüml, Stephan; Schleiss, Cédric; Ostermann, Eleonore; Dillenseger, Jean-Philippe; Sayeh, Amira; Choquet, Philippe; Dembele, Doulaye; Francois, Antoine; Salmon, Jean-Hugues; Paul, Nicodème; Schabbauer, Gernot; Bierry, Guillaume; Meyer, Alain; Gottenberg, Jacques-Eric; Haas, Gabrielle; Pfeffer, Sebastien; Vallat, Laurent; Sibilia, Jean; Bahram, Seiamak; Georgel, Philippe

    2016-08-01

    While the regulatory role of individual microRNAs (miRNAs) in rheumatoid arthritis (RA) is well established, the role of DICER1 in the pathogenesis of the disease has not yet been investigated. The purpose of this study was to analyze the expression of factors involved in miRNA biogenesis in fibroblast-like synoviocytes (FLS) from RA patients and to monitor the arthritis triggered by K/BxN serum transfer in mice deficient in the Dicer gene (Dicer(d/d) ). The expression of genes and precursor miRNAs was quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). MicroRNA macroarray profiling was monitored by qRT-PCR. Cytokines were quantified by enzyme-linked immunosorbent assay. Experimental arthritis in mice was achieved by the transfer of serum from K/BxN donors. Apoptosis was quantified using an enzyme-linked immunosorbent assay. We found decreased DICER1 and mature miRNA expression in synovial fibroblasts from RA patients. These cells were hyperresponsive to lipopolysaccharide, as evidenced by their increased interleukin-6 secretion upon stimulation. Experimental serum-transfer arthritis in Dicer(d/d) mice confirmed that an unbalanced biogenesis of miRNAs correlated with an enhanced inflammatory response. Synoviocytes from both RA patients and Dicer(d/d) mice exhibited increased resistance to apoptotic stimuli. The findings of this study further substantiate the important role of DICER1 in the maintenance of homeostasis and the regulation of inflammatory responses. © 2016, American College of Rheumatology.

  19. Nesprin-1α-Dependent Microtubule Nucleation from the Nuclear Envelope via Akap450 Is Necessary for Nuclear Positioning in Muscle Cells.

    Science.gov (United States)

    Gimpel, Petra; Lee, Yin Loon; Sobota, Radoslaw M; Calvi, Alessandra; Koullourou, Victoria; Patel, Rutti; Mamchaoui, Kamel; Nédélec, François; Shackleton, Sue; Schmoranzer, Jan; Burke, Brian; Cadot, Bruno; Gomes, Edgar R

    2017-10-09

    The nucleus is the main microtubule-organizing center (MTOC) in muscle cells due to the accumulation of centrosomal proteins and microtubule (MT) nucleation activity at the nuclear envelope (NE) [1-4]. The relocalization of centrosomal proteins, including Pericentrin, Pcm1, and γ-tubulin, depends on Nesprin-1, an outer nuclear membrane (ONM) protein that connects the nucleus to the cytoskeleton via its N-terminal region [5-7]. Nesprins are also involved in the recruitment of kinesin to the NE and play a role in nuclear positioning in skeletal muscle cells [8-12]. However, a function for MT nucleation from the NE in nuclear positioning has not been established. Using the proximity-dependent biotin identification (BioID) method [13, 14], we found several centrosomal proteins, including Akap450, Pcm1, and Pericentrin, whose association with Nesprin-1α is increased in differentiated myotubes. We show that Nesprin-1α recruits Akap450 to the NE independently of kinesin and that Akap450, but not other centrosomal proteins, is required for MT nucleation from the NE. Furthermore, we demonstrate that this mechanism is disrupted in congenital muscular dystrophy patient myotubes carrying a nonsense mutation within the SYNE1 gene (23560 G>T) encoding Nesprin-1 [15, 16]. Finally, using computer simulation and cell culture systems, we provide evidence for a role of MT nucleation from the NE on nuclear spreading in myotubes. Our data thus reveal a novel function for Nesprin-1α/Nesprin-1 in nuclear positioning through recruitment of Akap450-mediated MT nucleation activity to the NE. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2

    Directory of Open Access Journals (Sweden)

    Quadros Edward V

    2009-05-01

    Full Text Available Abstract Background Recent evidence suggests that several human cancers are capable of uncoupling of mitochondrial ATP generation in the presence of intact tricarboxylic acid (TCA enzymes. The goal of the current study was to test the hypothesis that ketone bodies can inhibit cell growth in aggressive cancers and that expression of uncoupling protein 2 is a contributing factor. The proposed mechanism involves inhibition of glycolytic ATP production via a Randle-like cycle while increased uncoupling renders cancers unable to produce compensatory ATP from respiration. Methods Seven aggressive human cancer cell lines, and three control fibroblast lines were grown in vitro in either 10 mM glucose medium (GM, or in glucose plus 10 mM acetoacetate [G+AcA]. The cells were assayed for cell growth, ATP production and expression of UCP2. Results There was a high correlation of cell growth with ATP concentration (r = 0.948 in a continuum across all cell lines. Controls demonstrated normal cell growth and ATP with the lowest density of mitochondrial UCP2 staining while all cancer lines demonstrated proportionally inhibited growth and ATP, and over-expression of UCP2 (p Conclusion Seven human cancer cell lines grown in glucose plus acetoacetate medium showed tightly coupled reduction of growth and ATP concentration. The findings were not observed in control fibroblasts. The observed over-expression of UCP2 in cancer lines, but not in controls, provides a plausible molecular mechanism by which acetoacetate spares normal cells but suppresses growth in cancer lines. The results bear on the hypothesized potential for ketogenic diets as therapeutic strategies.

  1. Enhanced Autophagy and Reduced Expression of Cathepsin D Are Related to Autophagic Cell Death in Epstein-Barr Virus-Associated Nasal Natural Killer/T-Cell Lymphomas: An Immunohistochemical Analysis of Beclin-1, LC3, Mitochondria (AE-1), and Cathepsin D in Nasopharyngeal Lymphomas

    International Nuclear Information System (INIS)

    Hasui, Kazuhisa; Wang, Jia; Jia, Xinshan; Tanaka, Masashi; Nagai, Taku; Matsuyama, Takami; Eizuru, Yoshito

    2011-01-01

    This study investigated autophagy in 37 cases of nasopharyngeal lymphomas including 23 nasal natural killer (NK)/T-cell lymphomas (NKTCL), 3 cytotoxic T-cell lymphomas (cytotoxic-TML) and 9 B-cell lymphomas (BML) by means of antigen-retrieval immunohistochemistry of beclin-1, LC3, mitochondria (AE-1) and cathepsin D. Peculiar necrosis was noted in EBV + lymphomas comprising 21 NKTCL, 2 cytotoxic-TML and 1 BML. Lymphomas without peculiar necrosis showed high expression of beclin-1, macrogranular cytoplasmal stain of LC3 with sporadic nuclear stain, a hallmark of autophagic cell death (ACD), some aggregated mitochondria and high expression of cathepsin D, suggesting a state of growth with enhanced autophagy with sporadic ACD. EBV + NKTCL with the peculiar necrosis, showed significantly low level of macrogranular staining of LC3, aggregated mitochondria and low expression of cathepsin D in the cellular areas when degenerative lymphoma cells showed decreased beclin-1, significantly advanced LC3-labeled autophagy, residual aggregated mitochondria and significantly reduced expression of cathepsin D, suggesting advanced autophagy with regional ACD. Consequently it was suggested that enhanced autophagy and reduced expression of lysosomal enzymes induced regional ACD under EBV infection in NKTCL

  2. Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer's disease (AD): relevance to AD prevention.

    Science.gov (United States)

    Ma, Qiu-Lan; Teter, Bruce; Ubeda, Oliver J; Morihara, Takashi; Dhoot, Dilsher; Nyby, Michael D; Tuck, Michael L; Frautschy, Sally A; Cole, Greg M

    2007-12-26

    Environmental and genetic factors, notably ApoE4, contribute to the etiology of late-onset Alzheimer's disease (LOAD). Reduced mRNA and protein for an apolipoprotein E (ApoE) receptor family member, SorLA (LR11) has been found in LOAD but not early-onset AD, suggesting that LR11 loss is not secondary to pathology. LR11 is a neuronal sorting protein that reduces amyloid precursor protein (APP) trafficking to secretases that generate beta-amyloid (Abeta). Genetic polymorphisms that reduce LR11 expression are associated with increased AD risk. However these polymorphisms account for only a fraction of cases with LR11 deficits, suggesting involvement of environmental factors. Because lipoprotein receptors are typically lipid-regulated, we postulated that LR11 is regulated by docosahexaenoic acid (DHA), an essential omega-3 fatty acid related to reduced AD risk and reduced Abeta accumulation. In this study, we report that DHA significantly increases LR11 in multiple systems, including primary rat neurons, aged non-Tg mice and an aged DHA-depleted APPsw AD mouse model. DHA also increased LR11 in a human neuronal line. In vivo elevation of LR11 was also observed with dietary fish oil in young rats with insulin resistance, a model for type II diabetes, another AD risk factor. These data argue that DHA induction of LR11 does not require DHA-depleting diets and is not age dependent. Because reduced LR11 is known to increase Abeta production and may be a significant genetic cause of LOAD, our results indicate that DHA increases in SorLA/LR11 levels may play an important role in preventing LOAD.

  3. Erythropoietin reduces neural and cognitive processing of fear in human models of antidepressant drug action

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla; O'Sullivan, Ursula; Harmer, Catherine J

    2007-01-01

    with reduced attention to fear. Erythropoietin additionally reduced recognition of fearful facial expressions without affecting recognition of other emotional expressions. These actions occurred in the absence of changes in hematological parameters. CONCLUSIONS: The present study demonstrates that Epo directly......) versus saline on the neural processing of happy and fearful faces in 23 healthy volunteers. Facial expression recognition was assessed outside the scanner. RESULTS: One week after administration, Epo reduced neural response to fearful versus neutral faces in the occipito-parietal cortex consistent...... study aimed to explore the effects of Epo on neural and behavioral measures of emotional processing relevant for depression and the effects of conventional antidepressant medication. METHODS: In the present study, we used functional magnetic resonance imaging to explore the effects of Epo (40,000 IU...

  4. Ecto-5'-Nucleotidase Overexpression Reduces Tumor Growth in a Xenograph Medulloblastoma Model.

    Directory of Open Access Journals (Sweden)

    Angélica R Cappellari

    Full Text Available Ecto-5'-nucleotidase/CD73 (ecto-5'-NT participates in extracellular ATP catabolism by converting adenosine monophosphate (AMP into adenosine. This enzyme affects the progression and invasiveness of different tumors. Furthermore, the expression of ecto-5'-NT has also been suggested as a favorable prognostic marker, attributing to this enzyme contradictory functions in cancer. Medulloblastoma (MB is the most common brain tumor of the cerebellum and affects mainly children.The effects of ecto-5'-NT overexpression on human MB tumor growth were studied in an in vivo model. Balb/c immunodeficient (nude 6 to 14-week-old mice were used for dorsal subcutaneous xenograph tumor implant. Tumor development was evaluated by pathophysiological analysis. In addition, the expression patterns of adenosine receptors were verified.The human MB cell line D283, transfected with ecto-5'-NT (D283hCD73, revealed reduced tumor growth compared to the original cell line transfected with an empty vector. D283hCD73 generated tumors with a reduced proliferative index, lower vascularization, the presence of differentiated cells and increased active caspase-3 expression. Prominent A1 adenosine receptor expression rates were detected in MB cells overexpressing ecto-5'-NT.This work suggests that ecto-5'-NT promotes reduced tumor growth to reduce cell proliferation and vascularization, promote higher differentiation rates and initiate apoptosis, supposedly by accumulating adenosine, which then acts through A1 adenosine receptors. Therefore, ecto-5'-NT might be considered an important prognostic marker, being associated with good prognosis and used as a potential target for therapy.

  5. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  6. Blocking mineralocorticoid receptors prior to retrieval reduces contextual fear memory in mice.

    Directory of Open Access Journals (Sweden)

    Ming Zhou

    Full Text Available BACKGROUND: Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs and glucocorticoid receptors (GRs respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory. METHODOLOGY/PRINCIPAL FINDINGS: Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2; tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3 and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point. CONCLUSIONS/SIGNIFICANCE: We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression.

  7. Progranulin expression in advanced human atherosclerotic plaque.

    Science.gov (United States)

    Kojima, Yoji; Ono, Koh; Inoue, Katsumi; Takagi, Yasushi; Kikuta, Ken-ichiro; Nishimura, Masaki; Yoshida, Yoshinori; Nakashima, Yasuhiro; Matsumae, Hironobu; Furukawa, Yutaka; Mikuni, Nobuhiro; Nobuyoshi, Masakiyo; Kimura, Takeshi; Kita, Toru; Tanaka, Makoto

    2009-09-01

    Progranulin (PGRN) is a unique growth factor that plays an important role in cutaneous wound healing. It has an anti-inflammatory effect and promotes cell proliferation. However, when it is degraded to granulin peptides (GRNs) by neutrophil proteases, a pro-inflammatory reaction occurs. Since injury, inflammation and repair are common features in the progression of atherosclerosis, it is conceivable that PGRN plays a role in atherogenesis. Immunohistochemical analysis of human carotid endoatherectomy specimens indicated that vascular smooth muscle cells (vSMCs) in the intima expressed PGRN. Some macrophages in the plaque also expressed PGRN. We assessed the effect of PGRN on a human monocytic leukemia cell line (THP-1) and human aortic smooth muscle cells (HASMCs). PGRN alone had no effect on HASMC or THP-1 proliferation or migration. However, when THP-1 cells were stimulated with MCP-1, the number of migrated cells decreased in a PGRN-dose-dependent manner. TNF-alpha-induced HASMC migration was enhanced only at 10nM of PGRN. Interleukin-8 (IL-8) secretion from HASMCs was reduced by forced expression of PGRN and increased by RNAi-mediated knockdown of PGRN. While exogenous treatment with recombinant PGRN decreased IL-8 secretion, degraded recombinant GRNs increased IL-8 secretion from HASMCs. The expression of PGRN mainly reduces inflammation and its degradation into GRNs enhances inflammation in atherosclerotic plaque and may contribute to the progression of atherosclerosis.

  8. Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2012-02-01

    BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced\\/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC.

  9. Lactococcus lactis NCC 2287 Alleviates Food Allergic Manifestations in Sensitized Mice by Reducing IL-13 Expression Specifically in the Ileum

    Directory of Open Access Journals (Sweden)

    Adrian W. Zuercher

    2012-01-01

    Full Text Available Objective. Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. Methods. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA plus cholera toxin (CT by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase or after sensitization (management phase. Results. Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1 and CCL17 (TARC in the ileum. No effect was observed in the jejunum. Conclusion/Significance. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms.

  10. Social Skills Training to Reduce Depression in Adolescents.

    Science.gov (United States)

    Reed, Michael K.

    1994-01-01

    Evaluated efficacy of Structured Learning Therapy (SLT), which focuses on developing social competencies, self-evaluation skills, and appropriate affective expression, in treating adolescent depression. Findings from 18 adolescents randomly assigned to either SLT treatment or control group suggest that SLT reliably reduced depression in males and…

  11. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Coshun, Mehmet; Mikkelsen Homburg, Keld

    2016-01-01

    analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX......The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation......2 to four different CDX2 binding sites in an enhancer region located upstream of the HOXB4 transcription start site. Mutations in the CDX2 binding sites reduced HOXB4 gene activity, and knock down of endogenous CDX2 expression by shRNA reduced HOXB4 gene expression. This is the first report...

  12. Altered Expression of the Malate-Permeable Anion Channel OsALMT4 Reduces the Growth of Rice Under Low Radiance

    OpenAIRE

    Jie Liu; Jie Liu; Muyun Xu; Gonzalo M. Estavillo; Emmanuel Delhaize; Rosemary G. White; Meixue Zhou; Peter R. Ryan

    2018-01-01

    We examined the function of OsALMT4 in rice (Oryza sativa L.) which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ...

  13. Pleasure Experience and Emotion Expression in Patients with Schizophrenia

    Science.gov (United States)

    CHU, Min-yi; LI, Xu; LV, Qin-yu; Yl, Zheng-hui; CHEUNG, Eric F. C.; CHAN, Raymond C. K.

    2017-01-01

    Background Impairments in emotional experience and expression have been observed in patients with schizophrenia. However, most previous studies have been limited to either emotional experience (especially anhedonia) or expression. Few studies have examined both the experience and expression of emotion in schizophrenia patients at the same time. Aims The present study aimed to examine pleasure experience and emotion expression in patients with schizophrenia. In particular, we specifically examined the relationship between emotion impairments (both pleasure experience and expression) and negative symptoms. Methods One hundred and fifty patients completed the Temporal Experience of Pleasure Scale and Emotional Expressivity Scale. Results Schizophrenia patients exhibited deficits in experiencing pleasure, but showed intact reported emotion expression. Patients with prominent negative symptoms showed reduced anticipatory pleasure, especially in abstract anticipatory pleasure. Conclusion The present findings suggest that patients with schizophrenia have deficits in pleasure experience, while their abilities to express emotion appear intact. Such deficits are more severe in patients with prominent negative symptoms. PMID:29276350

  14. The hepatic Raldh1 expression is elevated in Zucker fatty rats and its over-expression introduced the retinal-induced Srebp-1c expression in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available The roles of vitamin A (VA in the development of metabolic diseases remain unanswered. We have reported that retinoids synergized with insulin to induce the expression of sterol-regulatory element-binding protein 1c gene (Srebp-1c expression in primary rat hepatocytes. Additionally, the hepatic Srebp-1c expression is elevated in Zucker fatty (ZF rats, and reduced in those fed a VA deficient diet. VA is metabolized to retinoic acid (RA for regulating gene expression. We hypothesized that the expression of RA production enzymes contributes to the regulation of the hepatic Srebp-1c expression. Therefore, we analyzed their expression levels in Zucker lean (ZL and ZF rats. The mRNA levels of retinaldehyde dehydrogenase family 1 gene (Raldh1 were found to be higher in the isolated and cultured primary hepatocytes from ZF rats than that from ZL rats. The RALDH1 protein level was elevated in the liver of ZF rats. Retinol and retinal dose- and time-dependently induced the expression of RA responsive Cyp26a1 gene in hepatocytes and hepatoma cells. INS-1 cells were identified as an ideal tool to study the effects of RA production on the regulation of gene expression because only RA, but not retinal, induced Srebp-1c mRNA expression in them. Recombinant adenovirus containing rat Raldh1 cDNA was made and used to infect INS-1 cells. The over-expression of RALDH1 introduced the retinal-mediated induction of Srebp-1c expression in INS-1 cells. We conclude that the expression levels of the enzymes for RA production may contribute to the regulation of RA responsive genes, and determine the responses of the cells to retinoid treatments. The elevated hepatic expression of Raldh1 in ZF rats may cause the excessive RA production from retinol, and in turn, result in higher Srebp-1c expression. This excessive RA production may be one of the factors contributing to the elevated lipogenesis in the liver of ZF rats.

  15. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-δ

    International Nuclear Information System (INIS)

    Yan Zhencheng; Liu Daoyan; Zhang Lili; Shen Chenyi; Ma Qunli; Cao Tingbing; Wang Lijuan; Nie Hai; Zidek, Walter; Tepel, Martin; Zhu Zhiming

    2007-01-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-δ (PPAR-δ)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-δ. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-δ. Furthermore, selective silencing of PPAR-δ by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 ± 0.06 (n = 3) to 1.91 ± 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-δ significantly reduced CB1 expression to 0.39 ± 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-δ. Both CB1 and PPAR-δ are intimately involved in therapeutic interventions against a most important cardiovascular risk factor

  16. Reduced brain-derived neurotrophic factor expression in cortex and hippocampus involved in the learning and memory deficit in molarless SAMP8 mice

    Institute of Scientific and Technical Information of China (English)

    JIANG Qing-song; LIANG Zi-liang; WU Min-Jie; FENG Lin; LIU Li-li; ZHANG Jian-jun

    2011-01-01

    effect was accompanied by significantly reduced BDNF expression in the cortex and hippocampus.

  17. Cafestol overcomes ABT-737 resistance in Mcl-1-overexpressed renal carcinoma Caki cells through downregulation of Mcl-1 expression and upregulation of Bim expression.

    Science.gov (United States)

    Woo, S M; Min, K-J; Seo, B R; Nam, J-O; Choi, K S; Yoo, Y H; Kwon, T K

    2014-11-06

    Although ABT-737, a small-molecule Bcl-2/Bcl-xL inhibitor, has recently emerged as a novel cancer therapeutic agent, ABT-737-induced apoptosis is often blocked in several types of cancer cells with elevated expression of Mcl-1. Cafestol, one of the major compounds in coffee beans, has been reported to have anti-carcinogenic activity and tumor cell growth-inhibitory activity, and we examined whether cafestol could overcome resistance against ABT-737 in Mcl-1-overexpressed human renal carcinoma Caki cells. ABT-737 alone had no effect on apoptosis, but cafestol markedly enhanced ABT-737-mediated apoptosis in Mcl-1-overexpressed Caki cells, human glioma U251MG cells, and human breast carcinoma MDA-MB231 cells. By contrast, co-treatment with ABT-737 and cafestol did not induce apoptosis in normal human skin fibroblast. Furthermore, combined treatment with cafestol and ABT-737 markedly reduced tumor growth compared with either drug alone in xenograft models. We found that cafestol inhibited Mcl-1 protein expression, which is important for ABT-737 resistance, through promotion of protein degradation. Moreover, cafestol increased Bim expression, and siRNA-mediated suppression of Bim expression reduced the apoptosis induced by cafestol plus ABT-737. Taken together, cafestol may be effectively used to enhance ABT-737 sensitivity in cancer therapy via downregulation of Mcl-1 expression and upregulation of Bim expression.

  18. Bexarotene reduces blood-brain barrier permeability in cerebral ischemia-reperfusion injured rats.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available Matrix metalloproteinase-9 (MMP-9 over-expression disrupts the blood-brain barrier (BBB in the ischemic brain. The retinoid X receptor agonist bexarotene suppresses MMP-9 expression in endothelial cells and displays neuroprotective effects. Therefore, we hypothesized that bexarotene may have a beneficial effect on I/R-induced BBB dysfunction.A total of 180 rats were randomized into three groups (n = 60 each: (i a sham-operation group, (ii a cerebral ischemia-reperfusion (I/R group, and (iii an I/R+bexarotene group. Brain water content was measured by the dry wet weight method. BBB permeability was analyzed by Evans Blue staining and the magnetic resonance imaging contrast agent Omniscan. MMP-9 mRNA expression, protein expression, and activity were assessed by reverse transcription polymerase chain reaction, Western blotting, and gelatin zymography, respectively. Apolipoprotein E (apoE, claudin-5, and occludin expression were analyzed by Western blotting.After 24 h, 48 h, and 72 h post-I/R, several effects were observed with bexarotene administration: (i brain water content and BBB permeability were significantly reduced; (ii MMP-9 mRNA and protein expression as well as activity were significantly decreased; (iii claudin-5 and occludin expression were significantly increased; and (iv apoE expression was significantly increased.Bexarotene decreases BBB permeability in rats with cerebral I/R injury. This effect may be due in part to bexarotene's upregulation of apoE expression, which has been previously shown to reduce BBB permeability through suppressing MMP-9-mediated degradation of the tight junction proteins claudin-5 and occludin. This work offers insight to aid future development of therapeutic agents for cerebral I/R injury in human patients.

  19. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways.

    Science.gov (United States)

    Doeppner, Thorsten R; Kaltwasser, Britta; Sanchez-Mendoza, Eduardo H; Caglayan, Ahmet B; Bähr, Mathias; Hermann, Dirk M

    2017-03-01

    Lithium promotes acute poststroke neuronal survival, which includes mechanisms that are not limited to GSK3β inhibition. However, whether lithium induces long-term neuroprotection and enhanced brain remodeling is unclear. Therefore, mice were exposed to transient middle cerebral artery occlusion and lithium (1 mg/kg bolus followed by 2 mg/kg/day over up to 7 days) was intraperitoneally administered starting 0-9 h after reperfusion onset. Delivery of lithium no later than 6 h reduced infarct volume on day 2 and decreased brain edema, leukocyte infiltration, and microglial activation, as shown by histochemistry and flow cytometry. Lithium-induced neuroprotection persisted throughout the observation period of 56 days and was associated with enhanced neurological recovery. Poststroke angioneurogenesis and axonal plasticity were also enhanced by lithium. On the molecular level, lithium increased miR-124 expression, reduced RE1-silencing transcription factor abundance, and decreased protein deubiquitination in cultivated cortical neurons exposed to oxygen-glucose deprivation and in brains of mice exposed to cerebral ischemia. Notably, this effect was not mimicked by pharmacological GSK3β inhibition. This study for the first time provides efficacy data for lithium in the postacute ischemic phase, reporting a novel mechanism of action, i.e. increased miR-124 expression facilitating REST degradation by which lithium promotes postischemic neuroplasticity and angiogenesis.

  20. Sulphomucin expression in ileal pouches: emerging differences between ulcerative colitis and familial adenomatous polyposis pouches.

    LENUS (Irish Health Repository)

    Bambury, Niamh

    2012-02-03

    PURPOSE: We characterized the expression of sialomucin and sulphomucin in pouches fashioned for familial adenomatous polyposis and ulcerative colitis. We correlated sulphomucin expression with bacterial colonization and mucosal inflammation. METHODS: Ethical approval and informed consent were obtained. Mucosal biopsies from 9 patients with familial adenomatous polyposis and 12 with ulcerative colitis were obtained. Sulphomucin levels were assessed by using the high iron-diamine stain. Mucous gel layer composition was correlated with villous height, crypt depth, and total mucosal thickness. Mucous gel layer composition was correlated with acute and chronic inflammatory infiltrates. Colonization by a panel of seven bacterial species (including sulphate reducing bacteria) was established and correlated with sulphomucin levels. RESULTS: High-iron-diamine positivity (i.e., sulphomucin expression) was greater in ulcerative colitis pouch mucous gel (2.083 +\\/- 0.5 vs. 0.556 +\\/- 0.4, P = 0.003). Sulphomucin expression correlated with reduced crypt depth, villous height, and total mucosal thickness. In the ulcerative colitis group, chronic inflammatory infiltrate scores were significantly greater for high-iron-diamine-positive patients. Colonization by sulphate reducing bacteria was increased in high-iron-diamine-positive patients. CONCLUSIONS: Sulphomucin expression is increased in the mucous gel layer of the ulcerative colitis pouch compared with that of the familial adenomatous polyposis pouch. Sulphomucin expression is associated with colonization by sulphate-reducing bacteria and increased chronic inflammation.

  1. Liraglutide, a GLP-1 Receptor Agonist, Which Decreases Hypothalamic 5-HT2A Receptor Expression, Reduces Appetite and Body Weight Independently of Serotonin Synthesis in Mice

    Directory of Open Access Journals (Sweden)

    Katsunori Nonogaki

    2018-01-01

    Full Text Available A recent report suggested that brain-derived serotonin (5-HT is critical for maintaining weight loss induced by glucagon-like peptide-1 (GLP-1 receptor activation in rats and that 5-HT2A receptors mediate the feeding suppression and weight loss induced by GLP-1 receptor activation. Here, we show that changes in daily food intake and body weight induced by intraperitoneal administration of liraglutide, a GLP-1 receptor agonist, over 4 days did not differ between mice treated with the tryptophan hydroxylase (Tph inhibitor p-chlorophenylalanine (PCPA for 3 days and mice without PCPA treatment. Treatment with PCPA did not affect hypothalamic 5-HT2A receptor expression. Despite the anorexic effect of liraglutide disappearing after the first day of treatment, the body weight loss induced by liraglutide persisted for 4 days in mice treated with or without PCPA. Intraperitoneal administration of liraglutide significantly decreased the gene expression of hypothalamic 5-HT2A receptors 1 h after injection. Moreover, the acute anorexic effects of liraglutide were blunted in mice treated with the high-affinity 5-HT2A agonist (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl methylamine hydrobromide 14 h or 24 h before liraglutide injection. These findings suggest that liraglutide reduces appetite and body weight independently of 5-HT synthesis in mice, whereas GLP-1 receptor activation downregulates the gene expression of hypothalamic 5-HT2A receptors.

  2. Differential gene expression profile in pig adipose tissue treated with/without clenbuterol

    Directory of Open Access Journals (Sweden)

    Deng Xue M

    2007-11-01

    Full Text Available Abstract Background Clenbuterol, a beta-agonist, can dramatically reduce pig adipose accumulation at high dosages. However, it has been banned in pig production because people who eat pig products treated with clenbuterol can be poisoned by the clenbuterol residues. To understand the molecular mechanism for this fat reduction, cDNA microarray, real-time PCR, two-dimensional electrophoresis and mass spectra were used to study the differential gene expression profiles of pig adipose tissues treated with/without clenbuterol. The objective of this research is to identify novel genes and physiological pathways that potentially facilitate clenbuterol induced reduction of adipose accumulation. Results Clenbuterol was found to improve the lean meat percentage about 10 percent (P Conclusion Pig fat accumulation was reduced dramatically with clenbuterol treatment. Histological sections and global evaluation of gene expression after administration of clenbuterol in pigs identified profound changes in adipose cells. With clenbuterol stimulation, adipose cell volumes decreased and their gene expression profile changed, which indicate some metabolism processes have been also altered. Although the biological functions of the differentially expressed genes are not completely known, higher expressions of these molecules in adipose tissue might contribute to the reduction of fat accumulation. Among these genes, five lipid metabolism related genes were of special interest for further study, including apoD and apoR. The apoR expression was increased at both the RNA and protein levels. The apoR may be one of the critical molecules through which clenbuterol reduces fat accumulation.

  3. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  4. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity.

    Science.gov (United States)

    Lindinger, Peter W; Christe, Martine; Eberle, Alex N; Kern, Beatrice; Peterli, Ralph; Peters, Thomas; Jayawardene, Kamburapola J I; Fearnley, Ian M; Walker, John E

    2015-09-01

    Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  5. Electroacupuncture Reduces Carrageenan- and CFA-Induced Inflammatory Pain Accompanied by Changing the Expression of Nav1.7 and Nav1.8, rather than Nav1.9, in Mice Dorsal Root Ganglia.

    Science.gov (United States)

    Huang, Chun-Ping; Chen, Hsiang-Ni; Su, Hong-Lin; Hsieh, Ching-Liang; Chen, Wei-Hsin; Lai, Zhen-Rung; Lin, Yi-Wen

    2013-01-01

    Several voltage-gated sodium channels (Navs) from nociceptive nerve fibers have been identified as important effectors in pain signaling. The objective of this study is to investigate the electroacupuncture (EA) analgesia mechanism by changing the expression of Navs in mice dorsal root ganglia (DRG). We injected carrageenan and complete Freund's adjuvant (CFA) into the mice plantar surface of the hind paw to induce inflammation and examined the antinociception effect of EA at the Zusanli (ST36) acupoint at 2 Hz low frequency. Mechanical hyperalgesia was evaluated by using electronic von Frey filaments, and thermal hyperalgesia was assessed using Hargreaves' test. Furthermore, we observed the expression and quality of Navs in DRG neurons. Our results showed that EA reduced mechanical and thermal pain in inflammatory animal model. The expression of Nav1.7 and Nav1.8 was increased after 4 days of carrageenan- and CFA-elicited inflammatory pain and further attenuated by 2 Hz EA stimulation. The attenuation cannot be observed in Nav1.9 sodium channels. We demonstrated that EA at Zusanli (ST36) acupoint at 2 Hz low-frequency stimulation attenuated inflammatory pain accompanied by decreasing the expression of Nav1.7 and 1.8, rather than Nav1.9, sodium channels in peripheral DRG neurons.

  6. Neuropilin-2 expression in breast cancer: correlation with lymph node metastasis, poor prognosis, and regulation of CXCR4 expression

    International Nuclear Information System (INIS)

    Yasuoka, Hironao; Kodama, Rieko; Tsujimoto, Masahiko; Yoshidome, Katsuhide; Akamatsu, Hiroki; Nakahara, Masaaki; Inagaki, Michiya; Sanke, Tokio; Nakamura, Yasushi

    2009-01-01

    Neuropilin-2 (Nrp2) is a receptor for vascular endothelial growth factor-C (VEGF-C), which is a well-known lymphangiogenic factor and plays an important role in lymph node metastasis of various human cancers, including breast cancer. Recently, Nrp2 was shown to play a role in cancer by promoting tumor cell metastasis. CXC chemokine receptor 4 (CXCR4) also promotes tumor metastasis. In the previous studies, we demonstrated that VEGF-C and cytoplasmic CXCR4 expressions were correlated with poorer patient prognosis (BMC Cancer 2008,8:340; Breast Cancer Res Treat 2005, 91:125–132). The relationship between Nrp2 expression and lymph node metastasis, VEGF-C expression, CXCR4 expression, and other established clinicopathological variables (these data were cited in our previous papers), including prognosis, was analyzed in human breast cancer. Effects of neutralizing anti-Nrp2 antibody on CXCR4 expression and chemotaxis were assessed in MDA-MB-231 breast cancer cells. Nrp2 expression was observed in 53.1% (60 of 113) of the invasive breast carcinomas. Nrp2 expression was significantly correlated with lymph node metastasis, VEGF-C expression, and cytoplasmic CXCR4 expression. Survival curves determined by the Kaplan-Meier method showed that Nrp2 expression was associated with reduced overall survival. In multivariate analysis, Nrp2 expression emerged as a significant independent predictor for overall survival. Neutralizing anti-Nrp2 antibody blocks cytoplasmic CXCR4 expression and CXCR4-induced migration in MDA-MB-231 cells. Nrp2 expression was correlated with lymph node metastasis, VEGF-C expression, and cytoplasmic CXCR4 expression. Nrp2 expression may serve as a significant prognostic factor for long-term survival in breast cancer. Our data also showed a role for Nrp2 in regulating cytoplasmic CXCR4 expression in vitro

  7. Intestinal CREBH overexpression prevents high-cholesterol diet-induced hypercholesterolemia by reducing Npc1l1 expression

    Directory of Open Access Journals (Sweden)

    Takuya Kikuchi

    2016-11-01

    Conclusion: Intestinal CREBH regulates dietary cholesterol flow from the small intestine by controlling the expression of multiple intestinal transporters. We propose that intestinal CREBH could be a therapeutic target for hypercholesterolemia.

  8. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    Science.gov (United States)

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  9. WNK4 is an Adipogenic Factor and Its Deletion Reduces Diet-Induced Obesity in Mice

    Directory of Open Access Journals (Sweden)

    Daiei Takahashi

    2017-04-01

    Full Text Available The with-no-lysine kinase (WNK 4 gene is a causative gene in pseudohypoaldosteronism type II. Although WNKs are widely expressed in the body, neither their metabolic functions nor their extrarenal role is clear. In this study, we found that WNK4 was expressed in mouse adipose tissue and 3T3-L1 adipocytes. In mouse primary preadipocytes and in 3T3-L1 adipocytes, WNK4 was markedly induced in the early phase of adipocyte differentiation. WNK4 expression preceded the expression of key transcriptional factors PPARγ and C/EBPα. WNK4-siRNA-transfected 3T3-L1 cells and human mesenchymal stem cells showed reduced expression of PPARγ and C/EBPα and lipid accumulation. WNK4 protein affected the DNA-binding ability of C/EBPβ and thereby reduced PPARγ expression. In the WNK4−/− mice, PPARγ and C/EBPα expression were decreased in adipose tissues, and the mice exhibited partial resistance to high-fat diet-induced adiposity. These data suggest that WNK4 may be a proadipogenic factor, and offer insights into the relationship between WNKs and energy metabolism.

  10. Differential expression of IGFBPs in Laron syndrome-derived lymphoblastoid cell lines: Potential correlation with reduced cancer incidence.

    Science.gov (United States)

    Somri, Lina; Sarfstein, Rive; Lapkina-Gendler, Lena; Nagaraj, Karthik; Laron, Zvi; Bach, Leon A; Werner, Haim

    2018-04-01

    Laron syndrome (LS), or primary growth hormone (GH) insensitivity, is a growth disorder that results from mutation of the GH-receptor (GHR) gene leading to congenital insulin-like growth factor-1 (IGF-1) deficiency. Recent epidemiological studies have shown that LS patients are protected from cancer development. Genome-wide profiling identified genes and signaling pathways that are differentially represented in LS patients, and that may contribute to cancer protection. The present study was aimed at evaluating the hypothesis that IGF binding proteins (IGFBPs) are differentially expressed in LS, most probably as a result of low circulating levels of IGF-1. Furthermore, we postulated that IGFBPs might be differentially regulated by oxidative stress in this condition and, therefore, may contribute to cancer evasion. Our results show that IGFBP-3, which is predominantly protective, was highly expressed in LS-derived lymphoblastoid cells in comparison to control cells from the same ethnic group. On the other hand, levels of IGFBP-2, -4, -5, and -6 were diminished in LS patients, as demonstrated by RQ-PCR, Western immunoblots and confocal immunofluorescence. In addition, our data provide evidence for a pattern of IGFBP response to H 2 O 2 treatment that might be associated with distinct expression of apoptosis markers (BCL2, pro-caspase-9, pro-caspase-3) in LS. In summary, differential expression of specific IGFBPs in LS might be correlated with cellular mechanisms underlying cancer protection and, probably, additional phenotypes due to congenital IGF-1 deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Curcumin Protects against Atherosclerosis in Apolipoprotein E-Knockout Mice by Inhibiting Toll-like Receptor 4 Expression.

    Science.gov (United States)

    Zhang, Shanshan; Zou, Jun; Li, Peiyang; Zheng, Xiumei; Feng, Dan

    2018-01-17

    Toll-like receptor 4 (TLR4) has been reported to play a critical role in the pathogenesis of atherosclerosis, the current study aimed to investigate whether curcumin suppresses atherosclerosis development in ApoE-knockout (ApoE -/- ) mice by inhibiting TLR4 expression. ApoE -/- mice were fed a high-fat diet supplemented with or without curcumin (0.1% w/w) for 16 weeks. Curcumin supplementation significantly reduced TLR4 expression and macrophage infiltration in atherosclerotic plaques. Curcumin also reduced aortic interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression, nuclear factor-κB (NF-κB) activity, and plasma IL-1β, TNF-α, soluble VCAM-1 and ICAM-1 levels. In addition, aortic sinus sections revealed that curcumin treatment reduced the extent of atherosclerotic lesions and inhibited atherosclerosis development. In vitro, curcumin inhibited NF-κB activation in macrophages and reduced TLR4 expression induced by lipopolysaccharide. Our results indicate that curcumin protects against atherosclerosis at least partially by inhibiting TLR4 expression and its related inflammatory reaction.

  12. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo

    Science.gov (United States)

    Kawamura, Tomohiro; Wakabayashi, Nobunao; Shigemura, Norihisa; Huang, Chien-Sheng; Masutani, Kosuke; Tanaka, Yugo; Noda, Kentaro; Peng, Ximei; Takahashi, Toru; Billiar, Timothy R.; Okumura, Meinoshin; Toyoda, Yoshiya; Kensler, Thomas W.

    2013-01-01

    Hyperoxic lung injury is a major concern in critically ill patients who receive high concentrations of oxygen to treat lung diseases. Successful abrogation of hyperoxic lung injury would have a huge impact on respiratory and critical care medicine. Hydrogen can be administered as a therapeutic medical gas. We recently demonstrated that inhaled hydrogen reduced transplant-induced lung injury and induced heme oxygenase (HO)-1. To determine whether hydrogen could reduce hyperoxic lung injury and investigate the underlying mechanisms, we randomly assigned rats to four experimental groups and administered the following gas mixtures for 60 h: 98% oxygen (hyperoxia), 2% nitrogen; 98% oxygen (hyperoxia), 2% hydrogen; 98% balanced air (normoxia), 2% nitrogen; and 98% balanced air (normoxia), 2% hydrogen. We examined lung function by blood gas analysis, extent of lung injury, and expression of HO-1. We also investigated the role of NF-E2-related factor (Nrf) 2, which regulates HO-1 expression, by examining the expression of Nrf2-dependent genes and the ability of hydrogen to reduce hyperoxic lung injury in Nrf2-deficient mice. Hydrogen treatment during exposure to hyperoxia significantly improved blood oxygenation, reduced inflammatory events, and induced HO-1 expression. Hydrogen did not mitigate hyperoxic lung injury or induce HO-1 in Nrf2-deficient mice. These findings indicate that hydrogen gas can ameliorate hyperoxic lung injury through induction of Nrf2-dependent genes, such as HO-1. The findings suggest a potentially novel and applicable solution to hyperoxic lung injury and provide new insight into the molecular mechanisms and actions of hydrogen. PMID:23475767

  13. Altered neurotransmitter expression profile in the ganglionic bowel in Hirschsprung's disease.

    Science.gov (United States)

    Coyle, David; O'Donnell, Anne Marie; Gillick, John; Puri, Prem

    2016-05-01

    Despite having optimal pull-through (PT) surgery for Hirschsprung's disease (HSCR), many patients experience persistent bowel symptoms with no mechanical/histopathological cause. Murine models of HSCR suggest that expression of key neurotransmitters is unbalanced proximal to the aganglionic colonic segment. We aimed to investigate expression of key enteric neurotransmitters in the colon of children with HSCR. Full-length PT specimens were collected fresh from children with HSCR (n=10). Control specimens were collected at colostomy closure from children with anorectal malformation (n=8). The distributions of neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and substance P (SP) were evaluated using immunofluorescence and confocal microscopy. Neurotransmitter quantification was with Western blot analysis. ChAT expression was high in aganglionic bowel and transition zone but reduced in ganglionic bowel in HSCR relative to controls. Conversely, nNOS expression was markedly reduced in aganglionic bowel but high in ganglionic bowel in HSCR relative to controls. VIP expression was similar in ganglionic HSCR and control colon. SP expression was similar in all tissue types. Imbalance of key excitatory and inhibitory neurotransmitters in the ganglionic bowel in HSCR may explain the basis of bowel dysmotility after an optimal pull-through operation in some patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. FXYD-3 expression in relation to local recurrence of rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Loftas, Per; Arbman, Gunnar; Sun, Xiao Feng; Hallbook, Olof [Dept. of Clinical and Experimental Medicine, Linkoping University, Norrkoping (Sweden); Edler, David [Dept. of Surgery, Karolinska Institute, Stockholm (Sweden); Syk, Erik [Dept. of Surgery, Ersta Hospital, Stockholm (Sweden)

    2016-03-15

    In a previous study, the transmembrane protein FXYD-3 was suggested as a biomarker for a lower survival rate and reduced radiosensitivity in rectal cancer patients receiving preoperative radiotherapy. The purpose of preoperative irradiation in rectal cancer is to reduce local recurrence. The aim of this study was to investigate the potential role of FXYD-3 as a biomarker for increased risk for local recurrence of rectal cancer. FXYD-3 expression was immunohistochemically examined in surgical specimens from a cohort of patients with rectal cancer who developed local recurrence (n = 48). The cohort was compared to a matched control group without recurrence (n = 81). Weak FXYD-3 expression was found in 106/129 (82%) of the rectal tumors and strong expression in 23/129 (18%). There was no difference in the expression of FXYD-3 between the patients with local recurrence and the control group. Furthermore there was no difference in FXYD-3 expression and time to diagnosis of local recurrence between patients who received preoperative radiotherapy and those without. Previous findings indicated that FXYD-3 expression may be used as a marker of decreased sensitivity to radiotherapy or even overall survival. We were unable to confirm this in a cohort of rectal cancer patients who developed local recurrence.

  15. FXYD-3 expression in relation to local recurrence of rectal cancer

    International Nuclear Information System (INIS)

    Loftas, Per; Arbman, Gunnar; Sun, Xiao Feng; Hallbook, Olof; Edler, David; Syk, Erik

    2016-01-01

    In a previous study, the transmembrane protein FXYD-3 was suggested as a biomarker for a lower survival rate and reduced radiosensitivity in rectal cancer patients receiving preoperative radiotherapy. The purpose of preoperative irradiation in rectal cancer is to reduce local recurrence. The aim of this study was to investigate the potential role of FXYD-3 as a biomarker for increased risk for local recurrence of rectal cancer. FXYD-3 expression was immunohistochemically examined in surgical specimens from a cohort of patients with rectal cancer who developed local recurrence (n = 48). The cohort was compared to a matched control group without recurrence (n = 81). Weak FXYD-3 expression was found in 106/129 (82%) of the rectal tumors and strong expression in 23/129 (18%). There was no difference in the expression of FXYD-3 between the patients with local recurrence and the control group. Furthermore there was no difference in FXYD-3 expression and time to diagnosis of local recurrence between patients who received preoperative radiotherapy and those without. Previous findings indicated that FXYD-3 expression may be used as a marker of decreased sensitivity to radiotherapy or even overall survival. We were unable to confirm this in a cohort of rectal cancer patients who developed local recurrence

  16. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    Science.gov (United States)

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  17. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im

    2011-04-21

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  18. Downregulation of CXCR4 Expression and Functionality After Zoledronate Exposure in Canine Osteosarcoma.

    Science.gov (United States)

    Byrum, M L; Pondenis, H C; Fredrickson, R L; Wycislo, K L; Fan, T M

    2016-07-01

    The establishment and progression of metastases remains the life-limiting factor for dogs diagnosed with osteosarcoma (OS). The pattern of metastases is likely regulated through interactions between chemokine receptors and chemokines, and perturbations in these signaling cascades responsible for cytoskeletal organization and directional migration have the potential to alter metastatic cell trafficking behaviors. Zoledronate will impair directional migration of OS cells through downregulation of chemokine (C-X-C motif) receptor 4 (CXCR4) expression and functionality. Nineteen archived tumor specimens and plasma from 20 dogs with OS. Prospectively, the expressions of CXCR4 were studied in OS cell lines and spontaneous tumor samples. The effect of zoledronate on CXCR4 expression and functionality was investigated by characterizing responses in 3 OS cell lines. In 19 OS specimens and 20 dogs with OS, changes in CXCR4 expression and circulating CXCR4 concentrations were characterized in response to zoledronate therapy respectively. All canine OS cells express CXCR4, and zoledronate reduces CXCR4 expression and functionality by 27.7% (P < .0001), through augmented proteasome degradation and reduced prenylation of heterotrimeric G-proteins in 33% of tumor cell lines evaluated. In OS-bearing dogs, zoledronate reduces CXCR4 expressions by 40% within the primary tumor compared to untreated controls (P = .03) and also decreases the circulating concentrations of CXCR4 in 18 of 20 dogs with OS. Zoledronate can alter CXCR4 expression and functionality in OS cells, and consequent perturbations in CXCR4 intracellular signaling cascades might influence patterns of metastases. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  19. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity

    Directory of Open Access Journals (Sweden)

    Peter W. Lindinger

    2015-09-01

    Full Text Available Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  20. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  1. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression

  2. Gastrointestinal hyperplasia with altered expression of DNA polymerase beta.

    Directory of Open Access Journals (Sweden)

    Katsuhiko Yoshizawa

    2009-08-01

    Full Text Available Altered expression of DNA polymerase beta (Pol beta has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol beta over-expression has not yet been evaluated in a mouse model.We have recently developed a novel transgenic mouse model that over-expresses Pol beta. These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol beta over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol beta expression. We observed elevated expression of Pol beta in stomach adenomas and thyroid follicular carcinomas, but reduced Pol beta expression in esophageal adenocarcinomas and squamous carcinomas.These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation.

  3. Cigarette smoking decreases global microRNA expression in human alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Joel W Graff

    Full Text Available Human alveolar macrophages are critical components of the innate immune system. Cigarette smoking-induced changes in alveolar macrophage gene expression are linked to reduced resistance to pulmonary infections and to the development of emphysema/COPD. We hypothesized that microRNAs (miRNAs could control, in part, the unique messenger RNA (mRNA expression profiles found in alveolar macrophages of cigarette smokers. Activation of macrophages with different stimuli in vitro leads to a diverse range of M1 (inflammatory and M2 (anti-inflammatory polarized phenotypes that are thought to mimic activated macrophages in distinct tissue environments. Microarray mRNA data indicated that smoking promoted an "inverse" M1 mRNA expression program, defined by decreased expression of M1-induced transcripts and increased expression of M1-repressed transcripts with few changes in M2-regulated transcripts. RT-PCR arrays identified altered expression of many miRNAs in alveolar macrophages of smokers and a decrease in global miRNA abundance. Stratification of human subjects suggested that the magnitude of the global decrease in miRNA abundance was associated with smoking history. We found that many of the miRNAs with reduced expression in alveolar macrophages of smokers were predicted to target mRNAs upregulated in alveolar macrophages of smokers. For example, miR-452 is predicted to target the transcript encoding MMP12, an important effector of smoking-related diseases. Experimental antagonism of miR-452 in differentiated monocytic cells resulted in increased expression of MMP12. The comprehensive mRNA and miRNA expression profiles described here provide insight into gene expression regulation that may underlie the adverse effects cigarette smoking has on alveolar macrophages.

  4. Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis.

    Science.gov (United States)

    von Walden, Ferdinand; Gantelius, Stefan; Liu, Chang; Borgström, Hanna; Björk, Lars; Gremark, Ola; Stål, Per; Nader, Gustavo A; Pontén, Eva

    2018-03-23

    Children with cerebral palsy (CP) and acquired brain injury (ABI) commonly develop muscle contractures with advancing age. An underlying growth defect contributing to skeletal muscle contracture formation in CP/ABI has been suggested. The biceps muscles of children and adolescents with CP/ABI (n=20) and typically developing controls (n=10) were investigated. We used immunohistochemistry, qRT-PCR and western blotting to assess gene expression relevant to growth and size homeostasis. Classical pro-inflammatory cytokines and genes involved in extracellular matrix production were elevated in skeletal muscle of children with CP/ABI. Intramuscular collagen content was increased and satellite cell number decreased and this was associated with reduced levels of RNA polymerase (POL) I transcription factors, 45s pre-rRNA and 28S rRNA. The present study provides novel data suggesting a role for pro-inflammatory cytokines and reduced ribosomal production in the development/maintenance of muscle contractures; possibly underlying stunted growth and perimysial extracellular matrix expansion. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  5. P02.04MICRORNA-MEDIATED DOWN-REGULATION OF NKG2D LIGAND EXPRESSION REDUCES GLIOMA CELL IMMUNOGENICITY

    Science.gov (United States)

    Codo, P.; Weller, M.; Meister, G.; Szabo, E.; Steinle, A.; Wolter, M.; Reifenberger, G.; Roth, P.

    2014-01-01

    Glioblastoma is a primary brain tumor with a dismal prognosis despite comprehensive therapeutic regimens. It is characterized by diffuse infiltration of the surrounding healthy brain tissue, well-adapted to hypoxic conditions and regarded as paradigmatic for tumor-associated immunosuppression. One of the major activating receptors of natural killer (NK) cells is NKG2D. It binds to at least 8 ligands (NKG2DL) which are induced after malignant transformation and cellular stress. Regulation of NKG2DL expression may be affected by endogenous RNA molecules known as microRNA (miRNA). Here, we aimed at characterizing the role of miRNA in the control of NKG2DL expression in glioma cells. We selected 6 miRNA that were described or predicted to target NKG2DL. Three of the miRNA candidates, miR-20a, miR-93 and miR-106b, were expressed in glioma cell lines and were also detected in glioblastoma tissue specimens. Silencing of these miRNA with locked nucleic acid (LNA) molecules resulted in an up-regulation of NKG2DL cell surface levels which translated into increased sensitivity to immune cell killing. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced immune cell lysis upon miRNA silencing was mediated through the NKG2D system. We conclude that the expression of several miRNA may contribute to the immune escape of glioma cells at the level of the NKG2D system. Therapeutic targeting of miRNA that regulate NKG2DL levels may therefore represent a promising approach to allow for more potent immune responses against glioblastoma.

  6. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    Directory of Open Access Journals (Sweden)

    Rebecca L Skalsky

    Full Text Available Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  7. Polyphenol-Rich Extract from Propolis Reduces the Expression and Activity of Streptococcus mutans Glucosyltransferases at Subinhibitory Concentrations

    Directory of Open Access Journals (Sweden)

    Jorge Jesús Veloz

    2016-01-01

    Full Text Available Tooth decay is an infectious disease, whose main causative agent identified is Streptococcus mutans (S. mutans. Diverse treatments have been used to eradicate this microorganism, including propolis. To date, it has been shown that polyphenols from Chilean propolis inhibit S. mutans growth and biofilm formation. However, the molecular mechanisms underlying this process are unclear. In the present study, we assessed the effect of Chilean propolis on the expression and activity of the glycosyltransferases enzymes and their related genes. Polyphenol-rich extract from propolis inhibited gene expression of glycosyltransferases (GtfB, GtfC, and GtfD and their related regulatory genes, for example, VicK, VicR, and CcpA. Moreover, the treatment inhibited glucosyltransferases activity measured by the formation of sucrose-derived glucans. Additionally, an inhibitory effect was observed in the expression of SpaP involved in sucrose-independent virulence of S. mutans. In summary, our results suggest that Chilean propolis has a dose-dependent effect on the inhibition of genes involved in S. mutans virulence and adherence through the inhibition of glucosyltransferases, showing an anticariogenic potential of polyphenols from propolis beyond S. mutans growth inhibition.

  8. Increased intracellular proteolysis reduces disease severity in an ER stress-associated dwarfism.

    Science.gov (United States)

    Mullan, Lorna A; Mularczyk, Ewa J; Kung, Louise H; Forouhan, Mitra; Wragg, Jordan Ma; Goodacre, Royston; Bateman, John F; Swanton, Eileithyia; Briggs, Michael D; Boot-Handford, Raymond P

    2017-10-02

    The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress-associated dwarfism MCDS.

  9. Phaleria macrocarpa Boerl. (Thymelaeaceae Leaves Increase SR-BI Expression and Reduce Cholesterol Levels in Rats Fed a High Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Yosie Andriani

    2015-03-01

    Full Text Available In vitro and in vivo studies of the activity of Phaleria macrocarpa Boerl (Thymelaeaceae leaves against the therapeutic target for hypercholesterolemia were done using the HDL receptor (SR-BI and hypercholesterolemia-induced Sprague Dawley rats. The in vitro study showed that the active fraction (CF6 obtained from the ethyl acetate extract (EMD and its component 2',6',4-trihydroxy-4'-methoxybenzophenone increased the SR-BI expression by 95% and 60%, respectively. The in vivo study has proven the effect of EMD at 0.5 g/kgbw dosage in reducing the total cholesterol level by 224.9% and increasing the HDL cholesterol level by 157% compared to the cholesterol group. In the toxicity study, serum glutamate oxalate transaminase (SGOT and serum glutamate pyruvate transaminase (SGPT activity were observed to be at normal levels. The liver histology also proved no toxicity and abnormalities in any of the treatment groups, so it can be categorized as non-toxic to the rat liver. The findings taken together show that P. macrocarpa leaves are safe and suitable as an alternative control and prevention treatment for hypercholesterolemia in Sprague Dawley rats.

  10. Developmental retardation, reduced fecundity, and modulated expression of the defensome in the intertidal copepod Tigriopus japonicus exposed to BDE-47 and PFOS.

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Lee, Min-Chul; Seo, Jung Soo; Lee, Su-Jae; Lee, Jae-Seong

    2015-08-01

    2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and perfluorooctane sulfonate (PFOS) are widely dispersed persistent organic pollutants (POPs) in the marine ecosystem. However, their toxic effects on marine organisms are still poorly understood. In this study, we investigated the effects of BDE-47 and PFOS on development and reproduction at the organismal level and reactive oxygen species (ROS) production and gene expression patterns of the defensome at the cellular level in the intertidal copepod Tigriopus japonicus. In copepods exposed to BDE-47 and PFOS, we observed developmental retardation and reduced fecundity, suggesting repercussions on in vivo endpoints through alterations to the normal molting and reproduction system of T. japonicus. BDE-47 and PFOS increased levels of ROS in T. japonicus in a concentration-dependent manner, indicating that POPs can induce oxidative stress through the generation of ROS. Additionally, transcript profiles of genes related to detoxification (e.g., CYPs), antioxidant functions (e.g., GST- sigma, catalase, MnSOD), apoptosis (e.g., p53, Rb), and cellular proliferation (e.g., PCNA) were modulated over 72h in response to BDE-47 (120μg/L) and PFOS (1000μg/L). These findings indicate that BDE-47 and PFOS can induce oxidative stress-mediated DNA damage repair systems with transcriptional regulation of detoxification, antioxidant, and apoptosis-related genes, resulting in developmental retardation and reduced fecundity in the copepod T. japonicus. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis.

    Science.gov (United States)

    Terzuoli, Erika; Donnini, Sandra; Giachetti, Antonio; Iñiguez, Miguel A; Fresno, Manuel; Melillo, Giovanni; Ziche, Marina

    2010-08-15

    2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.

  12. MyD88 expression in the rat dental follicle: Implications for osteoclastogenesis and tooth eruption

    Science.gov (United States)

    Liu, Dawen; Yao, Shaomian; Wise, Gary E.

    2010-01-01

    Myeloid differentiation factor 88 (MyD88) is a key adaptor molecule in the interleukin-1 (IL-1) and IL-18 Toll-like receptor signaling pathway. Because it is present in dental follicle (DF) cells in vitro, the purpose of this study was to determine its chronological expression in vivo, as well as its possible role in osteoclastogenesis and tooth eruption. An oligo DNA microarray was used to determine gene expression of MyD88 in vivo in the DFs from the first mandibular molars of postnatal rats from days 1–11. The results showed that MyD88 was expressed maximally at day 3. Using siRNA to knock down MyD88 expression in the DF cells also reduced the gene expression of nuclear factor-kappa B-1 (NFKB1) and monocyte chemoattractant protein 1 (MCP-1). IL-1α up-regulated the expression of NFKB1, MCP-1 and receptor activator of nuclear factor kappa B ligand (RANKL), but knockdown of MyD88 nullified this IL-1α effect. Conditioned medium from DF cells with MyD88 knocked down reduced chemotactic activity for mononuclear cells and reduced osteoclastogenesis as opposed to controls. In conclusion, the maximal expression of MyD88 at day 3 in the DF may contribute to the major burst of osteoclastogenesis needed for eruption by up-regulating MCP-1 and RANKL expression. PMID:20662905

  13. Effects of Anger Awareness and Expression Training versus Relaxation Training on Headaches: A Randomized Trial

    Science.gov (United States)

    Slavin-Spenny, Olga; Lumley, Mark A.; Thakur, Elyse R.; Nevedal, Dana C.; Hijazi, Alaa M.

    2013-01-01

    Background and purpose Stress contributes to headaches, and effective interventions for headaches routinely include relaxation training (RT) to directly reduce negative emotions and arousal. Yet, suppressing negative emotions, particularly anger, appears to augment pain, and experimental studies suggest that expressing anger may reduce pain. Therefore, we developed and tested anger awareness and expression training (AAET) on people with headaches. Methods Young adults with headaches (N = 147) were randomized to AAET, RT, or a wait-list control. We assessed affect during sessions, and process and outcome variables at baseline and 4 weeks after treatment. Results On process measures, both interventions increased self-efficacy to manage headaches, but only AAET reduced alexithymia and increased emotional processing and assertiveness. Yet, both interventions were equally effective at improving headache outcomes relative to controls. Conclusions Enhancing anger awareness and expression may improve chronic headaches, although not more than RT. Researchers should study which patients are most likely to benefit from emotional expression versus emotional reduction approaches to chronic pain. PMID:23620190

  14. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    Science.gov (United States)

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  15. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.

    Science.gov (United States)

    Grabbe, Roman; Schmitz, Ruth A

    2003-04-01

    In Klebsiella pneumoniae, the flavoprotein, NifL regulates NifA mediated transcriptional activation of the N2-fixation (nif) genes in response to molecular O2 and ammonium. We investigated the influence of membrane-bound oxidoreductases on nif-regulation by biochemical analysis of purified NifL and by monitoring NifA-mediated expression of nifH'-'lacZ reporter fusions in different mutant backgrounds. NifL-bound FAD-cofactor was reduced by NADH only in the presence of a redox-mediator or inside-out vesicles derived from anaerobically grown K. pneumoniae cells, indicating that in vivo NifL is reduced by electrons derived from membrane-bound oxidoreductases of the anaerobic respiratory chain. This mechanism is further supported by three lines of evidence: First, K. pneumoniae strains carrying null mutations of fdnG or nuoCD showed significantly reduced nif-induction under derepressing conditions, indicating that NifL inhibition of NifA was not relieved in the absence of formate dehydrogenase-N or NADH:ubiquinone oxidoreductase. The same effect was observed in a heterologous Escherichia coli system carrying a ndh null allele (coding for NADH dehydrogenaseII). Second, studying nif-induction in K. pneumoniae revealed that during anaerobic growth in glycerol, under nitrogen-limitation, the presence of the terminal electron acceptor nitrate resulted in a significant decrease of nif-induction. The final line of evidence is that reduced quinone derivatives, dimethylnaphthoquinol and menadiol, are able to transfer electrons to the FAD-moiety of purified NifL. On the basis of these data, we postulate that under anaerobic and nitrogen-limited conditions, NifL inhibition of NifA activity is relieved by reduction of the FAD-cofactor by electrons derived from the reduced quinone pool, generated by anaerobic respiration, that favours membrane association of NifL. We further hypothesize that the quinol/quinone ratio is important for providing the signal to NifL.

  16. Hip pathology in Majewski osteodysplastic primordial dwarfism type II.

    Science.gov (United States)

    Karatas, Ali F; Bober, Michael B; Rogers, Kenneth; Duker, Angela L; Ditro, Colleen P; Mackenzie, William G

    2014-09-01

    Majewski osteodysplastic primordial dwarfism type II (MOPDII) is characterized by severe prenatal and postnatal growth failure with microcephaly, characteristic skeletal dysplasia, an increased risk for cerebrovascular disease, and insulin resistance. MOPDII is caused by mutations in the pericentrin (PCNT) gene and is inherited in an autosomal-recessive manner. This study aimed to determine the incidence of hip pathology in patients with molecularly confirmed MOPDII and to describe the functional outcomes of surgical treatment. Thirty-three enrolled patients had a clinical diagnosis of MOPDII. Biallelic PCNT mutations or absent pericentrin protein was confirmed in 25 of these patients. Twelve patients (7 female) had appropriate clinical and radiographic records at this institution and were included in this study. The data collected included age at presentation, age at surgery, sex, body weight and height, weight-bearing status at diagnosis, and the clinical examination. Four patients (31%) had coxa vara: 3 unilateral and 1 bilateral. Three unilateral patients had in situ pinning at a mean age 4 years. The patient with bilateral coxa vara had valgus osteotomy at the age of 5 years. Two children had bilateral hip dysplasia and subluxation with no surgery. One patient had bilateral developmental hip dislocations. The patient was treated by open reduction-spica cast and 2 years after surgery, coxa valga was noted. Another patient was diagnosed at an age of 12 years with bilateral avascular necrosis of the hips. Four patients did not have hip pathology. Hip pathology is common among children with MOPDII; coxa vara is the most frequent diagnosis. Routine clinical and radiographic hip evaluation is important. The capital femoral epiphysis appears to slip down along the shaft, giving the appearance of a proximal femoral epiphysiolysis. A hip diagnosed with slipped capital femoral epiphysis in early life may progress to severe coxa vara. Level IV.

  17. Molecular Characterization of Reduced Susceptibility to Biocides in Clinical Isolates of Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Fei Lin

    2017-09-01

    Full Text Available Active efflux is regarded as a common mechanism for antibiotic and biocide resistance. However, the role of many drug efflux pumps in biocide resistance in Acinetobacter baumannii remains unknown. Using biocide-resistant A. baumannii clinical isolates, we investigated the incidence of 11 known/putative antimicrobial resistance efflux pump genes (adeB, adeG, adeJ, adeT1, adeT2, amvA, abeD, abeM, qacE, qacEΔ1, and aceI and triclosan target gene fabI through PCR and DNA sequencing. Reverse transcriptase quantitative PCR was conducted to assess the correlation between the efflux pump gene expression and the reduced susceptibility to triclosan or chlorhexidine. The A. baumannii isolates displayed high levels of reduced susceptibility to triclosan, chlorhexidine, benzalkonium, hydrogen peroxide, and ethanol. Most tested isolates were resistant to multiple antibiotics. Efflux resistance genes were widely distributed and generally expressed in A. baumannii. Although no clear relation was established between efflux pump gene expression and antibiotic resistance or reduced biocide susceptibility, triclosan non-susceptible isolates displayed relatively increased expression of adeB and adeJ whereas chlorhexidine non-susceptible isolates had increased abeM and fabI gene expression. Increased expression of adeJ and abeM was also demonstrated in multiple antibiotic resistant isolates. Exposure of isolates to subinhibitory concentrations of triclosan or chlorhexidine induced gene expression of adeB, adeG, adeJ and fabI, and adeB, respectively. A point mutation in FabI, Gly95Ser, was observed in only one triclosan-resistant isolate. Multiple sequence types with the major clone complex, CC92, were identified in high level triclosan-resistant isolates. Overall, this study showed the high prevalence of antibiotic and biocide resistance as well as the complexity of intertwined resistance mechanisms in clinical isolates of A. baumannii, which highlights the

  18. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2016-02-01

    Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis

    DEFF Research Database (Denmark)

    Pedersen, Annemarie Aarup; Pedersen, Tanja X; Junker, Nanna

    2016-01-01

    transplanted with bone marrow from mice with HIF-1α deficiency in the myeloid cells or control bone marrow. The HIF-1α deficiency in myeloid cells reduced atherosclerosis in aorta of the Ldlr(-/-) recipient mice by ≈72% (P=0.006).In vitro, HIF-1α-deficient macrophages displayed decreased differentiation...... to proinflammatory M1 macrophages and reduced expression of inflammatory genes. HIF-1α deficiency also affected glucose uptake, apoptosis, and migratory abilities of the macrophages. CONCLUSIONS: HIF-1α expression in macrophages affects their intrinsic inflammatory profile and promotes development of atherosclerosis....

  20. Baicalein reduces oxidative stress in CHO cell cultures and improves recombinant antibody productivity

    DEFF Research Database (Denmark)

    Kwang Ha, Tae; Hansen, Anders Holmgaard; Kol, Stefan

    2017-01-01

    . Addition of baicalein significantly reduced the expression level of BiP and CHOP along with reduced reactive oxygen species level, suggesting oxidative stress accumulated in the cells can be relieved using baicalein. As a result, addition of baicalein in batch cultures resulted in 1.7 - 1.8-fold increase...

  1. Static facial expression recognition with convolution neural networks

    Science.gov (United States)

    Zhang, Feng; Chen, Zhong; Ouyang, Chao; Zhang, Yifei

    2018-03-01

    Facial expression recognition is a currently active research topic in the fields of computer vision, pattern recognition and artificial intelligence. In this paper, we have developed a convolutional neural networks (CNN) for classifying human emotions from static facial expression into one of the seven facial emotion categories. We pre-train our CNN model on the combined FER2013 dataset formed by train, validation and test set and fine-tune on the extended Cohn-Kanade database. In order to reduce the overfitting of the models, we utilized different techniques including dropout and batch normalization in addition to data augmentation. According to the experimental result, our CNN model has excellent classification performance and robustness for facial expression recognition.

  2. Silicate reduces cadmium uptake into cells of wheat

    International Nuclear Information System (INIS)

    Greger, Maria; Kabir, Ahmad H.; Landberg, Tommy; Maity, Pooja J.; Lindberg, Sylvia

    2016-01-01

    Cadmium (Cd) is a health threat all over the world and high Cd content in wheat causes high Cd intake. Silicon (Si) decreases cadmium content in wheat grains and shoot. This work investigates whether and how silicate (Si) influences cadmium (Cd) uptake at the cellular level in wheat. Wheat seedlings were grown in the presence or absence of Si with or without Cd. Cadmium, Si, and iron (Fe) accumulation in roots and shoots was analysed. Leaf protoplasts from plants grown without Cd were investigated for Cd uptake in the presence or absence of Si using the fluorescent dye, Leadmium Green AM. Roots and shoots of plants subjected to all four treatments were investigated regarding the expression of genes involved in the Cd uptake across the plasma membrane (i.e. LCT1) and efflux of Cd into apoplasm or vacuole from the cytosol (i.e. HMA2). In addition, phytochelatin (PC) content and PC gene (PCS1) expression were analysed. Expression of iron and metal transporter genes (IRT1 and NRAMP1) were also analysed. Results indicated that Si reduced Cd accumulation in plants, especially in shoot. Si reduced Cd transport into the cytoplasm when Si was added both directly during the uptake measurements and to the growth medium. Silicate downregulated LCT1 and HMA2 and upregulated PCS1. In addition, Si enhanced PC formation when Cd was present. The IRT1 gene, which was downregulated by Cd was upregulated by Si in root and shoot facilitating Fe transport in wheat. NRAMP1 was similarly expressed, though the effect was limited to roots. This work is the first to show how Si influences Cd uptake on the cellular level. - Highlights: • Si decreases accumulation and translocation of Cd in plants at tissue level. • This work is the first to show how Si influences Cd uptake. • Si decreases Cd uptake into cell and downregulates heavy metal transporter LCT1. • Si downregulates HMA2 transporter, which regulates Cd transport from root to shoot. • Si increases phytochelatin formation

  3. Sad people are more accurate at expression identification with a smaller own-ethnicity bias than happy people.

    Science.gov (United States)

    Hills, Peter J; Hill, Dominic M

    2017-07-12

    Sad individuals perform more accurately at face identity recognition (Hills, Werno, & Lewis, 2011), possibly because they scan more of the face during encoding. During expression identification tasks, sad individuals do not fixate on the eyes as much as happier individuals (Wu, Pu, Allen, & Pauli, 2012). Fixating on features other than the eyes leads to a reduced own-ethnicity bias (Hills & Lewis, 2006). This background indicates that sad individuals would not view the eyes as much as happy individuals and this would result in improved expression recognition and a reduced own-ethnicity bias. This prediction was tested using an expression identification task, with eye tracking. We demonstrate that sad-induced participants show enhanced expression recognition and a reduced own-ethnicity bias than happy-induced participants due to scanning more facial features. We conclude that mood affects eye movements and face encoding by causing a wider sampling strategy and deeper encoding of facial features diagnostic for expression identification.

  4. Macaques can predict social outcomes from facial expressions.

    Science.gov (United States)

    Waller, Bridget M; Whitehouse, Jamie; Micheletta, Jérôme

    2016-09-01

    There is widespread acceptance that facial expressions are useful in social interactions, but empirical demonstration of their adaptive function has remained elusive. Here, we investigated whether macaques can use the facial expressions of others to predict the future outcomes of social interaction. Crested macaques (Macaca nigra) were shown an approach between two unknown individuals on a touchscreen and were required to choose between one of two potential social outcomes. The facial expressions of the actors were manipulated in the last frame of the video. One subject reached the experimental stage and accurately predicted different social outcomes depending on which facial expressions the actors displayed. The bared-teeth display (homologue of the human smile) was most strongly associated with predicted friendly outcomes. Contrary to our predictions, screams and threat faces were not associated more with conflict outcomes. Overall, therefore, the presence of any facial expression (compared to neutral) caused the subject to choose friendly outcomes more than negative outcomes. Facial expression in general, therefore, indicated a reduced likelihood of social conflict. The findings dispute traditional theories that view expressions only as indicators of present emotion and instead suggest that expressions form part of complex social interactions where individuals think beyond the present.

  5. Reduced expression of argininosuccinate synthetase 1 has a negative prognostic impact in patients with pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Qingqing Liu

    Full Text Available Argininosuccinate synthetase 1 (ASS1, the rate-limiting enzyme for arginine biosynthesis, is expressed in many types of human malignancies. Recent studies showed that ASS1 may have tumor suppressor function and that ASS1 deficiency is associated with clinical aggressiveness in nasopharyngeal carcinoma, myxofibrosarcomas and bladder cancer. The goal of this study was to evaluate the prognostic impact of ASS1 expression in patients with pancreatic ductal adenocarcinoma (PDAC. Our study included two independent cohorts: untreated cohort, which was comprised of 135 patients with PDAC who underwent pancreatoduodenectomy (PD without pre-operative neoadjuvant therapy, and treated cohort, which was comprised of 122 patients with PDAC who have completed neoadjuvant therapy and PD. The expression level of ASS1 was evaluated by immunohistochemistry and the results were correlated with clinicopathologic parameters and survival using SPSS statistics. Our study showed that 12% of PDAC in untreated cohort and 15% of PDAC in treated cohort has low expression of ASS1 (ASS1-low. ASS1-low was associated with higher recurrence (p = 0.045, shorter disease-free survival (DFS, 4.8 ± 1.6 months vs 15.3 ± 2.2 months, p = 0.001 and shorter overall survival (OS, 14.6 ± 6.4 months vs 26.5 ± 3.5 months, p = 0.005 in untreated cohort and shorter OS in treated cohort compared to ASS1-high tumors. In multivariate analysis, ASS1-low (HR: 0.45, 95% CI: 0.26-0.79, p = 0.005 was an independent prognostic factor for DFS in untreated cohort and an independent prognostic factor for OS (HR: 0.56, 95% CI: 0.32-0.97, p = 0.04 in treated cohort. Our results provide supporting evidence for future clinical trial using arginine deprivation agents either alone or in combination with conventional chemotherapy in treating pancreatic cancer.

  6. Epigenetics and gene expression profile in first-episode psychosis: The role of childhood trauma.

    Science.gov (United States)

    Tomassi, Simona; Tosato, Sarah

    2017-12-01

    Childhood Trauma (CT) mediation of the epigenome and its impact on gene expression profile could provide a mechanism for the gene-environment interaction underling psychosis. We reviewed the evidence concerning epigenetic and gene expression modifications associated with CT in both First-Episode Psychosis (FEP) and healthy subjects. In order to explore the relative role of psychosis itself in determining these modifications, evidence about FEP and epigenetics/gene expression was also summarized. We performed a systematic search on PubMed, last updated in December 2016. Out of 2966 potentially relevant records, only 41 studies were included. CT resulted associated: in FEP subjects, with global DNA hypo-methylation and reduced BDNF gene-expression; in healthy subjects, with hyper-methylation of SLC6A4, NR3C1, KITLG, and OXTR; hypo-methylation of FKBP5, IL-6, and BDNF; increased IL1B, IL8, and PTGS gene expression; and decreased SLC6A4 gene expression. FEP showed global DNA hypo-methylation; increased methylation and reduced gene expression of GCH1; hyper-expression of MPB, NDEL1, AKT1, and DICER1; and hypo-expression of DROSHA, COMT, and DISC1 in comparison with healthy controls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Reduced volume but increased training intensity elevates muscle Na+-K+ pump alpha1-subunit and NHE1 expression as well as short-term work capacity in humans

    DEFF Research Database (Denmark)

    Iaia, F. Marcello; Thomassen, Martin; Kolding, Helle

    2008-01-01

    by 30-s sprint runs three to four times a week, whereas CON continued the endurance training ( approximately 45 km/wk). After the 4-wk sprint period, the expression of the muscle Na(+)-K(+) pump alpha(1)-subunit and Na(+)/H(+)-exchanger isoform 1 was 29 and 30% higher (P ... pulmonary maximum oxygen uptake and 10-k time were unchanged. No changes in CON were observed. The present data suggest a role of the Na(+)-K(+) pump in the control of K(+) homeostasis and in the development of fatigue during repeated high-intensity exercise. Furthermore, performance during intense exercise....... Furthermore, plasma K(+) concentration was reduced (P

  8. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    Science.gov (United States)

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  9. Dynamic T-lymphocyte chemokine receptor expression induced by interferon-beta therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, M; Sorensen, P S; Khademi, M

    2006-01-01

    chemokine receptor (CXCR)3 was unaltered. Conversely, at 9-12 h after the most recent IFN-beta injection, CCR4, CCR5 and CCR7 expressions were unaltered, while CXCR3 expression was reduced. CD4(+) T-cell surface expression of CCR4 was significantly lower in untreated MS patients compared with healthy...

  10. Triple negative breast cancers have a reduced expression of DNA repair genes.

    Directory of Open Access Journals (Sweden)

    Enilze Ribeiro

    Full Text Available DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia in paraffin embedded samples of triple negative breast cancer (TNBC compared to luminal A breast cancer (LABC. Most of the genes involved in nucleotide excision repair and Fanconi Anemia pathways, and CHK1 gene were significantly less expressed in TNBC than in LABC. PARP1 levels were higher in TNBC than in LABC. In univariate analysis high level of FANCA correlated with an increased overall survival and event free survival in TNBC; however multivariate analyses using Cox regression did not confirm FANCA as independent prognostic factor. These data support the evidence that TNBCs compared to LABCs harbour DNA repair defects.

  11. PPARγ agonists upregulate sphingosine 1-phosphate (S1P) receptor 1 expression, which in turn reduces S1P-induced [Ca(2+)]i increases in renal mesangial cells.

    Science.gov (United States)

    Koch, Alexander; Völzke, Anja; Puff, Bianca; Blankenbach, Kira; Meyer Zu Heringdorf, Dagmar; Huwiler, Andrea; Pfeilschifter, Josef

    2013-11-01

    We previously identified peroxisome proliferator-activated receptor gamma (PPARγ) agonists (thiazolidinediones, TZDs) as modulators of the sphingolipid metabolism in renal mesangial cells. TZDs upregulated sphingosine kinase 1 (SK-1) and increased the formation of intracellular sphingosine 1-phosphate (S1P), which in turn reduced the expression of pro-fibrotic connective tissue growth factor. Since S1P also acts as extracellular ligand at specific S1P receptors (S1PR, S1P1-5), we investigated here the effect of TZDs on S1PR expression in mesangial cells and evaluated the functional consequences by measuring S1P-induced increases in intracellular free Ca(2+) concentration ([Ca(2+)]i). Treatment with two different TZDs, troglitazone and rosiglitazone, enhanced S1P1 mRNA and protein expression in rat mesangial cells, whereas S1P2-5 expression levels were not altered. Upregulation of S1P1 mRNA upon TZD treatment was also detected in human mesangial cells and mouse glomeruli. PPARγ antagonism and promoter studies revealed that the TZD-dependent S1P1 mRNA induction involved a functional PPAR response element in the S1P1 promoter. Pharmacological approaches disclosed that S1P-induced [Ca(2+)]i increases in rat mesangial cells were predominantly mediated by S1P2 and S1P3. Interestingly, the transcriptional upregulation of S1P1 by TZDs resulted in a reduction of S1P-induced [Ca(2+)]i increases, which was reversed by the S1P1/3 antagonist VPC-23019, the protein kinase C (PKC) inhibitor PKC-412, and by S1P1 siRNA. These data suggest that PPARγ-dependent upregulation of S1P1 leads to an inhibition of S1P-induced Ca(2+) signaling in a PKC-dependent manner. Overall, these results reveal that TZDs not only modulate intracellular S1P levels but also regulate S1PR signaling by increasing S1P1 expression in mesangial cells. © 2013.

  12. p27{sup Kip1} inhibits tissue factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Breitenstein, Alexander, E-mail: alexander.breitenstein@usz.ch [Cardiology, University Heart Center, University Hospital Zurich (Switzerland); Cardiovascular Research, Physiology Institute, University of Zurich (Switzerland); Center for Integrative Human Physiology (ZHIP), University of Zurich (Switzerland); Akhmedov, Alexander; Camici, Giovanni G.; Lüscher, Thomas F.; Tanner, Felix C. [Cardiology, University Heart Center, University Hospital Zurich (Switzerland); Cardiovascular Research, Physiology Institute, University of Zurich (Switzerland); Center for Integrative Human Physiology (ZHIP), University of Zurich (Switzerland)

    2013-10-04

    Highlights: •p27{sup Kip1}regulates the expression of tissue factor at the transcriptional level. •This inhibitory effect of p27{sup Kip1} is independently of its cell regulatory action. •The current study provides new insights into a pleiotrophic function of p27{sup Kip1}. -- Abstract: Background: The cyclin-dependent kinase inhibitor (CDKI) p27{sup Kip1} regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27{sup Kip1} influences the expression of TF. Methods and results: p27{sup Kip1} overexpression in human aortic endothelial cells was achieved by adenoviral transfection. Cells were rendered quiescent for 24 h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n = 4; P < 0.001) in cells transfected with p27{sup Kip1}. In line with this, p27{sup Kip1} overexpression reduced cytokine-induced TF mRNA expression (n = 4; P < 0.01) and TF promotor activity (n = 4; P < 0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27{sup Kip1} overexpression. Conclusion: This in vitro study suggests that p27{sup Kip1} inhibits TF expression at the transcriptional level. These data indicate an interaction between p27{sup Kip1} and TF in important pathological alterations such as atherosclerosis and vascular remodeling.

  13. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    International Nuclear Information System (INIS)

    Wang Hongmin; Monteiro, Mervyn J.

    2007-01-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases

  14. Reduced RAR-β gene expression in Benzo(a)Pyrene induced lung cancer mice is upregulated by DOTAP lipo-ATRA treatment.

    Science.gov (United States)

    Viswanathan, S; Berlin Grace, V M

    2018-05-16

    Molecular targeted therapy for specific genes is an emerging research. Retinoic Acid Receptor (RAR-β) is a key tumor suppressor which is found to be lost drastically during much cancer progression. We hence, analyzed the expression level of RAR-β gene during B(a)P induced lung cancer development in mice and studied the lung cancer targeted action of All Trans Retinoic Acid (ATRA) in DOTAP liposomal formulation. The effect of its treatment on lung cancer was determined by histopathological analysis. RAR-β gene expression was assessed by RT-PCR and qPCR. A distinct band for RAR-β gene (density - 0.5123 for lung and 0.5160 for liver) was observed in normal mice, whereas no visible band was observed in cancer induced group, indicating loss of RAR-β gene expression. Both ATRA and lipo-ATRA treated groups showed detectable RAR-β expression with relatively lesser density than the normal group. The expression was more intense in lipo-ATRA treatment (density-0.2973) compared with free ATRA treatment (density-0.1549) in lung tissues. The qPCR results also have highlighted a highly significant (p ≤ 0.01) variation RQ values between lipo-ATRA group (15.46 ± 1.54) and free ATRA group (7.58 ± 1.30) in lung tissue sample on 30th day. The mean RQ value for normal lung on 30th day was 20.86 ± 2.58 against the cancer control. The 120th day mice also showed the similar RAR-β expression pattern with further declined expression levels as there was no treatment given after 30 days. Interestingly, the lipo-ATRA treatment could show a highly significant (p ≤ 0.001) expression (12.00 ± 2.31) when compared with free ATRA treatment (3.31 ± 0.58) which implies that the lipo-ATRA formulation could result in sustained delivery of ATRA in target site. Histopathology of lung and liver on 120th day also revealed an effective therapeutic indication in lipo-ATRA treatment compared to free ATRA treatment due to lipo-ATRA's stealth property and it

  15. Gene expression in tumor cells and stroma in dsRed 4T1 tumors in eGFP-expressing mice with and without enhanced oxygenation

    International Nuclear Information System (INIS)

    Moen, Ingrid; Øyan, Anne M; Stuhr, Linda EB; Jevne, Charlotte; Wang, Jian; Kalland, Karl-Henning; Chekenya, Martha; Akslen, Lars A; Sleire, Linda; Enger, Per Ø; Reed, Rolf K

    2012-01-01

    The tumor microenvironment is pivotal in tumor progression. Thus, we aimed to develop a mammary tumor model to elucidate molecular characteristics in the stroma versus the tumor cell compartment by global gene expression. Secondly, since tumor hypoxia influences several aspects of tumor pathophysiology, we hypothesized that hyperoxia might have an inhibitory effect on tumor growth per se. Finally, we aimed to identify differences in gene expression and key molecular mechanisms, both in the native state and following treatment. 4T1 dsRed breast cancer cells were injected into eGFP expressing NOD/SCID mice. Group 1 was exposed to 3 intermittent HBO treatments (Day 1, 4 and 7), Group 2 to 7 daily HBO treatments (both 2.5bar, 100% O 2 , à 90 min), whereas the controls were exposed to a normal atmosphere. Tumor growth, histology, vascularisation, cell proliferation, cell death and metastasis were assessed. Fluorescence-activated cell sorting was used to separate tumor cells from stromal cells prior to gene expression analysis. The purity of sorted cells was verified by fluorescence microscopy. Gene expression profiling demonstrated that highly expressed genes in the untreated tumor stroma included constituents of the extracellular matrix and matrix metalloproteinases. Tumor growth was significantly inhibited by HBO, and the MAPK pathway was found to be significantly reduced. Immunohistochemistry indicated a significantly reduced microvessel density after intermittent HBO, whereas daily HBO did not show a similar effect. The anti-angiogenic response was reflected in the expression trends of angiogenic factors. The present in vivo mammary tumor model enabled us to separate tumor and stromal cells, and demonstrated that the two compartments are characterized by distinct gene expressions, both in the native state and following HBO treatments. Furthermore, hyperoxia induced a significant tumor growth-inhibitory effect, with significant down-regulation of the MAPK pathway

  16. Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp [Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto (Japan); Usuki, Fusako [Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto (Japan); Cheng, Jinping; Zhao, Wenchang [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-01

    Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes were not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.

  17. Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum

    International Nuclear Information System (INIS)

    Fujimura, Masatake; Usuki, Fusako; Cheng, Jinping; Zhao, Wenchang

    2016-01-01

    Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes were not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.

  18. Interactions between β-catenin and the HSlo potassium channel regulates HSlo surface expression.

    Directory of Open Access Journals (Sweden)

    Shumin Bian

    Full Text Available The large conductance calcium-activated potassium channel alpha-subunit (Slo is widely distributed throughout the body and plays an important role in a number of diseases. Prior work has shown that Slo, through its S10 region, interacts with β-catenin, a key component of the cytoskeleton framework and the Wnt signaling pathway. However, the physiological significance of this interaction was not clear.Using a combination of proteomic and cell biology tools we show the existence of additional multiple binding sites in Slo, and explore in detail β-catenin interactions with the S10 region. We demonstrate that deletion of this region reduces Slo surface expression in HEK cells, which indicates that interaction with beta-catenin is important for Slo surface expression. This is confirmed by reduced expression of Slo in HEK cells and chicken (Gallus gallus domesticus leghorn white hair cells treated with siRNA to β-catenin. HSlo reciprocally co-immunoprecipitates with β-catenin, indicating a stable binding between these two proteins, with the S10 deletion mutant having reduced binding with β-catenin. We also observed that mutations of the two putative GSK phosphorylation sites within the S10 region affect both the surface expression of Slo and the channel's voltage and calcium sensitivities. Interestingly, expression of exogenous Slo in HEK cells inhibits β-catenin-dependent canonical Wnt signaling.These studies identify for the first time a central role for β-catenin in mediating Slo surface expression. Additionally we show that Slo overexpression can lead to downregulation of Wnt signaling.

  19. CX4945 suppresses the growth of castration-resistant prostate cancer cells by reducing AR-V7 expression.

    Science.gov (United States)

    Deng, Chuangzhong; Chen, Jieping; Guo, Shengjie; Wang, Yanjun; Zhou, Qianghua; Li, Zaishang; Yang, Xingping; Yu, Xingsu; Zhang, Zhenfeng; Zhou, Fangjian; Han, Hui; Yao, Kai

    2017-08-01

    The aberrant expression of casein kinase 2 (CK2) has been reported to be involved in the tumorigenesis and progression of prostate cancer. The inhibition of CK2 activity represses androgen-dependent prostate cancer cells by attenuating the androgen receptor (AR) signaling pathway. In this study, we examined the effect of CK2 inhibition in castration-resistant prostate cancer (CRPC) cells, in which AR variants (ARVs) play a predominant role. A newly synthetic CK2 selective inhibitor CX4945 was utilized to study the effect of CK2 inhibition in CRPC cells by CCK8 assay and colony formation assay. Protein and mRNA levels of full-length AR (AR-FL) and AR-V7 were determined by qPCR and western blot, respectively. The nuclear translocation of p50 and p65 was assessed to reflect the activity of the NF-κB pathway. CX4945 reduced the proliferation of CRPC cells in a dose-dependent and time-dependent manner. AR-V7 rather than AR-FL was downregulated by CX4945 in both the mRNA and protein level. Furthermore, CX4945 could restore the sensitivity of CRPC cells to bicalutamide. The analysis of possible mechanisms demonstrated that the inhibition of CK2 diminished the phosphorylation of p65 at ser529 and thus attenuated the activity of the NF-κB pathway. The inhibition of CK2 by CX4945 can repress the viability of CRPC cells and restore their sensitivity to anti-androgen therapy by suppressing AR-V7. This finding presents a potential option for the treatment of prostate cancer, especially CRPC.

  20. Prognostic significance of snail expression in hilar cholangiocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Dalu [Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin (China); Liang, Jun [Department of Oncology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province (China); Li, Rong [Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin (China); Liu, Shihai [Department of Laboratory Center, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province (China); Wang, Jigang [Department of Oncology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province (China); Zhang, Kejun; Chen, Dong [Department of General Surgery, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province (China)

    2012-05-11

    Many patients with hilar cholangiocarcinoma (HC) have a poor prognosis. Snail, a transcription factor and E-cadherin repressor, is a novel prognostic factor in many cancers. The aim of this study was to evaluate the relationship between snail and E-cadherin protein expression and the prognostic significance of snail expression in HC. We examined the protein expression of snail and E-cadherin in HC tissues from 47 patients (22 males and 25 females, mean age 61.2 years) using immunohistochemistry and RT-PCR. Proliferation rate was also evaluated in the same cases by the MIB1 index. High, low and negative snail protein expression was recorded in 18 (38%), 17 (36%), and 12 (26%) cases, respectively, and 40.4% (19/47) cases showed reduced E-cadherin protein expression in HC samples. No significant correlation was found between snail and E-cadherin protein expression levels (P = 0.056). No significant correlation was found between snail protein expression levels and gender, age, tumor grade, vascular or perineural invasion, nodal metastasis and invasion, or proliferative index. Cancer samples with positive snail protein expression were associated with poor survival compared with the negative expresser groups. Kaplan-Meier curves comparing different snail protein expression levels to survival showed highly significant separation (P < 0.0001, log-rank test). With multivariate analysis, only snail protein expression among all parameters was found to influence survival (P = 0.0003). We suggest that snail expression levels can predict poor survival regardless of pathological features and tumor proliferation. Immunohistochemical detection of snail protein expression levels in routine sections may provide the first biological prognostic marker.

  1. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis

    International Nuclear Information System (INIS)

    Li Zhengrong; Zhan Wenhua; Wang Zhao; Zhu Baohe; He Yulong; Peng Junsheng; Cai Shirong; Ma Jinping

    2006-01-01

    High expression of PRL-3, a protein tyrosine phosphatase, is proved to be associated with lymph node metastasis in gastric carcinoma from previous studies. In this paper, we examined the relationship between PRL-3 expression and peritoneal metastasis in gastric carcinoma. We applied the artificial miRNA (pCMV-PRL3miRNA), which is based on the murine miR-155 sequence, to efficiently silence the target gene expression of PRL-3 in SGC7901 gastric cancer cells at both mRNA and protein levels. Then we observed that, in vitro, pCMV-PRL3miRNA significantly depressed the SGC7901 cell invasion and migration independent of cellular proliferation. In vivo, PRL-3 knockdown effectively suppressed the growth of peritoneal metastases and improved the prognosis in nude mice. Therefore, we concluded that artificial miRNA can depress the expression of PRL-3, and that PRL-3 might be a potential therapeutic target for gastric cancer peritoneal metastasis

  2. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    International Nuclear Information System (INIS)

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-01-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export

  3. Peritoneal fluid reduces angiogenesis-related microRNA expression in cell cultures of endometrial and endometriotic tissues from women with endometriosis.

    Directory of Open Access Journals (Sweden)

    Aitana Braza-Boïls

    Full Text Available UNLABELLED: Endometriosis, defined as the presence of endometrium outside the uterus, is one of the most frequent gynecological diseases. It has been suggested that modifications of both endometrial and peritoneal factors could be implicated in this disease. Endometriosis is a multifactorial disease in which angiogenesis and proteolysis are dysregulated. MicroRNAs (miRNAs are small non-coding RNAs that regulate the protein expression and may be the main regulators of angiogenesis. Our hypothesis is that peritoneal fluid from women with endometriosis could modify the expression of several miRNAs that regulate angiogenesis and proteolysis in the endometriosis development. The objective of this study has been to evaluate the influence of endometriotic peritoneal fluid on the expression of six miRNAs related to angiogenesis, as well as several angiogenic and proteolytic factors in endometrial and endometriotic cell cultures from women with endometriosis compared with women without endometriosis. METHODS: Endometrial and endometriotic cells were cultured and treated with endometriotic and control peritoneal fluid pools. We have studied the expression of six miRNAs (miR-16, -17-5p, -20a, -125a, -221, and -222 by RT-PCR and protein and mRNA levels of vascular endothelial growth factor-A, thrombospondin-1, urokinase plasminogen activator and plasminogen activator inhibitor-1 by ELISA and qRT-PCR respectively. RESULTS: Control and endometriotic peritoneal fluid pools induced a significant reduction of all miRNAs levels in endometrial and endometriotic cell cultures. Moreover, both peritoneal fluids induced a significant increase in VEGF-A, uPA and PAI-1 protein levels in all cell cultures without significant increase in mRNA levels. Endometrial cell cultures from patients treated with endometriotic peritoneal fluid showed lower expression of miRNAs and higher expression of VEGF-A protein levels than cultures from controls. In conclusion , this "in vitro

  4. Representational momentum in dynamic facial expressions is modulated by the level of expressed pain: Amplitude and direction effects.

    Science.gov (United States)

    Prigent, Elise; Amorim, Michel-Ange; de Oliveira, Armando Mónica

    2018-01-01

    Humans have developed a specific capacity to rapidly perceive and anticipate other people's facial expressions so as to get an immediate impression of their emotional state of mind. We carried out two experiments to examine the perceptual and memory dynamics of facial expressions of pain. In the first experiment, we investigated how people estimate other people's levels of pain based on the perception of various dynamic facial expressions; these differ both in terms of the amount and intensity of activated action units. A second experiment used a representational momentum (RM) paradigm to study the emotional anticipation (memory bias) elicited by the same facial expressions of pain studied in Experiment 1. Our results highlighted the relationship between the level of perceived pain (in Experiment 1) and the direction and magnitude of memory bias (in Experiment 2): When perceived pain increases, the memory bias tends to be reduced (if positive) and ultimately becomes negative. Dynamic facial expressions of pain may reenact an "immediate perceptual history" in the perceiver before leading to an emotional anticipation of the agent's upcoming state. Thus, a subtle facial expression of pain (i.e., a low contraction around the eyes) that leads to a significant positive anticipation can be considered an adaptive process-one through which we can swiftly and involuntarily detect other people's pain.

  5. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  6. Resveratrol Reduces Prostate Cancer Growth and Metastasis by Inhibiting the Akt/MicroRNA-21 Pathway

    Science.gov (United States)

    Sheth, Sandeep; Jajoo, Sarvesh; Kaur, Tejbeer; Mukherjea, Debashree; Sheehan, Kelly; Rybak, Leonard P.; Ramkumar, Vickram

    2012-01-01

    The consumption of foods containing resveratrol produces significant health benefits. Resveratrol inhibits cancer by reducing cell proliferation and metastasis and by inducing apoptosis. These actions could be explained by its ability to inhibit (ERK-1/2), Akt and suppressing the levels of estrogen and insulin growth factor -1 (IGF-1) receptor. How these processes are manifested into the antitumor actions of resveratrol is not clear. Using microarray studies, we show that resveratrol reduced the expression of various prostate-tumor associated microRNAs (miRs) including miR-21 in androgen-receptor negative and highly aggressive human prostate cancer cells, PC-3M-MM2. This effect of resveratrol was associated with reduced cell viability, migration and invasiveness. Additionally, resveratrol increased the expression of tumor suppressors, PDCD4 and maspin, which are negatively regulated by miR-21. Short interfering (si) RNA against PDCD4 attenuated resveratrol’s effect on prostate cancer cells, and similar effects were observed following over expression of miR-21 with pre-miR-21 oligonucleotides. PC-3M-MM2 cells also exhibited high levels of phospho-Akt (pAkt), which were reduced by both resveratrol and LY294002 (a PI3-kinase inhibitor). MiR-21 expression in these cells appeared to be dependent on Akt, as LY294002 reduced the levels of miR-21 along with a concurrent increase in PDCD4 expression. These in vitro findings were further corroborated in a severe combined immunodeficient (SCID) mouse xenograft model of prostate cancer. Oral administration of resveratrol not only inhibited the tumor growth but also decreased the incidence and number of metastatic lung lesions. These tumor- and metastatic-suppressive effects of resveratrol were associated with reduced miR-21 and pAkt, and elevated PDCD4 levels. Similar anti-tumor effects of resveratrol were observed in DU145 and LNCaP prostate cancer cells which were associated with suppression of Akt and PDCD4, but

  7. SIGNATURE: A workbench for gene expression signature analysis

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  8. Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Enrique Gallego-Colon

    2015-01-01

    Full Text Available Strategies to limit damage and improve repair after myocardial infarct remain a major therapeutic goal in cardiology. Our previous studies have shown that constitutive expression of a locally acting insulin-like growth factor-1 Ea (IGF-1Ea propeptide promotes functional restoration after cardiac injury associated with decreased scar formation. In the current study, we investigated the underlying molecular and cellular mechanisms behind the enhanced functional recovery. We observed improved cardiac function in mice overexpressing cardiac-specific IGF-1Ea as early as day 7 after myocardial infarction. Analysis of gene transcription revealed that supplemental IGF-1Ea regulated expression of key metalloproteinases (MMP-2 and MMP-9, their inhibitors (TIMP-1 and TIMP-2, and collagen types (Col 1α1 and Col 1α3 in the first week after injury. Infiltration of inflammatory cells, which direct the remodelling process, was also altered; in particular there was a notable reduction in inflammatory Ly6C+ monocytes at day 3 and an increase in anti-inflammatory CD206+ macrophages at day 7. Taken together, these results indicate that the IGF-1Ea transgene shifts the balance of innate immune cell populations early after infarction, favouring a reduction in inflammatory myeloid cells. This correlates with reduced extracellular matrix remodelling and changes in collagen composition that may confer enhanced scar elasticity and improved cardiac function.

  9. Reduced expression of mitochondrial electron transport chain proteins from hibernating hearts relative to ischemic preconditioned hearts in the second window of protection.

    Science.gov (United States)

    Cabrera, Jesús A; Butterick, Tammy A; Long, Eric K; Ziemba, Elizabeth A; Anderson, Lorraine B; Duffy, Cayla M; Sluiter, Willem; Duncker, Dirk J; Zhang, Jianyi; Chen, Yingjie; Ward, Herbert B; Kelly, Rosemary F; McFalls, Edward O

    2013-07-01

    Although protection against necrosis has been observed in both hibernating (HIB) and ischemic preconditioned hearts in the second window of protection (SWOP), a comparison of the mitochondrial proteome between the two entities has not been previously performed. Anesthetized swine underwent instrumentation with a fixed constrictor around the LAD artery and were followed for 12 weeks (HIB; N=7). A second group of anesthetized swine underwent ischemic preconditioning by inflating a balloon within the LAD artery 10 times for 2 min, each separated by 2 min reperfusion and were sacrificed 24h later (SWOP; N=7). Myocardial blood flow and high-energy nucleotides were obtained in the LAD region and normalized to remote regions. Post-sacrifice, protein content as measured with iTRAQ was compared in isolated mitochondria from the LAD area of a Sham heart. Basal regional blood flow in the LAD region when normalized to the remote region was 0.86±0.04 in HIB and 1.02±0.02 in SWOP tissue (Pregional blood flows in HIB hearts, ATP content in the LAD region, when normalized to the remote region was similar in HIB versus SWOP (1.06±0.06 and 1.02±0.05 respectively; NS) as was the transmural phosphocreatine (PCr) to ATP ratio (2.1±0.2 and 2.2±0.2 respectively; NS). Using iTRAQ, 64 common proteins were identified in HIB and SWOP hearts. Compared with SWOP, the relative abundance of mitochondrial proteins involved with electron transport chain (ETC) were reduced in HIB including NADH dehydrogenase, Cytochrome c reductase and oxidase, ATP synthase, and nicotinamide nucleotide transhydrogenase. Within chronically HIB heart tissue with reduced blood flow, the relative abundance of mitochondrial ETC proteins is decreased when compared with SWOP tissue. These data support the concept that HIB heart tissue subjected to chronically reduced blood flow is associated with a down-regulation in the expression of key mitochondrial proteins involved in electron transport. Published by Elsevier

  10. Expression of recombinant Streptokinase from local Egyptian ...

    African Journals Online (AJOL)

    We reported for the first time the expression of a recombinant SK from a local Streptococcus strain. When produced on industrial scale this r-SK may substantially contribute to reducing the costs of thrombolytic therapy in developing countries. In this study, a highly purified r-SK from Streptococcus sp. isolated from Egyptian ...

  11. Social information changes stress hormone receptor expression in the songbird brain.

    Science.gov (United States)

    Cornelius, Jamie M; Perreau, Gillian; Bishop, Valerie R; Krause, Jesse S; Smith, Rachael; Hahn, Thomas P; Meddle, Simone L

    2018-01-01

    Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer

    Science.gov (United States)

    2012-01-01

    Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million

  13. Effects of thiamine on growth, aflatoxin production, and aflr gene expression in A. parasiticus

    Directory of Open Access Journals (Sweden)

    Ladan Nazemi

    2015-01-01

    Results: The minimum inhibitory concentration was yielded as > 500 mg/ml. However, HPLC analysis results showed that aflatoxin production reduced in samples treated with 500 mg/ml of thiamine. In addition, the level of afIR gene expression was significantly reduced after treating with 500 and 250 mg/ml of vitamin B1. Conclusion: Based on the obtained results, thiamine could not inhibit the fungal growth completely. However, the rate of afIR gene expression and aflatoxin production was significantly reduced after fungal treating with thiamine. Consequently, using natural compounds such as vitamins may be regarded as potential antitoxic agent in food industry and the industries related to agriculture.

  14. A single administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin that produces reduced food and water intake induces long-lasting expression of corticotropin-releasing factor, arginine vasopressin, and proopiomelanocortin in rat brain

    International Nuclear Information System (INIS)

    Moon, Bo-Hyun; Hong, Chang Gwun; Kim, Soo-Young; Kim, Hyun-Ju; Shin, Seung Keon; Kang, Seungwoo; Lee, Kuem-Ju; Kim, Yong-Ku; Lee, Min-Soo; Shin, Kyung-Ho

    2008-01-01

    The mechanism by which a single administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces food and water intake is unclear. We examined whether such a food and water intake-reducing single administration of TCDD induced changes in corticotropin-releasing factor (CRF), arginine vasopressin (AVP), and proopiomelanocortin (POMC) expression in rat brain. To observe time-dependent changes in these neuropeptides, male Sprague-Dawley rats were given TCDD (50 μg/kg) and terminated 1, 2, 4, or 7 days later. In addition, to observe dose-dependent changes in feeding and neuropeptides, rats were also given a range of TCDD doses (12.5, 25, or 50 μg/kg) and terminated 14 days later. TCDD suppressed food and water intake over 14 days in a dose-dependent manner. TCDD treatment also increased CRF and POMC mRNA levels in the hypothalamic paraventricular nucleus (PVN) and arcuate nucleus, respectively, in a dose- and time-dependent manner. These increases were related to decreased food intake following TCDD administration. TCDD treatment increased AVP and CRF mRNA levels in the PVN, and these increases were related to decreased water intake. Interestingly, the increases in CRF, AVP and POMC expression were observed 7 to 14 days after TCDD administration. These results suggest that a single administration of TCDD induced long-lasting increases in CRF, AVP, and POMC mRNA levels in the hypothalamus and that these changes are related to reduced food and water intake 7 to 14 days after TCDD administration

  15. Decreased SAP expression in T cells from patients with SLE contributes to early signaling abnormalities and reduced IL-2 production

    Science.gov (United States)

    Karampetsou, Maria P.; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C.; Tsokos, George C.

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) display a number of functions including increased early signaling events following engagement of the T cell receptor (TCR). Signaling lymphocytic activation molecule family (SLAMF) cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating immune response. Here we present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and 3 men with SLE independently of disease activity. In SLE T cells the SAP protein is also subject to increased degradation by a caspase-3. Forced expression of SAP in SLE T cells simultaneously heightened IL-2 production, calcium (Ca2+) responses and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR antibodies, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. PMID:27183584

  16. Cardiomyocyte Hypocontractility and Reduced Myofibril Density in End-Stage Pediatric Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ilse A. E. Bollen

    2017-12-01

    Full Text Available Dilated cardiomyopathy amongst children (pediatric cardiomyopathy, pediatric CM is associated with a high morbidity and mortality. Because little is known about the pathophysiology of pediatric CM, treatment is largely based on adult heart failure therapy. The reason for high morbidity and mortality is largely unknown as well as data on cellular pathomechanisms is limited. Here, we assessed cardiomyocyte contractility and protein expression to define cellular pathomechanisms in pediatric CM. Explanted heart tissue of 11 pediatric CM patients and 18 controls was studied. Contractility was measured in single membrane-permeabilized cardiomyocytes and protein expression was assessed with gel electrophoresis and western blot analysis. We observed increased Ca2+-sensitivity of myofilaments which was due to hypophosphorylation of cardiac troponin I, a feature commonly observed in adult DCM. We also found a significantly reduced maximal force generating capacity of pediatric CM cardiomyocytes, as well as a reduced passive force development over a range of sarcomere lengths. Myofibril density was reduced in pediatric CM compared to controls. Correction of maximal force and passive force for myofibril density normalized forces in pediatric CM cardiomyocytes to control values. This implies that the hypocontractility was caused by the reduction in myofibril density. Unlike in adult DCM we did not find an increase in compliant titin isoform expression in end-stage pediatric CM. The limited ability of pediatric CM patients to maintain myofibril density might have contributed to their early disease onset and severity.

  17. Cardiomyocyte Hypocontractility and Reduced Myofibril Density in End-Stage Pediatric Cardiomyopathy.

    Science.gov (United States)

    Bollen, Ilse A E; van der Meulen, Marijke; de Goede, Kyra; Kuster, Diederik W D; Dalinghaus, Michiel; van der Velden, Jolanda

    2017-01-01

    Dilated cardiomyopathy amongst children (pediatric cardiomyopathy, pediatric CM) is associated with a high morbidity and mortality. Because little is known about the pathophysiology of pediatric CM, treatment is largely based on adult heart failure therapy. The reason for high morbidity and mortality is largely unknown as well as data on cellular pathomechanisms is limited. Here, we assessed cardiomyocyte contractility and protein expression to define cellular pathomechanisms in pediatric CM. Explanted heart tissue of 11 pediatric CM patients and 18 controls was studied. Contractility was measured in single membrane-permeabilized cardiomyocytes and protein expression was assessed with gel electrophoresis and western blot analysis. We observed increased Ca 2+ -sensitivity of myofilaments which was due to hypophosphorylation of cardiac troponin I, a feature commonly observed in adult DCM. We also found a significantly reduced maximal force generating capacity of pediatric CM cardiomyocytes, as well as a reduced passive force development over a range of sarcomere lengths. Myofibril density was reduced in pediatric CM compared to controls. Correction of maximal force and passive force for myofibril density normalized forces in pediatric CM cardiomyocytes to control values. This implies that the hypocontractility was caused by the reduction in myofibril density. Unlike in adult DCM we did not find an increase in compliant titin isoform expression in end-stage pediatric CM. The limited ability of pediatric CM patients to maintain myofibril density might have contributed to their early disease onset and severity.

  18. Gosha-jinki-gan reduced oxaliplatin-induced hypersensitivity to cold sensation and its effect would be related to suppression of the expression of TRPM8 and TRPA1 in rats.

    Science.gov (United States)

    Kato, Yoshinori; Tateai, Yoshikazu; Ohkubo, Misao; Saito, Yuka; Amagai, Syun-ya; Kimura, Yu-Suke; Iimura, Naohumi; Okada, Megumi; Matsumoto, Akiko; Mano, Yasunari; Hirosawa, Iori; Ohuchi, Kaori; Tajima, Masataka; Asahi, Mariko; Kotaki, Hajime; Yamada, Harumi

    2014-01-01

    Peripheral neuropathy is a common side effect of the chemotherapeutic agent oxaliplatin (Oxp), and is associated with hypersensitivity to cold sensation in the acute stage. Recently, gosha-jinki-gan (GJG), a Japanese herbal medicine, was reported to improve Oxp-induced cold hypersensitivity. However, the mechanism for this effect was not elucidated. We hypothesized that the effect of GJG on Oxp-induced cold hypersensitivity may be associated with the expression of the transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) channels, which are cold-gated ion channels. To assess this hypothesis, we examined alteration of the withdrawal response to cold stimulation following coadministration of GJG and Oxp in rats, and the relationship between this altered withdrawal response and the expression of TRPM8 and TRPA1 mRNA in the dorsal root ganglia (DRG). Assessment of cold hypersensitivity was performed at 4 and 10°C using a cold plate. Compared with Oxp administration alone, coadministration of GJG (oral dose: 1 g/kg/day for 12 days) and Oxp (intraperitoneal dose: 4 mg/kg twice a week) significantly reduced the withdrawal response to cold stimulation. On the 12th day of drug administration, the L4-L6 DRG were removed and the expression of TRPM8 and TRPA1 mRNA was determined using RT-PCR. The expression of TRPM8 and TRPA1 in the DRG of rats that were coadministered GJG and Oxp decreased significantly compared with that in the rats administered Oxp alone. These results suggest that coadministration of GJG may improve Oxp-induced cold hypersensitivity by suppressing the overexpression of TRPM8 and TRPA1 mRNA.

  19. Nicotinamide Phosphoribosyltransferase Upregulation by Phenylephrine Reduces Radiation Injury in Submandibular Gland

    International Nuclear Information System (INIS)

    Xiang, Bin; Han, Lichi; Wang, Xinyue; Tang, Ling; Li, Kailiang; Li, Xiuxiu; Zhao, Xibo; Xia, Miaomiao; Zhou, Xixi; Zhang, Fuyin; Liu, Ke Jian

    2016-01-01

    Purpose: Radiation therapy for head and neck cancer commonly leads to radiation sialadenitis. Emerging evidence has indicated that phenylephrine pretreatment reduces radiosensitivity in the salivary gland; however, the underlying cytoprotective mechanism remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT) is not only a key enzyme for the nicotinamide adenine dinucleotide salvage pathway, but also a cytokine participating in cell survival, metabolism, and longevity, with a broad effect on cellular functions in physiology and pathology. However, the regulatory events of NAMPT in response to the irradiated salivary gland are unknown. Methods and Materials: The cell viability of primary cultured submandibular gland cells was determined using the PrestoBlue assay. NAMPT expression was measured using reverse transcriptase polymerase chain reaction and Western blotting in vitro and in vivo. Silent information regulator 1 (SIRT1) and phosphorylated Akt protein levels were examined by Western blotting. The cellular locations of NAMPT and SIRT1 were detected by immunohistochemistry. NAMPT promoter activity was assessed using the luciferase reporter gene assay. Results: NAMPT was mainly distributed in the cytoplasm of granular convoluted tubule cells and ductal cells in normal submandibular glands. mRNA and protein expression of NAMPT was downregulated after radiation but upregulated with phenylephrine pretreatment both in vivo and in vitro. Moreover, the protein expression of phosphorylated Akt and SIRT1 was decreased in irradiated glands, and phenylephrine pretreatment restored the expression of both. SIRT1 was mainly located in the cell nucleus and cytoplasm in the normal submandibular gland. Phenylephrine dramatically enhanced the expression of SIRT1, which was significantly reduced by radiation. Furthermore, phenylephrine induced a marked increase of NAMPT promoter activity. Conclusions: These findings reveal the regulatory mechanisms of NAMPT expression

  20. Nicotinamide Phosphoribosyltransferase Upregulation by Phenylephrine Reduces Radiation Injury in Submandibular Gland

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bin, E-mail: xiangbin72@163.com [Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian (China); Han, Lichi [Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian (China); Wang, Xinyue [Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian (China); Tang, Ling [Life Sciences and Technology College, Dalian University, Dalian (China); Li, Kailiang [Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian (China); Li, Xiuxiu [Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian (China); Zhao, Xibo [Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian (China); Xia, Miaomiao [Department of Oral Medicine and Medical Research Center of Medical College, Dalian University, Dalian (China); Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico (United States); Zhang, Fuyin [Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian (China); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico (United States)

    2016-11-01

    Purpose: Radiation therapy for head and neck cancer commonly leads to radiation sialadenitis. Emerging evidence has indicated that phenylephrine pretreatment reduces radiosensitivity in the salivary gland; however, the underlying cytoprotective mechanism remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT) is not only a key enzyme for the nicotinamide adenine dinucleotide salvage pathway, but also a cytokine participating in cell survival, metabolism, and longevity, with a broad effect on cellular functions in physiology and pathology. However, the regulatory events of NAMPT in response to the irradiated salivary gland are unknown. Methods and Materials: The cell viability of primary cultured submandibular gland cells was determined using the PrestoBlue assay. NAMPT expression was measured using reverse transcriptase polymerase chain reaction and Western blotting in vitro and in vivo. Silent information regulator 1 (SIRT1) and phosphorylated Akt protein levels were examined by Western blotting. The cellular locations of NAMPT and SIRT1 were detected by immunohistochemistry. NAMPT promoter activity was assessed using the luciferase reporter gene assay. Results: NAMPT was mainly distributed in the cytoplasm of granular convoluted tubule cells and ductal cells in normal submandibular glands. mRNA and protein expression of NAMPT was downregulated after radiation but upregulated with phenylephrine pretreatment both in vivo and in vitro. Moreover, the protein expression of phosphorylated Akt and SIRT1 was decreased in irradiated glands, and phenylephrine pretreatment restored the expression of both. SIRT1 was mainly located in the cell nucleus and cytoplasm in the normal submandibular gland. Phenylephrine dramatically enhanced the expression of SIRT1, which was significantly reduced by radiation. Furthermore, phenylephrine induced a marked increase of NAMPT promoter activity. Conclusions: These findings reveal the regulatory mechanisms of NAMPT expression

  1. TLR4 Expression Is Associated with Left Ventricular Dysfunction in Patients Undergoing Coronary Artery Bypass Surgery.

    Directory of Open Access Journals (Sweden)

    Orna Avlas

    Full Text Available Toll-like receptor 4 (TLR4 is an innate immune receptor expressed in immune cells and the heart. Activation of the immune system following myocardial ischemia causes the release of proinflammatory mediators that may negatively influence heart function.The aim of this study is to determine whether TLR4 is activated in peripheral monocytes and heart tissue taken from patients with varying degrees of myocardial dysfunction caused by coronary artery diseases and scheduled for coronary artery bypass graft (CABG surgery before 12 months following operation.Patients (n = 44 undergoing CABG surgery having left ventricular ejection fraction ≤ 45% ('reduced EF', n = 20 were compared to patients with preserved EF >45% ('preserved EF' group, n = 24. 'Reduced EF' patients exhibited increased TLR4 expression in monocytes (2.78±0.49 vs. 1.76±0.07 rMFI, p = 0.03. Plasma levels of C-reactive protein, microRNA miR-320a, brain natriuretic peptide (pro BNP and NADPH oxidase (NOX4 were also significantly different between the 'preserved EF' and 'reduced EF'groups. Elevated TLR4 gene expression levels in the right auricle correlated with those of EF (p<0.008, NOX4 (p<0.008 and miR320, (p<0.04. In contrast, no differences were observed in peripheral monocyte TLR2 expression. After CABG surgery, monocyte TLR4 expression decreased in all patients, reaching statistical significance in the 'reduced EF' group.TLR4 is activated in peripheral monocytes and heart tissue obtained from patients with ischemic heart disease and reduced left ventricular function. Coronary revascularization decreases TLR4 expression. We therefore propose that TLR4 plays a pathogenic role and may serve as an additional marker of ischemic myocardial dysfunction.

  2. Reduced expression of TRIM21/Ro52 predicts poor prognosis in diffuse large B-cell lymphoma patients with and without rheumatic disease

    DEFF Research Database (Denmark)

    Brauner, S; Zhou, W; Backlin, C

    2015-01-01

    OBJECTIVE: TRIM21 (also known as Ro52) is an autoantigen in rheumatic disease and is predominantly expressed in leucocytes. Overexpression is associated with decreased proliferation, and the TRIM21 gene maps to a tumour suppressor locus. We therefore investigated the expression of TRIM21...... in patients with diffuse large B-cell lymphoma (DLBCL) and its potential usefulness as a prognostic biomarker. MATERIALS AND METHODS: TRIM21 expression levels were assessed by immunohistochemistry in lymphoma biopsies from three cohorts of patients with DLBCL: 42 patients with rheumatic disease treated...... with a cyclophosphamide, vincristine, doxorubicin and prednisone (CHOP)-like regimen, 76 CHOP-treated and 196 rituximab-CHOP-treated nonrheumatic patients. Expression was correlated with clinical and biomedical parameters. TRIM21 expression was assessed in relation to lymphocyte proliferation by quantitative PCR...

  3. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking.

    Science.gov (United States)

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D

    2016-05-01

    Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.

  4. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    International Nuclear Information System (INIS)

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-01-01

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: ► Nicotine-induced StAR inhibition in two human adrenal cell models. ► Nicotine-induced single CpG site methylation in StAR promoter. ► Persistent StAR inhibition and single CpG methylation after nicotine termination. ► Single CpG methylation located at Pax6 binding motif regulates St

  5. Electroacupuncture Reduces Weight Gain Induced by Rosiglitazone through PPARγ and Leptin Receptor in CNS

    Directory of Open Access Journals (Sweden)

    Xinyue Jing

    2016-01-01

    Full Text Available We investigate the effect of electroacupuncture (EA on protecting the weight gain side effect of rosiglitazone (RSG in type 2 diabetes mellitus (T2DM rats and its possible mechanism in central nervous system (CNS. Our study showed that RSG (5 mg/kg significantly increased the body weight and food intake of the T2DM rats. After six-week treatment with RSG combined with EA, body weight, food intake, and the ratio of IWAT to body weight decreased significantly, whereas the ratio of BAT to body weight increased markedly. HE staining indicated that the T2DM-RSG rats had increased size of adipocytes in their IWAT, but EA treatment reduced the size of adipocytes. EA effectively reduced the lipid contents without affecting the antidiabetic effect of RSG. Furthermore, we noticed that the expression of PPARγ gene in hypothalamus was reduced by EA, while the expressions of leptin receptor and signal transducer and activator of transcription 3 (STAT3 were increased. Our results suggest that EA is an effective approach for inhibiting weight gain in T2DM rats treated by RSG. The possible mechanism might be through increased levels of leptin receptor and STAT3 and decreased PPARγ expression, by which food intake of the rats was reduced and RSG-induced weight gain was inhibited.

  6. Functional components of the bacterial CzcCBA efflux system reduce cadmium uptake and accumulation in transgenic tobacco plants.

    Science.gov (United States)

    Nesler, Andrea; DalCorso, Giovanni; Fasani, Elisa; Manara, Anna; Di Sansebastiano, Gian Pietro; Argese, Emanuele; Furini, Antonella

    2017-03-25

    Cadmium (Cd) is a toxic trace element released into the environment by industrial and agricultural practices, threatening the health of plants and contaminating the food/feed chain. Biotechnology can be used to develop plant varieties with a higher capacity for Cd accumulation (for use in phytoremediation programs) or a lower capacity for Cd accumulation (to reduce Cd levels in food and feed). Here we generated transgenic tobacco plants expressing components of the Pseudomonas putida CzcCBA efflux system. Plants were transformed with combinations of the CzcC, CzcB and CzcA genes, and the impact on Cd mobilization was analysed. Plants expressing PpCzcC showed no differences in Cd accumulation, whereas those expressing PpCzcB or PpCzcA accumulated less Cd in the shoots, but more Cd in the roots. Plants expressing both PpCzcB and PpCzcA accumulated less Cd in the shoots and roots compared to controls, whereas plants expressing all three genes showed a significant reduction in Cd levels only in shoots. These results show that components of the CzcCBA system can be expressed in plants and may be useful for developing plants with a reduced capacity to accumulate Cd in the shoots, potentially reducing the toxicity of food/feed crops cultivated in Cd-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    International Nuclear Information System (INIS)

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-01-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  8. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    Science.gov (United States)

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  9. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  10. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  11. Anti-ceramidase LCL385 acutely reduces BCL-2 expression in the hippocampus but is not associated with an increase of learned helplessness in rats.

    Science.gov (United States)

    Nahas, Ziad; Jiang, Yan; Zeidan, Youssef H; Bielawska, Alicja; Szulc, Zdzislaw; Devane, Lindsay; Kalivas, Peter; Hannun, Yusuf A

    2009-01-30

    Evidence from in situ studies supports the role of anti-apoptotic factors in the antidepressant responses of certain psychotropics. The availability of anti-ceramidase pro-apoptocic compound (LCL385) provides an opportunity to test in vivo the relation between hippocampal apopotosis and learned helplessness. 40 Sprague-Dawley male rodents underwent an FST after a treatment with LCL385, desipramine (DMI), or placebo (SAL) over 3 days. Behavioral responses, including immobility, swimming and climbing were counted during the 6min test. Western blot labeling was used to detect anti-apoptosis in hippocampus. DMI alone was associated with reduced immobility and increased climbing whereas LCL385 alone showed a decrease in Bcl-2/beta-actin ratio. Direct modulation of Bcl-2 expression in the hippocampus is not associated with learned helplessness in stressed rats. Three-day administration of DMI and LCL385 show divergent effects on behavioral and anti-apoptotic measures.

  12. Thrombomodulin Expression in Tissues From Dogs With Systemic Inflammatory Disease.

    Science.gov (United States)

    Kim, S D; Baker, P; DeLay, J; Wood, R D

    2016-07-01

    Thrombomodulin (TM) is a membrane glycoprotein expressed on endothelial cells, which plays a major role in the protein C anticoagulation pathway. In people with inflammation, TM expression can be down-regulated on endothelial cells and a soluble form released into circulation, resulting in increased risk of thrombosis and disseminated intravascular coagulation. TM is present in dogs; however, there has been minimal investigation of its expression in canine tissues, and the effects of inflammation on TM expression in canine tissues have not been investigated. The objective of this study was to evaluate endothelial TM expression in tissues from dogs with systemic inflammatory diseases. A retrospective evaluation of tissue samples of lung, spleen, and liver from dogs with and without systemic inflammatory diseases was performed using immunohistochemistry (IHC) and a modified manual IHC scoring system. TM expression was significantly reduced in all examined tissues in dogs diagnosed with septic peritonitis or acute pancreatitis. © The Author(s) 2016.

  13. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success.

    Science.gov (United States)

    Sindhu, Anoop S; Maier, Tom R; Mitchum, Melissa G; Hussey, Richard S; Davis, Eric L; Baum, Thomas J

    2009-01-01

    Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.

  14. Comments on Georgeff's Transformation and Reduction Strategies for Typed Lambda Expressions

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis

    1986-01-01

    In his recent paper, Georgeff [1] considers the evaluation of lambda expres sions (with reducing reflexive types) on a variant of Landin's SECD machine. It is observed that for so-called simple expressions the SECD machine will construct stack-like environment structures, whereas, in general......, they are tree-like. Georgeff then explores the idea of transforming any (typed) lambda expression into simple form and then using the SECD machine for these expressions. However, such transformations might be undesirable if the language is going to be interpreted directly. This leads Georgeff to modify the SECD...

  15. Production of cloned pigs with targeted attenuation of gene expression.

    Directory of Open Access Journals (Sweden)

    Vilceu Bordignon

    Full Text Available The objective of this study was to demonstrate that RNA interference (RNAi and somatic cell nuclear transfer (SCNT technologies can be used to attenuate the expression of specific genes in tissues of swine, a large animal species. Apolipoprotein E (apoE, a secreted glycoprotein known for its major role in lipid and lipoprotein metabolism and transport, was selected as the target gene for this study. Three synthetic small interfering RNAs (siRNA targeting the porcine apoE mRNA were tested in porcine granulosa cells in primary culture and reduced apoE mRNA abundance ranging from 45-82% compared to control cells. The most effective sequence was selected for cloning into a short hairpin RNA (shRNA expression vector under the control of RNA polymerase III (U6 promoter. Stably transfected fetal porcine fibroblast cells were generated and used to produce embryos with in vitro matured porcine oocytes, which were then transferred into the uterus of surrogate gilts. Seven live and one stillborn piglet were born from three gilts that became pregnant. Integration of the shRNA expression vector into the genome of clone piglets was confirmed by PCR and expression of the GFP transgene linked to the expression vector. Analysis showed that apoE protein levels in the liver and plasma of the clone pigs bearing the shRNA expression vector targeting the apoE mRNA was significantly reduced compared to control pigs cloned from non-transfected fibroblasts of the same cell line. These results demonstrate the feasibility of applying RNAi and SCNT technologies for introducing stable genetic modifications in somatic cells for eventual attenuation of gene expression in vivo in large animal species.

  16. Maternal vitamin D sufficiency and reduced placental gene expression in angiogenic biomarkers related to comorbidities of pregnancy.

    Science.gov (United States)

    Schulz, Elizabeth V; Cruze, Lori; Wei, Wei; Gehris, John; Wagner, Carol L

    2017-10-01

    Maternal circulating 25-hydroxyvitamin D [25(OH)D] has been shown to optimize production of 1,25-dihydroxyvitamin D [1,25(OH) 2 D] during pregnancy at approximately 100nmoles/L, which has pronounced effects on fetal health outcomes. Additionally, associations are noted between low maternal 25(OH)D concentrations and vascular pregnancy complications, such as preeclampsia. To further elucidate the effects of vitamin D activity in pregnancy, we investigated the role of maternal 25(OH)D, the nutritional indicator of vitamin D status, in relation to placental maintenance and, specifically, expression of placental gene targets related to angiogenesis and vitamin D metabolism. A focused analysis of placental mRNA expression related to angiogenesis, pregnancy maintenance, and vitamin D metabolism was conducted in placentas from 43 subjects enrolled in a randomized controlled trial supplementing 400IU or 4400IU of vitamin D 3 per day during pregnancy. Placental mRNA was isolated from biopsies within one hour of delivery, followed by quantitative PCR. We classified pregnant women with circulating concentrations of D concentrations D ≥100ng/mL compared to the subgroup vitamin D status and the expression of sFlt-1 and VEGF at the mRNA level. Achieving maternal circulating 25(OH)D ≥100nmoles/L suggests the impact of maternal vitamin D 3 supplementation on gene transcription in the placenta, thereby potentially decreasing antiangiogenic factors that may contribute to vascular pregnancy complications. Published by Elsevier Ltd.

  17. Computerised analysis of facial emotion expression in eating disorders

    Science.gov (United States)

    2017-01-01

    Background Problems with social-emotional processing are known to be an important contributor to the development and maintenance of eating disorders (EDs). Diminished facial communication of emotion has been frequently reported in individuals with anorexia nervosa (AN). Less is known about facial expressivity in bulimia nervosa (BN) and in people who have recovered from AN (RecAN). This study aimed to pilot the use of computerised facial expression analysis software to investigate emotion expression across the ED spectrum and recovery in a large sample of participants. Method 297 participants with AN, BN, RecAN, and healthy controls were recruited. Participants watched film clips designed to elicit happy or sad emotions, and facial expressions were then analysed using FaceReader. Results The finding mirrored those from previous work showing that healthy control and RecAN participants expressed significantly more positive emotions during the positive clip compared to the AN group. There were no differences in emotion expression during the sad film clip. Discussion These findings support the use of computerised methods to analyse emotion expression in EDs. The findings also demonstrate that reduced positive emotion expression is likely to be associated with the acute stage of AN illness, with individuals with BN showing an intermediate profile. PMID:28575109

  18. Computerised analysis of facial emotion expression in eating disorders.

    Science.gov (United States)

    Leppanen, Jenni; Dapelo, Marcela Marin; Davies, Helen; Lang, Katie; Treasure, Janet; Tchanturia, Kate

    2017-01-01

    Problems with social-emotional processing are known to be an important contributor to the development and maintenance of eating disorders (EDs). Diminished facial communication of emotion has been frequently reported in individuals with anorexia nervosa (AN). Less is known about facial expressivity in bulimia nervosa (BN) and in people who have recovered from AN (RecAN). This study aimed to pilot the use of computerised facial expression analysis software to investigate emotion expression across the ED spectrum and recovery in a large sample of participants. 297 participants with AN, BN, RecAN, and healthy controls were recruited. Participants watched film clips designed to elicit happy or sad emotions, and facial expressions were then analysed using FaceReader. The finding mirrored those from previous work showing that healthy control and RecAN participants expressed significantly more positive emotions during the positive clip compared to the AN group. There were no differences in emotion expression during the sad film clip. These findings support the use of computerised methods to analyse emotion expression in EDs. The findings also demonstrate that reduced positive emotion expression is likely to be associated with the acute stage of AN illness, with individuals with BN showing an intermediate profile.

  19. Facial Expression Recognition By Using Fisherface Methode With Backpropagation Neural Network

    Directory of Open Access Journals (Sweden)

    Zaenal Abidin

    2011-01-01

    Full Text Available Abstract— In daily lives, especially in interpersonal communication, face often used for expression. Facial expressions give information about the emotional state of the person. A facial expression is one of the behavioral characteristics. The components of a basic facial expression analysis system are face detection, face data extraction, and facial expression recognition. Fisherface method with backpropagation artificial neural network approach can be used for facial expression recognition. This method consists of two-stage process, namely PCA and LDA. PCA is used to reduce the dimension, while the LDA is used for features extraction of facial expressions. The system was tested with 2 databases namely JAFFE database and MUG database. The system correctly classified the expression with accuracy of 86.85%, and false positive 25 for image type I of JAFFE, for image type II of JAFFE 89.20% and false positive 15,  for type III of JAFFE 87.79%, and false positive for 16. The image of MUG are 98.09%, and false positive 5. Keywords— facial expression, fisherface method, PCA, LDA, backpropagation neural network.

  20. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    Gene electrotransfer is expanding in clinical use, thus we have searched for an emergency procedure to stop transgene expression in case of serious adverse events. Calcium is cytotoxic at high intracellular levels, so we tested effects of calcium electrotransfer on transgene expression in muscle....... A clinical grade calcium solution (20 μl, 168 mM) was injected into transfected mouse or rat tibialis cranialis muscle. Ca(2+) uptake was quantified using calcium 45 ((45)Ca), and voltage and time between injection and pulsation were varied. Extinction of transgene expression was investigated by using both...... voltage pulses of 1000 V/cm. Using these parameters, in vivo imaging showed that transgene expression significantly decreased 4 hr after Ca(2+) electrotransfer and was eliminated within 24 hr. Similarly, serum erythropoietin was reduced by 46% at 4 hr and to control levels at 2 days. Histological analyses...